

A Stochastic Continuous Cellular Automata Traffic Model
with Fuzzy Decision Rules

POLITECNICO DI MILANO

DEPARTMENT OF MATHEMATICS

DOCTORAL PROGRAMME IN MATHEMATICAL ENGINEERING

Doctoral Dissertation of: Öznur Yeldan

Matricola: 724247

Cycle: XXIII

Supervisor: Prof. Alberto Colorni

Tutor: Prof. Roberto Lucchetti

Tha Chair of the Doctoral Program: Prof. Paolo Biscari

2012

 I would like to dedicate my thesis to my beloved ones, especially...

 to my dad and mom who have believed in me to achieve this task and
 encouraged me all the way since the beginning of my studies;

 to the joy of my life who has been a great source of motivation and
 inspiration with his patience, love and understanding;

 to his family who have taken care of me all the time I was away from
 my parents and supported me for my achievements.

Abstract

Traffic models based on cellular automata are computationally efficient be-

cause of their simplicity in describing complex vehicular behaviors and their

ability of being easily implemented for parallel computing. On the other

hand, the other microscopic models such as car-following models are com-

putationally more expensive, but they have more realistic driver behaviors

and detailed vehicle characteristics. In this dissertation, we propose a hy-

brid between these two categories defining a traffic model based on contin-

uous cellular automata. In this way, we are able to combine the efficiency

which is typical of CA models, with the accuracy of the other microscopic

models. More precisely, we introduce a stochastic continuous cellular au-

tomata traffic flow model where the space is not coarse-grain like in the

Nagel-Schreckenberg kind of models, but it is continuous. The continuity

allows us also to embed naturally a multi-agent system based on fuzzy logic

which is proposed to handle uncertainties in decision making on road traf-

fic. Therefore, we can simulate different driver behaviors and study the

effect of heterogeneity (different composition of vehicles) within the traffic

stream from the macroscopic point of view. We define our model first for

a single-lane road and then we extend the model to the multi-lane case.

The extension is done by a union of interacting single-lane models where

the interaction is given by a transfer operation. We then show that this

model can actually be simulated by a continuous cellular automata. In this

way, we frame the multi-lane model inside the class of continuous cellular

automata. The results obtained by a series of experiments have shown us

that our model is able to reproduce the typical traffic flow phenomena with

a variety of effects due to the heterogeneity of traffic.

Contents

List of Figures iii

1 Introduction 1

1.1 Research Motivation and Objectives . 2

1.2 Outline of the Dissertation . 3

2 The State of the Art 5

2.1 Overview of Traffic Flow Models . 5

2.2 Cellular Automata Traffic Flow Models in Literature 8

2.2.1 Deterministic Models . 9

2.2.2 Stochastic Models . 10

3 Preliminaries 15

3.1 Fuzzy Logic and Fuzzy Systems . 15

3.1.1 Fuzzy Logic and Fuzzy Sets . 15

3.1.2 Fuzzy System Modeling . 19

3.2 Cellular Automata . 22

3.2.1 Some Basic Definitions . 23

3.2.2 First CA Traffic Model Example: The Wolfram 184 Model . . . 25

3.2.3 Second CA Traffic Model Example: The NaSch Model 26

4 A New Approach to Single-Lane CA Traffic Models via CCA 31

4.1 Introduction: Why a Different Model . 32

4.2 Description of the Model . 34

4.3 Fuzzy Decision Modules . 40

4.3.1 Fuzzifier . 41

i

4.3.2 Fuzzy Inference . 41

4.3.3 Defuzzification . 46

5 A Multi-Lane Stochastic CCA Traffic Model 47

5.1 The Update of Stress and the Desire of Lane-Changing 48

5.2 The Lane-Changing Process . 52

5.3 Description of the Multi-Lane Model . 56

6 Simulation and Results 65

6.1 The Simulator ozsim . 65

6.2 Setting the Kinds of Vehicles . 70

6.3 The Experiment Scenarios . 73

6.4 Analysis of the Experimental Results . 80

7 Conclusion and Future Work 97

Appendices 100

A The Python Code of the Simulator 101

B The Implementation with PyCuda 139

B.1 Cuda and PyCuda: An Overview . 139

B.2 PyCuda Code of the Simulator . 139

References 177

ii

List of Figures

2.1 An example of one update of the system of the NaSch model. 12

3.1 An illustration of MFs for the variable “Volume”. 17

3.2 Some common shapes of membership functions. 18

3.3 General structure of a fuzzy rule-based system. 20

3.4 An example of the center-of-gravity defuzzification method. 22

3.5 Common Neighborhoods . 24

3.6 A graphical representation of the local transition function of Wolfram’s

rule 184 . 26

4.1 A representation of the fact that cells represent vehicles 32

4.2 The illustration of the back vehicle, front vehicle and next front vehicle

with respect to the i-th vehicle. 34

4.3 Block diagram of the decision process for the acceleration Ai(t). 37

4.4 The representation of two configurations c and c′. 40

5.1 Inserting a vehicle into a lane with the configuration c. 53

5.2 The configuration of ML of Example 5.3. 61

5.3 The first transfer. 62

5.4 The second transfer. 62

5.5 The third transfer. 63

6.1 A screenshot of the real-time simulator. 71

6.2 A screenshot of the questionnaire. 72

6.3 Fuzzy membership functions for Front Collision Time and Back Collision

Time . 74

iii

6.4 Fuzzy membership functions for Front Distance and Back Distance . . . 75

6.5 Fuzzy membership functions for Velocity and Acceleration 76

6.6 Fundamental diagram of flow with various percentages of long vehicles . 81

6.7 The throughputs according to the various percentages of long vehicles . 82

6.8 One of the typical diagrams of “plot.py” without and with repetitions,

respectively, showing flow, density, average velocity, average distance and

latency graphics with respect to time . 83

6.9 Fundamental diagrams with 100 repetitions 84

6.10 Traffic phases in the fundamental diagram: Free flow, synchronized flow

and wide-moving jam, and the cross-covariance between the flow and

density . 85

6.11 The fundamental diagrams depending on the different average throughputs 86

6.12 The fundamental and the cross-covariance diagrams without and with

obstacle . 87

6.13 The slope in the wide-moving jam phase with the obstacles 88

6.14 The effect of open road tolling on the flow phases with 3 lanes and 4 lanes 90

6.15 The absence of wide-moving jam phase in the case where the vehicles

entering are less than the exiting ones 91

6.16 The absence of the heterogeneity in the synchronized flow phase in the

case where the vehicles entering are less than the exiting ones 91

6.17 The scatter plots of the fundamental diagrams showing the metastability

phenomenon in transitions between phases 93

6.18 An example of a metastable state and a back propagation wave effect . 94

6.19 Latency in different situations . 96

iv

List of Algorithms

1 The pseudo-code for the one time step evolution of the local transition

function F of the deterministic NaSch CA model. 28

2 The pseudo-code for the one time step evolution of the local transition

function F ′ of the stochastic NaSch CA model. 30

3 The pseudo-code for evaluating Eval(L,R). 51

4 The pseudo-code for the one time step evolution of the multi-lane model. 57

5 The pseudo-code to compute the local transition function ∆. 59

v

vi

Chapter 1

Introduction

In recent decades, growing traffic congestion and increased number of accidents have

become one of the most prior problem of the society. In populated areas the existing

road networks are not able to satisfy the demand. The construction of new roads is

usually not a solution and often is not socially desired. These reasons together with

the great economical costs lead to new traffic management and information systems.

Traffic models are thus fundamental resources in the management of road network.

There is a wide range of alternative modeling approaches now available which can be

roughly divided into three categories: macroscopic, mesoscopic and microscopic models

depending on the level of detail. Microscopic models are promising models for their

ability to simulate detailed phenomena (each individual vehicle) in traffic which yields

to an accurate representation of traffic flow, and macroscopic ideas can be studied

with microscopic models. On the other hand, these models have the disadvantage of

the computational requirements and their associated costs (e.g., parallel computing)

requiring modern computer power. This is likely the reason microscopic models were

not used till recent decades. However, as computers increased in power, microscopic

modeling became significantly convenient.

Among microscopic traffic flow models, cellular automata (CA) models have the

ability of being easily implemented for parallel computing because of their intrinsic

synchronous behavior. However, CA models are lack of the accuracy of other micro-

scopic traffic models such as the time-continuous car-following models. This lack is

compensated by their simplicity which make them numerically very efficient and can

be used to simulate large road networks in real-time or even faster.

1

In this dissertation, we aim to give a completely new CA traffic model which gets

closer to time-continuous car-following models introducing some continuity without

losing the computational advantages which are typical of CA models. All the previ-

ously introduced CA traffic models have the property of representing the space of road

discretely as cells. Therefore, to define a CA model where the space is a continuous

variable we have to abandon this idea and embrace a new philosophy where we assume

that cells represent vehicles. This gives the immediate advantage of having less cells

to compute compared to the previous CA traffic models. Moreover, introducing the

continuity in space gives us the possibility to refine the microscopic rules that govern

the traffic dynamic using fuzzy reasoning (fuzzy logic) to mimic different real-world

driver behaviors.

Human decisions imply uncertainties since most of our behaviors have fuzzy nature

rather than crisp, and the application of fuzzy set theory is a useful tool to handle

uncertainties. All parameters of the decision process of the drivers are modeled indi-

vidually by means of fuzzy subsets, thus various types of drivers (kinds of vehicles in

our case) can be taken into consideration. This gives us the possibility to study how

the heterogeneity of drivers can influence the traffic macroscopically.

1.1 Research Motivation and Objectives

Our principal aim is to present a new approach to cellular automata traffic flow models

for single-lane and multi-lane roads, in order to simulate the effect of heterogeneity of

driver behaviors in traffic in an efficient way, where the heterogeneity is obtained via

fuzzy decision rules. The main concerns that we would like to face in this dissertation

are:� Is it possible to define a stochastic single-lane CA traffic model where,

– The physical variables defining a vehicle such as position and velocity, are

continuous.

– The number of cells is related only on the number of vehicles to have a

more efficient model in terms of computational time. Indeed, in the Nagel-

Schreckenberg (NaSch) model and in the variants of this model (see Section

2

2.2.2), there are in general cells representing empty pieces of road. These

cells are in any case computed even if they are not occupied by a vehicle.

– It is implemented the driver behavior into the model via fuzzy decision rules.

– The neighborhood is a classic one such as von Neumann neighborhood, etc.

(see Section 3.2). In the NaSch-type models the neighborhood is not of this

form and it depends on the speed limit (see Section 3.2.3). Note that the

smaller the neighborhood is, the less cells to take into account in the update

of each cell state and so less computational time.� Is it possible to extend this stochastic single-lane CA traffic model to a multi-

lane one. The question is non-trivial since it is lost the cell-space correspondence

which is typical of the NaSch-type models.

The final objectives that we consider in Chapter 6 are;� Analyzing the real-time simulation results to see which traffic phenomena are

observed, and the interactions of a big amount of vehicles with different types,

i.e., examining the dynamic structure of the traffic stream.� Examining some macroscopic variables such as the flow and the density of the

multi-lane traffic road with a variety of different initial conditions (scenarios)

given, to give a first test of how the model reacts.

1.2 Outline of the Dissertation

The dissertation is organized as follows:

Chapter 2 We present the state of the art. An overview of traffic flow theories in-

cluding microscopic, macroscopic and mesoscopic models are briefly introduced.

Particular attention is devoted to the deterministic and stochastic cellular au-

tomata traffic flow models in literature.

Chapter 3 We give some basic definitions and some preliminaries on fuzzy logic, fuzzy

system modeling and cellular automata. We also provide a formal definition of

two well-known CA traffic models: Wolfram and Nagel-Schreckenberg.

3

Chapter 4 We give the reasons of introducing a new traffic flow model, and then we

describe our stochastic continuous CA single-lane traffic model via fuzzy decision

rules in detail.

Chapter 5 We extend our model to design a stochastic continuous CA traffic model

for multi-lane roads where we introduce lane-changing rules. We also prove that

this model can be simulated by a continuous cellular automata, framing this

model into the class of continuous CA models.

Chapter 6 We first give a general description of the code implemented in Python 2.7

(see Appendix A), then we describe the scenarios of the experiments we have

performed. Finally, we comment the results obtained by the experiments from

the usual traffic phenomena point of view.

Chapter 7 The last chapter is devoted to draw the conclusions and it is given the

recommendations for further studies.

4

Chapter 2

The State of the Art

In this chapter, we focus on the different traffic flow models that exist in literature.

There exits several methods to discriminate between the families of models based on

whether they operate in continuous or discrete time, whether they are deterministic or

stochastic, or depending on the level of detail. More information can be found in [28].

In Section 2.1, we present an overview that is based on the discriminating according to

the level of detail, where microscopic models have the lowest level of aggregation and

the highest level of detail, macroscopic models have the highest level of aggregation

and the lowest level of detail, and mesoscopic models have a high level of aggregation

and a low level of detail.

2.1 Overview of Traffic Flow Models

As we mentioned before, traffic flow models can be broadly categorized into microscopic,

macroscopic and mesoscopic in terms of level of detail and process representation.� Microscopic traffic flow models simulate the motion of individual vehicles, i.e., the

way drivers behave in traffic stream through a system. Microscopic models are

in general created using ordinary differential equations, with each vehicle having

its own equation. They are typically functions of position, velocity, and accelera-

tion. In other words, they consider the features, characteristics and interactions

between individual vehicles within a traffic stream, such as:

– Car-following [7, 10, 27], lane-changing [18, 54, 55] and gap-acceptance mod-

els [22, 46],

5

– Optimal velocity models [3],

– Psycho-physiological spacing models,

– Traffic cellular automata models [37, 59],

– Models based on queueing theory.

The biggest advantage of microscopic models is the ability to study individual

vehicle motion. This feature gains importance because of the fact that each

driver drives in a different manner. Macroscopic ideas like flow and density can

also be studied with microscopic models. Furthermore, microscopic traffic flow

models can yield more detailed and accurate representations of traffic flow. The

ability to simulate traffic behavior with high accuracy is a benefit but also a

weakness. In order to gain such a high level of accuracy, microscopic simulation

models require big amounts of roadway geometry, traffic control, traffic pattern,

and driver behavior data. Providing this amount of data can limit users to model

smaller networks than those that can be modeled in macroscopic and mesoscopic

analysis. The required input data also causes computational intensiveness and

in general makes them not suitable for real-time implementation. An important

disadvantage of microscopic models is that one ordinary differential equation is

required for each vehicle. They are not appropriate to use in case of extreme

conditions. Therefore, microscopic models become computationally expensive

with large systems of equations, requiring modern computer power to make them

convenient. However, as computers increased in power and decreased in cost,

microscopic models have recently gained more importance and used in simulating

traffic on the level of cities and freeway networks.� Macroscopic traffic flow model is a mathematical model that uses aggregate data

to describe the behavior of large numbers of vehicles in terms of flow, density and

speed of a traffic stream, such as:

– The continuum approach,

– The Lighthill, Whitham, Richards model (the LWR model), is based on

a scalar, time-varying, non-linear, hyperbolic partial differential equation.

One of its basic assumptions is that velocity depends on traffic density, so it

uses the resemblance of vehicles in traffic flow to particles in a fluid [35, 49],

6

– The Aw and Rascle Model (the AR model) is a more recent model that

attempts to move away from a fluid-flow based model. The authors argue

that the older macroscopic models have held too closely to the fluid dynamic

approach [2],

– The H. Michael Zhang model (the Zhang Model) moves completely away

from fluid behavior. The Zhang Model implements a second equation derived

from a microscopic model, which establishes a macro-micro link [65].

Macroscopic models are based on continuummechanics and typically require fluid-

dynamic models. In macroscopic approach, the individual vehicle manoeuvres,

such as lane-changing, are usually not explicitly represented. The primary ad-

vantage of macroscopic models is that they have relatively simple calculations

when compared to microscopic models. While the equations model density, flow,

and average velocity, only a small number of different parameters are required.

A disadvantage of a macroscopic model is the loss of small details or dynam-

ics that can be modeled with microscopic models, since in macroscopic models

one does not distinguish and study individual vehicles. Instead a “coarse-grained

fluid-dynamical description in terms of density and flow is used. Traffic is then

viewed as a compressible fluid formed by the vehicles. Density and flow are re-

lated through a continuity equation. Some of the existing macroscopic models

have been found to exhibit instabilities in their behavior and often do not track

real traffic data correctly.� Mesoscopic traffic flow model is a combination of micro- and macroscopic mod-

eling, i.e., at an intermediate level of detail, vehicles are modeled individually as

in microscopic modeling, but governed by rules similar to those seen in macro-

simulations. The most well-known mesoscopic flow models are gas-kinetic traffic

flow models in which driver behavior is explicitly considered.

Mesoscopic modeling is appropriate for larger networks when computation re-

sources must be managed effectively and some level of detail is still needed. In

terms of vehicle and driver behavior, mesoscopic simulation takes a higher-level

view than that seen with microscopic modeling. Vehicles are modeled variously

as joining packets, cells or individually in making their way around the road

network.

7

For more detailed information on traffic flow models, an extensive overview is available

in [36].

2.2 Cellular Automata Traffic Flow Models in Literature

In traffic flow modeling, microscopic traffic simulation has always been regarded as a

time consuming, complex process involving detailed models that describe the behavior

of individual vehicles. A real progress in the study of traffic has obtained only with

introducing models based on cellular automata. The main advantages of CA are;� being powerful tools to implement on computers,� providing a simple physical representation of the system,� being easily modified to deal different aspects of traffic.

A cellular automaton is a collection of cells (sites) on a grid of specified shape

(lattice) that evolves through a number of discrete time steps according to a set of

local rules based on the states of neighboring cells. Cellular automata models are

capable of capturing micro-level dynamics and relating these to macro-level traffic flow

behavior. These models are conceptually simple, thus it can be used a set of simple

rules to simulate a complex behavior. The mathematical concepts of CA models were

first introduced by John von Neumann in 1948 while trying to develop an abstract

model of self-reproduction in biology [56]. He was working on the conception of a

self-reproductive machine, called “kinematon”, relying on A. Turing’s works. In the

early 1950’s, the physical structure of a cellular automaton was developed with the

suggestions of a mathematician Stanislaw Ulam. Ulam was interested in the evolution

of graphic constructions generated by simple rules. The base of his construction was a

two-dimensional space divided into “cells”, a sort of grid. Each of these cells could have

the states either ‘on’ or ‘off’. Starting from a given pattern, the following generation

was determined according to neighborhood rules. For example, if a cell was in contact

with two ‘on’ cells, it would switch on too, otherwise it would switch off. He noticed

that this mechanism permitted to generate complex and graceful figures and these

figures could, in some cases, self-reproduce. Ulam introduced to von Neumann the

concept of “cellular spaces” to build his self-reproductive machine and therefore to

8

design his universal constructer. In 1970s, CA models entered in a major direction

called “simulation games” with one of the most famous application, called “Game of

Life” by John Conway, [5, 20]. With the use of powerful computers, these models can

outline the complexity of the real world traffic behavior and produces clear physical

patterns that are similar to those we see in everyday life.

There are several researches on CA multi-lane traffic flow models. The two-lane

or multi-lane traffic simulations using CA and lane-changing rules can be found in

[32, 41, 44, 50, 57].

In the following sections, we will give a brief information about the deterministic

and stochastic CA traffic models in literature. For a more general review see [37]. Note

that throughout this dissertation, abbreviation CA refers to both cellular automata

(plural) and cellular automaton (singular).

2.2.1 Deterministic Models

A basic one-dimensional CA model for highway traffic flow was first introduced by

Wolfram, where he gave an extensive classification of CA models as mathematical

models for self-organizing dynamic systems [16, 61]. It is also called an elementary

cellular automaton (ECA). In this deterministic model, a road is defined as a one-

dimensional array which has a local neighborhood of three cells wide and therefore there

are 22
3

= 256 different local rules possible which are classified by Wolfram around 1983.

One of these rules is called Rule 184, derived from Wolfram’s naming scheme which is

based on the representation of how a cells state evolves in time, depending on its local

neighborhood [60]. The rules are governing dynamics of particles (vehicles)1 and each

cell has a binary state where 0 corresponds an empty cell and 1 corresponds to a cell

occupied by a vehicle. More specifically, the state of each cell is entirely determined

by the occupancy of the cell and its two nearest neighbors. The maximum speed is 1

cell/timestep, therefore, during the motion each vehicle can be at rest or move to the

next neighbor side, clearly only if this cell is empty to avoid collisions. The positions

are updated synchronously in successive iterations (discrete time steps) in the following

way:

1If we interpret each cell in Rule 184 as containing a particle, these particles behave in many ways

similarly to vehicles in a single lane of traffic. Traffic models such as Rule 184 and its generalizations

that discretize both space and time are commonly called particle-hopping models [42].

9

Acceleration and Braking:

vi(t) → min(di(t− 1), 1).

Vehicle motion:

xi(t) → xi(t− 1) + vi(t).

where vi is the speed and xi is the position of the i-th vehicle, and di represents the

distance between the i-th and its front vehicle. The second rule is not actually a “real”

rule, it is given just to advance the vehicles in the system.

Wolfram showed that even these simplest rules are capable of emulating complex

behavior and he related cellular automata to all disciplines of science [61].

The Rule 184 (R184) ECA is widely used as a prototype of deterministic models of

traffic flow. In 1996, Fukui and Ishibashi introduced a generalization of the this model

[19], which has a deterministic and a stochastic version (see Section 2.2.2). In this

CA model, the maximum speed is increased from 1 to vmax cells/sec (one time step

is assumed to be 1 second), and vehicles can accelerate instantaneously to the highest

possible speed if there are vmax or more empty sites in front of them.

2.2.2 Stochastic Models

In 1992, Nagel and Schreckenberg [43] proposed a traffic simulation model for the de-

scription of single-lane highway traffic using CA, which is a variant of R184. This model

is the first nontrivial traffic simulation model based on CA. In the literature, there are

many papers analyzing this model in details such as [42, 47, 51, 52, 53]. Moreover, there

are many traffic flow models formulated based on the Nagel-Schreckenberg approach

and modified the model for better simulations such as [6, 9, 17, 25, 38, 48, 64].

Nagel-Schreckenberg (NaSch) model is a time-discrete and a space-discrete model.

The traffic road is divided into cells of 7.5 m and it is defined on a one-dimensional

array of L sites with closed (periodic) boundary conditions. Each cell may either be

occupied by a vehicle or be empty. All vehicles are of the same size and each of them

is characterized by its position (cell number) and its velocity (a discrete value between

zero and a fixed maximum velocity, vmax). The velocity is expressed as the number of

cells that a vehicle advances in one time step which is assumed to be 1 second. In the

original model vmax is assumed to be 5 cells/sec, which corresponds with the velocity of

10

5× 7.5 = 37.5 m/s (135 km/h). Every vehicle has the same target velocity vmax. Each

update of the movements of the vehicles in this model is determined by four consecutive

rules that are performed in parallel to each vehicle at each second as following:

Let us denote the velocity of the n-th vehicle as vn, the distance between n-th

vehicle and its preceding vehicle as (∆x)n, which is considered as the distance from

front bumper to front bumper.

Acceleration: If vn has not reached to vmax and if the distance (∆x)n is larger than

vn + 1, then the velocity is increased by 1. In symbols,

vn → min(vn + 1, vmax).

Deceleration: If the distance (∆x)n is less than or equal to vn, the velocity is de-

creased to (∆x)n − 1 (the gap between two vehicles). In symbols,

vn → min(vn, (∆x)n − 1).

Randomization: With a probability p, the non-zero velocity of each vehicle is de-

creased by 1. In symbols,

vn → max(0, vn − 1) with probability p.

Vehicle motion: Each vehicle is advanced the number of cells equals to the velocity

that they have been assigned by the above steps of the model, in other words

the position of each vehicle is updated according to the velocity calculated by the

preceding rules. In symbols,

xn → xn + vn.

The acceleration step is given by the attempt to drive as fast as possible, and the

possible acceleration is 1 cell/s2 (corresponding to 7.5 m/s2) for all vehicles. The de-

celeration step is introduced to avoid collisions which means that a vehicle cannot move

over or pass the position of the front vehicle with the distance (∆x)n. The random-

ization step is introduced to have an additional deceleration of 1 with the probability

of p, see Figure 2.1 for an illustration showing how the cells’ states evolve in one time

step where it is also seen the effect of randomization step (recall that this model has

periodic boundary conditions, so a vehicle reaches the end of the road enters from the

11

beginning part). The randomization is due to some driver behaviors such as; choosing

not to reach to maximum speed, additional speed losing occurred by an over-reaction

at braking, keeping a too large distance to the front vehicle, a delay in the accelera-

tion process caused by stopping in congestion or a sudden deceleration by distraction,

which are all realistic human reactions in traffic. The NaSch model would be completely

deterministic without this randomization step.

Figure 2.1: An example of one update of the system of the NaSch model. -

Fukui and Ishibashi [19] also introduced a stochastic one-dimensional CA traffic

model (the FI model). The FI model differs from the NaSch model in that only the

vehicles driving at the highest possible speed of vmax cells/sec has a probability of

slowing down. More precisely, the stochastic delay is not applied to slower cars since

they are already slow. The two models are identical for vmax = 1 cell/sec.

Wang et al. [58] proposed a one-dimensional CA traffic model of high speed vehicles

with the FI-type acceleration for all vehicles and the NaSch-type stochastic delay only

for the vehicles following the trail of the vehicle ahead, which means that only the

vehicles with spacing ahead smaller than the speed limit may be delayed.

Benjamin et al. [4] developed another model (the BJH model) which is an extension

of the NaSch model. In the BJH model, drivers have a possibility of starting slowly

(starting with some delay) when they start to accelerate from the situation of being

stopped. This can arise from a driver’s loss of attention as a result of having been stuck

in the queue occurred by traffic congestion. This model introduces a probability pslow

to simulate it stochastically. The pslow is the “probability of starting slowly” from a

static situation. When the velocity of a vehicle is 0 and the distance with the front

12

2/figures/nasch.eps

vehicle is long enough, this vehicle stays at velocity 0 on this time step with probability

pslow and accelerates to 1 on the next time step. On the other hand, this vehicle may

accelerate normally with probability 1−pslow. This rule is called a “slow-to-start” rule.

Clarridge and Salomaa [13] proposed a “slow-to-stop” rule, which is decelerating

before the traffic congestion to avoid collisions, and added the new rule into the BJH

model. They observed that the vehicles in the previous models have an unrealistic

behavior when approaching a traffic congestion. If a driver has a vehicle in his front

with the velocity 0, then this driver may drive up to the front at velocity vmax only to

brake down to velocity zero in one time step in the cell right behind the front vehicle.

Therefore, to make it more realistic, they suggested the addition of a “slow-to-stop”

rule which causes drivers to go slower when approaching congestions since drivers would

slow down much more before where a small congestion is visible from a distance. When

Clarridge and Salomaa used this rule in the BJH model, they demonstrated that there

were fewer long congestions with many vehicles at a complete stop, and instead there

appear to be many slowdowns to avoid these situations, which is more realistic than

before.

Note that in all these models that simulate traffic road with CA, the cells represent

the space as it is in the NaSch model, so from now on we call them as “NaSch-type”

models.

13

14

Chapter 3

Preliminaries

3.1 Fuzzy Logic and Fuzzy Systems

In daily language, there is a great deal of imprecision, or we can say “fuzziness” such

as the statements: “He is tall” or “He is young”. The classifications, e.g., healthy,

large, old, far, cold, are fuzzy terms in the sense that they cannot be sharply defined.

In other words, these are the statements that are uncertain and imprecise. When we

speak of the subset of healthy people in a given set of people, it may be impossible

to decide whether a person is in this subset or not. We can give a yes-or-no answer,

but there may be loss of information since the degree of healthiness is not taken into

consideration. At this point, the theory of fuzzy concept becomes an important tool in

practical applications.

The mathematical modeling of fuzzy concepts was firstly introduced by Zadeh in

1965, [62], by using the notion of partial degrees of membership, in connection with

the representation and manipulation of human knowledge automatically. Since then,

successful applications of fuzzy set theory have been developed [31].

3.1.1 Fuzzy Logic and Fuzzy Sets

Fuzzy logic is a logic that aims to provide the structure for approximate reasoning

using imprecise propositions based on fuzzy set theory, in a way similar to the classical

reasoning using precise propositions (that are either true or false) based on the classical

logic (also called a two-valued logic). In the classical reasoning, the deductive inferences

are precise such as the following example:

15

i) Everyone who is 45 years old or younger are young.

ii) Jane is 45 years old and Jack is 46 years old.

iii) Jane is young but Jack is not.

This is a very precise inference that is correct in the sense of the two-valued logic, but

there are some other inferences that cannot be handled by the classical reasoning using

two-valued logic such as:

i) Everyone who is 25 to 45 years old is young but if a person is 24 years old or

younger then that person is very young; everyone who is 46 to 80 years old is old

but if a person is 81 years old or older then that person is very old.

ii) Jane is 45 years old and Jack is 46 years old.

iii) Jane is young but not very young; Jack is old but not very old.

In order to deal with such imprecise inference, we should consider an approximate

reasoning such as fuzzy logic which allows the imprecise linguistic terms (properties)

such as: “old”, “high”, “fast”, “many”, “few”, where it is required to express the degree

of truth by means of belonging concept.

