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Abstract

In this thesis we focus on PDEs in which some of the parameters are not known exactly but affected
by a certain amount of uncertainty, and hence described in terms of random variables/random fields.
This situation is quite common in the engineering practice.

A common goal in this framework is to compute statistical indices, like mean or variance, for
some quantities of interest related to the solution of the equation at hand (“uncertainty quantifi-
cation”). The main challange in this task is represented by the fact that in many applications
tens/hundreds of random variables may be necessary to obtain an accurate representation of the
solution. The numerical schemes adopted to perform the uncertainty quantification should then
be designed to reduce the degradation of their performance whenever the number of parameters
increases, a phenomenon known as “curse of dimensionality”.

Two methods that seem promising in this sense are the Stochastic Galerkin method and the
Stochatic Collocation method. Such methods have therefore recently attracted the interest of the
uncertainty quantification community, and have proved to be more effective than sampling methods
like Monte Carlo, at least for problems with a moderate number of random parameters. We will
compare in detail these methods, and then propose for both suitable generalizations that have
shown to be optimal in terms of accuracy per cost for particular problems.

We will also introduce the idea of Generalized Spectral Decomposition for the Stochastic
Galerkin method, and explore its application in the context of non scalar equations, focusing on
the case of the stationary Navier-Stokes equations. Finally, we will show two applications of the
Stochastic Collocation method in the geological and hydraulic engineering.

Keywords: Uncertainty Quantification, Stochastic Galerkin Method, Stochastic Collocation
Method, best-M-terms approximation, Generalized Spectral Decomposition
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Introduction

Motivations

The Uncertainty Quantification problem

In the last decades simulation and prediction based on computational models have become widespread
tools in science and engineering practice. This process entails the selection of a suitable mathe-
matical model for the system of interest, the tuning of the parameters involved in the model, its
discretization and finally its numeric solution. Each of these steps implies some errors (modelling
errors, discretization errors, numerical errors, floating point errors); in this thesis we are concerned
with the errors that stem from an imperfect knowledge on the system properties.

Indeed, a lack of knowledge on the system of interest occurs in many situations. This may be
due to several reasons:

• precision issues in the measurament of some physical quantities like viscosity, permeability,
density;

• non-measurability of the system: for example, the permeability of the soil cannot be measured
point-wise;

• intrinsic randomness or unpredictability of some quantity, like wind loads, earthquake sources,
etc.

We will not deal instead with “model uncertainty”, i.e. we will always assume that a suitable
mathematical model is available, and the uncertainty is only affecting parameters/coefficients of
such model. We will focus on systems that are described by PDEs: in this case the parameters
prone to uncertainty are not only the various coefficients (e.g. diffusion, advection, reaction for an
elliptic PDE), but also forcing terms, boundary conditions and the shape of the domain.

We will also assume that the uncertainty affecting the parameters can be described through a
probabilistic approach. This implies that each uncertain parameter can be modeled as a random
variable or random field over a complete probability space, and that the probability distribution of
such random objects is known, either from experimental measures or from human expertise: this
of course is a not-so-small assumption in practice and proper statistical inference tools should be
used to characterize the randomness in the system starting from available measuraments. Again,
this aspect is not addressed here.

As soon as some of the parameters of the equation depend on a random event, so does the
solution: each realization of the random parameters will correspond to a different solution, through
the evaluation of a solver function, that in the case of PDEs usually requires assemblying and
solving the linear system coming e.g. from a finite difference or finite element discretization.

In this context, the goal is usually to compute statistics of the solution, like mean, variance,
probability of exceeding a threshold value (“failure probability”) etc; often one could also be inter-
ested in restricting such statistical analysis to functionals of the solution (hereafter called “output
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quantities” or “quantities of interest”). This kind of analysis is usually referred to as “Uncertainty
Quantification ” or “Forward Uncertainty Propagation” from the inputs to the outputs of the model.

The sampling approach to Uncertainty Quantification

Monte Carlo sampling is the most natural approach to solve the Uncertainty Quantification problem,
see e.g. [16, 87] . This simply requires generating a set of independent realizations from the
parameters space, and solving the equation for each sample in the set; the statistical indices are
then approximated by sample averages over the obtained set of solutions. Such method has a
straightforward implementation, since one can readily exploit all pre-existing deterministic codes,
to be used as “black boxes”, and moreover is fully parallelizable; see e.g. [51, 57, 70] for a review
on random points generators.

The convergence of the Monte Carlo method can be proved using classical results of probability
theory, that is the Law of Large Numbers and the Central Limit Theorem, see e.g. [63, 64, 89]. In
practice very few assumptions are required on the structure of the equation itself for the Monte
Carlo method to converge.

The main drawback of the Monte Carlo method is the extremely slow rate of convergence, which,
due to the Central Limit Theorem, is only proportional to σ/

√
M , where M denotes the number of

samples and σ is the standard deviation of the considered quantity of interest (considered bounded).
This can result in massive computational cost when the cost of a single evaluation of the solver
function requires complex operations like solving a linear system. Such rate is however independent
of the number of random parameters considered; this is a desirable feature since, as we will see
later, the number of random parameters involved can be quite large, and many methods suffer from
a degradation of their performance as this numbers increases, a phenomenon known as “Curse of
Dimensionality”.

A number of methods have been proposed to improve the convergence of Monte Carlo method,
either in the context of random sampling or considering deterministically chosen points. In the for-
mer case, an improvement in the performances with respect to the standard Monte Carlo method
is achieved either improving the random sampling efficiency (Stratified Sampling, Latin Hypercube
Sampling), or through variance reduction techniques (Antithetic Variates, Control Variates, Impor-
tance Sampling), see e.g. [16, 88]. All of these methods are quite effective in improving the constant
σ in the convergence estimate of the Monte Carlo method, but only the Latin Hypercube Sampling
improves the convergence rate 1/2 up to 1, see e.g. [65, 98].

On the other hand, in a deterministic framework Quasi-Monte Carlo methods have been pro-
posed, see [16, 52, 70, 94]. In these methods the sample indeed is not randomly generated, but
the points are deterministically chosen (Halton points, Sobol’ points) so to maximize some suitable
measure of efficiency in the coverage of the parameters space (the so-called “low-discrepancy” prop-
erty). These methods can achieve convergence rate up to 1 (up to logarithmic terms), depending
on the smoothness of the map from the parameters to the quantity of interest (“response surface”).
To this end, we also mention the recent developments in [26].

Polynomial approximation of the response surface

If the response surface (i.e. the input-output map) is regular one could exploit this property in
order to reduce the computational burden, computing for instance a polynomial approximation of
it. Such approximation is also known in literature as “surrogate model” and has been introduced
mainly for optimization purposes, see e.g. [55]. As we will see, once the surrogate model has
been computed, statistics like mean or variance can be approximated with simple post-process with
almost no computational cost, using suitable quadrature formulae.
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In this thesis we will mainly consider systems governed by elliptic PDEs, for which it is possible to
prove analyticity of the response surface (see Chapters 2 and 3), therefore looking for its polynomial
approximation is sound. Yet, the construction of the approximated response surface will be in
general a difficult task, since the quantity of interest may depend on a high number of random
parameters.

We will focus on two types of polynomial approximations: interpolant schemes, called Stochastic
Collocation, and projection ones, called Stochastic Galerkin. Both interpolation and projection are
well-established and efficient techniques exist for the approximation of real-valued functions of one
variable: their efficient extension to the approximation of high dimensional response surfaces has
been a central issue for the Uncertainty Quantification community in the last decades, and will be
the focus of this thesis.

Outline

This Thesis is organized as follows:

Chapter 1: exposes concisely the main results of this work, putting in evidence its main thread
and leaving details to the subsequent Chapters.

Chapter 2: compares the Stochastic Galerkin and Collocation methods and their respective perfor-
mances. We also introduce and explore numerically a first idea for anisotropic approximation
schemes.

Chapter 3: investigates in detail the structure of the response surface for an ellliptic PDE with
random diffusion coefficient, and exploits this theoretical understanding to derive particu-
lar versions of the Stochastic Galerkin and Collocation method that are quasi-optimal with
respect to a classical accuracy-cost ratio criterion.

Chapter 4: applies the optimal collocation technique derived in Chapter 3 on a groundwater flow
problem.

Chapter 5: recasts the Stochastic Galerkin approximation procedure into a generalized eigenvalue
problem, and uses this fact to build a sequence of surrogate models that converges to the com-
plete Galerkin approximation. Since computing each element of the sequence is much cheaper
than solving a full Galerkin problem, such procedure allows to obtain decent approximations
of the Galerkin solution with remarkable savings in terms of computational cost with respect
to the standard Galerkin method. We apply this technique to a stationary Navier-Stokes
problem, with uncertainty on Reynolds number and forcing field.

Chapter 6: develops tools for the computation of some sensitivity indices, that will be used to
perform an Uncertainty Quantification analysis on a geochemical compaction problem.

Most of the chapters are based on works already published/accepted for publication, or ready for
submission, and they are therefore “self-contained”. For these chapters, we have decided to keep the
structure of the corresponding paper with only minor changes, even if this implies some repetitions:

Chapter 2: J. Bäck, F. Nobile, L. Tamellini, R. Tempone Stochastic Spectral Galerkin and colloca-
tion methods for PDEs with random coefficients: a numerical comparison J.S. Hesthaven and
E.M. Ronquist, editors, Spectral and High Order Methods for Partial Differential Equations,
volume 76 of Lecture Notes in Computational Science and Engineering, pages 43-62. Springer,
2011. Selected papers from the ICOSAHOM 09 conference, June 22-26, Trondheim, Norway.
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Chapter 3: J. Beck, F. Nobile, L. Tamellini, R. Tempone On the optimal polynomial approximation
of stochastic PDEs by Galerkin and Collocation methods To appear on Mathematical Models
and Methods in Applied Sciences. Also available as MOX report 23/2011 - Department of
Mathematics, Politecnico di Milano.

A shorter version can also be found on J. Beck, F. Nobile, L. Tamellini, R. Tempone,
Implementation of optimal Galerkin and Collocation approximations of PDEs with random
coefficients, in ESAIM: Proceedings, 33 (2011). Proceedings of CANUM 2010, Carcans-
Maubuisson, France, May 31-June 4, 2010.

Chapter 5: L. Tamellini, O.P. Le Maitre, A. Nouy Generalized stochastic spectral decomposition
for the Steady Navier–Stokes equations, in preparation.

Chapter 6 is also based on a paper in preparation, A numerical model for the geological com-
pactation of sedimentary basins with sensitivity analysis, by L. Formaggia, A. Guadagnini, I.
Imperiali, G. Porta, M. Riva, A. Scotti, L. Tamellini. However, since the focus of the paper
is more on the geological application, in this case we have rewritten most of the content of
the paper, focusing mostly on the Uncertainty Quantification aspects.

Most of this work has been carried out at MOX laboratory, Department of Mathemtatics, Politecnico
di Milano.

Chapters 2,3 have been also developed during multiple stays visiting prof. Raul Tempone and
his team, both at ICES laboratory, University of Texas at Austin, USA, and Applied Math-
ematics and Computational Science Department, King Abdullah University for Science and
Technology (KAUST) at Thuwal, Saudi Arabia.

Chapter 5 was mainly developed throughout a visit to dr. Olivier Le Maitre at LIMSI-CNRS
laboratory, Université Paris-Sud 11 at Orsay, France, during winter 2010-2011.

Chapter 6 stems from a collaboration between MOX laboratory, Hydraulic and Environmental
Department (DIIAR) at Politecnico di Milano and ENI.

All the computational results shown in this work have been performed in MATLAB R© language,
except from Chapter 5, in which the code has been written in C++ and MATLAB R© has been used
only for post-processing.
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Chapter 1

Thesis overview

This Chapter shortly highlights the main results contained in this Thesis, putting in evidence the
main thread of the work and pointing to the subsequent Chapters for the full discussion. All the
necessary background and notation is confined to Section 1.1.

1.1 Problem setting

Let us consider the linear elliptic equation{
−div(a∇u) = f x ∈ D = (0, 1)2,

u = 0 x ∈ ∂D,
(1.1)

that describes physical phenomena like heat transfer or Darcy’s flows in porous media, see e.g.
[8, 50]. A straightforward application of the Lax–Milgram lemma allows to conclude that equation
(1.1) admits a unique solution u in H1

0 (D), the space of square integrable functions in D with square
integrable distributional derivatives and zero trace on the boundary, provided f is in the dual space
of H1

0 (D), which we denote by H−1(D).

As pointed out in the introduction, we are concerned with situations in which the parameters
of (1.1) are affected by uncertainty. For easiness of presentation we consider the case where the
coefficient a in (1.1) is the only source of uncertainty in the model, but the theory we present extends
immediately to the more general case where also f and the boundary conditions are uncertain. The
shape of D can also be considered as uncertain, see e.g. [18, 46, 47, 77, 112].

We describe the uncertainty on a with a probabilistic approach. Let (Ω,F , P ) be a complete
probability space: Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1]
is a probability measure. We recall that a real-valued random variable on (Ω,F , P ) is a function
X = X(ω) : Ω→ R that assigns a numerical value to each outcome ω ∈ Ω. We denote with E

[
Xk
]

the k-th order moment of the random variable,

E
[
Xk
]

=

∫
Ω
Xk(ω)dP (ω).

In particular E [X] denotes the mean, or expected value of X, while the variance of X is defined as
Var [X] = E

[
(X − E [X])2

]
. Let moreover L2

P (Ω) be the space of random variables with bounded
second moments,

L2
P (Ω) =

{
X(ω) : E

[
X2
]

=

∫
Ω
X2(ω)dP (ω) <∞

}
.
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We further denote by Cov [XY ] the covariance between two random variables X and Y

Cov [XY ] = E [(X − E [X])(Y − E [Y ])] . (1.2)

Next we state some assumptions on the diffusion coefficient a. These are indeed quite strong
assumptions that will be weakened later on, when dealing with the so-called “lognormal” random
fields, see e.g. Chapter 4.

Assumption 1.1. The diffusion coefficient a = a(x, ω) is a random field on (Ω,F , P ) taking values
in L∞(D), i.e. a function from D × Ω R such that

1. a(·, ω) is a strictly positive and bounded function over D for each random event ω ∈ Ω, i.e.
there exist two positive costants ∞ > amax > amin > 0 such that

P (amin ≤ a ≤ amax) = 1,

2. a(x, ·) is a real-valued random variable for each point in D.

3. for p,q ∈ D, the covariance function

Ca(p,q) = Cov [a(p, ·)a(q, ·)] (1.3)

depends only on the distance ‖p− q‖ (“weak stationarity” property).

Since to every realization of a corresponds a different solution u ∈ H1
0 (D), u is in turn a random

field on (Ω,F , P ), taking values in H1
0 (D). Equation (1.1) is therefore understood to hold in a

P -almost everywhere sense:

Strong Formulation. find a H1
0 (D)-valued random field, u : D × Ω → R, such that P -almost

everywhere in Ω, or in other words almost surely (a.s.), the following equation holds:{
−div(a(x, ω)∇u(x, ω)) = f(x) x ∈ D,
u(x, ω) = 0 x ∈ ∂D,

(1.4)

where the operators div and ∇ imply differentiation with respect to the physical coordinate only.

The Proposition stated next is an immediate consequence of Assumption 1.1 and Lax–Milgram
Lemma.

Proposition 1.1. For any f ∈ H−1(D), the strong formulation 1.4 admits a unique solution
u(·, ω) ∈ H1

0 (D) for almost every ω ∈ Ω, with

‖u(·, ω)‖H1(D) ≤
1

amin
‖f‖H−1(D) ,

Moreover, for any x ∈ D, u(x, ·) ∈ LqP (Ω), for all q ∈ N, 1 ≤ q ≤ ∞.

As anticipated in the Introduction, the aim of an Uncertainty Quantification analysis is to
compute statistical indices for u, like E [u] or Var [u], or a failure probability P (u > u0). Often
one could also be interested in performing the same analysis for a linear or non linear functional of
u, ψ(u) : H1

0 (D) → R, that represents the quantity of interest for the Uncertainty Quantification
analysis. Note that, under the assumption of linearity or Lipschitz continuity of ψ, Proposition 1.1
implies that the moments of ψ are bounded, see e.g. [71].
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1.1.a The Finite Dimensional Noise Assumption

Suppose for a moment that the following additional assumption on the diffusion coefficient holds:

Assumption 1.2 (“Finite Dimensional Noise Assumption”). a(x, ω) can be represented by a vector
of N real-valued random variables y = (y1, . . . , yN )T ,

a(x, ω) = a(x, y1(ω), y2(ω), . . . , yN (ω) ).

More general situations will be addressed in next subsection. Without loss of generality, we can
also consider each yi to have zero mean and unit variance and, for easiness of presentation, we will
also consider them identically distributed. Let Γi ⊆ R be the support of yi, Γ = Γ1×Γ2× . . .×ΓN
the support of y and ρ(y) the joint probability density function of y, such that

P (y1 < t1, y2 < t2, . . . , yN < tN ) =

∫ t1

−∞

∫ t2

−∞
. . .

∫ tN

−∞
ρ(y)dy.

We can therefore replace the abstract probability space (Ω,F , P ) with (Γ,B(Γ), ρ(y)dy), where
B(Γ) denotes the Borel σ-algebra, and the space L2

P (Ω) with L2
ρ(Γ), defined as

L2
ρ(Γ) =

{
f : Γ→ R s.t.

∫
Γ
f2(y)ρ(y)dy <∞

}
.

Furthermore, once a has a representation in terms of N random variables u can also be expressed
in terms of the same random variables, u = u(x,y) with u(x, ·) ∈ L2

ρ(Γ). Therefore the strong
formulation (1.4) now reads:

Strong Formulation (finite dimensional). find u : D×Γ→ R such that ρ(y)dy-almost everywhere
in Γ it holds: {

−div(a(x,y)∇u(x,y)) = f(x) x ∈ D,
u(x,y) = 0 x ∈ ∂D.

(1.5)

With a view to the polynomial approximation of the map y → u(x,y), it is also useful to
introduce a weak formulation of (1.5). Proposition 1.1 suggests that an appropriate space for u is
the tensor space H1

0 (D) ⊗ L2
ρ(Γ), thus assuming a separation between the physical and stochastic

variables,

u =
∑
i∈N

ui(x)ϕi(y) ui ∈ H1
0 (D), ϕi ∈ L2

ρ(Γ), (1.6)

so that the weak formulation of (1.5) can be stated as

Weak Formulation. find u ∈ H1
0 (D)⊗ L2

ρ(Γ) such that ∀v ∈ H1
0 (D)⊗ L2

ρ(Γ)∫
Γ

∫
D
a(x,y)∇u(x,y) · ∇v(x,y) ρ(y) dx dy =

∫
Γ

∫
D
f(x)v(x,y) ρ(y) dx dy. (1.7)

In the following we will often exploit the twofold interpretation of u, either as a map from y ∈ Γ
to u(y) ∈ H1

0 (D) or as a function in the tensor space H1
0 (D)⊗ L2

ρ(Γ), using in each case the most
convenient one.

It is immediate to introduce a discretization in space of the Weak Formulation (1.7). In this
thesis we have considered a finite element discretization, but finite difference or finite Volume
could be employed as well. Denoting with Th a triangulation of the physical domain D and with
Vh(D) ⊂ H1

0 (D) a finite element space of piecewise continuous polynomials on Th, whose dimension
is Nh, we can write a weak formulation for the semi-discrete problem in space as
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Weak Formulation (semidiscrete). find uh ∈ Vh(D)⊗ L2
ρ(Γ) such that ∀v ∈ Vh(D)⊗ L2

ρ(Γ)∫
Γ

∫
D
a(x,y)∇uh(x,y) · ∇v(x,y) ρ(y) dx dy =

∫
Γ

∫
D
f(x)v(x,y) ρ(y) dx dy. (1.8)

At this point it is very convenient to further assume independence of the random variables yi
introduced with the Finite Dimensional Noise Assumption 1.2:

Assumption 1.3. The random variables yi are mutually statistically independent.

Under such Assumption indeed the joint probability density function ρ(y) factorizes as ρ(y) =∏N
i=1 ρi(yi). Therefore L2

ρ(Γ) =
⊗N

i=1 L
2
ρi(Γi), and a basis for L2

ρ(Γ) can be built taking products
of basis functions for L2

ρi(Γi). We remark however that the assumption of independence of yi is not
essential, and it is possible to work within a tensor structure also in the case of non independent
yi by introducing an auxiliary density ρ̂ that factorizes, as proposed in [4]. The price to pay in the
convergence estimates is then a constant factor proportional to ‖ρ/ρ̂‖L∞(Γ).

1.1.b Expansions of a random field

In some cases the assumptions of finite dimensional noise and independence of the random parame-
ters yi are natural for the problem at hand; think e.g. to a composite medium where each subdomain
has its own random diffusion coefficient. However, in many situations a finite dimensional structure
is not readily available, and one has to resort to decomposition and truncation techniques to obtain
an approximate representation of a with a finite number of random variables. Such number has to
be large enough to take into account a sufficient amount of the total variability of the field, defined
as
∫
D Var [a(x, ·)] dx 1. We remark that in many applications of interest, this number may be of

order of tens/hundreds, see e.g. Chapter 4, hence the need for careful techniques in building the
polynomial approximation of the solution u of (1.8).

The most common decomposition of a random field is perhaps the Karhunen-Loève expansion,
see [42, 62, 63, 64], which is the continuous anologous of the Principal Component Decomposition
(see e.g. [54]). In the Karhunen-Loève expansion the random field is expanded in terms of un-
correlated2 random variables yi, L

2(D)−orthonormal deterministic functions vi(x) and decreasing
coefficients λi,

a(x, ω) ≈ aN (x, ω) = E [a(x, ·)] +
N∑
i=1

√
λivi(x)yi(ω), (1.9)

see Section 4.3 for a full discussion on such expansion. As an alternative to the Karhunen-Loève
expansion, it is possible to compute a Fourier-based decompostion of a, which uses trigonometric
polynomials as basis functions in the physical space, thus highlighting the contribution of each
frequency to the total field a. Both expansion have similar convergence properties, a smoother
covariance function (1.3) resulting in a faster convergence.

The KL and Fourier expansions result in a linear dependence of the random field a on the
random variables yi. In some applications however it is useful to model the logarithm of a as a
random field rather than a itself (usually when modeling phenomena with large variations), so that
the final expression for a depends exponentially on yi:

aN (x, ω) = a0(x) + exp

(
N∑
i=1

civi(x)yi(ω)

)
. (1.10)

1A way of working without formally dropping any term in the expansion of a will be addressed in Chapter 3.
2Observe that if the random field is Gaussian then yi are Gaussian too and therefore independent.
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Such expansion guarantees almost sure positivity of a(x, ω), a property useful when describing dif-
fusion coefficients or other physical parameters that need to be positive. Such logarithm expansion
is usually considered together with the assumption that yi are Gaussian random variables, thus
obtaining the so-called “lognormal model”. Note that in this case a is not uniformely bounded with
respect to ω, nor coercive in the case a0 = 0, so that Assumption 1.1 is not satisfied. However, it is
still possible to prove the well-posedness of the strong and weak formulations (1.4)-(1.8), as shown
in [19, 43].

1.1.c Methods for polynomial approximation of u

We are now in position to define the polynomial approximation (surrogate model) for the map
y ∈ Γ→ uh(y) ∈ Vh(D) that solves (1.8). We introduce a polynomial subspace of L2

ρ(Γ), which we
denote by P(Γ), and look for a full discrete solution uh,w ∈ Vh(D)⊗ P(Γ) solving3

Weak Formulation (Fully discrete). find uh,w ∈ Vh(D)⊗ P(Γ) such that ∀v ∈ Vh(D)⊗ P(Γ)∫
Γ

∫
D
aN (x,y)∇uh,w(x,y) · ∇v(x,y) ρ(y) dx dy =

∫
Γ

∫
D
f(x)v(x,y) ρ(y) dx dy, (1.11)

with the understanding that the polynomial space P(Γ) should be designed to retain good
approximating properties while keeping the number of degrees of freedom as low as possible. In
this sense, using the classical Tensor Product polynomials space, that contains all the N -variate
polynomials with maximum degree lower than a given w ∈ N, is not a good choice, since its
dimension grows exponentially fast with the number of random variables N , dimP(Γ) = (1 +w)N .
A valid alternative choice that has been widely used in literature (see e.g. [42, 97, 111]) is to use
the Total Degree polynomial space, that includes the polynomials whose sum of degrees in each
variable is lower than or equal to w: such space contains indeed only

(
N+w
N

)
polynomials, which

is much lower than (1 + w)N , yet retaining good approximation properties, as will be shown in
the next sections. A number of polynomial spaces is listed and analyzed in Chapter 2. One could
also introduce anisotropy techniques, with the aim to enrich the polynomial space only in those
direction of the stochastic space which are seen to contribute most to the total variability of the
solution.

In practice, the fully discrete solution uh,w will be computed either with a projection on Vh(D)⊗
P(Γ), resulting in the Galerkin method, or as an intepolant, resulting in the Collocation Method.
We will now briefly recall the construction of such methods, and then move to the results of this
thesis.

1.1.d Stochastic Galerkin method

As anticipated, the Stochastic Galerkin method (see e.g. [3, 42, 66, 101, 60] ) aims at com-
puting the modal coefficients of uh,w in Vh(D) ⊗ P(Γ), i.e. the coefficients of the expansion

uh,w(x,y) =
∑M

p=1 up(x)ϕp(y) for a suitable basis {ϕp}p=1,...,M of P(Γ). It is then convenient
to endow P(Γ) with a ρ(y)dy-orthonormal basis, i.e. with a sequence of polynomials {Lp}p∈N such
that

∫
Γ LpLqρ(y) dy = 1 if p = q and 0 otherwise. To this end we take advantage of the tensor

structure of L2
ρ(Γ) deriving from Assumption 1.3, and build the elements of such basis as products

3Note that since the diffusion coefficient aN may have been obtained by a truncation of a random field, the
solution of the problem actually also depends on the truncation parameter N , and hence should be denoted by
uN,h,w. However, since the focus of this thesis is not on the convergence with respect to N , we omit the corresponding
subscript, for the sake of simplicity in the notation.
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of ρi(yi)dyi-orthonormal polynomials, which we denote as {Lp}p∈N:

Lp(y) =
N∏
n=1

Lpn(yi) p ∈ NN .

Families of ρi(yi)dyi-orthonormal polynomials exist for many probability distribution: we recall
Legendre polynomials for uniform measures and Hermite polynomials for Gaussian measures (see
[111] for the general Askey scheme), for which explicit formulae and computing algorithms are
available, see e.g. [39]. See also [31] for examples of probability measures that do not admit such
an orthonormal basis.

To allow for general polynomial spaces we introduce a sequence of increasing index sets Λ(w)
such that

Λ(0) = {(0, . . . , 0)}, Λ(w) ⊆ Λ(w + 1) ⊂ NN for w ≥ 0, NN =
⋃
w∈N

Λ(w), (1.12)

each with cardinality Mw, and consider the corresponding polynomial space

PΛ(w)(Γ) = span {Lp(y), p ∈ Λ(w)} (1.13)

for the approximation of uh,w with the Galerkin method. In other words, the Galerkin method will
compute the coefficients up ∈ Vh(D) of the expansion

uh,w(x,y) =
∑

p∈Λ(w)

up(x)Lp(y). (1.14)

Such expansion is usually known as generalized Polynomial Chaos Expansion (gPCE). Having the
gPCE expansion of uh,w (1.14) allows one to compute easily the mean and variance of uh,w as

E [uh,w(x, ·)] = u0(x), Var [uh,w(x, ·)] =
∑

p∈Λ(w)

u2
p(x)− u2

0.

The final step of the Galerkin method is to further consider the FEM approximation of the coef-
ficients up(x) in (1.14) and insert it in the fully discrete weak formulation (1.11). This will result
in a set of Nh ×Mw linear equations that couple all modes ui(x), due to the presence in (1.11) of
terms like

∫
Γi
yiLpi(yi)Lqi(yi)ρi(yi)dyi; see Chapter 2 for more details on the discrete problem.

1.1.e Stochastic Collocation method

As an alternative to the Stochastic Galerkin modal approach, the Stochastic Collocation method
([4, 38, 110]) consists in collocating problem (1.5) in a set of Q points {yj ∈ Γ}, i.e. comput-
ing the corresponding solutions u(·,yj) and building a global polynomial approximation uh,w, not

necessarily interpolatory, upon those evaluations: uh,w(x,y) =
∑Q

j=1 u(x,yj)Pj(y) for suitable

multivariate polynomials {Pj}Qj=1.
Building the set of evaluation points {yj} as a cartesian product of monodimensional grids be-

comes quickly unfeasible, since the computational cost grows exponentially fast with the number of
stochastic dimensions needed (see figure 1.1(a)). We consider instead the so-called sparse grid pro-
cedure (see figure 1.1(b)), originally introduced by Smolyak in [95] for high dimensional quadrature
purposes; see also [7, 15] for polynomial interpolation.

For each direction yn we introduce a sequence of one dimensional polynomial Lagrangian inter-
polant operators of increasing order:

Um(i)
n : C0(Γn)→ Pm(i)−1(Γn).
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(b) Sparse grid

Figure 1.1: Tensor grid 1.1(a) vs. Sparse grid 1.1(b).

Here i ≥ 1 denotes the level of approximation and m(i) the number of collocation points used to
build the interpolation at level i. We require the function m to satisfy the following assumptions:

m(0) = 0, m(1) = 1, m(i) < m(i+ 1), i ≥ 1.

In addition, let U0
n[q] = 0, ∀q ∈ C0(Γn). Next we introduce the difference operators ∆

m(i)
n =

Um(i)
n − Um(i−1)

n , an integer value w ≥ 0, multi-indices i ∈ NN+ and a sequence of index sets I(w)
such that I(w) ⊂ I(w + 1) and I(0) = {(1, 1, . . . , 1)}. We define the sparse grid approximation of
uh : Γ→ Vh(D) at level w as

uh,w(y) = SmI(w)[uh](y) =
∑

i∈I(w)

N⊗
n=1

∆m(in)
n [uh](y) . (1.15)

As pointed out in [41], it is desiderable that the sum (1.15) has some telescopic properties. To
ensure this we have to impose some additional constraints on I. Following [41] we say that a set I
is admissible if ∀ i ∈ I

i− ej ∈ I for 1 ≤ j ≤ N, ij > 1. (1.16)

We refer to this property as admissibility condition, or ADM in short. Given a set I we will denote
by IADM the smallest set such that I ⊂ IADM and IADM is admissible.

The set of all evaluation points needed by (1.15) is called sparse grid, and has cardinality Q.
Note that (1.15) is indeed equivalent to a linear combinations of tensor grids interpolations, each
of which contains “few” interpolation points:

uh,w(y) =
∑

i∈I(w)ADM

ci

N⊗
n=1

Um(in)
n [uh](y), ci =

∑
j={0,1}N

i+j∈I(w)ADM

(−1)|j|. (1.17)

Observe that many coefficients ci in (1.17) are zero. Once the Stochastic Collocation approximation
has been obtained, the computation of moments of u(x, ·) simply requires the application of a
quadrature rule that naturally derives from equation (1.17),

E [uh,w(x, ·)] =

Q∑
j=1

uh(x,yj)βj , Var [uh,w(x, ·)] =

Q∑
j=1

βju
2
h(x,yj)− E [uh,w(x, ·)]2 .

The sequence of sets I(w), the function m(i) and the family of points to be used at each level
characterize the sparse approximation operator SmI(w) introduced in (1.15). The original sparse grid
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Approx. space Collocation: m, g Galerkin: Λ(w)

Tensor Product
m(i) = i {

p ∈ NN : maxn pn ≤ w
}

g(i) = maxn(in − 1) ≤ w

Total Degree
m(i) = i {

p ∈ NN :
∑

n pn ≤ w
}

g(i) =
∑

n(in − 1) ≤ w

Table 1.1: Sparse approximation formulae and corresponding underlying polynomial spaces.

introduced by Smolyak [95] is defined as

I(w) =

{
i ∈ NN :

N∑
n=1

(in − 1) ≤ w

}
, (1.18)

m(i) =


0 if i = 0

1 if i = 1

2i−1 + 1, if i > 1,

(1.19)

and uses nested sequences of points. In Chapter 2 we show the following theorem:

Theorem 1.1. Given a sequence of polynomial spaces PΛ(w)(Γ) such that

∀p ∈ PΛ(w)(Γ) p− ej ∈ PΛ(w)(Γ) for 1 ≤ j ≤ N, pj > 0, (1.20)

one can always find a sequence of index sets I(w) such that the Collocation method delivers approx-
imation in PΛ(w)(Γ).

Note that the condition (1.20) on the polynomial space is the counterpart of the admissibility
condition (1.16) for the sparse grid. In Chapter 2 we have actually considered sets I(w) defined as
I(w) =

{
i ∈ NN : g(i) ≤ w

}
, with g : NN → N strictly increasing in each argument, so that (1.20)

is automatically satisfied.

Table 1.1 lists the equivalences between the Stochastic Galerkin and Collocation formulation in
Tensor Product and Total Degree spaces.

As for quadrature rules, we will mostly use the classical Gaussian rules, see e.g. [85], and the

Clenshaw–Curtis rule y
m(i)
j = cos

(
(j − 1)π

m(i)− 1

)
, 1 ≤ j ≤ m(i), see e.g. [102], which results in a

nested quadrature rule if used with m(i) as in eq. (1.19).

The rest of this Chapter is devoted to the exposition of the results of the thesis. In particular, we
have tried to address the following questions:

1. What is the most effective method in terms of accuracy versus computational cost?

2. What is the best polynomial space Λ(w) where the discrete solution uh,w should be shought,
again in terms of accuracy versus dimension of the space, and hence computational cost? Or,
more generally, can we devise strategies that yield good approximations of the solution with
the lowest computational cost possible?
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1.2 Results on the regularity of the response surface

A polynomial approximation of the stochastic part of u will be an effective approach if the depen-
dence of u over y is regular. It is well known (see e.g. [3, 4, 20]) that the solution of (1.7) depends
analytically on each parameter yn ∈ Γn, under reasonable assumptions on a(x,y). In particular,
denoting Γ∗n =

∏
j 6=n Γj and y∗n an arbitrary element of Γ∗n, there exist regions Σn ⊂ C in the com-

plex plane for n = 1, . . . , N , with Σn ⊃ Γn, in which the solution u(x, yn,y
∗
n) admits an analytic

continuation u(x, z,y∗n), z ∈ Σn.
However, such results are somehow limited, since the analysis is performed one direction at a

time. Instead, we were able to prove the following result, which considers all the yn at the same
time, and also provides a bound on the norms of the derivatives of u, see Chapter 3 for a proof.
Note that this result applies to both linear and non-linear expansions like (1.9) and (1.10); a similar
result is stated in [21] only for the linear case.

Theorem 1.2. Let a(x,y) be a diffusion coefficient for equation (1.5) that satisfies Assumptions
1.1, 1.2 and 1.3. Suppose that a(x,y) is infinitely many times differentiable with respect to y and
∃ r ∈ RN+ s.t. ∥∥∥∥∂iaa (·,y)

∥∥∥∥
L∞(D)

≤ ri ∀y ∈ Γ, (1.21)

where i is a multi-index in NN , ∂ia =
∂i1+...+iNa

∂yi11 · · · ∂y
iN
N

, and r = (r1, . . . , rN ) is independent of y, and

let r̃ =

(
1

log 2

)
r. Then

(i) the derivatives of u can be bounded as

‖∂iu(y)‖H1
0 (D) ≤ C0|i|! r̃i ∀y ∈ Γ.

with C0 =
‖f‖V ′
amin

;

(ii) for every y0 ∈ Γ the Taylor series of u converges in the disk

D(y0) =
{
y ∈ RN : r̃ · abs (y − y0) < 1

}
.

where abs (v) = (|v1|, . . . , |vN |)T . Therefore u : Γ → H1
0 (D) is analytic and can be extended

analytically to the set

Σ =
{
y ∈ RN : ∃y0 ∈ Γ s.t. r̃ · abs (y − y0) < 1

}
.

The same result holds also for uh, solution of the semidiscrete problem (1.8).

1.3 Results on the Comparison of Stochastic Galerkin and Collo-
cation methods

Quite surprisingly, few works are available in the literature about a full comparison between the
Stochastic Galerkin and Collocation methods, see e.g. [30].

As mentioned in Section 1.1.e, in Chapter 2 we show that, given a polynomial space PΛ(w)(Γ)
such that (1.20) holds, one can always find functions m and g such that the Collocation method
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delivers approximation in PΛ(w)(Γ). This is a very relevant fact to the end of a fair comparison be-
tween the two methods, since the two methods obviously should be compared in the same underlying
polynomial space.

Once accomplished this, see e.g. Table 1.1, several additional aspects need to be taken into
account:

Deegres of freedom: the basis used in the Galerkin method is ρ(y)dy-orthonormal: this implies
that the Galerkin method uses the minimum number of degrees of freedom needed to represent
the polynomial approximation of uh,w in Vh(D)⊗PΛ(w)(Γ), while the number of systems Q to
be solved in a Collocation approach can be significantly larger. On the other hand, Collocation
deals with uncoupled problems, while the equations in the Galerkin system are coupled.

Parallelization: contrary to the Galerkin method, the Collocation method is trivially paralleliz-
able.

Code reusability the Galerkin method is said to be an “intrusive method”, since pre-existing
deterministic code can be reused only partially. Collocation can reuse pre-existing code in a
“black box” way, although the algorithm may greatly benefit from adjustments to the code
aimed to prevent the repetion of identical blocks of operations for each realization.

Implementation issues: in a Galerkin setting a monolitic solver is not feasible and one needs
ad-hoc strategies both for the storage and manipulation of the matrix, [82], and for the
solution of the linear system, typically variants of preconditioned conjugated gradient, see
[83, 32]. Moreover, one may not have analytic formulae for the coefficients of the Galerkin
matrix: hence, appropriate (and possibly high dimensional) quadrature rules have to be used
to this end, and the consequent approximation error on the entries of the matrix has also
to be investigated. On the other hand, assemblying a sparse grid is not an immediate task,
but packages are available online and can be coded “once and for all”. Among the possible
sparse grid codes available we mention the Dakota software developed at SANDIA labs4 and
the Sparse Grid Interpolation Matlab Toolbox developed at Stuttgart University5. In this
thesis we have developed our own sparse grid Matlab package, that will be made available for
download on the internet.

From a more quantitative perspective, in this work we have focused on the comparison of the the-
oretical computational cost of the Galerkin and Collocation method, and have ingnored instead
the real CPU time and setup costs, which greatly depend on the level of optimization of the code
used. Such abstract computational cost is defined as the total number of deterministic linear sys-
tems solved: this is an obvious definition for the Collocation method, since one has to solve one
deterministic problem per collocation point, whereas for the Galerkin method such definition is
appropriate as soon as one solves the Galerkin system with the mean-based block-diagonal precon-
ditioned conjugated gradient method proposed in [83]. This choice indeed amounts to the resolution
of M deterministic linear systems per PCG iteration, see section 2.3 for details. The costs of the
Galerkin and the Collocation solvers will be therefore

WSG = #iterPCG ×M, WSC = Q. (1.22)

respectively. In Chapter 2 we consider the benchmark problem (1.5) with a(x,y) defined as
a(x,y) = 1 +

∑8
i=1 χi(x) yi, where χi(x) represent the indicator function of the eight round subdo-

mains depicted in Figure 1.2, and yi are independent and identically distributed uniform random
variables. We refer to section 2.4.a for full discussion on the test case. Here we only show Figure

4http://dakota.sandia.gov/index.html
5http://www.ians.uni-stuttgart.de/spinterp/
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Figure 1.3: Galerkin/Collocation comparison results.

1.3, which is quite representative of the general conclusions of this test. In particular 1.3(a) shows
that, as anticipated, in a Galerkin setting the Tensor Product space (cf. Table 1.1) poorly performs
due to the excessive costs; all other spaces performe reasonably well and in particular the Total
Degree polynomial space is the most effective one. Similarly, Figure 1.3(b) shows that the tensor
sparse grid is the worst performing, and the Standard Smolyak Sparse Grid (1.18)-(1.19) is the
most convenient one, both using Gauss or Clenshaw–Curtis quadrature points.

Regarding the Galerkin/Collocation comparison, the performances turn out to be really close,
with a slight advantage of Collocation for the lower error levels and of Galerkin for the higher ones.
Finally Figure 1.3(c) shows that, as expected, the Galerkin method is more effective in terms of
error versus dimension of the polynomial space PΛ(w)(Γ). Chapter 2 presents several other tests,
including one with lognormal random variables, see equation (1.10).

1.4 Optimal Galerkin and Collocation approximations

In the problem considered in the previous Section, all the random variables yi have the same influ-
ence on the solution (“isotropic problem”). This is not the case in a general situation (“anisotropic
problem”), so that one should try to adapt the polynomial space PΛ(w)(Γ) to the problem at hand,
enriching the approximation only with respect to those variables that contribute the most to the
variability of the solution.

We can distinguish (at least) two kind of anisotropy strategies: “a-priori” and “a-posteriori”. On
the one hand, an “a-priori” strategy will try to identify the most suitable polynomial space/sparse
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Figure 1.4: Convergence results for the anisotropic sets approximation based on theoretical and
numerical tuning of the anisotropy weights. See section 2.4.b for more details.

grid through some preliminary analysis, while on the other hand, an “a-posteriori” strategy will
adapt the polynomial space/sparse grid as the computation proceeds, typically by some carefully
designed “exploration” strategy of the complement of the index sets Λ(w) / I(w).

A number of works are available in literature on “a-posteriori” adaptivity for Sparse Grids (see
e.g. [15, 45, 41]), and a few works are available on “a-posteriori” adaptivity for the Galerkin setting
(see e.g. [44, 27, 107]). In this work we have instead focused on “a-priori” approaches: we first
consider the “anisotropic sets” approach, and then the “optimal sets” approach, which includes the
first one as a special case.

1.4.a Anisotropic sets

The first approach is detailed in Chapter 2.4.b, see also [72], where we consider weighted versions
of the index sets in Table 1.1, e.g.

Λ(w) =

{
N∑
n=1

αnpn ≤ w

}
, I(w) =

{
N∑
n=1

αn(in − 1) ≤ w

}
(1.23)

and analyze two strategies to tune the anisotropy weights α, one theoretical and one experimental,
see Chapter 2.4.b for details. We have tested this approach on problem (1.5) where now a(x,y) =
1 +

∑4
i=1 γi(x) yi, where γi ∈ R modify the influence of each yi on the problem, see Figure 1.4(a).

This simple strategy is indeed quite effective, as one can see from the convergence plots in Figure
1.4(b)-1.4(c), even if it completely disregards the interactions among the random variables.

1.4.b Optimal polynomial spaces for Stochastic Galerkin method

To further improve the performances of the anisotropic sets presented in the previous Section, we
need to consider a wider class of spaces than (1.23), and look for the most general set PΛ(w)(Γ)
that maximizes the accuracy given the number of polynomial basis functions M (best M -terms
approximation). In other words, our goal is to look for an index set S ⊂ NN with cardinality M
that minimizes the projection error of the gPCE expansion (1.14),

‖u−
∑
p∈S

upLp‖2V⊗L2
ρ(Γ) =

∑
p/∈S

||up||2V .
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The obvious solution to this problem is the set S that contains the M coefficients up with largest
norm. This solution of course is not constructive; what we need are sharp estimates of the decay
of the coefficients ‖up‖V , based only on computable quantities, to be used in the approximation of
the set S. Seminal works in this direction are [20, 21], where estimates of the decay of the Legendre
coefficients are provided.

To fix the ideas, we assume again that a depends on uniform random variables, so that u is
expanded in terms of Legendre polynomials. Under the same conditions of Theorem 1.2 it is then
possible to prove (see Section 3.3.a) that the following estimate holds for the Legendre coefficients:

‖up‖V ≤ C0e
−
∑
n gnpn

|p|!
p!

, gn = − log

(
rn√

3 log 2

)
(1.24)

with rn as in Theorem 1.2. A similar result is given in [21] for the special case a = a0+
∑N

n=1 bn(x)yn.
We are now in position to define a new sequence PΛ(w)(Γ) of polynomial spaces by selecting all multi-
indices p for which the estimated decay (1.24) of the corresponding Legendre coefficient is above a
fixed threshold ε. This in turn corresponds to selecting those indices p such that

Λ(w) =

{
p ∈ NN :

N∑
n=1

gnpn − log
|p|!
p!
≤ w

}
(1.25)

with w ∈ N+ = d− log εe. This set closely resembles the anisotropic TD space (1.23), and is therefore

called TD-FC set (“TD with factorial correction”). The term log |p|!p! is indeed a correction that takes
into account the intrinsic coupling between the random variables, that is missing in the anisotropic
TD sets (1.23) considered in the previous Subsection.