A first attempt to give different degree of truth was developed by Jan Lukasiewicz

and A. Tarski formulating a logic on n truth values where n ≥ 2 in 1930s. This logic

called n-valued logic differs from the classical one in the sense that it employs more than

two truth values. To develop an n-valued logic, where 2 ≤ n ≤ ∞, Zadeh modified the

Lukasiewicz logic and established an infinite-valued logic by introducing the concept of

membership function.

Let X be a classical set of objects, called the universe, whose generic elements are

denoted by x. An ordinary subset A of X is determined by its characteristic function

χA from X to {0, 1} such that,

χA(x) =

{

1 if x ∈ A,
0 if x /∈ A.

In the case that an element has only partial membership of the set, we need to generalize

this characteristic function to describe the membership grade of this element in the set.

Note that larger values denote higher degrees of the membership. For a fuzzy subset

16

A of X, this function is defined from X to [0, 1] and called as the membership function

(MF) denoted by µA, and the value µA(x) is called the degree of membership of x in

A. Thus we can characterize A by the set of pairs as following:

A = {(x, µA(x)), x ∈ X}.

Figure 3.1: An illustration of MFs for the variable “Volume”. -

Figure 3.1 illustrates a characteristic example of a MF for the representation of

traffic flow through employing three different properties, i.e., “Low”, “Medium” and

“High”, to describe the variable “Volume”. Each fuzzy set is uniquely defined by

a membership function. In literature there are several frequently used membership

functions such as: triangular membership function, Gaussian membership function,

trapezoidal membership function and discrete membership function (see Figure 3.2).

For the purpose of describing the fuzzy logic mathematically we need to generalize

also the usual Boolean operators. Let X be the universe set and A be a fuzzy set

associated with a membership function µA : X → [0, 1]. If y = µA(x0) is a point in

[0, 1], representing the truth value of the proposition “x0 is A”, then the truth value

of the proposition “x0 is not A” is given by 1 − µA(x0). Therefore, we have the fuzzy

set ∼ A with membership function µ∼A = 1 − µA for “not being A”. Let A,B two

17

3/figures/fig0.eps

Figure 3.2: Some common shapes of membership functions. -

linguistic terms on the universe X, and let x, y ∈ X. Similar to Boolean logic, in fuzzy

logic we are able to give a truth value for the proposition “x is A” AND “y is B” by

taking the minimum of the truth values of the propositions “x is A”, “y is B”. In this

way we can represent the proposition “x is A” AND “y is B” as the fuzzy set A ∧ B

with the membership function depending on the two variables x, y defined by,

µA∧B(x, y) = min{µ(x), µ(y)}.

We can define also the other logical operators “or”, “implication” and “equivalence” as

follows:

µA∨B(x, y) = max{µA(x), µB(y)}

µA⇒B(x, y) = min{1, 1 + µB(y)− µA(x)}

µA⇔B(x, y) = 1− |µA(x)− µB(y)|

There are many other ways to define the membership functions of these operators (See

[11]). For instance for the ⇒ operator one can define,

µA⇒B(x, y) = min{1, 1 + µB(y)− µA(x)}

µA⇒B(x, y) = max{min{µA(x), µB(y)}, 1 − µA(x)}

µA⇒B(x, y) = max{1− µA(x), µB(y)}

18

3/figures/fig7.eps

µA⇒B(x, y) =

{

1 if µA(x) ≤ µB(y),
µB(y)
µA(x) if µA(x) > µB(y).

“Goguen’s formula”

It is not difficult to see that all these formulae are compatible with Boolean logic in

the sense that if A,B are Boolean properties µA⇒B(x, y) is the usual truth table for

the operator ⇒.

3.1.2 Fuzzy System Modeling

A fuzzy system is a system where inputs and outputs of the system are modeled as

fuzzy sets or their interactions are represented by fuzzy relations. A fuzzy system can

be described either as a set of fuzzy logical rules or a set of fuzzy equations.

Several situations may be encountered from which a fuzzy model can be derived:� a set of fuzzy logical rules can be built directly;� there are known equations that can describe the behavior of the process, but

parameters cannot be precisely identified;� too complex equations are known to hold for the process and are interpreted in

a fuzzy way to build, for instance a linguistic model;� input-output data are used to estimate fuzzy logical rules of behavior.

The basic unit for capturing knowledge in many fuzzy systems is a fuzzy IF-THEN

rule. A fuzzy rule has two components: an IF-part (referred to as the antecedent) and

a THEN-part (referred to as the consequent). The antecedent and the consequent are

both fuzzy propositions. The antecedent describes a condition, and the consequent

describes a conclusion that can be drawn when the condition holds.

Consider the black-box vision of an input-output system where we assume that

the internal structure of the system is unknown but qualitative knowledge about its

behavior is available with the form of a collection of rules involving fuzzy concepts.

These rules are presented as an IF-THEN form as following:

Let A1, ..., An and B be fuzzy subsets with membership functions µA1
, ..., µAn and

µB , respectively. A general fuzzy IF-THEN rule has the form,

“IF x1 is A1 AND...AND xn is An THEN y is B” (3.1)

19

Fuzzy systems operating with these rules are called as Fuzzy Rule-Based Systems

(FRBS). There are two main types of these systems: the Mamdani system [15, 39, 40]

which we consider in the fuzzy IF-THEN rule 3.1 and the Takagi–Sugeno–Kang (TSK)

system [14]. The TSK system is introduced to reduce the number of rules required

by the Mamdani model. The main difference between the Mamdani and TSK fuzzy

systems lies on the fact that the consequent are fuzzy and crisp sets, respectively. In

other words, in the consequent part of the TSK system, it is used a function (equation)

of the input variables which results with a crisp value.

Figure 3.3: General structure of a fuzzy rule-based system. -

In our model, we use a Mamdani type FRBS to try to mimic human behavior in the

driving process. Therefore, we consider a vehicle like a black-box receiving inputs from

the environment and responding using the variable “acceleration” which we consider as

the unique output of the “vehicle system”. From the intuition behind the basic behavior

of drivers, we derive the fuzzy IF-THEN rules described in Section 4.3. Thus our aim

is to try to obtain this output by modeling the “vehicle system” with a Mamdani fuzzy

system described by these rules. There are three steps involved in the design of a

Mamdani model (see Figure 3.3):

Step 1: The Fuzzifier Module The input data of a fuzzy logic system are a set of

crisp values. The function of the fuzzifier is to transform these crisp values into

a set of fuzzy values. For example, recall the fuzzy rule defined in 3.1,

“IF x1 is A1 AND...AND xn is An THEN y is B”

where x1, . . . , xn are the variables representing the n inputs and A1, . . . , An are

n fuzzy sets with membership functions µA1
, . . . , µAn . If the fuzzy system re-

ceives the values x̄1, . . . , x̄n as input, the task of the fuzzifier is to calculate

20

3/figures/fig8.eps

µA1
(x̄1), . . . , µAn(x̄n). The membership of each fuzzy input variable is used in

evaluating the weights of the rules.

Step 2: Fuzzy Inference Module Fuzzy inference is the key component of the fuzzy

logic system. Using the degrees of membership determined during fuzzification,

the rules are evaluated according to the fuzzy logic AND operation defined in Sub-

section 3.1.1. Consider the fuzzy rule defined in 3.1 with inputs x̄1, . . . , x̄n, we can

associate to this rule the following weight representing the degree of “fulfilment”:

µA1∧...∧An(x̄1, . . . , x̄n) = min{µA1
(x̄1), . . . , µAn(x̄n)}

The output of the inference module is a fuzzy set that is some clipped version

of the output fuzzy set. The height of this clipped set is µA1∧...∧An(x̄1, . . . , x̄n),

hence we essentially cut off from the membership function µB the subgraph of the

points whose ordinates are greater or equal to the height µA1∧...∧An(x̄1, . . . , x̄n).

After collecting all these fuzzy outputs for each rule, we need to combine them to

obtain a crisp value. Note that it is possible to elaborate the information more

by giving some extra weights for each rule.

Step 3: Defuzzification Defuzzification is a mathematical process used to convert a

fuzzy set or fuzzy sets to a crisp value (output). Fuzzy sets generated by the fuzzy

inference module must be somehow mathematically combined to give one single

number as the output of a model. A commonly used defuzzification method to

evaluate the crisp output is the center-of-gravity (COG) method (see Figure 3.4),

for more detail see [8]. There are several common defuzzification techniques such

as the weighted average formula (WAF), the center-of-area, maxima methods,

etc., (see [1]). However, Zadeh [63] pointed to the problem that different defuzzi-

fications have different relative performance measures with different benchmark

tests, and there is no general method which can gain satisfactory performance

in all conditions. For instance, the COG method is computationally difficult for

complex membership functions since it is working on the area of the aggregated

output fuzzy set and as a consequence it requires integral evaluations. However,

we would like to use a simple method that is less computationally time consuming

so we introduce a new defuzzification method similar to the WAF in Section 4.3.

21

Figure 3.4: An example of the center-of-gravity defuzzification method. -

3.2 Cellular Automata

A cellular automaton represents a discrete dynamic system consisting of a lattice of

cells that change their states depending on the states of their neighbors, according to

a local update rule. Formally, a CA consists of the 4-tuple

(L, S,N, f)

where:� L is a discrete lattice,� S is a (finite) set of cell states. In literature, the cellular automata where S is

an infinite set are referred as continuous cellular automata (CCA) or couple map

lattices (CML).� N is the neighborhood, which is a function from the lattice to the set of subsets of

the lattice L of dimension m for some fixed integer m ≥ 0, i.e., N : L → Pm(L).� f : Sm → S is the local update rule (local transition function).

22

3/figures/figCOG.eps

Frequently, the lattice is a finite or infinite discrete regular grid of cells on a finite

number of dimensions. Each cell is defined by its state and by its discrete position in the

lattice. Time is also discrete, so the cells change their states synchronously at discrete

time steps. The future state of a cell (at time t+1) is a function of the present state (at

time t) of a finite number of cells surrounding the observed cell called the neighborhood

(N). In other words, the next state of each cell depends on the current states of the

neighboring cells. The neighboring cells may be the nearest cells surrounding the cell,

but more general neighborhoods can also be specified. Although CA neighborhoods

in general may be defined arbitrarily, for the CA we will examine, the same relative

neighborhood is defined for each cell. For instance, if the neighborhood of one cell

consists of the two immediately adjacent cells, then this is also true for all other cells.

Such CA are called as homogeneous. The instantaneous situation (the configuration,

see Subsection 3.2.1) of a cellular automaton is completely specified by the states of

each cell.

To summarize, cellular automata are;� discrete in both space and time,� homogeneous in space and time (same update rule at all cells at all times),� local in their interactions.

In literature, a two dimensional cellular automaton usually consists of a uniform

grid that can be square, hexagon or triangle. For a square grid, its neighborhood can be

von Neumann neighborhood, which comprises the four cells orthogonally surrounding a

central cell on a two-dimensional square lattice. Beside the von Neumann neighborhood,

some of the most common neighborhoods of two dimensional lattice are the Moore

neighborhood and the extended Moore neighborhood (with radius=2), see Figure 3.5.

3.2.1 Some Basic Definitions

In this section, we briefly state some basic definitions that are needed in the sequel.

For a survey on the subject see [29].

Let A = (Zd, S,N, f) be a CCA. Note that from now on we will always consider

cellular automata whose lattices are d-dimensional grids Z
d for some integer d. A

23

Figure 3.5: Common Neighborhoods - von Neumann, Moore and Extended Moore

Neighborhood, respectively.

d-dimensional neighborhood (of size m) is a function

N : Zd → Pm(Zd),

with

N(v) = (v + v1, ..., v + vm)

where v ∈ Z
d and v1, ..., vm are fixed vectors with, vi 6= vj for all i 6= j, 1 ≤ i, j ≤ m.

The local transition function (or the local rule) of a cellular automaton with a set

of states S and size m neighborhood is defined by,

f : Sm → S

that specifies the new state of each cell based on the old states of its neighbors.

A configuration of A is a function

c : Zd → S

that specifies the states of all cells, i.e., c(v) is the state of the cell v ∈ Z
d. The set of all

the configurations SZ
d
is denoted by Conf(A). A configuration should be interpreted

as an instantaneous description of all the states in the system of cells at some moment

of time.

Suppose that A is in the configuration c at time t and the cell in position v have

neighbors N(v) = (v + v1, ..., v + vm) with states σi = c(v + vi) for i ∈ [1,m]. The

value f(σ1, ..., σm) is the state of the cell v at time t + 1. Therefore the local rule f

determines the global dynamics of A and so we can extend f to a function

f∗ : Conf(A) → Conf(A),

24

3/figures/neighborhood.eps

called the global transition function of A, which transforms c into the new configuration

f∗(c). The dynamic of A with initial configuration c is thus given by the iterated

application of the global transition rule f∗. In this way we obtain an evolution of the

system,

c → f∗(c) → f∗
2

(c) → f∗
3

(c) → . . . → f∗
t

(c) → . . .

where the configuration at time step t is f∗
t
(c). From the computational point of

view f∗ can be computed only for particular configurations, namely, the configurations

defined on a finite number of cells. For this purpose, we assume that S contains a special

symbol ⊥ representing the fact that the cells with this state must not be computed (in

the sequel, we call such cells as empty cells). Formally, if a cell v is in the state c(v) =⊥

then f∗(c)(v) =⊥. A particular configuration is the empty configuration e defined by

e(v) =⊥ for all v ∈ Z
d. The support of a configuration c is the set

Supp(c) := {v ∈ Z
d : c(v) 6=⊥}.

The set of configurations with finite (compact) supports is denoted by Confc(A), it

is easy to see that f∗ restricts to f∗ : Confc(A) → Confc(A). Therefore this space

is the natural environment to consider when we deal with the dynamic of A from the

computational point of view. In the particular case d = 1 for any c ∈ Confc(A) there

is a minimum integer i and a maximum integer j such that c(k) =⊥ for all k /∈ [i, j].

In this way, we can represent c as a finite vector (σi, ..., σj), and with this notation we

can write the empty configuration as e = ().

3.2.2 First CA Traffic Model Example: The Wolfram 184 Model

As we mentioned in Subsection 2.2.1, Rule 184 derived from Wolfram’s naming scheme

is one of the binary ECAs that are classified in [60]. In this deterministic ECA model

(see [16]), a road is defined as a one-dimensional array with binary states where black

square represents a state of 1 (an occupied cell) and a white square represents a state

of 0 (an empty cell).

Let W be the Wolfram model defined as:

W = (Z, S,N,F)

where

25

� The lattice is set of integers.� S = Z2 = {0, 1} is the set of cell states with:

si(t) = (bi(t))

where the Boolean flag bi represents the occupancy of a cell.� The neighborhood of radius 1 is N(i) = (i− 1, i, i + 1).� The local transition function

F : Z3
2 → Z2

with F : (si−1(t), si(t), si+1(t)) 7→ si(t+1) where si(t) is the state of a central cell

i at time step t, together with the states si−1(t) and si+1(t) of its two adjacent

neighbors i− 1 and i+ 1, respectively.

The graphical representation in Figure 3.6 provides us an illustration of the evolu-

tion of F. For instance, if the local transition function maps (010) onto a state of 0,

this has the physical meaning that a particle (black square) moves to the right if its

neighbor cell is empty, leaving the central cell empty.

Figure 3.6: A graphical representation of the local transition function of Wol-

fram’s rule 184 - All possible 8 configurations are set in descending order, representing

the evolution of all cell’s states in time, each based on its two adjacent neighbors.

3.2.3 Second CA Traffic Model Example: The NaSch Model

In literature, regarding the NaSch-type models, it is claimed that these kind of models

are based on CA. However, it seems that there is no paper where the model is written

using the standard formalization of a CA as a 4-tuple. Instead, the model is always

presented in a standard way as a collection of rules stating how a vehicle, occupying

one cell, should move.

In this subsection, we first describe the deterministic variant of the NaSch model

(with open boundaries) where the randomization part introduced to slow down the

26

3/figures/fig-wolfram.eps

vehicles at random is not considered (see Algorithm 1), and secondly, we describe

the stochastic NaSch model (with open boundaries) with the randomization step (see

Algorithm 2) which both are presented as a CA model.

Let NS be the deterministic NaSch CA defined as:

NS = (Z,Θ, N, F)

where:� The lattice is set of integers1.� Θ = {0, . . . , 5} × {0, 1} ∪ {⊥} is the set of cell states with:

θi = (vi, bi)

where {0, . . . , 5} represents the velocities of vehicles, and the Boolean flag repre-

sents the occupancy of a cell.� The neighborhood is N(i) = (i− 5, . . . , i, . . . , i+ 5) and the function

d(θi, . . . , θi+5) = min{1 ≤ k ≤ 5 : bi+k = 1}

returns the front distance of a vehicle.� The local transition function

F (ω−5, . . . , ω0, . . . , ω5)

where ωi = (vi, bi) for −5 ≤ i ≤ 5, is defined by Algorithm 1.

Note that the stochastic NaSch CA model requires a bigger set of states than the

deterministic one since we need to record the information for the probability of slowing

down to make this information available for all cells.

Let NS′ be the stochastic NaSch CA defined as:

NS
′ = (Z,Θ′, N, F ′)

where:

1The closed boundary version has a finite set of integers and the local transition rule has to be

modified to adapt to the periodic condition.

27

Algorithm 1 The pseudo-code for the one time step evolution of the local transition

function F of the deterministic NaSch CA model.

1: procedure F(ω−5, . . . , ω0, . . . , ω5)

2: if ω0 =⊥ then

3: ω0 :=⊥

4: else

5: if b0 = 0 then

6: for i = −1 → −5 do

7: if bi = 1 then

8: di = d(ωi, . . . , ωi+5)

9: si = min{5, vi + 1, di − 1}

10: if si = |i| then

11: v0 := si

12: b0 := 1

13: break

14: end if

15: end if

16: end for

17: else

18: d0 = d(ω0, . . . , ω5)

19: s0 = min{5, v0 + 1, d0 − 1}

20: if s0 6= 0 then

21: v0 := 0

22: b0 := 0

23: end if

24: end if

25: end if

26: end procedure

28

� The lattice is set of integers.� Θ′ = {0, . . . , 5} × {0, 1} × {0, 1} × {0, 1} ∪ {⊥} is the set of cell states with:

θ′i = (vi, bi, Bi, ri)

where {0, . . . , 5} represents the velocities of vehicles, the first Boolean flag repre-

sents the occupancy of a cell, the second one represents if we apply a Bernoulli

process or not, and the last one represents the result of the Bernoulli process.� The neighborhood is N(i) = (i− 5, . . . , i, . . . , i+ 5) and the function

d(θ′i, . . . , θ
′

i+5) = min{1 ≤ k ≤ 5 : bi+k = 1}

returns the front distance of a vehicle.� The local transition function

F ′(ω′

−5, . . . , ω
′

0, . . . , ω
′

5)

where ω′

i = (vi, bi, Bi, ri) for −5 ≤ i ≤ 5, is defined by Algorithm 2.

29

Algorithm 2 The pseudo-code for the one time step evolution of the local transition

function F ′ of the stochastic NaSch CA model.

1: procedure F’(ω−5, . . . , ω0, . . . , ω5)

2: if B0 = 1 then

3: Execute the Bernoulli Trial r0 ∼ B(2, p)

4: B0 := 0

5: else

6: if ω0 =⊥ then

7: ω0 :=⊥

8: else

9: if b0 = 0 then

10: for i = −1 → −5 do

11: if bi = 1 then

12: di = d(ω′

i, . . . , ω
′

i+5)

13: si = min{5, vi + 1, di − 1} − ri

14: if si = |i| then

15: v0 := si

16: b0 := 1

17: break

18: end if

19: end if

20: end for

21: else

22: d0 = d(ω′

0, . . . , ω
′

5)

23: s0 = min{5, v0 + 1, d0 − 1} − r0

24: if s0 6= 0 then

25: v0 := 0

26: b0 := 0

27: end if

28: end if

29: end if

30: end if

31: end procedure

30

Chapter 4

A New Approach to Single-Lane

CA Traffic Models via CCA

In this chapter, we first give the motivations for introducing a new single-lane CA

traffic model, then we describe it in details in Section 4.2. This model has a different

conception since we detach from the idea which is central in the other CA traffic

models where cells represent the road space. Our approach uses the idea that cells

represent vehicles, see Figure 4.1. The advantage of this vision is having much less

cells to represent the same physical situation. Furthermore, with this approach we are

able to introduce for the first time the continuity of space for a CA traffic model by

using a CCA. In this context, our model is more close to the usual microscopic traffic

flow models which adopt a semi-continuous space, formed by the usage of floating-

point numbers compared to the classical CA traffic models (NaSch-type) where the

space is coarse-grained. In this way, we are able to take the advantages of both usual

microscopic models and the CA models which are computationally efficient and have

fast performance. Moreover, in contrast to the gaseous models, the particles in the CA

models can be intelligent and able to learn from past experience [12, 26, 59]. Therefore

using the continuity introduced in our model, we have the possibility of incorporating

behavioral and psychological aspects (e.g., stress) into the model using a multi-agent

system based on fuzzy logic.

31

Figure 4.1: A representation of the fact that cells represent vehicles -

4.1 Introduction: Why a Different Model

In literature of the NaSch-type CA models, an important parameter to deal with is the

physical representation of the cells. In the attempt of increasing the resolution of the

model to have a smoother (finer) simulation, the lengths of the cells are decreased [9, 25,

33, 48]. In this way, the degree of freedom in the simulation is increased. For instance

in the NaSch model [43], a vehicle has only 5 possible velocities while in the NaSch-

type models where the length of a cell is less than 7.5 m., this number representing

the possible velocities is increased. However, decreasing the physical dimension of cells

means increasing the number of cells if the length of the road is kept constant. Also if

we want to embed the physical dimension of a vehicle into the model, this vehicle will

not fit anymore in only one cell when the dimension of cells are decreased. Thus, there

will be the need of more cells to represent this vehicle, e.g., in [33] each vehicle has a

length of 5 cells. Furthermore, the dimension of the neighborhood must be increased

when the cells are scaled, and in the ideal limit when the length of a cell tends to zero,

the number of cells clearly tends to infinity with also the length of the neighborhood.

Consequently, a bigger number of cells means a larger computational time even though

the number of vehicles is kept constant, and the passage to the limit case when the

space is continuous is clearly impossible to be implemented on a computer in the realm

of NaSch-type models. Therefore, a natural question is whether or not it is possible

to find a different CA traffic model in which the space is not anymore discrete but

continuous. This question is interesting not only from the theoretical point of view,

but also it makes possible to simulate driver behaviors by using a fuzzy logic-based

system.

We now summarize our motivations and the features requested from the model as:� We want a traffic CA model where the space is continuous or at least finer without

an extreme rise on the number of cells.

32

4/figures/CA-cars.eps

� In the NaSch-type models, decisions are discrete, not smooth, not realistic. For

instance in the NaSch model, vehicles accelerate independently of their velocity.

The acceleration of one step is of 7.5 m/s2, and vehicles can come to a stop from a

maximum speed of 37.5 m/s in one second. Instead dealing with floating points,

numbers for parameters such as velocity, space and acceleration in general can

be useful in implementing a fuzzy logic-based system to try to mimic real driver

behaviors.� Using a fuzzy logic-based system, we can group the vehicles into types where they

share common characteristics such as the same perception of distances. In this

way we can study the influence of the heterogeneity of driver behaviors in road

traffic.� Open boundary CA traffic models of the NaSch-type where there is no destruction

of vehicles imply an infinite number of cells (at least a big number if we want

to approximate it with a closed boundary model). Therefore the question is

whether or not it is possible to define an open boundary CA traffic model where

the number of cells is equal to the number of vehicles. In this way, we also do not

have any empty cell1 to be computed like in the NaSch-type models.� In terms of neighborhood concept, the NaSch-type models do not fit inside the

CA models with the common classification of neighborhood (e.g., von Neumann,

see Section 3.2). It easy to see that in such models the length of the neighborhood

depends on the maximum velocity of the vehicles. The question is whether or not

it is possible to define a CA model where the neighborhood is a constant number

that does not depend on parameters, since the dimension of the neighborhood

influences the computational speed.

Fitting in these requests has a “price” of passing from a CA model to a continuous CA

model.

33

Figure 4.2: The illustration of the back vehicle, front vehicle and next front

vehicle with respect to the i-th vehicle. -

4.2 Description of the Model

Our CA model of a single-lane traffic flow is a time-discrete, space continuous cellular

automaton model which is combined with fuzzy decision rules with the purpose of

simulating driver-vehicle behavior as much as possible. In our CCA model each non-

empty cell corresponds to one vehicle, see Figure 4.1 and Figure 4.2 for the illustrations

of the single-lane model. The proposed model is described as following (note that for

the sake of simplicity, we fix the unit of time as one second, u = 1 sec):

Consider the CCA model

SL = (Z,Σ,N, δ)

where:� The discrete lattice is the set of integers.� Σ = (K × R
+
0 × R

+
0 × R × {L, 0, R} × {L, 0, R}) ∪ {⊥} is the infinite set of cell

states with the state of the i-th vehicle at time step t defined as:

σi(t) = (ki, xi(t), vi(t), si(t), di(t), d
′

i(t)),

where:

– ki represents the kind of the i-th vehicle. For instance, in our experiments

we take into consideration two kinds of vehicles which are passenger vehicles

and long vehicles (see Section 6.2). It is possible to introduce as many kinds

as desired in the model, e.g., depending on the driver’s characteristics (old,

young, slow, fast, nervous, relaxed), types of the vehicles (passenger, trucks,

1In this context, we refer to the term “empty cell” which means a cell not occupied by any vehicle

as in [43], so the cell is not really empty as defined in Subsection 3.2.1.

34

4/figures/fig1a.eps

sport cars), weather conditions (good, bad) and time of the day (day-time,

night-time). The kind consists of all the information (parameters) specified

differently for each kind of vehicle, such as:* the maximum velocity (vmax), note that not necessarily there is speed

limit,* the optimal velocity (vopt): the velocity specified for each kind of vehicle

with which they feel comfortable in traffic. It is introduced with the

assumption that not all the vehicles move with the maximum velocity

but with their optimal velocity,* the length (li),* the fuzzy membership functions (see Section 4.3),* the natural acceleration noise (AN): a random variable defined with

Gaussian distribution as, AN (t) = N(0, σ2), see [23].* the maximum stress (smax),* the minimum stress (smin),* the function used to calculate the probability of lane-changing to the

right lane (PR(x)),* the function used to calculate the probability of lane-changing to the

left lane (PL(x)).

– xi(t) is the position of the i-th vehicle, which is defined as the distance from

the origin of the road to the middle point of this vehicle.

– vi(t) is the velocity of the i-th vehicle.

– si(t) is the stress of the i-th vehicle, which is a variable to keep track of how

much the driver is above or below of his optimal velocity. It is introduced

to implement a more realistic driver behavior since in reality drivers tend

to decelerate (or to change the lane in the multi-lane case) when they are

moving with a velocity higher (or lower) than their optimal velocity.

– di(t) is the variable which describes the desire of the i-th driver for:* lane-changing to the left, represented by L,* staying on his own-lane, represented by 0,* lane-changing to the right, represented by R.

35

– d′i(t) is the variable describing the trace of the i-th driver showing from which

lane it is transferred, such as:* transferred from the left lane, represented by L,* not transferred, represented by 0,* transferred from the right lane, represented by R.

Note that for the purpose of the single-lane CCA model, there is no usage of the

variables di(t) and d′i(t), and si(t) is used just to slow down the i-th vehicle in the case

that it goes too much above its optimal velocity.� N is a kind of one-dimensional extended Moore neighborhood, consisting of the

cell itself, its adjacent cells and one next adjacent cell defined by N : Z → P4(Z)

such that

N(i) = (i− 1, i, i + 1, i + 2).� δ is the local transition function (local rule) defined by δ : Σ4 → Σ such that

δ(σi−1(t), σi(t), σi+1(t), σi+2(t)) = (ki, xi(t+ 1), vi(t+ 1), si(t+ 1), di(t+ 1), 0).

This rule acts upon a cell and its direct neighborhoods such that the cell’s state changes

from one discrete time step to another (i.e., the system’s iterations). The CCA evolves

in time and space as the rule is subsequently applied to all the cells in parallel. In

our model, we define the position and the velocity of the i-th vehicle at time t + 1 as

following:

xi(t+ 1) = xi(t) + vi(t+ 1),

vi(t+ 1) = min(vmax,∆x+i (t),max(0, vi(t) +Ai(t) +AN (t))),

where Ai(t) is the acceleration calculated by the fuzzy decision modules which are de-

scribed in Section 4.3, and ∆x+i (t) is the distance with front vehicle defined in Equation

4.1. The constraint ∆x+i (t) in the choice of the updated velocity is introduced to make

the model collision-free as in [43]. However, it is unrealistic and the application of it in

our model is used in the borderline situations where extreme decelerations are involved.