Similarly to the anisotropy weights introduced in the previous Subsection, the quantities gn =
− log

(
rn/

(√
3 log 2

))
appearing in (1.25) can be estimated either a-priori or numerically, see Section

3.3.a for a full discussion. We remark that estimate (1.24) and set (1.25) are defined for a generic
elliptic problem. An soon as one has additional information on the structure of the diffusion
coefficient, the optimal set can be further tailored to the problem at hand, see e.g. Sections 3.3.a-
3.3.c and Chapter 4.

The benchmark test we have considered in this case is the monodimensional version of (1.5),{
−(a(x,y)u(x,y)′)′ = 1 x ∈ D = (0, 1),y ∈ Γ

u(0,y) = u(1,y) = 0, y ∈ Γ
(1.26)

considering a variety of diffusion coefficients a(x,y). Here we report only a few results that confirm
the validity of the approach, and refer to Chapter 3 for a wider numerical validation and analysis.
Figure 1.5 shows the convergence error for two of the considered diffusion coefficients, for which we
can also compute the best M -terms approximation. It is seen that the TD-FC sets show an excellent
performance, with a convergence rate essentially equivalent to the best M -terms approximation,
confirming that the estimate (1.24) on the decay of the spectral coefficients of u is sharp. The
anisotropic TD sets also shows good results, while the remarkably poor performance of the isotropic
TD sets confirms the importance of using anisotropic approximations.

1.4.c Optimal Sparse Grids for Stochastic Collocation

We now aim at constructing the optimal sparse grid for Stochastic collocation method, i.e. at
choosing the best sequence of index sets I(w) in equations (1.15)-(1.17). Since the cost of adding
a new term to the formula (1.15) heavily depends on the multiindex i ∈ NN to be added to I(w),
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Figure 1.5: Convergence curves for polynomial approximation with isotropic TD, anisotropic TD
and TD-FC polynomial sets. See Section 3.3.b for details on the definition of the
error.

we estimate this time the profit P (i) for each index i ∈ NN , and then define the optimal sparse
approximation operator S∗ as the one using the set of most profitable indices, i.e.

I∗(ε) = {i ∈ NN+ : P (i) ≥ ε}. (1.27)

Following [15, 41] we can define the profit of an index i as the ratio between its error contribution
∆E(i) (how much the interpolation error decreases by adding i to I) and its work contribution
∆W (i) (how many new grid points appear in the sparse grid):

P (i) =
∆E(i)

∆W (i)
, (1.28)

and we need to provide computable estimates for these quantities. As for ∆W (i), it is convenient
to use a nested quadrature rule, so that, if I is admissible, it is possible to compute exactly ∆W (i)
as

∆W (i) =
N∏
n=1

(m(in)−m(in − 1)). (1.29)

As for ∆E(i), we conjecture that the decay of ∆E(i) is related to the decay of the gPCE expansion
(1.14) of u, through the associated Lebesgue constant

∆E(i)[u] .
∥∥um(i−1)

∥∥
V

N∏
n=1

L(m(in)), (1.30)

where a . b means that there exists a constant c independent of i such that a ≤ c b. This estimate
is reasonable, since it encodes both the information available on the quadrature rules used and on
the function u to be interpolated, and indeed turns out to be quite sharp, see Section 3.4.a for
details.

We have tested this approach using again problem (1.26), with a depending on N uniform
random variables. Using the Clenshaw–Curtis quadrature rule (nested) with m(i) as in eq. (1.19)
and Lebesgue constant

L(db(i)) =
2

π
log(db(in) + 1) + 1,

and estimate (1.24) for the decay of the gPCE of u depending on uniform random variables, the
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(a) a = 1 + 0.1y1 + 0.5y2

0 20 40 60 80 100 120 140
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

 

 

iso SM
EW
adaptive
best M terms

(b) a(x,y) = 4 + y1 + 0.2 sin(πx)y2 +
0.04 sin(2πx)y3 + 0.008 sin(3πx)y4

Figure 1.6: Performances of the sparse grids based on sets (1.31). Test and error definition are
identical to (1.26).

final expression for the optimal sets is

I∗(w) =

{
i ∈ NN+ :

N∑
i=n

db(in − 1)gn − log
|db(i− 1)|!
db(i− 1)!

−
N∑
n=1

log
2
π log(db(in) + 1) + 1

db(in)− db(in − 1)
≤ w

}ADM
(1.31)

The performance of such grids is shown in Figure 1.6, in which we show the convergence of the
standard Smolyak approximation (1.18)-(1.19), the grid computed on the index set containing all
multi-indices whose computed profit is greater than ε (“best M -terms grids”) and a grid computed
with the version of the “a posteriori” algorithm [41] in the implementation of [56]. More examples
can be found in Section 3.4.b.

1.5 An application to groundwater flows

Geophysics is a research area in which Uncertainty Quantification issues naturally arise: whether
the focus is on oil reservoir simulation or aquifer management, problems usually deal with such
large spatial and temporal time scales that uncertain boundary condition, initial conditions and
material properties come often into play.

Within this context, we have focused on the Darcy problem for flows in saturated porous media.
Altough specific formulations and discrezations exist for this problem, (see e.g. the mixed-hybrid
formulations [13]), we consider here the simple elliptic formulation

−div(a∇p) = f x ∈ D = [0, 1]2

to be complemented with proper boundary conditions. We focus on a test case where the per-
meability is random and a pressure gradient induces a flow through two impervious boundaries,
see Figure 1.7(a). The random permeability is modeled as a log-normal field, and expanded as in
(1.10) with yi Gaussian random variables. The permeability is assumed to be a stratified material
(see Figure 1.7(b)), changing properties along the x1 axis only, and the logarithm of the permeabil-
ity is assumed to have a smooth gaussian covariance function, exp

(
|x1 − x2|2/L2

c

)
, Lc being the

correlation length. Such field is then expanded in Fourier series and truncated, thus obtaining

log (a(x1,y)− E [a(x1,y)]) = σ
√
c0y0 + σ

K∑
k=1

√
ck [ y2k−1 cos(ωkx1) + y2k sin(ωkx1)], (1.32)
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Figure 1.7: Darcy problem with uncertain permeability.

with yi ∼ N (0, 1), ωk = kπ and ck ∈ R (see Section 4.6 for details).

We have considered three different levels of truncation for log(a) in (1.32): K = 6, 10, 16 cor-
responding to N = 13, 21, 33 random variables, so to take into account 99%,99.99% and 100%
respectively of the total variability of log(a). For each truncation we perform a Monte Carlo sim-
ulation and compute the sparse grid approximation of the pressure p, specifying the optimal sets
(1.27) to the lognormal case, see Section 4.5 for details.

Results are shown in Figure 1.7(c) (see Section 4.5 for details on the computation of the ap-
proximation errors). It is seen that all the three sparse grid approximations converge with a rate
that is higher than the Monte Carlo one, and moreover seems to be independent of the truncation
level. This would mean that the optimal sparse grid construction proposed is quite effective in re-
ducing the deterioration of the performance of the standard sparse grids as the number of random
variables increases. Indeed, the selection of the most profitable multiindices manages to “activate ”
(i.e. to put interpolation points) only in those directions that are most useful in explaining the total
variability of the solution, so that the less influent random variables get activated only when the
approximation error is sufficiently low. The numbers shown on the convergence plot 1.7(c) indicate
the number of random variables activated up to each point. Note also that such procedure allows in
principle to work with an infinite number of random variables: the less influent ones will be indeed
automatically neglected.

1.6 Proper Generalized Decomposition

The Proper Generalized Decomposition (PGD in short) has been introduced to improve the ef-
ficiency of the Galerkin method and to overcome some of the issues listed in section 1.3. While
a classical Galerkin method fixes “a-priori” the basis for L2

ρ(Γ) as the set of ρ(y)dy-orthonormal
polynomials and computes the set of corresponding deterministic modes {up}p∈Λ(w), see eq. (1.14),
the PGD method looks for both the “best” deterministic and the stochastic modes. The solution
of (1.11) is written as

umPGD =
m∑
i=1

uiλi, ui ∈ Vh(D), λi ∈ PΛ(w)(Γ), (1.33)

with ui, λi to be determined, with the goal to approximate the full Galerkin solution (1.14) using
m < M(w) modes. To this end, let us consider problem (1.11) in a more compact formulation,
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Algorithm 1 Power method

1: uPGD ← 0 [element 0 of V]

2: for l in 1, 2, . . . ,m do
3: Initialize λ [e.g. at random]

4: repeat
5: Solve deterministic problem: u← D(λ;uPGD)
6: Normalize u: u← u/‖u‖V
7: Solve stochastic problem: λ← S (u;uPGD)
8: until (u, λ) converged
9: uPGD ← uPGD + uλ

10: end for

Find u ∈ Vh ⊗ PΛ(w)(Γ) such that

A(u, v) = B(v) ∀ v ∈ Vh ⊗ PΛ(w)(Γ), (1.34)

with A,B linear with respect to the second argument and first argument, respectively. Suppose
now that a PGD solution of (1.34) with m − 1 modes has been computed and that one wants to
add a further couple, (um, λm). This couple is solution of the following Galerkin problem:

Find (u, λ) ∈ Vh × PΛ(w)(Γ) such that

A
(
um−1
PGD + uλ, vβ

)
= B(vβ), ∀(v, β) ∈ Vh × PΛ(w)(Γ)

Since u, λ are both unknown, one can then think of computing them with an iterative procedure,
solving alternately the two following problems:

Deterministic Problem.

For given λ ∈ PΛ(w)(Γ), find u = D(λ;um−1
PGD) ∈ Vh(D) such that

A
(
um−1
PGD + uλ, vλ|π

)
= B(vλ|π), ∀v ∈ Vh(D). (1.35)

Stochastic Problem.

For given u ∈ Vh(D), find λ = S (u;um−1
PGD) ∈ PΛ(w)(Γ) such that

A
(
um−1
PGD + uλ, uβ|π

)
= B(uβ|π), ∀β ∈ PΛ(w)(Γ). (1.36)

Such procedure is called “Power method” (see Algorithm 1), in analogy with the power iteration
method for eigenvalues problems. In the case of linear, symmetric, positive definite form A, it
was indeed shown in [74, 75] that the sought couples (u, λ) can be interpreted as the solution of a
Rayleigh quotient, and that power-iteration like techniques are effective method to compute PGD
approximations of Galerkin solutions with a reduced computational cost. Their application to scalar
non-linear problems has been thoroughly investigated in [78].

We remark that the deterministic problem (1.35) can be indeed solved with minor adaptations
to the pre-existing deterministic code, while the stochastic problem (1.36) can be recast as a set
of quadratic equations for the coefficients of the orthogonal expansion of λ ∈ PΛ(w)(Γ) (see Section
5.3 for details). Moreover, it is important to observe that the total computational cost of the
PGD method can be remarkably lower than a standard Galerkin solver: computing a Galerkin
solution implies the solution of a linear system for M(w) deterministic coupled modes, while the
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Figure 1.8: error convergence and error estimate with respect to the number of modes m in the
PGD solution for ν = 1/10, 1/50, 1/100, for different number of random variables.

PGD solution only requires the resolution of m deterministic uncoupled problems, plus the solution
of m quadratic equations in M(w) unknowns.

In this Thesis we have further extended the PGD procedure, applying it to a non-linear, vector
problem, that is the stationary Navier–Stokes equation with uncertain viscosity ν and forcing term
(non-linear, vector problem), see Section 5.4 for details. Rather than a simple Power method, we
have implemented a PGD procedure using the more efficient Arnoldi algorithm, see Section 5.2.

Here we show three test cases, corresponding to problems with N = 4, 8, 15 random variables,
with viscosity ν = 1/10, 1/50, 1/100. In the first and second case we have computed both the
Galerkin solution in the polynomial set TD(2), resulting in M = 15, 45 respectively, and its PGD
approximation, while in the third case we have considered the stochastic polynomial space TD(3)
(M = 816) and computed only the PGD solution. Figure 1.8 shows the convergence of the norm of
the approximation error with respect to the number of modes m added in the PGD representation,
as well as the norm of the stochastic modes λi, that can be used as error estimator; for the case
N = 15, we only show the error estimator. The approximation error correctly decreases as the
number of PGD modes increases, and in all cases umPGD is able to give reasonable approximations
of the Galerkin solution with m ≤ M : this is more and more evident as the number of random
variables in the model increases.

Finally, we remark that within this context the pressure reconstruction turns out to be a non-
trivial issue: see Section 5.5 for details.

1.7 Global sensitivity analysis for a geocompaction model

Whenever some of the parameters of the problem at hand is uncertain it may be of interest to
compute the influence of each of these parameters to the final outcome (i.e. performing a “global
sensitiviy analysis”). A possible means of obtaining such information is to compute the so-called
Sobol’ indices, which derive by a suitable decomposition of the total variance (close to the classical
ANOVA sum of squares). In addition, The Sobol’ indices can be easily computed from the gPCE
expansion of the quantity of interest, which makes them particularly convenient in the framework of
the polynomial approximation of PDEs with stochastic coefficients. To introduce the Sobol’ indices
we first reorder the classical gPCE expansion of a function f depending on N parameters as

f(y) =
∑

p∈NN
αpLp(y) = α0 +

N∑
i=1

∑
p∈Pi

αpLp(y) +

N∑
i=1

N∑
j=i

∑
p∈Pi,j

αpLp(y) + . . . ,
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where Pi contains all the multiindices such that only the i-th component is different from 0, Pi =
{p ∈ NN : pi 6= 0, pk = 0 for k 6= i}, and so on. The Sobol’ indices can then be computed as:

S{i1,i2,...,is} =
∑

p∈P{i1,i2,...,is}

α2
p

Var [f ]
, Var [f ] =

∑
p∈NN

α2
p ,

and for such indices the following decomposition holds

1 =
N∑
i=1

Si +
∑

1≤i<j≤N
Sij + . . .+ S1,2,...,N .

Hence each Sobol index S{i1,i2,...,is} represents the contribution of the corresponding mixed effect to
the total variability of f , and it is also easy to compute the total variability due to the i-th random
parameter as

STi =
∑
Si

S{i1,i2,...,is},

where the summation is taken over the set Si of all index sets {{i1, i2, . . . , is}} of any length such
that at least one component is i. Thus, a global sensitivity analysis can be easily performed once
the gPCE expansion of the quantity of interest is available.

However, if the deterministic solver is very complex (e.g. non linearities, coupled equations,
employing iterative solvers . . .) it may be not convenient to assemble the Galerkin system to compute
the gPCE expansion. To this end, we have developed a novel procedure, that consists in converting a
sparse grid approximation of the quantity of interest into a gPCE approximation. This is convenient
since the sparse grid approximation is much easier to compute, as it only entails solving a number
of independent deterministic problems. The conversion is possible since indeed the sparse grid
approximation is a sum of tensor grids, i.e. tensor Lagrangian polynomials, which can be reexpressed
as linear combinations of orthogonal polynomials. Note that in general this conversion would
require solving as many linear systems as the number of tensor grids which compose the sparse
grid. However, if the collocation point chosen are Gaussian quadrature points then no system needs
to be solved, since indeed the matrices of the system turn out to be orthogonal.

We have applied this type of analysis to a geocompaction model, that aims at describing the
process that transforms sediments into rocks. This process consists of both mechanical stresses
(weight of the upper layers, Darcy flows) and chemical reactions, whose action over time reduces
the porosity of the sediments, i.e. the empty space among the sediment grains, thus transforming
the sediments into rocks.

In our work, we have considered as uncertain the parameters governing the chemical reactions
and the mechanical stress. The results of the global sensitivity analysis performed allow to divide the
layers in two zones, corresponding to different burial depth: a shallow one in which the compaction
process is driven by mechanical actions only, and a deep one in which the compaction process is
driven mainly by the chemical reactions. See Chapter 6 for details and results.
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Chapter 2

A numerical comparison between
Stochastic Spectral Galerkin and
Collocation methods

Sections 2.1- 2.4 of this Chapter consist of the paper “J. Bäck, F. Nobile, L. Tamellini, R. Tempone,
Stochastic Spectral Galerkin and collocation methods for PDEs with random coefficients: a numer-
ical comparison, J.S. Hesthaven and E.M. Ronquist, editors, Spectral and High Order Methods for
Partial Differential Equations”, up to the alignment of the notation and minor improvements in
the readibility. In particular, we have adapted the introduction and added some details about the
Galerkin matrix (Section 2.3.a), and the numerical setting (Section 2.4).

On the other hand, Section 2.5 is original and contains numerical tests on a problem depending
on a set of lognormal random variables.

2.1 Introduction

As anticipated in the introductory part, this chapter deals with the comparison of the Stochastic
Galerkin (SG) and Collocation methods (SC) for the computation of statistics of a solution of
a PDE with stochastic coefficients. These methods have recently attracted the attention of the
Uncertainty Quantification community, since they explore the possible regularity that the solution
might have with respect to the input variables, to achieve a convergence rate higher than the one
featured by classical sampling methods. The comparison of these two approaches is an open and
relevant research topic (see e.g. [30]). This chapter provides, on a couple of numerical examples,
a fair comparison between the performances of SG and SC methods with the same underlying
approximation space.

Traditionally, the SG method approximates the solution in a multivariate polynomial space of
given total degree (see e.g. [42, 66, 111] and references therein), or in anisotropic tensor product
polynomial spaces [3, 36, 71]. Other global polynomial spaces has been considered recently, see
for instance [11, 101], as well as different approximation spaces such as piecewise polynomials
[3, 61, 108].

On the other hand the SC method adopted so far for SPDEs follows the classical Smolyak
construction, see e.g. [38, 73, 110] and the references therein. It is very relevant to this chapter
the fact that the sparse collocation method considered in [110, 73] leads to an approximate solution
in a polynomial space, which we call hereafter Smolyak space, that differs from the total degree
polynomial space most commonly used in SG approximation.
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After having introduced the notation and the setting in Section 2.2, in this chapter we will
consider several choices of multivariate polynomial spaces, namely: tensor product (TP), total
degree (TD), hyperbolic cross (HC) and Smolyak (SM) spaces. We consider on the one hand,
SG approximations in either of these spaces, see Section 2.3.a. On the other hand, we propose a
generalization of the classical sparse collocation method that allows us to achieve approximations in
these same spaces. By following this path, we are able to compare the two alternative approaches
(SG versus SC) given the same underlying multivariate polynomial space, see Section 2.3.b.

Once both SG and SC are posed on the same approximation space the second ingredient in a fair
comparison is the computational work associated to each of them for the same level of accuracy, see
again Section 2.3. Since SC entails the solution of a number of uncoupled deterministic problems,
its corresponding computational work is directly proportional to the number of collocation points.
On the other hand, SG entails the solution of a large system of coupled deterministic problems
whose size corresponds to the number of stochastic degrees of freedom (sdof). This can be achieved
by an iterative strategy, here chosen to be a Preconditioned Conjugate Gradient solver following
[82]. Therefore, a natural approximation of its computational work is given by the product of the
number of sdof times the number of iterations performed.

The results of the numerical comparison are shown in Section 2.4. We first present a numerical
example having 8 input uniform random variables, in which we compare the performances of the
SG and SC methods in terms of accuracy versus (estimated) computational cost. The numerical
study shows that the two approaches have comparable performances. Actually, SC seems to be
more efficient for errors larger than 10−10, whereas SG is better for smaller errors.

The second numerical example contains 4 input random variables that have largely different
influence on the solution. It is thus suited for anisotropic approximations, where higher polynomial
degrees are used to discretize the dependence on the random variables that have a greater influence
on the solution. We introduce anisotropic versions of both the SG and SC methods and compare
their performances for different choices of anisotropy ratios.

Finally, we set up a third test which is identical to the first one but considers lognormal random
variables rather than uniform ones, to assess if and to what extent the type of random variables
considered affects the performances ot the two methods.

2.2 Problem setting

Let D be a convex bounded polygonal domain in Rd and (Ω,F , P ) be a complete probability space.
Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1] is a probability
measure. Consider the stochastic linear elliptic boundary value problem: find a random function,
u : Ω × D → R, such that P -almost everywhere in Ω, or in other words almost surely (a.s.), the
following equation holds: {

−div(a(x, ω)∇u(x, ω)) = f(x) x ∈ D,
u(x, ω) = 0 x ∈ ∂D.

(2.1)

where the operators div and ∇ imply differentiation with respect to the physical coordinate only.

The theory presented in this chapter extends straightforwardly to the case of a random forcing
term f = f(ω,x) as well as to a non homogeneous, possibly random, Dirichlet datum on the
boundary. For easiness of presentation, we will consider the case where the randomness appears
only in the diffusion coefficient, which is, however, the most difficult case, since the solution u
depends nonlinearly on it, whereas it depends linearly on the forcing term and boundary data.

For the first part of this chapter, we will specialize Assumptions 1.1, 1.2 and 1.3 as follows:
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Assumption 2.1. a(x, ω) is strictly positive and bounded with probability 1, i.e. there exist amin >
0 and amax <∞ such that

P (amin ≤ a(x, ω) ≤ amax, ∀x ∈ D) = 1

Assumption 2.2. a(x, ω) has the form

a(x, ω) = b0(x) +

N∑
n=1

yn(ω)bn(x) (2.2)

where y = [y1, . . . , yN ]T : Ω→ RN , is a vector of independent random variables.

We denote by Γn = yn(Ω) the image set of the random variable yn, Γ = Γ1 × . . .× ΓN , and we
assume that the random vector y has a joint probability density function ρ : Γ→ R+ that factorizes
as ρ(y) =

∏N
n=1 ρn(yn), ∀y ∈ Γ. Observe that for assumption 2.1 to hold, the image set Γ has to

be a bounded set in RN .

After assumption 2.2, the solution u of (2.1) depends on the single realization ω ∈ Ω only
through the value taken by the random vector y. We can therefore replace the probability space
(Ω,F , P ) with (Γ, B(Γ), ρ(y)dy), where B(Γ) denotes the Borel σ-algebra on Γ and ρ(y)dy is the
distribution measure of the vector y.

Finally, we introduce the functional space H1(D) of square integrable functions in D with square
integrable distributional derivatives; its subspace H1

0 (D) of functions with zero trace on the bound-
ary, and the space L2

ρ(Γ) of square integrable functions on Γ with respect to the measure ρ(y)dy.
We are now in the position to write a weak formulation of problem (2.1):

Weak Formulation. Find u ∈ H1
0 (D)⊗ L2

ρ(Γ) such that ∀v ∈ H1
0 (D)⊗ L2

ρ(Γ)

∫
Γ

∫
D

(
b0(x) +

N∑
n=1

ynbn(x)

)
∇u(x,y) · ∇v(x,y) ρ(y) dx dy :

=

∫
Γ

∫
D
f(x)v(x,y) ρ(y) dx dy. (2.3)

Under Assumption 2.1, a straightforward application of the Lax-Milgram lemma allows to prove
that there exists a unique solution to problem (2.3) for any f ∈ L2(D). Moreover, the following
estimate holds:

‖∇u‖L2(D)⊗L2
ρ(Γ) ≤

Cp
amin

‖f‖L2(D)

where Cp is the Poincaré constant such that ‖u‖L2(D) ≤ Cp‖∇u‖L2(D) for any u ∈ H1
0 (D).

It is well known (see e.g. [4, 71]) that the solution depends analytically on each parameter
yn ∈ Γn. In particular, denoting Γ∗n =

∏
j 6=n Γj and y∗n an arbitrary element of Γ∗n, there exists a

constant M and regions Σn ⊂ C in the complex plane for n = 1, . . . , N , with Σn ⊃ Γn, in which
the solution u(x, yn,y

∗
n) admits an analytic continuation u(x, z,y∗n), z ∈ Σn. Moreover

max
z∈Σn

max
y∗n∈Γ∗n

‖∇u(·, z,y∗n)‖H1(D) ≤M, for n = 1, . . . , N.
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2.2.a Finite element approximation in the physical space

Let Th be a triangulation of the physical domain D and Vh(D) ⊂ H1
0 (D) a finite element space

of piecewise continuous polynomials on Th, with dimension Nh = dim(Vh(D)). We introduce the
semi-discrete problem:

Weak Formulation. find uh ∈ Vh(D)⊗ L2
ρ(Γ) such that ∀vh ∈ Vh(D)∫

D

(
b0(x) +

N∑
n=1

ynbn(x)

)
∇uh(x,y) · ∇vh(x) dx =

∫
D
f(x)vh(x) dx, ρ-a.e. in Γ. (2.4)

Problem (2.4) admits a unique solution for almost every y ∈ Γ. Moreover, uh satisfies the same
analyticity result as the continuous solution u.

Let {φi}Nhi=1 be a Lagrangian basis of Vh(D) and consider the expansion of the semi-discrete

solution as uh(x,y) =
∑Nh

i=1 ui(y)φi(x). Denoting by U(y) = [u1(y), . . . , uNh(y)]T the vector of
nodal values as functions of the random variables y, problem (2.4) can be written in algebraic form
as (

K0 +

N∑
n=1

ynKn

)
U(y) = F, ρ-a.e. in Γ (2.5)

where (Kn)ij =
∫
D bn(x)∇φj(x) · ∇φi(x), for n = 0, . . . , N , are deterministic stiffness matrices and

Fi =
∫
D f(x)φi(x) is a deterministic right hand side.

In writing (2.5) we have heavily exploited the fact that the random diffusion coefficient is an
affine function of the random variables yn. This allows of an efficient evaluation of the stochastic
stiffness matrix A(y) = K0 +

∑N
n=1 ynKn in any point y ∈ Γ and greatly simplifies the implemen-

tation of the SG method that will be presented in the next section.

2.3 Polynomial approximation in the stochastic dimension

We seek a further approximation of uh(·,y) with respect to y by global polynomials, which is sound
because of the analyticity of the semi-discrete solution with respect to the input random variables
y.

In this chapter we aim at comparing numerically several choices of multivariate polynomials
spaces. We remark once more that the choice of the polynomial space is critical when the number
of input random variables, N , is large, since the number of stochastic degrees of freedom might
grow very fast with N , even exponentially, for instance when isotropic tensor product polynomials
are used, cf. (2.6). This effect is known as the curse of dimensionality.

Let w ∈ N be an integer index denoting the level of approximation and p = (p1, . . . , pN ) a
multi-index. We introduce a sequence of increasing index sets Λ(w) such that Λ(0) = {(0, . . . , 0)}
and Λ(w) ⊆ Λ(w+ 1), for w ≥ 0. Finally, we denote by PΛ(w)(Γ) the multivariate polynomial space

PΛ(w)(Γ) = span

{
N∏
n=1

ypnn , with p ∈ Λ(w)

}
and seek a fully discrete approximation uhw ∈ Vh(D)⊗ PΛ(w)(Γ). In the following we consider four
possible choices of index sets:

Tensor product polynomial space (TP)

Λ(w) = {p ∈ NN : max
n=1...,N

pn ≤ w} (2.6)
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Total degree polynomial space (TD)

Λ(w) = {p ∈ NN :
N∑
n=1

pn ≤ w} (2.7)

Hyperbolic cross space (HC)

Λ(w) = {p ∈ NN :

N∏
n=1

(pn + 1) ≤ w + 1} (2.8)

Smolyak polynomial space (SM)

Λ(w) = {p ∈ NN :

n∑
n=1

fSM (pn) ≤ fSM (w)}, with fSM (p) =


0, p = 0

1, p = 1

dlog2(p)e, p ≥ 2

(2.9)

TP and TD spaces are the most common choices. The first suffers greatly from the curse of
dimensionality and is impractical for a large dimension N . The second has a reduced curse of
dimensionality and has been widely used in SG approximations (see e.g. [42, 66, 77, 97, 111]).
HC spaces have been introduced in [2] in the context of approximation of periodic functions by
trigonometric polynomials. Recently they have been used to solve elliptic PDEs in high dimension
in [93]. Finally, the SM space is an unusual choice in the context of SG approximations. The
reason for introducing it will be made clear later, as this space appears naturally when performing
interpolation on a sparse grid following the Smolyak construction (see Section 2.3.b). Observe
that the Smolyak space is similar to the hyperbolic cross space; indeed, the HC index set can be
equivalently written as ΛHC(w) = {p ∈ NN :

∑N
n=1 log2(pn+1) ≤ log2(w+1)}. Other polynomial

spaces have been introduced e.g. in [101].
It is also useful to introduce anisotropic versions of these spaces. Let α = (α1, . . . , αN ) ∈ RN+ be

a vector of positive weights, and αmin = minnα. The anisotropic version of the spaces previously
defined reads:

Anisotropic tensor product polynomial space (ATP)

Λ(w) = {p ∈ NN : max
n=1...,N

αnpn ≤ αminw} (2.10)

Anisotropic total degree polynomial space (ATD)

Λ(w) = {p ∈ NN :
N∑
n=1

αnpn ≤ αminw} (2.11)

Anisotropic hyperbolic cross space (AHC)

Λ(w) = {p ∈ NN :

N∏
n=1

(pn + 1)
αn
αmin ≤ w + 1} (2.12)

Anisotropic Smolyak polynomial space (ASM)

Λ(w) = {p ∈ NN :

N∑
n=1

αnfSM (pn) ≤ αminfSM (w)} (2.13)
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In all cases introduced except for the Smolyak space, the maximum polynomial degree used in
each direction yn does not exceed the index w and there is at least one direction (corresponding to
the minimum weight αmin) for which the monomial ywn is in the polynomial space. For the Smolyak
space this property holds only if log2(w) is integer.

In the next sections we introduce and compare two possible ways of obtaining a fully-discrete
approximation uh,w ∈ Vh(D)⊗ PΛ(w)(Γ), namely Galerkin projection and collocation on a suitable
sparse grid.

2.3.a Stochastic Galerkin approximation

The Stochastic Galerkin (SG) - Finite Element approximation consists in restricting the weak
formulation (2.3) to the subspace Vh(D)⊗ PΛ(w)(Γ) and reads:

Weak Formulation. find uSGh,w ∈ Vh(D)⊗ PΛ(w)(Γ) such that ∀vh,w ∈ Vh(D)⊗ PΛ(w)(Γ)

∫
Γ

∫
D

(
b0(x) +

N∑
n=1

ynbn(x)

)
∇uSGh,w(x,y) · ∇vh,w(x,y) ρ(y) dx dy

=

∫
Γ

∫
D
f(x)vh,w(x,y) ρ(y) dx dy. (2.14)

Let {Lp}∞p=0 be the sequence of orthonormal polynomials in Γn with respect to the weight ρn,
i.e. for any n = 1, . . . , N and p ≥ 0∫

Γn

Lp(t)v(t)ρn(t) dt = 0 ∀v ∈ Pp−1(Γn). (2.15)

Given a multi-index p = (p1, . . . , pN ), let Lp(y) =
∏N
n=1 Lpn(yn) be the product of one dimensional

orthonormal polynomials. Then a basis for the space PΛ(w)(Γ) is given by {Lp}p∈Λ(w) and the SG
solution can be expanded as

uSGh,w(x,y) =
∑

p∈Λ(w)

up(x)Lp(y) =
∑

p∈Λ(w)

Nh∑
i=1

up,iφi(x)Lp(y). (2.16)

Given this expansion and exploiting the orthonormality of the basis {Lp(y)}p∈Λ(w), one can eas-

ily compute mean and variance of uSGh,w as E
[
uSGh,w

]
(x) = u0(x) and Var

[
uSGh,w

]
(x) =

∑
p∈Λ(w) u

2
p(x)−

E
[
uSGh,w

]2
(x).

Let Up = [up,1, . . . , up,Nh ]T be the vector of nodal values of the finite element solution cor-
responding to the p multi-index. Then inserting expression (2.16) into (2.14) and recalling the
definition of the deterministic stiffness matrices Kn, we obtain the system of M = dim(PΛ(w)(Γ))
coupled finite element problems

K0Up +

N∑
n=1

∑
q∈Λ(w)

Gnp,qKnUq = Fδ0p, ∀p ∈ Λ(w). (2.17)

where

Gnp,q =

∫
Γ
ynLp(y)Lq(y)ρ(y) dy (2.18)
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Figure 2.1: sparsity plot for the SG matrix. Here we consider Λ(w) =TD(3).

and δij is the usual Kroneker symbol. Gnp,q can be explicitly calculated via the well-known three-
terms relation for orthogonal polynomials, see e.g. [39, 85].

The resulting matrix of the algebraic system (2.17) is highly sparse, see Figure 2.1, symmetric
and positive definite. For its solution we consider a Preconditioned Conjugate Gradient (PCG)
method with block diagonal preconditioner

Pq,q = K0 +
N∑
n=1

Gnq,qK
n (2.19)

as suggested in [82]. It follows easily from Assumption 2.1 that the condition number of the
preconditioned matrix is independent of the discretization parameters both in the physical and
stochastic spaces, and therefore the preconditioner is optimal. See [32, 83] for a detailed analysis
of the condition number of the SG matrix.

Each PCG iteration implies the solution of M deterministic problems with matrix Pq,q. If
the finite element discretization is relatively coarse and the dimension of the probability space is
moderate, a Cholesky factorization of all matrices Pq,q could be computed once and for all. In
general, this strategy could lead to excessive memory requirements and an iterative method should
be preferred. Observe that in certain cases (e.g. for uniform random variables) all blocks are equal
and this reduces considerably the computational burden.

Let us now denote by WFE the cost for solving one deterministic problem and by Niter the
number of PCG iterations. In this chapter we focus on the computational cost for solving the linear
system (2.17) and neglect the time for assembling the full stochastic matrix, which highly depends
on how much the computer code has been optimized. Therefore, we can estimate the total cost
WSGFE for SG - finite element as

WSGFE ≈M ×WFE ×Niter. (2.20)

This estimate will be used to compare the SG method with the SC method in the numerical tests
presented in Section 2.4.
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2.3.b Stochastic collocation approximation on sparse grids

The Stochastic Collocation (SC) - Finite Element method consists in collocating the semi-discrete
problem (2.4) in a set of points {yj ∈ Γ, j = 1, . . . , Q}, i.e. computing the solutions uh(·,yj)
and building a global polynomial approximation uSCh,w (not necessarily interpolatory) upon those

evaluations: uSCh,w(x,y) =
∑Q

j=1 uh(x,yj)Pj(y) for suitable multivariate polynomials {Pj}Qj=1.

We consider here a generalization of the classical Smolyak construction (see e.g. [95, 7]) to build
a multivariate polynomial approximation on a sparse grid. For each direction yn we introduce a

sequence of one dimensional polynomial interpolant operators of increasing order: Um(i)
n : C0(Γn)→

Pm(i)−1(Γn). Here i ≥ 1 denotes the level of approximation and m(i) the number of collocation
points used to build the interpolation at level i, with the requirement that m(1) = 1 and m(i) <
m(i + 1) for i ≥ 1. In addition, let m(0) = 0 and U0

n = 0. In this chapter the collocation points

{y(i)
n,j , j = 1, . . . ,m(i)} for the one dimensional interpolation formula Um(i)

n will be taken as the
Gauss points with respect to the weight ρn, that is the zeros of the orthogonal polynomial Lm(i)

defined in (2.15). To simplify the presentation of the sparse grid approximation (2.21), we now
introduce the difference operators

∆m(i)
n = Um(i)

n − Um(i−1)
n .

Given an integer w ≥ 0 and a multi-index i = (i1, . . . , iN ) ∈ NN+ , i ≥ 1, we introduce a function
g : NN+ → N strictly increasing in each argument and define a sparse grid approximation of uh as

uSCh,w = SmI(w)[uh] =
∑
I(w)

N⊗
n=1

∆m(in)
n (uh), I(w) = {i ∈ NN+ : g(i) ≤ w}. (2.21)

The previous formula implies evaluation of the function uh in a finite set of points HmI(w) ⊂ Γ

(sparse grid). From the construction (2.21) one can easily build the corresponding quadrature
formula, and evaluate e.g.

E
[
uSCh,w

]
(x) =

Q∑
j=1

βjuh(x,yj), Var
[
uSCh,w

]
=

Q∑
j=1

βju
2
h(x,yj)− E

[
uSCh,w

]2
(x).

To fully characterize the sparse approximation operator SmI(ω) one has to provide the two strictly

increasing functions m : N+ → N+ and g : NN+ → N. The first defines the relation between the level
i and the number of points m(i) in the corresponding one dimensional polynomial interpolation
formula Um(i), while the second characterizes the set of multi-indices used to construct the sparse
approximation. Since m is not surjective in N+ (unless it is affine) we introduce a left inverse
m−1(k) = min{i ∈ N+ : m(i) ≥ k}. Observe that with this choice m−1 is a (non-strictly) increasing
function satisfying m−1(m(i)) = i, and m(m−1(k)) ≥ k.

Let m(i) = (m(i1), . . . ,m(iN )) and consider the polynomial order set

Λm,g(w) = {p ∈ NN , g(m−1(p + 1)) ≤ w}.

The following result characterizes the polynomial space underlying the sparse approximation
SmI(w)[uh]:

Proposition 2.1.

a) For any f ∈ C0(Γ), we have SmI(w)[f ] ∈ PΛm,g(w).
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b) Moreover, SmI(w)[v] = v, ∀v ∈ PΛm,g(w).

Proof. Let us denote by Pm(i)−1 the tensor product polynomial space

Pm(i)−1 = span

{
N∏
n=1

ypnn , pn ≤ m(in)− 1

}
.

Clearly we have that
⊗N

n=1 ∆
m(in)
n (f) ∈ Pm(i)−1(Γ) and

SmI(w)[f ] ∈ span
{ ⋃
i∈NN+ : g(i)≤w

Pm(i)−1(Γ)
}

≡ span
{ ⋃
i∈NN+ : g(i)≤w

span{
N∏
n=1

ypnn , p ≤m(i)− 1}
}

≡ span
{ ⋃
i∈NN+ : g(i)≤w

span{
N∏
n=1

ypnn , m−1(p + 1) ≤ i}
}

≡ span{
N∏
n=1

ypnn , g(m−1(p + 1)) ≤ w} =: PΛm,g(w)(Γ).

This proves a). Due to linearity in (2.21), to prove point b) we only need to show that the
approximation formula SmI(w) is exact for all monomials

∏N
n=1 y

pn
n with p ∈ Λm,g(w). We have

SmI(w)

[
N∏
n=1

ypnn

]
=
∑
I(w)

N⊗
n=1

∆m(in)
n yp

=
∑
I(w)

N∏
n=1

(
(Um(in) − Um(in−1))ypnn

)
.

Observe that Um(in)ypnn will be an exact interpolation whenever m(in) ≥ pn + 1 and therefore the
term

∏N
n=1(Um(in) − Um(in−1))ypnn will vanish if any of the m(in − 1) ≥ pn + 1 or equivalently if

there exists at least one n such that in ≥ m−1(pn + 1) + 1. Let īn = m−1(pn + 1) for n = 1, . . . , N .
The multi-index ī = (̄i1, . . . , īN ) satisfies the constraint g(̄i) ≤ p.

Then, the previous formula reduces to

SmI(w)

[
N∏
n=1

ypnn

]
=
∑
i≤ī

N∏
n=1

(
(Um(in) − Um(in−1))ypnn

)

=

N∏
n=1

īn∑
in=0

(
(Um(in) − Um(in−1))ypnn

)
=

N∏
n=1

Um(̄in)ypnn .

The final result follows from the fact that m(̄in) = m(m−1(pn + 1)) ≥ pn + 1 and therefore the
interpolant Um(̄in) is exact for ypnn .

�

Remark 2.1. Observe that in the previous Lemma we have never used the Assumption that the
one dimensional interpolants are based on Gauss points. Hence, the previous result still holds for
interpolants based on arbitrary (distinct) knots and for an arbitrary strictly increasing function
m(i).
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We recall that the most typical choice of m and g is given by (see [7, 95])

m(i) =

{
1, for i = 1

2i−1 + 1, for i > 1
and g(i) =

N∑
n=1

(in − 1).

This choice of m, combined with the choice of Clenshaw-Curtis interpolation points (extrema of
Chebyshev polynomials) leads to nested sequences of one dimensional interpolation formulas and a
reduced sparse grid. In the same vein, it is possible to show that the underlying polynomial space
associated to the operator SmI(w) is the Smolyak space PΛ(w) defined in (2.9).

On the other hand, if we choose m(i) = i, it is easy to find functions g for the construction of
sparse collocation approximations in the polynomial spaces introduced in Section 2.3, namely tensor
product (2.6), total degree (2.7) and hyperbolic cross (2.8) spaces. Table 2.1 summarizes several
available. It is also straightforward to build the corresponding anisotropic sparse approximation
formulas.

Approx. space Collocation: m, g Galerkin: Λ(w)

Tensor Product
m(i) = i {

p ∈ NN : maxn pn ≤ w
}

g(i) = maxn(in − 1) ≤ w

Total Degree
m(i) = i {

p ∈ NN :
∑

n pn ≤ w
}

g(i) =
∑

n(in − 1) ≤ w

Hyperbolic Cross
m(i) = i {

p ∈ NN :
∏
n(pn + 1) ≤ w + 1

}
g(i) =

∏
n(in) ≤ w + 1

Smolyak
m(i) =

{
2i−1 + 1, i > 1

1, i = 1
{
p ∈ NN :

∑
n fSM (pn) ≤ fSM (w)

}
g(i) =

∑
n(in − 1) ≤ w

Table 2.1: Sparse approximation formulas and corresponding underlying polynomial space

Let now HmI(w) be the sparse grid associated to the formula SmI(w) and Q the number of distinct
collocation points in HmI(w). To form the sparse collocation solution uh,w we only have to solve
Q independent deterministic problems. Observe, however, that in general the number of points
Q is much larger than the dimension M of the corresponding polynomial space PΛm,g(w). The
computational cost of the SC - Finite Element method can therefore be estimated as

WSCFE ≈ Q×WFE , (2.22)

to be compared with the cost of the SG - Finite Element method in the same polynomial space,
given by (2.20).

2.4 Numerical results

2.4.a Test case 1: isotropic problem

In this first test case we consider a thermal diffusion problem in the form of (2.1) defined in the
unit square [0, 1]2, with homogeneous Dirichlet boundary conditions and stochastic conductivity
coefficient that depends on a finite, small, number of random variables. The coefficient is chosen in
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Figure 2.2: Left: geometry for test case 1. Middle: expected value of the solution. Right: standard
deviation of the solution.

such a way that each random input has more or less the same influence on the solution (isotropic
problem).

Fig. 2.2-left shows the geometry of the test case. The forcing term is deterministic, f(x) =
100χF (x), where χF (x) is the indicator function of F , a square subdomain with side length equal
to 0.2, centered in the domain. The material features 8 circular inclusions with radius r = 0.13 and
symmetrically distributed with respect to the center of the square, each with a uniformly distributed
random conductivity. Let χn(x), n = 1, .., 8 be the indicator function for each circle. The expression
of the stochastic conductivity coefficient is then in the form of (2.2), with bn(x) = χn(x):

a(x, ω) = b0(x) +

8∑
n=1

χn(x)yn(ω), with b0 = 1 and yn(ω) ∼ U(ymin, ymax), (2.23)

with ymin = −0.99, ymax = −0.2. As a consequence, the basis functions Lp(y) for SG methods
will be Legendre polynomials orthonormal with respect to the uniform probability measure in
[ymin, ymax], and the collocation points for SC will be the corresponding Gauss points. Using the
orthogonality property and the three-terms relation for the Legendre polynomials, it is easy to see
from (2.18) that for an extra-diagonal block in (2.17) to be nonzero the following condition must
hold

∃ n : |pn − qn| = 1, pj = qj ∀j 6= n, (2.24)

is which case only the n-th random variable will contribute, i.e. only Gnp,q will be nonzero. On
the main diagonal instead all the random variables will contribute because of the rescaling of the
polynomials in [ymin, ymax], and such contribution will be indentical for all q ∈ Λ(w),

Gnq,q =
ymin + ymax

2
∀n = 1, . . . , 8, ∀q ∈ Λ(w). (2.25)

Therefore, the preconditioner (2.19) will also be the same for all q ∈ Λ(w),

Pq,q = K0 +
ymin + ymax

2

N∑
n=1

Kn . (2.26)

We will compare the accuracy of the Stochastic Galerkin (SG) and Stochastic Collocation (SC)
methods by looking at statistical indicators of two quantities of interest:

• ψ1(u) =
∫
F u(x)dx;
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Figure 2.3: Error εmean [ψ1] versus estimated computational cost. Left: comparison between SG
methods and Monte Carlo. Right: comparison between SC methods and SG-TD.

• ψ2(u) =
∫
C ∂xu(x)dx.

The quantity ψ2(u) is defined only on C, the upper right part of F , since by symmetry its
expected value on F is 0 whatever (isotropic) Galerkin or Collocation approximation is considered.

Let up be an approximate solution (computed either with SG or SC) and uex the exact solution.
For both quantities ψ1 and ψ2 we will check the convergence of the following errors:

• error in the mean: εmean [ψj ] = |E [ψj(up)]− E [ψj(uex)] |;

• error in the variance: εvar [ψj ] = |Var [ψj(up)]− Var [ψj(uex)] |;

• error in L2 norm: εnorm [ψj ] =
√

E [(ψi(up)− ψi(uex))2].

Since we do not know the exact solution for this problem, we will check the convergence of the
statistical indicators with respect to an overkill solution, which we consider close enough to the exact
one. To this end we take the solution computed with SG-TD at level 9, which has approximately
24000 stochastic degrees of freedom (sdof). The L2 error will be calculated via a Monte Carlo
approximation, i.e.