Indeed we tried to avoid this constraint as much as possible by introducing more fuzzy

rules which makes the system more reactive to reduce these extreme situations. Finally,

36

the stress and the desire of lane-changing of the i-th vehicle at time t+ 1 are defined

as:

si(t+ 1) = AddStr(ki, si(t), vi(t), vi+1(t), xi(t), xi+1(t)),

di(t+ 1) = Eval(L,R)(ki, vi(t), si(t)),

where AddStr and Eval(L,R) are explained in detail in Section 5.1 related to the multi-

lane CCA model. The two parameters L,R are Boolean variables which are used to

describe whether or not there exists a lane on the left or on the right, respectively. For

instance, (L,R) = (0, 1) represents a lane having no lane on its left, but having a lane

on its right. Since SL depends on these two parameters, we can write

SL(L,R) = (Z,Σ,N, δ(L,R))

to make this dependency clear. This dependency is important only when we consider

the multi-lane case, since the variable di(t) which is updated depending on (L,R), is not

used in the single-lane case. Therefore, from the simulation point of view of the single-

lane case the models SL(a,b), a, b ∈ {0, 1} are all equivalent, and so it is appropriate to

use the notation SL only for the single-lane case.

We assume that d′i(t+ 1) = 0, because at each time step we need to have a “reset”

situation at the beginning of the changing lane process. This variable and its usage

will also be explained in detail in Section 5.1.

Figure 4.3: Block diagram of the decision process for the acceleration Ai(t). -

37

4/figures/fig-CA.eps

The acceleration Ai(t) is depending on the kind ki, the velocity vi(t) and the vari-

ables defined as following (see Figure 4.3):

1. Back Distance (BD), the distance between i− 1-th vehicle and i-th vehicle:

∆x−i (t) = xi(t)− xi−1(t)−
li
2
−

li−1

2
.

2. Front Distance (FD), the distance between i-th vehicle and i+ 1 -th vehicle:

∆x+i (t) = xi+1(t)− xi(t)−
li+1

2
−

li
2
. (4.1)

3. Next Front Distance (NFD), the distance between i-th vehicle and i+2-th vehicle:

∆x+i,N (t) = xi+2(t)− xi(t)−
li+2

2
−

li
2
.

Note that, in our model the distance between vehicles is considered as the distance

from front bumper to rear bumper.

4. Perceived Front Collision Time (PFCT):

τ+i,P (t) =

{

ζi(t) if τ+i (t) < 0,
min(ζi(t), τ

+
i (t)) otherwise.

(see the function F2 in Figure 4.3) where ζi(t) is the parameter for slowing down

that is depending on the stress as:

ζi(t) =
smax − si(t)

vi(t)
,

and τ+i (t) is the Front Collision Time (FCT), the time that passes for the i-th

vehicle to reach to (to collide with) the front vehicle. If it is negative it means that

i-th vehicle is slower and will not reach to the front vehicle with the configuration

at time t:

τ+i (t) =
∆x+i (t)

vi(t)− vi+1(t)
.

PFCT is a parameter which is a combination between the FCT and an auxiliary

time defined to keep the velocity close to the optimal velocity vopt.

38

5. Worst Front Collision Time (WFCT), the time that passes for i-th vehicle to

collide with the front vehicle in the case where the front vehicle suddenly stops

(introduced for safety reasons). This is calculated by:

τ+i,W (t) =
∆x+i (t)

vi(t)
,

(see the function F1 in Figure 4.3).

6. Next Front Collision Time (NFCT), the time that passes for i-th vehicle to reach

to the next front (i+ 2-th) vehicle. It is clear that a vehicle never reaches to its

next front vehicle, but NFCT is introduced to anticipate the braking manoeuvre

in the case where the next front vehicle suddenly brakes:

τ+i,N(t) =
∆x+i,N(t)

vi(t)− vi+2(t)
.

7. Back Collision Time (BCT), the time that passes for i− 1-th vehicle to reach to

the front (i-th) vehicle:

τ−i (t) =
∆x−i (t)

vi−1(t)− vi(t)
.

This quantity is introduced to take into account the phenomenon where the back

driver forces the front driver to accelerate which we call as pushing effect.

In the case the cell i− 1 is empty, we assume that the back distance and the back

collision time of the i-th vehicle converge to infinity (in the simulation process, we use

a sufficiently fixed big number). Instead, if the cells i + 1 and i + 2 are empty, we

assume that the front distance, the next front distance, the front collision time and the

next front collision time of the i-th vehicle converge to infinity. If only the cell i+ 2 is

empty, we assume that the next front distance and the next front collision time of the

i-th vehicle converge to infinity.

In the sequel, we consider configurations with a physical meaning. In other words,

these configurations are formed in such a way that the order of the cells have the same

physical order of the vehicles according to their positions. It is easy to see that the set

consisting of such configurations which will play an important role in Chapter 5 has

the property ∆x+i (t) ≥ 0 for any cell i. We denote this set by Confp(SL(L,R)) or simply

Confp(SL), since Confp(SL(a,b)), a, b ∈ {0, 1} are all the same set.

39

Example Let c, c′ ∈ Confc(SL) such that c = (σ0, σ1) and c′ = (ω0, ω1) where σ0 =

ω1 = (k0, 5, v0, s0, d0, d
′

0) and σ1 = ω0 = (k1, 10, v1, s1, d1, d
′

1), see Figure 4.4. Clearly,

c ∈ Confp(SL) and c′ /∈ Confp(SL).

Figure 4.4: The representation of two configurations c and c′. -

4.3 Fuzzy Decision Modules

The approach of embedding fuzzy logic while dealing with a system described by con-

tinuous variables is already introduced, indeed, there are several works based on fuzzy

logic systems in car-following models [7] and in lane-changing models [18].

In this section, we define the sets of fuzzy rules that determine the behavior of

the vehicles in traffic stream. More specifically, the fuzzy modules, after receiving the

inputs determined by the environment, return the decided acceleration (Ai(t) for the

i-th vehicle at time t) that is obtained by the two fuzzy sets of rules at each time

step (see Figure 4.3). These rules are formed based on some common sense of driver

behaviors including some experiences and examples. Although the rules are the same

for each kind of vehicle, they have different “weights” depending on the definition of the

membership functions of different kinds. In this way, it is possible to give a description

of a variety of behaviors, such as the behavior of a long vehicle driver or a sportive

driver or a person with low reflexes. For instance, a person with low reflexes perceives

a time of collision of 5 seconds as a very short time, however a person with higher

reflexes probably would feel comfortable with that time of collision.

As we mentioned before, there are three steps in the fuzzy decision module which

will determine the act of the driver (decision making) depending on the kind. These

steps, the fuzzifier, the fuzzy inference and the defuzzification are described as following:

40

4/figures/fig5.eps

4.3.1 Fuzzifier

In the fuzzifier step, each crisp value (input) τ+i,P (t), τ
+
i,W (t), τ+i,N (t), τ−i (t), ∆x+i (t),

∆x+i,N (t), ∆x−i (t), Vi(t), for each vehicle i at time t is transformed into fuzzy values,

which essentially means associating an input to a degree of having a property involved

in the fuzzy rules. For example, if we receive the information from the environment

such that the perceived front collision time of the i-th vehicle at time t is given as,

τ+i,P (t) = 9 sec. which we decide as a big time with the truth-value of 0.8, and assume

that µBIG(x) is the membership function of the property “being big”, then the fuzzifier

simply transforms the crisp value 9 into the pair (9, µBIG(9)) which is (9, 0.8). All the

fuzzy values must be decided so that they can be used for evaluating the weights of

each fuzzy rule.

4.3.2 Fuzzy Inference

We note that in this subsection, to avoid cumbersome notations, we omit the depen-

dency of t from all the variables.

The fuzzy system involves eight inputs: “perceived front collision time (τ+i,P)”,

“worst front collision time (τ+i,W)”, “next front collision time (τ+i,N)”, “back collision

time (τ−i)”, “front distance (∆x+i)”, “next front distance (∆x+i,N)”, “back distance

(∆x−i)”, and “velocity (Vi)”. We need the “velocity” as an input only for jam situa-

tions.

The WFCT is introduced to keep a safety distance between the vehicles. In other

words, it is used in the case where the front vehicle suddenly stops, so we can assume

that if the WFCT is very small, there is a dangerous situation. Moreover, the NFCT

and the NFD are introduced to have a better perception of the driver behaviors of the

next front vehicle since in reality drivers observe not only the vehicle just in front of

them but also the vehicles ahead.

The set of rules of the first module have more importance since they are based on

the information related to the front and the back vehicles while the other set of rules

have less importance since they are related to the next front vehicle. As a consequence

of having two different fuzzy sets of rules, we have two fuzzy outputs: the output came

out from the first set of rules is the “first acceleration value (Ai,1)” and the output came

out from the second set of rules is the “second acceleration value (Ai,2)”. After the

41

defuzzification step we evaluate the final decision Ai which is determined by a function

of Ai,1 and Ai,2 (see Figure 4.3). Let us define this function as:

F3(Ai,1, Ai,2) =







min(Ai,1, Ai,2) if Ai,1 ≤ 0,
Ai,1+Ai,2

2 if Ai,1 > 0 ∧Ai,2 ≤ −0.25,
Ai,1 otherwise.

(4.2)

where we give more weight to the decision taken by the first module. Indeed, in the

simulation, we have noticed that without these kind of constraints the vehicles were

tending to slow down too much. This is also the reason of splitting the fuzzy module

into two parts. Moreover, the second module and as a consequence the second acceler-

ation gains significance only in the case of emergencies such as a sudden breakdown or

deceleration of the next front vehicle.

In regard to introducing the membership functions below, we could have used dif-

ferent membership functions for the three different front collision times, and for the two

different front distances. However, for the sake of simplicity, we use the same mem-

bership functions with respect to the properties for all types of front collision times,

and similarly for both types of front distances. Also because for instance, in reality

the perception of the time of collision of the next front vehicle would be the same with

that of the front vehicle if there would not exist the front vehicle since in this case the

next front vehicle would take the place of the front vehicle. Similarly, we define the

same membership functions with respect to the properties for both Ai,1 and Ai,2. Let

us define now the input fuzzy sets in our model:

The input fuzzy sets for both PFCT and NFCT are,

FrCT V ERY SMALL,FrCT SMALL,FrCT MEDIUM,FrCT BIG

The input fuzzy set of BCT is,

BackCT V ERY SMALL

The input fuzzy sets for both FD and NFD are,

FrD V ERY SMALL,FrD SMALL,FrD MEDIUM,FrD BIG

The input fuzzy set of BD is,

BackD V ERY SMALL

42

The input fuzzy set of V is,

V EL SMALL

The output fuzzy sets for the accelerations in both modules are,

ACC PB,ACC PM,ACC PS,ACC Z,ACC NS,ACC NM,ACC NB

where

PB = POSITIV E BIG,PM = POSITIV E MEDIUM,

PS = POSITIV E SMALL,Z = ZERO,NS = NEGATIV E SMALL,

NM = NEGATIV E MEDIUM,NB = NEGATIV E BIG

and the zero acceleration means “keeping the velocity constant”. While listing the fuzzy

set of rules, we use some shortcuts. For instance, instead of writing “perceived front

collision time is FrCT SMALL” we write the shorter notation “PFCT is SMALL”.

First Fuzzy Set of Rules (First Fuzzy Decision Module):

Rule 1: IF PFCT is BIG AND FD is BIG AND V is NOT SMALL THEN A is

PM.

Rule 2: IF PFCT is BIG AND FD is MEDIUM AND V is NOT SMALL THEN

A is PS.

Rule 3: IF PFCT is BIG AND FD is SMALL THEN A is Z. (Zero Acceleration)

Rule 4: IF PFCT is BIG AND FD is V ERY SMALL THEN A is Z.

Rule 5: IF PFCT is MEDIUM AND FD is BIG THEN A is Z.

Rule 6: IF PFCT is MEDIUM AND FD is MEDIUM THEN A is Z.

Rule 7: IF PFCT is MEDIUM AND FD is SMALL THEN A is NS.

Rule 8: IF PFCT is MEDIUM AND FD is V ERY SMALL THEN A is NS.

Rule 9: IF PFCT is SMALL AND FD is BIG THEN A is NM.

Rule 10: IF PFCT is SMALL AND FD is MEDIUM THEN A is NM.

Rule 11: IF PFCT is SMALL AND FD is SMALL THEN A is NM.

43

Rule 12: IF PFCT is SMALL AND FD is V ERY SMALL THEN A is NM.

Rule 13: IF PFCT is V ERY SMALL AND FD is BIG THEN A is NB.

Rule 14: IF PFCT is V ERY SMALL AND FD is MEDIUM THEN A is NB.

Rule 15: IF PFCT is V ERY SMALL AND FD is SMALL THEN A is NB.

Rule 16: IF PFCT is V ERY SMALL AND FD is V ERY SMALL THEN A is

NB.

Rule 17: IF BCT is V ERY SMALL AND BD is V ERY SMALL AND PFCT is

BIG AND FD is BIG THEN A is PS. (Pushing Effect)

Rule 18: IF BCT is V ERY SMALL AND BD is V ERY SMALL AND PFCT is

BIG AND FD is MEDIUM THEN A is PS.

Rule 19: IF BCT is V ERY SMALL AND BD is V ERY SMALL AND PFCT is

MEDIUM AND FD is BIG THEN A is PS.

Rule 20: IF BCT is V ERY SMALL AND BD is V ERY SMALL AND PFCT is

MEDIUM AND FD is MEDIUM THEN A is PS.

Rule 21: IF PFCT is BIG AND V is SMALL THEN A is PB. (The vehicle is in a

jam situation)

Rule 22: IF WFCT is V ERY SMALL AND FD is V ERY SMALL THEN A is

NM.

Rule 23: IF WFCT is V ERY SMALL AND FD is SMALL THEN A is NM.

Rule 24: IF WFCT is V ERY SMALL AND FD is MEDIUM THEN A is NS.

Second Fuzzy Set of Rules (Second Fuzzy Decision Module):

Rule 1: IF NFCT is V ERY SMALL and NFD is V ERY SMALL THEN A is NB.

Rule 2: IF NFCT is V ERY SMALL and NFD is SMALL THEN A is NB.

Rule 3: IF NFCT is V ERY SMALL and NFD is MEDIUM THEN A is NB.

Rule 4: IF NFCT is V ERY SMALL and NFD is BIG THEN A is NM.

44

Rule 5: IF NFCT is SMALL and NFD is V ERY SMALL THEN A is NM.

Rule 6: IF NFCT is SMALL and NFD is SMALL THEN A is NM.

Rule 7: IF NFCT is SMALL and NFD is MEDIUM THEN A is NS.

Rule 8: IF NFCT is SMALL and NFD is BIG THEN A is NS.

Rule 9: IF NFCT is MEDIUM and NFD is V ERY SMALL THEN A is NS.

Rule 10: IF NFCT is BIG and NFD is V ERY SMALL THEN A is NS.

We now evaluate the fuzzy decision rules according to the compositional rule of

inference by using the degree of memberships determined in the fuzzifier step. Therefore

we obtain a result (an output fuzzy set) for each rule by taking the minimum value of

the images of the inputs in each rule. We describe this evaluation in general terms as

following:

Let Bj
1, ..., B

j
kj

and Cj be fuzzy subsets with the membership functions µ
B

j
1

, . . . , µ
B

j
kj

and µCj , respectively, and let Rj be the fuzzy rules defined as:

Rj : IF xj1 is B
j
1 AND . . . AND xjkj is B

j
kj

THEN y is Cj

with

µ
B

j
1

(xj1) ∧ . . . ∧ µ
B

j
kj

(xjkj) = min

{

µ
B

j
1

(xj1), . . . , µB
j
kj

(xjkj)

}

for 1 ≤ j ≤ m, where m is the number of fuzzy rules.

In our fuzzy system, there are also rules including the form: xjr is not Bj
r with the

degree of membership µ
∼B

j
r
(xjr) for some r ∈ [1, kj]. Recall from Section 3.1.1 that for

an input xjr, the degree of membership of not having a property Bj
r (“not being Bj

r”)

can be written as:

µ
∼B

j
r
(xjr) = 1− µ

B
j
r
(xjr).

Note that this is required only for the first two rules of the first fuzzy decision module

with the purpose of emphasizing the vehicle is not in a jam situation.

45

4.3.3 Defuzzification

The output of the inference process so far is a fuzzy set, so we should convert our fuzzy

output set obtained from the fuzzy inference step into one single number as the output

of the fuzzy system, which is the “acceleration” in our case. Recall that since we have

two fuzzy modules, there are two outputs of the system: Ai,1 and Ai,2 which are used

to evaluate Ai(t) at time t by the function F3, see Equation 4.2. The driver’s decision

making system for his velocity of the next time step is updated by this acceleration

value.

As we mentioned in Subsection 3.1.2 , there are many defuzzification techniques

to obtain a crisp value, such as the center-of-gravity (COG) and the weighted average

formula (WAF) method. In our model, since we would like to use a simple method that

does not require too much computational power, we define a new method and call it as

generalized weighted average formula (GWAF), i.e., we generalize the WAF to the case

where the membership functions are not necessarily symmetric. We describe it now in

general terms by using the notations used in the previous subsection:

Suppose that each j-th rule receives the values xj1, ..., x
j
kj

as inputs. Let

wj = min

{

µ
B

j
1

(xj1), ... , µB
j
kj

(xjkj)

}

be the weights for each rule j and let P j = µ−1
Cj (w

j) be the preimage of the weight of

j-th rule. We assume that µCj does not have any plateau, since we do not want P j to

contain intervals (this is done to have a discrete set). The defuzzified output is thus

calculated by:

y =

m
∑

j=1
wj

∑

z∈P j

z

m
∑

j=1
|P j|wj

.

46

Chapter 5

A Multi-Lane Stochastic CCA

Traffic Model

In this chapter, we extend the single-lane model to the case of multi-lane. This extension

is not trivial as it is in the NaSch-type models where adding a lane means simply adding

an array of cells and where the local transition function can naturally be extended. This

is a consequence of having a clear physical interpretation of the model given by the fact

that space is represented by cells.

In our single-lane model, cells represent vehicles and the union of two arrays of cells

that represent a road with two lanes is a natural candidate for a multi-lane model.

However, since we do not have the cell-space correspondence as it is in NaSch-type

models, we do not have the natural order which makes the extension of the local

transition function so easy to achieve. For this reason, we first present our multi-lane

model as a union of interacting single-lane CCA where the interaction is a transfer

operation, and then we prove in Proposition 5.3.1 that this model can actually be

simulated by a stochastic CCA.

The process of lane-changing is based on safety criterion which checks the possibility

of executing a lane-changing by considering the situation in the target lane. This

criterion guarantees that after the lane-changing, there will be no danger (avoidance of

collision) and as less disturbing as possible with the back and the following vehicle in the

target lane. This criterion used in our model is described in Section 5.2 together with

some operators useful in describing the lane-changing process. Moreover, we assume

that the precedence for the lane-changing is given to the vehicles moving from the left

47

to the right, since on the highways that apply European rules where the overtaking is

only allowed on the left, right-most lane is the slowest and the left-most lane is the

fastest lane.

In Chapter 6 we have implemented our multi-lane stochastic CCA model (see Ap-

pendix A for the code) with some other extra features like on- and off-ramps and on-

and off-toll plazas to test this model. However, for the sake of simplicity, we do not

introduce these features into the mathematical formulation of the model described in

this chapter.

5.1 The Update of Stress and the Desire of Lane-Changing

In this section, we describe the functions

di(t+ 1) = Eval(L,R)(ki, vi(t), si(t))

si(t+ 1) = AddStr(ki, si(t), vi(t), vi+1(t), xi(t), xi+1(t))

which we mentioned in Section 4.2 to update at each step respectively the desire of

lane-changing and the stress. The decision process for lane-changing is depending on

the stress variable si(t) representing how much the driver is above or below of his

optimal velocity vopt. If the driver has positive stress meaning that he is driving too

much above of his optimal velocity, the driver would tend to change the lane to the

right (slower lane). If the stress is negative meaning that the driver is nervous and

he desires to go faster to recover the distance that he has lost going slower than his

optimal velocity, then he would tend to change the lane to the left (faster lane). We

first describe how the stress is updated. Let us define the accumulated stress as,

sacc(t) = si(t) + (vi(t+ 1)− vopt) · X(t)

where X(t) is a random variable distributed uniformly, X(t) ∼ U(0, 1). Therefore we

calculate a stress parameter,

stri(t+ 1) =

{

ξ(sacc(t), ki, τ
+
i (t),∆x+i (t)) if smin

2 < sacc(t) < 0,
sacc(t) otherwise.

where τ+i (t),∆x+i (t) are respectively the FCT and the FD defined previously in Section

4.2, ξ will be described below in detail and smin is the maximum amount of negative

stress that a driver can tolerate. Another consideration that we take into account is

48

that the stress cannot be increased (or decreased) arbitrarily. For this reason, we have

two parameters inside the kind ki: smax (the maximum amount of positive stress that

a driver can tolerate) and smin, limiting the stress parameter from above and below.

Thus the update is performed in the following way:

AddStr(ki, si(t), vi(t), vi+1(t), xi(t), xi+1(t)) =







smin if stri(t+ 1) < smin,
smax if stri(t+ 1) > smax,
stri(t+ 1) otherwise.

The function ξ(sacc(t), ki, τ
+
i (t),∆x+i (t)) is defined to avoid too much frequent changes

of lane in the case of a jam situation, if the queue is moving. We achieve this task by sim-

ply decreasing the stress from sacc to sacc/2 (see Equation 5.1). We also embed the strat-

egy of trying to change lane instead of braking in the case the front vehicle is close and

tends to brake. We model this effect considering a factor Φ which is calculated by the

membership functions for the fuzzy sets FrCT V ERY SMALL,FrCT SMALL and

FrD MEDIUM,FrD SMALL (we do not consider the case FrD V ERY SMALL

because in this case the maneuver of lane-changing could be dangerous). Let us

denote by µtvs, µts, µdm, µds the membership functions of FrCT V ERY SMALL,

FrCT SMALL, FrD MEDIUM, FrD SMALL, respectively. The factor Φ, which

represents how much the i-th vehicle is close to the situation where the front vehicle is

close and it is going much more slower than the i-th vehicle, can be calculated by:

Φ = max(min{µtvs(τ
+
i (t)), µdm(∆x+i (t))},min{µtvs(τ

+
i (t)), µds(∆x+i (t))},

min{µts(τ
+
i (t)), µdm(∆x+i (t))},min{µts(τ

+
i (t)), µds(∆x+i (t))})

This value is simply the membership function of the formula,

(τ+i (t) is FrCT V ERY SMALL ∧∆x+i (t) is FrD MEDIUM)∨

(τ+i (t) is FrCT V ERY SMALL ∧∆x+i (t) is FrD SMALL)∨

(τ+i (t) is FrCT SMALL ∧∆x+i (t) is FrD MEDIUM)∨

(τ+i (t) is FrCT SMALL ∧∆x+i (t) is FrD SMALL)

and it is used to increase the amount of stress. In this way the vehicle will have more

probability of changing lane. Hence ξ can be calculated by:

ξ(sacc(t), ki, τ
+
i (t),∆x+i (t)) =

{

sacc(t)
2 if τ+i (t) < 0,

sacc(t) · (1 + Φ) if τ+i (t) ≥ 0.
(5.1)

49

We now describe the stochastic function Eval(L,R)(ki, vi(t), si(t)) which returns the

desired action (moving to the left or right lane, or staying in the same lane) at each time

step. The decision of this action is made by means of a Bernoulli process B(2, p). The

probabilities of changing lane to the left (pL) and to the right (pR) which are in general

different, are calculated by two functions PL(x) : [0, 1] → [0, 1] and PR(x) : [0, 1] → [0, 1]

contained in the kind ki. The reason is that some vehicles tend to change lane more than

others. For instance, long vehicles prefer to go to right lane more than left, i.e., they

tend to stay more on the right lane. The variable used to calculate such probabilities

is the normalized stress nsi(t) defined as,

nsi(t) =











si(t)
smax

if si(t) ≥ 0,

si(t)
smin

otherwise.

In the decision process, we take into consideration also the jam situation where

simply the driver randomly moves to the left or to the right for the purpose of finding

an emptier lane. In this case, the parameters (L,R) are used to make a decision. More

precisely, if there is no lane on the left of the driver, i.e., L = 0, clearly he moves to

the right lane, similarly if there is no lane on the right of the driver, i.e., R = 0, clearly

he moves to the left lane. If there are lanes both on the left and right, the choice of

which lane he will move to is obtained by means of a Bernoulli process B(2, 0.7) where

the decision is made as: moving to the left lane with the probability of 0.7 and moving

to the right lane otherwise. These probabilities are decided to be different since we

assume that the drivers that want to go faster usually tend to move to the left lane

more than the right lane.

Another consideration is the evaluation of whether or not there is a jam situa-

tion. A parameter used to evaluate this situation on a highway can be the veloc-

ity, indeed if the velocity of the vehicle is small, with high probability it means that

this vehicle is jammed. We need the fuzzy set V EL SMALL with the membership

function denoted by µvels, to perform this evaluation which is done by means of a

Bernoulli process B(2, µvels(vi(t))). We present the pseudo-code which returns the

value Eval(L,R)(ki, vi(t), si(t)) in Algorithm 3.

50

Algorithm 3 The pseudo-code for evaluating Eval(L,R).

1: procedure Eval(L,R)(ki, vi(t), si(t))

2: if si(t) ≥ 0 then

3: nsi(t) = si(t)/smax

4: Execute the Bernoulli Trial X ∼ B(2, PR(nsi(t))

5: if X = 1 then

6: di(t+ 1) = R

7: else

8: di(t+ 1) = 0

9: end if

10: else

11: nsi(t) = si(t)/smin

12: Execute the Bernoulli Trial Y ∼ B(2, PL(nsi(t))

13: if Y = 1 then

14: Execute the Bernoulli Trial Z ∼ B(2, µvels(vi(t)))

15: if Z = 1 then

16: if R = 0 then

17: di(t+ 1) = L

18: end if

19: if L = 0 then

20: di(t+ 1) = R

21: end if

22: Execute the Bernoulli Trial W ∼ B(2, 0.7)

23: if W = 1 then

24: di(t+ 1) = L

25: else

26: di(t+ 1) = R

27: end if

28: else

29: di(t+ 1) = L

30: end if

31: else

32: di(t+ 1) = 0

33: end if

34: end if

35: end procedure

51

5.2 The Lane-Changing Process

In this section, we describe the conditions for a vehicle to perform a lane-changing and

some basic operators which will be useful to describe the multi-lane model presented in

Section 5.3. These operators are fundamental to describe the transfer of vehicles from

a lane to an adjacent one, and for the description of the CCA the transfer is seen as a

copying and erasing process.

Deciding on whether or not to perform a lane-changing is depending on two steps.

We first check if a driver desires to change lane. If a lane-changing is indeed desirable,

then the second step proceeds to check if it is possible to perform such a lane-changing

with respect to safety and collision avoidance.

The transfer of a vehicle from one lane to another clearly changes the configuration

of the single-lane CA, thus we need to introduce some operations to describe this

process. Let c ∈ Conf(SL) and let σ ∈ Σ be a state, the inserting operator at position

i ∈ Z is the function

Insi : Σ \ {⊥} × Conf(SL) → Conf(SL),

such that

Insi(σ, c)(j) =







c(j) if j < i,
σ if j = i,
c(j − 1) if j > i.

This operator simply shifts all the cells starting at the i-th position of one step and it

sets the state of the i-th cell to the value σ. The right-inverse of Insi is the deleting

operator at position i which is the function

Deli : Conf(SL) → Conf(SL),

such that

Deli(c)(j) =

{

c(j) if j < i,
c(j + 1) if j ≥ i.

The index i gives the position where we insert or erase the content of the i-th cell,

and physically, it depends on the relative position of the vehicle represented by the

state σ. For this reason we need to consider the configurations which have a physical

meaning where the order of the cells is in correspondence with the physical order of the

vehicles. Thus, from now on we consider the configurations belonging to Confp(SL)

(see Section 4.2).

52

Figure 5.1: Inserting a vehicle into a lane with the configuration c. -

Given a vehicle represented by a state σ ∈ Σ \ {⊥} and a configuration c ∈

Confp(SL), we define the index operator as the function

Indx : Σ× Confp(SL) → Z,

which returns the relative position of σ with respect to the vehicles in c. Suppose

that σ = (k, x, v, s, d, d′) and c = (σm, . . . , σM) where σj = (kj , xj , vj , sj, dj , d
′

j) for

j ∈ [m,M], then

Indx(σ, c) =

{

M + 1 if x ≥ xj,∀j ∈ [m,M],
min{j ∈ [m,M] : x ≤ xj} otherwise.

In the case c is the empty configuration e, we define Indx(σ, e) = 0. The integer

i = Indx(σ, c) represents the index where the vehicle with state σ would go if we would

try to insert into the configuration c. However, there are some restrictions. Suppose

that the vehicle represented by σ has length l, and the i − 1-th and i-th vehicles with

the states σi−1, σi have lengths li−1, li, respectively
1. The front and the back distances

of a vehicle (see Figure 5.1) with state σ with respect to σi−1 and σi are defined by:

∆+ = xi − x−
li
2
−

l

2
,

∆− = x− xi−1 −
l

2
−

li−1

2
.

The first condition of performing a lane-changing is due to a physical reason because of

the fact the vehicle should fit between the i−1-th and the i-th vehicles. This condition

is expressed by the following inequalities:

∆+ > 0, ∆− > 0. (5.2)

1The border cases where either σi−1 =⊥ or σi =⊥ can be treated analogously.

53

5/figures/fig4.eps

Clearly this is a basic condition while dealing with the transfer of a vehicle from one

lane to another one. However, there must be some conditions that a driver has to

take into consideration when he is changing the lane. These conditions inspired by the

rules in [24] and also by some experiments in our simulation, are introduced for safety

reasons (avoiding accidents) in the following way:

∆− > v1.2i−1 − v + |vi−1 − v|+ 3, (5.3)

∆+ > v1.25 − vi + 3. (5.4)

In general, the inequality 5.3 has more importance for the vehicles that are entering

from the right to the left lane (faster lane) and the inequality 5.4 has more importance

for the vehicles that are entering from the left to the right lane (slower lane). The last

two conditions that we impose for the vehicle with the state σ = (k, x, v, s, d, d′) to be

transferred into the configuration c is that σ must have the desire to change lane, i.e.,

d 6= 0 and σ must have not already been transferred, i.e., d′ = 0. The latter condition

is done to avoid multiple transfer of a vehicle in one computation step of the multi-lane

CCA that we will describe later, e.g., a situation where a vehicle jumps from the first

lane to the third lane instantaneously. We sum all the conditions that σ has to fulfill

to be transferred into c defining the Boolean operator trans(σ, c) which is true if and

only if the following condition is satisfied:

(d 6= 0) ∧ (d′ = 0) ∧ (∆− > 0) ∧ (∆− > v1.2i−1 − v + |vi−1 − v|+ 3) ∧ (5.5)

(∆+ > 0) ∧ (∆+ > v1.25 − vi + 3).

Depending on where a vehicle wants to be transferred, we define the Boolean oper-

ators transL(σ, c) and transR(σ, c) which are true if and only if this vehicle wants to

be transferred to the left and to the right, respectively. Formally:

transL(σ, c) ⇐⇒ trans(σ, c) ∧ (d = L),

transR(σ, c) ⇐⇒ trans(σ, c) ∧ (d = R).

In the process of lane-changing, we need to keep trace where the vehicle comes

from. This is done because the transfer of a vehicle is seen as a process consisting of

two steps, firstly we copy the state σ into c, and secondly we have to erase the original

state σ. For this purpose we need the following notation, we define the copy of σ as:

σcp =

{

(k, x, v, s/5, L,R) if σ = (k, x, v, s, L, 0),
(k, x, v, s/5, R, L) if σ = (k, x, v, s,R, 0).

54

where the stress is reduced from s to s/5 because we make the assumption that when

a vehicle changes lane there is a sense of satisfaction which reduces the stress. Another

reason of decreasing the stress in the process of changing lane is to avoid, or at least to

reduce, the ping-pong phenomenon (frequent lane-changings, see [32, 41, 50]) especially

in the congestion situation.

Suppose that we want to transfer the vehicle with the state σ = (k, x, v, s, d, d′) into

the configuration c. In the sequel we need to discriminate the states to transfer. For

instance, if we want to transfer to the left (right) lane all the vehicles that desire to

be transferred, we need to copy only the ones that have a desire to move on the left

(right) lane. For this reason, if we want to copy σ into c only if it desires to go to the

left (right), we have to update c into a new configuration denoted by σ �L c (σ �R c)

defined by the following equations:

σ �L c =

{

Insi(σ
cp, c) if transL(σ, c), where i = Indx(σ, c)

c otherwise.

σ �R c =

{

Insi(σ
cp, c) if transR(σ, c), where i = Indx(σ, c)

c otherwise.

Note that σ �L c, σ �R c ∈ Confp(SL).

On the other hand, if we consider σ as the state of a configuration c′ which is on

the left or on the right of the configuration c, it is clear that we need to update c′ into

a new configuration c′ \ σ by simply erasing the state σ that has already been copied

into c.

In general, assume that we have a state ω = (h, y, w, r, p, p′) of a vehicle, then

ω is a copy of a vehicle at position i = Indx(ω, c′) in the configuration c′ coming

from the left (right) if and only if c′(i) = (h, y, w, 5r,R, 0) and ω = (h, y, w, r,R,L)

(c′(i) = (h, y, w, 5r, L, 0) and ω = (h, y, w, r, L,R)). Thus the erasing procedure is

accomplished by changing c′ into the new configuration defined by:

c′ \ ω =















Deli(c
′)

if (c′(i) = (h, y, w, 5r,R, 0) ∧ ω = (h, y, w, r,R,L))
∨(c′(i) = (h, y, w, 5r, L, 0) ∧ ω = (h, y, w, r, L,R)),

where i = Indx(ω, c′)
c′ otherwise.

Note that c′ \ ω ∈ Confp(SL).

We now extend the previous functions �L,�R and \ to operators

�: Confp(SL)× Confp(SL) → Confp(SL)

55

\ : Confp(SL)× Confp(SL) → Confp(SL)

between the physical configurations to describe the operation of transfer of vehicles from

a lane to another. We call �L (�R) and \ respectively the left (right) copying and

erasing operator. Let c, c′ ∈ Confp(SL) where c = (ωj1 , . . . , ωjM), c′ = (σi1 , . . . , σiN),

let us define the configurations c′ �L c inductively as follows: let e0 = c and ek :=

σik �L ek−1 for k ∈ [1, N] then,

c′ �L c := eN

analogously for �R.

On the other hand, for c′ \ c, let g0 = c′ and gk := gk−1 \ ωjk for k ∈ [1,M] then,

c′ \ c := gM .

Using these operators it is easy to see that the process of the transfer of vehicles from

c′ to c, where c is the configuration of a lane on the left of the lane with configuration

c′, can be easily described by transforming c into c′ �L c and c′ into c′ \ (c′ �L c).

5.3 Description of the Multi-Lane Model

In this section, we present our model for a multi-lane road using the copying and erasing

operators introduced in Section 5.2. Suppose that there are M ≥ 2 number of lanes on

a road. We model each lane using the single-lane CCA model defined in Section 4.2,

thus we can associate to the road the ordered M -tuple:

SL(0,1), SL
1
(1,1), . . . , SL

M−2
(1,1) , SL(1,0)

where if M ≥ 3 we have M − 2 copies of SL(1,1). Note that SL(0,1), SL(1,0) represents

the left-most lane and the right-most lane, respectively. In the case M = 2, we consider

just the pair SL(0,1), SL(1,0).

Suppose that these M number of CCA are in the configurations (c1, . . . , cM) ∈

Confp(SL)
M . In our multi-lane model, we scan each lane and we transfer the vehicles

to the adjacent lanes. After this process, for each lane we apply the single-lane CCA

model to update the configuration, this update is done by means of the global transition

function (recall that the global transition function of SL(a,b) is denoted by δ∗).

56

Algorithm 4 The pseudo-code for the one time step evolution of the multi-lane model.

1: procedure Update(c0, . . . , cM−1)

2: for i = 0 → M − 1 do

3: if i = 0 then

4: c1 := (c0 �R c1)

5: c0 := c0 \ (c0 �R c1)

6: end if

7: if 0 < i < M − 1 then

8: ci−1 := (ci �L ci−1)

9: ci := ci \ (ci �L ci−1)

10: ci+1 := (ci �R ci+1)

11: ci := ci \ (ci �R ci+1)

12: end if

13: if i = M − 1 then

14: cM−2 := (cM−1 �L cM−2)

15: cM−1 := cM−1 \ (cM−1 �L cM−2)

16: end if

17: end for

18: for i = 0 → M − 1 do

19: if i = 0 then

20: c0 := δ∗(0,1)(c0)

21: end if

22: if 0 < i < M − 1 then

23: ci := δ∗(1,1)(ci)

24: end if

25: if i = M − 1 then

26: cM−1 := δ∗(1,0)(cM−1)

27: end if

28: end for

29: end procedure

57

In this way we result with a new array of configurations (c′1, . . . , c
′

M), and this

process represents u seconds of simulation (recall that in Section 4.2 we made the

assumption u = 1 sec.).

Moreover, the order with which the transfer is performed is from the left-most

lane to the right-most one, and this is done to satisfy the precedence requirement

in European roads. In Algorithm 4, it is described the updating process Update :

(c1, . . . , cM) 7→ (c′1, . . . , c
′

M).

We now show that Algorithm 4 can be simulated by a CCA which implies that our

multi-lane model is actually a CCA model. Thus we can conclude that it is possible to

introduce a multi-lane CA model where the space is continuous. We state this fact in

the following,

Proposition 5.3.1 There is a stochastic CCA ML which simulates Algorithm 4.

Proof We define the stochastic CCA:

ML = (Z,Ω,M,∆)

where� Ω = (Confp(SL)× {copy, erase} ×N
3) ∪ {⊥}, where ⊥ is the state associated to

the empty cells1.� M(i) = (i− 1, i, i + 1) is the von Neumann neighborhood.� ∆ : Ω3 → Ω is the local transition function where:

∆(ω−1, ω0, ω1) = ω′

0

defined in Algorithm 5, with

ωj = (cj ,Xj ,Mj , Pj ,Kj), j = −1, 0, 1.

If we consider M lanes with the configurations c0, . . . , cM−1, we associate to ML =

(Z,Ω,M,∆) the configuration

C = (ω0, . . . , ωM−1)

1In this context, an empty cell represents the fact that in that cell there is no lane.

58

Algorithm 5 The pseudo-code to compute the local transition function ∆.

1: procedure ∆ (ω−1, ω0, ω1)

2: if ω0 =⊥ then

3: ω′

0 =⊥

4: else

5: if K0 = 0 then

6: if X0 = copy then

7: if P0 = K0 + 1 then

8: c0 := (c−1 �R c0)

9: end if

10: X0 := erase

11: else

12: if P0 = K0 then

13: c0 := (c0 \ c1)

14: end if

15: K0 := K0 + 1 mod M0

16: X0 := copy

17: exit

18: end if

19: end if

20: if 0 < K0 < M0 − 1 then

21: if X0 = copy then

22: if P0 = K0 − 1 then

23: c0 := (c1 �L c0)

24: end if

25: if P0 = K0 + 1 then

26: c0 := (c−1 �R c0)

27: end if

28: X0 := erase

29: else

30: if P0 = K0 then

31: c0 := (c0 \ c−1)

32: c0 := (c0 \ c1)

33: end if

34: K0 := K0 + 1 mod M0

35: X0 := copy

36: exit

37: end if

38: end if

59

39: if K0 = M0 − 1 then

40: if X0 = copy then

41: if P0 = K0 − 1 then

42: c0 := (c1 �L c0)

43: end if

44: X0 := erase

45: else

46: if P0 = K0 then

47: c0 := (c0 \ c−1)

48: end if

49: if P0 = 0 then

50: c0 := δ∗(0,1)(c0)

51: end if

52: if 0 < P0 < M0 − 1 then

53: c0 := δ∗(1,1)(c0)

54: end if

55: if P0 = M0 − 1 then

56: c0 := δ∗(1,0)(c0)

57: end if

58: K0 := K0 + 1 mod M0

59: X0 := copy

60: end if

61: end if

62: end if

63: end procedure

where ωi = (ci, copy,M, i, 0) for i = 0, . . . ,M − 1. It is easy to see that applying 2M

times the global transition function ∆∗ to C, we obtain a new configuration:

∆∗
2M

(C) = (ω′

0, . . . , ω
′

M−1)

with ω′

i = (c′i, copy,M, i, 0) for i = 0, . . . ,M − 1 where

(c′0, . . . , c
′

M−1) = Update(c0, . . . , cM−1),

and Update(c0, . . . , cM−1) is the function described in Algorithm 4.

�

60

The following example is an application of Algorithm 5 (an application of ∆∗
2M

where M = 3). In the example, we denote “copy” as c and “erase” as e.

Figure 5.2: The configuration of ML of Example 5.3. -

Example Let C = (ω0, ω1, ω2) be the configuration of ML associated to c0, c1, c2,

respectively (see Figure 5.2) where,

ω0 = (c0, c, 3, 0, 0), ω1 = (c1, c, 3, 1, 0), ω2 = (c2, c, 3, 2, 0)

as defined in Proposition 5.3.1 then,

1. cell 0: ∆(⊥, (c0, c, 3, 0, 0), (c1 , c, 3, 1, 0)) = (c0, e, 3, 0, 0)

cell 1: ∆((c0, c, 3, 0, 0), (c1 , c, 3, 1, 0), (c2 , c, 3, 2, 0)) = (c
(1)
1 , e, 3, 1, 0)

where,

c
(1)
1 = (c0 �R c1)

cell 2: ∆((c1, c, 3, 1, 0), (c2 , c, 3, 2, 0),⊥) = (c2, e, 3, 2, 0)

The new configuration: C(1) = ((c0, e, 3, 0, 0), (c
(1)
1 , e, 3, 1, 0), (c2 , e, 3, 2, 0)).

2. cell 0: ∆(⊥, (c0, e, 3, 0, 0), (c
(1)
1 , e, 3, 1, 0)) = (c

(1)
0 , c, 3, 0, 1)

where,

c
(1)
0 = (c0 \ c

(1)
1)

cell 1: ∆((c0, e, 3, 0, 0), (c
(1)
1 , e, 3, 1, 0), (c2 , e, 3, 2, 0)) = (c

(1)
1 , c, 3, 1, 1)

cell 2: ∆((c
(1)
1 , e, 3, 1, 0), (c2 , e, 3, 2, 0),⊥) = (c2, c, 3, 2, 1)

The new configuration: C(2) = ((c
(1)
0 , c, 3, 0, 1), (c

(1)
1 , c, 3, 1, 1), (c2 , c, 3, 2, 1)).

Note that these two steps simulate a transfer(copy-erase) from the lane repre-

sented by cell 0 to the lane represented by cell 1 (see Figure 5.3).

61

5/figures/figExCopyErase.eps

Figure 5.3: The first transfer. -

3. cell 0: ∆(⊥, (c
(1)
0 , c, 3, 0, 1), (c

(1)
1 , c, 3, 1, 1)) = (c

(2)
0 , e, 3, 0, 1)

where,

c
(2)
0 = (c

(1)
1 �L c

(1)
0)

cell 1: ∆((c
(1)
0 , c, 3, 0, 1), (c

(1)
1 , c, 3, 1, 1), (c2 , c, 3, 2, 1)) = (c

(1)
1 , e, 3, 1, 1)

cell 2: ∆((c
(1)
1 , c, 3, 1, 1), (c2 , c, 3, 2, 1),⊥) = (c

(1)
2 , e, 3, 2, 1)

where,

c
(1)
2 = (c

(1)
1 �R c2)

The new configuration: C(3) = ((c
(2)
0 , e, 3, 0, 1), (c

(1)
1 , e, 3, 1, 1), (c

(1)
2 , e, 3, 2, 1).

4. cell 0: ∆(⊥, (c
(2)
0 , e, 3, 0, 1), (c

(1)
1 , e, 3, 1, 1)) = (c

(2)
0 , c, 3, 0, 2)

cell 1: ∆((c
(2)
0 , e, 3, 0, 1), (c

(1)
1 , e, 3, 1, 1), (c

(1)
2 , e, 3, 2, 1)) = (c

(3)
1 , c, 3, 1, 2)

where,

c
(2)
1 = (c

(1)
1 \ c

(2)
0)

c
(3)
1 = (c

(2)
1 \ c

(1)
2)

cell 2: ∆((c
(1)
1 , e, 3, 1, 1), (c

(1)
2 , e, 3, 2, 1),⊥) = (c

(1)
2 , c, 3, 2, 2)

The new configuration: C(4) = ((c
(2)
0 , c, 3, 0, 2), (c

(3)
1 , c, 3, 1, 2), (c

(1)
2 , c, 3, 2, 2).

Note that the third and the fourth steps simulate a transfer(copy-erase) from the

lane represented by cell 1 to the lanes represented by cell 0 and 2 (see Figure 5.4).

Figure 5.4: The second transfer. -

5. cell 0: ∆(⊥, (c
(2)
0 , c, 3, 0, 2), (c

(3)
1 , c, 3, 1, 2)) = (c

(2)
0 , e, 3, 0, 2)

62

5/figures/trans1.eps
5/figures/trans2.eps

cell 1: ∆((c
(2)
0 , c, 3, 0, 2), (c

(3)
1 , c, 3, 1, 2), (c

(1)
2 , c, 3, 2, 2) = (c

(4)
1 , e, 3, 1, 2)

where,

c
(4)
1 = (c

(1)
2 �L c

(3)
1)

cell 2: ∆((c
(3)
1 , c, 3, 1, 2), (c

(1)
2 , c, 3, 2, 2),⊥) = (c

(1)
2 , e, 3, 2, 2)

The new configuration: C(5) = ((c
(2)
0 , e, 3, 0, 2), (c

(4)
1 , e, 3, 1, 2), (c

(1)
2 , e, 3, 2, 2).

6. cell 0: ∆(⊥, (c
(2)
0 , e, 3, 0, 2), (c

(4)
1 , e, 3, 1, 2)) = (c

(3)
0 , c, 3, 0, 0)

where,

c
(3)
0 = δ∗(0,1)(c

(2)
0)

cell 1: ∆((c
(2)
0 , e, 3, 0, 2), (c

(4)
1 , e, 3, 1, 2), (c

(1)
2 , e, 3, 2, 2)) = (c

(5)
1 , c, 3, 1, 0)

where,

c
(5)
1 = δ∗(1,1)(c

(4)
1)

cell 2: ∆((c
(4)
1 , e, 3, 1, 2), (c

(1)
2 , e, 3, 2, 2),⊥) = (c

(3)
2 , c, 3, 2, 0)

where,

c
(2)
2 = (c

(1)
2 \ c

(4)
1)

c
(3)
2 = δ∗(1,0)(c

(2)
2)

The new configuration: C(6) = ((c
(3)
0 , c, 3, 0, 0), (c

(5)
1 , c, 3, 1, 0), (c

(3)
2 , c, 3, 2, 0).

Finally, these last two steps simulate a transfer(copy-erase) from the lane repre-

sented by cell 2 to the lane represented by cell 1 (see Figure 5.5).

Figure 5.5: The third transfer. -

From the computational point of view a CA (CCA) model is more convenient since it

can be easily parallelized, however, our multi-lane CCA model is essentially sequential.

Indeed, we have to apply 2M -times the global transition function ∆∗ to perform all the

transfer process. Therefore, our CCA model for multi-lane road can take advantage

only if we decide not to apply the precedence rules or if we change the model to an

asynchronous cellular automata model which is probably more appropriate to simulate

63

5/figures/trans3.eps

a concurrent system like two vehicles requesting to move to the same position of the

road. Besides, the number of lanes M are usually limited, thus in such kind of model

we could gain just a factor M in the simulation speed.

64

Chapter 6

Simulation and Results

In this chapter, we implement our model and we run some simulations to study the

general behavior of the model. Note that in our model we simulate just the vehicles

and not the physical environment, i.e., we consider just the number of cells that are the

number of vehicles, not the length of the road. This gives us the advantage of having

a real-time simulation which does not depend on the length of the road.

6.1 The Simulator ozsim

In this section, we give a brief overview of the simulator ozsim that we have imple-

mented in the code presented in Appendix A. The model we have presented is a CA

model which is intrinsically parallel. Therefore, it can be implemented using for in-

stance CUDA to take advantage of the power of the modern graphic cards to perform

parallel computation. In the single-lane model it would be easy to parallelize the al-

gorithm simply by giving to each thread of the GPU a cell representing in our case a

vehicle. However, we decided to implement our model using the programming language

Python since it is a high level language making the implementation of the model faster

and easier. Indeed, during the phase of the development of writing the programme, we

have used an object-oriented philosophy, especially while passing from the single-lane

to multi-lane case, so that it has been easier to modify and rewriting some parts of the

programme to tune it better. The code in Appendix A consists of four main classes:� vehicles(): This class represents the kind of a vehicle introduced in Section 4.2.

It contains all the properties such as; vmax, length, all the membership functions

65

for the fuzzy modules, etc., and other properties used by the programme which

are the name and the color of the kind of vehicle used by the visualization function

Real_Time_Visualizator.� cars(): This class essentially represents the set of state Σ of the single-lane

CA SL, see Section 4.2. Moreover, there are some other properties (data fields)

such as a timer for each vehicle, used to keep track of the time passed. One

important method defined in this class is the function evalFeelings which is

the equivalent of the function Eval(L,R)(ki, vi(t), si(t)), described in Section 5.1

to take the decision of which lane the vehicle wants to move.� external(cars): This class is a subclass of cars(). It is used to model the

objects which are not vehicles, but they usually interact with them, e.g., obstacles,

on- and off-ramps, etc. Some data fields of this class are;

– visibility: is a Boolean parameter to specify whether or not an external

object is visible to the other vehicles of the class cars(). This parameter

can be used to make the vehicles slow down in the presence of an off-ramp

or near an off-toll plaza.

– emissionRate: is the parameter λ of a Poisson distribution which is used to

model the emission phenomena. This parameter is used to model on-ramps

and on-toll plaza.

– kindDistribution: gives the probability distribution of the vehicle kinds

used by the emitter to decide which kind of vehicle it will produce. For

instance, if the kindDistribution is set as 10% of long vehicles and 90%

of passenger vehicles then with 0.1 probability the emitter produces a long

vehicle and otherwise it produces a passenger vehicle.

– initialVelocity: the initial velocity that the vehicles are created with, by

default we set this value as 12 m/s.

– absorptionProb: gives the probability that a vehicle is absorbed by an off-

ramp. Depending on how much the exit is used this probability is set up,

i.e., the value is depending on the frequency of the usage of that exit. When

this probability is 1, it corresponds to a sink (off-toll plaza), where all the

vehicles are absorbed.

66

– influenceRadius: is the radius within which a vehicle is absorbed by an

off-ramp. This parameter can be set up to change for instance the time used

to process a vehicle by an off-toll plaza (the time required to slow down and

make the payment). The smaller this parameter is, the more the time it takes

for a vehicle to get absorbed within influenceRadius. influenceRadius

accepts also negative parameters corresponding to the case where the vehicles

do not see the off-ramp. This case is used to simulate electronic toll payments

(open road tolling) in the off-toll plazas.

– counter: is used in many situations; the most common one is to count the

number of cars to simulate loop detectors, the others are for ancillary usages.

– buffer and bufferCapacity: Buffer is a list that stores the vehicles ab-

sorbed by an off-ramp. This storing is used to analyze the information

contained in each vehicle, for instance to check its timer which shows how

much it took to reach to an off-ramp. Buffer capacity is simply the capacity

of the buffer, and above this value the buffer is not able to store any more

vehicles, so the off-ramp cannot absorb anymore. It is also used in the pro-

cess of generating cars. If the vehicle can not be inserted into the road, it is

stored in the buffer waiting for the road to be more empty. This can mimic

the situation of entering a highway where there is traffic congestion and the

on-ramp can store only a limited number of vehicles that want to enter.

– sampRate: is the number of cycles showing how much frequently the buffer

is refreshed, i.e, every sampRate cycles the buffer is emptied so that it can

analyze the information contained in the next pocket of vehicles arrived.

The information to be analyzed are throughput and avLatency.

– throughput: is the number n of vehicles stored in buffer. For instance,

it represents the number of vehicles processes every sampRate cycles in an

off-toll plaza.

– avLatency: is the average of the information contained in the timer (latency)

of the vehicles stored in buffer. If t1, . . . , tn are the values of the timers of

the n vehicles, then

avLatency =
t1 + . . . + tn

n

67

� lane(): is the class characterizing a lane. It contains the configurations of a lane

which is a list of objects cars(), two pointers left and right showing the left

and right lanes, and a series of methods which are used to simulate the multi-

lane CCA ML described in Chapter 5. In the program we essentially implement

Algorithm 4 where the transfer of a vehicle is made step by step and not at once

using the coping and erasing operators defined in Section 5.2. Furthermore, the

transfer of the vehicles is not parallel but sequential from the leftmost to the

rightmost lane. This sequentiality gives the precedence to the vehicles on the

left-most lane and this precedence decreases towards the right-most lane. The

updating is made using the following methods:

– _index: finds the index where a vehicle should be inserted in the lane w.r.t

its position considering also the length of it and its adjacent neighbors. This

function is similar to Indx(σ, c) described in Section 5.2 with the difference

that _index check also the conditions in 5.2.

– _possibleCar: calls _index to see whether the conditions in 5.2 are satisfied

or not. If they are satisfied, it checks also the constraints in 5.3 and 5.4. If

these are also satisfied, it returns the value given by _index.

– transfer: transfers a vehicle from one lane to an adjacent lane, i.e., first

it copies the vehicles that desire to move to a an adjacent lane and then it

erases the original one. However before the transferring procedure, it calls

_possibleCar to check if it is possible to make this transfer.

– evalChanges: scans a lane and checks if a vehicle wants to move to an adja-

cent lane. In the affirmative case, it calls transfer() to perform this oper-

ation. In the case the element of the lane is an element of external(cars),

evalChanges calls the method evalExternal.

– evalExternal: updates an external object of the class external(cars) in a

lane. For instance, if this object is an emitter it performs all the operations

such as the generation of the vehicles and the placement inside the lane. If

it is a sink, it has to perform operations like counting the number of vehicles

absorbed or the evaluation of the average latency.

– eval: is the function that updates a lane. First it calls evalChanges to

perform the transfer of the vehicles and after it updates the lane using the

68

global transition function of the single-lane CA model which is performed in

the program by the function transition_function.

Moreover there are other methods which are used to create some external ob-

jects on a lane, such as on- and off-ramps (createOnRamp and createOffRamp),

obstacles (createObstacle) and loop detectors (createLoopDetector).

Regarding the other functions available in ozsim we give an overview of the utilities of

some of them:� updating_function, transition_function are respectively the local transition

function and its global version of the single-lane CCA model, i.e., they compute

δ, δ∗ described in Section 4.2.� initial_lane is used to initialize a lane with some initial physical configuration

(see Section 4.2).� createStreet first creates the most-right lane with a given configuration, then

it creates the other lanes with empty configurations linking them mutually using

the left and right pointers each time we create a lane.� updateStreet is the function that scans each lane from left to right and it updates

it using eval.� lin_preimage, lin, fuzzy_agent are the functions used to simulate the fuzzy

decision modules (see Section 4.3).� draw_car, visual_position, Real_Time_Visualizator are functions devoted

to have a visualization tool for the real-time simulation (it requires the package

Glumpy). During the running of the real-time simulation by clicking the left

button of the mouse it is possible to call the function randObstacle that generates

an obstacle randomly on some lane in front of the leading vehicle or the function

slowing_perturbation that makes all the leading vehicles of each lane slow down

with a factor 1/5. The latter function is useful in observing the back propagation

wave formed during a jam situation (see Figure 6.18).

69

� random_kind_array, random_position_array, random_velocity_array are func-

tions that generate a random array of kind of vehicles, positions and velocities

respectively. The array of kind of vehicles is generated uniformly depending on

an input array which gives the probability distribution. The array of position is

created uniformly generating the spatial distance between each two vehicles (a

uniform random number between a minimum distance and a maximum distance).

Analogously the array of velocity is created by generating uniformly distributed

numbers between a minimal velocity and a maximum velocity.� averageStreetVelocity, averageStreetDistance calculate the average of the

velocities of the vehicles and the average of the spatial distances between adjacent

vehicles (from front bumper to rear bumper), respectively.� createRandHighway creates a highway with some random parameters. It calls the

functions createOnToll and createOffToll to generate on- and off-toll plazas,

respectively, at the beginning and the end of this highway. Moreover, some on-

and off-ramps or some obstacles can be added randomly.

A screenshot of the real-time simulator can be seen in Figure 6.1 where we have used

createRandHighway to generate a random four-lane highway of length 22000 m with an

on-toll plaza, an off-toll plaza, two on-toll ramps, two off-toll ramps and three obstacles.

The simulation runs at a velocity of around 3 FPS with less than 1000 vehicles and

around 1.5 frames per seconds with more than 2500 vehicles on a laptop equipped with

a core i5 running on Windows 7 professional.

6.2 Setting the Kinds of Vehicles

In this section, we describe the kinds of vehicles we used for our experiments. In all

our experiments, we use just two kinds of vehicles which we call as passenger vehicles

and long vehicles. The vehicles have the following parameters (see the code line 1393

and 1427 in Appendix A):� passenger vehicles: the maximum velocity is 36 m/s, the optimal velocity: 28

m/s, the length: 4 m, the natural acceleration noise: 0.2 m/s2 (see [23]), the

70

Figure 6.1: A screenshot of the real-time simulator. -

maximum stress: 500 m, the minimum stress: −450 m, the function of the prob-

ability of lane-changing to the right lane PR(x) = x, the function of the probability

of lane-changing to the left lane PL(x) = x.� long vehicles: the maximum velocity is 25 m/s, the optimal velocity: 20 m/s, the

length: 9 m, the natural acceleration noise: 0.1 m/s2 (see [23]), the maximum

stress: 300 m, the minimum stress: −700 m, the function of the probability of

lane-changing to the right lane PR(x) = x, the function of the probability of

lane-changing to the left lane PL(x) = x1.25.

Regarding the fuzzy membership functions, we have tuned them according to a ques-

tionary posed to a group of drivers. In each question, it is requested to give an integer

value between 0, . . . , 10 which represents how much for the interviewee a claim related

to their perception while driving. For instance, one of the question with regard to the

front collision time is,

Assume that there is a car in front of you (stopping or moving), and inde-

pendently from the front distance and relative velocity, you know that some

seconds later you will collide to that car, which is called as front collision

time. For you, how many seconds of front collision time will be ”very small”

71

6/figures/simscreenshot.eps

amount of time? ”small” amount of time? ”medium” amount of time? and

”big” amount of time? Fill the table below with a rating between 0-10, that

will give the ”meaning of front time to collision” is ”very small”, ”small”,

”medium” and ”big”.