εnorm [ψj ] '
1

QMC

(
QMC∑
l=1

[ψj(up(yl))− ψj(uex(yl))]
2

)1/2

,

where yl, l = 1, .., QMC , are randomly chosen points in Γ. To this end we have used QMC = 1000
points.

We remark that here and in the following test all the computations are performed on the same
physical mesh, which is supposed to be refined enough to solve adequately the elliptic problem
for every value y of the random variables. Moreover notice that, as stated in section 2.1, the
FEM solution and the exact solution have the same regularity with respect to the stochastic vari-
ables. Therefore we expect the convergence in the stochastic dimension not to be affected by space
discretization.

We have compared the performances of the SG and Collocation methods with the four choices
of polynomial spaces presented in Table 2.1. In our convergence plots we have also added the
performance of the classical Monte Carlo method.

Fig. 2.3 shows the error εmean [ψ1] versus the estimated computational cost (normalized to
the cost WFE of a deterministic solve) given by formula (2.20) for SG methods and (2.22) for SC
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Figure 2.4: Convergence curves for εvar [ψ1] (left) and εnorm [ψ1] (right) with respect to the com-
putational cost. Comparison between SG-TD and SC-SM methods.

methods. For the Monte Carlo method the cost is simply M ×WFE , where M is the number of
samples used. The Monte Carlo has been repeated 20 times and only the average error over the 20
repetitions is shown.

As one can see, Monte Carlo has the worst performance, followed by tensor product polynomial
spaces both in the SG and SC version, as expected. All other choices lead to similar, however much
more accurate, results, with TD being the best space for Galerkin method and SM the best for
Collocation.

We notice that different choices of collocation points for SC-SM (Gauss versus Clenshaw Curtis)
lead to similar results (see Fig. 2.3-right). Therefore from now on we will only use SC-SM with
Gauss points.

From Fig. 2.3-right we conclude that the SC method is the best method with respect to the
computational cost, at least for “practical” tolerances, while, for very small tolerances (≤ 10−10),
SG is a better choice. The same happens also for the other error indicators εvar [ψ1] and εnorm [ψ1],
(see Fig. 2.4), as well as for the quantity ψ2 (see Fig. 2.5).

We should point out that the plots may not represent a completely fair comparison. Actually, the
solution of the global linear system for SG method is performed through preconditioned conjugate
gradient iterations, with a fixed tolerance (ε = 10−12); this clearly over-resolves the system when the
error in the stochastic dimension is much larger than ε. The performance of SG may be therefore
improved by tuning the tolerance of the PCG method to an a posteriori estimation of the stochastic
error. However, we have observed that running the same SG simulations with tolerance ε = 10−8

changes only slightly the results, so we can say that the choice of the tolerance for the PCG method
is not deeply affecting our performance/cost analysis.

It is also instructive to look at the convergence plots of the error versus the dimension of the
stochastic space (Fig. 2.6). As expected from L2 optimality, for a given polynomial space the
Galerkin solution is more accurate than the collocation solution. We remind once more, however,
that the computational cost in the two cases is quite different and the convergence plots in Fig. 2.3
give a more complete picture of the performances of the two methods.

2.4.b Test case 2: anisotropic problem

In this test we consider an anisotropic problem in which different random variables contribute
differently to the total variability of the solution, in order to study the advantages of the anisotropic
version of the SC and SG methods. We take the geometry and problem definition similar to test case
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Figure 2.5: Convergence curves for εmean [ψ2] (left) and εvar [ψ2] (right) with respect to the com-
putational cost. Comparison between SG-TD and SC-SM methods.
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Figure 2.6: Convergence curves for εmean [ψ1] with respect to the dimension of the stochastic space.
Comparison between SG and SC methods with TD and SM polynomial spaces.

1; however, since our focus is on anisotropy, we consider only 4 inclusions (the ones in the corners,
cf. Fig.2.7-left) so that we can test many different choices of the weights that define the anisotropic
spaces (2.10)-(2.13). Nonetheless, the anisotropic setting is particularly meant to be used in high
dimensional spaces (see e.g. [72]). For convenience we consider a forcing term uniformly distributed
on the whole domain and we look just at εmean [ψ1].

The random coefficient is a(x, ω) = 1 +
∑4

n=1 γnχn(x)yn(ω), with yn(ω) ∼ U(−0.99, 0) and
γn ≤ 1. The values of the coefficients γn are shown in Fig. 2.7-left. Notice that these values give
different importance to the four random variables. In particular, the inclusion in the bottom-left
corner has the largest variance and we expect it to contribute the most to the total variance of the
solution. It is therefore intuitively justified to use polynomial degrees higher in the corresponding
direction of the stochastic multidimensional space rather than in the other ones. Fig. 2.7 also shows
the mean value (middle) and the standard deviation (right) of the solution.

Our goal is to assess the performances of anisotropic polynomial spaces in comparison with their
isotropic counterpart. For this we need to estimate the weights to be used in the construction of
the anisotropic polynomial space.

We follow closely the argument in [72]. The overall random conductivity coefficient in the n-th
inclusion Ωn is a uniform random variable U(an, bn) with an = 1− 0.99γn and bn = 1. This can be
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Figure 2.7: Left: geometry for test case 2. Middle: expected value of the solution. Right: standard
deviation of the solution.

rewritten as

a(x, ω)|Ωn =
an + bn

2
+
bn − an

2
ŷn, with ŷn ∼ U(−1, 1).

It is easy to show that the solution u = u(·, ŷn) admits an analytic continuation in the complex
region Σn = {z ∈ C : Re (z) > −wn} with wn = an+bn

bn−an = 2−0.99γn
0.99γn

, which contains, in particular,
the interior of the ellipse

Eρn =

{
z ∈ C : Re (z) =

ρn + ρ−1
n

2
cosφ, Im (z) =

ρn − ρ−1
n

2
sinφ, φ ∈ [0, 2π)

}
with ρn = wn +

√
w2
n − 1.

Standard spectral approximation analysis (see e.g. [25]) allows us to say that interpolation
of u(·, ŷn) in pn + 1 Gauss-Legendre points converges exponentially fast with rate e−gnpn , with
gn = log ρn = log(wn +

√
w2
n − 1).

Therefore the theoretical estimate (a priori choice) of the weight to be used for the n-th vari-
able is αn = gn. The larger γn, the smaller the corresponding weight αn. In practice, we have
renormalized the weights by dividing them by the smallest one. Notice that the spaces (2.10)-(2.13)
remain unchanged by this normalization. The corresponding theoretical weights are in this case
αth = [1, 3.5, 5.5, 7.5]. To assess the effectiveness of the proposed theoretical estimate, we also
consider the weights α = [1, 2, 3, 4] (nearly half the theoretical estimate) and α = [1, 7, 11, 15] (twice
the theoretical estimate). Finally, we have also considered an experimental (a posteriori) estimate
of the coefficients (as suggested in [72]), where the exponential decay e−gnpn is estimated numer-
ically by increasing the approximation level in only one direction at a time; the resulting weights
are αexp = [1, 2.5, 4, 5.5].

In this example we consider only SG methods in anisotropic TD spaces as they seem to be the
most appropriate for this type of problem. Similarly, we restrict our study only to SC methods in
the same ATD spaces, so they are directly comparable with the corresponding Galerkin version.
The use of SC-ASM methods is expected to give even better results.

We have computed the SG-ATD and SC-ATD with the different choices of weights up to level
w = 21 and compared them with an overkill solution computed by SG-TD isotropic method at level
w = 22. This solution has about 14000 sdof . In comparison, the SG-ATD solution has 837 sdof
with weights α = [1, 2, 3, 4], 434 sdof with the experimental weights αexp = [1, 2.5, 4, 5.5], 220 sdof
with the theoretical weights αth = [1, 3.5, 5.5, 7.5], and 68 sdof with the weights α = [1, 7, 11, 15].
We observe that the level w = 22 isotropic TD space contains all the ATD spaces with level w < 22,
therefore our overkill solution is much more accurate than the other ones considered here.



50

10
0

10
2

10
4

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SG: dim−stoc * iter−CG / MC: sample size

E
(ψ

1)

 

 

MC
SG−isospaces
SG−1−7−11−15
SG−1−2−3−4
SG−1−2.5−4−5.5(exp)
SG−1−3.5−5.5−7.5(th)

10
0

10
2

10
4

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SC: num−pts / SG: dim−stoc * iter−CG / MC: sample size

E
(ψ

1)

 

 

MC
SC−isospaces
SC−1−7−11−15
SC−1−2−3−4
SC−1−2.5−4−5.5(exp)
SC−1−3.5−5.5−7.5(th)

Figure 2.8: Performance of SG-ATD (left) and SC-ATD (right) methods with different choices of
weights, in the computation of E [ψ1]. Error εmean [ψ1] versus computational cost.
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Figure 2.9: Comparison between SG-ATD and SC-ATD methods with best weights in the com-
putation of E [ψ1]. Error εmean [ψ1] versus computational cost.

Fig. 2.8 shows the error in computing E [ψ1] versus the estimated computational cost when
using the SG-ATD (left) or SC-ATD (right) methods. For reference purposes we have also added
the convergence plot for Monte Carlo.

First, we observe that SC and SG outperform the standard Monte Carlo. Fig. 2.8 also shows
that the theoretical estimate of the weights performs better than all other choices and seems to be
very close to optimum for both SC and SG methods, while the a posteriori choice gives slightly
worse results although the convergence curve is smoother.

In Fig. 2.9 we compare the performances of the SG-ATD and SC-ATD methods with the
theoretical and experimental choices of the weights. In this test, the collocation method seems to
be superior to the Galerkin one, even for very small tolerances.

2.5 The lognormal case

The goal of this section is to repeat the analysis performed on Test 1 (see section 2.4.a), replacing
the uniform random variables with lognormal variables, to see if and how much the probability
distribution plays a role in the performance of the Galerkin and Collocation methods. Moreover,
the study of the lognormal case is of practical interest, since many hydrological and geological
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Figure 2.10: comparison of the probability density function for the random inclusions in the
uniform case, see eq. (2.23), and lognormal case, see eq. (2.27).

applications typically use such random variables, see (1.10).
A lognormal variable L(ω) is defined as the exponential of a gaussian random variable: L =

eµ+σY , with Y ∼ N (0, 1). It holds E [L] = eµ+σ2

2 = λ and Var [L] = e2µ+σ2
(eσ

2 − 1) = λ2(eσ
2 − 1).

In this section we will therefore consider the same diffusion coefficient of Section 2.4.a, see eq.
(2.23), replacing the uniform variables with lognormal ones,

a(x, ω) = a0 +
8∑

n=1

χn(x)
(
l0 + eµ+σyn(ω)

)
, yn ∼ N (0, 1) i.i.d. (2.27)

where now the image set of each random variable yn(ω) is Γn ≡ R and the parameters a0, l0, µ, σ are
chosen so that a(x, ω) is “as close as possible” to its counterpart (2.23). To do this, we set a0 = 1,
so that we ensure that the diffusion coefficient outside the inclusions is identical in both cases, and
l0, µ, σ in order to ensure that the inclusions feature the same minimum value, mean and variance
as in Test 1; the solution to the corresponding non-linear system can be obtained numerically and
is found to be l0 = −0.99, µ ≈ −1.07, σ ≈ 0.54, see fig. 2.10.

Note that even if we refer to (2.27) as a lognormal diffusion coefficient, its underlying probability
density function ρ(y) : Γ = Γ1 × . . .× ΓN → R is indeed a product of Gaussian density functions:

ρ(y) =
N∏
n=1

ρn(yn), ρn(yn) =
1√
2π
e−

y2
n
2 . (2.28)

This is not only much more convenient than expressing a(x, ω) in terms of a set of lognormal random
variables (with this choice we can in fact use the Hermite polynomials for the Galerkin method and
Gauss-Hermite quadrature rules for the Collocation method), but is indeed the only possible way
of working, as it has been shown in [31] that the sequence of orthonormal polynomials associated
to the lognormal density function

ρL(y) =
1

y
√

2πσ2
e

(log y−µ)2

2σ2

is not a complete basis for L2
ρL

(R). Thus there will be some elements of L2
ρL

(R) that are not the
limit of their expansion in terms of ρL(y)-orthonormal polynomials.

To set up the Galerkin method, we proceed similarly to Sections 2.3.a. Given ρ(y) as in (2.28),
let Λ(w) be a sequence of index sets as in (2.6)-(2.13) and PΛ(w) the subspace of L2

ρ(Γ) spanned
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Figure 2.11: sparsity plots for the SG matrix in the uniform and lognormal cases. In both cases
we consider Λ(w) =TD(3).

by the set of ρ(y)dy-orthonormal multivariate Hermite polynomials {Hp(y)}p∈Λ(w), that are again

computed as products of monodimensional Hermite polynomials Hp(y), see e.g. [39, 85].
The Galerkin method will again require the solution of a block-system like (2.17), where now

Gnp,q is defined as

Gnp,q =

∫
Ω
eµ+σynHp(y)Hq(y)ρ(y)dy.

Contrary to (2.24), it is enough for Gnp,q to be nonzero that p and q have all equal components but
the n-th: therefore, the matrix is still block-sparse, but with more nonzero terms than the uniform
case, see Figure 2.11 for a comparison of the sparsity patterns in the two cases. The computation
of Gnp,q can be achieved exactly, since

eµ
∫

Γn

eσynHpn(yn)Hqn(yn)
1√
2π
e−

y2
n
2 dyn = eµ+σ2

2

∫
Γn

Hpn(yn)Hqn(yn)
1√
2π
e

(yn−σ)2

2 dyn, (2.29)

and the last integral can be computed exactly by a Hermite-Gaussian quadrature rule with k =
(pn + qn + 1)/2 nodes. We have found numerically that many of these terms are small, with larger
values of |pn − qn| resulting in smaller values of Gnp,q. In this work we have neglected all the terms
smaller than 10−6 in absolute value.

To solve the Galerkin system we consider again a mean-based preconditioner, see eq. (2.19).
However, contrary to the uniform case (2.26), in the lognormal case the preconditioners Pq,q are
not all equal, cf. eq. (2.25) and (2.29). Precomputing every Cholesky factorization once and for
all before solving the linear system leads to excessive memory requirement, therefore we employ a
direct solver at each preconditioning step. Moreover, the mean-based preconditioner is no longer
optimal in the case of lognormal random variables and the condition number of the preconditioned
matrix grows with the polynomial degree used (see Fig. 2.15). Other preconditioners, specific and
more efficient for the lognormal case, have been proposed in [84, 90, 103]. See also [104] for an
alternative approach to the numerical treatment for the lognormal case.

The set up of the Stochastic Collocation method is identical to Section 2.3.b; of course we use
here quadrature rules based on the roots of Hermite polynomials.
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Figure 2.12: expected value (left) and standard deviation (center) of u in the lognormal case.
We also show the difference between the standard deviations in the uniform and
lognormal cases (right).
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Figure 2.13: Error εmean [ψ1] versus estimated computational cost for Galerkin (left) and Collo-
cation (right).

Numerical results

The mean and standard deviation field of the solution are qualitatively identical to those in Test 1,
cf. Figure 2.2 and 2.12. However, we note that the variance of the solution is slightly lower for the
lognormal case (around 20%, see Figure 2.12-right), even if the mean and the variance of the input
lognormal random variables have been tuned to have the same mean and variance as the uniform
variables of the previous case. We will show in the following how this affects the convergence rate.

We monitor the convergence of the Galerkin and Collocation method in terms of the error
measures εmean applied to the linear functionals ψ1 and ψ2, as defined in Section 2.4. Figure
2.13 shows the convergence of εmean [ψ1] versus estimated computational cost for Galerkin and
Collocation. On the one hand, it clearly appears that the TD space in this case is not the best
polynomial space where to set the approximation: this suggests that the shape of the probability
distribution plays a role in determining the most suitable polynomial space; on the other hand, the
SM Collocation scheme is still the most effective one. We also remark that the difference in the
performance between Collocation and Galerkin is more evident than in Test 1 (cf. figure 2.3). The
same phenomena appear when looking at εmean [ψ2], see figure 2.14.

The degradation of the performance of the Galerkin is due to the fact that the matrix is less
sparse and the mean-based preconditioner is less effective for the lognormal case, see e.g. [84, 90,
103, 104], so that the linear system requires more PCG iterations if compared to the uniform case,
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Figure 2.14: Error εmean [ψ2] versus estimated computational cost for Galerkin (left) and Collo-
cation (right).
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Figure 2.15: Number of PCG iterations of Galerkin method. Left: TD case, right: SM case.

see Figure 2.15. On the other hand, the computational cost of the Collocation is the same for both
the tests, since the number of points in the sparse grid is of course the same for both the uniform
and the lognormal cases (note that this does not mean that the actual total computational time,
which depends on the runtime of each call to the deterministic solver, will be the same in both
cases).

We can also compare the convergences of the various methods for the two settings, uniform and
lognormal, again in terms of εmean [ψ1] (normalizing the solutions with respect to the corresponding
reference solutions). We thus notice that the comparison gives quite different results depeding on the
method. On the one hand, the difference between the standard deviations detected in Figure 2.12
does not appear to influence significantly the convergence of the Monte Carlo method, see Figure
2.16(c), while on the other hand there seems to be a significant improvement of the convergence
rates in the Collocation setting, see Figure 2.16(b). The Galerkin method again does not show
any difference between the convergence in the two cases, see Figure 2.16(a): this may be due to
the compensation of two competing factors: the fact that the polynomial spaces HC, SM may be
particularly well suited for the lognormal problem, which positively affects the convergence rate, and
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(a) Stochastic Galerkin method.

10
0

10
2

10
4

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SG: dim−stoc * iter−CG / MC: sample size

( 
E

(ψ
1,

p) 
−

 E
(ψ

1,
ov

k) 
) 

/ E
(ψ

1,
ov

k)

 

 

SC−HC Un. case
SC−HC Logn. case
SC−SM Un. case
SC−SM Logn. case

(b) Stochastic Collocation method.
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Figure 2.16: Comparison of the convergences of the various methods for the uniform and lognor-
mal settings.

the increased computational cost caused by the lower efficiency of the mean-based preconditioner,
as pointed out in Figure 2.15.

2.6 Conclusions

In this chapter we have set up an as-fair-as-possible comparison between Collocation and Galerkin
method. The effort has been theoretical at first, trying to generalize the classical Smolyak Sparse
Grid algorithm for Collocation, so that both the Galerkin and Collocation solutions belong to the
same polynomial space: this is a crucial step and represents a novelty in the literature of sparse
grids.

Once accomplished this setting, we compared the two methods in terms of accuracy versus com-
putational cost, defined as the number of deterministic problems solved in each case. We compared
Galerkin and Collocation considering different random variables in the diffusion coefficients, for
several choices of the polynomial spaces, both in isotropic and anisotropic settings. In all cases, the
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Collocation method has shown slightly better performances than Galerkin, at least for moderate
error tolerances; in particular, the choice of good preconditioners has been found out to be a crucial
point in the performances of Galerkin method.

Beside the efficiency in the computation, one also has to compare the differences in the setup
costs of the methods. In this sense, Collocation seems to be more appealing since it features similar
convergence rates than Galerkin but requires almost no effort moving from a test to another, once
the code for sparse grid is available.



Chapter 3

Optimal Galerkin and Collocation
approximations

This Chapter consists of the paper by J. Beck, F. Nobile, L. Tamellini, R. Tempone, On the optimal
polynomial approximation of stochastic PDEs by Galerkin and Collocation methods, to appear on
Mathematical Models and Methods in Applied Sciences, up to the alignment of the notation and
minor improvements in the readibility.

A shorter version with different numerical tests can be found on ESAIM Proceedings 33(2011),
Proceedings of the CANUM conference 2010, Carcans-Maubuisson, France, May 31-June 4, 2010.

3.1 Introduction

From the previous chapters, it is clear that both the Stochastic Galerkin and Collocation method
suffer the so-called “Curse of Dimensionality”: using naive projections/interpolations over tensor
product polynomials spaces/tensor grids leads to computational costs that grow exponentially fast
with the number of random variables. Therefore the main requirement for these methods to be
appealing compared to the classical sampling methods (that do not suffer any degradation of the
performance when the number of random variables increases) is the capability of retaining good
approximations of u while keeping the computational cost as low as possible.

In a Stochastic Galerkin setting this requirement can be translated to the implementation of
algorithms able to compute what is known as “best M -terms approximation”. In other words, the
method should be able to establish a-priori the set of the M most fruitful multivariate orthogonal
polynomials in the spectral approximation of u, and to compute only those terms.

Important contributions in the study of the best M -terms approximation have been given by
Schwab and co-workers: estimates on the decay of the coefficients of the spectral expansion of u
have been proved e.g. in [11, 20, 21]. In this chapter we will reformulate and slightly generalize
the result given in [21, Corollary 6.1], and show on few numerical examples that the sequence of
polynomial subspaces built upon those estimates (“TD with factorial correction” sets, TD-FC in
the following) performs better than classical choices such as Total Degree or Tensor Product in
terms of error versus the dimension of the polynomial space.

In a Stochastic Collocation setting, the construction of an optimal grid can be recast to a
classical knapsack problem and relies on the notion of profit of each hierarchical surplus composing
the sparse grid, as introduced e.g. in [15]. The “Best M -Terms” grid is then the one built with the
set of the M most profitable hierarchical surpluses. In this chapter we propose a heuristic a-priori
estimate of the profit of each hierarchical surplus, and use it to build a quasi optimal sparse grid.
The estimates of the profit are in turn based on the estimates of the decay of the spectral expansion
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of u. Numerical investigations show that these new grids perform better than standard Smolyak
grids as well as grids constructed with the dimension adaptive approach developed in [41, 56]. A
similar knapsack approach to the construction of generalized optimal sparse grids has been proposed
also in [45]. Our contribution extends and details the procedure to the case of PDEs with stochastic
coefficients, working with analytic functions instead of Hr

mix ones, and using sharp estimates for
the profits of the hierarchical surpluses.

This Chapter is organized as follows. Section 3.2 defines the elliptic model problem of interest
and gives general regularity results of the solution u. In Section 3.3 we first address the general
procedure that leads to the Stochastic Galerkin approximation of u; next we state the estimate
for the decay of the spectral approximation of u and explain how to build practically the TD-FC
polynomial subspaces that stem from it. In Section 3.3.b we consider some simple numerical tests
where we can build explicitly the best M -terms approximation, and we compare it with the TD-FC
and with some standard choices of polynomial subspaces. In Section 3.4 we recall the construction
of a general sparse grid, motivate our heuristic estimate of the profit of each hierarchical surplus
and explain how to construct in practice optimized sparse grids based on such estimates. Section
3.4.b shows on some simple test cases the effectiveness of the method and the sharpness of our
heuristic estimates. Finally Section 3.5 draws some conclusions.

3.2 Problem setting

Let D be a convex bounded polygonal domain in Rd and (Ω,F , P ) be a complete probability space.
Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1] is a probability
measure. Consider the stochastic linear elliptic boundary value problem:

Strong Formulation. find a random function, u : D ×Ω→ R, such that P -almost everywhere in
Ω, or in other words almost surely (a.s.), the following equation holds:{

−div(a(x, ω)∇u(x, ω)) = f(x) x ∈ D,
u(x, ω) = 0 x ∈ ∂D.

(3.1)

where the operators div and ∇ imply differentiation with respect to the physical coordinate only.

We make the following assumptions on the random diffusion coefficient:

Assumption 3.1 (Coercivity and continuity). a(x, ω) is strictly positive and bounded with proba-
bility 1, i.e. there exist amin > 0 and amax <∞ such that P (amin ≤ a(x, ω) ≤ amax,∀x ∈ D) = 1.

Assumption 3.2 (Finite dimensional noise). a(x, ω) is parametrized by a set of N independent and
identically distributed uniform random variables in (−1, 1), y(ω) = [y1(ω), ..., yN (ω)]T : Ω→ RN .

Observe that the assumption that the random variables are uniform is not that restrictive.
Indeed, we could assume that a is parametrized by N random variables zi, i = 1, . . . , n and introduce
a non linear map yi = Θ(zi) that transforms each of them into uniform random variables, following
the well known theory on copulas, see e.g. [69].

We denote by Γn = (−1, 1) the image set of the random variable yn, and let Γ = Γ1× . . .×ΓN .
In addition, let R+ be the set of positive numbers, R+ = {r ∈ R : r > 0}, and similarly RN+ = {r ∈
RN : ri > 0, ∀i = 1, . . . , N}. After Assumption 3.2 the random vector y has a joint probability
density function ρ : Γ→ R+ that factorizes as ρ(y) =

∏N
n=1 ρn(yn), ∀y ∈ Γ, with ρn = 1

2 . Moreover,
the solution u of (3.1) depends on the single realization ω ∈ Ω only through the value taken by the
random vector y. We can therefore replace the probability space (Ω,F , P ) with (Γ, B(Γ), ρ(y)dy),
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where B(Γ) denotes the Borel σ-algebra on Γ and ρ(y)dy is the distribution measure of the vector
y. We denote with L2

ρ(Γ) the space of square integrable functions on Γ with respect to the measure
1

2N
dy. Note that in the case the original random variables are not uniform but with bounded

support, and a mapping Θ is not available, one could still reduce the problem to the uniform case,
at the price of bounding ρ(y) with ‖ρ(y)‖∞.

The assumption of independence of the random variables is very convenient for the development
of the techniques proposed below, since they rely on tensor polynomial approximations. However,
such assumption is not essential and could be removed whenever the density ρ does not factorize,
by introducing an auxiliary density ρ̂ = 1

2N
as suggested in [4]. The price to pay in the convergence

estimate is then a costant factor proportional to ‖ρ/ρ̂‖L∞(Ω).

In the rest of the chapter we will use the following notation: given a multi-index i ∈ NN and
a vector r ∈ RN , we define |i| =

∑N
n=1 in, i! =

∏N
n=1(in!) and ri =

∏N
n=1 r

in
n . We can now state a

regularity assumption on a(x,y):

Assumption 3.3 (Stochastic regularity). a(x,y) is infinitely many times differentiable with respect
to y and ∃ r ∈ RN+ s.t. ∥∥∥∥∂iaa (·,y)

∥∥∥∥
L∞(D)

≤ ri ∀y ∈ Γ,

where i is a multi-index in NN , ∂ia =
∂i1+...+iNa

∂yi11 · · · ∂y
iN
N

, and r is independent of y.

Example 3.1 (Stochastic regularity). A common situation of interest is when a(x, ω) is an in-
finitely dimensional random field, suitably expanded in series (e.g. by a Karhunen-Loève or Fourier
expansion) either as a linear expansion of the form a = a0 +

∑∞
n=1 bn(x)yn with bn ∈ L∞(D) and

amin = a0−
∑∞

n=1 ‖bn‖L∞(D), or an exponential expansion of the form a = a0+exp (
∑∞

n=1 bn(x)yn).
Then the infinite series is truncated up to N terms, with N large enough to take into account a suf-
ficiently large amount of the total variability. Both expansions comply with Assumption 3.3 taking
rn = ‖bn‖L∞(D)/amin and rn = ‖bn‖L∞(D), respectively.

Finally, we denote by V = H1
0 (D) the space of square integrable functions in D with square

integrable distributional derivatives and with zero trace on the boundary, equipped with the gradient
norm ‖v‖V = ‖∇v‖L2(D) , ∀v ∈ V . Its dual space will be denoted by V ′. We are now in the position
to write a weak formulation of problem (3.1):

Weak Formulation. Find u ∈ V ⊗ L2
ρ(Γ) such that ∀ v ∈ V ⊗ L2

ρ(Γ)∫
Γ

∫
D
a(x,y)∇u(x,y) · ∇v(x,y) ρ(y) dx dy =

∫
Γ

∫
D
f(x)v(x,y) ρ(y) dx dy. (3.2)

Under Assumption 3.1, the Lax-Milgram lemma yields that there exists a unique solution to
problem (3.2) for any f ∈ V ′. Moreover, the following estimate holds:

‖u‖V⊗L2
ρ(Γ) ≤

‖f‖V ′
amin

.

The solution u can also be thought as a function defined in Γ with solution in V , u : Γ → V
and, thanks to the previous result, we have u ∈ L2

ρ(Γ, V ) = V ⊗ L2
ρ. In what follows we will often

use the notation u(y) := u(·,y) ∈ V if no confusion arises.
Concerning the regularity of the solution with respect to y, the following result holds, which

generalizes the result given in [21] for the special case a = a0 +
∑N

n=1 bn(x)yn.
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Theorem 3.1. Let a(x,y) be a diffusion coefficient for equation (3.1) that satisfies Assumptions
3.1 - 3.3. Then the derivatives of u can be bounded as

‖∂iu(y)‖V ≤ C0|i|! r̃i ∀y ∈ Γ.

Here C0 =
‖f‖V ′
amin

and r̃ =

(
1

log 2

)
r, with r as in Assumption 3.3.

The proof is technical; we thus postpone it to the Appendix. A consequence of Theorem 3.1 is
that u is analytic in every y ∈ Γ. Of course, since u is understood here as a V -valued function, the
notion of analyticity has to be intended accordingly:

Definition 3.1. A function f : D ⊆ RN → V is said to be analytic if for every y0 ∈ D the Taylor
expansion of f centered in y0 converges to f(y) in V -sense in a neighborhood of y0.

Corollary 3.1. Under the hypotheses of Theorem 3.1, given ε > 0, for every y0 ∈ Γ the Taylor
series of u converges in the disk

D(y0) =
{
y ∈ RN : r̃ · abs (y − y0) < 1

}
.

where abs (v) = (|v1|, . . . , |vN |)T . Therefore u : Γ→ V is analytic and can be extended analytically
to the set

Σ =
{
y ∈ RN : ∃y0 ∈ Γ s.t. r̃ · abs (y − y0) < 1

}
.

Proof. It is enough to bound the series of V -norms. Use first Theorem 3.1 to bound the norm of
the Taylor expansion of u(y) centered in y0 ∈ Γ as∥∥∥∥∥∥

∞∑
k=0

∑
|j|=k

∂ju(y0)

j!
(y − y0)j

∥∥∥∥∥∥
V

≤
∞∑
k=0

∑
|j|=k

C0r̃
j |j|!

j!
abs (y − y0)j.

Next exploit the generalized Newton binomial formula, that states that for α1, . . . , αN ∈ R+ and
k ∈ N we have ∑

|j|=k

k!

j!
αj =

(
N∑
n=1

αn

)k
,

to rewrite the bound on the norm of the Taylor series as∥∥∥∥∥∥
∞∑
k=0

∑
|j|=k

∂ju(y0)

j!
(y − y0)j

∥∥∥∥∥∥
V

≤ C0

∞∑
k=0

(
N∑
n=1

r̃n|yn − y0,n|

)k
.

Thus the Taylor series of u converges to u in the disk D(y0). Therefore u is analytic and admits
an analytic extension in Σ. �

3.3 Stochastic Galerkin method

We now seek an approximation of the solution u with respect to y by global polynomials.
As anticipated in the introduction, we remark that the choice of the polynomial space is critical

when the number N of input random variables is large, since the number of stochastic degrees
of freedom might grow very quickly with N , even exponentially when isotropic tensor product
polynomial spaces are used (see Table 3.1). This effect is known as the curse of dimensionality.
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Several choices of polynomial spaces that mitigate this phenomenon have been proposed in
the literature, see e.g. [5]. Each of these polynomial spaces is built as the span of a properly
selected subset of a multivariate orthonormal polynomial basis {Lp(y)}p∈N for L2

ρ(Γ), to retain
good approximating properties with only a finite number of basis functions.

Since L2
ρ(Γ) =

⊗N
n=1 L

2
ρn(Γn), the elements of an orthonormal basis can be built as products

of orthonormal polynomials for each of the directions yn, {Lpn(yn)}pn∈N ; we can thus index the
multivariate orthonormal polynomial basis functions Lp(y) with multi-indices p = (p1, . . . , pN )

Lp(y) =
N∏
n=1

Lpn(yn).

Then, by construction, the set {Lp(y)}p∈NN is a ρ(y)dy-orthonormal basis in L2
ρ(Γ), i.e. such

that
∫

Γ Lp(y)Lq(y)ρ(y) dy = 1 if p = q and 0 otherwise.
Let now w ∈ N be an integer index indicating the level of approximation, and Λ(w) a sequence

of increasing index sets such that

Λ(0) = {(0, . . . , 0)}, Λ(w) ⊆ Λ(w + 1) ⊂ NN for w ≥ 0 and NN =
⋃
w∈N

Λ(w). (3.3)

Denoting by PΛ(w)(Γ) the multivariate polynomial space

PΛ(w)(Γ) = span {Lp(y), p ∈ Λ(w)} , (3.4)

the Stochastic Galerkin (SG) approximation consists in restricting the weak formulation (3.2) to
the subspace V ⊗ PΛ(w)(Γ) and reads:

Galerkin Formulation. Find uw ∈ V ⊗ PΛ(w)(Γ) such that ∀ vw ∈ V ⊗ PΛ(w)(Γ)∫
Γ

∫
D
a(x,y)∇uw(x,y) · ∇vw(x,y) ρ(y) dx dy =

∫
Γ

∫
D
f(x)vw(x,y) ρ(y) dx dy, (3.5)

where, due to the orthonormality of {Lp(y)}p∈Λ(w),

uw(x,y) =
∑

p∈Λ(w)

up(x)Lp(y), with up(x) =

∫
Γ
u(x,y)Lp(y)ρ(y)dy ∀p ∈ Λ(w). (3.6)

Commonly used spaces PΛ(w)(Γ) are listed in Table 3.1; for further details, see [5] and references
therein.

index set Λ(w) Dimension |Λ(w)|

Tensor product
{
p ∈ NN : maxn=1...,N pn ≤ w

}
(1 + w)N

Total degree
{

p ∈ NN :
∑N

n=1 pn ≤ w
} (

N+w
N

)
Hyperbolic cross

{
p ∈ NN :

∏N
n=1(pn + 1) ≤ w + 1

}
(w + 1)(1 + log(w + 1))N−1

Table 3.1: Examples of typical polynomial spaces. The result for HC is only an upper bound.

One could also consider anisotropic versions of these spaces (see e.g. [3, 5, 72]) as in Table
3.2, where α = (α1, . . . , αN ) ∈ RN+ is a vector of positive weights and αmin = minn αn. We can
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Tensor product Λ(w) =
{
p ∈ NN : maxn=1...,N αnpn ≤ αminw

}
Total degree Λ(w) =

{
p ∈ NN :

∑N
n=1 αnpn ≤ αminw

}
Hyperbolic cross Λ(w) =

{
p ∈ NN :

∏N
n=1(pn + 1)

αn
αmin ≤ w + 1

}
Table 3.2: Corresponding anisotropic version of the polynomial spaces on Table 3.1.

interpret these weights as a measure of the importance of each random variable yn on the solution:
the smaller the weight, the higher degree we allow in the corresponding variable.

The family of orthonormal monodimensional polynomials will of course depend on the measure
of each Γn (Generalized Polynomial Chaos). In the case of uniform random variables, one can use
the well-known orthonormal Legendre polynomials; the p-th Legendre polynomial can be computed
recursively (see e.g. [39]), or explicitly with the Rodrigues’ formula:

Lpn(t) =
(−1)n

√
2pn + 1

2pnpn!

dpn

dtpn

(
(1− t2)pn

)
. (3.7)

We recall Hermite polynomials for Gaussian measures and Laguerre polynomials for Exponential
measures; see [111] for the general Askey scheme. Necessary conditions for the convergence of the
Generalized Polynomial Chaos expansion can be found e.g. in [31].

Now let φ(x) be a basis function for the physical space V . Inserting vw = φ(x)Lq(y) with
q ∈ Λ(w) as test functions in the weak formulation (3.5) will result in a set of equations in weak
form for the coefficients up(x) that will be generally coupled due to the term a(x,y)Lp(y)Lq(y) in
the equation (3.5). See for instance the works [5, 82, 83] for further details on space discretization
and on the numerical solution of such system of equations.

3.3.a Quasi-optimal choice of polynomial spaces

A question that naturally arises in the context of Galerkin approximation concerns the best choice
of the polynomial space to be used, to get maximum accuracy for a given dimension M of the space
(best M -terms approximation). In other words, we look for an index set SM ⊂ NN with cardinality
M that minimizes the projection error

‖u−
∑

p∈SM

upLp‖2V⊗L2
ρ(Γ) =

∑
p/∈SM

||up||2V , (3.8)

where the equivalence is a consequence of Parseval’s equality and the completeness of {Lp}p∈Λ(w)

in L2
ρ(Γ).

Abstract construction

The obvious solution to this problem is to take the set SM that contains the M coefficients up
with largest norm. This solution of course is not constructive; what we need are sharp estimates
of the decay of the coefficients ‖up‖V , based only on computable quantities, to be used in the
approximation of the set SM . Actually, assuming that an estimate of the type

‖up‖V ≤ G(p) (3.9)

is available, one can define an index set Λε by selecting all multi-indices p for which the estimated
decay of the corresponding Legendre coefficient is above a fixed threshold ε ∈ R+,

Λε =
{
p ∈ NN : G(p) ≥ ε

}
,
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or equivalently

Λ(w) =
{
p ∈ NN : − logG(p) ≤ w, w = d− log εe

}
. (3.10)

If the sequence Λ(w) covers NN as w goes to infinity, the corresponding uw will converge to u and,
if the bound G(p) in (3.9) is sharp, Λ(w) will be a “quasi optimal” approximation of the best
M -terms approximation, where now M denotes the cardinality of Λ(w).

A preliminary example

Assume for a moment that u factorizes, i.e. it can be written as a product of 1D analytic func-
tions in the stochastic variables, u(x,y) = f(x)

∏N
n=1 vn(yn). If we denote with vn,pn the Legendre

coefficients of the factor vn, i.e.

vn,pn =

∫
Γn

vn(yn)Lpn(yn)ρn(yn)dyn,

the Legendre coefficients of u are given simply by

up(x) = f(x)
N∏
n=1

vn,pn . (3.11)

Now, from classical approximation theory ([25, 100]) it is well known that, if vn is analytic in Γn,
the coefficient vn,pn is exponentially decaying in pn with a certain rate gn, |vn,pn | ≤ c(gn)e−gnpn ; as
a consequence we easily obtain a sharp bound on the Legendre coefficients of u,

‖up‖V ≤ ‖f‖V C e−
∑
n gnpn , C =

N∏
n=1

c (gn). (3.12)

Substituting this bound in (3.10), we get that a quasi optimal choice of polynomial sets for a
separable function of the form (3.11) is the anisotropic TD sets sequence defined in Table 3.2 with
weights αn = gn.

General case

In the general case deriving sharp estimates on the decay of ‖up‖V is a more delicate task. Seminal
works in this direction are [11, 21, 20], where estimates of the decay of the Legendre coefficients
are provided. We consider here a slight generalization of the result in [21, Corollary 6.1] and show
numerically that the polynomial sets built on these modified estimates behave closely to the true
best M -terms approximation.

Under Assumptions 3.1 - 3.3 it is possible to prove that the following estimate holds for the Leg-
endre coefficients. Again, a similar result is given in [21] for the special case a = a0 +

∑N
n=1 bn(x)yn.

Proposition 3.1. Consider equation (3.1), suppose that the diffusion coefficient a satisfies As-
sumptions 3.1 - 3.3, let r be as in Assumption 3.3 and C0 be as in Theorem 3.1. Then the V -norm
of the Legendre coefficients up can be bounded as

‖up‖V ≤ C0e
−
∑
n gnpn

|p|!
p!

, gn = − log( rn/(
√

3 log 2) ). (3.13)
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Proof. We follow closely the proof in [21, Corollary 6.1]. We start from the definition of the Legendre
coefficients (3.6) and the Rodrigues’ formula for the Legendre polynomials (3.7). Integrating by
parts and thanks to the properties of the Bochner integral we have

‖up‖V (D) =

∥∥∥∥∫
Γ
u(·,y)Lp(y)ρ(y)dy

∥∥∥∥
V

≤
∏N
n=1

√
2pn + 1

2|p|p!

∫
Γ

∥∥∂ypu(·,y)
∥∥
V

∏N
n=1(1− y2

n)pnρ(y)dy.

It has been shown in [21] that

I(p) =
∏N
n=1

√
2pn + 1

∫
Γ

∏N
n=1(1− y2

n)pnρ(y)dy ≤
(

2√
3

)|p|
. (3.14)

Thus we have

‖up‖V (D) ≤ max
y∈Γ

∥∥∂ypu(·,y)
∥∥
V
I(p)

1

2|p|p!
,

and the proof is completed using Theorem 3.1 to estimate maxy∈Γ

∥∥∂ypu(·,y)
∥∥
V

:

‖up‖V (D) ≤ C0|p|!
(

1

log 2
r

)p( 2√
3

)|p| 1

2|p|p!

= C0

(
1√

3 log 2
r

)p |p|!
p!

= C0e
∑
n pn log

(
rn√

3 log 2

)
|p|!
p!

. (3.15)

�

Example 3.2. To motivate bound (3.13), assume that in the model problem (3.1) the forcing term is
deterministic, f = f(x), and the diffusion coefficient is constant in space, a = a(y) = 1+

∑N
i=1 biyi,

with bi > 0. As explained in Remark 3.1, for such a diffusion coefficient Assumption 3.3 holds with
amin = 1−

∑
i bi and ri = bi/amin. Moreover, let us denote with g ∈ V the solution of the auxiliary

problem {
∆g(x) = f(x) x ∈ D,
g(x) = 0 x ∈ ∂D.

Under these hypotheses we can derive an analytic expression for u and its derivatives with respect
to y,

u(x,y) = g(x)
1

1 +
∑N

i=1 biyi
, ∂pu(x,y) = g(x)

|p|! bp(
1 +

∑N
i=1 biyi

)|p|+1
. (3.16)

We can exploit this fact to compute explicitly a bound for the V-norm of the Legendre coefficients
up of u. Actually, using again Rodrigues’ formula (3.7) in the definition of up, and integrating by
parts, we obtain

up(x) =

∫
Γ
u(x,y)Lp(y)ρ(y)dy ≤ g(x)

bp

2|p|
|p|!
p!

1

(amin)|p|+1

N∏
i=1

(−1)n
√

2pn + 1

∫
[−1,1]

(1− y2
n)pn

1

2
dyn.

Finally we exploit bound (3.14), pass to the V-norm and use the fact that ‖g‖V = ‖f‖V ′ to obtain

‖up‖V ≤
‖f‖V ′
amin

bp

(amin)|p|

(
1√
3

)|p| |p|!
p!

.
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This can be recast using the definition of the rate ri = bi/amin and of the constant C0 in Theorem
3.1 to

‖up‖V ≤ C0e
−
∑
n gnpn

|p|!
p!

, gn = − log(rn/
√

3),

that is precisely the bound derived in Proposition 3.1, with a slight modification on the rate gi.
Numerical results in the next Section will again cover this particular example, showing that the
bound proposed yields good approximating properties.

Remark 3.1. Since u(x, ·) is analytic in Γ (see Corollary 3.1), it can be shown that u always admits
a converging Legendre expansion. In spite of this, the estimate (3.13) in the previous Proposition
does not ensure that the norm of the coefficients ‖up‖V of the expansion is decaying for any value of
the coefficients rn when |p| → ∞, nor that the Legendre series is convergent; sufficient conditions
for this to be true are given in the next Preposition.

This is a clear indication that estimate (3.13) is not sharp. Other estimates derived using
complex analysis arguments are available and always predict a decay of ‖up‖V for |p| → ∞ (see
e.g. [20]). On the other hand, we have observed that the behaviour of the Legendre coefficients is
well described by a bound of the type of (3.13), if the rates gn are estimated numerically rather than
analytically. See Section 3.3.b for numerical evidence on the quality of the bound proposed.

For a given set Λ, let wΛ be the index of the largest TD set included in Λ:

wΛ = max{w̃ ∈ N : TD(w̃) ⊆ Λ(w)}. (3.17)

The following Proposition holds:

Proposition 3.2. Given an increasing sequence of index sets Λ(w) with w → ∞, the estimate
(3.13) in Proposition 3.1 implies that a sufficient condition for the Legendre series uw defined in
(3.6) to converge uniformly to u is

N∑
i=1

rn < log 2 . (3.18)

Proof. It is enough to prove that if condition (3.18) holds then the sequence uw =
∑

p∈Λ(w) upLp is
Cauchy with respect to the norm ‖·‖L∞(Γ;V ), for the sequence Λ(w) considered. As a consequence
uw converges uniformly to its limit u.

To prove that uw is Cauchy, let w1, w2 ∈ N such that w1 < w2. Moreover, let w1, w2 the in-
dices of the largest TD sets included in Λ(w1) and Λ(w2) respectively, as in (3.17). It holds∥∥∥∑p∈Λ(w2) up(x)Lp(y)−

∑
p∈Λ(w1) up(x)Lp(y)

∥∥∥
L∞(Γ;V )

=∥∥∥∑p∈Λ(w2)\Λ(w1) up(x)Lp(y)
∥∥∥
L∞(Γ;V )

≤
∑

p∈Λ(w2)\Λ(w1)

‖up(x)Lp(y)‖L∞(Γ;V ) ≤∑
p/∈TD(w1)

‖up(x)Lp(y)‖L∞(Γ;V ) =
∑

p/∈TD(w1)

‖up(x)‖V ‖Lp(y)‖L∞(Γ) .