Figure 6.2: A screenshot of the questionnaire. -

The answer of one of the interviewee can be seen in a screenshot of the questionary

(see Figure 6.2). After we collect the data from 30 interviewees, we have taken the

average, divided by 10 and normalized this data since the range of a membership

function is in the interval [0, 1]. In this way, we consider the corresponding membership

function by interpolating linearly these data. However, in the simulation, we do not use

these functions since we have noticed a slowing down with respect to other simpler and

more common membership functions like the triangular and trapezoidal ones. For this

reason, we have approximated the membership functions obtained from the data with

the triangular and trapezoidal membership functions (see Figures 6.3, 6.4 and 6.5). We

do not think that this kind of approximation can influence too much the results of the

simulation. Firstly, because the sample is too small and so the data obtained is subject

to errors and secondly, the obtained membership functions are not so different from

their approximated versions and the simulation can gain a boost of a factor 1.5.

72

6/figures/screenshot-quest.eps

The problem of tuning the membership functions is an interesting challenge which

deserves a deeper analysis, however, in the simulation, we are interested in a first testing

of this model and its general behavior.

Note that for long vehicles the effect of back collision time and back distance is

not taken into consideration so much since long vehicles usually do not perceive the

pushing effect. Therefore, in the questionary it is neglected this part and we made the

assumptions for these membership functions as they are seen in Figures 6.3 and 6.4.

In regard to the zero acceleration, it is not evaluated through the questionary, so we

consider a triangular membership function representing the zero acceleration for both

passenger and long vehicles as it is seen in Figure 6.5.

6.3 The Experiment Scenarios

In this section, we describe the scenarios of the simulations that we have run. The

function __main__ (line 1529 of the code in Appendix A) simulates a piece of highway

of length L with M number of lanes, an on-toll plaza and an off-toll plaza. The ordered

parameters passed to __main__ are the followings:� Length of the road L.� Number of lane M .� Number of iterations (the simulation time).� Number of repetitions of the same experiment.� Emission rate λ: the number of vehicles entering this piece of highway.� Influence radius ρ of the off-toll plaza, recall that ρ = −1 means that there is an

open road tolling.� Obstacle: if this parameter is −1 an obstacle is placed on the left-most lane, if it is

set to +1 then an obstacle is placed on the right-most lane, and if this parameter

is missing, there is no obstacle.

For instance, if one wants to simulate an experiment with L = 25000 m, M = 3, 10000

iterations, 1 repetition, λ = 1 veh/sec, ρ = −1, an obstacle on the right-most lane

(+1), then it should be lunched python ozsim.py 25000 3 10000 1 1 -1 +1.

73

Figure 6.3: Fuzzy membership functions for Front Collision Time and Back

Collision Time - Passenger vehicles and long vehicles with their approximated versions.

74

6/figures/CT.eps

Figure 6.4: Fuzzy membership functions for Front Distance and Back Distance

- Passenger vehicles and long vehicles with their approximated versions.

75

6/figures/D.eps

Figure 6.5: Fuzzy membership functions for Velocity and Acceleration - Passen-

ger vehicles and long vehicles with their approximated versions.

76

6/figures/VelAcc.eps

The kinds of vehicles used are the passenger and the long vehicles whose pa-

rameters are described in Section 6.2. The percentages of long vehicles considered

in the simulation are respectively of 0%, 10%, 20%, 30%. We do not consider higher

values since usually the percentage of long vehicles on a highway does not exceed

the 40%. Therefore in the creation of the on-toll plaza we have used the function

createOnToll(leftMostLane, initialPosition, emissRate, kindDistribution)

defined in the code of Appendix A where emissRate is the average number of ve-

hicles created every second in a single-lane and kindDistribution is the probabil-

ity distribution of the two kinds of vehicles. The value emissRate is set to λ/M

where we have considered λ = 0.25, 0.5, 1, 1.5, 2 vehicles per seconds. For instance,

in the case λ = 1.5 vehicles per second with three lanes, the average number of

vehicles entering the piece of highway is 90 vehicles per minute which means that

each lane near the on-toll plaza is charged of around 30 vehicles per minute which

corresponds to a situation of heavy traffic since the maximum capacity of a lane is

considered around 40 vehicles per minute (see [34]). Regarding the off-toll plaza we

have used the function createOffToll(leftMostLane, position, absorptionProb,

influenceRadius, bufferCapacity, sampRate) where position is set to L, the ab-

sorption probability absorptionProb is set to 1 since all the vehicles exit from the road,

the influence radius influenceRadius considered are ρ = 10, 25, 50 m or, −1 which is

corresponding to the case where the off-toll plaza is not visible to the vehicles thus they

pass through it without stopping. This situation corresponds to the case of an open road

tolling payment system where the vehicles do not need to slow down and stop to make

the payment. The last two parameters bufferCapacity and sampRate are set to 100

vehicles and 10 seconds, respectively. In other words, each lane in the off-toll plaza can

store a maximum of 100 vehicles and every 10 seconds the simulator (evalExternal)

checks the number of vehicles stored and it calculates the average latency, i.e., the

average of the time spent to travel from the entrance to the exit, and finally it resets

the buffer. If the last parameter passed in __main__ is 1,−1, an obstacle is placed on

the right-most, left-most lane, respectively. This situation is made to analyze a bot-

tleneck phenomenon. We have used the method createObstacle(self, position,

dimension, color = 0.45) with parameters position= L/2, dimension= L/5 to

place an obstacle of dimension (2L)/5 in the middle of the piece of highway. In Tables

6.1 and 6.2, the two scenarios of the experiments we have performed can be seen.

77

Table 6.1: Scenario �1

Experiment Road Length Lanes Iterations Repetitions Emission Rate Influence Radius Obstacle� (m) (sec) (veh/sec) (m)

1 25000 2 10000 1 0.25 25 -

2 25000 2 10000 1 0.25 25 R

3 25000 2 10000 1 0.25 25 L

4 25000 2 10000 1 0.25 � -

5 25000 2 10000 1 0.25 � R

6 25000 2 10000 1 0.25 � L

7 25000 2 10000 1 1.0 25 -

8 25000 2 10000 1 1.0 25 R

9 25000 2 10000 1 1.0 25 L

10 25000 2 10000 1 1.0 � -

11 25000 2 10000 1 1.0 � R

12 25000 2 10000 1 1.0 � L

13 25000 3 10000 1 0.5 25 -

14 25000 3 10000 1 0.5 25 R

15 25000 3 10000 1 0.5 25 L

16 25000 3 10000 1 0.5 � -

17 25000 3 10000 1 0.5 � R

18 25000 3 10000 1 0.5 � L

19 25000 3 10000 1 1.0 25 -

20 25000 3 10000 1 1.0 25 R

21 25000 3 10000 1 1.0 25 L

22 25000 3 10000 1 1.0 � -

23 25000 3 10000 1 1.0 � R

24 25000 3 10000 1 1.0 � L

25 25000 3 20000 1 1.5 25 -

26 25000 3 20000 1 1.5 25 R

27 25000 3 20000 1 1.5 25 L

28 25000 3 20000 1 1.5 � -

29 25000 3 20000 1 1.5 � R

30 25000 3 20000 1 1.5 � L

31 25000 4 10000 1 1.0 25 -

32 25000 4 10000 1 1.0 25 R

33 25000 4 10000 1 1.0 25 L

34 25000 4 10000 1 1.0 � -

35 25000 4 10000 1 1.0 � R

36 25000 4 10000 1 1.0 � L

37 25000 4 10000 1 1.5 25 -

38 25000 4 10000 1 1.5 25 R

39 25000 4 10000 1 1.5 25 L

40 25000 4 10000 1 1.5 � -

41 25000 4 10000 1 1.5 � R

42 25000 4 10000 1 1.5 � L

�: open road tolling, R: obstacle on the right-most lane, L: obstacle on the left-most

lane.

78

Table 6.2: Scenario �2

Experiment Road Length Lanes Iterations Repetitions Emission Rate Influence Radius Obstacle� (km) (sec) (veh/sec) (m)

1 5000 2 1000 100 1.0 10 -

2 5000 2 1000 100 1.0 10 R

3 5000 2 1000 100 1.0 25 -

4 5000 2 1000 100 1.0 25 R

5 5000 2 1000 100 1.0 25 L

6 5000 2 1000 100 1.0 50 -

7 5000 2 1000 100 1.0 50 R

8 5000 2 1000 1000 1.0 50 -

9 5000 2 1000 1000 1.0 50 R

10 5000 2 1000 100 1.0 � -

11 5000 2 1000 100 1.0 � R

12 5000 2 1000 100 1.0 � L

13 5000 3 1000 100 0.5 25 -

14 5000 3 1000 100 0.5 25 R

15 5000 3 1000 100 0.5 25 L

16 5000 3 1000 100 0.5 � -

17 5000 3 1000 100 0.5 � R

18 5000 3 1000 100 0.5 � L

19 5000 3 1000 100 1.0 25 -

20 5000 3 1000 100 1.0 25 R

21 5000 3 1000 100 1.0 25 L

22 5000 3 1000 100 1.0 � -

23 5000 3 1000 100 1.0 � R

24 5000 3 1000 100 1.0 � L

25 5000 3 1000 100 1.5 10 -

26 5000 3 1000 100 1.5 10 R

27 5000 3 1000 100 1.5 25 -

28 5000 3 1000 100 1.5 25 R

29 5000 3 1000 100 1.5 25 L

30 5000 3 1000 100 1.5 50 -

31 5000 3 1000 100 1.5 50 R

32 5000 3 1000 100 1.5 � -

33 5000 3 1000 100 1.5 � R

34 5000 3 1000 100 1.5 � L

35 5000 3 1000 100 2 10 -

36 5000 3 1000 100 2 10 R

37 5000 3 1000 100 2 50 -

38 5000 3 1000 100 2 50 R

39 5000 3 1000 100 2 � R

40 5000 4 1000 100 1.5 25 -

41 5000 4 1000 100 1.5 25 R

42 5000 4 1000 100 1.5 25 L

43 5000 4 1000 100 1.5 � -

44 5000 4 1000 100 1.5 � R

45 5000 4 1000 100 1.5 � L

�: open road tolling, R: obstacle on the right-most lane, L: obstacle on the left-most

lane. 79

6.4 Analysis of the Experimental Results

Each experiment in Scenario 1 with 10000 iterations takes around 40 minutes and each

experiment in Scenario 2 with 1000 iterations and 100 repetitions takes around 6.6

hours using one core of a computer equipped with a 16 core Xeon at 2.7GHz (X5550)

with 16GB of RAM running Debian Linux (kernel 2.6.32).

The macroscopic parameters considered for the purpose of analyzing the general

behavior of traffic in our experiments, are evaluated as following:

The density describing the number of vehicles per unit length of the piece of highway

(measured in vehicles per meter) at time t is,

k(t) =
N(t)

L

where N(t) is the total number of vehicles at time t and L is the length of the road

representing a piece of highway (25 km in the experiments without repetition and 5

km in the repeated experiments).

The average velocity, i.e., the averaged sum of the velocities at time t is,

vav(t) =

∑N(t)
i=1 vi
N(t)

Finally, the flow is defined as the number of vehicles passing by a specific point of

the piece of highway per unit of time (measured in vehicles per second) as,

q(t) = k(t) · vav(t)

The analysis of traffic flow is typically performed by constructing the fundamental

diagram (the flow-density diagram) that determines the traffic state of a roadway by

showing the relation between flow and density. The equations described above show

how to compute the variables at a particular time and they are used to plot the flow-

time and density-time graphics (see Figure 6.8) and the fundamental diagrams (see

for instance, Figure 6.6 and Figure 6.9). Note that in our experiments, the density

can reach at 0.25 veh/m per lane as maximum since the length of a passenger vehicle

is assumed to be 4 m. On the other hand, in the NaSch-type models, the density

values used to plot the fundamental diagram is evaluated in a different way. In the

sense that in our model the number of vehicles is not constant since the vehicles are

entering (depending on a Poisson stochastic process) and exiting the piece of highway

80

where the exiting rate is different than the entering one. Instead, for instance in NaSch

model, the number of vehicles cannot change during the simulations since the model

is defined with closed boundary conditions, meaning that the system has a constant

density which is quite unrealistic. Therefore, in order to obtain different densities, they

run the simulations by changing the length of the road (the number of cells) in these

models.

Figure 6.6: Fundamental diagram of flow with various percentages of long

vehicles - This figure corresponds to Experiment 25 of Scenario 1.

In all the experiments performed, we have noticed that the heterogeneity is an

important factor in influencing the flow. In the fundamental diagram of the flow in

Figure 6.6, for instance, it is clear that adding even a small amount of long vehicles

changes the diagram significantly.

Different composition of vehicles in traffic stream formed by changing the percentage

of long vehicles effects the throughput (see Figure 6.7), as it is predictable since long

vehicles are slower and so in the queue near the off-toll plaza it takes more time to move

and get processed. For instance, without long vehicles the throughput is 7.7 vehicles

per 10 seconds which becomes 6.7 when the amount of long vehicles is 20%. The effect

of heterogeneity is seen also on the flow, density, average velocity, average distance and

latency as we observe in the first plot of Figure 6.8. This issue is not a consequence of

81

6/figures/25-3-1half-25.eps

Figure 6.7: The throughputs according to the various percentages of long ve-

hicles - This figure corresponds to Experiment 25 of Scenario 1.

the statistical fluctuation (see the second plot of Figure 6.8 with repetitions). Indeed,

for instance Figure 6.9 shows the average of all the repeated experiments for 3 lanes

and for 4 lanes in which it is seen that the flow-density relation has the dependency on

the percentage of long vehicles.

The experiments show that the model is able to reproduce the typical traffic flow

physical phenomena such as the three phases of traffic flow [30]: Free flow, synchronized

flow and wide-moving jam, see Figure 6.10. Free flow corresponds to the region of low

to medium density and weak interaction between vehicles. In general, the slope of the

fundamental diagram in the free flow phase is related to the speed limit, meaning that in

this phase vehicles can move almost at the speed limit. Instead, in the free flow phase of

the fundamental diagram in our experimental results, the slope is related to the optimal

velocity, meaning that in this phase the vehicles can move almost at the optimal velocity.

The reason is, in our model the vehicles do not aim to reach to the maximum velocity,

but they tend to go with their optimal velocity. Free flow is characterized with a strong

correlation and quasi-linear relation between the local flow and the local density [45].

The synchronized flow presents medium and high density while the flow can behave free

or jammed. In other words, it is defined by the interaction between the vehicles and

82

6/figures/25-3-1half-25(thr).eps

Figure 6.8: One of the typical diagrams of “plot.py” without and with repe-

titions, respectively, showing flow, density, average velocity, average distance

and latency graphics with respect to time - This figure corresponds to Experiments

25 of Scenario 1 and 27 of Scenario 2, respectively.

83

6/figures/5and25-3-1half-25(allfigures).eps

Figure 6.9: Fundamental diagrams with 100 repetitions - These figures correspond

to Experiments 27 and 40 of Scenario 2, respectively.

84

6/figures/5-3and4-1half-25(flowDiag).eps

Figure 6.10: Traffic phases in the fundamental diagram: Free flow, synchro-

nized flow and wide-moving jam, and the cross-covariance between the flow

and density - This figure corresponds to Experiment 35 of Scenario 2.

is characterized by an uncorrelated flow-density diagram. However, this phase is not

clearly understood in the context of CA and not observed in most of the NaSch-type

CA models. It probably requires the presence of sources (on-ramps, on-toll plaza) and

sinks (off-ramps, off-toll plaza), see [59]. The wide-moving jam phase represents the

situation where the traffic is jammed (congested). In this phase, an increase in density

results with a decrease in the flow. Let us now consider the cross-covariance between

the flow q(t) and the density k(t), see Figure 6.10:

cc(q, k) =
〈q(t)k(t)〉 − 〈q(t)〉〈k(t)〉

√

〈q(t)2〉 − 〈q(t)〉2
√

〈k(t)2〉 − 〈k(t)〉2

where the brackets 〈·〉 indicate averaging the values obtained in all the experiments at

time t. In the free flow phase, the flow is strongly related to the density indicating

that the average velocity is nearly constant. For large densities, in the wide-moving

jam phase, the flow is mainly controlled by density fluctuations. There is a transi-

tion between these two phases where the fundamental diagram shows a plateau when

the cross-variance is close to zero. This situation with cc(q, k) ≈ 0, is identified as

synchronized flow [33, 45].

85

6/figures/flow-cross-5000-3-2-10.eps

Figure 6.11: The fundamental diagrams depending on the different average

throughputs - The figures are arranged according to the different percentages of long

vehicles: 0%, 20% and 30%, respectively, and in each figure the plots from up to down

correspond to Experiments 32, 30, 27 and 25 of Scenario 2, respectively.

86

6/figures/comp-5000-3-1half-0-20-30long.eps

Figure 6.12: The fundamental and the cross-covariance diagrams without and

with obstacle - These figures correspond to Experiments 25 and 26 of Scenario 2, respec-

tively.

87

6/figures/obstacle-5000-3-1half-10.eps

Figure 6.13: The slope in the wide-moving jam phase with the obstacles - These

figures correspond to Experiments 36, 28 and 41 of Scenario 2, respectively.

88

6/figures/slope-congestion.eps

As it is seen in Figure 6.10, we reproduce these relations where the free flow phase

initiates with the situation of cross-covariance close to 1 and continues with a positive

cross-covariance, the synchronized flow phase is in the region where the cross-covariance

is close to zero and the wide-moving jam phase corresponds to the situation where the

cross-covariance is negative (anticorrelation).

The plateau formation has the dependency also on the throughput. In Figure 6.11,

it is seen this situation where we have compared the fundamental diagrams for different

influence radii which are related to the average throughputs. If we increase the average

throughput, there occurs a more immediate passage from the synchronized flow phase

to the wide-moving jam phase. In other words, the phase-change between these two

flows occurs with a higher density with the decrease of throughput. Similarly, when we

compare the three figures in Figure 6.11, we see that with more long vehicle percentage

we have the phase-change with a higher density. The same phenomena is shown with

arrows in Figure 6.9.

This phenomena is inverted when an obstacle is placed (on the right-most lane1).

More precisely, as it is seen in Figure 6.12, when an obstacle is set, we have observed that

the phase-change occurs with a lower density when there are long vehicles, probably

because when long vehicles get stuck this phase emerges faster. Besides, without an

obstacle there is an increase at the slope (absolute value) of the fundamental diagram

where there is the wide-moving jam phase, when the percentage of long vehicles is

increased (see also Figure 6.9). In other words, the flow decreases faster in presence

of long vehicles with the same increment of density, which is not observed in the case

of placing an obstacle (the lines are almost parallel, see Figure 6.12). However, this

parallelism occurs only when the road is enough saturated. For instance in Figure 6.13

we see that the parallelism occurs in the first and second figures, but not in the third

figure since when we compare the second and the third figures, the lane number is

increased and so the emission rate per lane is decreased, respectively, which means that

in the third figure there is not enough saturation.

Another effect of setting an obstacle is a reduction on the traffic capacity as it is

expected. For instance, in the experiments plotted in Figure 6.12, the maximum flow

1Note that when we placed an obstacle on the left-most lane, we have observed that the result is

almost the same with placing it on the right-most lane, so when we make comparisons of having or not

having obstacle we use the result of placing it on the right-most lane

89

Figure 6.14: The effect of open road tolling on the flow phases with 3 lanes and

4 lanes - These figures correspond to Experiments 32 and 43 of Scenario 2, respectively.

90

6/figures/5-3and4-1half-open.eps

Figure 6.15: The absence of wide-moving jam phase in the case where the vehi-

cles entering are less than the exiting ones - This figure corresponds to Experiment

8 of Scenario 2.

Figure 6.16: The absence of the heterogeneity in the synchronized flow phase

in the case where the vehicles entering are less than the exiting ones - This figure

corresponds to Experiment 13 of Scenario 2.

91

6/figures/5-2-1-50.eps
6/figures/5-3-half-25-heterogeneity.eps

that can be reached is around 1.33 veh/sec without an obstacle and around 1.2 veh/sec

with an obstacle placed on the right-most lane. It is also seen in Figure 6.12 that this

reduction is more visible with the presence of long vehicles.

In the case that there is an open road tolling, the wide-moving jam phase does not

take place, so there is no anticorrelation situation. As it is seen in Figure 6.14, there is

just a transition between free flow and synchronized flow. The absence of wide-moving

jam phase occurs in general with the situations where the emission rate is low with

respect to the rate that the vehicles are processed (the influence radius or throughput)

at the off-toll plaza as it is expected. For instance, in Experiment 8 of Scenario 2 plotted

in Figure 6.15, the emission rate is 1 meaning that 1 passenger vehicle enters to the

road each second, and the throughput is reaching around 11 veh/10 sec meaning that

1.1 passenger vehicles exit from the road each second. Moreover, in these situations

also the heterogeneity is lost in the synchronized flow phase as it is seen in Figure

6.16 where the emission rate is 0.5 veh/sec and the number of exiting vehicles reaches

around 0.8 veh/sec (throughput is around 8 veh/10 sec).

The experiments also show that the model is able to reproduce the hysteresis phe-

nomena in transition between free flow and synchronized flow phases (see in [30]) and

in transition between synchronized flow and wide-moving jam phases as it is seen in

Figure 6.17. The regions where there are saddles followed by a capacity drop, as in

the Fig.9(e) of [21], are the regions of metastability in the phase-changes (from free

flow to synchronized flow and from synchronized flow to wide-moving jam). These

metastable states are visible also using the Real_Time_Visualizator considering an

initial state of 200 vehicles in a free flow phase with velocity of 30 m/s and distance

between passenger vehicles of 30 m. Applying a small perturbation to the leading car

creates a back propagation wave that brings the system in a new state which is more

stable, see Figure 6.18. This phenomena occurs very clearly in this example since it

is an extreme situation where the system tends to react very severely. Indeed, in this

situation the rules applied are the ones used by the NaSch model to avoid collision,

however, in general the system reacts more smoothly and this phenomena is not so

emphasized. This fact is also visible in the phase-changes of the fundamental diagrams

where the saddles are smooth (curved), see Figure 6.17.

This metastability phenomenon is not so evident when there are long vehicles. More

precisely, the heterogeneity of traffic effects the formation of the plateaus. In Figure 6.9

92

Figure 6.17: The scatter plots of the fundamental diagrams showing the

metastability phenomenon in transitions between phases - These figures corre-

spond to Experiments 35, 28 and 13 of Scenario 2, respectively.

93

6/figures/hysteresis.eps

Figure 6.18: An example of a metastable state and a back propagation wave

effect - The metastable state in frame 1 after a small perturbation evolves into a new

stable state shown in frame 8.

94

6/figures/backPropagation.eps

and Figure 6.11, it is seen that in the case of the presence of long vehicles, the bumpy

plateaus in the synchronized flow phase are replaced by more flattened plateaus, so

the saddles in the phase-changes are not observed as they are in the absence of long

vehicles. This is probably due to the fact that passenger vehicles are fast and so the

flow of a traffic without long vehicles changes its phase more sharply. However, we

observe that the presence of obstacles increases the number of the saddles even when

there are long vehicles, making the fundamental diagram more bumpy especially in the

synchronized phase (see Figure 6.13 and the second plot of Figure 6.17).

Another phenomenon is observed in the latency diagrams. In the experiments

without repetition, it is seen that the latency oscillates and the amplitude of this

oscillation increases as the traffic becomes more jammed (see the first and the second

plot of Figure 6.19). It is clear that this oscillation is not seen when we average on

many repetitions (see the third and the sixth plot of Figure 6.19), thus this phenomena

is probably an amplification of the noise due to the traffic congestion: the more the

traffic is congested, the more there are pockets of vehicles which arrive much more

before than some others with differences of around 1000 seconds. Indeed, when there

is open road tolling situation and there are only passenger vehicles (see the fifth plot

of Figure 6.19 with 0% Long Vehicles) or when there is light traffic and there are only

passenger vehicles (see the fourth plot of Figure 6.19 with 0% Long Vehicles) in the

traffic stream, this phenomenon is not visible and there is no this amplification effect.

However, it is observed that the presence of long vehicles creates some oscillations in

the situations where there is open road tolling (see the fifth plot of Figure 6.19 with

30% Long Vehicles) or light traffic (see the fourth plot of Figure 6.19 with 30% Long

Vehicles). We also observe that when there is open road tolling, the latency is almost

constant, whereas in other situations it is increasing as it is expected.

95

Figure 6.19: Latency in different situations - These figures correspond to Experi-

ments: 31 of Scenario 1, the magnified version of previous experiment, 40 of Scenario 2, 1

and 22 of Scenario 1, and 22 of Scenario 2, respectively.

96

6/figures/Latency.eps

Chapter 7

Conclusion and Future Work

In this dissertation, we have introduced a new traffic model using continuous CA which

is completely detached from the previous CA models defined in literature. The aim

was to consider a hybrid between usual microscopic models, very accurate in predicting

general traffic behavior but computationally expensive, and usual CA models very

efficient due to their simplicity and intrinsic parallelism which make them natural to

be implemented for parallel computing. This process of passing from the typical coarse-

granularity usual of CA models to the continuity of the typical microscopic models gives

us also the advantage of embedding a multi-agent system based on fuzzy decision rules

to mimic different driver behaviors. This passage is done with a change of vision with

respect to the other CA models. Indeed, instead of considering cells as space we have

considered cells which are vehicles, in this way we have made independent the time

of computation from the length of the road. Thus, we have first defined a continuous

cellular automata model for a single-lane road and then we have extended this model

to the multi-lane case. This extension, although natural, is non-trivial.

In the process of the extension, we have first presented the model as an array of

communicating one-dimensional CCA, and successively we have proved that this model

can be simulated by a suitable CCA. In this way, we have framed our multi-lane model

inside the category of CCA. Finally, we have implemented the model using Python 2.7

in the simulator ozsim.py using an object-oriented philosophy of programming. Using

a questionary we have set up two kinds of vehicles which we have used to run a series of

experiments to give a first test to our model. Experimental work has been conducted

and the results we have obtained seem promising. Analyzing the experimental results,

97

we have focused on the behavior of heterogeneous traffic such as the effect of different

composition of vehicles, and the influence of this heterogeneity on the macroscopic

behavior of the traffic in order to study the typical traffic flow phenomena.

Although the simulator is not optimized, it can simulate several vehicles (around

1500) in a real-time visualization mode on a laptop equipped with a processor i7 intel©
with a frame-rate of 2 FPS. On a more powerful machine1, when the simulator does not

run in real-time visualization mode, the speed increases to a factor of 4 with around

6600 vehicles.

The simulator is able to reproduce the basic traffic phenomena showing a variety

of effects due to the heterogeneity in traffic. However, this analysis is not conclusive,

but gives just an insight of the potentiality of our model. For this reason, we suggest

the following tasks as future works and research directions to improve and validate the

model and the simulator:� We did not use all the potentiality of the code since our aim was to give a first

evaluation to our model. However, it would be interesting to consider also the

experiments involving on- and off-ramps and loop-detectors to analyze different

and more realistic situations.� The heterogeneity that we have considered is reduced to two kinds of vehicles.

A natural question is how the system reacts introducing other kinds. For in-

stance, in highway environments, motorcycles or sport vehicles can be added to

the mixed traffic of passenger vehicles and long vehicles. This also brings with it

the interesting issue of how to tune the membership functions for such new kinds.� Explore the possibility of extending our approach to other kind of traffic models,

such as city roads with many interactions, traffic lights, etc.� The process of lane-changing is purely stochastic. However, in literature there

are some attempts in microscopic models where the process of lane-changing is

described by using a fuzzy logic-based system [7, 18], thus it would be interesting

to extend our model to a model in which it is implemented a fuzzy logic-based

system to refine the lane-changing rules.

1On a computer equipped with a 2.7GHz (X5550) processor, with 16GB of RAM, where 4 seconds

in the simulation are simulated in 1 second.

98

� The model has to be compared with real data. In other words, a careful case

study on specific scenarios with the data available is necessary for the validation

by the community of people working on traffic flow theory, granular flow theory

and traffic (transportation) engineering.

Table 7.1: Computation Time Comparison between CPU and GPU

Number of Vehicles CPU GPU

(per lane) (sec) (sec)

0; 0; 1500 484 45,8

0; 0; 3000 958 104

0; 0; 5000 1608 194

0; 0; 10000 4270 556

5000; 5000; 5000 9679 1288

The code written in Python does not take advantage of the CA structure to run

by using the parallel computing paradigm. For this reason, we have also adapted the

code using PyCuda to parallelize the algorithm on GPU’s and we have seen that it is

possible to boost the speed of execution to have higher factors of simulation. This is

important also to adapt the model for a forecasting usage. In Table 7.1, it is given the

time of computation for 1000 sec of simulation using the CPU implemented by Python

(ozsim.py) and the GPU implemented by PyCuda (cozsim.py, see Appendix B for a

first draft of the simulator) on a laptop equipped with a processor i7 intel© and with a

graphic card NVIDIA GeForce GT 555M. This computation time comparison is made

simulating a road with 3 lanes and the number of vehicles are given with respect to the

positions of the lanes.

99

100

Appendix A

The Python Code of the

Simulator

1 # Ozsim a multi−l ane roads s imu la tor

3 from f u t u r e import d i v i s i o n

import sys , os

5 sys . path . append (os . getcwd ())

7

import matp lot l ib . pyp lot as p l t

9 from matp lot l ib . font manager import FontPropert ies

import numpy

11 from numpy import *
import random

13 import math

import time

15 import copy

import p i c k l e

17 # glumpy i s reques ted only by Rea l T ime Vi sua l i z e r

import glumpy

19

21 global AccNoise

23 # uni t o f time o f the s imu la t i on

unitTime = 1

25 # i t a c t i v a t e s the f a c t o f having an a c c e l e r a t i o n no i se

gauss ian wi th standard dev i a t i on de f i ned in c l a s s v e h i c l e s

27 AccNoise = True

101

i t a c t i v e s the p o s s i b i l i t y o f randomly s l ow ing down

29 # the v e l o c i t y o f a va l ue below 1 m/s .

s lowNoise = False

31

33 ””” d e f i n i t i o n s o f c l a s s e s ”””

35 class v eh i c l e s () :

def i n i t (s e l f , name = None , c o l o r = None ,

37 optV = None ,maxV = None , l ength = None ,

PVS = None , PS = None , PN = None , PB = None ,NVS = None ,

39 VS = None , S = None , N = None , B = None ,

backS = None , jamVelS = None ,

41 accVS = None , accPS = None , accP = None , accPB = None ,

accNS = None , accN = None , accNB = None ,

43 accNoise = None , consupt ion = None ,

maxstress = None , min s t r e s s = None ,

45 LCRP = None , LCLP = None , engEff = None) :

s e l f . name = name

47 s e l f . c o l o r = co l o r

s e l f . optV = optV

49 s e l f .maxV = maxV

s e l f . l ength = length

51 s e l f .PVS = PVS

s e l f . PS = PS

53 s e l f .PN = PN

s e l f .PB = PB

55 s e l f .NVS = NVS

s e l f .VS = VS

57 s e l f . S = S

s e l f .N = N

59 s e l f .B = B

s e l f . backS = backS

61 s e l f . jamVelS = jamVelS

s e l f . accVS = accVS

63 s e l f . accPS = accPS

s e l f . accP = accP

65 s e l f . accPB = accPB

s e l f . accNS = accNS

67 s e l f . accN = accN

s e l f . accNB = accNB

69 s e l f . accNoise = accNoise

s e l f . consupt ion = consupt ion

71 s e l f . maxstress = maxstress

s e l f . m in s t r e s s = minst r e s s

102

73 s e l f .LCRP = LCRP

s e l f .LCLP = LCLP

75 s e l f . engEff = engEff

77

class car s (ob j e c t) :

79 def i n i t (s e l f , p o s i t i o n = None , v e l o c i t y = None ,

kind = None , s t r e s s = 0) :

81 s e l f . p o s i t i o n = po s i t i o n

s e l f . v e l o c i t y = v e l o c i t y

83 s e l f . kind = kind

s e l f . s t r e s s = s t r e s s

85 # i f checked , i t has a l ready changed lane

s e l f . alreadyDone = False

87 # ex t e rna l o b j e c t or ‘ ‘ not a v e h i c l e mode” Fal se

s e l f . extObj = False

89 # the car i s v i s i b l e to the o th e r s

s e l f . v i s i b i l i t y = True

91 # in t e r n a l t imer s e t to zero

s e l f . t imer = 0

93

def addStress (s e l f , ammount) :

95 s e l f . s t r e s s += ammount

i f s e l f . s t r e s s >= s e l f . kind . maxstress :

97 s e l f . s t r e s s = s e l f . kind . maxstress

e l i f s e l f . s t r e s s <= s e l f . kind . min s t r e s s :

99 s e l f . s t r e s s = s e l f . kind . min s t r e s s

101 def ev a lFe e l i n g s (s e l f , l ane) :

ns t r e s s i s always p o s i t i v e

103 i f s e l f . s t r e s s >= 0 :

i f s e l f . kind . maxstress i s 0 :

105 n s t r e s s = 0

else :

107 n s t r e s s = s e l f . s t r e s s / s e l f . kind . maxstress

i f random . random () < s e l f . kind .LCRP(n s t r e s s) :

109 return l ane . r i gh t

else :

111 i f s e l f . kind . min s t r e s s i s 0 :

n s t r e s s = 0

113 else :

n s t r e s s = (s e l f . s t r e s s / s e l f . kind . min s t r e s s)

115 i f random . random () < s e l f . kind .LCLP(n s t r e s s) :

i f you are in a jam s i t ua t i on , t r y to change lane

117 # to ge t out from the jam

103

i f random . random () < l i n (s e l f . v e l o c i t y , s e l f . kind . jamVelS) :

119 i f l ane . r i gh t i s None :

return l ane . l e f t

121 i f l ane . l e f t i s None :

return l ane . r i gh t

123 i f random . random () < 0 . 7 :

return l ane . l e f t

125 else :

return l ane . r i gh t

127 # uncomment to reduce the ping−pong e f f e c t

i f i t i s commented then the system seems more r e a c t i v e

129 # in a jam s i t u a t i o n

#s e l f . s t r e s s = 0

131 else :

return l ane . l e f t

133 return None

135

class ex t e rn a l (car s) :

137 def i n i t (s e l f , p o s i t i o n = None , kind = None , v i s i b i l i t y = None ,

emiss ionRate = None , k i ndD i s t r i bu t i on = None ,

139 i n i t i a l V e l o c i t y = None , absorptionProb = None ,

in f lu enceRad iu s = None , probe = False , bu f f e rCapac i ty = None) :

141 s e l f . v e l o c i t y = 0

s e l f . p o s i t i o n = po s i t i o n

143 s e l f . kind = kind

ex t e rna l o b j e c t or ‘ ‘ not a v e h i c l e mode” True

145 s e l f . extObj = True

the car i s v i s i b l e to the o th e r s

147 s e l f . v i s i b i l i t y = False

s e l f . emiss ionRate = emiss ionRate

149 s e l f . k i ndD i s t r i bu t i on = k indD i s t r i bu t i on

s e l f . i n i t i a l V e l o c i t y = 12

151 s e l f . absorptionProb = absorptionProb

s e l f . in f lu enceRad iu s = in f lu enceRad iu s

153 # loop de t e c t o r modal i ty o f f

s e l f . probe = probe

155 s e l f . counter = 0

s e l f . b u f f e r = []

157 s e l f . bu f f e rCapac i ty = bu f f e rCapac i ty

159 def ob s t a c l e (s e l f , dimension , c o l o r) :

ob s t a c l e = v eh i c l e s ()

161 ob s t a c l e . l ength = dimension

ob s t a c l e . c o l o r = co l o r

104

163 ob s t a c l e . name = ’ Obstac le ’

s e l f . kind = ob s t a c l e

165 s e l f . v i s i b i l i t y = True

167 def onRamp(s e l f , emissionRate , k indDis t r ibu t ion , buf ferCapac ity , c o l o r) :

ramp = v eh i c l e s ()

169 ramp . l ength = 3

ramp . c o l o r = co l o r

171 ramp . name = ’On Ramp ’

s e l f . kind = ramp

173 s e l f . v i s i b i l i t y = False

s e l f . emiss ionRate = emiss ionRate

175 s e l f . k i ndD i s t r i bu t i on = k indD i s t r i bu t i on

s e l f . bu f f e rCapac i ty = bu f f e rCapac i ty

177

def offRamp (s e l f , absorptionProb , in f lu enceRad iu s , bu f ferCapac ity ,

179 sampRate , c o l o r) :

ramp = v eh i c l e s ()

181 ramp . l ength = 3

ramp . c o l o r = co l o r

183 ramp . name = ’ Off Ramp ’

s e l f . kind = ramp

185 s e l f . absorptionProb = absorptionProb

s e l f . in f lu enceRad iu s = in f lu enceRad iu s

187 s e l f . bu f f e rCapac i ty = bu f f e rCapac i ty

s e l f . sampRate = sampRate

189 s e l f . avLatency = None

s e l f . throughput = None

191 # i f i n f l u ence rad ius i s n e ga t i v e then make i t i n v i s i b l e

(in t h i s case the v e h i c l e s do not s low down near the o f f ramp)

193 i f i n f lu enceRad iu s < 0 :

s e l f . v i s i b i l i t y = False

195 s e l f . in f lu enceRad iu s = 50

else :

197 s e l f . v i s i b i l i t y = True

199 def loopDetector (s e l f , in f lu enceRad iu s , c o l o r) :

ramp = v eh i c l e s ()

201 ramp . l ength = 1

ramp . c o l o r = co l o r

203 ramp . name = ’Loop Detector ’

s e l f . kind = ramp

205 s e l f . v i s i b i l i t y = False

s e l f . in f lu enceRad iu s = in f lu enceRad iu s

207 s e l f . probe = True

105

209 class l ane (ob j e c t) :

def i n i t (s e l f , i l i s t = None , l e f t = None , r i gh t = None) :

211 s e l f . l e f t = l e f t

s e l f . r i gh t = r i gh t

213 i f i l i s t i s not None :

l=copy . deepcopy (i l i s t)

215 else :

l = []

217 dummy=v eh i c l e s ()

dummy. name = ’Dummy’

219 dummy.maxV = 40

dummy. l ength = 0

221 first dummy = car s (−200 , 0 , dummy)

first dummy . extObj = True

223 s e l f . f irst dummy = first dummy

l . i n s e r t (0 , f irst dummy)

225 i f s e l f . l e f t i s not None :

l e f t dummy pos i t i on = s e l f . l e f t . last dummy . p o s i t i o n

227 else :

l e f t dummy pos i t i on = 0

229 i f s e l f . r i gh t i s not None :

r ight dummy pos it ion = s e l f . r i gh t . last dummy . p o s i t i o n

231 else :

r ight dummy pos it ion = 0

233 i f i l i s t i s not None :

l ength = len (i l i s t)

235 l a s t v e h i c l e = i l i s t [l ength − 1]

l a s t v e h i c l e p o s i t i o n = l a s t v e h i c l e . p o s i t i o n

237 else :

l a s t v e h i c l e p o s i t i o n = 0

239 potion dummy=max(le ft dummy pos it ion , r ight dummy posit ion ,

l a s t v e h i c l e p o s i t i o n + 1000)

241 last dummy = car s (potion dummy , dummy.maxV, dummy)

last dummy . extObj = True

243 s e l f . last dummy = last dummy

l . append (last dummy)

245 s e l f . con ten t s = l

247 def s e t L e f t (s e l f , l e f t) :

s e l f . l e f t = l e f t

249

def ge tLe f t (s e l f) :

251 return (s e l f . l e f t)

106

253 def getRightmost (s e l f) :

l ane = s e l f

255 while l ane . r i gh t i s None :

l ane = lane . r i gh t

257 return l ane

259 def s e tR igh t (s e l f , r i gh t) :

s e l f . r i gh t = r i gh t

261

def getRight (s e l f) :

263 return (s e l f . r i gh t)

265 def de l e t e (s e l f , car) :

del s e l f . con ten t s [s e l f . con ten t s . index (car)]

267

def evalChanges (s e l f) :

269 for c in s e l f . con ten t s :

i f not c . extObj :

271 i f not c . alreadyDone :

newLane = c . ev a lFe e l i n g s (s e l f)

273 i f newLane i s not None :

i f s e l f . t r a n s f e r (c , newLane) :

275 s e l f . d e l e t e (c)

e l i f c i s not s e l f . f irst dummy and c i s not s e l f . last dummy :

277 s e l f . eva lExte rna l (c)

279 def eva l (s e l f) :

s e l f . evalChanges ()

281 x , y = t r an s i t i o n f u n c t i o n (s e l f , AccNoise , s lowNoise)

s e l f . LaneThroughput = x

283 s e l f . LaneLatency = y

285 def t r a n s f e r (s e l f , car , t o lane) :

i f to lane i s not None :

287 i = to lane . p o s s i b l eCa r (car)

i f i i s not None :

289 to lane . con ten t s . i n s e r t (i , car)

car . alreadyDone = True

291 # sense o f s a t i s f a c t i o n a f t e r changing lane

car . s t r e s s /= 5

293 return True

return False

295

def po s s i b l eCa r (s e l f , car) :

297 indx , precIndx = s e l f . index (car)

107

i f indx i s not None :

299 x = (car . p o s i t i o n − s e l f . con ten t s [precIndx] . p o s i t i o n

− car . kind . l ength − s e l f . con ten t s [precIndx] . kind . l ength)

301 y = (s e l f . con ten t s [indx] . p o s i t i o n − car . p o s i t i o n

− car . kind . l ength − s e l f . con ten t s [indx] . kind . l ength)

303 i f ((x > (s e l f . con ten t s [precIndx] . v e l o c i t y) **1.2 − car . v e l o c i t y +

abs (s e l f . con ten t s [precIndx] . v e l o c i t y − car . v e l o c i t y) + 3) and

305 (3 + (car . v e l o c i t y) **1.25 − s e l f . con ten t s [indx] . v e l o c i t y < y)) :

return indx

307 else :

return None

309

def i ndex (s e l f , car) :

311 f r o n t p o s i t i o n = car . p o s i t i o n + car . kind . l ength

back po s i t i on = car . p o s i t i o n − car . kind . l ength

313 i f not car . extObj :

i t re turns the i nd i c e s o f the c l o s e s t

315 # f ron t and back v i s i b l e cars

precVeh ic l e = 0

317 for i , c in enumerate (s e l f . con ten t s) :

i f (f r o n t p o s i t i o n <= c . p o s i t i o n − c . kind . l ength and c . v i s i b i l i t y) :

319 i f (s e l f . con ten t s [p recVeh ic l e] . p o s i t i o n

+ s e l f . con ten t s [p recVeh ic l e] . kind . l ength <= back po s i t i on) :

321 return (i , p r ecVeh ic l e)

else :

323 return (None , None)

else :

325 i f c . v i s i b i l i t y :

p recVeh ic l e = i

327 return (None , None)

e l i f car . v i s i b i l i t y :

329 # i f the car i s a v i s i b l e e x t e rna l ob j ec t , i t f i n d s the p o s i t i o n

among a l l the o ther cars (v i s i b l e and i n v i s i b l e)

331 precVeh ic l e = 0

for i , c in enumerate (s e l f . con ten t s) :

333 i f (f r o n t p o s i t i o n <= c . p o s i t i o n − c . kind . l ength) :

i f (s e l f . con ten t s [p recVeh ic l e] . p o s i t i o n

335 + s e l f . con ten t s [p recVeh ic l e] . kind . l ength <= back po s i t i on) :

return (i , p r ecVeh ic l e)

337 else :

return (None , None)

339 else :

p r ecVeh ic l e = i

341 return (None , None)

else :

108

343 # i f i t i s i n v i s i b l e I choose the p o s i t i o n in the l i s t

according to the cond i t i on

345 # f r on t p o s i t i o n <= c . p o s i t i o n − c . k ind . l en g t h

for i , c in enumerate (s e l f . con ten t s) :

347 i f (f r o n t p o s i t i o n <= c . p o s i t i o n − c . kind . l ength) :

return (i , 0)

349

351 def eva lExte rna l (s e l f , ext) :

update the p o s i t i o n (as index) on the lane

353 s e l f . d e l e t e (ext)

newIndex = s e l f . index (ext) [0]

355 s e l f . con ten t s . i n s e r t (newIndex , ext)

i f i t i s an emi t te r

357 i f ext . emiss ionRate i s not None and ext . k i ndD i s t r i bu t i on i s not None :

#pr i n t l en (e x t . b u f f e r)

359 i f l en (ext . bu f f e r) < ext . bu f f e rCapac i ty :

pos = ext . p o s i t i o n

361 rat e = ext . emiss ionRate

using a poi sson d i s t r i b u t i o n we c a l c u l a t e the p r o b a b i l i t y

363 # of having at l e a s t one occurrence o f a v e h i c l e in the i n t e r v a l

[0 , e x t . counter + 1]

365 prob = 1 − (math . exp(−(ra t e * (ext . counter + 1) * unitTime)))

i f the random t e s t succeeds , randomly choose a kind o f v e h i c l e

367 # d i s t r i b u t e d as k i ndD i s t r i bu t i o n

i f random . random () <= prob :

369 Sum=0

for (kind , percentage) in ext . k i ndD i s t r i bu t i on :

371 Sum += percentage

rand = random . cho i c e (range (Sum))

373 rand += 1

scan=0

375 for (kind , percentage) in ext . k i ndD i s t r i bu t i on :

scan += percentage

377 i f rand <= scan :

chosenVehic le = kind

379 break

newCar = car s (pos , ext . i n i t i a l V e l o c i t y , chosenVehic le)

381 ext . bu f f e r . append (newCar)

ext . counter = 0

383 else :

ext . counter += 1

385 i f ext . bu f f e r != [] :

i = s e l f . p o s s i b l eCa r (ext . bu f f e r [0])

387 i f i i s not None :

109

ext . bu f f e r [0] . alreadyDone = True

389 s e l f . con ten t s . i n s e r t (i , ext . bu f f e r [0])

del ext . bu f f e r [0]

391 else :

i f ext . bu f f e r != [] :

393 i = s e l f . p o s s i b l eCa r (ext . bu f f e r [0])

i f i i s not None :

395 ext . bu f f e r [0] . alreadyDone = True

s e l f . con ten t s . i n s e r t (i , ext . bu f f e r [0])

397 del ext . bu f f e r [0]

not ab l e to i n s e r t more v e h i c l e s in the b u f f e r

399 return False

i f i t i s a s ink

401 i f ext . absorptionProb i s not None and ext . in f lu enceRad iu s i s not None :

i f l en (ext . bu f f e r) <= ext . bu f f e rCapac i ty :

403 # t h i s case i s used to s imu la te open road t o l l i n g system

in the o f f− t o l l p l a za

405 i f ext . in f lu enceRad iu s < 0 :

i n f l u e n c ePo s i t i o n = (ext . p o s i t i o n − ext . kind . l ength − 50)

407 for c in s e l f . con ten t s :

i f ((i n f l u e n c ePo s i t i o n <= c . p o s i t i o n + c . kind . l ength)

409 and not c . extObj) :

i f you capture i t then s t o r e i t in the b u f f e r

411 i f random . random () <= ext . absorptionProb :

i f ext . bu f f e rCapac i ty != 0 :

413 ext . bu f f e r . append (c)

s e l f . d e l e t e (c)

415 else :

i f bu f f e rCapac i t y i s 0 then the capac i ty

417 # of the b u f f e r i s i n f i n i t e

s e l f . d e l e t e (c)

419 else :

c a rPo s i t i on = c . p o s i t i o n

421 c . p o s i t i o n = ca rPos i t i on + ext . in f lu enceRad iu s

+ ext . kind . l ength

423 # otherwise , t e l e p o r t i t beyond the ramp

i f s e l f . t r a n s f e r (c , s e l f) :

425 s e l f . d e l e t e (c)

i f you cannot do i t l e a v e i t there

427 else :

c . p o s i t i o n = ca rPos i t i on

429 else :

i n f l u e n c ePo s i t i o n = (ext . p o s i t i o n − ext . kind . l ength

431 − ext . in f lu enceRad iu s)

for c in s e l f . con ten t s :

110

433 i f ((i n f l u e n c ePo s i t i o n <= c . p o s i t i o n + c . kind . l ength

<= ext . p o s i t i o n − ext . kind . l ength) and not c . extObj) :

435 # i f you capture i t then s t o r e i t in the b u f f e r

i f random . random () <= ext . absorptionProb :

437 i f ext . bu f f e rCapac i ty != 0 :

ext . bu f f e r . append (c)

439 s e l f . d e l e t e (c)

else :

441 # i f bu f f e rCapac i t y i s 0 then the capac i ty

of the b u f f e r i s i n f i n i t e

443 s e l f . d e l e t e (c)

else :

445 ca rPo s i t i on = c . p o s i t i o n

c . p o s i t i o n = ca rPos i t i on + ext . in f lu enceRad iu s

447 + ext . kind . l ength

otherw i se t e l e p o r t i t beyond the ramp

449 i f s e l f . t r a n s f e r (c , s e l f) :

s e l f . d e l e t e (c)

451 # i f you cannot do , l e a v e i t there

else :

453 c . p o s i t i o n = ca rPos i t i on

else :

455 # not ab l e to s t o r e in the b u f f e r

return False

457 i f ext . sampRate i s not None :

i f ext . counter i s ext . sampRate :

459 T = 0

for c in ext . bu f f e r :

461 T += c . t imer

i f ext . bu f f e r != [] :

463 ext . avLatency = T/ len (ext . bu f f e r)

ext . throughput = len (ext . bu f f e r)

465 ext . bu f f e r = []

ext . counter = 0

467 else :

ext . counter += 1

469 # i f i t i s a loop de t e c t o r

i f ext . probe :

471 i n f l u e n c ePo s i t i o n = ext . p o s i t i o n − ext . kind . l ength

− ext . in f lu enceRad iu s

473 # sav ing the v e h i c l e s w i th in the i n f l u ence rad ius

j = newIndex − 1

475 newList = []

while 0 < j < newIndex :

477 i f not s e l f . con ten t s [j] . extObj :

111

i f (i n f l u e n c ePo s i t i o n <= s e l f . con ten t s [j] . p o s i t i o n

479 + s e l f . con ten t s [j] . kind . l ength <= ext . p o s i t i o n

− ext . kind . l ength) :

481 newList . append (s e l f . con ten t s [j])

j −= 1

483 else :

break

485 else :

j −= 1

487 mis s ingVeh ic l e s = len ([x for x in ext . bu f f e r i f x not in newList])

ext . counter += miss ingVeh ic l e s

489 ext . bu f f e r = newList

491 def returnLane (s e l f , num) :

given a number and lane i t re turns

493 # the lane o f d i s t ance num from s e l f

l ane = s e l f

495 i f num >= 0 :

for i in range (num) :

497 lane = lane . getRight ()

return l ane

499 i f num < 0 :

for i in range (num) :

501 lane = lane . g e tLe f t ()

return l ane

503

def c r eat eObstac l e (s e l f , pos = None , dimension = 200 , c o l o r = 0 . 45) :

505 i f pos i s None :

l = len (s e l f . con ten t s)

507 indexVeh ic l e s = range (l)

indexVeh ic l e s . r e v e r s e ()

509 for j in i ndexVeh ic l e s :

i f not s e l f . con ten t s [j] . extObj :

511 pos = s e l f . con ten t s [j] . p o s i t i o n + 200

break

513 i f pos >= s e l f . last dummy . p o s i t i o n :

s e l f . last dummy . p o s i t i o n = pos + 1000

515 obst = ex t e rn a l (pos + dimension)

obst . ob s t a c l e (dimension , c o l o r)

517 i = s e l f . index (obst) [0]

i f i i s not None :

519 s e l f . con ten t s . i n s e r t (i , obst)

return pos

521 else :

return None

112

523

def createOnRamp(s e l f , pos = None , emiss ionRate = None ,

525 k indD i s t r i bu t i on = None , bu f f e rCapac i ty = 100 ,

c o l o r = 0 . 33) :

527 l = len (s e l f . con ten t s)

i f pos i s None :

529 pos = cont [l −2] . p o s i t i o n + 200

i f pos >= s e l f . last dummy . p o s i t i o n :

531 s e l f . last dummy . p o s i t i o n = pos + 1000

OnRamp = ex t e rn a l (pos)

533 OnRamp. onRamp(emissionRate , k indDis t r ibu t ion , buf ferCapac ity , c o l o r)

i = s e l f . index (OnRamp) [0]

535 i f i i s not None :

s e l f . con ten t s . i n s e r t (i , OnRamp)

537 return pos

else :

539 return None

541 def createOffRamp (s e l f , pos = None , absorptionProb = None ,

in f lu enceRad iu s = None , bu f f e rCapac i ty = 0 ,

543 sampRate = None , c o l o r = 0 . 5) :

l = len (s e l f . con ten t s)

545 i f pos i s None :

pos = cont [l −2] . p o s i t i o n + 200

547 i f pos >= s e l f . last dummy . p o s i t i o n :

s e l f . last dummy . p o s i t i o n = pos + 1000

549 i f (sampRate i s not None and bu f f e rCapac i ty i s not None

and bu f f e rCapac i ty < sampRate) :

551 bu f f e rCapac i ty = sampRate

OffRamp = ex t e rn a l (pos)

553 OffRamp . offRamp (absorptionProb , in f lu enceRad iu s , bu f ferCapac ity ,

sampRate , c o l o r)

555 i = s e l f . index (OffRamp) [0]

i f i i s not None :

557 s e l f . con ten t s . i n s e r t (i , OffRamp)

return pos

559 else :

return None

561

def createLoopDetector (s e l f , pos , in f lu enceRad iu s = 36 , c o l o r = 0) :

563 l = len (s e l f . con ten t s)

i f pos i s None :

565 pos = cont [l −2] . p o s i t i o n + 200

i f pos >= s e l f . last dummy . p o s i t i o n :

567 s e l f . last dummy . p o s i t i o n = pos + 1000

113

loopDet = ex t e rn a l (pos)

569 loopDet . loopDetector (in f lu enceRad iu s , c o l o r)

i = s e l f . index (loopDet) [0]

571 s e l f . con ten t s . i n s e r t (i , loopDet)

573 def avDistance (s e l f) :

i t g i v e s the average d i s t ance between the v e h i c l e s

575 l = 0

l a s tPo s i t i o n = 0

577 sum = 0

for car in s e l f . con ten t s :

579 i f not car . extObj and l > 0 :

d i s t an c e = car . p o s i t i o n − l a s tPo s i t i o n − car . kind . l ength

581 l a s tPo s i t i o n = car . p o s i t i o n + car . kind . l ength

sum += d i s t an c e

583 l += 1

i f l <= 1 :

585 return 0

else :

587 return (sum/(l − 1) , l −1)

589 def avVe loc i ty (s e l f) :

i t g i v e s the average v e l o c i t y o f the group o f v e h i c l e s on a lane

591 l = 0

sum = 0

593 for car in s e l f . con ten t s :

i f not car . extObj :

595 sum += car . v e l o c i t y

l += 1

597 i f l i s 0 :

return (0 ,0)

599 else :

return (sum/ l , l)

601

def fue lCons (s e l f) :

603 # i t g i v e s the f u e l consumption o f the v e h i c l e s on a lane

Sum = 0

605 for car in s e l f . con ten t s :

i f not car . extObj :

607 V = car . v e l o c i t y

k indVeh ic l e = car . kind

609 Sum += eva l (k indVeh ic l e . consumption)

return Sum

611

114

613

615 ””” opera t i ons on the c e l l u l a r automaton”””

617 def updat ing funct ion (car , lane , f r on tDec idedVe loc i ty ,

f r on tD i s tance , backDistance , f r on tCo l l i s i onTime ,

619 backCol l i s ionTime , nextFrontCol l i s ionTime ,

nextFrontDistance , AccNoise , s lowNoise) :

621 # the l o c a l t r a n s i t i o n func t i on f o r the s i n g l e−l ane

updates the s t a t e o f a v e h i c l e on a lane

623 k indVeh ic l e = car . kind

p o s i t i o n = car . p o s i t i o n

625 v e l o c i t y = car . v e l o c i t y

v max = k indVeh ic l e .maxV

627 c on f o r t a b l e v e l o c i t y = k indVeh ic l e . optV

the v e h i c l e t r i e s to keep i t s opt imal v e l o c i t y i f i t cannot change

lane

629 # slowParameter : we in t roduce a f ake co l l i s i onT ime depending on

a slowParameter which s imu la te s the presence o f a f r on t v e h i c l e

631 # to make the v e h i c l e s low down in the case o f having p o s i t i v e s t r e s s

i f not car . alreadyDone and car . s t r e s s > 0 and l ane . r i gh t i s None :

633 slowParameter = (car . kind . maxstress − car . s t r e s s) / (0 . 1 + v e l o c i t y)

i f f r on tCo l l i s i onT ime < 0 :

635 co l l i s i onT ime = slowParameter

else :

637 co l l i s i onT ime = min(f ron tCo l l i s i onTime , slowParameter)

else :

639 co l l i s i onT ime = fron tCo l l i s i onT ime

i f checked i t i s i n t roduced an a c c e l e r a t i o n no i se

641 i f AccNoise :

sigma = k indVeh ic l e . accNoise

643 rand=random . gauss (0 , sigma)

a c c e l e r a t i o n = fuzzy agen t (car , co l l i s i onTime , backCol l i s ionTime ,

645 f ron tD i s tance , backDistance ,

nextFrontCol l i s ionTime , nextFrontDistance)

647 + rand

else :

649 a c c e l e r a t i o n = fuzzy agen t (car , co l l i s i onTime , backCol l i s ionTime ,

f ron tD i s tance , backDistance ,

651 nextFrontCol l i s ionTime , nextFrontDistance)

the demanded power a c c e l e r a t i o n depends on the v e l o c i t y

653 i f a c c e l e r a t i o n > 0 :

a c c e l e r a t i o n *= car . kind . engEff (car . v e l o c i t y)

655 # the f u z z y agent c a l c u l a t e s the new v e l o c i t y

ChosenVelocity = max(0 , v e l o c i t y + (a c c e l e r a t i o n * unitTime))

115

657 # i f i t does not c o l l i d e , do not use NaSch !