Now use estimate (3.13) in Proposition 3.1 to bound ‖up(x)‖V . Furthermore note that the L∞(Γ)-
norm of the orthonormal Legendre polynomials can be bounded as

‖Lp(y)‖L∞(Γ) =

N∏
n=1

√
2pn + 1 ≤

(√
3
)|p|

∀p ∈ NN ,
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so that ∑
p/∈TD(w1)

‖up(x)‖V ‖Lp(y)‖L∞(Γ) ≤ C0

∑
p/∈TD(w1)

(
1

log 2
r

)p |p|!
p!

= C0

∑
|p|≥w1

(
1

log 2
r

)p |p|!
p!

= C0

∞∑
s=w1

(
N∑
n=1

1

log 2
rn

)s
,

that tends to 0 if condition (3.18) holds, where we have exploited the generalized Newton binomial
formula as in Corollary 3.1. �

Remark 3.2. Condition (3.18) in Proposition 3.2 can be weakened by improving bound (3.14). We
recall the definition of I(p) =

∏N
n=1

√
2pn + 1

∫
Γn

(1− y2
n)pnρ(yn)dyn. Integrating p times by parts,

one obtains ∫ 1

−1
(1− t2)p

1

2
dt =

22p(p!)2

(2p+ 1)!
.

Using Stirling’s approximation formula

p! =
√

2πp
(p
e

)p
eλp ,

1

12p+ 1
≤ λp ≤

1

12p
,

one can then bound

I(p) ≤
√
π

2
⇒ I(p) ≤

(π
2

)N/2
.

Note that this bound is sharp, even for small values of |p|. Using this result rather than (3.14) in
(3.15) we obtain

‖up‖V (D) ≤ C0

(π
2

)N/2( 1

2 log 2
r

)p |p|!
p!

(3.19)

and, as a consequence, condition (3.18) becomes

N∑
i=1

rn <
2 log 2√

3
. (3.20)

Note however that this is only a little improvement, being log 2 = 0.69 and 2 log 2/
√

3 = 0.80;
moreover, since π/2 > 1, bound (3.19) does not imply that the Legendre coefficients of u decay
regardless of the number of random variables, which was the case for the initial estimate (3.13);
therefore, condition (3.20) holds for fixed N , while (3.18) is independent of N .

Following again the abstract procedure in Section 3.3.a, we substitute the estimate (3.13) in the
general quasi optimal set expression (3.10). This results in the following expression for the quasi
optimal polynomial sets for a general non factorizing u,

Λ(w) =

{
p ∈ NN :

N∑
n=1

gnpn − log
|p|!
p!
≤ w

}
. (3.21)

We refer to these sets as TD-FC sets (“TD with factorial correction” sets). We can indeed

interpret the factor log |p|!p! appearing in (3.21) as a correction factor to the TD space to take into
account the intrinsic coupling between directions in the stochastic space; observe that this correction
is always isotropic.
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As pointed out in Remark 3.1, the quantities gn appearing in (3.21) are better estimated nu-
merically by a sequence of monovariate analyses: one could indeed increase the polynomial degree
in one random variable at a time while keeping degree zero in all the others variables and esti-
mate numerically the exponential rate of convergence. Observe that in such monovariate analyses
the factorial term does not appear so the expected convergence rate is precisely ∼ e−gnpp . In the
numerical results presented in the next section we have used this strategy, which seems to work
particularly well.

Remark 3.3. Observe that Λ(w) actually depends on the number of input variables N . One can
extend the definition of Λ(w) also to the case where p is a sequence of natural numbers (“infinite
dimensional probability space”) with only a finite number of non zero terms, provided the sequence
gn → +∞ as n → ∞. This is an alternative way to work with random fields, without truncating
them a priori to a certain level (see e.g. [72, 21, 20]). See also [44] for a more recent adaptive
algorithm in infinite dimensions.

3.3.b Numerical Tests

In this section we show the performance of the TD-FC sets (3.21) compared to the isotropic and
anisotropic versions of TD sets defined in Tables 3.1 and 3.2, as well as the best M-term approxi-
mation. We consider the following elliptic problem in one physical dimension{

−(a(x,y)u(x,y)′)′ = 1 x ∈ D = (0, 1),y ∈ Γ

u(0,y) = u(1,y) = 0, y ∈ Γ
(3.22)

with different choices of diffusion coefficient a(x,y), for which Assumptions 3.1 - 3.3 hold. We focus
on a linear functional ψ : V → R of the solution, so that ψ(u) is a scalar random variable, function
of y only. In our examples, ψ is defined as ψ(v) = v(1

2).
To obtain the best M -terms approximation we compute explicitly all the Legendre coefficients

of ψ(u) in a sufficiently large index set U evaluating the integrals ψp =
∫

Γ ψ(u)Lp(y)ρ(y)dy with
a high-level sparse grid as reference values. We order then the coefficients in decreasing order,
according to their modulus, and take the first M terms of the reordered sequence as the best
M -terms approximation.

The rates g used to build the TD-FC space, as well as the anisotropic TD space (with αn = gn),
are computed numerically, with a sequence of 1D analyses. For each random variable 1 ≤ n ≤ N ,
we consider the subset Un = {p ∈ U : pi = 0 if i 6= n, pn = 0, 1, 2, . . .}; according to (3.13), the
decay of the Legendre coefficients for this particular choice of multi-indices is |ψp| ∼ e−gnpn , and
we can then estimate the rate gn via a linear interpolation on the quantities log |ψp|,p ∈ Un.

Test 1: space independent diffusion coefficient

The first case we consider has two random variables (y1, y2) and a diffusion coefficient a(x,y) =
1 + 0.1y1 + 0.5y2; results are shown in Figures 3.1-3.2.

Figure 3.1(a) shows the Legendre coefficients ordered in lexicographic order, giving this peculiar
sawtooth shape. The first tooth corresponds to multi-indices of the form [0, k], the second one
to [1, k] and so on. We have also added to the plot the estimate (3.13) in Proposition 3.1 of
the magnitude of the Legendre coefficients, which leads to the TD-FC sets (3.21), as well as the
estimate (3.12) which leads to the anisotropic TD spaces as in Table 3.2, with αn = gn. The plot
suggests that estimate (3.13) is quite sharp, whereas the estimate corresponding to the TD space
underestimates considerably the Legendre coefficients. This result highlights the importance of the
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(a) Legendre coefficients in lexicographic order and their
corresponding estimates based on either TD-FC or TD
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(b) Convergence of different polynomial approximations,
measured as ‖ψ(u)− ψ(uw)‖L2

ρ(Γ) versus dimension of

polynomial space.

Figure 3.1: Results for a(x,y) = 1 + 0.1y1 + 0.5y2. Here we have g ' (2.49, 1.27), U =TP(12),
Legendre coefficients computed with a standard Smolyak sparse grid of level 9, with
Gauss-Legendre abscissae.

factorial term in (3.13). We expect, therefore, that the TD-FC approximation performs better than
the aniso-TD one. Moreover, we point out the non intuitive fact that the Legendre coefficients ψp

are not strictly decreasing in absolute value when listed in the lexicographic order. As an example,
|ψ[5 0]| < |ψ[5 1]|, and the same holds for all teeth but the first few.

Figure 3.1(b) shows convergence plots for the error in L2
ρ-norm for the various polynomial spaces

used versus the dimension of the polynomial space. As the TD-FC sequence is the only sequence
that captures correctly the non decreasing behaviour of the Legendre coefficients in lexicographic
order, the convergence of the TD-FC sequence in Figure 3.1(b) is the closest to the best M -terms
approximation, even though the anisotropic TD space give good results as well. We also point
out the poor performance of the standard isotropic TD space compared to both the anisotropic
TD and the TD-FC spaces: this confirms the importance of using anisotropic spaces to reduce
computational costs.

It is also useful to visualize the isolines of the Legendre coefficients of the expansion of ψ(u) and
to compare them with the isolines corresponding to estimates (3.13) for TD-FC sets, and (3.12) for
iso and aniso TD sets, see Figure 3.2. The closer the matching of the sequence of sets with the true
decay of the Legendre coefficients, the faster the L2 convergence of the approximation for ψ will
be. The key property of the decay of the Legendre coefficients is the rounded shape of the isolines
(see Figure 3.2(a)), properly caught only with the factorial term |i|!

i! in the TD-FC set formula
(Figure 3.2(b)). Also from these plots one can see the fact that the Legendre coefficients are not
strictly decreasing in lexicographic order: actually close to the borders the isolines tend to bend
“backward”, so that for example the index [7, 1] belongs to a lower isoline than [7, 0]. However,
as appears from results in Figure 3.1, approximating the isolines with “mean” straight lines as it
is done in the anisotropic TD (Figure 3.2(c)) gives quite good results as well. On the other hand,
using the wrong slopes for TD sets, like in isotropic TD sets (3.2(d)), will result in general in poor
approximation properties.
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Figure 3.2: Isolines of estimated Legendre coefficients: a) true values, computed with high level
sparse grids; b) estimate (3.13) leading to TD-FC sets; c) estimate (3.12) leading to
aniso-TD sets with αn = gn; d) estimate (3.12) with αn = 1∀n = 1, . . . , N , leading
to standard TD sets as in Table 3.1. In all plots, each dot represents a multi-index in
N2, and it is coloured according to the size of the corresponding exact coefficient in
the Legendre expansion for ψ; on the background the isolines.
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(a) Results for linear expansion. a(x,y) = 4 +
y1 +0.2 sin(πx)y2 +0.04 sin(2πx)y3 +0.008 sin(3πx)y4.
Here we have g ' (2.03, 4.11, 5.73, 7.05), reference
set: U =TD(9).
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(b) Results for exponential expansion. log a(x,y) =
y1 +0.2 sin(πx)y2 +0.04 sin(2πx)y3 +0.008 sin(3πx)y4.
Here we have g ' (1.95, 3.95, 5.09, 6.51), reference
set: U =TD(7).

Figure 3.3: Convergence of polynomial approximations for elliptic equation with the coefficient
a depending also on x. Convergence measured as ‖ψ(u)− ψ(uw)‖L2

ρ(Γ) versus the

dimension of polynomial space.

Test 2: space dependent diffusion coefficient

We now consider the following two expansions:

• a(x,y) = 4 + y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4,

• log a(x,y) = y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4.

and look at the functional ψ(v) = v(0.7) (the functional ψ(v) = v(1/2) is not suited for analysis
in this case as, by symmetry, many of the Legendre coefficients are zero). Figure 3.3 shows the
results, and again we see that the TD-FC approximation is the best performing, with anisotropic
TD closely following and isotropic TD far worse.

Test 3: separable diffusion coefficient

Let us now give an example on the case of a factorizable u, as in Section 3.3.a. We recall that Section
3.3.a states that if we can express the solution u(x,y) as a product u(x,y) = f(x)

∏
n vn(yn) then

the Legendre coefficients can be computed as a product of 1D Legendre coefficients, and thus the
optimal estimate is (3.12), leading to aniso-TD sets, rather than estimate (3.13) leading to what
we have called TD-FC sets. To support our thesis, we now consider a(y) = (1 + 0.6y1)(1 + 0.6y2),

so that the solution of (3.22) is u(x,y) = x(1−x)
2a(y) .

The convergence plots for of ψ(u) are shown in Figure 3.4 and confirm that in this case TD is
the optimal choice, and is very close to the best M -terms approximation. Note that in this example
the isotropic and anisotropic versions of TD coincide, since the two factors of v are the same.

3.3.c Alternative estimates for diffusion coefficients in exponential form

Let us consider again the model problem (3.22), with diffusion coefficient in exponential form

log a(x,y) =
∑N

n=1 cnyn. The solution is u(x,y) = x(1−x)
2

1∏N
n=1 e

cnyn
, therefore the solution is in
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Figure 3.4: convergence of polynomial approximation of the elliptic equation (3.22) with the coef-
ficient a that factorizes with respect to y, a = (1 + 0.6y1)(1 + 0.6y2). g ' (1.08, 1.08),
U =TP(12). Convergence measured as ‖ψ(u)− ψ(uw)‖L2

ρ(Γ) versus number of Legen-

dre coefficients (dimension of polynomial space).

separable form with vn = ecnyn ; as a consequence, following the arguments in Section 3.3.a on
factorizable functions, we have ‖up‖V = ‖f(x)‖V

∏N
n=1 |vn,pn |, where vn,pn indicates the pn-th

Legendre coefficients of vn. In this case, however, we expect the decay of vn,pn to be faster than
exponential, since vn(yn) is an entire function. Actually, the following lemma holds:

Lemma 3.1. Given problem (3.22) with diffusion coefficient log a(x,y) =
∑N

n=1 cnyn, the V -norm
of the Legendre coefficients of u can be bounded as

‖up‖V ≤ Ce
e−
∑N
n=1 gnpn

p!
, (3.23)

with gn = − log |cn|√
3

and Ce = ‖f‖V e
∑N
n=1 |cn|.

Proof. Since ‖up‖V = ‖f(x)‖V
∏N
n=1 |vn,pn | we only need to estimate |vn,pn |. Recalling the defini-

tion of I(p) given in the proof of Proposition 3.1, one gets

|vn,pn | =
∣∣∣∣∫ 1

−1
Lpn(yn)vn(yn)

dyn
2

∣∣∣∣ =

√
2pn + 1

2pnpn!

∣∣∣∣∫ 1

−1
e−cnyn

(
d

dy

)pn
(1− y2

n)pn
dyn
2

∣∣∣∣ =

√
2pn + 1

|cn|pn
2pnpn!

∫ 1

−1
e−cnyn(1− y2

n)pn
dyn
2
≤ |cn|

pne|cn|

2pnpn!
I(p) ≤ |cn|

pne|cn|√
3
pn
pn!

.

The thesis follows setting gn = − log |cn|√
3

. �

Remark 3.4. Observe that in (3.23) the coefficient up will tend to zero as |p| → ∞ even when
gn >

√
3 for all n = 1, . . . , N .

As a consequence, the abstract optimal space (3.10) becomes in this case

Λ(w) =

{
N∑
n=1

pngn +
N∑
n=1

log(pn!) ≤ w

}
. (3.24)
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(b) sin expansion log a(x,y) = y1 +
0.2 sin(πx)y2 +0.04 sin(2πx)y3 +0.008 sin(3πx)y4:
g̃ ' (0.68, 2.81, 4.10, 5.69) for fTD,
g = (1.95, 3.95, 5.09, 6.51) for TD-FC and
TD, reference set U =TD(7).

Figure 3.5: convergence of polynomial spaces for elliptic equation with “shifted” exponential
a(x,y), using f-TD space.

We refer to this set as anisotropic “factorial TD”, or aniso-fTD in short.

We now guess that even in the more general case where log a(x,y) =
∑N

n=1 cn(x)yn an estimate
of the type of (3.23) for the Legendre coefficients of the solution holds, for some gn, n + 1, . . . , N .
We have tested this space on two cases

• log(a(x,y) + 0.01) = 0.2y1 + 2y2 (constant coefficients) ;

• log a(x,y) = y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 + 0.008 sin(3πx)y4 (sin expansion, this one
is the same as in Test 2).

Again, the rates gn appearing in formula (3.24) can be estimated numerically with a least square
approach. We will refer to these new rates as g̃n to stress the fact that they are different from the
gn we use in TD and TD-FC spaces.

The corresponding results are shown in Figure 3.5, and show that actually fTD is competing
with TD-FC .

3.4 Stochastic Collocation

The Stochastic Collocation (SC) Finite Element method consists in collocating problem (3.1) in a
set of points {yj ∈ Γ, j = 1, . . . ,Mw}, i.e. computing the corresponding solutions u(·,yj) and
building a global polynomial approximation uw, not necessarily interpolatory, upon those evalua-
tions: uw(x,y) =

∑Mw
j=1 u(x,yj)ψ̃j(y) for suitable multivariate polynomials {ψ̃j}Mw

j=1.

Building the set of evaluation points {yj} as a cartesian product of monodimensional grids be-
comes quickly unfeasible, since the computational cost grows exponentially fast with the number
of stochastic dimensions needed. We consider instead the so-called sparse grid procedure, origi-
nally introduced by Smolyak in [95] for high dimensional quadrature purposes; see also [7, 15] for
polynomial interpolation. In the following we briefly review and generalize this construction.
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For each direction yn we introduce a sequence of one dimensional polynomial interpolant oper-

ators of increasing order: Um(i)
n : C0(Γn) → Pm(i)−1(Γn). Here i ≥ 1 denotes the level of approxi-

mation and m(i) the number of collocation points used to build the interpolation at level i. As a

consequence, Um(i)
n [q] = q if q is a polynomial of degree up to m(i) − 1. We require the function

m to satisfy the following assumptions: m(0) = 0, m(1) = 1 and m(i) < m(i + 1) for i ≥ 1. In
addition, let U0

n[q] = 0, ∀q ∈ C0(Γn).

Next we introduce the difference operators ∆
m(i)
n = Um(i)

n − Um(i−1)
n , an integer value w ≥ 0,

multi-indices i ∈ NN+ and a sequence of index sets I(w) such that I(w) ⊂ I(w + 1) and I(0) =
{(1, 1, . . . , 1)}. We define the sparse grid approximation of u : Γ→ V at level w as

uw(y) = SmI(w)[u](y) =
∑

i∈I(w)

N⊗
n=1

∆m(in)
n [u](y). (3.25)

As pointed out in [41], it is desirable that the sum (3.25) has some telescopic properties. To
ensure this we have to impose some additional constraints on I. Following [41] we say that a set I
is admissible if ∀ i ∈ I

i− ej ∈ I for 1 ≤ j ≤ N, ij > 1. (3.26)

We refer to this property as admissibility condition, or ADM in short. Given a set I we will denote
by IADM the smallest set such that I ⊂ IADM and IADM is admissible.

It is now possible to rewrite (3.25) in terms of linear combinations of tensor grids interpolations:

uw(y) =
∑

i∈I(w)ADM

ci

N⊗
n=1

Um(in)
n [u](y), ci =

∑
j={0,1}N :

i+j∈I(w)ADM

(−1)|j|. (3.27)

Observe that many coefficients ci in (3.27) are zero. The set of all evaluation points needed is called
sparse grid and denoted by HmI(w) ⊂ Γ (see Figure 3.6). We also introduce the tensor notation

m(i) =
N∏
n=1

m(in), ∆m(i)[u] =
N⊗
n=1

∆m(in)[u], Um(i)[u] =
N⊗
n=1

Um(in)[u].

To fully characterize the sparse approximation operator SmI(w) introduced in (3.25) one has to

provide the sequence of sets I(w), the relation m(i) between the level i and the number of points
in the corresponding one dimensional polynomial interpolation formula Um(i), and the family of
points to be used at each level, e.g. Clenshaw-Curtis or Gauss abscissae (see e.g. [102]).

In what follows we will consider Clenshaw-Curtis abscissae and the “doubling” rule m(i) = db(i),

db(i) =


0 if i = 0

1 if i = 1

2i−1 + 1, if i > 1,

(3.28)

which leads to nested grids. The classical Smolyak sparse grid (SM) uses I(w) = {i ∈ NN+ : |i−1| ≤
w}, which clearly satisfies the admissibility condition (3.26). A quasi optimal choice of I(w) will
be discussed in the next Section.
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Figure 3.6: comparison between a tensor grid (left) and the TD-FC sparse grid (right) derived
with the procedure explained in Section 3.4.a.

3.4.a Quasi-optimal sparse grids

We now aim at constructing the quasi-optimal sparse grid for the Stochastic collocation method,
i.e. we aim at choosing the best sequence of sets of indices. Let us define the error associated to a
sparse grid as

E(SmI(w)) =
∥∥∥u− SmI(w)[u]

∥∥∥
V⊗L2

ρ(Γ)
,

and the work W (S) as the number of evaluations needed, i.e.

W (SmI(w)) = |HmI(w)|.

Our goal is then to find the optimal set S that minimizes the error with a total work smaller or
equal to a maximum work W , or alternatively the set that minimizes the work with an error smaller
than or equal to a given threshold ε. This is a classical knapsack problem and we adopt a greedy
algorithm to solve it. To this end we define the error and work contribution of a multi-index i. Let
J be any set of indices such that i /∈ J and {J ∪ i} is admissible. Then the error contribution of i
is

∆E(i) =
∥∥∥Sm{J∪i}[u]− SmJ [u]

∥∥∥
V⊗L2

ρ(Γ)
(3.29)

and the work contribution is

∆W (i) = |W (Sm{J∪i})−W (SmJ )|. (3.30)

Observe that the error contribution defined in (3.29) is always independent of the set J , since
indeed

∆E(i) =

∥∥∥∥∥∥
∑

j∈{J∪i}

∆m(j)[u]−
∑

j∈{J }

∆m(j)[u]

∥∥∥∥∥∥
V⊗L2

ρ(Γ)

=
∥∥∥∆m(i)[u]

∥∥∥
V⊗L2

ρ(Γ)
. (3.31)

On the other hand, the work contribution (3.30) will depend in general on the set J , except in
the case of nested abscissae, as for Clenshaw Curtis nodes, which is the case considered here. In
this case indeed the evaluation of the extra term ∆m(i)[u] =

⊗N
n=1(Um(in) − Um(in−1))[u] implies
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evaluations only in the extra points added at level in in each direction, irrespectively of the set J ,
provided that J is admissible.

Following [15, 41] we can now define the profit of an index i as

P (i) =
∆E(i)

∆W (i)

and identify the optimal sparse approximation operator S∗ as the one using the set of most profitable
indices, i.e. I∗(ε) = {i ∈ NN+ : P (i) ≥ ε}.

To build the set I∗ we rely on sharp estimates for both ∆E(i) and ∆W (i). Since, using
Clenshaw-Curtis abscissae and the doubling rule db(·), we get nested grids, we can compute exactly
∆W (i) as

∆W (i) =
N∏
n=1

(db(in)− db(in − 1)), (3.32)

with db(in) as in (3.28).
On the other hand, deriving a rigorous bound for ∆E(i) is not as easy. For instance, through

numerical investigations on the model function f(y1, y2) = 1
1+c1y1+c2y2

, one can conjecture the size
of a generic ∆E(i) to be closely related to the norm of the corresponding Legendre coefficient
fm(i−1), with a correcting factor due to the interpolation operator norm. To be more precise, we
conjecture the following estimate for ∆E(i),whenever f is an analytic function:

∆E(i)[f ] .
∥∥fm(i−1)

∥∥
V

∏N
n=1 L

m(in)
n , (3.33)

where a . b means that there exists a constant c independent of i such that a ≤ cb and Lm(i)
n is the

Lebesgue constant for the interpolation operator Um(i)
n , defined as

Lm(i)
n = sup

v∈C0(Γn)

∥∥∥Um(i)
n v

∥∥∥
L∞(Γn)

‖v‖L∞(Γn)

. (3.34)

For Clenshaw-Curtis abscissae with doubling relation the Lebesgue constant can be shown to be

L(db(i)) ≤ 2

π
log(db(in) + 1) + 1,

see e.g. [28, 29]. Figure 3.7 shows the quality of estimate (3.33), and numerical results in the next
Section also confirm that such an estimate is accurate enough for our purposes.

Starting from (3.32) and (3.33), we can estimate the profit of each index, and estimate the
sequence SI∗(ε) of quasi-optimal grids with

I∗(ε) =


i ∈ NN+ :

C0 exp

(
−

N∑
n=1

db(in − 1)gn

)
|db(i− 1)|!
db(i− 1)!

N∏
n=1

Lm(in)
n

N∏
n=1

(db(in)− db(in − 1))

≥ ε



ADM

(3.35)

with ε > 0 ∈ R. Equivalently, for w = 0, 1, . . . we can define the sequence of sets

I∗(w)=

{
i∈NN+ :

N∑
i=n

db(in − 1)gn−log
|db(i−1)|!
db(i− 1)!

−
N∑
n=1

log
2
π log(db(in) + 1) + 1

db(in)− db(in − 1)
≤w

}ADM
(3.36)

that will be used in (3.25) to build the quasi optimal sparse grids. We will refer to these “quasi
best M -terms grids” as EW grids (“Error-Work” grids).
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Figure 3.7: Numerical comparison between ∆E(i) and |um(i−1)| for a scalar function u of the

form f(y1, y2) = 1
1+c1y1+c2y2

. Both the ∆E(i) for i ∈ TP (4) and the correspond-
ing Legendre coefficients |fm(i−1)| have been computed with a standard sparse grid
SM(10).

Remark 3.5. Observe that estimate (3.32) of the work ∆W (i) associated to a multi-index i is
valid only if the underlying set of multi-indices is admissible. This is why in formulae (3.35)
and (3.36) we have explicitly enforced the admissibility condition in the construction of the op-
timal set. In practice, this simply implies that if at level w an index j is added, all indices{
i ∈ NN : i1 ≤ j1, i2 ≤ j2, . . . , iN ≤ jN

}
have to be added as well, if not already present in the

set. Note that such operation is not much demanding from a computational point of view.

3.4.b Numerical tests on sparse grids

In this Section we consider the same problem as in Section 3.3.b and use it to test the performance
of the EW grids derived above, comparing them with the classical SM grid and the best M -terms
approximation.

To approximate the best M -terms we again consider a sufficiently large set U of multi-indices
and for each of them we compute ∆W (i), ∆E(i) and their profit P (i). Next, we sort the multi-
indices according to P (i), modify the sequence to fulfil the ADM condition (3.26) and compute the
sparse grids according to this sequence.

We remark that the procedure just described only leads to an approximation of the best M -
terms solution. Indeed, on the one hand replacing the total error E(S) with the sum

∑
i ∆E(i)

provides only an upper bound that could be pessimistic because of possible cancellations, since the
details ∆m(i)[u] are not mutually orthogonal, in general. On the other hand, the fact that the most
profitable index may be not admissible suggests that the solution cannot be found with a greedy
algorithm. Here the coefficients gn in (3.36) are estimated numerically as in Section 3.3.b.

We also compare our results with the dimension adaptive algorithm [41], in the implementa-
tion proposed in [56] and available at http://www.ians.uni-stuttgart.de/spinterp. This is
an adaptive algorithm that given a sparse grid SI explores all neighbour multi-indices and adds
to I the most profitable one. The algorithm implemented in [56] has a tunable parameter ω̃ that
allows one to move continuously from the classical Smolyak formula (ω̃ = 0) to the fully adaptive
algorithm (ω̃ = 1). Following [56], in the present work we have set ω̃ = 0.9, that numerically
has been proved to be a good performing choice. The cost of this algorithm is the total number
of evaluations needed, including also those necessary to explore all neighbours, to find the most
profitable multi-index.

Figure 3.8 shows the convergence of the quantity ‖ψ(u)− ψ(uw)‖L2
ρ(Γ) versus the number of



77

0 20 40 60 80 100 120 140
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

iso SM
EW
adaptive
best M terms

(a) a = 1 + 0.3y1 + 0.3y2, U=TP(6)
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(b) a = 1 + 0.1y1 + 0.5y2, U=TP(6)

0 20 40 60 80 100 120 140
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

 

 

iso SM
EW
adaptive
best M terms

(c) a(x,y) = 4 + y1 + 0.2 sin(πx)y2 + 0.04 sin(2πx)y3 +
0.008 sin(3πx)y4, U=TD(8)
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Figure 3.8: Results for EW sparse grids compared with best M -terms , isotropic Smolyak and di-
mension adaptive algorithm. Convergence is measured as ‖ψ(u)− ψ(uw)‖L2(Γ) versus
number of evaluations (grid points).
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grid points, for the different sparse grids considered. The L2
ρ-norm has been computed with a

high level isotropic Smolyak grid. The EW grid is the best performing, even compared to the a-
posteriori dimension adaptive algorithm implemented in [56], and the closest to the best M -terms
grids sequence.

Remark 3.6. A similar approach, based on estimates for ∆E and ∆W is possible also for the case
of not nested grid points, as for the Gauss-Legendre quadrature points. However, in this case the
estimate of ∆W is “path dependent” and any “path independent” estimate will be too pessimistic
to build effective index sets.

3.5 Conclusions

In this chapter we have proposed a new sequence of polynomial subspaces (TD-FC spaces in short)
to be used in the solution of elliptic stochastic PDEs with Stochastic Galerkin method in the case
of a solution that depends analytically on all random variables. The new polynomial spaces are
based on sharp estimates of the decay of the Legendre coefficients.

The performances of TD-FC spaces have been assessed through some simple test cases. Here
we have compared TD-FC with some standard choices of polynomial spaces and with the best
M -terms approximation of the solution, that can be explicitly built for the examples considered.
Results show that the TD-FC spaces perform better than the standard anisotropic TD ones, and are
close to the best M -terms approximation a clear indication that our estimates of the decay of the
Legendre coefficients are sharp. However, standard spaces may still have reasonable performances,
if used in an appropriate anisotropic framework.

Using the estimate for the decay of the Legendre coefficients we have also defined a new class
of sparse grids to be used in the context of Stochastic Collocation, relying on the concept of profit
of each multi-index in the sparse grid. Again numerical tests show that these new sparse grids
outperform the classical Smolyak construction and perform better than the a-posteriori dimension
adaptive algorithm proposed in [41] (see also [56]). The reason for this appearent success is that
our algorithm picks up the hierarchical surpluses based purely on a priori estimates and inexpensive
y-one dimensional auxiliary problems. These estimates turn out to be quite sharp, and do not have
any extra cost to explore neighbor points as the algorithm in [56] does.

The new polynomial spaces and sparse grids proposed here are valid in the case of analytic
dependence of the solution on the random variables. We point out, however, that the general
strategy outlined in Sections 3.3.a and 3.4.a on how to build optimal polynomial spaces / sparse
grids, is applicable to any problem and any kind of underlying random variables. Of course, this
strategy requires a sharp estimate of the decay of the coefficients of the spectral expansion of
the solution on a orthonormal hierarchical basis (not necessarily polynomial). This step is highly
problem dependent and should be analyzed carefully in each situation, as we did here for a linear
elliptic PDE with a stochastic coefficient dependent on uniformly distributed random variables.

Appendix

Proof of Theorem 3.1

Let us consider two sufficiently smooth N -dimensional functions f(y), g(y) : RN → R; an index
i ∈ N, 1 ≤ i ≤ N ; a set S of indices with cardinality S ; a multi-index s ∈ NN . We use the following
notation:

- ∂if denotes the derivative of f in the i-th direction: ∂if = ∂
∂yi
f ;
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- ∂Sf denotes the S -th order mixed derivative of f with respect to all the directions included
in S. As an example, if S = {1 1 2 4 4 4} then

∂Sf = ∂1 1 2 4 4 4f =
∂6

∂y1∂y1∂y2∂y4∂y4∂y4

f =
∂6

∂2
y1
∂y2∂

3
y4

f.

- s is the multi-index corresponding to the set S such that ∂Sf = ∂sf . In the previous example
s = [2 1 0 3] is the multi-index corresponding to the set S = {1 1 2 4 4 4}.

Lemma 3.2 (generalized Leibniz rule). Given a set of indices K with cardinality K and two
functions f, g : RN → R, f, g ∈ CK (RN ),

∂K(fg) =
∑
S∈P(K)

∂S f∏
i∈S ∂yi

∂K −S g∏
i/∈S ∂yi

=
∑
S∈P(K)

∂Sf ∂K\Sg, (3.37)

where P(K) represents the power set of K.

Lemma 3.3. Let a(x,y) be a diffusion coefficient for equation (3.1) that satisfies Assumptions 3.1
- 3.3. Then the derivatives of u can be bounded as

‖∂ku(y)‖V ≤ C0d|k|r
k ∀y ∈ Γ,

where C0 =
‖f‖V ′
amin

, r as in Assumption 3.3, and {dn}n∈N is a sequence defined as:

d0 = 1, dn =
n−1∑
i=0

(
n

i

)
di. (3.38)

Proof.
We start by rewriting the statement using the correspondence between k and its equivalent set

K
‖∂ku(·,y)‖V = ‖∂K∇u(·,y)‖L2(D) ≤ C0dK rk, ∀y ∈ Γ.

We will first prove something closely related, namely∥∥∥√a(·,y)∂K∇u(·,y)
∥∥∥
L2(D)

≤
‖f‖V ′√
amin

dK rk ∀y ∈ Γ, (3.39)

from which the previous inequality follows immediately. Let us start with a weak formulation of
(3.1) in the physical space only, i.e.

Find u ∈ V ⊗ L2
ρ(Γ) such that for almost every y ∈ Γ it holds∫

D
a(x,y)∇u(x,y) · ∇v(x)dx =

∫
D
f(x)v(x)dx ∀v ∈ V. (3.40)

According to Lemma 3.2, the ∂K derivative of this weak formulation with respect to y is∫
D

∑
S∈P(K)

∂S∇u(x,y)∂K\Sa(x,y)∇v(x)dx = 0,

and putting in evidence the ∂K∇u term∫
D
a(x,y)∂K∇u(x,y)∇v(x)dx = −

∫
D

∑
S∈P(K),S6=K

∂S∇u(x,y)∂K\Sa(x,y)∇v(x)dx.
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Next we choose v = ∂Ku and use Cauchy-Schwarz inequality on the right hand side:∥∥∥√a(·,y) ∂K∇u(·,y)
∥∥∥2

L2(D)
≤∑

S∈P(K),S6=K

∥∥∥∥∂K\S aa
(·,y)

∥∥∥∥
L∞(D)

∥∥∥√a(·,y)∂S∇u(·,y)
∥∥∥
L2(D)

∥∥∥√a(·,y)∂K∇u(·,y)
∥∥∥
L2(D)

.

Now simplify
∥∥∥√a(·,y)∂K∇u(·,y)

∥∥∥
L2(D)

on both sides and reorder the sum on the right hand side

according to the cardinality of the subsets S. From here on we omit the dependence of a and u on
x, y, to have a lighter notation. We have

∥∥√a ∂K∇u∥∥L2(D)
≤

K −1∑
i=0

∑
S∈P(K),S =i

∥∥∥∥∂K\Saa

∥∥∥∥
L∞(D)

∥∥√a∂S∇u∥∥L2(D)
. (3.41)

We are finally in position to prove (3.39). We will proceed by induction on (3.39), using (3.41) and
Assumption 3.3 on the decay of a.

Case K = 0. In this case (3.39) reads∥∥√a∇u∥∥
L2(D)

≤
‖f‖V ′√
amin

d0,

which is true setting d0 = 1.

Case K = 1. If K = {j}, 1 ≤ j ≤ N , (3.39) reads∥∥√a∂j∇u∥∥L2(D)
≤
‖f‖V ′√
amin

d1rj =
‖f‖V ′√
amin

rj

(
1

0

)
d0 =

‖f‖V ′√
amin

rjd0 =
‖f‖V ′√
amin

rj .

To prove this, consider (3.41). Using Assumption 3.3 and the result for case K = 0 one has
precisely ∥∥√a∂j∇u∥∥L2(D)

≤
∥∥∥∥∂jaa

∥∥∥∥
L∞(D)

∥∥√a∇u∥∥
L2(D)

≤ rj
‖f‖V ′√
amin

.

General K . Consider now a general K, and suppose (3.39) holds for any set S with cardinality
K − 1. Use this induction hypothesis and again Assumption 3.3 on (3.41), denoting with s
the multi-index corresponding to the set S and with s∗ the multi-index corresponding to the
set K \ S. This yields

∥∥√a∂K∇u∥∥L2(D)
≤

K −1∑
i=0

∑
S∈P(K),S =i

rs∗
‖f‖V ′√
amin

dS rs.

Next note that:
rs∗rs =

∏
j∈K\S

rj
∏
j∈S

rj =
∏
j∈K

rj = rk,

and that the number of subsets S with cardinality i is

(
K

i

)
. Then

∥∥√a∂K∇u∥∥L2(D)
≤
‖f‖V ′√
amin

rk
K −1∑
i=0

(
K

i

)
di =

‖f‖V ′√
amin

rkdK

which proves the result.
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Lemma 3.4. The sequence {dn}n∈N defined in (3.38) can be bounded as

dn ≤
(

1

log 2

)n
n! (3.42)

Proof. From definition (3.38) we have

dn =
n−1∑
i=0

(
n

i

)
di =

n−1∑
i=0

n!

i!(n− i)!
di .

Let fn =
dn
n!

; the recurrency relation then becomes

fn =
n−1∑
i=0

fi
(n− i)!

, f0 = f1 = 1. (3.43)

We now show by induction that fn ≤ Cαn, with C,α ∈ R. Enforcing 1 = f0 ≤ C and
1 = f1 ≤ Cα results in C ≥ 1 and α ≥ 1. Next, we reorder the sum in (3.43) and exploit the
inductive hypothesis:

fn =

n−1∑
i=0

fn−1−i
(1 + i)!

≤
n−1∑
i=0

Cαn−1−i

(1 + i)!
= Cαn

n−1∑
i=0

α−(1+i)

(1 + i)!
= Cαn

(
e

1
α − 1

)
≤ Cαn,

where the last inequality holds true provided we choose e
1
α −1 ≤ 1. Therefore we take α = (log 2)−1

and C = 1, yielding fn ≤ (log 2)−n and dn ≤ (log 2)−n n!
�

Theorem 3.1. Let a(x,y) be a diffusion coefficient for equation (3.1) that satisfies Assumptions
3.1 - 3.3. Then the derivatives of u can be bounded as

‖∂iu(y)‖V ≤ C0|i|! r̃i ∀y ∈ Γ.

Here C0 =
‖f‖V ′
amin

and r̃ =

(
1

log 2

)
r, with r as in Assumption 3.3.

Proof. Combine Lemma 3.3 and 3.4. �
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Chapter 4

Application of optimal sparse grids to
groundwater flow problems

4.1 Introduction

The motion of fluids in porous media can be described by the well-known Darcy’s equations, see
e.g. [8], which prescribe a proportionality relation between fluid flux and pressure gradient that
drives the flow (“pressure head ” in the hydrology literature). The proportionality constant is the
so-called permeability, which is a physical property of the porous medium measuring indeed the
tendency of the medium to let fluids pass through it.

Denoting by D the computational domain, p the water pressure, a the permeability field, Φ the
water flux and f the forcing term acting on the system, the Darcy’s equations read:{

−a∇p = Φ in D,

div(Φ) = f in D,
(4.1)

endowed with suitable boundary conditions. The first equation is the constitutive law stating the
proportionality between flux and pressure, and it is the analog to Fourier’s law for heat transfer or
Ohm’s law for electrical circuits, while the second one states the conservation of the fluid flux. In
the following, we will refer to (4.1) as the “mixed” formulation of the Darcy problem. The mixed
formulation can be trivially recast as an elliptic PDE

−div(a∇p) = f in D, (4.2)

again to be complemented with suitable boundary conditions. This formulation will be referred to
as “elliptic” or “primal” formulation.

As mentioned in the Introduction, typical examples of applications for Darcy’s equation are
oil reservoir engineering problems, as well as groundwater flow simulations for the management of
drinking water reservoirs, see e.g. [23, 24, 35]. These are very complex problems, characterized
by eterogeneous material properties and by large temporal and spatial scales. It is easy to realize
that significant amount of uncertainty affects the majority of the parameters; as a consequence,
the application of efficient Uncertainty Quantification techniques in this context is a very relevant
research area.

The deterministic Darcy problem can be approximated numerically in its mixed form, see e.g.
[13, 86] and references therein. Indeed, such methods have attracted a growing interest in the last
decades, since they can efficiently and accurately handle problems in which the material charac-
teristics feature large and sudden oscillations, and the numerical solutions they provide exhibit
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interesting conservation properties. Their application in a Stochastic Galerkin setting has been
explored e.g. in [32]. Nonetheless, in this work we will consider a standard Finite Element dis-
cretization of the primal formulation (4.2) of the Darcy problem, and we will apply the error-work
grids derived in Chapter 3.

The rest of this Chapter is organized as follows. In Section 4.2 we specify the modelistic
assumptions on the random permeability field, on the deterministic problem and on the quantity
of interest. Section 4.3 deals with the finite dimensional Fourier expansion of the random field, and
Section 4.5 with the derivation of the optimal sparse grid for the problem at hand. Finally, we
present some numerical results in Section 4.6, and draw some conclusions in Section 4.7.

4.2 Problem setting

We will consider the case in which the permeability field a is the only source of uncertainty for
the problem. Let D be a bounded domain in Rd and (Ω,F , P ) be a complete probability space,
where Ω denotes the set of outcomes, F its σ-algebra, and P : F → [0, 1] a probability measure.
We assume that the permeability field can be modeled as a random field a(x, ω), for which the
following assumptions hold:

Assumption 4.1. a = a(x, ω) : D×Ω→ R is a random field on (Ω,F , P ), such that for p,q ∈ D,
the covariance function Ca(p,q) = Cov [a(p, ·)a(q, ·)] depends only on the distance ‖p− q‖ (“weak
stationarity” property). Moreover, Ca(p,q) = Ca(‖p− q‖) is Lipschitz continuous.

Given the assumption of Lipschitz continuity of Ca, the Kolmogorov continuity theorem (see
e.g. [80]) allows to conclude that the trajectories of a are a.s. continuous over D. In particular, it
is possible to prove (see [19]) the following proposition.

Proposition 4.1. The random field a admits a version whose trajectories belong to the space of
Hölder continuous functions C0,α(D) a.s. with α < 1/2.

Following the notation of the previous chapters, we denote with H1(D) the Sobolev space of
square-intergrable functions in D with square integrable derivatives, and its dual with H1(D) ′.
LqP (Ω) will denote the Banach space of random functions with bounded q-th moment with respect
to the probability measure P , and LqP (Ω;H1(D)) the Bochner space of H1(D)-valued random fields
with q-th bounded moment with respect to P , that is

f ∈ LqP (Ω;H1(D)) ⇔
∫

Ω
‖f(·, ω)‖q

H1(D)
dP (ω) <∞ .

In addition to Assumption 4.1, we further need to choose the probability distribution for a(x, ·)
and the functional shape of Ca(‖p− q‖). Since hydrogeologycal applications deal in general with
composite materials (sand, marl, clay), the pointwise permeability value can experience variations of
orders of magnitude. It is more appropriate therefore to describe the logarithm of the permeability
rather than the permability itself as a random field, and in particular we will make the following
assumption, which is largely common in hydrogeologycal applications:

Assumption 4.2. a(x, ω) is a lognormal field, that is

a(x, ·) = eγ(x,·), γ(x, ·) ∼ N (µ, σ2) ∀x ∈ D, (4.3)

where N (µ, σ2) denotes a Gaussian probability distribution with expected value µ and variance
σ2. Note that after such hypothesis, the random field is not uniformely bounded nor uniformely
coercive with respect to ω. However, as shown in [19], since D is bounded and the trajectories of a
are a.s. continuous on D, there exist two real-valued random variables amin(ω) = minx∈D a(x, ω),
amax(ω) = maxx∈D a(x, ω), with the following properties:
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(a) Cγ(p,q) = σ2 exp
(
− ‖p−q‖2

L2
c

)
(b) Cγ(p,q) = σ2 exp

(
− ‖p−q‖

L2
c

)

(c) Cγ(p,q) = σ2 exp
(
− ‖p−q‖1

L2
c

)
, with ‖p− q‖1 =

|p1 − q1|+ |p2 − q2|

Figure 4.1: Examples of covariance function for an isotropic field. In the plots p = (0.5, 0.5) and
q ∈ D = (0, 1)2

Proposition 4.2. 1/amin(ω), amax(ω) ∈ LqP (Ω), ∀q > 0.

In particular, the summability of amin(ω), amax(ω) is a consequence of Fernique’s theorem [33].

As for the covariance function, several models have been proposed in the literature. Such
function is usually a decreasing function controlled by two parameters: the variance in each point σ2

and the “correlation length” Lc. Common examples are shown in figure 4.1. While a somehow more
realistic choice for hydrologycal application is to model the covariance function for the exponent
field γ as an Exponential covariance function (fig. 4.1(b)-4.1(c)), it is intuitive that the spike
featuered by the Exponential covariance function will make the problem quite difficult to tackle.
As a consequence, given the exploratory level of this work, we choose here to work with the more
regular Gaussian covariance function (fig. 4.1(a)),
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p=1 p=0

( a ∇  p ) ⋅  n = 0

( a ∇  p ) ⋅  n = 0

Figure 4.2: Computational domain for problem (4.5) with boundary conditions. The computa-
tional mesh used is also shown

Assumption 4.3. γ(x, ω) has a Gaussian covariance function,

Cγ(p,q) = σ2 exp

(
−
‖p− q‖2

L2
c

)
. (4.4)

The Darcy problem will be set in a horizontal square domain D = (0, 1)2 with no forcing terms.
We define the following portions of the boundary ∂D:

∂D1 = { (x1, x2) : x1 = 0 }
∂D2 = { (x1, x2) : x1 = 1 }
∂D3 = { (x1, x2) : x2 = 0 }
∂D4 = { (x1, x2) : x2 = 1 } ,

and let n be the outward normal to ∂D. We impose a pressure gradient acting on the water by
setting p = 1 on the left boundary ∂D1 and p = 0 on the right boundary ∂D2. Finally, we consider
a no-flux Neumann condition on the upper and lower boundaries ∂D3 and ∂D4, see Figure 4.2. The
Darcy problem (4.2) thus reads:

Strong Formulation. Find a random pressure p : D×Ω→ R such that P -almost everywhere the
following equation holds 

−div(a(x, ω)∇p(x, ω)) = 0 x ∈ D,
p(x, ω) = 1 x ∈ ∂D1,

p(x, ω) = 0 x ∈ ∂D2,

a(x, ω)∇p(x, ω) · n = 0 x ∈ ∂D3 ∪ ∂D4,

(4.5)

It is straightforward to see that, thanks to the Lax–Milgram lemma, (4.5) is well-posed for
almost every ω ∈ Ω, that is, for almost every ω ∈ Ω there exists a unique pressure p solving (4.5),
which can be understood as an H1(D)-valued random field over (Ω,F , P ). Moreover, it holds

‖p(·, ω)‖q
H1(D)

≤ 1

aqmin(ω)
‖f‖q

H1(D)′
, ∀q > 0. (4.6)
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Proving the well-posedness of (4.5) in the Bochner spaces LqP (Ω;H1(D)) for q > 0 is then a
consequence of Proposition 4.2, see again [19].

Proposition 4.3. For every q > 0, there exists a unique H1(D)-valued random pressure p = p(x, ω)
in LqP (Ω;H1(D)) solving (4.5).

The well-posedness of (4.5) has been proved also in [37, 43]. As for quantities of interest, we are
interested in computing the expected value of the total flux crossing the right boundary ∂D4. This
is indeed a random variable,

Zp(ω) =

∫
∂D4

a(x, ω)∇p(x, ω)dx , (4.7)

and also represents the “effective permeability” of the random medium in D.

4.3 Series expansion of the log-permeability random field

Equation (4.3) represents γ(x, ω) (and hence a(x, ω)) as a function of an infinite number of random
variables, one per point x ∈ D. To get to a computable representation of a we need therefore to
derive an approximation of a in terms of a finite set of N random variables yi(ω) (“finite noise
approximation”). Such approximation can be obtained by means of suitable truncations of decom-
positions such as the Karhunen-Loève expansion, see [42, 62, 63, 64].

Proposition 4.4 (Karhunen-Loève expansion). Let γ(x, ω) be a random field on (Ω,F , P ) with
continuous covariance function Cγ(p,q). The operator T defined as

v ∈ L2(D)→ T (v) =

∫
D
Cγ(x,x′)v(x′)dx′ ∈ L2(D),

is a linear, symmetric and compact operator. Therefore, it admits a decreasing and non-negative
sequence of eigenvalues {λi}i∈N, and the corresponding eigenvectors {vi}i∈N form an orthonormal
basis for L2(D). Then it holds

γ(x, ω) = E [γ(x, ·)] +
∞∑
i=1

√
λivi(x)yi(ω), (4.8)

with yi(ω) uncorrelated random variables with zero mean and unit variance, defined as

yi(ω) =
1√
λi

∫
D

( γ(x, ω)− E [γ(x, ·)] ) vi(x) dx.

Moreover, ∫
D
Var [γ(x, ·)] dx =

∞∑
i=1

λi . (4.9)

Observe that since we have assumed that γ(x, ·) is a Gaussian random variable for each x ∈ D
(see Assumption 4.2), yi are Gaussian too, and therefore independent. A finite noise approximation
of γ can then be obtained simply retaining only the first N terms of (4.8),

γN (x, ω) = E [γ(x, ·)] +

N∑
i=1

√
λivi(x)yi(ω), (4.10)
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where N has to be large enough to include in the truncated expansion a sufficient percentage of
the total variability of γ according to equation (4.9). The truncated expansion γN converges to γ
thanks to the Mercer’s theorem, and the convergence is driven by the decay of the eigenvalues of
the covariance function, see [3, 101] and references therein. In particular, it holds

sup
x∈D

E
[(
γ(x, ·)− γN (x, ·)

)2]
= sup

x∈D

∞∑
i=N+1

λiv
2
i (x)→ 0 when N →∞ .

The decay of λi is in turn related to the spatial regularity of the covariance function. Roughly
speaking, the smoother the covariance, the faster the decay of λ. In particular, an analytic covari-
ance function will result in an exponential decay of λi, hence in an exponential convergence of γN to
γ, while a covariance function with finite Sobolev regularity will instead result in an algebraic decay
only. Therefore, we expect that the Karhunen-Loève expansion of a field with a Gaussian covariance
(fig. 4.1(a)) will require fewer terms than the expansion of a field with an Exponential covariance
(fig. 4.1(b)-4.1(c)). The decay of λi is also influenced by the size of the correlation length: small
correlation lengths indeed need a richer truncation (4.10) to be correctly representend.

In analogy with the properties of a spectral decomposition of a matrix, the Karhunen-Loève
expansion is an optimal decomposition of a random field, in the sense that the truncated expansion
(4.10) is the minimizer of the L2

P (Ω) approximation error, i.e. among all the possible N -terms
expansions of γ built upon an orthonormal basis for L2(D), the Karhunen-Loève expansion is the
one that explains the highest part of the total variability of γ.

As an alternative to the Karhunen-Loève expansion, we consider in this work a Fourier-based
decompostion of γ, which uses trigonometric polynomials as basis functions in the physical space,
thus highlighting the contribution of each frequency to the total field a.

Proposition 4.5 (Fourier expansion). Let γ(x, ω) : [0, L]2×Ω→ R be a weakly stationary random
field as in Assuption 4.1, with point-wise variance σ2. The covariance function of γ(x, ω) can be
expanded in cosine-Fourier series,

Cγ(‖p− q‖) = σ2
∑

k=(k1,k2)∈N2
0

ck cos(ωk1(p1 − q1)) cos(ωk2(p2 − q2)), (4.11)

with ωk1 = k1π
L , ωk2 = k2π

L , and normalized coefficient ck so that∑
k∈N2

0

ck = 1. (4.12)

The random field admits then the following representation

γ(x, ω) = E [γ(x, ·)] + σ
∑
k∈N2

0

√
ck [ y1k(ω) cos(ωk1x1) cos(ωk2x2) + y2k(ω) sin(ωk1x1) sin(ωk2x2)

+y3k(ω) cos(ωk1x1) sin(ωk2x2) + y4k(ω) sin(ωk1x1) cos(ωk2x2) ], (4.13)

where yik(ω) are identically distributed and uncorrelated random variables with zero mean and unit
variance.

See the Appendix of this Chapter for a proof of this Proposition. Again, since γ is a Gaussian
random field, yi(ω) are Gaussian random variables, hence independent. We can again define a
truncated expansion of γ,

γN (x, ω) = E [γ(x, ·)] + σ
∑
k∈K

√
ck [ y1k(ω) cos(ωk1x1) cos(ωk2x2) + y2k(ω) sin(ωk1x1) sin(ωk2x2)

+y3k(ω) cos(ωk1x1) sin(ωk2x2) + y4k(ω) sin(ωk1x1) cos(ωk2x2) ], (4.14)
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where K ⊂ N2
0 is a index set big enough to take into account a sufficient amount of the total

variability of γ. Note that to compute the number of random variables included in γN by the
truncation (4.14) one has to be keep into account that for k = (0, 0) the only non-zero contribution is
given by y1

k(ω), and similarly k = (0, k) and k = (k, 0) will result in only two non-zero contributions.
The convergence of the Fourier expansion (4.14) is related to the decay of the coefficients ck of

the cosine-Fourier expansion of the covariance function. Similarly to the Karhunen-Loève expansion,
a smoother covariance function will result in a faster decay of ck and hence to a faster convergence.

Remark 4.1. The computation of the Fourier series implies the periodic extension of the covariance
function outside [−L,L]. The resulting periodic function may however feature low regularity at
x = ±L, that in turn would imply a slow convergence of the Fourier series. To prevent this, one
may think of considering the Fourier series of the covariance periodically extended over a broader
interval [−L̃, L̃], with L̃ > L and L̃ >> Lc large enough so that the covariance function in ±L̃ is
almost zero. This approach has been adopted in this Chapter.

Now let Γi = R denote the support of yi(ω), Γ = Γ1 × . . .× ΓN the support of y = [y1, . . . , yN ],
ρi(yi) : Γi → R the probability density function of yi and ρ(y) : Γ → R the probability density
function of y, with

ρ(y) =

N∏
n=1

ρi(yi), ρi(yi) =
1√
2π
e−

y2
i
2 .

Having introduced the random variables yi, we can replace the abstract probability space (Ω,F , P )
with (Γ,B(Γ), ρ(y)dy), where B(Γ) denotes the Borel σ-algebra, and hence LqP (Ω) with Lqρ(Γ) and
LqP (Ω;H1(D)) with Lqρ(Γ;H1(D)). Moreover, the permeability and pressure fields can now be seen
as functions of x and y, so that a(x,y) can be approximated as a(x,y) ≈ aN (x,y) = eγN (x,y), and
problem (4.5) can be recast as

Strong Formulation. Find a random pressure pN : D×Γ→ R such that ρ(y)dy-almost everywhere
the following equation holds

−div(aN (x,y)∇pN (x,y)) = 0 x ∈ D,
pN (x,y) = 1 x ∈ ∂D1,

pN (x,y) = 0 x ∈ ∂D2,

aN (x,y)∇pN (x,y) · n = 0 x ∈ ∂D3 ∪ ∂D4,

(4.15)

and the quantity of interest (4.7) becomes a random function Zp : Γ→ R,

Zp(y) =

∫
∂D4

aN (x,y)∇pN (x,y)dx . (4.16)

As the number of random variables N included in (4.10)-(4.14) increases, the truncated pressure
pN converges to p. Note that even if N is chosen such that the truncated log-permeability field
γN includes a given percentage of the total variability of γ, say α%, this does not imply that aN
includes α% of the total variability of a, and a fortiori pN will not in general include α% of the
variability of p. However, the study on the convergence of pN to p will not be addressed in this
chapter, see e.g. [19] to this end. Therefore in the rest of this chapter, with a slight abuse of
notation, we will remove the subscript and denote pN with p. Moreover, the Optimal Sparse Grid
Collocation technique that we will present in the next Section is able to automatically select the
“most important” random variables that should be retained for the approximation of p. This would
allow us to work with formally N →∞ random variables.
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Similarly to the Strong Formulation (4.5) over the abstract probability space (Ω,F , P ), Lax–
Milgram lemma ensures that for almost every y ∈ Γ there exists a unique H1(D)-valued random
pressure defined over (Γ,B(Γ), ρ(y)dy) solving (4.15), with

‖p(·,y)‖H1(D) ≤
1

aN,min(y)
‖f‖H1(D)′ . (4.17)

Then, using again Proposition 4.2, we obtain the well-posedness of (4.15) in Lqρ(Γ;H1(D)), for all
q > 0.

Proposition 4.6. For every q > 0, there exists a unique H1(D)-valued random pressure p = p(x,y)
in Lqρ(Γ;H1(D)) solving (4.15).

In particular, denoting with H1
dir(D) the subset of H1(D) functions that vanish on the Dirichlet

boundary ∂D1 ∪ ∂D2, the following Weak Formulation is well-posed:

Weak Formulation. Find p ∈ H1(D) ⊗ L2
ρ(Γ) such that p = 1 on ∂D1, p = 0 on ∂D2 and

∀ v ∈ H1
dir(D)⊗ L2

ρ(Γ) ∫
Γ

∫
D
aN (x,y)∇p(x,y) · ∇v(x,y) ρ(y) dx dy = 0. (4.18)

Note that in such weak formulation we look for a pressure with a separable structure for x and
y. This is motivated by the fact that the Karhunen-Loève and Fourier expansions (4.10)-(4.14)
used to derive (4.15) also assume such separable structure for aN .

4.4 Auxiliary norms

Proposition 4.6 ensures the well-posedness of (4.15) in all the Bochner spaces Lqρ(Γ;H1(D)) with
q > 0. If on the one hand these are the most natural spaces for the problem at hand, they are on
the other hand unsatisfactory spaces to a certain extent, since the usual inclusion L∞ρ (Γ) ⊂ Lqρ(Γ),
with

L∞ρ (Γ) =

{
f : Γ→ R : ess sup

y∈Γ
|f(y)ρ(y)| <∞

}
, ‖f‖L∞ρ (Γ) = ess sup

y∈Γ
|f(y)ρ(y)| ,

does not hold true. Equivalently, the norms ‖·‖Lqρ(Γ), ‖·‖L∞ρ (Γ) do not satisfy ‖·‖Lqρ(Γ) ≤ C ‖·‖L∞ρ (Γ),

Indeed, such inequality holds only if 0 < q < 1, since∫
Γ
f q(y)e−

∑
n y

2
n

2 dy =

∫
Γ
f q(y)

(
e−

∑
n y

2
n

2

)q (
e−

∑
n y

2
n

2

)−q
e−

∑
n y

2
n

2 dy

≤ ‖f‖qL∞ρ (Γ)

∫
Γ

(
e−

∑
n y

2
n

2

)−q
e−

∑
n y

2
n

2 dy = ‖f‖qL∞ρ (Γ)

∫
Γ
e−(1−q)

∑
n y

2
n

2 dy.

It may be therefore of interest to introduce an auxiliary measure ρ̃(y)dy such that both
‖·‖Lqρ(Γ) ≤ C ‖·‖L∞

ρ̃
(Γ) and p ∈ L∞ρ̃ (Γ) are satisfied. To this end, the following lemma holds.

Lemma 4.1. Given problem (4.15), with aN = eγN (x,y) and γN (x,y) =
∑N

n=1 βnφn(x)yn, the
measure

ρ̃(y) = e−
∑N
n=1 αn|yn|, αn = βn ‖φn‖L∞(D) , (4.19)

is such that
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(i) ‖·‖Lqρ(Γ) ≤ C̃(N,α, q) ‖·‖L∞
ρ̃

(Γ), where C̃(N,α, q) =
∏N
n=1 e

α2
nq/2 q

√
2Φ(αnq) and Φ(t) is the

cumulative distribution function of a standard Gaussian distribution.

(ii) p ∈ L∞ρ̃ (Γ), with ‖p‖L∞
ρ̃

(Γ) ≤ ‖f‖H1(D) ′.

Moreover, if
∑∞

n=1 αn < +∞ then it holds lim
N→∞

C̃(N,α, q) < +∞.

Proof. (i) holds since∫
Γ
f q(y)

e−
∑
n y

2
n

2

(2π)N/2
dy =

∫
Γ
f q(y)

(
e−
∑
n αn|yn|

)−q (
e−
∑
n αn|yn|

)q e−∑
n y

2
n

2

(2π)N/2
dy

≤ ‖f‖qL∞
ρ̃

(Γ)

∫
Γ
eq
∑
n αn|yn| e

−
∑
n y

2
n

2

(2π)N/2
dy = ‖f‖qL∞

ρ̃
(Γ)

N∏
n=1

∫ ∞
−∞

eqαn|yn|
e−

y2
n
2

√
2π

dyn

= ‖f‖qL∞
ρ̃

(Γ)

N∏
n=1

eα
2
nq

2/2

∫ 0

−∞

e−
(yn+αnq)

2

2

√
2π

dyn +

∫ ∞
0

e−
(yn−αnq)2

2

√
2π

dyn


= ‖f‖qL∞

ρ̃
(Γ)

N∏
n=1

2eα
2
nq

2/2Φ(αnq).

As for (ii), using the Lax–Milgram estimate (4.17) and the expression of γN we obtain

‖p‖L∞
ρ̃

(Γ) = sup
y∈Γ

∣∣∣‖p(·,y)‖H1(D) ρ̃(y)
∣∣∣ ≤ sup

y∈Γ

∣∣∣∣ 1

aN,min(y)
‖f‖H1(D)′ e

−
∑
n αn|yn|

∣∣∣∣
≤ sup

y∈Γ

∣∣∣e−minx∈D(
∑
n βnφn(x)yn) ‖f‖H1(D)′ e

−
∑
n αn|yn|

∣∣∣
≤ ‖f‖H1(D)′ sup

y∈Γ

∣∣∣e∑n(βn‖φn‖L∞(D)−αn)|yn|
∣∣∣ ,

and the proof concludes choosing αn = βn ‖φn‖L∞(D), with βn =
√
λn for a Karhunen-Loève

expansion of γ and βn = cn for a Fourier expansion.

Finally, to compute lim
N→∞

C̃(N,α, q) we first introduce the auxiliary quantity v(N,α, q) as

v(N,α, q) = log C̃(N,α, q) =
N∑
n=1

(
α2
n

q

2
+

1

q
log
(
2Φ(αnq)

))
.

Next we exploit the fact that for x > 0 it holds that Φ(x) ≤ 1

2
+

x√
2π

, to obtain

log
(
2Φ(x)

)
≤ log

(
1 +

√
2

π
x

)
≤
√

2

π
x,

and therefore

v(N,α, q) ≤
N∑
n=1

(
α2
n

q

2
+

1

q

√
2

π
αnq

)
.

Now, let S1 =
∑∞

n=1 αn and S2 =
∑∞

n=1 α
2
n. With this notation, we have v(N,α, q) ≤ q

2
S2 +

√
2

π
S1,

therefore we can compute

lim
N→∞

C̃(N,α, q) = lim
N→∞

ev(N,α,q) ≤ e
q
2
S2+

√
2
π
S1 ,
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which is finite provided S1, S2 <∞. �

Remark 4.2. The condition
∑∞

n=1 αn < ∞ is not always satisfied for a Karhunen-Loève/Fourier
expansion, and has to be explicitly verified for each case.

Remark 4.3. The measure ρ̃(y)dy in general will not be a probability measure, since
∫

Γ ρ̃(y)dy =∫
Γ e
−
∑N
n=1 αn|yn|dy =

∏N
n=1

2
αn
6= 1.

4.5 Optimal sparse grid approximation

An accurate representation of γ through a truncated Karhunen-Loève or Fourier expansion (4.10)-
(4.14) will in general depend on a high number of of random variables yi, as the following Example
shows.

Example 4.1. For sufficiently small values of Lc the coefficients of the cosine-Fourier transform
(4.11) of the Gaussian covariance function (4.4) are well approximated by

ck ≈ λk1λk2 , λk =


Lc
√
π

2L
if k = 0

Lc
√
π

L
exp

(
− (kπLc)

2

4L2

)
if k > 0 .

(4.20)

see the Appendix of this chapter for a proof. An efficient truncation (4.14) of the Fourier expansion
of γ(x, ω) should include all the harmonics k ∈ K such that ck is greater than a given threshold
value. Since each coefficient ck in (4.20) is proportional to k2

1 +k2
2, we consider here the truncation

defined by

K =
{
k : k2

1 + k2
2 ≤ w, w ∈ N

}
. (4.21)

Note that, thanks to (4.12), if
∑

k∈K ck = α then γN is taking into account α% of the total variability
of the field. Table 4.1 shows the number of random variables that need to be included into the series
(4.14) to take into account α% of the total variability of γ for different correlation lengths Lc. The
need to include a high number of random variables in the approximation of the random field γ, and
hence the high-dimensionality of p, clearly emerges.

α = 0.7 α = 0.9 α = 0.99

Lc = 0.35 N = 13 N = 25 N = 49

Lc = 0.25 N = 25 N = 49 N = 97

Lc = 0.1 N = 161 N = 293 N = 593

Table 4.1: Random variables needed to represent α% of the total variability of a random field
with Gaussian covariance function for different correlation lengths Lc.

To handle the high-dimensionality of p efficiently, we now derive the optimal sparse grid ap-
proximation of p(x,y), extending the procedure presented in Chapter 3 to the lognormal case
considered.
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4.5.a Abstract construction of optimal sparse grids

Recall that the sparse grid approximation of p is defined as

pw(y) = SmI(w)[p](y) =
∑

i∈I(w)

N⊗
n=1

∆m(in)
n [p](y), (4.22)

where {I(w)}w∈N denotes a sequence of index sets, ∆m(i)[p] =
⊗N

n=1 ∆m(in)[p] is called hierarchical

surplus and ∆
m(i)
n = Um(i)

n − Um(i−1)
n is the difference between two consecutive one-dimensional

interpolants over m(i) and m(i− 1) points respectively. In Chapter 3 we have detailed an a-priori
procedure to derive optimal sparse grids, based on estimates of the profit of each hierarchical surplus,
i.e. using

I(w) =

{
i ∈ NN+ :

∆E(i)

∆W (i)
≥ ε(w)

}ADM
(4.23)

in (4.22), where {ε(w)}w∈N ↓ 0 and ∆E(i), ∆W (i) represent the error and work contribution of
each hierarchical surplus, see Chapter 3 for details.

In particular, if the considered interpolant operators Um(in)
n are nested and the set I(w) is

admissible, the work contribution can be computed exactly as

∆W (i) =

N∏
n=1

(m(in)−m(in − 1)). (4.24)

Before stating the error contribution estimate, we need to introduce a spectral basis for L2
ρ(Γ). To

this end, let {Hp(yn)}p∈N be the family of orthonormal Hermite polynomials relative to the weight

e−y
2/2/
√

2π in the n-th direction,∫
Γn

Hp(yn)Hq(yn)ρn(yn)dyn = δp,q, ∀p, q ∈ N,

that can be computed either recursively (see [39]) or through the explicit formula

Hq(yn) =
(−1)q√
q!

ey
2
n/2

dq

dyqn
e−y

2
n/2.

It is then immediate to see that the set of multidimensional Hermite polynomials

Hq(y) =

N∏
n=1

Hqn(yn), ∀q ∈ NN (4.25)

is an orthonormal basis for L2
ρ(Γ), that can be used to construct the spectral expansion of p(y)

p(y) =
∑
q∈NN

pqHq(y), pq =

∫
Γ
p(y)Hq(y)ρ(y)dy. (4.26)

We are now in position to state an heuristic estimate for the error contribution of the hierarchical
surplus ∆m(i) in the spirit of what was done in Chapter 3, equation (3.33):

∆E(i) ≈ B(i)
∥∥pm(i−1)

∥∥
H1(D)

, (4.27)

where pm(i−1) is the m(i − 1)-th coefficient of the spectral expansion (4.26), and B(i) is a factor
that in Chapter 3 was chosen equal to the product of the Lebesgue constant for the interpolant

operator Um(i)
n , B(i) =

∏N
n=1 L

m(in)
n , based on numerical experiments. To conclude the optimal

sparse grid construction we thus need to choose a family of nested interpolant operators for the
Gaussian measure ρ(y), estimate the factor B(i) (with an heuristic argument) and the spectral
coefficient pm(i−1).
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i=1,m(i)=1
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i=3,m(i)=9

i=4,m(i)=19

i=5,m(i)=35

Figure 4.3: KPN knots for levels going from i = 1 to i = 5. The new points added at each level
are marked in light blue. For each level i we also show the points of the corresponding
standard Gauss–Hermite quadrature formula with m(i) knots (gray crosses).

4.5.b Nested quadrature formulae for Gaussian measure

The family of nested points we choose to use in this chapter are the so-called “Kronrod-Patterson-
Normal” nested points (KPN in short). Such family of interpolation/quadrature points is due to
Genz and Keister, see [40, 48], that applied the Kronrod-Patterson procedure [58, 81] to the classical
Gauss-Hermite quadrature points (i.e. the roots of the Hermite polynomials Hp(yn)). We recall
that the Kronrod-Patterson procedure is a way to modify a quadrature rule, by adding new points
in a nested fashion retaining the highest accuracy possible. Details are given in the Appendix of
this Chapter.

Let {yKPN
i,k }k=1,...,m(i) denote the set of KPN points at the i-th interpolation level. The knots

and the corresponding quadrature weights are tabulated up to level 5 (35 nodes) and can be found
e.g. at http://www.sparse-grids.de/. Figure 4.3 shows the KPN knots for levels i = 1, . . . , 5;
note that the function m(i) does not have a regular pattern.

Figure 4.4 compares the error convergence of KPN quadrature with the standard Gauss–Hermite
quadrature. The KPN rule is thus seen to have good performances, close to the Gauss–Hermite
ones.

4.5.c Estimate for B(i)

In Chapter 3 the constant B(i) in equation (4.27) was chosen to be equal to the product of the

Lebesgue constants of interpolant operators in each direction, B(i) =
∏N
n=1 L

m(in)
n . This is a reason-

able heuristic assumption, since in this way the error contribution estimate “encodes” information
on both the quality of the solution (through the decay of the spectral coefficients), and the quality
of the interpolant operator itself. Such an estimate is also supported by numerical validation.
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(b) f(t) = 1/(2 + et)

0 5 10 15 20 25 30 35

10
−15

10
−10

10
−5

10
0

 

 

Gauss−Hermite knots
KPN knots

(c) f(t) = cos(3t+ 1)

Figure 4.4: comparison of performance of KPN and Gauss–Hermite quadrature rules for the ap-
proximation of 1/

√
2π
∫∞
−∞ f(t)e−t

2/2dt.

To extend the choice B(i) =
∏N
n=1 L

m(in)
n to the lognormal case, we need to suitably extend the

definition of the Lebesgue constant to the problem at hand. Yet, the natural norm L∞ρ (Γ) does
not appear a suitable norm to be used in this context, since we have seen that it does not satisfy
the usual inequality ‖·‖Lqρ(Γ) ≤ C ‖·‖L∞ρ (Γ). Using the auxiliary norms in Lemma 4.1 to define the

Lebesgue constant one gets

Lm(i)
n = sup

v∈C0
ρ̃

(Γn)

∥∥∥Um(i)
n v

∥∥∥
L∞
ρ̃

(Γn)

‖v‖L∞
ρ̃

(Γn)

= sup
v∈C0

ρ̃
(Γn)

sup
yn∈Γn

∣∣∣∣∣∣ρ̃(yn)

m(i)∑
k=0

l
m(i)
k,n (yn)v(yn,k)

∣∣∣∣∣∣
sup
yn∈Γn

|v(yn)ρ̃(yn)|

where l
m(i)
k,n (yn), k = 1, . . . ,m(i) denotes the Lagrangian polynomials associated to the KPN knots

at the i-th interpolation level. However, it is not easy to obtain a sharp bound for such quantity.

Thus we propose a numerical estimate for B(i), which gives good numerical results when tested
on model problems (see Figure 4.7) and at the same time is close to the original choice B(i) =∏N
n=1 L

m(in)
n when applied to a problem with uniform random variables.

To this end, we go back to the definition of error contribution for a hierarchical surplus, and
exploit the fact that p admits an Hermite expansion:

∆E(i) =
∥∥∥(p− Sm{J∪i}[p])− (p− SmJ [p]

)∥∥∥
H1(D)⊗L2

ρ(Γ)
=
∥∥∥∆m(i)[p]

∥∥∥
H1(D)⊗L2

ρ(Γ)
(4.28)

=
∥∥∥∆m(i)

[ ∑
q∈NN

pqHq

] ∥∥∥
H1(D)⊗L2

ρ(Γ)
=
∥∥∥ ∑
q∈NN

pq∆m(i)[Hq]
∥∥∥
H1(D)⊗L2

ρ(Γ)
.

Next, since ∆m(i) is a difference of two interpolant operators, the lower order Hermite polynomials
will be interpolated exactly by both interpolants and their contribution to the summation will be
zero. Then, by triangular inequality we get to

∆E(i) =
∥∥∥ ∑
q≥m(i−1)

pq∆m(i)[Hq]
∥∥∥
H1(D)⊗L2

ρ(Γ)
≤

∑
q≥m(i−1)

‖pq‖H1(D)

∥∥∥∆m(i)[Hq]
∥∥∥
L2
ρ(Γ)

. (4.29)

Therefore, the error estimate (4.27) is equivalent to assuming that the summation at the right-hand
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Figure 4.5: Numerical results for the computation of Bn(in) =∥∥Um(in)[Hm(in−1)(yn)]− Um(in−1)[Hm(in−1)(yn)]
∥∥
L2
ρn

(Γn)
. The integrals have been

computed exactly with a Gauss–Hermite quadrature formula with a sufficient number
of quadrature points.

side of (4.29) is dominated by the first term, with

B(i) =
∥∥∥∆m(i)[Hm(i−1)]

∥∥∥
L2
ρ(Γ)

=

N∏
n=1

Bn(in) , (4.30)

Bn(in) =
∥∥∥∆m(in)[Hm(in)]

∥∥∥
L2
ρn

(Γn)
=
∥∥∥Um(in)[Hm(in−1)(yn)]− Um(in−1)[Hm(in−1)(yn)]

∥∥∥
L2
ρn

(Γn)
.

The quantity Bn(in) can be easily computed numerically, and results in a moderate growth with
respect to in, see Figure 4.5.

Remark 4.4. The procedure used here to derive an estimate for B(i) could be applied to the problems
investigated in Chapter 3, where we have considered uniform random variables rather than Gaussian
ones. The result would be B(i) =

∏
nBn(in), Bn(in) =

∥∥∆m(in)[Lm(in−1)(yn)]
∥∥
L2
Un (Γn)

, where Γn =

[−1, 1], L2
Un(Γn) is the space of the random functions square integrable with respect to the uniform

weight ρn(yn) = 1/2 and Ln(yn) denotes the corresponding orthonormal Legendre polynomials.
However, considering Bn(in) as the Lebesgue constant of the Clenshaw–Curtis points, Bn(in) =

Lm(in)
CC , instead of Bn(in) =

∥∥∆m(in)[Lm(in−1)(yn)]
∥∥
L2
U (Γn)

, does not affect significantly the results,

since the two quantities are close, at least for values of in used in practical cases, as shown in Figure
4.6.

Next, we test such choice on the model function p(y1, y2) = 1/ exp(1 + b1y1 + b2y2), so that
we can compute each ∆E(i) as ∆E(i) =

∥∥∆m(i)[p]
∥∥
L2
ρ(Γ)

using a sufficiently accurate sparse grid

quadrature, see equation (4.28). The Hermite coefficients of p can be computed either numerically
or analytically, see Lemma 4.2 in the next section. Once such quantities are available, we can verify
the accuracy of (4.27), with B(i) as in (4.30). The results are shown in Figure 4.7: the proposed
estimate is thus seen to be quite reasonable.

4.5.d Convergence of Hermite expansions

Finally, we need to estimate the decay of the norm of the coefficients of the spectral expansion
(4.26) of p, that will be used in (4.27) together with the estimate of B(i) derived in the previous
section.
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Figure 4.7: Numerical comparison between ∆E(i) and |pm(i−1)| for p of the form p(y1, y2) =

e−1−b1y−1−b2y2 . The quantities ∆E(i) for i ∈ TP (4) have been computed with a
standard Smolyak sparse grid, with I(w) = {i ∈ NN+ : |i−1| ≤ w}, w = 10, and “dou-
bling” function m(i): m(0) = 0,m(1) = 1,m(i) = 2i−1 + 1. The Hermite coefficients
|pm(i−1)| have been computed analytically with the formula stated in Lemma 4.2.
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To derive an estimate for ‖pq‖H1(D) we first consider a simplified Darcy problem with a lognor-

mal permeability field a constant over D, a = a(y) = exp
(
b0 +

∑N
i=1 biyi

)
and with homogeneous

Dirichlet boundary conditions,{
−div (a(y)∇p(x,y)) = f(x) x ∈ D,
p(x,y) = 0 x ∈ ∂D.

(4.31)

Denoting with h ∈ H1(D) the solution of the auxiliary deterministic problem{
∆h(x) = f(x) x ∈ D,
h(x) = 0 x ∈ ∂D,

(4.32)

we can write the analytic expression for p solving (4.31), which is separable with respect to y,

p(x,y) = h(x)e−b0
N∏
n=1

exp (− bnyn) , (4.33)

Thus, given the separable form of the multidimensional Hermite polynomials Hp in eq. (4.25), it is
enough to estimate the decay of the coefficients of the Hermite expansion of exp(−bnyn) to derive
an estimate for the decay of ‖pq‖H1(D). To this end, the following lemma holds:

Lemma 4.2. Given problem (4.31), the H1(D) norm of the Hermite coefficients (4.26) of p can be
bounded as

‖pq‖H1(D) ≤ CH
N∏
n=1

e−gnqn√
qn!

, (4.34)

with CH = ‖h‖H1(D) e
−b0 ∏N

n=1 e
b2n/2 and gn = − log(bn).

Proof. Let us consider the Hermite expansion of vn(yn) = e−bnyn ,

vn(yn) =
∞∑
i=0

vn,iHi(yn), vn,i =

∫
Γn

vn(yn)Hi(yn)ρn(yn)dyn.

Using (4.33) and (4.25) in (4.26), we have that ‖pq‖H1(D) = ‖h‖H1(D) e
−b0 ∏N

n=1 |vn,qn |, and we only

need to estimate |vn,qn |. It holds

vn,qn =

∫
Γn

vn(yn)Hqn(yn)ρn(yn)dyn =

∫
Γn

e−bnyn
(−1)qn√
qn!

ey
2
n/2

dqn

dyqnn

(
e−y

2
n/2
) 1√

2π
e−

y2
n
2 dyn

= (−1)qn
1√

2πqn!

∫
Γn

e−bnyn
dqn

dyqnn
e−y

2
n/2dyn = (−1)2qn 1√

2πqn!

∫
Γn

(
dqn

dyqnn
e−bnyn

)
e−y

2
n/2dyn

= (−1)3qn bqnn√
2πqn!

∫
Γn

e−bnyne−y
2
n/2dyn = (−1)3qn bqnn√

2πqn!
eb

2
n/2

∫
Γn

e−(yn+bn)2/2dyn

= (−1)3qn bqnn√
qn!

eb
2
n/2,

and the proof is concluded by rewriting bqnn = e−gnqn with gn = − log(bn). �

We now conjecture that estimate (4.34) is valid even in the more general case where aN (x,y) =
eγN (x,y), and the boundary conditions are those specified in eq. (4.15). As pointed out in Chapter
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3, in a general case the rates gn are better estimated numerically. This is achieved by freezing all
the variables yi but the n∗-th one e.g. at the midpoint of thier support, and computing the solution
pn
∗
w of such reduced problem increasing the sparse grid level w from 1 to i∗. If the quadrature

points are accurate enough (i.e. Gaussian quadrature points), then the intermediate solutions pn
∗
w

will converge to pn
∗
i∗ with the same trend as the spectral approximation, and the same holds for any

quantity of interest Zp = Zp(y) depending on pw, that is∥∥∥pn∗w − pn∗i∗ ∥∥∥
L2
ρ(Γ)⊗H1(D)

≤ C e−gnm(w)√
m(w)!

,
∥∥∥Zn∗p,w − Zn∗p,i∗∥∥∥

L2
ρ(Γ)
≤ C e−gnm(w)√

m(w)!
. (4.35)

It is then possible to use a least square approach on the computed errors to derive an estimated
value for gn. Figure 4.8 shows the results of such procedure applied to a test case, and confirms the
quality of the method proposed. Alternative estimates for the decay of the Hermite coefficients are
available in [49].

Having estimated the Lebesgue constant of the KPN knots and the decay of the spectral co-
efficients ‖pq‖H1(D) we now have a computable expression for the work and error contributions

(4.24)-(4.27), hence for the optimal set defintion (4.23). Thus, we obtain for the optimal set the
following expression

I∗ =

i ∈ NN+ :

N∏
n=1

Bn(in)
e−gnm(in − 1)√

m(in − 1)!

N∏
n=1

(m(in)−m(in − 1))

≥ ε



ADM

,

that can be rewritten as

I∗ =

{
i ∈ NN :

N∑
n=1

[
gnm(in − 1) +

1

2
log
(
m(in − 1)!

)
− logBn(in) + log

(
m(in)−m(in − 1)

)]
≤ w

}ADM
,

(4.36)

where w = d− log εe ∈ N.

4.6 Numerical results

We are now in position to compute the optimal sparse approximation of p solving (4.15) and hence
of the quantity of interest (4.16).

We consider the case of a stratified material in the direction transversal to the flow: that is, the
log-permeability field γ depends only on x1 and is constant along x2. Thus the covariance function
is

Cγ(s, t) = σ2 exp

(
−|s− t|

2

L2
c

)
, s, t ∈ [0, 1],

and the truncated Fourier expansion of γN (4.14) simplifies to

γN (x1,y) = E [γ(x, ·)] + σ
√
c0y0 + σ

K∑
k=1

√
ck [ y2k−1 cos(ωkx1) + y2k sin(ωkx1)], (4.37)

with yk ∼ N (0, 1), ωk = kπ/L, L = 1 and

ck =


Lc
√
π

2L
if k = 0

Lc
√
π

L
exp

(
− (kπLc)

2L

)
if k > 0 .

(4.38)
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(a) y0, constant, g = 1.96 .
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(b) y1, cos(πx/L), g = 1.03 .
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(c) y2, sin(πx/L), g = 1.90 .
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(d) y5, cos(3πx/L), g = 1.39 .
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(e) y6, sin(3πx/L), g = 1.31 .

Figure 4.8: Assessment of the rates gn, n = 0, 1, 2, 5, 6, used to build the optimal set (4.36), esti-
mated according to equation (4.35). For each random variable yn the corresponding
harmonic in the Fourier expansion (4.37) is specified. The plots show the decay of∥∥∥Zn∗p,w − Zn∗p,i∗∥∥∥

H1(D)
as a function of the number of point m(w) (see eq. (4.16) for

the definition of Zp), its fitting according to the proposed estimate
e−gnm(w)√
m(w)

and the

resulting value of gn.

The proofs of (4.37) and (4.38) are similar to their bidimensional analogous (4.13) and (4.20)
stated in Proposition 4.5 and Example 4.1 respectively, see Appendix. We set the correlation length
to Lc = 0.2 and the pointwise standard deviation to σ = 0.3; Figure 4.9(a) shows a realization of
(4.37).

We consider three different levels of truncation for γN in (4.37): K = 6, 10, 16 corresponding
to N = 13, 21, 33 random variables. With these truncation we take into account 99%,99.99% and
99.9999999999% respectively of the total variability of γ. For each truncation we compute the
optimal sparse grid approximation pw using the sets (4.36), and then compute the expected value
for the total outgoing flux Z defined in (4.16), using the resulting sparse grid quadrature rule.

For each truncation level the approximation error is computed as |E [Zpw ]− E [Zp∗ ] |, with p∗
reference solution computed with a highly refined sparse grid for the same truncation. This means
that we will indeed have three reference solutions, since the interest of this numerical test is to
monitor the convergence rate of the optimal sparse grid for a fixed truncation rather than looking
for the level at which the convergence of a under-resolved truncation stagnates. We also perform a
classical Monte Carlo simulation, repeated three times.

Results are shown in Figure 4.9(b). The Monte Carlo simulations converge with the expected
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(a) Realization of (4.37).
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(b) Convergence for MC and sparse grid methods.
The numbers on the plot denote the number of random
variables activated up to that level.

Figure 4.9: Numerical results for the test case presented.

rate 1/2; we also show the convergence rate 1 that would be obtained with a quasi-Monte Carlo
method, like Sobol’ sequences (see e.g. [16, 52, 70, 94]). As for the sparse grids approximation, it is
important to observe that not only they all converge with a rate higher than 1/2, but such rate seems
to be independent of the truncation level. This would mean that the strategy detailed in Section
4.5 is quite effective in reducing the deterioration of the performance of the standard sparse grids as
the number of random variables increases. Indeed, the selection of the most profitable hierarchical
surpluses manages to “activate ” (i.e. to put interpolation points) only in those directions that
are most useful in explaining the total variability of the solution, so that the less influent random
variables get activated only when the approximation error is sufficiently low. The number shown
on the convergence plot indicates the number of random variables activated up to that point.

4.7 Conclusions

In this Chapter we have considered a Darcy problem with uncertain permeability, modeled as a
lognormal random field with Gaussian covariance function. We have then applied the optimal
sparse grid paradigm derived in Chapter 3 to the problem at hand: to this end, we have introduced
a nested quadrature/interpolation rule, and we have estimated numerically its Lebesgue constant.
Finally, we have derived an estimate for the decay of the coefficients of the Hermite expansion of p.

We have applied the optimal sparse grid thus obtained to a test case describing a stratified
material, that has been discretized with a Fourier expansion with N = 13, 21 and 33 random
variables. Numerical results on this preliminary numerical test seem to suggest that the optimal
sparse grid procedure achieves a convergence rate higher than the ones of the most common sampling
methods. Moreover, it is quite effective in reducing considerably the degradation of the performance
suffered by the standard sparse grids approach when the number of random variables increases.
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Appendix

Proof of Proposition 4.5

Proposition 4.5. Let γ(x, ω) be an isotropic random field with point-wise variance σ2. The
covariance function of γ(x, ω) can be expanded in cosine-Fourier series,

Cγ(‖p− q‖) = σ2
∑

k=(k1,k2)∈N2
0

ck cos(ωk1(p1 − q1)) cos(ωk2(p2 − q2)), (4.39)

with normalized coefficient ck so that ∑
k∈N2

0

ck = 1. (4.40)

The random field admits then the following representation

γ(x, ω) = E [γ(x, ·)] + σ
∑
k∈N2

0

√
ck [ y1k(ω) cos(ωk1x1) cos(ωk2x2) + y2k(ω) sin(ωk1x1) sin(ωk2x2)

+y3k(ω) cos(ωk1x1) sin(ωk2x2) + y4k(ω) sin(ωk1x1) cos(ωk2x2) ], (4.41)

where ωk1 = k1π
L , ωk2 = k2π

L and yik(ω) are identically distributed and uncorrelated random variables
with zero mean and unit variance.

Proof. Since the field is stationary and isotropic, the covariance function depends only on ‖p− q‖,
hence is an even function and admits a cosine-Fourier series. The coefficient ck of the Fourier series
(4.39) are then normalized to put σ2 in evidence.

Let us now rewrite (4.41) in a more convenient way, introducing the compact notation

φik(x1, x2) =


cos(ωk1x1) cos(ωk2x2) if i = 1

sin(ωk1x1) sin(ωk2x2) if i = 2

cos(ωk1x1) sin(ωk2x2) if i = 3

sin(ωk1x1) cos(ωk2x2) if i = 4 .

Let moreover γ̄ = E [γ(x, ·)]. With this notation, the field expansion (4.41) reads

γ(x, ω) = γ̄ + σ
∑
k,i

√
ck y

i
k(ω)φik(x1, x2).

Inserting this expansion into the definition of covariance, one gets

Cγ(p,q) =E [ ( γ(p, ω)− γ̄) ( γ(q, ω)− γ̄) ]

=E

σ∑
k,i

√
cky

i
k(ω)φik(p1, p2)σ

∑
l,j

√
c ly

j
l (ω)φjl (q1, q2)


=σ2

∑
k,i

∑
l,j

√
ck
√
clφ

i
k(p1, p2)φjl (q1, q2)

∫
Ω
yik(ω)yjl (ω)dP (ω).

Next one exploites the fact that yik(ω) are mutually uncorrelated and with unit variance to simplify
the previous sum to

Cγ(p,q) = σ2
∑
k,i

ckφ
i
k(p1, p2)φik(q1, q2) . (4.42)
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Now we expand back the terms φik(p1, p2), φik(q1, q2). The generic term in (4.42) becomes

ck[ cos(ωk1p1) cos(ωk2p2) cos(ωk1q1) cos(ωk2q2) + sin(ωk1p1) sin(ωk2p2) sin(ωk1q1) sin(ωk2q2)

+ cos(ωk1p1) sin(ωk2p2) cos(ωk1q1) sin(ωk2q2) + sin(ωk1p1) cos(ωk2p2) sin(ωk1q1) cos(ωk2q2) ],

that can be rewritten as

ck
[

cos(ωk1p1) cos(ωk1q1) + sin(ωk1p1) sin(ωk1q1)
][

cos(ωk2p2) cos(ωk2q2) + sin(ωk2p2) sin(ωk2q2)
]
,

so that (4.42) is equivalent to

Cγ(p,q) = σ2
∑
k

ck cos
(
ωk1(p1 − q1)

)
cos
(
ωk2(p2 − q2)

)
using standard trigonometric equalities. The cosine-Fourier transform of the covariance function
has been recovered and the proof is completed. �

Proof of Example 4.1

Lemma 4.3. For sufficiently small values of Lc,
1 the coefficients of the cosine-Fourier transform

(4.11) of the Gaussian covariance function (4.4) are well estimated by

ck ≈ λk1λk2 , λk =


Lc
√
π

2L
if k = 0

Lc
√
π

L
exp

(
− (kπLc)

2

4L2

)
if k > 0 .

Proof. Cγ(p,q) can be rewritten as a product

Cγ(p,q) = σ exp

(
−|p1 − q1|2

L2
c

)
σ exp

(
−|p2 − q2|2

L2
c

)
,

therefore its Fourier series can in turn be recast as a product

Cγ(p,q) = σ2
∑
k1∈N0

λk1 cos(ωk1(p1 − q1))
∑
k2∈N0

λk2 cos(ωk2(p2 − q2)),

each factor being the cosine-Fourier series of exp

(
−|x|

2

L2
c

)
. To obtain an analytic expression for

λk we resort to the exponential form of the Fourier series and to tabulated closed-form Fourier
transforms.