i f (ChosenVelocity − f r on tDec idedVe loc i ty + 1) < f r on tD i s tance :

659 new ve loc i ty = min(v max , ChosenVelocity)

else :

661 # to avoid ac c i d en t s due to sudden braking , we app ly NaSch ru l e

new ve loc i ty = min(v max , max(max(0 , (f ron tD i s tance − 1) /unitTime) ,

663 f ron tDec idedVe loc i ty))

new pos i t i on = po s i t i o n + new ve loc i ty * unitTime

665 i f s lowNoise :

n ew ve loc i ty = max(0 , new ve loc i ty − random . random ())

667 car . v e l o c i t y = new ve loc i ty

car . p o s i t i o n = new pos i t i on

669 car . alreadyDone = False

car . t imer += 1

671 car . addStress ((v e l o c i t y − c on f o r t a b l e v e l o c i t y) * unitTime* random . random ())

673 # t h i s par t i s devoted to he l p the system to take some dec i s i on s

using s t r e s s as con t ro l parameter

675 i f (car . kind . min s t r e s s /2) < car . s t r e s s < 0 :

i f f r on tCo l l i s i onT ime < 0 :

677 #sense o f s a t i s f a c t i o n i f the queue i s moving

car . s t r e s s /= 2

679 else :

try to avoid brak ing wi th the s t r a t e g y o f changing lane

681 # i f the f r on t c o l l i s i o n time i s sma l l or very sma l l and

the f r on t d i s t ance i s normal or smal l , t r y to change lane

683 CollVerySmall = l i n (f ron tCo l l i s i onTime , car . kind .PVS)

Col lSmal l = l i n (f ron tCo l l i s i onTime , car . kind .PS)

685 DistNormal = l i n (f ron tD i s tance , car . kind .N)

DistSmal l = l i n (f ron tD i s tance , car . kind . S)

687 f a c t o r = max(min (CollVerySmall , DistNormal) ,

min (CollVerySmall , DistSmal l) ,

689 min (CollSmall , DistNormal) ,

min (CollSmall , DistSmal l))

691 car . s t r e s s *= (1 + f a c t o r)

693

def t r a n s i t i o n f u n c t i o n (lane , AccNoise , s lowNoise) :

695 # t h i s f unc t i on updates the CA f o r the s i n g l e lane ,

i t corresponds to the g l o b a l t r a n s i t i o n func t i on

697 LaneThroughput = 0

LaneLatency = 0

699 Latency = 0

s t a t e o f the c e l l u l a r automaton which s imu la te s one lane

701 s t a t e = lane . con ten t s

116

numCars = len (s t a t e)

703 # numCars − 1 i s the f r on t dummy

prevBackPos it ion = (s t a t e [numCars − 1] . p o s i t i o n

705 − s t a t e [numCars − 1] . kind . l ength)

p revVe loc i ty = s t a t e [numCars − 1] . v e l o c i t y

707 prevNextBackPosit ion = (s t a t e [numCars − 1] . p o s i t i o n

− s t a t e [numCars − 1] . kind . l ength)

709 prevNextVeloc i ty =s t a t e [numCars − 1] . v e l o c i t y

update the f r on t dummy (j u s t the p o s i t i o n)

711 s t a t e [numCars − 1] . p o s i t i o n = (s t a t e [numCars − 1] . p o s i t i o n +

s t a t e [numCars − 1] . v e l o c i t y * unitTime)

713 indexVeh ic l e s = range (1 , numCars − 1)

we rev e r s e the counter because we need to know the

715 # f ron t decided v e l o c i t y f o r a check ing in case o f a c o l l i s i o n

i ndexVeh ic l e s . r e v e r s e ()

717 for j in i ndexVeh ic l e s :

i f not s t a t e [j] . extObj :

719 # check f o r the c l o s e s t back v e h i c l e which i s v i s i b l e to him

k = j − 1

721 while k < j :

i f s t a t e [k] . v i s i b i l i t y :

723 backVehic le = s t a t e [k]

break

725 else :

k −= 1

727 # check f o r the c l o s e s t f r on t v e h i c l e which i s v i s i b l e to him

i = j + 1

729 while i > j :

i f s t a t e [i] . v i s i b i l i t y :

731 f r on tVeh i c l e = s t a t e [i]

break

733 else :

i += 1

735 f ron tD i s tance = (prevBackPos it ion − s t a t e [j] . p o s i t i o n

− s t a t e [j] . kind . l ength)

737 nextDistance = (prevNextBackPosit ion − s t a t e [j] . p o s i t i o n

− s t a t e [j] . kind . l ength)

739 backDistance = (s t a t e [j] . p o s i t i o n − backVehic le . p o s i t i o n

− s t a t e [j] . kind . l ength − backVehic le . kind . l ength)

741 d e l t aVe l o c i t y = s t a t e [j] . v e l o c i t y − prevVe loc i ty

de l t aNextVe loc i ty = s t a t e [j] . v e l o c i t y − prevNextVeloc i ty

743 de l t aBackVe loc i ty = backVehic le . v e l o c i t y − s t a t e [j] . v e l o c i t y

i f de l t aVe l o c i t y == 0 :

745 f ron tCo l l i s i onT ime = 999

else :

117

747 f ron tCo l l i s i onT ime = fron tD i s tance / d e l t aVe l o c i t y

i f de l taNextVe loc i ty == 0 :

749 nextCol l i s i onTime = 999

else :

751 nextCol l i s i onTime = nextDistance / de l t aNextVe loc i ty

i f de l taBackVe loc i ty == 0 :

753 backCol l i s ionTime = 999

else :

755 backCol l i s ionTime = backDistance / de l t aBackVe loc i ty

keep memory f o r the next s t e p

757 prevNextBackPosit ion = prevBackPos it ion

prevNextVeloc i ty = prevVe loc i ty

759 prevBackPos it ion = s t a t e [j] . p o s i t i o n − s t a t e [j] . kind . l ength

prevVe loc i ty = s t a t e [j] . v e l o c i t y

761 updat ing funct ion (s t a t e [j] , lane , f r on tVeh i c l e . v e l o c i t y ,

f r on tD i s tance , backDistance ,

763 f ron tCo l l i s i onTime , backCol l i s ionTime ,

nextCol l i s ionTime , nextDistance ,

765 AccNoise , s lowNoise)

e l i f s t a t e [j] . v i s i b i l i t y :

767 prevNextBackPosit ion = prevBackPos it ion

prevNextVeloc i ty = prevVe loc i ty

769 prevBackPos it ion = s t a t e [j] . p o s i t i o n − s t a t e [j] . kind . l ength

prevVe loc i ty = s t a t e [j] . v e l o c i t y

771 i f s t a t e [j] . kind . name ==’ Off Ramp ’ and s t a t e [j] . avLatency i s not None :

LaneThroughput = s t a t e [j] . throughput

773 LaneLatency = s t a t e [j] . avLatency

return (LaneThroughput , LaneLatency)

775

def i n i t i a l l a n e (k ind array , p o s i t i on a r r ay , v e l o c i t y a r r ay ,

777 s t r e s s a r r a y = None) :

i n i t i a l i z e r o f the array o f v e h i c l e s in one lane

779 s t a t e =[]

i f (l en (k ind ar ray) == len (p o s i t i o n a r r a y) and

781 l en (v e l o c i t y a r r a y) == len (p o s i t i o n a r r a y)) :

l ength = len (p o s i t i o n a r r a y)

783 i f s t r e s s a r r a y i s not None :

for j in range (l ength) :

785 car=car s (p o s i t i o n a r r a y [j] , v e l o c i t y a r r a y [j] , k ind ar ray [j] ,

s t r e s s a r r a y [j])

787 s t a t e . append (car)

return (s t a t e)

789 else :

for j in range (l ength) :

791 car = car s (p o s i t i o n a r r a y [j] , v e l o c i t y a r r a y [j] , k ind ar ray [j])

118

s t a t e . append (car)

793 return (s t a t e)

else :

795 print ’ Incompat ib le ar ray s : d i f f e r e n t l ength s ’

797

799 ””” f unc t i on s r e l a t e d to the s t r e e t and the i n t e r a c t i o n wi th i t ”””

801 def av e r ageS t r e e tVe l o c i t y (le f tMostLane) :

l ane = le ftMostLane

803 sumVelocity = 0

sumNumber = 0

805 while l ane i s not None :

v , num = lane . avVe loc i ty ()

807 sumVelocity += num*v
sumNumber += num

809 lane = lane . getRight ()

i f sumNumber i s 0 :

811 return 0

else :

813 return sumVelocity/sumNumber

815 def averageS t r ee tD i s tance (le f tMostLane) :

i t c a l c u l a t e s the average d i s t ance between v e h i c l e s

817 lane = le ftMostLane

sumDistance = 0

819 sumNumber = 0

while l ane i s not None :

821 d , num = lane . avDistance ()

sumDistance += num*d
823 sumNumber += num

lane = lane . getRight ()

825 i f sumNumber i s 0 :

return 0

827 else :

return (sumDistance/sumNumber , sumNumber)

829

def updateStreet (le f tMostLane) :

831 # updat ing o f the mu l t i l ane model , the update i s done

from l e f t to r i g h t (the l e f tmo s t has the precedence)

833 Throughput = 0

SumLatency = 0

835 numLanes = 0

lane = le ftMostLane

119

837 while l ane i s not None :

l ane . eva l ()

839 Throughput += lane . LaneThroughput

SumLatency += lane . LaneLatency

841 numLanes += 1

lane = lane . getRight ()

843 #pr i n t ’ Average Latency : ’ , SumLatency/numLanes

#pr i n t ’ Throughput : ’ , Throughput

845 #pr i n t ’ Average Ve l o c i t y : ’ , a v e ra g eS t r e e tVe l o c i t y (l e f tMostLane)

#pr i n t (’ Average Distance , Num of Veh i c l e s : ’ ,

847 # averageS tre e tD i s t ance (l e f tMostLane))

#pr i n t ’\n ’

849 AvDist , num = averageS t r ee tD i s tance (le f tMostLane)

return (Throughput , SumLatency/numLanes ,

851 av e r ageS t r e e tVe l o c i t y (le f tMostLane) ,

AvDist , num)

853

def c r e a t e S t r e e t (rightMostLane , numLanes) :

855 r ightLane = lane (rightMostLane , None , None)

l e f tLan e = rightLane

857 for j in range (numLanes − 1) :

l e f tLan e=lane (l e f t = None , r i gh t = r ightLane)

859 r ightLane . s e t L e f t (l e f tLan e)

r ightLane=l e f tLan e

861 return (l e f tLan e)

863 def createOnTol l (leftMostLane , pos i t i on , emissionRate , k i ndD i s t r i bu t i on) :

l ane = le ftMostLane

865 while l ane i s not None :

l ane . createOnRamp(pos i t i on , emissionRate , k i ndD i s t r i bu t i on)

867 lane = lane . getRight ()

869 def c r e a t eO f fTo l l (leftMostLane , pos i t i on , absorptionProb ,

in f lu enceRad iu s , bu f ferCapac ity , sampRate) :

871 lane = le ftMostLane

while l ane i s not None :

873 lane . createOffRamp (pos i t i on , absorptionProb , in f lu enceRad iu s ,

bu f ferCapac ity , sampRate)

875 lane = lane . getRight ()

877 def createRandHighway (in itRightLane , length , numLanes , emissRate ,

k indDis t r ibu t ion , numObstacles , numRamps) :

879 # a simple highway random genera tor

i n i t i a l P o s i t i o n = 2

881 le ftMostLane = c r e a t e S t r e e t (in i tRightLane , numLanes)

120

rightMostLane = le ftMostLane . returnLane (numLanes − 1)

883 createOnTol l (leftMostLane , i n i t i a l P o s i t i o n , emissRate , k i ndD i s t r i bu t i on)

c r e a t eO f fTo l l (leftMostLane , l ength + i n i t i a l P o s i t i o n , 1 , 25 , 100 , 10)

885 p o s i t i o n = i n i t i a l P o s i t i o n

maxSpaceOffOnRamp = 200

887 maxInflunceRadius = 30

i f numRamps i s 0 :

889 i n t e r v a l = length

else :

891 i n t e r v a l = length /numRamps

for i in range (numRamps) :

893 SpaceOffOnRamp = maxSpaceOffOnRamp*random . random ()

p o s i t i o n += random . random () *(i n t e r v a l /2) + (i n t e r v a l /2)

895 rightMostLane . createOffRamp (pos i t i on , random . random () ,

30 + maxInflunceRadius*random . random ())

897 rightMostLane . createOnRamp(p o s i t i o n + 200 + random . random () *
maxSpaceOffOnRamp , random . random () ,

899 k indD i s t r i bu t i on)

maxDimObstacle = 70

901 p o s i t i o n = i n i t i a l P o s i t i o n

i f numObstacles i s 0 :

903 i n t e r v a l = length

else :

905 i n t e r v a l = length /numObstacles

for i in range (numObstacles) :

907 dimObstacle = 30 + maxDimObstacle*random . random ()

p o s i t i o n += (random . random () *(i n t e r v a l /2) + (i n t e r v a l /2)

909 + dimObstacle)

choosenIndx = random . cho i c e (range (numLanes))

911 lane = le ftMostLane . returnLane (choosenIndx)

lane . c r eat eObstac l e (pos i t i on , dimObstacle)

913 return l e f tMostLane

915 def s l ow in g p e r t u rba t i on (l e f tmo s t l a n e) :

i t s l ows down the f i r s t v e h i c l e on each lane

917 lane = l e f tmo s t l a n e

while l ane i s not None :

919 l = len (lane . con ten t s)

indexVeh ic l e s = range (l)

921 indexVeh ic l e s . r e v e r s e ()

for j in i ndexVeh ic l e s :

923 i f not l ane . con ten t s [j] . extObj :

v e l o c i t y = lane . con ten t s [j] . v e l o c i t y

925 lane . con ten t s [j] . v e l o c i t y = v e l o c i t y /5

break

121

927 lane = lane . getRight ()

929 def randObstacle (l e f tmo s t l a n e) :

i t c r ea t e s a random ob s t a c l e in f r on t o f the f i r s t v e h i c l e

931 lane = l e f tmo s t l a n e

numLanes = 0

933 while l ane i s not None :

numLanes += 1

935 lane = lane . getRight ()

obstrLane = None

937 while obstrLane i s None :

randIndx = random . cho i c e (range (numLanes))

939 obstrLane = l e f tmo s t l a n e . returnLane (randIndx)

i f obstrLane i s not None :

941 obstrLane . c r eat eObstac l e ()

break

943

945 ””” f u z z y agent ”””

947 def l i n (input , func t ion) :

t h i s f unc t i on re turns the va l ue o f the s c a t t e r e d func t i on

949 l ength = len (funct ion)

for i in range (l ength) :

951 i f input < func t ion [0] [0] :

return 0

953 e l i f input > func t ion [length − 1] [0] :

return 0

955 e l i f func t ion [i] [0] <= input <= funct ion [i + 1] [0] :

i t f i n d s the p o s i t i o n o f the inpu t

957 p o s i t i o n = i

break

959 # l i n e a r approximation

x = funct ion [p o s i t i o n] [0]

961 y = funct ion [p o s i t i o n + 1] [0]

f x = funct ion [p o s i t i o n] [1]

963 f y = funct ion [p o s i t i o n + 1] [1]

i f x == y :

965 i f f x != f y :

print (’ i t i s not a funct ion ’)

967 else :

return (f x)

969 s l op e=(f x − f y) /(x−y)

return (f y + s l op e *(input−y))
971

122

def l i n p r e image (input , func t ion) :

973 # t h i s f unc t i on computes the preimages o f an inpu t o f a g i ven

func t i on which i s represen ted by a l i n e a r i n t e r p o l a t i o n

975 l ength = len (funct ion)

out =[]

977 i f input == 0 :

out =[0]

979 else :

for i in range (length −1) :

981 i f func t ion [i +1] [1] == funct ion [i] [1] == input :

p l a t eu case

983 out . append (funct ion [i] [0])

else :

985 i f (func t ion [i +1] [1] < input <= funct ion [i] [1] or

func t ion [i] [1] <= input<func t ion [i + 1] [1]) :

987 s l op e = ((funct ion [i +1] [1] − func t ion [i] [1])

/(funct ion [i +1] [0] − func t ion [i] [0]))

989 out . append (funct ion [i] [0]+ ((input−func t ion [i] [1]) / s l op e))

i f func t ion [length −1] [1] == input :

991 out . append (funct ion [length − 1] [0])

return (out)

993

def fu zzy agen t (car , tau p lus , tau minus , d e l t a p lu s ,

995 de lta minus , tauNext , de l taNext) :

i t re turns the ac c e l a ra t i on tha t the agent dec i des

997 k indVeh ic l e = car . kind

co l l i s i on PVS = l i n (tau p lus , k indVeh ic l e .PVS)

999 c o l l i s i o n PS = l i n (tau p lus , k indVeh ic l e .PS)

co l l i s i on PN = l i n (tau p lus , k indVeh ic l e .PN)

1001 co l l i s i on PB = l i n (tau p lus , k indVeh ic l e .PB)

co l l i s i on NVS = l i n (tau minus , k indVeh ic l e .NVS)

1003 f r on t d i s t an c e VS = l i n (d e l t a p lu s , k indVeh ic l e .VS)

f r o n t d i s t a n c e S = l i n (d e l t a p lu s , k indVeh ic l e . S)

1005 f r on t d i s t an c e N = l i n (d e l t a p lu s , k indVeh ic l e .N)

f r on t d i s t an c e B = l i n (d e l t a p lu s , k indVeh ic l e .B)

1007 back d i s tance S = l i n (de lta minus , k indVeh ic l e . backS)

jam fac tor = l i n (car . v e l o c i t y , k indVeh ic l e . jamVelS)

1009 co l l i s i onNext PVS = l i n (tauNext , k indVeh ic l e .PVS)

co l l i s i onNex t PS = l i n (tauNext , k indVeh ic l e .PS)

1011 co l l i s i onNext PN = l i n (tauNext , k indVeh ic l e .PN)

co l l i s i onNext PB = l i n (tauNext , k indVeh ic l e .PB)

1013 distanceNext VS = l i n (deltaNext , k indVeh ic l e .VS)

d istanceNext S = l i n (deltaNext , k indVeh ic l e . S)

1015 distanceNext N = l i n (deltaNext , k indVeh ic l e .N)

distanceNext B = l i n (deltaNext , k indVeh ic l e .B)

123

1017 r u l e s = []

r u l e s . append ([min (c o l l i s i on PB , f r on t d i s t an c e B , 1 − j am fac tor) ,

1019 l i n p r e image (min (c o l l i s i on PB , f r on t d i s t an c e B ,

1 − j am fac tor) , k indVeh ic l e . accP)])

1021 r u l e s . append ([min (c o l l i s i on PB , f ron t d i s tance N , 1 − j am fac tor) ,

l i n p r e image (min (c o l l i s i on PB , f ron t d i s tance N ,

1023 1 − j am fac tor) , k indVeh ic l e . accPS)])

r u l e s . append ([min (c o l l i s i on PB , f r o n t d i s t a n c e S) ,

1025 l i n p r e image (min (c o l l i s i on PB , f r o n t d i s t a n c e S) ,

k indVeh ic l e . accVS)])

1027 r u l e s . append ([min (c o l l i s i on PB , f r on t d i s t an c e VS) ,

l i n p r e image (min (c o l l i s i on PB , f r on t d i s t an c e VS) ,

1029 k indVeh ic l e . accVS)])

r u l e s . append ([min (co l l i s i on PN , f r on t d i s t an c e B) ,

1031 l i n p r e image (min (co l l i s i on PN , f r on t d i s t an c e B) ,

k indVeh ic l e . accVS)])

1033 r u l e s . append ([min (co l l i s i on PN , f r on t d i s t an c e N) ,

l i n p r e image (min (co l l i s i on PN , f r on t d i s t an c e N) ,

1035 k indVeh ic l e . accVS)])

r u l e s . append ([min (co l l i s i on PN , f r o n t d i s t a n c e S) ,

1037 l i n p r e image (min (co l l i s i on PN , f r o n t d i s t a n c e S) ,

k indVeh ic l e . accNS)])

1039 r u l e s . append ([min (co l l i s i on PN , f r on t d i s t an c e VS) ,

l i n p r e image (min (co l l i s i on PN , f r on t d i s t an c e VS) ,

1041 k indVeh ic l e . accNS)])

r u l e s . append ([min (c o l l i s i o n PS , f r on t d i s t an c e B) ,

1043 l i n p r e image (min (c o l l i s i o n PS , f r on t d i s t an c e B) ,

k indVeh ic l e . accN)])

1045 r u l e s . append ([min (c o l l i s i o n PS , f r on t d i s t an c e N) ,

l i n p r e image (min (c o l l i s i o n PS , f r on t d i s t an c e N) ,

1047 k indVeh ic l e . accN)])

r u l e s . append ([min (c o l l i s i o n PS , f r o n t d i s t a n c e S) ,

1049 l i n p r e image (min (c o l l i s i o n PS , f r o n t d i s t a n c e S) ,

k indVeh ic l e . accN)])

1051 r u l e s . append ([min (c o l l i s i o n PS , f r on t d i s t an c e VS) ,

l i n p r e image (min (c o l l i s i o n PS , f r on t d i s t an c e VS) ,

1053 k indVeh ic l e . accN)])

r u l e s . append ([min (co l l i s i on PVS , f r on t d i s t an c e B) ,

1055 l i n p r e image (min (co l l i s i on PVS , f r on t d i s t an c e B) ,

k indVeh ic l e . accNB)])

1057 r u l e s . append ([min (co l l i s i on PVS , f r on t d i s t an c e N) ,

l i n p r e image (min (co l l i s i on PVS , f r on t d i s t an c e N) ,

1059 k indVeh ic l e . accNB)])

r u l e s . append ([min (co l l i s i on PVS , f r o n t d i s t a n c e S) ,

1061 l i n p r e image (min (co l l i s i on PVS , f r o n t d i s t a n c e S) ,

124

k indVeh ic l e . accNB)])

1063 r u l e s . append ([min (co l l i s i on PVS , f r on t d i s t an c e VS) ,

l i n p r e image (min (co l l i s i on PVS , f r on t d i s t an c e VS) ,

1065 k indVeh ic l e . accNB)])

r u l e s . append ([min (co l l i s i on NVS , c o l l i s i on PB , back d i s tance S ,

1067 f r on t d i s t an c e B) , l i n p r e image (min (co l l i s i on NVS ,

c o l l i s i on PB , back d i s tance S , f r on t d i s t an c e B) ,

1069 k indVeh ic l e . accPS)])

r u l e s . append ([min (co l l i s i on NVS , c o l l i s i on PB , back d i s tance S ,

1071 f r on t d i s t an c e N) , l i n p r e image (min (co l l i s i on NVS ,

c o l l i s i on PB , back d i s tance S , f r on t d i s t an c e N) ,

1073 k indVeh ic l e . accPS)])

r u l e s . append ([min (co l l i s i on NVS , co l l i s i on PN , back d i s tance S ,

1075 f r on t d i s t an c e B) , l i n p r e image (min (co l l i s i on NVS ,

co l l i s i on PN , back d i s tance S , f r on t d i s t an c e B) ,

1077 k indVeh ic l e . accPS)])

r u l e s . append ([min (co l l i s i on NVS , co l l i s i on PN , back d i s tance S ,

1079 f r on t d i s t an c e N) , l i n p r e image (min (co l l i s i on NVS ,

co l l i s i on PN , back d i s tance S , f r on t d i s t an c e N) ,

1081 k indVeh ic l e . accPS)])

i f the car i s in a jam s i t u a t i o n

1083 # and the time o f c o l l i s i o n i s b i g then

s t r on g l y a c c e l e r a t e to be more r e a c t i v e

1085 r u l e s . append ([min (c o l l i s i on PB , jam fac tor) ,

l i n p r e image (min (c o l l i s i on PB , jam fac tor) ,

1087 k indVeh ic l e . accPB)])

try to keep a s a f e t y d i s t ance between the v e h i c l e s

1089 # worstCol l i s ionTime i s the c o l l i s i o n time in the case

the f r on t v e h i c l e s t op s suddenly

1091 worstCol l i s i onTime = d e l t a p l u s / (0 . 1 + car . v e l o c i t y)

worstColl is ionTime PVS = l i n (worstCol l i s ionTime , k indVeh ic l e .PVS)

1093 r u l e s . append ([min (worstColl is ionTime PVS , f r on t d i s t an c e VS) ,

l i n p r e image (min (worstColl is ionTime PVS , f r on t d i s t an c e VS) ,

1095 k indVeh ic l e . accN)])

r u l e s . append ([min (worstColl is ionTime PVS , f r o n t d i s t a n c e S) ,

1097 l i n p r e image (min (worstColl is ionTime PVS , f r o n t d i s t a n c e S) ,

k indVeh ic l e . accN)])

1099 r u l e s . append ([min (worstColl is ionTime PVS , f r on t d i s t an c e N) ,

l i n p r e image (min (worstColl is ionTime PVS , f r on t d i s t an c e N) ,

1101 k indVeh ic l e . accNS)])

for the next f r on t v e h i c l e we have another s e t o f r u l e s

1103 ru lesNext = []

ru lesNext . append ([min (co l l i s ionNext PVS , distanceNext VS) ,

1105 l i n p r e image (min(co l l i s ionNext PVS , distanceNext VS) ,

k indVeh ic l e . accNB)])

125

1107 ru lesNext . append ([min (co l l i s ionNext PVS , d istanceNext S) ,

l i n p r e image (min (co l l i s ionNext PVS , d istanceNext S) ,

1109 k indVeh ic l e . accNB)])

ru lesNext . append ([min (co l l i s ionNext PVS , distanceNext N) ,

1111 l i n p r e image (min (co l l i s ionNext PVS , distanceNext N) ,

k indVeh ic l e . accNB)])

1113 ru lesNext . append ([min (co l l i s ionNext PVS , distanceNext B) ,

l i n p r e image (min (co l l i s ionNext PVS , distanceNext B) ,

1115 k indVeh ic l e . accN)])

ru lesNext . append ([min (co l l i s i onNext PS , distanceNext VS) ,

1117 l i n p r e image (min (co l l i s i onNext PS , distanceNext VS) ,

k indVeh ic l e . accN)])

1119 ru lesNext . append ([min (co l l i s i onNext PS , d istanceNext S) ,

l i n p r e image (min (co l l i s i onNext PS , d istanceNext S) ,

1121 k indVeh ic l e . accN)])

ru lesNext . append ([min (co l l i s i onNext PS , distanceNext N) ,

1123 l i n p r e image (min (co l l i s i onNext PS , distanceNext N) ,

k indVeh ic l e . accNS)])

1125 ru lesNext . append ([min (co l l i s i onNext PS , distanceNext B) ,

l i n p r e image (min (co l l i s i onNext PS , distanceNext B) ,

1127 k indVeh ic l e . accNS)])

ru lesNext . append ([min (co l l i s ionNext PN , distanceNext VS) ,

1129 l i n p r e image (min (co l l i s ionNext PN , distanceNext VS) ,

k indVeh ic l e . accNS)])

1131 ru lesNext . append ([min (co l l i s i onNext PB , distanceNext VS) ,

l i n p r e image (min (co l l i s i onNext PB , distanceNext VS) ,

1133 k indVeh ic l e . accNS)])

we make a d e f f u z i f i c a t i o n f o r the f i r s t s e t o f r u l e s

1135 num = 0

den = 0

1137 for r u l e in r u l e s :

d e f u z z i f i e r : weighted sum of the preimages

1139 # (in the symmetric case i s WAF)

a c c e l e r a t i o n = ru l e [1]

1141 l=len (a c c e l e r a t i o n)

sum acce l e ra t ion = 0

1143 for j in range (l) :

sum acce l e ra t ion += ac c e l e r a t i o n [j]

1145 num += (ru l e [0] * sum acce l e ra t ion)

den += (ru l e [0] * l)

1147 i f den == 0 :

Acc e l e r a t i on = 0

1149 else :

A c c e l e r a t i on = num/den

1151 # we make a d e f f u z i f i c a t i o n f o r the second s e t o f r u l e s

126

num=0

1153 den=0

for r u l e in ru lesNext :

1155 # d e f u z z i f i e r : weighted sum of the preimages

(in the symmetric case i s WAF)

1157 a c c e l e r a t i o n = ru l e [1]

l=len (a c c e l e r a t i o n)

1159 sum acce l e ra t ion = 0

for j in range (l) :

1161 sum acce l e ra t ion += ac c e l e r a t i o n [j]

num += (ru l e [0] * sum acce l e ra t ion)

1163 den += (ru l e [0] * l)

i f den == 0 :

1165 Acce lerat ionNext = 0

else :

1167 Acce lerat ionNext = num/den

i f Acce l e r a t i on <= 0 :

1169 return min(Acce l e ra t ion , Acce lerat ionNext)

else :

1171 i f Acce lerat ionNext < −0.25:

return (Acc e l e r a t i on + Acce lerat ionNext) /2

1173 else :

return Acce l e r a t i on

1175

1177 ””” v i s u a l i z a t i o n f unc t i on s ”””