On the one hand, the exponential form of the Fourier series of the restriction of a function
f : R→ R to [−L,L] reads

f(x) =
∑
k∈Z

fke
iωkx, fk =

1

2L

∫ L

−L
f(x)e−iωkxdx

and the coefficient λk of the trigonometric Fourier series is related to fk as

λk = fk + f−k if k ≥ 1 (4.43)

λ0 = f0 .

1numerically assessed bound: Lc < 0.35L, where L is the length of the domain.
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On the other hand, the Fourier transform of f reads

F [f ](ξ) =

∫ ∞
−∞

f(x)e−i2πξxdx,

and if the support of f is included in [−L,L] the Fourier transform evaluated at integer values of
ξ gives the coefficients of the exponential form of the Fourier series:

fk =
1

2L

∫ L

−L
f(x)e−i

πk
L
xdx =

1

2L

∫ ∞
−∞

f(x)e−i
πk
L
xdx =

∫ ∞
−∞

f(2zL)e−i2πkzdz = F [f(2zL)](k).

We can use this equality to derive an approximated analytic expression for the coefficients fk of the

exponenstial Fourier series for f(x) = exp

(
−|x|

2

L2
c

)
, provided Lc is sufficiently small. The Fourier

transform of e−αx
2
, α ∈ R has a closed-form expression:

F
[
e−αx

2
]

(ξ) =

√
π

α
exp

(
π2ξ2

α

)
,

therefore

fk ' F [f(2zL)](k) = F
[
exp

(
−4|z|2L2

L2
c

)]
(k) =

√
π
Lc
2L

exp

(
−(πkLc)

2

4L2

)
,

which also implies f−k = fk (the Fourier transform of an even and real function is even and real).
The proof is concluded using equality (4.43).

�

Deriving the KPN knots with the Kronrod-Patterson procedure

The Kronrod–Patterson procedure aims at adding points to a given quadrature rule in order to get
the highest possible accuracy (see [58, 81]). In this Appendix, we apply such procedure to derive
the KPN nested family of quadrature rules for the approximation of integrals with respect to a
Gaussian density function as done in [40], which we will follow closely in the forthcoming exposition.

Background and notation

For f ∈ C0(R), let G(f) denote the integral of f over [a, b] with respect to the density function
w(t), and QN (f) a N -points quadrature rule for the numerical approximation of G(f),

G(f) =

∫ b

a
f(t)w(t)dt ≈ QN (f) =

N∑
i=1

f(tj)βj , tj ∈ [a, b], βj ∈ R.

A superscript D denotes the fact that QDN has degree of exactness D, i.e. Q integrates exactly all
polynomials with degree up to D, QD(p) = G(p), ∀ p ∈ PD(R). Let also πN (t) denote the nodal
polynomial associated to QDN ,

πN (t) =
N∏
j=1

(t− tj) , πN ∈ PN (R). (4.44)

Finally, since we are interested in iterative enrichments of a quadrature rule QDN , it will be convenient
to write QDN [i1 + i2 + . . .+ ik] to denote a quadrature rule that has been obtained by the successive
addition of i1 points as a first step, i2 as second step and so on.

Next, we state a fundamental result in integration theory, that will be used extensively througout
this Section, see e.g. [85] for a proof.
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Theorem 4.1. For a given m > 0, the quadrature rule QDN has degree of exactness D = N +m− 1
if and only if it is interpolatory and the nodal polynomial πN is such that∫ b

a
πN (t)p(t)w(t)dt = 0 ∀p ∈ Pm−1(R). (4.45)

Corollary 4.1. The maximum degree of exactness for a quadrature rule with N points is D =
2N − 1.

Proof. Observe that m − 1 must necessarily be lower than N , otherwise it would be possible to
choose p = πN in (4.45). This would imply

∫ b
a π

2
N (t)w(t)dt = 0, which is impossible since w > 0.

Thus the maximum degree is D = 2N − 1. �

A quadrature rule that achieves D = 2N − 1 is called Gaussian quadrature rule. Equation
(4.45) implies the well-known fact that the nodal polynomial of an N -point Gaussian quadrature
rule with respect to the density w is the (N + 1)-th w-orthogonal polynomial.

In our case, a = −∞, b =∞ and w(t) = e−t
2/2/
√

2π is a symmetric density. The first quadrature
rule of the KPN family is the one-point Gauss–Hermite quadrature rule Q1

1, with t1 = 0.
We require the subsequent quadrature rules to be nested, so that t1 = 0 will be included in each

rule. Moreover, since w is symmetric, each rule will be also symmetric. This can be obtained by
adding at each step of the procedure couples of opposite points, ±λ1, ±λ2, . . ., with equal weights
for t = λk and t = −λk, hence N = 2µ+ 1, for µ ∈ N.

The numbers λk are called generators, and we introduce the following short-hand notation for
the evaluation of QDN :

QDN (f) = w0f(0) + w1f [λ1] + w2f [λ2] + . . .+ wµf [λµ], (4.46)

with f [λk] =
(
f(λk) + f(−λk)

)
.

The optimal addition of quadrature points

We now want to enrich the nested quadrature rule QD2µ+1 by adding ν generators, that is 2ν points
±λµ+1,±λµ+2,±λµ+ν . Observe that the nodal polynomial of the enriched formula can be rewritten
as

π2µ+1+2ν = π2µ+1π2ν , π2µ+1 = t

µ∏
j=1

(t2 − λ2
j ), π2ν =

ν∏
j=1

(t2 − λ2
µ+j) ,

with π2µ+1 odd polynomial and π2ν even polynomial.
Equation (4.45) in Theorem 4.1 provides a means for the computation of the optimal generators,

by enforcing π2ν to satisfy the following set of ν equations∫ ∞
−∞

π2µ+1(t)π2ν(t)tkw(t)dt = 0, k = 1, 3, . . . , 2ν − 1. (4.47)

Note indeed that the remaining ν equations with even k, k = 0, 2, . . . , 2ν − 2 are identically true,
having chosen π2ν as an even polynomial with symmetric roots (recall that π2µ+1 is odd and w is
even).

Equation (4.47) is a set of non linear equations in λj . However, it can be recast into a linear
system for the coefficients ak such that π2ν = t2ν +

∑ν
j=1 ajt

2ν−2j . Finally, a root-finding procedure
will compute the new generators λµ+1, λµ+2, λµ+ν .

The next two Lemmas state respectively a condition on the minimum number of points that
has to be added and the degree of exactness of the resulting rule.
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Lemma 4.4. Given a quadrature rule QD2µ+1, (4.47) is well-posed only if

2ν > D − (2µ+ 1). (4.48)

Proof. Note that π2νt
k is a polynomial with degree 2ν + k. For QD2µ+1 Theorem 4.1 holds with

D = (2µ+1)+m−1, so that
∫
π2µ+1(t)p(t)w(t)dt is identically zero for all polynomials with degree

up to m − 1 = D − (2µ + 1). Thus (4.47) is identically true unless 2ν + k > D − (2µ + 1) for all
k = 0, . . . , 2ν − 1. �

Corollary 4.2. If QD2µ+1 is a Gaussian rule, (4.47) is well-posed only if ν > µ.

Proof. A (2µ + 1)-Gaussian rule has degree of exactness D = 2N − 1 = 2(2µ + 1) − 1 = 4µ + 1.
Thus (4.48) in Lemma 4.4 implies 2ν > 4µ+ 1− (2µ+ 1) = 2µ. �

Lemma 4.5. Given a symmetric density function w, the enriched rule QE2µ+1+2ν obtained adding

2ν symmetric points to QD2µ+1 with odd modal polynomial π2µ+1 has degree of exactness E = 4ν +
(2µ+ 1).

Proof. Observe that the symmetry hypotheses imply that also the 2ν + 1-th equation of system
(4.47) holds true. Therefore Theorem 4.1 holds for the new quadrature rule with m−1 = 2ν, hence
E = N + (m− 1) = N + 2ν = (2µ+ 1 + 2ν) + 2ν. �

Remark 4.5. Consider again a Gaussian quadrature rule QD2µ+1. Corollary 4.2 states that one has
to add at least 2ν points, with ν > µ, which results in a rule with D = 4ν + (2µ + 1) according to
Lemma 4.5. A natural question that arises is whether the new formula is actually more accurate
than the original Gaussian quadrature, that has degree of exactness D = 2(2µ + 1) − 1 according
to Corollary 4.1. In other words, one may ask if the minimum addition ν > µ is enough to get
4ν + (2µ+ 1) > 2(2µ+ 1)− 1. The latter is equivalent to 4ν + 2µ > 4µ, hence ν > µ/2. Thus the
minimal addition is indeed enough to actually improve the previous Gaussian quadrature rule, and
a fortiori enough to improve a non Gaussian quadrature rule, which has a lower degree of exactness.

We are now in position to build the KPN quadrature rule. We first consider the one-point
Gauss–Hermite Q1

1 (µ = 0). Adding 2 points, ν = 1, one obtains the three-points Gauss–Hermite
quadrature rule Q5

3[1 + 2] (µ = 1).
The next step would be to add 2 more generators (4 points). Solving (4.47) one gets to π2ν =

t4 − 10t2 − 5, which however has complex roots and thus cannot be used to exted Q5
3,µ=1[1 + 2].

On the other hand, adding 6 points (ν = 3) leads to a nodal polynomial π2ν with real roots,
that can be therefore added to Q5

3[1 + 2]. The resulting rule has 9 points and degree of exactness
D = 4ν + 2µ + 1 = 4 · 2 + 2 · 1 + 1 = 15, Q15

9 [1 + 2 + 6]. This process can be repeated; the next
quadrature rules found are Q29

19[1 + 2 + 6 + 10] and Q51
35[1 + 2 + 6 + 10 + 16].

Starting from Q1
1, Q5

3[1 + 2], it is possible to derive an alternative chain of quadrature rules that
also leads to a quadrature rule with degree 51: Q1

1, Q5
3[1+2], Q19

11[1+2+8], Q51
31[1+2+8+20]. Such

family however was not used in this work, since the addition of 20 points in a single quadrature
level would lead to an excessive cost for the sparse grid procedure.



Chapter 5

Generalized stochastic spectral
decomposition for the steady
Navier-Stokes equations

This Chapter mainly consists of the paper by L. Tamellini, O.P. Le Maitre, A. Nouy, Generalized
stochastic spectral decomposition for the Steady Navier–Stokes equations, currently in preparation.

5.1 Introduction

In this Chapter we focus again on the Stochastic Galerkin method (see Chapters 2 and 3), with
the aim to present a further technique to reduce its computational costs, the so-called Proper
Generalized Decomposition (PGD). Such strategy is an alternative to the Optimal Sets approach
for the Galerkin method presented in 3, and can be applied to a broad class of problems, including
non-elliptic and even non-linear ones.

The computational cost of the Galerkin method is mainly due to the number of probabilistic
orthogonal polynomials needed to span the subspace where the solution is sought. While the
Optimal Sets approach reduces the cardinality of such basis by tailoring the polynomial subspace
to the problem at hand, the PGD approach instead looks for a basis in terms of general stochastic
polynomials, not necessarily orthogonal. The PGD method indeed looks for an approximation of
the solution given by u ≈

∑m
i=1 uiλi, where ui are deterministic functions, λi are generic polynomials

over the probabilistic subspace, and nor ui neither λi are fixed “a-priori”. The PGD approach thus
can be seen as a reduced basis technique; see e.g. [78] for a literature survey on earlier attempts to
introduce reduced approximations in the context of PDEs with stochastic coefficients.

Note that if the solution u was known, the PGD expansion could be obtained by computing the
Karhunen-Loève expansion. However, since u is of course unknown, what is needed is an algorithm
that computes the PGD expansion based on the equations solved by the solution rather than the
solution itself.

It was first shown in [75, 74] that the modes Ui, λi are solution of an eigen-like problem, and
therefore the modes may be computed with power-iteration methods. One of the main advantages
of such iterative methods is to separate the resolution of the deterministic and stochastic problems,
so that one can reuse the existing deterministic solvers with minimal adaptations.

These methods have been successfully applied to scalar problems, both linear [74, 75] and
non-linear [78] as well as to time-dependent problems [74]; see also [76] for an earlier attempt
on extending PGD to non-linear problems. In this Chapter we thus focus on vector, non-linear



108

problems, and in particular on the steady-state Navier–Stokes equations with uncertainty on the
viscosity parameter and on the forcing term.

The rest of this Chapter is organized as follows: Section 5.2 will detail the PGD principles and
available power-like Algorithms. The Navier–Stokes equations with uncertainty will be described
in Section 5.3, and numerical validation of the method will be presentaed in Section 5.4. In the
context of the Navier–Stokes problem, a non-trivial issue is represented by the computation of the
stochastic pressure: Section 5.5 is therefore dedicated to such problem. Finally, 5.6 draws some
conclusions.

5.2 Proper Generalized Decomposition (PGD)

5.2.a Stochastic variational problem

Consider the abstract deterministic variational problem given by

Find u ∈ V such that

a (u, v ;π) = b(v ;π), ∀v ∈ V, (5.1)

with V an appropriate vector space, π the problem parameters, and two forms

a(u, v ;π) : (u, v) ∈ V2 → R and b(v ;π) : v ∈ V → R.

The forms a and b are parametrized by π and assumed linear with regard to the second and first
arguments respectively. The deterministic space V can be here either infinite or finite dimensional
and is equipped with an inner product (·, ·)V with associated norm ‖ ·‖V . Note that if V has infinite
dimension, it will have to be discretized at some point. However, to remain as general as possible,
we delay the discussion on discretized spaces V to the next sections. In any case, we assume that
problem (5.1) has a unique solution (depending on π).

We are interested in situations where the parameters π of the problem are uncertain and con-
sidered as random. Let P = (Ω,F , P ) be a probability space, where Ω is the set of random events,
F the σ-algebra of the events and P a probability measure. For π defined on P, we denote by π(ω),
ω ∈ Ω, a realization of the problem parameters. The expectation of a generic random quantity h
defined on P is denoted

E [h] =

∫
Ω
h(ω) dP (ω).

Let L2
P (Ω) be the space of second-order random quantities, equipped with the inner product (·, ·)P

and associated norm ‖ · ‖L2
P (Ω),

(h, g)P =

∫
Ω
h(ω)g(ω) dP (ω) ∀(h, g) ∈ L2

P (Ω), ‖h‖L2
P (Ω) = (h, h)

1/2
P ,

so that h ∈ L2
P (Ω) ⇔ ‖h‖L2

P (Ω) < +∞. Since the parameters π in equation (5.1) are random, its

solution u is also random, defined on P, and satisfies equation (5.1) for a.e. ω ∈ Ω, that is

Find U = U(ω) : Ω→ V such that

a (U(ω), v ;π(ω)) = b(v ;π(ω) ), ∀v ∈ V, for a. e. ω ∈ Ω. (5.2)

It will be further assumed that the stochastic solution U ∈ V ⊗ L2
P (Ω), so that the fully weak

variational form of the stochastic problem is given by
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Stochastic problem.

Find U ∈ V ⊗ L2
P (Ω) such that

A (U, V ;π) = B(V ;π), ∀ V ∈ V ⊗ L2
P (Ω), (5.3)

where the forms A and B are given by

A (U, V ;π) = E [a (U, V ;π)] =

∫
Ω
a (U(ω), V (ω) ;π(ω)) dP (ω),

B(V ;π) = E [b(V ;π)] =

∫
Ω
b(V (ω) ;π(ω)) dP (ω).

5.2.b Stochastic discretization

For the purpose of numerical simulations, numerical discretizations need to be introduced. These
will concern both the deterministic space V, to be discussed in the following sections, and the
stochastic space L2

P (Ω), for which we rely on generalized Polynomial Chaos Expansions (gPCE ).
To this end, we consider a set of N independent identically distributed random variables, y =

{y, i = 1, . . . , N}, defined on P with range Γ and known probability density function ρ(y). Any
functional h : y ∈ Γ→ R is then a real-valued random variable and we have

E [h] =

∫
Ω
h(y(ω)) dP (ω) =

∫
Γ
h(y)ρ(y)dy, with

∫
Γ
ρ(y)dy = 1.

We further assume that the random parameters π are functions of y (see examples in the results
sections), that is

π(ω) = π(y(ω)) a.s. .

Since the model parameters are the only source of stochasticity in the problem, we have U(ω) =
U(y(ω)) for the solution of (5.2). Consequently, one can compute the solution in the stochastic
space (Γ,B(Γ), ρ(y)dy) spanned by y, called the image space, instead of in the abstract space P.
To this end, we denote L2

ρ(Γ) the space of second-order random variables, equipped with the inner
product and associated norms

〈λ, β〉 =

∫
Γ
λ(y)β(y)ρ(y)dy = E [λβ] ∀(λ, β) ∈ L2

ρ(Γ)
2
, ‖λ‖L2

ρ(Γ) = 〈λ, λ〉1/2 .

Next, we introduce a N -variate orthonormal polynomial basis for L2
ρ(Γ), {H1,H2, . . . }, and denote

by PM (Γ) the subspace of L2
ρ(Γ) spanned by the first M elements of the stochastic basis, that is

L2
ρ(Γ) ⊃ PM (Γ) = span {H1, . . . ,HM}.

An element λ ∈ L2
ρ(Γ) can be approximated by λM ∈ PM (Γ) defined by the gPCE expansion

λM (y) =

M∑
i=1

λiHi(y), lim
M→∞

‖λM − λ‖L2
ρ(Γ) = 0.

Each standard measure ρ(y)dy over Γ leads to a different classical polynomial family [111], the
case of yi standard Gaussian random variables corresponding to (normalized) Hermite polynomi-
als [42]. It is remarked that all developments below immediately extend to other types of stochastic
discretizations.
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For polynomial stochastic basis, a common truncature strategy is based on the maximal total
degree of the basis functions retained in the construction of PM (Γ) (TD spaces in Chapters 2,3).
Denoting w the maximal total degree, the dimension of PM (Γ) is

dim(PM (Γ)) = M =
(N + w)!

N !w!
,

highlighting its combinatoric increase with both the number of random variables in y and the
expansion degree w. Other possible choices for PM (Γ) have been investigated in Chapters 2,3.

5.2.c Stochastic Galerkin formulation

Having introduced the discretized stochastic space PM (Γ), the Stochastic problem (5.3) can be
recast as

Discrete Stochastic Problem.

Find UM ∈ V ⊗ PM (Γ) such that

A
(
UM , VM ;π

)
= B(VM ;π), ∀VM ∈ V ⊗ PM (Γ).

One classical way of approximating the solution of such a stochastic variational problem is the
stochastic Galerkin projection method. Inserting the gPCE expansion UM =

∑M
i=1 u

iHi in the
previous equations results in a set of M coupled problems for the deterministic Galerkin modes ui

of the solution, namely

A

(
M∑
i=1

uiHi, vlHl ;π

)
= B(vlHl ;π), ∀v ∈ V and l = 1, . . . ,M. (5.4)

It is seen that the dimension of the Galerkin problem is M times larger than the size of the original
deterministic problem. Consequently, its resolution can be very costly, or even prohibitive, whenever
N or w needs be large to obtain an accurate approximate UM of the exact stochastic solution. An
additional difficulty appears when the form a is nonlinear in its first argument, making difficult
the computation of the stochastic form A. These two limitations call for improvement. First,
regarding the dimensionality of the Galerkin problem, one can reduce complexity by relying on more
appropriate expansion basis, e.g. by means of adaptive strategies and enrichment of polynomial
basis (see e.g. Chapter 3, and [20, 21]). However, adaptive approaches are in general complex to
implement and often remain computationally intensive, while they do not address the difficulties
related to nonlinearities. On the contrary, the PGD approaches discussed in the following aim
at tackling the issues of dimensionality and, to some extent, are better suited to the reuse of
deterministic code with less concerns on nonlinearities as a result. This latter point will be further
discussed in the following.

5.2.d PGD: principles

Let us go back to Formulation 5.3. The PGD seeks for a separated representation of the solution
U ∈ V ⊗ L2

ρ(Γ) as

U(y) =
∑
i

uiλi(y),
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where the ui ∈ V are called the deterministic components and the λi ∈ L2
ρ(Γ) the stochastic

components of the PGD. The m-terms PGD approximation of U , denoted U (m), corresponds to the
truncated series

U (m) =
m∑
i=1

uiλi ≈ U. (5.5)

The objective is then to construct the truncated expansion (5.5), without prior knowledge of deter-
ministic and stochastic components, to minimize the approximation error. This has to be contrasted
with the Galerkin approach where the stochastic components, the Hi, are selected a priori, before
the computation.

The simplest PGD algorithms determine the couples (ui, λi) ∈ V × L2
ρ(Γ) one after the others.

Specifically, assuming that U (m) has been already determined, let us denote (u, λ) the next couple
of components. This couple is solution of the following Galerkin problem:

Couple problem.

Find (u, λ) ∈ V × L2
ρ(Γ) such that

A
(
U (m) + uλ, vβ ;π

)
= B(vβ ;π), ∀(v, β) ∈ V × L2

ρ(Γ).

We observe that the solution of this problem is not unique, for if (u, λ) is solution then (αu, λ/α)
is also solution, ∀α 6= 0. Using the sought solution (u, λ), one can derive two auxiliary problems.
Specifically, if λ was known, u ∈ V would solve

Deterministic Problem.

Find u ∈ V such that

A
(
U (m) + uλ, vλ ;π

)
= B(vλ ;π), ∀v ∈ V. (5.6)

We denote hereafter u = D(λ;U (m)) the solution of this deterministic problem. Similarly, if u was
known, λ ∈ L2

ρ(Γ) would solve

Stochastic Problem.

Find λ ∈ L2
ρ(Γ) such that

A
(
U (m) + uλ, uβ ;π

)
= B(uβ ;π), ∀β ∈ L2

ρ(Γ). (5.7)

We denote hereafter λ = S (u;U (m)) the solution of this stochastic problem.

5.2.e PGD: algorithms

Since (u, λ) are both unknown, (5.6) and (5.7) cannot be used for the calculation of u and λ
respectively. In addition, one wants the couple (u, λ) to effectively reduce the approximation error.

In the case of linear, symmetric, positive definite form A, it was shown in [75] that the sought
couples (u, λ) can be interpreted as the solution of a Rayleigh quotient. This interpretation suggests
to reuse techniques for the resolution of eigenvalues problems, like power-iteration techniques, to
extract the couples (u, λ), see e.g. [74]. Their application to scalar non linear problems has been
thoroughly investigated in [78].
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Algorithm 2 Power method

1: U ← 0 [element 0 of V]

2: for l in 1, 2, . . . ,m do
3: Initialize λ [e.g. at random]

4: repeat
5: Solve deterministic problem: u← D(λ;U)
6: Normalize u: u← u/‖u‖V
7: Solve stochastic problem: λ← S (u;U)
8: until (u, λ) converged
9: U ← U + uλ

10: end for

Power-Iterations

The power method for the computation of (u, λ) is stated in Algorithm 2.
Note that the convergence criteria on the couple (u, λ) yielded by the power-type iterations is

understood in a broad sense since it may converge to a subspace whose dimension is greater than one
(see [74, 75] for discussion on the convergence of the iterations). In practice, only a limited number
of iterations is performed. We also remark that λ and u have equivalent roles in the Algorithm, so
that e.g. the normalization step at line 6 could be performed on λ rather then u.

The convergence of the resulting PGD obtained by the Power-Iteration algorithm can be im-
proved by introducing an update of the stochastic components {λ1, . . . , λm} after the determination
of the m-th first couples. More specifically, given the deterministic components u1, u2, . . . , um, the
update problem consists in the solution of the following set of m coupled equations:

Update problem.

Find λ1, . . . , λm such that

A

(
m∑
i=1

uiλi, ulβ ;π

)
= B(ulβ ;π), ∀β ∈ L2

ρ(Γ), l = 1, . . . ,m. (5.8)

Denoting Λ(m) = [λ1 . . . λm], the update problem is compactly written formally as

Λ(m) = U (W(m)),

where W(m) = [u1 . . . um] is called the reduced deterministic basis (of V). The power-type algorithm
with update is stated in Algorithm 3.

Note that it is not necessary to solve the update problem (line 13 of Algorithm 3) at every step
l. Moreover, it would be possible to update W instead of Λ, given the simmetry of the Algorithm
with respect to the deterministic and stochastic modes; in this case the normalization step at line
8 should be performed on λ rather than u.

Arnoldi iterations

One disadvantage of Power-iterations-like methods is that they discard all the intermediate solutions
within the repeat-until loops. The so-called Arnoldi algorithm is a possible solution to overcome
such a “waste”: the temporary solutions are used to build a deterministic orthogonal basis W(m),
and then an update problem is solved to compute Λ(m). The main advantage of this algorithm is
therefore that it requires a lower number of resolutions for the determinstic and stochastic problems.
The Arnoldi algorithm is stated in Algorithm 4.
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Algorithm 3 Power method with update

1: U ← 0 [element 0 of V]

2: W← {} [initialization of the reduced basis for u]

3: Λ← {} [initialization of the reduced basis for λ]

4: for l in 1, 2, . . . ,m do
5: Initialize λ [e.g. at random]

6: repeat
7: Solve deterministic problem: u← D(λ;U (l))
8: Normalize u: u← u/‖u‖V
9: Solve stochastic problem: λ← S (u;U (l))

10: until (u, λ) converged
11: Add u to its reduced basis: W(l) ←W(l−1) ∪ {u}
12: Add λ to its reduced basis: Λ(l) ← Λ(l−1) ∪ {λ}
13: Solve update problem: Λ(l) ← U (W(l))
14: U (l) ←

∑l
k=1 ukλk

15: end for

Algorithm 4 Arnoldi method

1: l← 0 [initialize counter for modes]

2: W← {} [void container for deterministic modes]

3: Λ← {} [void container for stochastic modes]

4: U ← 0 [element 0 of V]

5: Initialize λ [e.g. at random]

6: while l < m do
7: l← l + 1
8: Solve deterministic problem u∗ ← D(λ;U)
9: Orthogonalize u∗: u← u∗ −

∑l−1
k=1(uk, u

∗)V
10: if ‖u‖V < ε then
11: l← l − 1 [stagnation of Arnoldi detected ]

12: Solve update problem: Λ← U (W)
13: U ←

∑l
k=1 ukλk

14: else
15: Normalize u: u← u/‖u‖V
16: Solve stochastic problem: λ← S (u;U)
17: Add u to its container: W←W ∪ {u}
18: Add λ to its container: Λ← Λ ∪ {λ}
19: if l = m then
20: Solve update problem: Λ← U (W)
21: U ←

∑l
k=1 ukλk

22: end if
23: end if
24: end while
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Whenever the generation of deterministic modes stagnates onto invariant subspaces (detected
using the small positive parameter ε at line 10) an update step is performed. Note also that the
update problems at lines 12 and 20 concern the whole stochastic components Λ(l) generated so far,
but one could as well perform a partial update considering only the Arnoldi subspace generated
after the last detected stagnation.

5.2.f Practical considerations

Obviously, also the algorithms above need a stochastic discretization. Again, we shall rely on gPCE
expansions for the stochastic components and approximate the stochastic modes λi in the finite
dimensional PM (Γ) by

∑M
k=0 λ

k
iHk. Further, with this stochastic discretization, the stochastic (5.7)

and update (5.8) problems translate to the Galerkin problems

A

(
U (m) + u

M∑
k=1

λkiHk, uHl ;π

)
= B(uHl ;π), l = 1, . . . ,M, (5.9)

and

A

(
m∑
i=1

ui

(
M∑
k=1

λkiHk

)
, ulHj ;π

)
= B(ulHj ;π), l = 1, . . . ,m and j = 1, . . . ,M. (5.10)

For a given stochastic approximation space PM (Γ), one can expect that the PGD solution U (m) to
converge quickly to the Galerkin solution UM ∈ V ⊗PM (Γ), with m�M modes. This expectation
comes from the fact that the PGD constructs the more relevant stochastic components λi for the
expansion, contrary to the Galerkin case where one chooses a priori the stochastic components (as
the elements of the gPCE basis) and then seek for the solution in PM (Γ).

Another point to be underlined in view of the above algorithms is that in each of them the
computationally intensive steps are the resolution of the deterministic and stochastic problems,
plus the update problems (optional in the Power-Iteration algorithm). As seen in (5.6) and (5.9)
the size of the deterministic and stochastic problems are constant and equal to the dimension of
the discretized spaces V and PM (Γ) respectively; this is in general much lower than the size of the
Galerkin problem which is the product of the two, with a significant complexity reduction as a
result (provided that the number of systems to be solved is small enough). Concerning the update
problem, we observe that its dimension is m×dim(PM (Γ)) so that if m is less than the dimension of
the discretized space V the update problem is again much smaller in size than the Galerkin problem.

In addition, it will be shown in the following sections that for the Navier-Stokes equations the
actual deterministic problems to be solved have structures very similar to the original Navier-Stokes
equations, facilitating the re-use of existing deterministic codes, while implementing a Galerkin
solver would require a greater implementation effort.

We also remark that instead of updating the stochastic components of the PGD solution, one
could instead derive an update problem for the deterministic components {ui, i = 1, . . . ,m}, which
would in fact have the structure of the Galerkin problem in (5.4) but for the approximation in the
stochastic space spanned by the {λi} instead of the {Hi}. This alternative should be considered for
problems where the dimension M of the stochastic space exceeds that of the discretized space V.

5.3 Navier-Stokes equations with uncertain inputs

We consider the bidimensional, steady, incompressible (constant density) Navier-Stokes equations
on a bounded, simply connected domain D ⊂ R2 with boundary ∂D. The dimensionless Navier-
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Stokes equations are

u ·∇u = −∇p+ ∇ · σ(u) + f , (5.11a)

∇ · u = 0, (5.11b)

where u : D → R2 is the velocity field, p : D → R is the pressure field, f : D → R2 is the external
force field and σ the viscous stress tensor. For a Newtonian fluid, σ in (5.11a) has for expression

σ(u) =
ν

2

(
∇u+ ∇uT

)
,

where ν > 0 is the viscosity parameter (inverse of a Reynolds number), measuring relative influence
of the inertial (nonlinear) and viscous (linear) contributions. Accounting for the mass conservation
equation (5.11b), the Navier-Stokes equations reduce to

u ·∇u = −∇p+ ν∇2u+ f , (5.12a)

∇ · u = 0. (5.12b)

These equations have to be complemented with boundary conditions; for simplicity, we shall restrict
ourselves to the case of homogeneous Dirichlet velocity boundary conditions on ∂D,

u(x) = 0, x ∈ ∂D. (5.13)

Next, we classically denote by L2(D) the space of functions that are square integrable over D, and
are equipped with the inner product and norms

(p, q) =

∫
D
p q dx , ‖q‖L2(D) = (q, q)1/2,

and define the constrained space

L2
0(D) =

{
q ∈ L2(D) :

∫
D
q dx = 0

}
.

Then, let H1(D) be the Sobolev space of vector valued functions with all components and their
first derivatives being square integrable over D, and H1

0(D) the constrained space of such vector
functions vanishing on ∂D,

H1
0(D) =

{
v ∈ H1(D), v = 0 on ∂D

}
.

With this notation the Navier-Stokes system (5.12) with boundary conditions (5.13) is then equiv-
alent to the variational problem

Navier–Stokes equations.

Find (u, p) ∈ H1
0(D)× L2

0(D) such that

c(u,u,v) + ν v(u,v) + d(p,v) = b(v), ∀v ∈ H1
0(D) (5.14)

d(q,u) = 0, ∀q ∈ L2
0(D),

with the forms defined by

c(u,w,v) =

∫
D

(u ·∇w) · v dx, v(u,v) =

∫
D
∇u : ∇v dx,

d(p,v) = −
∫
D
p∇ · v dx, b(v) =

∫
D
f · v dx.
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The pressure unknown can also be formally suppressed in this weak formulation, by introducing
the subspace of divergence-free functions of H1

0(D), denoted hereafter H1
0,div(D),

H1
0,div(D) =

{
v ∈ H1

0(D), ∇ · v = 0 in D
}
.

Seeking u ∈ H1
0,div(D), the weak form simplifies to

Divergence-free Navier–Stokes equations.

Find u ∈ H1
0,div(D) such that

c(u,u,v) + ν v(u,v) = b(v), ∀v ∈ H1
0,div(D). (5.15)

Finally, we introduce the uncertain parameters. In this paper, we are concerned by situations where
the external forcing f and viscous parameter ν are uncertain and, consistently with the previous
section, are seen as functions of a set of N normalized Gaussian variables with zero mean and unit
variance, ν = ν(y) and f = f(x,y). As a consequence, the divergence-free Navier–Stokes equation
(5.15) has now a stochastic solution u(y). We can therefore state the following formulation:

Find u = u(y) : Γ→ H1
0,div(D) such that

c(u(y),u(y),V) + ν(y) v(u(y),V) = b(V ;f(y)),

∀V ∈ H1
0,div(D), for a.e. y ∈ Γ,

whose fully weak counterpart can be written immediately as

Stochastic Navier–Stokes problem.

Find u ∈ H1
0,div(D)⊗ L2

ρ(Γ) such that

C(u,u,V) + Vν(u,V) = B(V), ∀V ∈ H1
0,div(D)⊗ L2

ρ(Γ). (5.16)

The forms C, Vν and B are given by

C(u,w,V) = E [c(u,w,V)] , Vν(u,V) = E [ν v(u,V)] , B(V) = E [b(V ;f)] .

The previous formulation is ready to be discretized with the Stochastic Galerkin method, intro-
ducing the discretized stochastic space PM (Γ) as in section 5.2.c. In practice, the divergence-free
costraint is treated by adding a stochastic pressure field P (y), see e.g. [60]. We will however base
the following discussion on PGD on this formulation since we are looking for a PGD decomposition
of u. We will return back to the issue of pressure later on.

5.3.a PGD Formulation

We now detail the deterministic, stochastic and update problems associated to the iterations of the
PGD algorithms.

Deterministic problem

We assume that the m-terms reduced approximation u(m) =
∑m

i=1 uiλi has been computed; the
deterministic PGD problem D(λ;U (m)) for the next deterministic mode u given the stochastic mode
λ is
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Find u ∈ H1
0,div(D) such that

C(λu, λu, λv)+C(λu,u(m), λv) + C(u(m), λu, λv) + Vν(λu, λv)

= B(λv)− Vν(u(m), λv)− C(u(m),u(m), λv), ∀v ∈ H1
0,div(D).

For convenience and to stress the deterministic character of this problem we rewrite it as

Find u ∈ H1
0,div(D) such that

c(u,u,v) + c (u,v(m)
c (λ),v) + c (v(m)

c (λ),u,v) + ν̃ v(u,v;λ)

= b̃(v;u(m), λ), ∀v ∈ H1
0,div(D). (5.17)

In the previous equation we have denoted

v(m)
c (λ) =

m∑
i=1

E
[
λ2λi

]
E [λ3]

ui , ν̃ =
E
[
νλ2
]

E [λ3]

b̃(v;u(m), λ) =
E [λ b(v ;f)]

E [λ3]
−

m∑
i=1

E [λνλi]

E [λ3]
v(ui,v)−

m∑
i=1

m∑
j=1

E [λλiλj ]

E [λ3]
c(ui,uj ,v) .

It is therefore seen that the structure of the deterministic PGD problem is essentially the same as
the weak formulation of the deterministic incompressible Navier-Stokes equations, with a few re-
markable differences. In particular: i) we have two new convective terms, whose convective velocity

is given by v
(m)
c ; ii) the viscosity parameter is different, since its value is now ν̃ = E

[
νλ2
]
/E
[
λ3
]
;

iii) the forcing term contains all the information about the previous modes which have been already
computed.

As a result, the resolution of this problem can re-use existing deterministic flow solvers with
minimal adaptation for the computation of the right-hand-side and the additional convection term.
In addition, the enforcement of divergence free character of u can be achieved by introducing the
deterministic Lagrange multiplier p ∈ L2

0(D).

Stochastic problem

Let us assume again that the m-terms reduced approximation has been computed; the stochastic
PGD problem S (u;U (m)) for the next stochastic mode λ given the deterministic mode u is

Find λ ∈ PM (Γ) such that

C(λu, λu, βu)+C(u(m), λu, βu) + C(λu,u(m), βu) + Vν(λu, βu)

= B(βu)− C(u(m),u(m), βu)− Vν(u(m), βu) ∀β ∈ PM (Γ).

This is a quadratic equation for λ in weak form. We can highlight this by recasting the previous
formulation as

Find λ ∈ PM (Γ) such that

E
[
λ2β

]
c(u,u,u) +

m∑
i=1

E [λλiβ] ( c(ui,u,u) + c(ui,u,u) ) + E [νλβ] v(u,u) =

E [β b(u ;f)]−
m∑

i,j=1

E [λiλjβ] c(ui,uj ,u)−
m∑
i=1

E [νλiβ] v(ui,u) ∀β ∈ PM (Γ). (5.18)
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To actually compute the gPCE expansion of λ in PM (Γ), λ =
∑M

k=0 λ̂kHk, one has next to choose

β = Hl in (5.18) and solve the following set of M quadratic equations in the coefficients λ̂k:

c(u,u,u)

M∑
k,k′=1

λ̂kλ̂k′ E [HkHk′Hl] +

m∑
i=1

( c(ui,u,u) + c(ui,u,u) )

M∑
k,k′=1

λ̂kλ̂i, k′E [HkHk′Hl]

+ v(u,u)

M∑
k,k′=1

λ̂k ν̂k′ E [HkHk′Hl] =

M∑
k′=1

b (f̂k′ ,u)E [Hk′Hl]−
m∑

i,j=1

c(ui,uj ,u)

M∑
k,k′=1

λ̂i, k λ̂j , k′E [HkHk′Hl]

−
m∑
i=1

v(ui,u)

M∑
k,k′=1

ν̂kλ̂i, k′E [HkHk′Hl] ∀ l = 1, . . .M ,

where we have supposed that f admits a gPCE expansion, f(x,y) =
∑M

k′=1 fk′(x)Hk′(y).

Update Problem

Given the m-terms PGD decomposition of u, the update problem recomputes all the m modes λi,
and consists therefore of m quadratic equations for λi, all mutually coupled, but whose structure
is close to the stochastic problem (5.18):

Find λi ∈ PM (Γ), i = 1, . . . ,m such that

C

(
m∑
i=1

uiλi,

m∑
i=1

uiλi, βu

)
+ V

(
m∑
i=1

uiλi, βu

)
= B(βuj),

∀β ∈ PM (Γ), ∀j = 1, . . . ,m.

As in the Stochastic Problem we take β = ψk, ending up with a quadratic system of equations for
λ1, . . . , λm, whose dimension is therefore m×M .

5.4 Numerical results

In this Section we consider two test cases of increasing complexity and computational cost: in
the first one the viscous parameter ν is the only uncertain parameter, while in the second one we
consider both the viscous parameter and the forcing term as uncertainty sources. In both cases
the aim of the test will be to compare the PGD solution against the Galerkin solution, to assess
the effectiveness of the method. All the PGD solutions will be computed with the Arnoldi method
described in Section 5.2.e. In particular, the parameter ε to discard the last mode computed and
enter the update procedure (line 10) is set to 10−2. Moreover, the actual implementation slightly
differs from the one presented in section 5.2.e because of the following details:

• the update procedure is performed only if ‖u‖ < ε and we have added at least 2 modes from
the previous update;

• an early stop (before all the m modes have been computed) is enforced as soon as one of the
following conditions holds:

– the norm of the residual is less than 5.e− 7 (see Section 5.5 for residual computation);

– the norm of the last λ computed is less than 1.e− 9;
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As for the spatial discretization, we will consider a classical Spectral Element Method dis-
cretization, see e.g. [17]. In particular, we will use a grid of Nu × Nu Gauss–Lobatto points for
the approximation of the components of the velocity, while the pressure is approximated over a
Nu− 2 × Nu− 2 grid. The non linearity in the Navier–Stokes equation is solved with a precondi-
tioned Quasi-Newton method, and at each step the linear system is solved with a GMRES solver.
Once more we remark that the efficiency of the PGD method in determining the reduced approx-
imation of U does not depend on the Navier–Stokes solver considered, and any technique may be
used.

5.4.a Test 1: Random viscosity parameter

In the first test we consider a random viscosity ν given by

ν(ω) = ν + ν ′(ω),

where ν > 0 (ensure the almost sure positivity of ν), and ν ′(ω) has a Log-normal distribution with
median value ν ′ > 0 and coefficient of variation Cν′ ≥ 1; we further set ν = 1/100. For these
settings, the random viscosity can be expressed as

ν(ω) = ν + ν ′ exp (σy(ω)) , σ =
logCν′

2.85
, (5.19)

where y ∼ N(0, 1), ensuring that ν ′ ∈ [ν ′/Cν′ , ν
′Cν′ ] with a probability ≈ 0.995 .

Regarding the deterministic force field, it is well-known that force fields deriving from the
gradient of a potential induce no flow for homogeneous boundary conditions. Therefore we consider
the deterministic function ψ(x) and define f as

f = ∇ ∧ (0, 0, ψ)T , (5.20)

so that ∇∧f = (0, 0, −∇2ψ)T . For simplicity we restrict ourselves to forcing terms having constant
rotational,

∇ ∧ f = (0, 0, Φ)T , (5.21)

and a zero normal component on ∂Ω. This leads to the definition of ψ by{
∇2ψ = −Φ in Ω

ψ = 0 on ∂Ω .
(5.22)

It is useful to further define the operator L : H−1(D) → H1
0(D) that maps the forcing term Φ in

(5.22) to the corresponding solution, that is

L[Φ] = ψ . (5.23)

The constant Φ fixes the magnitude of the forcing and is hereafter set to Φ = 100 ν ′ to ensure
that ‖U‖Ω ≈ 1. The typical structure of the forcing field f is shown in Figure 5.1. The spatial
discretization considered is Nu = 51.

Galerkin solution

We start by setting ν ′ = 1/100, Cν′ = 1.5 and ν = 0.01ν ′ and consider the classical Galerkin
Stochastic Projection method for the approximation of U. Guided by the expression of the viscosity
in (5.19), we rely on a gPCE expansion of the solution using a single normalized Gaussian random
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Figure 5.1: Typical structure of the deterministic external forcing used in Section 5.4.

variable y and corresponding Hermite gPCE basis. The Galerkin approximation is therefore sought
as

UG(y) =
w∑
k=0

uGkHk(y), (5.24)

with w denoting the expansion order and Hk denoting the k-th degree Hermite polynomial in y.
For this random viscosity distribution, a well converged solution is obtained for w = 10, as shown
in the following discussion.

The Galerkin solution for w = 10 is depicted in Figure 5.2, showing the expected velocity field
(that is the first mode of the Galerkin solution uG0 , see Figure 5.2(a)), and the expectation and the
standard deviation of the rotational of UG, see Figures 5.2(b) and 5.2(c).

Plots in Figure 5.2 highlight the nonlinear character of the problem. Indeed, for the present
situation where the forcing term is deterministic and the viscosity parameter does not depend on x,
if the problem was linear the solution would be expressed as a product of a deterministic function
times a stochastic factor, U(y) = α(y)u∗, and as a consequence mean and standard deviation
of U would show the same spatial structure, up to a multiplicative factor. This is not the case
here, where the expectation and standard deviation field of the velocity rotational exhibit a clearly
different spatial pattern. In fact, the random viscosity has the strongest impact on the vorticity
field along the boundary of the domain, where the uncertainty level reaches roughly 70%. Another
stringent feature of the standard deviation of the vorticity field is the presence of detached structures
along the boundary, that are created by the convective effects.

To better appreciate the complexity of the random flow field, as well as the converged character of
the Galerkin solution for w = 10, the Karhunen-Loève (POD) decomposition of UG(y) is computed.
Since the Galerkin solution is computed in a subspace PM (Γ), whose dimension is w + 1 = 11, its
KL expansion is finite and writes as

UG(y) =
w∑
k=0

uGkHk(y) =
w+1∑
l=1

uG,KLl

√
κGl ηl(y), κG1 ≥ κG2 ≥ · · · ≥ κGw+1 ≥ 0, (5.25)

where {uG,KLl } is an orthonormal set and E [ηlηl′ ] = δll′ . Figure 5.3 shows the rotational of the

KL modes uG,KLl : the plots show the increasing complexity, with the mode index, of the spatial
structure of the rotational of the KL modes. They also highlight the impact of the nonlinear
convective term which induces a bending of these structures, due to the advection effects, which
however possess the symmetries of the present problem.

Figure 5.4 shows the normalized spectrum, that is Sl =
√
κGl /

∑
κGn for l = 0, . . . , w. It exhibits

a fast decay, the 6-th normalized mode being 10−6 times the first one, with essentially a uniform
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(a) mean velocity field.
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(b) mean vorticity field.
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Figure 5.2: Galerkin solution for Test 1.
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Figure 5.3: Rotational of the KL modes 0, 3, 6 of the Galerkin solution of Test 1.
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Figure 5.4: KL spectrum of Galerkin solution of Test 1.

asymptotic decay rate except for the very last KL modes which are affected by the truncation of
the stochastic basis. The fast decay of the spectrum allows to conclude that the truncation order
w = 10 is large enough for the present stochastic problem.
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PGD solution

We next compute the PGD solution in the same stochastic subspace PM (Γ) as before, using the
Arnoldi algorithm with ε = 0.01 and fixing the maximum number of PGD modes to m = 15. Again,
we also compute the Karhunen-Loève expansion of the PGD solution, as done for the Galerkin
solution.

Figure 5.5 shows the expected velocity field (E[U(m)]), and the expectation and standard de-
viation fields of the rotational of U(m). The plots should be compared with those of the Galerkin
solution shown in Figure 5.2, and the agreement is excellent. The same conclusion arises when
looking at the rotational of the modes of the KL expansion of the PGD solution, which are shown
in Figure 5.6, and have to be compared with Figure 5.3. Figure 5.7 shows the matching between
the spectra of the the two KL decompositions (bottom right plot), again showing good agree-
ment between the solutions. Figure 5.8 shows some of the PGD modes of the solution, namely
modes m = 0, 3, 6, and compares their rotationals with the rotationals of the corresponding modes
m = 0, 3, 6 of the KL expansion of the PGD solution: the spatial structures are similar, a further
confirmation of the accuracy of the PGD representation.

Finally, we investigate the case where the viscosity parameter depends on more than one random
variable. To do this, we modify the definiton of ν from equation (5.19) to

ν(ω) = ν + exp

(
σ√
Nν

Nν∑
i=1

yi(ω)

)
,

with yi independent and identically distributed Gaussian random variables. This is clearly an
overparametrization of the problem, since indeed yT (ω) = σ/

√
Nν
∑Nν

i=1 yi(ω) is in turn a Gaussian
random variable with zero mean and variance equal to σ2, therefore ν truly has a unique stochastic
dimension, such that the Navier–Stokes solution has the same stochastic dimensionality ∀Nν ≥ 1.
It is found that the PGD solution is insensitive to this overparametrization and the deterministic
modes it computes are essentially the same, thus proving to be able to capture the key features of
the stochastic solution. This clearly appears in Figure 5.9, where we consider the PGD solutions
for problems with Nν = 1, 2, 3: here we compare the norms of the PGD stochastic modes λi (Figure
5.9(b)), and the norms of the KL modes of the PGD solutions (Figure 5.9(a)).

5.4.b Test 2: Random forcing term

In the second test we consider also the forcing term as uncertain. To this end, we go back to
equation (5.21) and take now Φ, the vertical component of the rotational of the force field, as a
stationary Gaussian process with unit mean and standard deviation σΦ > 0, characterized by the
two point correlation function

CΦ(x,x′) = E
[
(Φ(x)− Φ0)(Φ(x′)− Φ0)

]
= σ2

Φ exp

(
−‖x− x′‖

L

)
,

where Φ0 = 1 is the mean of Φ, L its correlation length, and ‖x− x′‖ is the Euclidean norm or R2.
The process admits the Karhunen-Loeve expansion

Φ(x, ω) = Φ0 +

∞∑
i=1

Φi(x)yi(ω),

where the yi are normalized uncorrelated Gaussian variables. Ordering the Karhunen-Loeve modes
with decreasing norm ‖Φi‖L2(D) and truncating the expansion after the Nf -th term results in the
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(b) mean vorticity field.
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Figure 5.5: PGD solution of Test 1.
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Figure 5.6: Rotational of the KL modes 0, 3, 6 of the PGD solution of Test 1.
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Figure 5.7: comparison of the spectra of the KL decomposition for the Galerkin and PGD solutions
of Test 1.
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Figure 5.8: PGD modes for m = 0, 3, 6 (left), the corresponding rotational (center) and the
rotational of the corresponding KL mode of the PGD solution of Test 1 (right).
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Figure 5.9: Comparison of the PGD solutions of Test 1 with Nν = 1, 2, 3.
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following approximation of the external force field:

F(x, ω) ≈ FNf (x, ω) = F0 +

Nf∑
i=1

yi(ω) Fi(x) , Fi(x) = ∇ ∧

 0
0

L[Φi(x)]

 . (5.26)

We set L = 1, σΦ = 0.2 and Nu = 35. It is well known that as L decreases more and more KL
modes are needed to represent accurately the forcing term. However, in this work we are not really
concerned about the truncation error that stems from retaining only Nf terms of the expansion,
but only to show that the PGD methods can handle such forcing terms in a natural way. We will
consider two different choices of Nf , that is Nf = 3 or Nf = 7.

As for the viscous parameter ν, we consider it again as a lognormal random variable (Nν = 1),
as in equation (5.19). This implies that the solution depends on N = Nν + Nf = 4, 8 random
variables respectively. The discete probability space PM (Γ) is selected setting w = 2, resulting in a
span of M = 15, 45 multivariate Hermite polynomials; within this setting, we compute the Galerkin
solution and the PGD solution with m = 45 modes. We will consider three different median values
for the viscosity parameter, that is ν ′ = 1/10, 1/50, 1/100.

Figure 5.10 shows mean and standard deviation of the rotational of the PGD solution for the
case N = 8, ν ′ = 1/100, while Figure 5.11 shows for the same case some of the PGD modes.
Finally, Figure 5.12 shows the decay of ‖U(m) − UG‖ as the number of modes m of the PGD
solution increases, for all the cases considered. The PGD approximation is thus seen to converge
to the full Galerkin solution: as expected the cases with a smaller N and low viscosity parameter
feature a higher convergence rate. in all cases the PGD method gives reasonable approximations
of the full Galerkin solution with m ≤M : this is more and more evident as the number of random
variables increases, see also the results in the next Section where we consider a test case depending
on N = 15 random variables.

5.5 Residual computation and pressure reconstruction

At this point, it is crucial to devise an error estimator to stop the PGD procedure as soon as the
reduced solution is close enough to the exact solution in H1

0,div(D)⊗ PM (Γ).
The most natural approach would be a stopping criterion involving the evaluation of the norm

of the residual of the Stochastic Navier–Stokes equation (5.16) associated to the m-terms reduced
solution U(m) in the discretized space H1

0,div(D) ⊗ PM (Γ). The Arnoldi algorithm would then
be stopped as soon as such residual becomes lower than a given tolerance in a suitable norm. In
practice, computing the residual of the Navier–Stokes equations in their divergence-free formulation
(5.16) is not a convenient operation. Therefore, we go back to the weak deterministic Navier–Stokes
equations (5.14) and introduce the

Stochastic Velocity-Pressure Navier–Stokes equations.

Find U ∈ H1
0(D)⊗ PM (Γ), P ∈ L2

0(D)⊗ PM (Γ) such that

C(U,U,V) + Vν(U,V) + E(P,V) = B(V) ∀V ∈ H1
0(D)⊗ PM (Γ), (5.27)

E(Q,U) = 0 ∀Q ∈ L2
0(D)⊗ PM (Γ),

where E(Q,V) is defined as the expected value of the bilinear form d(·, ·) appearing in (5.14),

E(Q,V) = E [d(Q,V)] .

Computing the residual for the velocity-pressure formulation is an affordable task, but at this point
the PGD algorithm has not provided us with an approximation of the stochastic pressure yet.
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(a) mean vorticity field.
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Figure 5.10: 45-modes PGD solution of Test 2, ν ′ = 1/100, N = 8.
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Figure 5.11: PGD modes for the solution of Test 2, ν = 1/100, N = 8.
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Figure 5.12: convergence of ‖U(m) −UG‖/‖UG‖ with respect to the number of modes m in the
PGD solution for ν = 1/10, 1/50, 1/100, Test 2.

Hence, we now introduce a procedure to recover the pressure P(m) associated to the m-terms PGD
solution U(m).

Computing such approximation will introduce some computational overhead, but one could be
interested in an approximation of the pressure anyway. We stress that the notation P(m) does not
refer to an m-terms approximation of P, but to a generic approximation of P given the m-terms
reduced approximation of U.
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5.5.a Pressure computation

For easiness of presentation, let us define

N(W,V) = C(W,W,V) + Vν(W,V)−B(V), ∀V,W ∈ H1
0(D)⊗ PM (Γ), (5.28)

and let 〈V,W〉 denote the scalar product in H1
0(D)⊗PM (Γ). Inserting the m-terms PGD velocity

U(m) and the corresponding pressure P(m) into the Stochastic Velocity-Pressure Navier–Stokes
equations (5.27) we have

N(U(m),V) + E(P(m),V) =
〈
R(m),V

〉
∀V ∈ H1

0(D)⊗ PM (Γ), (5.29a)

E(Q,U(m)) = 0 ∀Q ∈ L2
0(D)⊗ PM (Γ), (5.29b)

where R(m) denotes the residual of the momentum equation (5.29a), R(m) ∈ H1
0(D)⊗PM (Γ). Note

that the continuity equation (5.29b) has no residual; indeed, all the deterministic modes in U(m)

are divergence-free, being solutions of the deterministic problem (5.17). Equation (5.29) states
that the residual R(m) is a function of the pressure P(m): here we propose to estimate P(m) as
the minimizer of ‖R(m)‖ in some prescribed norm. To be more computationally oriented, we next
derive the problem for P(m) in the discrete case.

Let us denote with Vh ⊂ H1
0(D) the finite dimensional velocity space, and with Πh ∈ L2

0(D)
the finite dimensional pressure space. Upon the introduction of the bases for Vh and Πh defined
in [17] and that will be used in the Section of numerical results, we can identify any element

Wh ∈ Vh ⊗ PM (Γ) with the coordinates in the respective basis Ŵh(y) ∈ Rdim(Vh) ⊗ PM (Γ), and

similarly any element Qh ∈ Πh⊗PM (Γ) with Q̂h(y) ∈ Rdim(Πh)⊗PM (Γ); in other words, Ŵh(y) and
Q̂h(y) are vectors whose components are functions of y, belonging to the subspace PM (Γ) ⊂ L2

ρ(Γ).

Equation (5.29a) can therefore be recast as a semidiscrete equation in Rdim(Vh) ⊗ PM (Γ),

N̂
(m)
h (y) + ET P̂

(m)
h (y) = R̂

(m)
h (y), (5.30)

with N̂
(m)
h (y), R̂h(y) ∈ Rdim(Vh) ⊗ PM (Γ), P̂

(m)
h (y) ∈ Rdim(Πh) ⊗ PM (Γ), and E ∈ Rdim(Πh)×dim(Vh)

the deterministic discrete divergence operator. Next we define the residual norm as

‖R̂(m)
h (y)‖2 = ‖R̂(m)

h (y)‖2Rdim(Vh)⊗PM (Γ)
=

1

2
E
[
‖R̂(m)

h (y)‖2Rdim(Vh)

]
,

use equation (5.30) and enforce the derivative of ‖R̂(m)
h (y)‖ with respect to P̂

(m)
h (y) to be zero.

Thus we obtain that the pressure minimizing ‖R̂(m)
h (y)‖ is the solution of

E ET P̂
(m)
h (y) = −EN̂(m)

h (y) , (5.31)

that further needs to be discretized along the stochastic dimension. Note that E ET is a deterministic
operator, and equation (5.31) is well-posed if Vh and Πh verify the inf-sup condition. Moreover,

computing the gPCE expansion of P̂
(m)
h (y), that is

P̂
(m)
h (y) =

M∑
k=1

P̂
(m)
h,k Hk(y),

with P̂
(m)
h,k ∈ Rdim(Πh) and Hk(y) ∈ PM (Γ) Hermite polynomials, results in a set of M uncoupled

problems

E ET P̂
(m)
h,k = −EN̂(m)

h,k . (5.32)
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Note that N̂
(m)
h,k has to be computed, using the projection N̂

(m)
h,k = E [ N̂

(m)
h (y)Hk(y)], since the

stochastic vector N̂
(m)
h (y) derives from a non-linear combination of the PGD solution, hence its

gPCE expansion is not immediately available.

Even if we can take advantage of the fact that the problems (5.32) are uncoupled by factorizing
the operator EET only once to improve the computational efficiency (e.g. with a LU, ILU or
Cholesky factorization), the overall cost may be demanding if the discrete stochastic space PM (Γ)
is large. We have then considered two additional strategies for the computation of the pressure.
In the first one, we apply the Arnoldi algorithm illustrated in Section 5.2.e to equation (5.31) to
obtain a PDG approximation of the stochastic pressure,

P̂
(m)
h (y) =

m′∑
k=1

P̂
(m)
h,k γk(y), (5.33)

with P̂
(m)
h,k ∈ Rdim(Πh) and γk(y) ∈ PM (Γ) generic functions. Note that the PGD approximation of

P may in general use m′ 6= m modes. The second approach we have considered consists in using
the Lagrange multipliers obtained from the deterministic problems solved during the computation
of the PGD decomposition of U(m) as deterministic modes for the PGD approximation (5.33) of
the pressure. This latter approach allows further savings in terms of computational cost; note that
in this case m = m′.

5.5.b Numerical results

In the previous section we have proposed two ways of computing an approximation of the pressure
field: a “full reduced approach” in which we use a PGD method to compute both the deterministic
and the stochastic modes of the decomposition (5.33), and a “partial reduced approach” in which

the deterministic modes P̂
(m)
h,k of (5.33) are taken to be the Lagrange multipliers resulting from the

solution of the deterministic problem of the Arnoldi iterations. In both cases, the obtained pressure

approximation will be then used to compute the residual R̂
(m)
h (y) through equation (5.30), and the

norm ‖R̂(m)
h (y)‖ will be used as a stopping criterion for the Arnoldi method.

We now aim at assessing the performances of these two stopping criteria, along with a third
one, which is the monitoring of ‖λi‖, the norm of the stochstic modes of the PGD approximation.
This criterion is indeed much simpler, and based on the observation that, since the deterministic
modes ui of the Arnoldi method are normalized, whenever λi is small, we are “adding nothing” to
the reduced approximation. Such criterion may be reasonable whenever one is not at all interested
in pressure recostruction.

We consider again the setting proposed for the second test presented in the previous section, with
both viscosity and forcing terms modeled as random quantitites (see section 5.4.b). We consider
the cases N = 4, 8 and we also add a new case, where we set N = 15 and consider a truncation with
w = 3, resulting in a span of M = 816 stochastic polynomials. The convergence of the proposed
quantities for Test 2 is shown in Figures 5.13, 5.14. 5.15. The residual computed by recycling
the Lagrange Multipliers is slightly worse than the one computed after having reconstructed the
pressure with a PGD approach, and they both overestimate the error by 1-2 orders of magnitude,
hence representing a quite restrictive criterion for the convergence ot the method. On the other
hand, the norms of the λi appear closer to the true error, but slightly underestimating it, hence
representing an “optimistic” criterion.
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(a) N = 4, ν = 1/10
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(b) N = 4, ν = 1/50

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

 

 

error
LM−residual
PGD−residual
λ norm

(c) N = 4, ν = 1/100
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(d) N = 8, ν = 1/10
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(e) N = 8, ν = 1/50
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(f) N = 8, ν = 1/100
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(g) N = 15, ν = 1/10
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(h) N = 15, ν = 1/50
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Figure 5.13: convergence of the quantities proposed as stopping criterion for the PGD method
with respect to the number of modes m. i) “error” denotes the normalized PGD-
Galerkin error ‖U(m)−UG‖/‖UG‖; ii) “LM- residual” denotes the normalized norm

of residual ‖R̂(m)
h (y)‖/‖R̂(0)

h (y)‖, the residual being computed using the Lagrange
Multipliers as deterministic modes for the pressure; iii) “PGD- residual” denotes

the normalized norm of residual ‖R̂(m)
h (y)‖/‖R̂(0)

h (y)‖, the residual being computed
using the pressure reconstructed with a PGD approach; iv) “λ norm” denotes the
normalized norm of λi, that is ‖λi‖/

√∑
i ‖λi‖.

5.6 Conclusions

In this Chapter we have investigated the resolution of the steady-state Navier–Stokes equations
with uncertain parameters through a PGD procedure; in particular, we have employed the Arnoldi
method in our numerical simulations, but also the Power method (possibly with update) could be
considered as well.

We recall that the cost of the PGD -Arnoldi method consists of one deterministic solver call per
mode retained in the PGD expansion, plus the same number of the stochastic problem solver calls
and a few calls to the update problem solver (usually 5−6 calls in the test we have performed), which
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Figure 5.14: Comparing the convergence of ‖λ‖ for different N fixed ν.
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Figure 5.15: Comparing the convergence of ‖λ‖ for different N fixed ν.

however is not a negligible cost, since the update problem is a system of quadratic equations, whose
dimension is m×M . Additional costs may be introduced by a pressure reconstruction procedure.

This cost should be compared to the cost of the “Optimal Sets” approach for the Galerkin
method detailed in Chapter 3, since both methods are seen as improvements with respect to the
standard Stochastic Galerkin method. A comparison is however not immediate, since the cost of
the “Optimal Sets” approach can be estimated in terms of calls to a deterministic solver solely,
and will depend both on the sharpness of the bound used to compute the optimal set and on the
efficiency of the solving technique (e.g. Preconditioned Conjugated Gradient).

A remarkable advantage of the PGD procedure with respect to the standard Galerkin techniques
relies in the coding effort required: it is indeed possible in this framework to reuse any existing
Navier–Stokes solver to solve the deterministic steps of the Arnoldi method, taking care of the
modifications of the convective velocity, the viscosity parameter and the forcing term. The stochastic
and update problems can also be solved with available software, since they amount to systems of
quadratic equations. However, care has to be taken in the recostruction of a reduced pressure: the
mathematical formulation of this problem is non-trivial, and we have addressed this topic only for
the discrete problem, proposing different approaches.

The convergence of the PGD velocity to the full Galerkin solution has been investigated with
three different numerical settings, resulting in parametrizations with N = 4, 8, 15 random variables.
In all the considered cases, the PGD is able to provide reasonable approximations of the full
Galerkin solution (10−4) with a limited number of modes, thus with a (much) smaller compuational
cost compared to the solution of the full Galerkin problem.



Chapter 6

Global sensitivity analysis using
sparse grids: an application to a
geochemical compaction model

This Chapter is derived from the paper by L. Formaggia, A. Guadagnini, I. Imperiali, G. Porta,
M. Riva, A. Scotti, L. Tamellini, A numerical model for the geological compaction of sedimentary
basins with sensitivity analysis, currently in preparation. Our contribution has been to take care of
the uncertainty quantification mathematical framework and to provide the code for the uncertainty
quantification analysis. In particular, we have developed an algorithm to convert a sparse grid
approximation to a gPCE expansion, see Section 6.2 for details.

Therefore, compared to the original paper, in this Chapter we have modified the order of the
exposition, and rewritten a significative part of the text, to put in evidence the part of interest for
this thesis, that is the uncertainty quantification analysis rather than the deterministic problem
itself. The mathematical model and its discretization are thus here only briefly summarized, and
the literature survey on the geological compaction has been reduced.

6.1 Introduction

In the previous Chapters we have mostly focused on the theoretical aspects related to the construc-
tion of a surrogate polynomial model for the approximation of the solution of PDEs with stochastic
coefficients.

In this Chapter we focus instead on the practical application of such surrogate model for un-
certainty quantification analysis. In particular, we will concentrate on a global sensitivity analysis,
that is the evaluation of the influence of each random parameter and of each mixed effect (resulting
from the combination of random parameters) to the uncertainty of the outcomes of the system.
A review of sensitivity analysis practices can be found in [92], where it is proved that a global
sensitivity analysis is required unless the underlying model is linear.

Among the possible probabilistic global sensitivity analysis techniques, e.g. ANOVA techniques
[53] and design of experiments [68], we consider in this Chapter the Sobol’ sensitivity indices ([96,
1, 92, 99]). These can be indeed easily computed by exploiting the orthogonality properties of the
generalized polynomial chaos expansion (gPCE) of the solution, see e.g. [60, 99]. A comparison
between global sensitivity analysis performed with Sobol’indices and ANOVA techniques can be
found e.g. in [1].

In this Chapter we will perform a global sensitivity analysis on a model for the geochemical
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compaction of sediments, that is the process that transforms sea sediments into rocks. The process
is driven by both mechanical stresses, like the weight of the upper layers pressing the lower layers,
and by chemical reactions, like quartz precipitation. The set of equations for the model thus includes
force and energy balance, the Darcy equation for the expulsion of water from sediments, a number
of constitutive laws that model physical quantities like porosity, permeability, thermal conductivity
etc., and the chemical reactions occurring in the sedimentary basin. Most of the scalar parameters
of these equations are unknown and modeled as uniform random variables (in our tests we have
considered N = 7 random parameters). The goal of the global sensitivity analysis is to determine
what phenomena (mechanical and/or chemical) affects the most the transformation process. The
main quantity of interest will be therefore the porosity of the strata of the basin, that is the free
space among rock grains.

Given the complexity of the model for the deterministic problem at hand, a Galerkin approach
for the computation of the gPCE expansion would result in a system of equation whose matrix is
extremely difficult to assemble. We prefer therefore a collocation approach on a sparse grid. The
resulting polynomial approximation will be then converted onto the Legendre orthonormal basis
(gPCE expansion), exploiting the equivalence Theorem stated in Chapter 2. This approach to
compute a gPCE expansion is quite new and only few similar works are available in literature; we
mention e.g. [22]. It is more robust than simply using a sparse grid quadrature to compute the
gPCE coefficients. Indeed it can be easily shown that, with the proposed approach, the error on
the approximation of all the gPCE coefficients is controlled by the sparse grid approximation error,
whereas the direct computation of the gPCE coefficients with the same sparse grid quadrature may
lead to inaccurate estimates of the high-order terms.

The rest of this Chapter is organized as follows. In Section 6.2 we detail the Sobol’indices
computation through the conversion of a sparse grid into a gPCE expansion. In Section 6.3 we
briefly summarize the deterministic problem of interest. Results of the sensitivity analysis performed
are detailed in Section 6.4.

6.2 Sparse grids-driven uncertainty quantification analysis

Consider a generic deterministic problem depending on a set of N independent random parameters,
y = (y1, y2, . . . , yN )T . Let each parameter yi take value in Γi, and denote with ρi its probability
density function. Thus y takes values in Γ = Γ1 × Γ2 . . . × ΓN , and the joint probability function
is simply the product of each marginal probability density function, ρΓ(y) =

∏N
i=1 ρΓi(yi).

Any scalar quantity of interest related to the deterministic problem can then be seen as a
random function, Q = Q(y). As mentioned in the Introduction, we are intersted in performing
an uncertainty quantification analysis for Q, and in particular we aim at obtaining a complete
description of how the total variance of the quantity of interest can be attributed to each random
variable yi and to each mixed effect yi1yi2 . . . yis (global sensitivity analyisis).

6.2.a Sobol’ indices

We now introduce the Sobol’ indices to perform a global sensitivity analysis. Such indices are
interesting since they can be computed from the gPCE expansion of Q(y) and do not assume any
linearity in the model considered (see e.g. [92]).

Following [60, 96, 99], we first introduce the Hoeffding/Sobol’ decomposition of a generic func-
tion f depending on N independent random variables. Let {i1, i2, . . . , is} ⊆ {1, . . . , N} be a set of
indices; we denote with y∼{i1,i2,...,is} the set of all random variables but yi1 , yi2 , . . . yis , and similarly
we let Γ∼{i1,i2,...,is} be the cartesian product of all the domains but Γi1 ,Γi2 , . . .Γis and ρΓ∼{i1,i2,...,is}
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the product of all the probability density functions but ρi1 , ρi2 , . . . ρis . The Hoeffding/Sobol’ de-
composition is then defined as

f(y) = f0 +
N∑
i=1

fi(yi) +
N∑
i=1

N∑
j>i

fij(yi, yj) + . . .+ f1,2,...,N (y1, y2, . . . , yN ), (6.1)

f0 =

∫
Γ
f(y)ρΓ(y)dy,

f{i1,i2,...,is} =

∫
Γ∼{i1,i2,...,is}

f(y)ρΓ∼{i1,i2,...,is}
(y)dy∼{i1,i2,...,is} −

∑
S⊂{{i1,i2,...,is}}

fS .

For example

fi(yi) =

∫
Γ∼i

f(y)ρΓ∼i(y)dy∼i − f0,

fi,j(yi, yj) =

∫
Γ∼i,j

f(y)ρΓ∼i,j (y)dy∼i,j − fi(yi)− fj(yj)− f0.

Note that f0 is the mean of f , and we have the following lemma, whose proof is immediate.

Lemma 6.1. Given an index i∗ ∈ {i1, i2, . . . , is}, it holds∫
Γ∗i

f{i1,i2,...,is}dyi∗ = 0. (6.2)

Thanks to Lemma 6.1, it is then possible to prove the following Lemma, that states the orthogonality
of all terms in (6.1), see [96].

Lemma 6.2. The terms in (6.1) are mutually orthogonal, i.e.

{i1, i2, . . . , is} 6= {j1, j2, . . . , jr} ⇒
∫

Γ
f{i1,i2,...,is}f{j1,j2,...,jr}ρΓ(y)dy = 0 . (6.3)

Next, we define the Sobol’ index S{i1,i2,...,is} corresponding to the mixed effect yi1yi2 . . . yis as

S{i1,...,is} =
1

Var [f ]

∫
Γ{i1,...,is}

f2
{i1,...,is}(yi1 . . . yis)ρΓ{i1,...,is}

(y)dyi1 . . . yis (6.4)

with Γ{i1,...,is} = Γi1 × . . .×Γis and ρΓ{i1,...,is}
(y) the corresponding probability measure. Using the

Sobol indices we can then compute a variance decomposition equivalent to the classical ANOVA
one, as stated in the next Lemma.

Lemma 6.3. It holds

1 =
N∑
i=1

Si +
N∑
i=1

N∑
j>i

Sij + . . .+ S1,2,...,N . (6.5)

Proof. Integrate the square of (6.1) and exploit the orthogonality property (6.3). �

From this lemma we see that the term S{i1,i2,...,is} represents the percentual contribution of the

mixed effect yi1yi2 . . . yis to the total variance of f . One can also introduce the total index STi
describing the total variability due to the i-th random parameter, as the sum over all mixed effects
including yi,

STi =
∑
Si

S{i1,i2,...,is}, (6.6)
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where the summation is taken over the set Si of all multi-indices {i1, i2, . . . , is} of any length such
that at least one component is i.

The Sobol’ indices can be easily computed, without performing any numerical quadrature to
approximate the coefficients f{i1,i2,...,is} in (6.1), starting from the generalized Polinomial Chaos
expansion of f . To this end, consider the family of ρΓ(y)dy-orthogonal polynomials Lp(y), where

p is a multiindex in NN and as usual Lp(y) =
∏N
n=1 Ln,pn(yn), Ln,pn(yn) being the family of

ρΓn(yn)dyn-orthogonal monodimensional polynomials (see Chapters 2, 3). Note that whenever p is
such that pn = 0, Lp(y) is actually independent of yn, since it holds L0(yn) = 1. As a consequence,
we can reorder the classical gPCE expansion

f(y) =
∑

p∈NN
αpLp(y), αp =

∫
Γ
f(y)Lp(y)ρΓ(y)dy, (6.7)

to make it equivalent to (6.1),

f(y) = α0 +
N∑
i=1

∑
p∈Pi

αpLp(y) +
N∑
i=1

N∑
j>i

∑
p∈Pi,j

αpLp(y) + . . . , (6.8)

where Pi contains all the multiindices such that only the i-th component is different from 0,
Pi = {p ∈ NN : pi 6= 0, pk = 0 for k 6= i}. Similarly P{i1,i2,...,is} = {p ∈ NN : p{i1,i2,...,is} 6=
0, p∼{i1,i2,...,is} = 0}.

Exploiting (6.8) and the orthonormality of Lp(y), we have the following equivalence between
gPCE coefficients and Sobol’ indices:

S{i1,i2,...,is} =
∑

p∈P{i1,i2,...,is}

α2
p

Var [f ]
, Var [f ] =

∑
p∈NN

α2
p . (6.9)

6.2.b Sparse grids computation of gPCE

Equation (6.9) provides a fast way to compute Sobol’ indices once the gPCE expansion (6.8) for
f(y) has been determined. However, computing the coefficients αp by Galerkin projection as done
in Chapters 2 and 3 may not be feasible if the deterministic problem has a very complex structure
and is non-linear (as in the case considered in this Chapter, see next Sections).

To circumvent this problem, a sparse grid approach may be used. A first solution simply entails
the computation of approximated gPCE coefficients (6.7) using a sparse grid. A second option,
which we follow here, is to compute a sparse grid approximation of the state variables in a given
polynomial space P (see Section 2.3.b), and then to re-express such polynomial approximation
in terms of orthogonal polynomials, thus obtaining an approximation of the truncation in P of
the gPCE expansion. Once obtained such gPCE, the Sobol’ indices are computed according to
equations (6.9). With this latter procedure, the error on every gPCE coefficient in P is controlled
by the sparse grid approximation error, as shown in the following lemma, while the former technique
yields approximation of the gPCE coefficients which get worse as |p| increases (see e.g. the numerical
results shown at the end of this section). A similar approach can be found in [22] where however
the analysis is confined to standard Smolyak sparse grids and there is no explicit reference to the
properties of the underlying polynomial space.

Lemma 6.4. Let αp be a coefficient of the gPCE expansion (6.7) of f truncated to P, and let α∗p
its approximation obtained by converting the sparse grid approximation of f onto the orthonormal
basis. Then

|αp − α∗p| ≤ ‖f − fSG‖L2
ρ(Γ) .
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Proof.

|αp − α∗p| =
∣∣∣∣∫

Γ
f(y)LpρΓ(y)dy −

∫
Γ
fSG(y)LpρΓ(y)dy

∣∣∣∣ =

∣∣∣∣∫
Γ

(
f(y)− fSG(y)

)
LpρΓ(y)dy

∣∣∣∣
≤ ‖f − fSG‖L2

ρ(Γ) ‖Lp‖L2
ρ(Γ) = ‖f − fSG‖L2

ρ(Γ)

where we have exploited the properties of the scalar product over L2
ρ(Γ) and the fact that Lp are

ρΓ-orthonormal. �

We refer to Chapters 2, 3 for the sparse grid construction. Yet, to perform the conversion from
sparse grid approximation to gPCE , we need to introduce some additional notation. For a given

interpolation level in in the n-th direction, let Hm(in)
n = {yinn,1, y

in
n,2, . . . , y

in
n,m(in)} ⊂ Γn be a set of

m(in) interpolation points, and let L in
n,k(yn) be the set of Lagrangian polynomials over such set of

points, k = 1, . . . ,m(in), so that the corresponding monodimensional interpolant operator is

Um(in)
n [g](yn) =

m(in)∑
k=1

g(yinn,k)L
in
n,k(yn), g ∈ C0(Γn).

Taking Cartesian products of the sets Hm(in)
n , i = 1, . . . , N , we can build a tensor grid, Hi =⊗N

n=1H
m(in)
n , that has Mi =

∏N
n=1m(in) points. Each point of the tensor grid can be addressed by

a multi-index k ∈ NN , yi
k = (yi11,k1

, yi22,k2
, . . . , yiNN,kN ), 1 ≤ kn ≤ m(in), and the corresponding tensor

Lagrange polynomial can be computed as L i
k(y) =

∏N
n=1 L in

n,kn
(yn), where the superscript i refers

to the tensor grid the Lagrange polynomial is built on. The tensor grid interpolant for f is then
defined as

fTG,i(y) =

N⊗
n=1

Um(in)
n [f ](y) =

∑
yi
k∈Hi

f(yi
k)L i

k(y) (6.10)

Recalling the definitions of detail operator and hierarchical surplus operator (see Chapters 2,3),

∆in
n [f ] = Um(in)

n [f ]− Um(in−1)
n [f ], ∆i[f ] =

N⊗
n=1

∆in
n [f ], (6.11)

we can put in evidence the sparse grid approximation on a given set I as a linear combination of
tensor Lagrange polynomials

fSG =
∑
i∈I

∆i[f ] =
∑
i∈I

ci

N⊗
n=1

Um(in)
n [f ](y) =

∑
i∈I

ci
∑

yi
k∈Hi

f(yi
k)L i

k(y), (6.12)

see Chapters 2, 3 for details on the possible choices of the set of hierarchical surpluses I, and
equation (3.27) for the value of ci.

In particular, in Chapter 2 we have shown how to choose the set of indices I so that the resulting
sparse grid approximation belongs to a given polynomial space P (see Section 2.3.b for a precise
statement of this fact and a table of equivalences). Once a suitable space P has been chosen, it will
be enough to re-express the sum of lagrangian polynomials in the sparse grid representation (6.12)
as a sum of the ρ(y)dy-orthogonal polynomials spanning P to obtain a gPCE representation (6.8) of
the solution, and hence to compute the Sobol’ indices, avoiding any explicit numerical quadrature.

Consider now the i-th tensor grid, Hi. The corresponding Lagrangian interpolant fTG,i(y) (6.10)
is a sum of multidimensional Lagrange polynomials over m(i1) ×m(i2) × . . . ×m(iN ) points, and
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therefore their polynomial degree is (m(i1)− 1)× (m(i2)− 1)× . . .× (m(iN )− 1). Thus, such sum
can be recast as a linear combination of all the Legendre polynomials whose maximum degree along
direction n does not exceed m(in)− 1, that is

fTG,i(y) =
∑
p∈Ci

βpLp(y), Ci = {p ∈ NN : pn ≤ m(in)− 1, n = 1, . . . , N}.

The coefficients βp of the linear expansion can be easily computed enforcing βp to satisfy the
following set of equations ∑

p∈Ci

βpLp(yj) = fTG,i(yj), ∀yj ∈ Hi. (6.13)

which amounts at solving the linear system Qβ = f , defined (with an abuse of notation) as
Qj,p = Lp(yj), β = [β1, β2, . . .], f = [f(y1), f(y2), . . .]. Converting the sparse grid into a gPCE
expansion therefore entails solving as many linear systems Qβ = f as the number of tensor grids
with non-zero coefficient ci in the sparse grid, and then collecting coefficients βp for the same
p coming from different tensor grids. Note that the properties of Q depend on the choice of

the interpolation points Hm(in)
n used in each direction. In particular, if the interpolation points

are Gaussian, it holds that QTWQ = I, where W denotes the diagonal matrix containing the
quadrature weights, and I is the identity matrix. Hence, Q̃ = W 1/2Q is orthogonal and therefore
β = QTWf . Indeed, it holds

β = Q−1f = Q−1W−1/2W 1/2f = (W 1/2Q)TW 1/2f = QTWf .

In general, the condition number of Q depends on Hm(in)
n . However, the entries Lp(yj) can be

precomputed, and the matrices Q can be assembled and possibly factorized once and for all. Finally,
we mention that in the case of Clenshaw–Curtis abscissae the computation of β given the nodal
values Lp(yj) can be performed efficiently using FFT techniques.

Figure 6.1 shows the results of the computation of the gPCE coefficients by converting a sparse
grid approximation into a gPCE expansion, and by using the same sparse grid as a quadrature
rule to approximate the integrals in (6.7). We compare the results obtained with two different
sparse grids, both built using Gauss–Legendre quadrature points, namely TD(6) and SM(4) sparse
grids. The reference values for the gPCE coefficients are computed with a very refined sparse grid
quadrature rule. The results show that the computation of gPCE coefficients through the conversion
approach is much more robust than the quadrature one, especially in the case of the SM grid. See
[22] for additional numerical results.

6.3 The deterministic problem

In this Chapter we perform a global sensitivity analysis on a model describing the evolution over
time of some relevant characteristics of a sedimentary basin, namely the porosity, the temperature
and the pressure, whose knowledge is very relevant for the oil reservoir engineering practice.

In a nutshell, sedimentary basins form when sediments are deposited over long periods of time.
Rocks form gradually as a result of the compaction of such sediments, which is caused both by
mechanical stresses (the weight of the above layers of sediments), and chemical reactions, which
are driven by temperature. One has also to take into account the explusion of the fluid from the
sediments, which can be described as a Darcy flow driven by the pressure in the basin. The result
of this combined action is a reduction of the porosity of the sediment, that is the free space among
rock grains, which of course plays a crucial part in the determination of the rock permeability (the
other factor being the disposition of the free space).
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Figure 6.1: Comparison of the computation of the gPCE coefficients of a function via the modal
conversion of a sparse grid approximation or sparse grid quadrature. Plots show the
two grids used, the gPCE coefficients that can be reconstructed in both cases, and the
numerical results for two different functions. The sparse grids are built using Gauss–
Legendre quadrature points, and the gPCE coefficients are plotted in lexicographic
order.
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Among others, quartz precipitation in sandstones and smectite–illite transformation in shales
are regarded as the predominant geochemical compaction processes ([12, 14, 67, 91]). In this work
we will however focus on the study of quartz cementation in sandstones sediments only. Quartz
cementation can be described as a sequence of three phases: dissolution of quartz grains, diffusion of
the dissolved products and precipitation, where the last one is usually regarded as the rate limiting
one, see e.g. [79]. Many conceptual models of quartz cementation at basin scale are available in
literature; here we consider the model described in [105, 106], which proposes a simple empirical
exponential law for quartz precipitation rate, and a minimal temperature (critical temperature)
for the reaction to take place. This consitutive law has to be coupled with the Darcy law for the
fluid explulsion, the temperature equation and the equation for the mechanical compaction of the
sediments.

Most of the parameters of such model (physical properties of the liquid phase and solid porous
medium, chemical parameters, geological information about the system) are affected by significant
amounts of uncertainty, which is mainly related to the extreme difficulty to provide direct measure-
ments of the quantities of interest at the space and time scales characterizing a basin compaction
process.

6.3.a Mathematical formulation and discretization

We refer to the full paper [34] for a complete discussion on the details of the matemathical model
and its discretization, which is beyonds the goals of this thesis. Here we only mention that we
consider a monodimensional model along the vertical direction z (i.e. the depth of the basin). The
complete model results in a coupled system of 7 equations, namely 3 conservation equations:

1. the mass conservation in divergence form;

2. the energy conservation, that is an elliptic equation for the temperature;

3. the force balance (algebraic balance);

and 4 constitutive equations, describing:

1. the permeability K as a function of the porosity φ, that can be tuned with two parameters
k1, k2;

2. the fluid explusion flux as a function of the permeability (the well-known Darcy’s law);

3. the thermal conductivity of the water/rock system;

4. the rate of change of the porosity, taking into account the mechanical and chemical processes,

dφ

dt
=
dφM
dt
−
dφQ
dt

φ > 0

where φM is the rate of change for the porosity ascribable to mechanical compaction, that
depends on a parameter β, and φQ is the rate of change of the porosity ascribable to the
quartz precipitation chemical reaction, that is driven by two additional parameters a, b.

See table 6.1 for the full set of equations. As for the numerical discretization, we mention that the
equations are solved in a Lagrangian framework, so that the grid moves along the z-axis and deforms
following the thickness and position of the strata as time evolves, see figure 6.2. Therefore no solid
mass is transferred among cells and there are no advection terms. New elements are added on the
top as deposition occurs. The Darcy law and the fluid conservation equations are solved together
with a mixed finite element method using P0 − RT0 finite elements, see [13], and the same type of
discretization can be applied to a suitable reformulation of the temperature equation. Finally, we
point out that at each time step the complete system is solved with an iterative fixed point method.
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6.4 Sensitivity analysis

6.4.a Identifying the random parameters

We consider 7 parameters among all those appearing in the model formulation as uncertain, that
is the parameter β of the mechanical compaction equation, the two parameters a and b driving
the quartz cementation rate kinetics, the activation temperature of the geochemical process Tc,
the depth of the sea over the basin hsea, and the two parameters k1, k2 appearing in the relation
betweeen porosity and permeability.

Since we don’t have any a-priori knowledge on their probability distribution, we will assume
each yi to be uniformely distributed in a given uncertainty range Γi = [li, ui] and we denote with Γ

conservation equations

∂φρl
∂t

+
∂ [φρlul]

∂z
= 0 water mass conservation law

∂ (1− φ) ρs
∂t

+
∂ [(1− φ) ρsus]

∂z
= qqrtz

solid mass conservation law
• qqrtz is the quartz production rate

C1
∂T

∂t
+ C2

∂T

∂z
− ∂

∂z

(
KT

∂T

∂z

)
= qT

energy conservation law
• C1 = φρlcl + (1− φ)ρscs
• C2 = φρlclul + (1− φ)ρscsus
• qT represents internal heat sources

σ = −
∫ z

ztop

[φρl + (1− φ)ρs] gdz + s0 − pl force balance
• g is the gravity acceleration
• s0 is the weight of the sea water column
• σ is resulting effective stress on the solid matrix

constitutive equations

K = 10k1φ−k2−15 porosity/permeability law

φ(ul − us) = −K
µl

(
∂ pl
∂z
− ρlg

)
Darcy law
• µl is the water viscosity

KT (T ) = λφl [λs(T )]1−φ
thermal conductivity of the water/rock system
• λs(T ) = λ0/(1 + c0T )

dφ

dt
=
dφM
dt
−
dφQ
dt

, φ > 0 porosity rate of change

• dφM
dt

= −β(φ0 − φf ) exp(−βσ)
dσ

dt

•
dφQ
dt

=
MQ

ρQ
A0

(
φ

φact

)
a10bT

Table 6.1: Full set of equations for the geochemical compaction model. Here u denotes a velocity
field, p a pressure field, and ρ a density. A subscript l denotes that such quantity refers
to the water phase, while a subscript s to the solid phase.
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Figure 6.2: the computational grid moves according to the sedimental layers.

the hypercube Γ = Γ1 × Γ2 . . .× ΓN , so that every realization y ∈ Γ. We will furthermore assume
that all yi are statistically independent; as a consequence, the joint probability density function of
y over Γ is the product of uniform probability density functions in each direction,

ρΓ(y) =

N∏
i=1

ρΓi(yi) =

N∏
i=1

1

ui − li
. (6.14)

All the other parameters introduced in the model are here considered fixed. Our choice is indeed
arbitrary, as other involved parameters are manifestly affected by uncertainty; however, our aim
here is to show the capability of our technique by including only the main parameters that affect the
compaction process and their possible influence on pressure and temperature distribution. The tools
provided may then be used to tackle a more detailed analysis, including a wider set of uncertain
parameters.

Table 6.2 shows the uncertainty range associated to each uncertain parameter, and the literature
source where each range has been assessed. The value of the sea depth hsea (see Figure 6.2) is taken
assuming a variation of about ±10% with respect to a reference value (500 m).

6.4.b Numerical results

We now analyze the results of the computation of the Sobol’ indices, which have been obtained as
explained in Section 6.2.

Figure 6.3(a) shows the distribution of porosity along the vertical axis at the final time-step,
and two curves located at one standard deviation above and below the mean. As expected, it cleary
appears that the deeper strata are characterized by a larger uncertainty. Note that the curve is not
significative in the deepest strata (z < −4000), where the porosity approaches zero.

Figure 6.3(b) shows the global Sobol’indices (6.6) for each of the uncertain parameters along
the vertical direction, where three regions can be distinguished. In the upper zone the porosity is
only influenced by the boundary datum hsea and by the mechanical part of the compaction process.
Around a burial depth z = −2000m the quartz precipitation starts, so the rate of porosity reduction
with burial depth increases, and the contribution of the chemical compactation is significative up
to z = −4000. Note that the activation temperature only plays a role in the earliest strata of



141

Parameter li ui Bibliographic ref.

β[Pa−1] 5× 10−8 7× 10−8 [59]

a[mol m−2 s−1] 0.5× 10−18 3.5× 10−18 [105]

b [C−1] 0.020 0.024 [105]

Tc [C] 70 90 [59]

hsea[m] 450 550 –

k1 [-] 14.07 14.22 [109]

k2 [-] 1.35 2.38 [109]

Table 6.2: list of uncertain parameters. Each one is modeled as a uniform random variable ranging
between li and ui.

this second part, that is −2000 < z < −1800. In the deepest layers of the basin (z < −4000) all
the pore space is filled with quartz due to geochemical compaction and the porosity approaches
zero. In this region the Sobol indices are not significant due to the negligible values assumed by the
porosity itself and exhibit an oscillatory behavior. This feature of the solution is induced by the fact
that we consider here a homogeneous material where quartz precipitation is possible everywhere
and we neglect possible grain coating effects. The computational model proposed here thus seems
to be quite effective in reproducing the experimental observations. The results also suggest that
in principle it would be possible to save some computational time by switching off the equations
describing the chemical compaction in the upper layers of the computational domain, and moreover
indicate that only a subset of the selected parameters has a significant influence of the system.

Figure 6.3(c)-6.3(d) shows the vertical distribution of mean temperature and the related in-
dices. As expected, the temperature increases with the depth, and again the hsea parameter, the
mechanical and geochemical compaction processes influence the state variable, the former being the
only important effect in the most superficial layers (z > −2000). Results also suggest that all the
variability of the temperature is induced by different thermal diffusivity associated with the solid
and the liquid phases, hence it is intrinsically linked with the porosity field.

The vertical distribution of pressure and the Sobol indices are shown in Figure 6.3(e)-6.3(f).
The pressure distribution appears to be basically linear with depth. All uncertainty in fluid pressure
distribution is associated with the hsea parameter and no feedback of the geochemical compaction
is observed. This is likely due to the homogeneous material assumption.
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Figure 6.3: Mean values for porosity, temperature and pressure at final time (left column), with
dotted lines one standard deviation above and below, and corresponding Sobol’indices
(right column).



Conclusions and perspectives

In this thesis we have investigated the theoretical aspects of the polynomial approximation of the
solution u of a PDE with stochastic parameters. To this end, one has to consider a parametrization
of the underlying probability space with N random variables. As a consequence, the PDE is
rewritten as a parametric problem depending on N parameters and it is possible to compute a
polynomial surrogate model for u.

We have considered two different means of obtaining such surrogate model: a projection one (the
Stochastic Galerkin Method), and a collocation one (the Stochastic Collocation Method), which we
have compared in detail in Chapter 2. The most relevant feature of our work in this sense is the
equivalence theorem that allows us to set the Stochastic Galerkin and Collocation methods in the
same polynomial space, which is actually a crucial aspect if one wants to obtain a fair comparison
between the two techniques.

We have also proposed some new algorithms in the context of the Galerkin and Collocation
techniques that allow in some situations to improve significantly the error decay, see Chapters 3-4
and 5. It is important to remark that in particular the “Optimal Sets” techniques (Chapters 3
and 4) are capable of working formally with a countable infinite number of parameters, as the less
influent ones will be automatically discarded in an adaptive way.

The analysis of such methods is far from being complete. The analysis of a-priori error estimates
for the “Optimal sets” approach should be tackled, both for the Galerkin and the Collocation
approaches. Moreover, it will be interesting to improve the estimate of the error contribution of
the hierarchical surpluses, that we have addressed in this thesis only with a numerical/heuristical
approach. A future work to analyze is also to extend the work on the optimal sparse grids to the
case of non-nested interpolation points. A convergence analysis should also be addressed for the
PGD method presented in Chapter 5.

Yet the results obtained in practical applications (Chapters 4, 6) are encouraging, although
the cases considered here are still simplified. It will be interesting to extend the results on the
groundwater flows to situations where the covariance of the log-permeability is modeled as as
exponential covariance rather than gaussian, and the correlation length is smaller. In such situations
we expect that the solution may feature low regularity with respect to the random parameters (due
to the low regularity of the exponential covariance function), and thus ad-hoc enhancements of
the sparse grid methods should be devised. This would lead the way for interesting engineering
applications, like the assessment of the catchement area of a well and the pollutant remediation.
Note that in realistic applications the number of random variables to be considered in the model
could be higher than the cases considered in this work, which represents a challenge also from an
algorithmic and computational point of view.

Finally, we remark that in this thesis we have mostly considered elliptic problems. More general
situations have been addressed in Chapters 5 and 6, and it would be of interest to extend to such
situations the optimal sets procedure developed in Chapter 3. To the same end the sparse-grid-based
sensitivity analysis techniques developed in Chapter 6 should also be further analyzed.



144



Appendix A

Addendum on the convergence of
optimal sets technique

February 5, 2012

In this addendum we provide some convergence results for the optimal sets technique, both in the
Stochastic Collocation and Galerkin case. For Stochastic Collocation we provide a characterization
of the error for the “optimal” sparse grid in terms of weighted `p summability of the profits. This
result extends to the case of sparse grids the known result on non-linear approximation (see e.g.
[20, 21] and references therein). For Stochastic Galerkin, we analyze the convergence in the specific
case of the “inclusions” test described in Chapter 2 and reinterpret the numerical results there
obtained in view of the estimates shown here.

We will work in the same setting as Chapters 2-3. Thus, we consider a set of N independent
random variables yi, uniformly distributed over Γi = [−1, 1], with joint probability density ρ(y) =
1/2N , and we denote the stochastic domain as Γ = Γ1 × Γ2, . . . ,×ΓN . Next, we denote as u ∈
H1

0 (D)⊗ L2
ρ(Γ) the weak solution of{

−div(a(x,y)∇u(x,y)) = f(x) x ∈ D
u(x,y) = 0 x ∈ ∂D

ρ(y)dy a.e. in Γ, (A.1)

where the diffusion coefficient a is such that there exist two constants amin, amax such that

0 < amin < a(x,y) < amax <∞

for almost every x ∈ D and y ∈ Γ. As in the previous Chapters, we will exploit the fact that u
can be understood either as a function in the tensor space H1

0 (D) ⊗ L2
ρ(Γ) or as a H1

0 (D)-valued
square-integrable function of y ∈ Γ, i.e. u ∈ L2

ρ(Γ;H1
0 (D)), and use the best notation depending on

the situation. Finally, we recall that u can be expanded in a Legendre series, that reads

u(x,y) =
∑

p∈NN
up(x)Lp(y), (A.2)

where Lp are the N -variate Legendre polynomials, Lp(y) =
∏N
n=1 Lpn(yn), and Lpn(yn) are the

monovariate orthonormal Legendre polynomials in yn. We also need to introduce the standard
L∞(Γ)-normalized Legendre polynomials Lj , for which the following properties hold:

• Lj(1) = 1;

•
∫ 1
−1 Lj(t)Lk(t)dt = δjk(j + 1/2)−1;

• Lj(t) =
√

2j + 1Lj(t).
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A.1 Convergence of the quasi-optimal sets Galerkin method

As discussed in Chapter 3, the optimal M dimensional polynomial space for the Stochastic Galerkin
method is the one spanning the Legendre polynomials corresponding to the M largest coefficients
in the Legendre expansion (A.2). This choice indeed minimizes the projection error

‖u−
∑

p∈SM

upLp‖2V⊗L2
ρ(Γ) =

∑
p/∈SM

‖up‖2V . (A.3)

A possible strategy to assess the convergence of the resulting generalized Polynomial Chaos
Expansion of u is to order the Legendre coefficients ‖up‖2V in decreasing order according to a suitable
a-priori estimate and study the summability properties of the sequence thus obtained. This idea
has been investigated e.g. in [20, 21] for the case when the diffusion coefficient can be written as
a(x,y) =

∑∞
i=1 yibi(x), with yi uniform random variables over [−1, 1] and {‖bi‖∞}i∈N ∈ `p for some

p < 1.

1.1.a Direct estimates for a special case of interest

In this Section we will follow a different approach, and restrict our focus to the case in which u
obeys the following Assumption:

Assumption 1. The complex continuation of u, u∗ : CN → H1
0 (D) is a H1

0 (D)-valued holomorphic
function in the polydisc

ES =

N⊗
n=1

En,Sn , En,Sn = {zn ∈ C : |zn| < Sn}

with supz∈ES ‖u
∗(z)‖H1

0 (D) ≤ Bu.

We will see that this class of functions includes e.g. the solution of the inclusions test investigated
in Chapter 2. We start by proving a result on the decay of the coefficients of the Legendre expansion
(A.2) for u satisfying Assumption 1. To this end, we first need the following simple Lemma.

Lemma 2. The polyellipse ES =
⊗N

n=1 En,Sn, with

En,Sn =

{
zn ∈ C : Re (z) =

%n + %−1
n

2
cosφ, Im (z) =

%n − %−1
n

2
sinφ, φ ∈ [0, 2π)

}
and %n = Sn +

√
S2
n − 1 is included in the polydisc ES.

Proof. The value of %n is obtained enforcing zn = Sn to belong to En,Sn , i.e. %n+%−1
n

2 = Sn. In this
way the semi-major axis of En,Sn and En,Sn coincide. The inclusion ES ⊂ ES holds since one can
easily verify that the length of the semi-minor axis of each En,Sn is smaller that Sn. �

We are now in position to prove the following estimate on the Legendre coefficients.

Proposition 3. If u fulfills Assumption 1, the coefficients of the Legendre expansion (A.2) decay
as

‖up‖H1
0 (D) ≤ CLeg e

−
∑N
n=1 gnpn

N∏
n=1

√
2pn + 1, (A.4)

with gn = log(%n) and CLeg = Bu

N∏
n=1

L(En,Sn)

4(%n − 1)
.

Here L(En,Sn) denotes the length of the ellipse En,Sn in Lemma 2, %n is as in Lemma 2, and Bu
is as in Assumption 1.
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Proof. The proof follows closely the argument in [25, Section 12.4]. From Assmuption 1 and Lemma
2 we have that u is analytic in the region inside ES , and hence we can exploit the Cauchy’s formula
to rewrite the p-th Legendre coefficient as

up =

∫
Γ
u(x,y)Lp(y)ρ(y)dy =

∫
Γ
Lp(y)ρ(y)

∮
ES

u∗(x, z)∏
n 2πi(zn − yn)

dzdy

=

∮
ES
u∗(x, z)

N∏
n=1

1

2

∫
Γn

Lpn(yn)

2πi(zn − yn)
dyndz.

Next, let

Qpn(zn) =

∫
Γn

Lpn(yn)

(zn − yn)
dyn .

From [25, Lemma 12.4.6] it follows that for all zn ∈ En,Sn ,

|Qpn(zn)| ≤ π (1/%n)pn

%n − 1
.

Then it holds

‖up‖H1
0 (D) ≤ sup

ES
‖u∗‖H1

0 (D)

N∏
n=1

√
2n+ 1

4π

∮
En,Sn

|Qpn(zn)|dzn

≤ sup
ES
‖u∗‖H1

0 (D)

N∏
n=1

√
2n+ 1

4π
π

(1/%n)pn

%n − 1

∮
En,Sn

dzn

≤ sup
ES
‖u∗‖H1

0 (D)

N∏
n=1

√
2n+ 1L(En,Sn)

4(%n − 1)
e−pn log(%n).

Finally observe that, since u satisfies Assumption 1 and ES ⊂ ES ,

sup
ES
‖u∗‖H1

0 (D) ≤ sup
ES

‖u∗‖H1
0 (D) ≤ Bu.

�

Remark 4. The square root factor in (A.4) is of course negligible compared to the exponential
decreasing term e−

∑
n gnpn. We can therefore assume that the simplified expression

‖up‖H1
0 (D) ≤

N∏
n=1

ĈLege
−ĝnpn (A.5)

is also an accurate estimate for the Legendre coefficients of u satisfying Assumption 1, at the price
of substituting gn with ĝn < gn and, possibly, CLeg with ĈLeg > CLeg. In particular, it holds√

2p+ 1 ≤ C(ε, g)eεgp for every ε > 0, with C(ε, g)→ +∞ as ε→ 0.

From Chapter 3, we know that if the Legendre coefficients of u decay as in equation (A.5), the
family of (anisotropic) TD sets, TD(w) = {p ∈ NN :

∑N
n=1 gnpn ≤ w}, is a sharp estimate of

the optimal polynomial space for the Galerkin method, that we denote as PTD(w)(Γ) (see Section
3.3.a for details). In the following uw =

∑
p∈TD(w) upLp ∈ H1

0 (D)⊗ PTD(w)(Γ) will denote the TD
Galerkin approximation of u.

Following closely the argument in [71], we can prove the convergence estimate for the TD approx-
imation of u. Such argument is for isotropic problems only, so we introduce a further assumption
on u.
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Assumption 5. Assumption 1 holds with Sn = S, for n = 1, . . . , N .

As a consequence, the parameters %n describing the polyellipse in Lemma 2 are all equal, as well
as the coefficients gn driving the decay of the Legendre coefficients in Proposition 3/Remark 4, and
thus the optimal polynomial space is indeed the isotropic TD, TD(w) = {p ∈ NN :

∑N
n=1 pn ≤ w}.

The first step to prove the convergence of the TD approximation is to state the following
theorem, which gives the optimality of the Galerkin approximation.

Theorem 6. It holds

‖u− uw‖L2
ρ(Γ;H1

0 (D)) ≤ Copt inf
v∈H1

0 (D)⊗PTD(w)(Γ)
‖u− v‖L2

ρ(Γ;H1
0 (D)) ,

where Copt is a constant depending on amin, amax.

Proof. The proof is an immediate rewriting of [71, Theorem 1]. �

Note that indeed such Theorem does not require Assumption 5. Next, we shall need the following
Lemma (see [6] for a proof), which conversely relies on Assumption 5.

Lemma 7. Suppose u satisfies Assumptions 1 - 5, and let Mu,w be the Maclaurin polynomial of u
on the complex domain,

Mu,w(z) =
∑

p∈TD(w)

αp

N∏
n=1

zpnn .

Then, for 0 < R < S,

sup
z∈ER

‖u∗(z)−Mu,w(z)‖H1
0 (D) ≤

Bu
S/R− 1

e−g̃w,

with Bu as in Assumption 1 and g̃ = log S
R .

The convengence rate for the isotropic TD approximation can then be estimated combining
Theorem 6 and Lemma 7.

Theorem 8. Suppose that u satisfies Assumptions 1 and 5, with Γ ⊂ ES for some S > 1.Then it
holds

‖u− uw‖L2
ρ(Γ;H1

0 (D)) ≤ Copt
Bu
S − 1

e−g̃w, (A.6)

with Bu as in Lemma 7, g̃ = logS, and Copt as in Theorem 6.

Proof. We use Lemma 7 with R = 1 (note that the intersection of E1 with the real axis is Γ). Then
we have

‖u− uw‖L2
ρ(Γ;H1

0 (D)) ≤ Copt inf
v∈H1

0 (D)⊗PTD(w)(Γ)
‖u− v‖L2

ρ(H1
0 (D);Γ)

≤ Copt ‖u−Mw,u‖L2
ρ(H1

0 (D);Γ)

≤ Copt ‖u−Mw,u‖L∞(H1
0 (D);Γ) ≤ Copt

Bu
S − 1

e−g̃w.

�

Theorem 8 states an exponential convergence of the error with respect to the degree of the
polynomial approximation. In practice however one is more concerned with the convergence of uw
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Figure A.1: w(M) for different values of N .

with respect to the number of degrees of freedom, i.e. to the number M of polynomials in TD(w).
Hence, we are lead to the problem of finding a bound for the function w = w(M). Note that the
inverse of such function, M = M(w), is known analytically, M =

(
N+w
N

)
. The function w(M) can

thus be easily computed numerically: it is of course increasing in M and decreasing in N , i.e. the
level w needed to have M terms in the set is lower for higher N , see Figure A.1. In general, using
the quite crude inequality M ≤ ew(1+logN), which has been shown in [71, eq. 25], one can obtain a
bound for e−g̃w, though not sharp, as e−g̃w ≤M−g̃/(1+logN).

1.1.b The inclusions problem

We now consider again the inclusions problem examined in Chapter 2. We recall that for such
problem the diffusion coefficient in (A.1) is given by

a(x,y) = 1 +

N∑
n=1

χn(x)yn, (A.7)

where χn(x) are the indicator functions of the disjoint circular subdomains Dn ⊂ D = [0, 1]2 as
in Figure A.2(a), and yn are independent random variables uniformely distributed in [ymin, ymax].
We will first prove that the TD sets are quasi-optimal sets for such problem (i.e. we can apply
Propostion 3). Then, since the problem is trivially isotropic and hence satisfies Assumption 5,
we will apply Theorem 8 and show that the numerical results obtained for such problem are in
agreement with the predicted convergence rate.

We shall begin by reparametrizing the diffusion coefficient in terms of new random variables
distributed over [−1, 1], so that we can apply the discussion of the previous Section. For the sake
of notation, we will still denote the new variables as yi, i.e. yi ∼ U(−1, 1). The new diffusion
coefficient will be therefore

a(x,y) = 1 +

N∑
n=1

χn(x)
yn + 1

2
(ymax − ymin) + ymin. (A.8)

We can now prove the following lemma on the analyticity region of u, that we denote by Σ.
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Figure A.2: Inclusions problem.

Lemma 9. The solution u to (A.1) corresponding to a diffusion coefficient (A.8) is analytic in the
region

Σ =

N⊗
n=1

Σn, Σn = {zn ∈ C : Re (zn) > T} , (A.9)

with T =
2 + ymax + ymin
ymin − ymax

.

Proof. It has been pointed out in Chapters 2, 3 that the solution of an elliptic problem as (A.1)
is analytic in each direction yn. In particular, having fixed the values of all the random vari-
ables but the n-th, let us write a∗n(x, zn) = a(x, y1, y2, . . . , yn−1, zn, yn+1, . . . , yN ) and u∗n(x, zn) =
u(x, y1, y2, . . . , yn−1, zn, yn+1, . . . , yN ). Such un can be extended in Σn = {zn ∈ C : Re (zn) > T}
where T is computed as the value such that

∃x ∈ D : an(x, T ) = a(x, y1, y2, . . . , yn−1, T, yn+1, . . . , yN ) = 0.

This amounts to

1 +
T + 1

2
(ymax − ymin) + ymin = 0,

whose solution is T = (2 + ymax + ymin)/(ymin− ymax). Note that since the subdomains Dn do not
overlap, an(x, T ) = 0 in Dn only, i.e. T does not depend on the value of any of the other random
variable yi. Thus, the analyticity region of u is the tensor product of the analyticity regions Σn. �

In particular, it is straigthforward to build a polydisc ES and a polyellipse ES inside Σn, (see
Figure A.2(b)). Thus, the discussion of the previous Section can be applied to the inclusion problem,
and we have the following final result:
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Figure A.3: Comparison between estimate (A.6) and the numerical results from Chapter 2. The
rate g = 1.5 has been numerically assessed.

Theorem 10. The Legendre coefficients of the solution of the inclusions problem decay as

up ≤ C(ε)e−(1−ε)g
∑N
n=1 pn , ∀ 0 < ε < 1,

with g = log(T +
√
T 2 − 1), and T = |T |. Hence, the polynomial space PTD(w)(Γ) is the quasi-

optimal space for the Galerkin method, and it holds

‖u− uw‖L2
ρ(Γ;H1

0 (D)) ≤ Copt
Bu
T − 1

e−g̃w, (A.10)

with Bu as in Assumption 1 and g̃ = log T .

Proof. The analyticity region (A.9) for u includes the polydisc ET , hence u satisfies Assumption
1 and we can apply Proposition 3/Remark 4 to estimate the decay of the coefficients up. The
optimality of PTD(w)(Γ) then derives from the discussion in Section 3.3.a, and we can apply Theorem
8 with S = T to estimate its convergence rate. �

We now reconsider the numerical results obtained in Chapter 2 in view of the Theorem just
proved. Figure A.3(a) shows the convergence with respect to w of the L2

ρ(Γ) error for the TD
approximation of ψ1(u), with ψ1 : H1

0 (D) → R linear functional of u (see Section 2.4.a for details
on the definition of ψ1), and shows an optimal correspondence between the numerical results and the
theoretical estimate (A.10) in Theorem 10. Note however that the rate g observed experimentally
is g̃ ≈ 1.5, which is much higher than the theoretically predicted, which amounts to g̃ = log T ≈
0.025. Thus the estimate we provide captures the right behaviour of the error convergence (i.e.
exponential), but is very conservative. Yet, it can still provide the ansatz for a tuned estimate,
which is what we advertise.

Figure A.3(b) shows instead the convergence with respect to M for different polynomial approx-
imations, namely TD, HC and SM (see Section 2.3). As already observed in Chapter 2, the TD
approximation is the most efficient approximation scheme for the problem of interest, and now can
be also understood as the optimal approximation.
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A.2 A convergence estimate for the quasi-optimal sparse grids for
Stochastic Collocation

In this section we derive an a-priori estimate for the optimal set sparse grid. To this end, we start
by briefly recalling the notation needed. We consider a sequence of index sets I(w) ∈ NN+ with the
following properties:

• I(0) = {(1, 1, . . . , 1)},
• I(w) ⊂ I(w + 1),

• ∀ i ∈ I, i− ej ∈ I for 1 ≤ j ≤ N, ij > 1 (admissibility condition, see e.g. Section 3.4).

The sparse grid approximation of u ∈ H1
0 (D)⊗ L2

ρ(Γ) is defined as

uw = SmI(w)[u] =
∑

i∈I(w)

N⊗
n=1

∆m(in)
n [u], ∆m(i)

n [u] = Um(i)
n [u]− Um(i−1)

n [u], (A.11)

where m(0) = 0, m(1) = 1, m(i) < m(i + 1), and Um(in)
n : L2

ρn(Γn) → C0(Γn) is an interpolant
operator over m(in) points along the n-th direction of the stochastic domain. Let us also denote
with WI(w),m the total work of the sparse grid (A.11), i.e. the total number of interpolation points
used by (A.11).

As shown in Chapter 3, the optimal grids are built using nested points. We will focus here to
the choice of Clenshaw–Curtis interpolation points and their corresponding counting function m
defined as

m(i) =


0 if i = 0

1 if i = 1

2i−1 + 1, if i > 1,

(A.12)

see Chapter 3 for details. Following [72], it is useful to introduce the function r(i) = m(i)−m(i− 1),
i.e.

r(i) =


1 if i = 1

2 if i = 2

2i−2 if i > 2.

(A.13)

Next, for each multiindex i ∈ I(w) we introduce the operator ∆m(i) =
⊗N

n=1 ∆m(in) (hierarchical
surplus), and we associate to each of these operators an error contribution, a work contribution and
a profit as follows:

• ∆E(i) =
∥∥∥Sm{J∪i}[u]− SmJ [u]

∥∥∥
V⊗L2

ρ(Γ)
=
∥∥∥∆m(i)[u]

∥∥∥
V⊗L2

ρ(Γ)
, (A.14)

• ∆W (i) = W{J∪i},m −WJ ,m, (A.15)

• P (i) =
∆E(i)

∆W (i)
, (A.16)

where J is any set of indices such that i /∈ J and {J ∪ i} is admissible (see Section 3.4.a for
details).

The first step for the construction of the optimal sparse grid is to order the profits in decreasing
order. For sake of notation we will still denote this sequence as {Pj}j∈N+ , with

Pj ≥ Pj+1. (A.17)
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Note that this sequence may not be unique: in this case, any criterion to select a specific sequence
satisfying (A.17) can be used.

It is useful to introduce a function that assigns to the j-th profit the corresponding multiindex
and its inverse. With a slight abuse of notation, we will denote the former as i(j), and the latter
as j(i), i.e. Pi(j) ≥ Pi(j+1). We will also need to construct a sequence of error contributions and of
work contributions, using the same order as the sequence of profits. We thus obtain the sequences
{∆Ej}j∈N+ and {∆Wj}j∈N+ : note that these sequences will not be ordered in general.

The optimal sparse grid is then built over the family of sets that collect the w most profitable
indices,

I(w) = {i(1), i(2), . . . , i(w)}. (A.18)

We now make the following restrictive assumption:

Assumption 11. Each of the sets in the sequence I(w) is admissible.

Before stating the Proposition we need to introduce some additional auxiliary sequences:

Definition 12.

• {Mj}j∈N+ is the sequence of the sum of the first j work contributions, i.e.

M0 = 0, Mj =

j∑
k=1

∆Wk . (A.19)

In this way the work of the optimal sparse grid (A.18) corresponding to the first w indices
is

WI(w),m = Mw (A.20)

• {∆Ẽk}k∈N+ = ∆E1, ∆E1, ∆E1 . . .︸ ︷︷ ︸
∆W1 times

,∆E2, ∆E2, ∆E2 . . .︸ ︷︷ ︸
∆W2 times

, (A.21)

i.e. ∆ẼMj−1+s = ∆Ej , s = 1, . . . ,∆Wj .

• {P̃k}k∈N+ =
∆E1

∆W1
,

∆E1

∆W1
,

∆E1

∆W1
. . .︸ ︷︷ ︸

∆W1 times

,
∆E2

∆W2
,

∆E2

∆W2
,

∆E2

∆W2
. . .︸ ︷︷ ︸

∆W2 times

, (A.22)

i.e. P̃Mj−1+s = Pj , s = 1, . . . ,∆Wj .

We will also need the following lemma:

Lemma 13. Given a positive decreasing q-summable sequence {aj}j∈N+, for every q > 0 it holds

sup
k∈N+

(
k1/qak

)
≤ ‖a‖`q .

Proof. The thesis follows from the following chain of inequalities, that holds for all k ∈ N+ and for
all q > 0,

kaqk ≤
k∑
j=1

aqj ≤
∞∑
j=1

aqj = ‖a‖q`q .

�

We are now ready to state and proof the main result of this Section.
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Theorem 14. Consider the sparse grid (A.11) built using a family of nested interpolation points
over the set (A.18) containg the w most profitable multiindices, and suppose that Assumption 11
holds. Consider the sequence {Pk}k∈N+ of decreasing ordered profits and assume that it satisfies∑

j>0

P τj ∆Wj

1/τ

<∞ (A.23)

for some 0 < τ < 1. Then the sparse grid error decays at least as

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

ρ(Γ)
≤ τ

1− τ
W

1−1/τ
I(w),m

∑
j>0

P τj ∆Wj

1/τ

. (A.24)

Proof. For a generic sparse grid the following error decomposition holds:

∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

ρ(Γ)
=

∥∥∥∥∥∥
∑

i/∈I(w)

∆m(i)[u]

∥∥∥∥∥∥
V⊗L2

ρ(Γ)

≤
∑

i/∈I(w)

∥∥∥∆m(i)u
∥∥∥
V⊗L2

ρ(Γ)
=
∑
j>w

∆Ej . (A.25)

Next we recast the previous sum of error contributions in terms of the auxiliary sequence P̃k ,

∑
j>w

∆Ej =
∑
j>w

∆Wj∑
s=1

∆ẼMj−1+s

∆Wj
=
∑
k>Mw

P̃k . (A.26)

Observe that (∑
k>0

P̃ τk

)1/τ

=

∑
j>0

P τj ∆Wj

1/τ

.

Thus, using Lemma 13 and the hypothesis (A.23) we get that k1/τ P̃k is a bounded quantity. Indeed,
there holds

sup
k∈N+

(
k1/τ P̃k

)
≤
∥∥∥P̃k∥∥∥

`τ
=

(∑
k>0

P̃ τk

)1/τ

=

∑
j>0

P τj ∆Wj

1/τ

<∞.

We can therefore write, combining (A.25) and (A.26),∥∥∥u− SmI(w)[u]
∥∥∥
V⊗L2

ρ(Γ)
≤
∑
k>Mw

P̃k =
∑
k>Mw

k−1/τk1/τ P̃k

≤ sup
k∈N+

(k1/τ P̃k)
∑
k>Mw

k−1/τ ≤

∑
j>0

P τj ∆Wj

1/τ ∑
k>Mw

k−1/τ .

Finally, we bound ∑
k>Mw

k−1/τ ≤
∫ ∞
Mw

x−1/τdx =
τ

τ − 1
M1−1/τ
w ,

and the proof is concluded by exploiting the fact that Mw = WI(w),m, see eq. (A.20). �
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Figure A.4: Plots for the optimal sparse grid convergence.

Remark 15. We are indeed requiring that {Pk}k∈N+ belongs to a weighted `τ space, whose weights
are the work contributions of the hierarchical surpluses. The decay of the sparse grid error will be
faster if τ is smaller: in particular, Theorem 14 guarantees convergence only if τ < 1.

Remark 16. In the proof we have shown that (A.23) is indeed equivalent to the condition {P̃k}k∈N+ ∈
`τ . Note that {P̃k}k∈N+ is “piecewise constant” by construction, and hence it will not have in gen-
eral the same summability of the profit sequence {Pk}k∈N+: equivalently, one may think of the terms

of {P̃k}k∈N+ as “decaying more slowly” than the terms of {Pk}k∈N+.

We now verify the accuracy of the convergence estimate (A.24). As in Chapter 3, we consider
the model function f = 1

1+c1y1+c2y2
, with c1 = c2 = 0.1. For such function, we first compute the

error and work contributions for the hierarchical surplus in TP (6) = {i ∈ N2
+, max{i1, i2} ≤ 6}

and hence the profits, according to equations (A.14), (A.15), (A.16). The L2
ρ(Γ) norm needed to

compute the error contribution is approximated with a very accurate sparse grid, and we interrupt
the computation when the profits reach 10−17.
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Next, we order the computed profits in decreasing order: note that the induced sequence I(w)
satisfies the admissibility condition, see figure A.4(a). The resulting sequence {Pk}k∈N+ seems to

converge exponentially, see in Figure A.4(b). Next, we build {P̃k}k∈N+ . We can then compute
numerically a crude estimate for τ e.g. by estimating with a least square approach a value for τ

such that sup
(
k1/τ P̃k

)
is bounded, i.e. P̃k ∼ k1/τ , see Figure A.4(c). The estimated value for τ

is τ ≈ 0.10. Such τ safisties condition (A.23). The quantity
∑

j>0 P
τ
j ∆Wj is indeed bounded (its

numerical value is ≈ 21), and thus τ can be used to estimate the convergence rate according to
equation (A.24), which results in approximately 8.50.

Finally, we actually build the sequence of sparse grid using the sequence of sets I(w) and
compare the resulting L2

ρ(Γ) error with the predicted convergence rate. Results are shown in Figure
A.4(d) and suggest that the theoretical rate is quite sharp.

1.2.a The inclusion case

In this section we consider again the inclusions problem, and we apply Theorem 14 to determine
the convergence rate of the quasi-optimal sparse grid for this problem, built taking multi-indices in
descending order according to the estimated profits. To this end, we need to detail the estimates
for the error and the work contribution for the problem at hand, verify Assumption 11 on the
admissibility of the optimal sets and assess the weighted `τ summability (A.23) of the profits. We
will consider a sparse grid built on Clenshaw–Curtis points, whose Lebesgue constant L(i) satisfies

L(i) ≤ 2

π
log(i+ 1) + 1, (A.27)

using the relation m(i) as in equation (A.12) (see e.g. [28, 29] for the Lebesgue constant of the
Clenshaw–Curtis points). We recall that the following estimate holds for the interpolant operator
U i defined in (A.11): ∥∥U i[f ]

∥∥
L∞(Γn)

≤ L(i) ‖f‖L∞(Γn) , f ∈ C0(Γn). (A.28)

As a first step, we need to derive explicit estimates for the work and error contribution. Analo-
gously to what was done in Section 3.4.a, the work contribution of each hierarchical surplus can be
computed as

∆W (i) = W{J∪i},m −WJ ,m =
N∏
n=1

m(in)−m(in − 1) =
N∏
n=1

r(in). (A.29)

As for the error estimate, we use the same estimate as in Section 3.4.a, see equation (3.33), which
can be proved rigorously for the case of the inclusions problem. We thus have the following Lemma:

Lemma 17. For the inclusions problem there holds

∆E(i) ≤ Ce−
∑N
n=1 ĝnm(in−1)

N∏
n=1

Lm(in)
n . (A.30)

Proof. We start by considering again the argument in Section 4.5.c:

∆E(i) =
∥∥∥∆m(i)[u]

∥∥∥
H1

0 (D)⊗L2
ρ(Γ)

=
∥∥∥∆m(i)

[ ∑
p∈NN

upLp
] ∥∥∥

H1
0 (D)⊗L2

ρ(Γ)

=
∥∥∥ ∑
p∈NN

up∆m(i)[Lp]
∥∥∥
H1

0 (D)⊗L2
ρ(Γ)

=
∥∥∥ ∑
p≥m(i−1)

up∆m(i)[Lp]
∥∥∥
H1

0 (D)⊗L2
ρ(Γ)

≤
∑

p≥m(i−1)

‖up‖H1
0 (D)

∥∥∥∆m(i)[Lp]
∥∥∥
L2
ρ(Γ)

.
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Next, using (A.28) and the defintion (A.11) of ∆m(i) we bound the norm of the hierarchical surplus
applied to the Legendre polynomials as

∥∥∥∆m(i)[Lp]
∥∥∥
L2
ρ(Γ)

=
N∏
n=1

∥∥∥∆m(in)[Lpn ]
∥∥∥
L2
ρn

(Γn)
≤

N∏
n=1

∥∥∥∆m(in)[
√

2pn + 1Lpn ]
∥∥∥
L∞(Γn)

≤
N∏
n=1

2Lm(in)
n

√
2pn + 1 ‖Lpn‖L∞(Γn) =

N∏
n=1

2Lm(in)
n

√
2pn + 1.

Recalling estimate (A.4) for the decay of the Legendre coeffcients of the inclusions problem, one
obtains

∆E(i) ≤
∑

p≥m(i−1)

‖up‖H1(D)

N∏
n=1

2
√

2pn + 1Lm(in)
n ≤

∑
p≥m(i−1)

CLeg

N∏
n=1

2e−gnpn(2pn + 1)Lm(in)
n

≤ CLeg
N∏
n=1

∑
pn≥m(in−1)

2(2pn + 1)e−gnpnLm(in)
n

≤ CLeg
N∏
n=1

Lm(in)
n

4
∑

pn≥m(in−1)

e−gnpnpn + 2
∑

pn≥m(in−1)

e−gnpn


≤ ĈLeg

N∏
n=1

Lm(in)
n e−ĝnm(in−1),

for some ĝn < gn and ĈLeg > CLeg (as in Remark 4). �

Thus, to estimate the `τ weighted summability (A.23) of the profits, we are led to investigate
the summability of the sum

∑
i∈NN

N∏
n=1

[(
e−ĝnm(in−1)Ln(m(in))

r(in)

)τ
r(in)

]
, (A.31)

for which we can prove the following proposition.

Lemma 18. The series (A.31) is finite for every τ < 1.

Proof. We start by observing that since the general term of (A.31) is a product we can actually
write as

∑
i∈NN

N∏
n=1

[(
e−ĝnm(in−1)Ln(m(in))

r(in)

)τ
r(in)

]
=

N∏
n=1

∞∑
in=0

(
e−ĝnm(in−1)Ln(m(in))

r(in)

)τ
r(in),

so that indeed we only need to study the summability of

∞∑
in=0

(
e−ĝnm(in−1)Ln(m(in))

r(in)

)τ
r(in). (A.32)

First, we bound the Lebesgue constant. It is enough for our purposes to use the crude bound

Ln(m(i)) =
2

π
log(m(i) + 1) + 1 ≤ 2

π
m(i) + 1 ≤ 2m(i) + 1 ≤ 2(m(i) + 1).
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Next, observe that for i > 2 it holds

2(m(i) + 1)

r(i)
=

2(2i−1 + 1 + 1)

2i−2
=

2i−1 + 2

2i−3
≤ 2i

2i−3
≤ 8.

We can then bound the generic term of (A.32) for i > 2 as(
e−gm(i−1)Ln(m(i))

r(i)

)τ
r(i) ≤ 8τe−τgm(i−1)r(i) = 8τe−τg(2

i−2+1)2i−2.

We can now prove that (A.32) is finite. Indeed, using summation by parts one obtains

∞∑
i=2

8τe−τg(2
i−2+1)2i−2 ≤ 8τe−τg

∞∑
p=1

e−τgpp

=
8τe−τg

2

1

eτg − 1︸ ︷︷ ︸
C

∞∑
p=1

(
e−τg(p−1) − e−τgp

)
p

= C

e−τg +
∞∑
p=1

e−τgp

 = C

(
e−τg +

e−τg

1− e−τg

)
< +∞.

�

Finally, we verify Assumption 11, i.e. that the sequence of multi-indices ordered by decreasing
profit is admissible.

Lemma 19. Let ej be the j-th canonical vector, j = 1, . . . , N . Then, the sequence I(w) of multi-
indices ordered by decreasing profits defined in (A.18), with ∆W (i) as in (A.29) and ∆E(i) as in
(A.30) is such that

P (i + ej) ≤ P (i), ∀ i ∈ NN+ , ∀j = 1, . . . , N,

i.e. I(w) is admissible, provided that for ĝj in (A.30) it holds

ĝj ≥
1

2
log

(
2
π log 6 + 1
2
π log 4 + 1

)
≈ 0.06, for j = 1, . . . , N. (A.33)

Proof. From the definition of profits (A.16), the admissibility condition P (i+ej) ≤ P (i) is equivalent
to

∆E(i + ej)

∆E(i)
≤ ∆W (i + ej)

∆W (i)
.

Given the expression for ∆W , ∆E in (A.29) and (A.30), this is actually equivalent to

e−ĝm(ij)L(m(ij + 1))

e−ĝm(ij−1)L(m(ij))
≤ m(ij + 1)−m(ij)

m(ij)−m(ij − 1)
. (A.34)

We now insert the expression of (A.12) in the right hand side. This results in

m(j) =
m(ij + 1)−m(ij)

m(ij)−m(ij − 1)
=



(ij ≥ 3) =
2ij − 2ij−1

2ij−1 − 2ij−2
=

2ij−1

2ij−2
= 2

(ij = 2) =
m(3)−m(2)

m(2)−m(1)
=

5− 3

3− 1
= 1

(ij = 1) =
m(2)−m(1)

m(1)−m(0)
=

3− 1

1− 0
= 2.



159

so that (A.34) is equivalent to

e−ĝ(m(ij)−m(ij−1)L(m(ij + 1))

L(m(ij))
≤ m(j). (A.35)

We now verify (A.35) for the three different cases ij = 1, ij = 2, ij ≥ 3.

Case ij = 1. Recalling equation (A.27) for the Lebesgue constant and equation (A.12) for m(i)
there holds

L(m(ij + 1))

L(m(ij))
=

L(m(2))

L(m(1))
=

L(3)

L(1)
=

2
π log(4) + 1
2
π log(2) + 1

≈ 1.31.

Next, observe that e−ĝ(m(ij)−m(ij−1) < 1. Therefore (A.35) holds.

Case ij = 2. Similarly to the previous case, it holds

L(m(ij + 1))

L(m(ij))
=

L(m(3))

L(m(2))
=

L(5)

L(3)
=

2
π log(6) + 1
2
π log(4) + 1

≈ 1.13.

Equation (A.35) is therefore equivalent to

e−2gj
2
π log(6) + 1
2
π log(4) + 1

≤ 1,

hence condition (A.33).

Case ij ≥ 3. There holds

L(m(ij + 1))

L(m(ij))
=

2
π log(m(ij + 1) + 1) + 1

2
π log(m(ij) + 1) + 1

=
log(m(ij + 1) + 1) + π

2

log(m(ij) + 1) + π
2

=
log(2ij + 2) + π

2

log(2ij−1 + 2) + π
2

≤
log(2ij+1) + π

2

log(2ij−1) + π
2

=
(ij + 1) log(2) + π

2

(ij − 1) log(2) + π
2

.

Being this function decreasing in ij , it is easy to show that
L(m(ij + 1))

L(m(ij))
≤ 2, ∀ ij ≥ 3.

�

Remark 20. ĝ in (A.33) is related to the size of the analytic continuation region of the solution
u of the inclusion problem (see Lemma 2 and Prop. 3). This is in turn related to the support of
the random variables yi defining the diffusion coefficients inside the inclusions, see Prop. 9 and
Theorem 10.

Remark 21. A closer look at the proof of Lemma 19 reveals that the only case where condition
(A.33) plays a role is for ij = 2. This means that the non-admissibility of the set cannot take place
outside the hypercube {i ∈ NN+ : ij ≥ 3, j = . . . , N}. Therefore, in the asymptotic limit the sets of
the most profitable indices are always admissible, ∀ ĝ > 0.

Collecting results in Lemma 17, Lemma 18 and Lemma 19, we are now in position to apply
Theorem 14 and state the final result on the convergence of the optimal sparse grid method for the
inclusion problem.
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Theorem 22. For a sufficiently large level w, the quasi-optimal sparse grid for the inclusion problem
converges with rate 1− 1/τ for any τ < 1. Under condition (A.33), the result holds ∀w > 0.

Remark 23. The Theorem just stated implies that the convergence of the optimal sparse grid in
the case of the inclusions problem is more than algebraic. This is consistent with the numerical
results obtained in Section 2.4, where a more than algebraic convergence is observed already for the
non optimized standard SM grid with Clenshaw–Curtis abscissae (see e.g. figure 2.3, orange line).
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[5] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone, Stochastic spectral Galerkin and collocation
methods for PDEs with random coefficients: a numerical comparison, Spectral and High Order
Methods for Partial Differential Equations J.S. Hesthaven and E.M. Ronquist eds., Lecture
Notes in Computational Science and Engineering 76 (Springer, 2011) 43–62, Selected papers
from the ICOSAHOM ’09 conference, June 22-26, Trondheim, Norway.

[6] T. Bagby, L. Bos, and N. Levenberg, Multivariate simultaneous approximation, Constr. Ap-
prox. 18 (2002) 569–577.

[7] V. Barthelmann, E. Novak, and K. Ritter, High dimensional polynomial interpolation on
sparse grids, Adv. Comput. Math. 12 (2000) 273–288.

[8] J. Bear, Dynamics of fluids in porous media (American Elsevier Pub. Co., 1972).

[9] J. Beck, F. Nobile, L. Tamellini, and R. Tempone, On the optimal polynomial approximation
of stochastic PDEs by Galerkin and collocation methods, To appear on Mathematical Models
& Methods in Applied Sciences. Also available as MOX-Report 23-2011.

[10] J. Beck, F. Nobile, L. Tamellini, and R. Tempone, Implementation of optimal Galerkin and
Collocation approximations of PDEs with Random Coefficients, ESAIM: Proc. 33 (2011)
10–21.

[11] M. Bieri, R. Andreev, and C. Schwab, Sparse tensor discretization of elliptic spdes, SAM-
Report, 2009-07, Seminar für Angewandte Mathematik, ETH, Zurich, 2009.

[12] K. Bjorlykke and K. Hoeg, Effects of burial diagenesis on stresses, compaction and fluid flow
in sedimentary basins, Mar. and Petrol. Geol. 14 (1997) 267–276.

[13] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Com-
putational Mathematics 15 (Springer-Verlag, 1991).



162

[14] A. T. Buller, P. A. Bjorkum, P. Nadeau, and O. Walderhaug, Distribution of hydrocarbons
in sedimentary basins, Statoil ASA, Res and Techn. Memoir 7 (2005) 1–15.

[15] H.J Bungartz and M. Griebel, Sparse grids, Acta Numer. 13 (2004) 147–269.

[16] R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta numerica, 1998, Acta
Numer. 7 (Cambridge Univ. Press, Cambridge, 1998) 1–49.

[17] C. Canuto, M.Y. Hussaini, A. Quateroni, and T.A. Zang, Spectral methods in fluid dynamics
(Springer-Verlag, 1988).

[18] C. Canuto and T. Kozubek, A fictitious domain approach to the numerical solution of PDEs
in stochastic domains, Numer. Math. 107 (2007) 257–293.

[19] J. Charrier, Strong and weak error estimates for the solutions of elliptic partial differential
equations with random coefficients, INRIA - Rapport de recherche, 7300-version 3, Institut
National de recherche en informatique et en automatique - INRIA, 2011.

[20] A. Cohen, R. DeVore, and C. Schwab, Analytic regularity and polynomial approximation
of parametric and stochastic elliptic PDEs, SAM-Report, 2010-03, Seminar für Angewandte
Mathematik, ETH, Zurich, 2010.

[21] A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best n-term Galerkin approxi-
mations for a class of elliptic sPDEs, Foundations of Computational Mathematics 10 (2010)
615–646.

[22] P.G. Constantine, M.S. Eldred, and E.T. Phipps, Sparse pseudospectral approximation
method, ArXiv repository, item number: arXiv:1109.2936v1, 2011.

[23] G. Dagan, U. Hornung, and P. Knabner, Mathematical modeling for flow and transport through
porous media (Kluwer Academic Publishers, 1991).

[24] G. Dagan and S.P. Neuman, Subsurface flow and transport: A stochastic approach, Interna-
tional Hydrology Series (Cambridge University Press, 2005).

[25] P.J. Davis, Interpolation and approximation (Dover Publications Inc., 1975).

[26] J. Dick and F. Pillichshammer, Digital nets and sequences: Discrepancy theory and quasi-
monte carlo integration (Cambridge University Press, 2010).

[27] A. Doostan, R. G. Ghanem, and J. Red-Horse, Stochastic model reduction for chaos repre-
sentations, Comput. Methods Appl. Mech. Engrg. 196 (2007) 3951–3966.

[28] V. K. Dzjadik and V. V. Ivanov, On asymptotics and estimates for the uniform norms of
the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points, Anal.
Math. 9 (1983) 85–97.

[29] H. Ehlich and K. Zeller, Auswertung der Normen von Interpolationsoperatoren, Math. Ann.
164 (1966) 105–112.

[30] H. C. Elman, C. W. Miller, E. T. Phipps, and R. S. Tuminaro, Assessment of Collocation and
Galerkin approaches to linear diffusion equations with random data, International Journal
for Uncertainty Quantification 1 (2011) 19–33.



163

[31] O. G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann, On the convergence of generalized
polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical Analysis 46
(2012) 317–339.

[32] O. G. Ernst, C. E. Powell, D. J. Silvester, and E. Ullmann, Efficient solvers for a linear
stochastic Galerkin mixed formulation of diffusion problems with random data, SIAM J. Sci.
Comput. 31 (2008/09) 1424–1447.
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[63] M. Loève, Probability theory. I, fourth ed. (Springer-Verlag, 1977).
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[77] A. Nouy, A. Clément, F. Schoefs, and N. Moës, An extended stochastic finite element method
for solving stochastic partial differential equations on random domains, Comput. Methods
Appl. Mech. Engrg. 197 (2008) 4663–4682.
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