1179 def draw car (car , i n d ex o f l an e , numRoadPiece , height , width , matrix ,

d imens ion of road , s eparat ion wid th , v i su a l s ep a r a t i on ,

1181 one lane wid th) :

the index o f the l e f tmo s t lane i s 0

1183 # i t draws a car i n s i d e a matrix

p o s i t i o n = car . p o s i t i o n

1185 k i n d o f c a r = car . kind

back po s i t i on = po s i t i o n − k i n d o f c a r . l ength

1187 co l o r = k i n d o f c a r . c o l o r

v eh i c l e w id th = one lane wid th − 2* v i s u a l s e p a r a t i o n

1189 wrap fac tor = (back po s i t i on //width)%numRoadPiece

y = (wrap fac tor * d imens ion o f road + separat ion wid th

1191 + i n d e x o f l a n e * one lane wid th + v i s u a l s e p a r a t i o n)

i t c a l c u l a t e s the p o s i t i o n o f the v e h i c l e module

1193 # the border o f the screen

x = round (back po s i t i on%width)

1195 i f wrap fac tor == numRoadPiece − 1 :

the l a s t row case

127

1197 i f (x + 2 * k i n d o f c a r . l ength) <= width :

i t does not go ou t s i d e the screen

1199 for i in range (i n t (2 * k i n d o f c a r . l ength)) :

for j in range (i n t (v eh i c l e w id th)) :

1201 matrix [i n t (y) + j] [i n t (x) + i] = co l o r

else :

1203 # otherwise , draw the car one p i ece on t h i s row and

we wrap the r i g h t down corner wi th the l e f t up corner ,

1205 # note t ha t the s imu la t i on has not c l o s ed boundaries ,

so t h i s i s done as a matter o f v i s u a l i z a t i o n

1207 for i in range (i n t (width − x)) :

for j in range (i n t (v eh i c l e w id th)) :

1209 matrix [i n t (y) + j] [i n t (x) + i] = co l o r

for i in range (i n t (2* k i n d o f c a r . l ength − (width − x))) :

1211 for j in range (i n t (v eh i c l e w id th)) :

matrix [s eparat ion wid th + i n d e x o f l a n e * one lane wid th

1213 + v i s u a l s e p a r a t i o n + j] [i] = co l o r

else :

1215 i f (x + 2* k i n d o f c a r . l ength) <= width :

i t does not go ou t s i d e the screen

1217 for i in range (i n t (2* k i n d o f c a r . l ength)) :

for j in range (i n t (v eh i c l e w id th)) :

1219 matrix [i n t (y) + j] [i n t (x) + i] = co l o r

else :

1221 # otherwise , draw the car one p i ece on t h i s row

for i in range (i n t (width − x)) :

1223 for j in range (i n t (v eh i c l e w id th)) :

matrix [i n t (y) + j] [i n t (x) + i] = co l o r

1225 for i in range (i n t (2* k i n d o f c a r . l ength − (width − x))) :

the o ther p i ece in the next row

1227 for j in range (i n t (v eh i c l e w id th)) :

matrix [i n t (y+d imens ion o f road) + j] [i] = co l o r

1229 return (matrix)

1231 def v i s u a l p o s i t i o n (l e f tmos t l an e , numLanes , numRoadPiece ,

width , he igh t) :

1233 # i t re turns a matrix which i s the r ep r e s en ta t i on o f

the con f i gu ra t i on o f each lane (road con f i gu ra t i on)

1235 d imens ion o f road = he igh t //numRoadPiece

separat ion wid th = d imens ion o f road //4

1237 one lane wid th = (d imens ion o f road − s eparat ion wid th) //(numLanes)

v i s u a l s e p a r a t i o n = one lane wid th //8

1239 s t r e e t mat r i x = numpy. ones ((height , width)) . astype (numpy. f l o a t 3 2)

i t i n i t i a l i z e s the matrix corresponding to the r ep r e s en ta t i on

1241 # of the s t r e e t , i t draws the separa t i on (in b l a c k)

128

for i in range (numRoadPiece) :

1243 for j in range (i n t (s eparat ion wid th)) :

for l in range (i n t (width)) :

1245 s t r e e t mat r i x [i * i n t (d imens ion o f road) + j] [l]=0

i f numRoadPiece* i n t (d imens ion o f road)+in t (separat ion wid th) <= he igh t :

1247 for j in range (i n t (s eparat ion wid th)) :

for l in range (i n t (width)) :

1249 s t r e e t mat r i x [numRoadPiece * i n t (d imens ion o f road) + j] [l] = 0

for i in range (numRoadPiece) :

1251 for j in range (1 , numLanes) :

for k in range (i n t (v i s u a l s e p a r a t i o n)) :

1253 for l in range (i n t (width)) :

s t r e e t mat r i x [i n t (d imens ion o f road) * i

1255 + in t (separat ion wid th) + in t (one lane wid th) * j

− i n t (v i s u a l s e p a r a t i o n //2) + k] [l] = 0

1257 lane = l e f tmo s t l a n e

i n d e x o f l a n e = 0

1259 v i su a l mat r i x = s t r e e t mat r i x

while l ane != None :

1261 for c in l ane . con ten t s :

i f c != lane . f irst dummy and c != lane . last dummy :

1263 # don ’ t draw the dummies

v eh i c l e k i n d = c . kind

1265 v i su a l mat r i x = draw car (c , i n d ex o f l an e , numRoadPiece , height ,

width , v i sua l mat r ix , d imens ion of road ,

1267 separat ion wid th , v i su a l s ep a r a t i on ,

one lane wid th)

1269 lane=lane . getRight ()

i n d e x o f l a n e += 1

1271 return (v i su a l mat r i x)

1273 # glumpy 1.1

def Rea l Time Visua l i za tor (l e f tmos t l an e , num of lanes , numRoadPiece ,

1275 width , he igh t) :

global s ta t e , time , i n i t i a l t im e , frames

1277 time , i n i t i a l t im e , frames = 0 ,0 ,0

s t a t e = l e f tmo s t l a n e

1279

window = glumpy .Window(width , he igh t)

1281

@window . event

1283 def on mouse press (x , y , LEFT) :

global s t a t e

1285 s l ow in g p e r t u rba t i on (s t a t e)

#randObstac l e (s t a t e)

129

1287

@window . event

1289 def on i d l e (* args) :
global s ta t e , time , i n i t i a l t im e , frames , f u e l

1291 f u e l = 0

window . c l e a r ()

1293 V = v i s u a l p o s i t i o n (s ta t e , num of lanes , numRoadPiece , width , he igh t)

I = glumpy . Image (V, cmap=glumpy . colormap . Hot , vmin=0, vmax=1)

1295 I . b l i t (0 ,0 , window . width , window . he igh t)

window . draw ()

1297 updateStreet (s t a t e)

time += args [0]

1299 frames += 1

i f time− i n i t i a l t i m e > 5 . 0 :

1301 fp s = f l o a t (frames) /(time−i n i t i a l t i m e)

print ’FPS : %.2 f (%d frames in %.2 f seconds) ’ % (fps , frames ,

1303 time−i n i t i a l t i m e)

frames , i n i t i a l t i m e =0, time

1305 window . mainloop ()

#

1307 ## for glumpy 2.1

#de f Rea l T ime Vi sua l i za tor (l e f tmos t l ane , num of lanes , numRoadPiece ,

1309 # width , h e i g h t) :

g l o b a l s t a t e , time , i n i t i a l t im e , frames , p r e v i o u s s t a t e

1311 # time , i n i t i a l t im e , frames = 0 ,0 ,0

s t a t e = l e f tmo s t l a n e

1313 # window = glumpy . f i g u r e ((width , h e i g h t))

#

1315 # @window . event

de f on mouse press (x , y , LEFT) :

1317 # g l o b a l s t a t e

randObstac l e (s t a t e)

1319 # s l ow i ng pe r tu r ba t i on (s t a t e)

#

1321 # @window . event

de f o n i d l e (* dt) :
1323 # g l o b a l s t a t e , time , i n i t i a l t im e , frames

window . c l e a r ()

1325 # V = v i s u a l p o s i t i o n (s t a t e , num of lanes , numRoadPiece , width , h e i g h t)

I = glumpy . image . Image (V, colormap=glumpy . colormap . Hot , vmin=0,vmax=1)

1327 # I . draw (0 ,0 ,0 , window . width , window . h e i gh t)

upda teS tr e e t (l e f tmo s t l a n e)

1329 # I . update ()

window . redraw ()

1331 # time += dt [0]

130

frames += 1

1333 # i f time− i n i t i a l t i m e > 5 . 0 :

f p s = f l o a t (frames) /(time− i n i t i a l t i m e)

1335 # pr i n t (’FPS: %.2 f (%d frames in %.2 f seconds) ’

% (fps , frames , time− i n i t i a l t i m e))

1337 # frames , i n i t i a l t i m e =0, time

glumpy . show ()

1339 #

1341

”””random func t i on s to randomly i n i t i a l i z e the c e l l u l a r automata ”””

1343

def random kind array (k i n d s d i s t r i b u t i o n , numVeh) :

1345 # from a s e t o f k inds o f cars (in v e h i c l e c l a s s)

i t c r ea t e s a random array o f k inds o f cars

1347 # d i s t r i b u t e d uni formly depending on the second inpu t

of s e t o f k i n d s (ex . s e t o f k i n d s =[(t e s t 1 , 2) , (t e s t 2 , 4)]

1349 # 1/3 i s d i s t r i b u t e d as t e s t 1 and the o ther i s d i s t r u bu t ed wi th

d en s i t y 2/3

the s l owe s t v e h i c l e i s the l e ad i n g one

1351 (f i r s t k i n d , f i r s t p e r c e n t a g e) = k i n d s d i s t r i b u t i o n [0]

s l owes t = f i r s t k i n d

1353 for (kind , perc) in k i n d s d i s t r i b u t i o n :

i f kind .maxV < s l owes t .maxV and perc i s not 0 :

1355 s lowes t = kind

k ind ar ray = [s lowes t]*numVeh

1357 Sum=0

for (kind , percentage) in k i n d s d i s t r i b u t i o n :

1359 Sum += percentage

for i in range (numVeh−1) :

1361 rand = random . cho i c e (range (Sum))

rand += 1

1363 scan=0

for (kind , percentage) in k i n d s d i s t r i b u t i o n :

1365 scan += percentage

i f rand <= scan :

1367 k ind ar ray [i] = kind

break

1369 return (k ind ar ray)

1371 def random pos i t i on ar ray (k ind array , maxDistance , minDistance , numVeh) :

g i v e s an array o f random po s i t i o n s o f cars (uni formly d i s t r i b u t e d)

1373 # where the space between cars i s randomly d i s t r i b . between minDistance

and maxDistance

1375 p o s i t i o n d i s t r i b u t i o n = numpy. z e r o s (numVeh) . astype (numpy. f l o a t 3 2)

131

p o s i t i o n d i s t r i b u t i o n [0]= k ind ar ray [0] . l ength

1377 for i in range (1 ,numVeh) :

p o s i t i o n d i s t r i b u t i o n [i] = (p o s i t i o n d i s t r i b u t i o n [i −1] +

1379 k ind ar ray [i −1] . l ength +

minDistance + random . random () *
1381 (maxDistance − minDistance) +

k ind ar ray [i] . l ength)

1383 return (p o s i t i o n d i s t r i b u t i o n)

1385 def random ve loc i ty ar ray (k ind array , numVeh , v min , v max) :

i t g i v e s an array o f random v e l o c i t i e s (uni formly d i s t r i b u t e d)

1387 # between minimum v e l o c i t y v min and maximum v e l o c i t y v max

v e l o c i t y d i s t r i b u t i o n = numpy. z e r o s (numVeh) . astype (numpy. f l o a t 3 2)

1389 for i in range (numVeh) :

maximumVelocity = min(v max , k ind ar ray [i] .maxV)

1391 minimumVelocity = min(v min , k ind ar ray [i] .maxV)

v e l o c i t y d i s t r i b u t i o n [i] = (minimumVelocity +

1393 random . random () *(maximumVelocity −

minimumVelocity))

1395 return (v e l o c i t y d i s t r i b u t i o n)

1397 def random stress (k ind array , numVeh , min s t r e s s , max st r e s s) :

s t r e s sArray = numpy. z e r o s (numVeh) . astype (numpy. f l o a t 3 2)

1399 for i in range (numVeh) :

maximum stress = max(max stress , k ind ar ray [i] . maxstress)

1401 minimum stress = min(min s t r e s s , k ind ar ray [i] . maxstress)

s t r e s sArray [i] = min s t r e s s + random . random () * (maximum stress −

1403 minimum stress)

return (s t r e s s)

1405

1407

””” I /O func t i on f o r f i l e s t o ra g e ”””

1409

def saveData (data , nameFile) :

1411 # i t s t o r e the data i n t o a f i l e named nameFile

f i l e = open (nameFile , ’wb ’)

1413 p i c k l e . dump(data , f i l e)

f i l e . c l o s e ()

1415

def loadData (nameFile) :

1417 # i t l oads the f i l e and re turns the s e t o f f i l e s saved on the f i l e

f i l e = open (nameFile , ’ rb ’)

1419 data = p i c k l e . load (f i l e)

f i l e . c l o s e ()

132

1421 return (data)

1423 ### Plain cars

p l a i n = v eh i c l e s (’ p l a i n car ’ , # name

1425 0 , # co l o r

28 , # optimal v e l o c i t y

1427 36 , # max speed

2 . 0 , # leng th

1429 [[0 , 1] , [3 , 1] , [5 , 0]] , # PVS

[[3 , 0] , [5 , 1] , [7 , 0]] , # PS

1431 [[5 , 0] , [7 , 1] , [9 , 0]] , # PN

[[− 1 0 0 0 0 , 1] , [− 0 . 0 0 1 , 1] , [0 , 0] , [7 , 0] , [9 , 1] , [1 0 0 0 0 , 1]] ,

PB

1433 [[0 , 1] , [3 , 1] , [5 , 0]] , # NVS

[[0 , 1] , [1 0 , 1] , [1 5 , 0]] , # VS f ron t

1435 [[1 0 , 0] , [2 5 , 1] , [4 0 , 0]] , # S f ron t

[[2 5 , 0] , [5 0 , 1] , [8 0 , 0]] , # N

1437 [[5 0 , 0] , [9 0 , 1] , [1 0 0 0 0 0 , 1]] , # B

[[0 , 1] , [5 , 1] , [1 0 , 0]] , # S back

1439 [[0 , 1] , [1 0 , 1] , [1 4 , 0]] , # S jam v e l o c i t y

[[− 0 . 3 0 , 0] , [0 , 1] , [0 . 2 0 , 0]] , # VS acc

1441 [[0 , 0] , [1 . 6 , 1] , [3 . 1 , 0]] , # PS acc

[[1 . 6 , 0] , [3 . 1 , 1] , [4 . 6 , 0]] , # P acc

1443 [[3 . 1 , 0] , [4 . 6 , 1] , [6 . 7 , 0]] , # PB acc

[[− 5 . 0 , 0] , [− 3 . 3 , 1] , [0 , 0]] , # NS acc

1445 [[− 6 . 7 , 0] , [− 5 . 0 , 1] , [− 3 . 3 , 0]] , # N acc

[[− 8 . 4 , 0] , [− 6 . 7 , 1] , [− 5 . 0 , 0]] , # NB acc

1447 0 . 2 , # noi se

’ 3*V’ , # consumption

1449 500 , # max s t r e s s

−450, # min s t r e s s ,

1451 lambda x : x , # LCRP

lambda x : x , # LCLP

1453 # not used but s e t t a b l e f o r ins tance (45−x) /45)

lambda x : 1) # engine

e f f i c i e n c e

1455

1457 ### Plain t ru c k s

long = v eh i c l e s (’ long v eh i c l e ’ , # name

1459 0 .15 , # co l o r

20 , # optimal v e l o c i t y

1461 25 , # max speed

4 . 5 , # leng th

1463 [[0 , 1] , [5 , 1] , [7 , 0]] , # PVS

133

[[5 , 0] , [7 , 1] , [9 , 0]] , # PS

1465 [[7 , 0] , [9 , 1] , [1 1 , 0]] , # PN

[[− 1 0 0 0 0 , 1] , [− 0 . 0 0 1 , 1] , [0 , 0] , [9 , 0] , [1 1 , 1] , [1 0 0 0 0 , 1]] ,

PB

1467 [[0 , 1] , [1 , 1] , [2 , 0]] , # NVS

[[0 , 1] , [2 0 , 1] , [3 0 , 0]] , # VS f ron t

1469 [[2 0 , 0] , [4 0 , 1] , [6 0 , 0]] , # S f ron t

[[4 0 , 0] , [7 0 , 1] , [1 0 0 , 0]] , # N

1471 [[7 0 , 0] , [1 1 0 , 1] , [1 0 0 0 0 0 , 1]] , # B

[[0 , 1] , [5 , 1] , [1 0 , 0]] , # S back

1473 [[0 , 1] , [8 , 1] , [1 2 , 0]] , # S jam v e l o c i t y

[[− 0 . 4 0 , 0] , [0 , 1] , [0 . 1 0 , 0]] , # VS acc

1475 [[0 , 0] , [0 . 9 , 1] , [1 . 8 , 0]] , # PS acc

[[0 . 9 , 0] , [1 . 8 , 1] , [2 . 7 , 0]] , # P acc

1477 [[1 . 8 , 0] , [2 . 7 , 1] , [3 . 6 , 0]] , # PB acc

[[− 2 . 9 , 0] , [− 1 . 9 , 1] , [0 , 0]] , # NS acc

1479 [[− 3 . 9 , 0] , [− 2 . 9 , 1] , [− 1 . 9 , 0]] , # N acc

[[− 4 . 9 , 0] , [− 3 . 9 , 1] , [− 2 . 9 , 0]] , # NB acc

1481 0 . 1 , # noi se

’ 5*V’ , # consumption

1483 300 , # max s t r e s s

−700, # min s t r e s s ,

1485 lambda x : x , # LCRP

lambda x : x **1 .25 , # LCLP

1487 lambda x : 1) # engine

e f f i c i e n c e

1489

a p o s s i b l e mode l i za t i on o f a nervous−s p o r t i v e d r i v e r

1491 anxi = v eh i c l e s (’ anx iuos v e h i c l e ’ , # name

0 .20 , # co l o r

1493 30 , # optimal v e l o c i t y

36 , # max speed

1495 1 . 7 , # leng th

[[0 , 1] , [3 , 1] , [4 , 0]] , # PVS

1497 [[3 , 0] , [4 , 1] , [6 , 0]] , # PS

[[4 , 0] , [6 , 1] , [8 , 0]] , # PN

1499 [[− 1 0 0 0 0 , 1] , [− 0 . 0 0 1 , 1] , [0 , 0] , [8 , 0] , [1 0 , 1] , [1 0 0 0 0 , 1]] ,

PB

[[0 , 1] , [2 , 1] , [3 , 0]] , # NVS

1501 [[0 , 1] , [8 , 1] , [1 2 , 0]] , # VS f ron t

[[8 , 0] , [2 0 , 1] , [3 0 , 0]] , # S f ron t

1503 [[2 0 , 0] , [4 0 , 1] , [7 0 , 0]] , # N

[[4 0 , 0] , [8 0 , 1] , [1 0 0 0 0 0 , 1]] , # B

1505 [[0 , 1] , [5 , 1] , [1 0 , 0]] , # S back

134

[[0 , 1] , [1 2 , 1] , [1 6 , 0]] , # S jam v e l o c i t y

1507 [[− 0 . 2 0 , 0] , [0 , 1] , [0 . 3 0 , 0]] , # VS acc

[[0 , 0] , [1 . 8 , 1] , [3 . 5 , 0]] , # PS acc

1509 [[1 . 8 , 0] , [3 . 5 , 1] , [5 . 5 , 0]] , # P acc

[[3 . 5 , 0] , [5 . 5 , 1] , [7 , 0]] , # PB acc

1511 [[− 6 , 0] , [− 4 . 0 , 1] , [0 , 0]] , # NS acc

[[−8 . 0 , 0] , [−6 , 0] , [−4 , 0]] , # N acc

1513 [[−9 . 0 , 0] , [−8 . 0 , 1] , [−6 , 0]] , # NB acc

0 .30 , # noi se

1515 ’ 3*V’ , # consumption

800 , # max s t r e s s

1517 −350, # min s t r e s s ,

lambda x : x , # LCRP

1519 lambda x : x , # LCLP

not used but s e t t a b l e f o r ins tance (45−x) /45)

1521 lambda x : 1) # engine

e f f i c i e n c e

1523

Example o f the r e a l time s imu la tor

1525 #kindD i s t r i bu t i on = [(p la in , 70) , (long , 10) , (anxi , 20)]

#numVeh = 300

1527 #maxAvDistance = 60

#minAvDistance = 60

1529 #v min = 35

#v max = 35

1531 #numRoadPiece = 15 # number o f p i e c e s you want to d i v i d e the screen

#width = 1500 # width o f the window

1533 #he i gh t = 750 # he i gh t o f the window

#numLanes = 3

1535 #

#randKind=random kind array (k i ndD i s t r i bu t i on , numVeh)

1537 #in i tP o s i t i o n=random pos i t i on array (randKind ,

maxAvDistance , minAvDistance , numVeh)

1539 #in i tV e l o c i t y=random ve l oc i ty array (randKind , numVeh , v min , v max)

#l=i n i t i a l l a n e (randKind , i n i tPo s i t i on , i n i tV e l o c i t y)

1541 ##lef tMostLane = c r e a t e S t r e e t (l , numLanes)

#le f tMostLane = createRandHighway (None , 22000 , numLanes , 0 . 5 ,

1543 # kindD i s t r i bu t i on , 25 , 2 , 2)

#Rea l T ime Vi sua l i za tor (lef tMostLane , numLanes , numRoadPiece , width ,

h e i g h t)

1545

1547 # The main func t i on f o r running some exper iments

Scenarios : Length o f the road

135

1549 # Number o f l anes

Number o f I t e r a t i o n s

1551 # Number o f r ep e t i on s o f the same experiment

Emission ra te (average v e h i c l e s per seconds en t e r i n g)

1553 # In f l u ence rad ius (i f i t i s n e ga t i v e the To l l boo th i s not

v i s i b l e

hence the throughput i s un l imi ted , the

number

1555 # of v e h i c l e s processed by the To l l boo th i s

i n f i n i t e)

1557 # Obstac l e −1 i t puts an o b s t a c l e at L/2 on the l e f tmo s t lane

1 i t puts an o b s t a c l e at L/2 on the r i gh tmos t

lane

1559 i f name ==’ main ’ :

Length = f l o a t (sys . argv [1])

1561 numLanes = in t (sys . argv [2])

I t e r a t i o n s = in t (sys . argv [3])

1563 NumExp = in t (sys . argv [4])

EmissionRate = f l o a t (sys . argv [5]) /numLanes

1565 MaxDensityLongVeh = 4

i f l en (sys . argv) i s 6 :

1567 In f lu enceRad iu s = 25

t i t l eR ad i u s = ’ ’

1569 Obstac le = 0

ob s t a c l eT i t l e = ’ ’

1571 i f l en (sys . argv) i s 7 :

In f lu enceRad iu s = f l o a t (sys . argv [6])

1573 t i t l eR ad i u s = ’− ’ + sys . argv [6]

Obstac le = 0

1575 ob s t a c l eT i t l e = ’ ’

i f l en (sys . argv) i s 8 :

1577 #−1 put an o b s t a c l e at Length /2 on the most l e f t l ane

#+1 put an o b s t a c l e at Length /2 on the most r i g h t lane

1579 Obstac le = in t (sys . argv [7])

In f lu enceRad iu s = f l o a t (sys . argv [6])

1581 t i t l eR ad i u s = ’− ’ + sys . argv [6]

o b s t a c l eT i t l e = ’− ’ + sys . argv [7]

1583 T = numpy. z e r o s ((MaxDensityLongVeh , NumExp, I t e r a t i o n s))

L = numpy. z e r o s ((MaxDensityLongVeh , NumExp, I t e r a t i o n s))

1585 AV = numpy. z e r o s ((MaxDensityLongVeh , NumExp, I t e r a t i o n s))

AD = numpy. z e r o s ((MaxDensityLongVeh , NumExp, I t e r a t i o n s))

1587 N = numpy. z e r o s ((MaxDensityLongVeh , NumExp, I t e r a t i o n s))

F = numpy. z e r o s ((MaxDensityLongVeh , NumExp, I t e r a t i o n s))

1589 for k in range (MaxDensityLongVeh) :

for j in range (NumExp) :

136

1591 # d i s t r i b u t i o n o f long v e h i c l e s wi th s t e p 10: 0 , 10 , 20 , 30

d i s t r = 10 * k

1593 k indD i s t r i bu t i on = [(p la in , 100 − d i s t r) , (long , d i s t r)]

l e f tMostLane = c r e a t e S t r e e t (None , numLanes)

1595 createOnTol l (leftMostLane , 0 , EmissionRate , k i ndD i s t r i bu t i on)

c r e a t eO f fTo l l (leftMostLane , Length , 1 , In f luenceRadius , 100 , 10)

1597 i f Obstac le i s −1:

i t c r ea t e s an o b s t a c l e in p o s i t i o n Length /2

1599 le ftMostLane . c r eat eObstac l e (Length /2 , Length /5 , 0 . 45)

i f Obstac le i s 1 :

1601 rightMostLane = le ftMostLane . returnLane (numLanes − 1)

rightMostLane . c r eat eObstac l e (Length /2 , Length /5 , 0 . 45)

1603 for i in range (I t e r a t i o n s) :

(through , l a t , avVel , avDist , num) = uptdateS t r ee t (le f tMostLane)

1605 T[k] [j] [i] = through

L [k] [j] [i] = l a t

1607 AV[k] [j] [i] = avVel

AD[k] [j] [i] = avDist

1609 N[k] [j] [i] = num

saveData (T, ’ Throughput ’ + sys . argv [1] + ’− ’ + sys . argv [2] +

1611 ’− ’ + sys . argv [3] + ’− ’ + sys . argv [4] + ’− ’ + sys . argv [5]

+ t i t l eR ad i u s + ob s t a c l eT i t l e)

1613 saveData (L , ’ Latency ’+sys . argv [1] + ’− ’+sys . argv [2] +

’− ’ + sys . argv [3] + ’− ’ + sys . argv [4] + ’− ’ + sys . argv [5]

1615 + t i t l eR ad i u s + ob s t a c l eT i t l e)

saveData (AV, ’ AvVelocity ’ + sys . argv [1] + ’− ’ + sys . argv [2] +

1617 ’− ’ + sys . argv [3] + ’− ’ + sys . argv [4] + ’− ’ + sys . argv [5]

+ t i t l eR ad i u s + ob s t a c l eT i t l e)

1619 saveData (AD, ’ AvDistance ’+ sys . argv [1] + ’− ’ + sys . argv [2] +

’− ’ + sys . argv [3] + ’− ’ + sys . argv [4] + ’− ’ + sys . argv [5]

1621 + t i t l eR ad i u s + ob s t a c l eT i t l e)

saveData (N/Length , ’ Density ’ + sys . argv [1] + ’− ’ + sys . argv [2] +

1623 ’− ’ + sys . argv [3] + ’− ’ + sys . argv [4] + ’− ’ + sys . argv [5]

+ t i t l eR ad i u s + ob s t a c l eT i t l e)

ozsim.py

137

138

Appendix B

The Implementation with

PyCuda

B.1 Cuda and PyCuda: An Overview

Cuda (Compute Unified Device Architecture) is a parallel computing platform and

programming model developed by NVIDIA. Cuda is the computing engine in NVIDIA

Graphics Processing Units (GPUs) that is accessible to software developers through

variants of industry standard programming languages. It enables dramatic increases in

computing performance by controlling the power of the GPU.

PyCuda is an open-source toolkit that supports GPU run-time code generation

for high performance computing and was developed to access NVIDIA’s Cuda parallel

computation application programming interface (API) from Python.

B.2 PyCuda Code of the Simulator

from f u t u r e import d i v i s i o n

2 import sys , os

sys . path . append (os . getcwd ())

4 import numpy

import random

6 import s t r i n g

import math

8 import time

import copy

10 import p i c k l e

139

glumpy i s reques ted only by Rea l T ime Vi sua l i z e r

12 import glumpy

pycuda

14 import pycuda . a u t o i n i t

import pycuda . d r i v e r as drv

16 import pycuda . gpuarray as gpuarray

from pycuda . curandom import rand as curand

18 from pycuda . compi ler import SourceModule

import time

20

global Normalized , ThreadsPerBlock , unitTime

22

unitTime = 1

24 # number o f threads f o r each b l o c k

ThreadsPerBlock = 128

26 # 1 second o f s imu la t i on every 1 seconds

Normalized = False

28

30

32

””” c l a s s e s d e f i n i t i o n s ”””

34

class v eh i c l e s () :

36 def i n i t (s e l f , name = None , c o l o r = None , optV = None ,

maxV = None , l ength = None , FctVS = None ,

38 FctS = None , FctM = None , FctB = None ,

BctVS = None , FdVS = None , FdS = None , FdM = None ,

40 FdB = None , BdVS = None , VelS = None ,

accZ = None , accPS = None ,

42 accPM = None , accPB = None ,

accNS = None , accNM = None ,

44 accNB = None , accNoise = None , maxstress = None ,

min s t r e s s = None , LCRP = None , LCLP = None , engEff = None) :

46 s e l f . name = name

s e l f . c o l o r = co l o r

48 s e l f . optV = optV

s e l f .maxV = maxV

50 s e l f . l ength = length

s e l f . FctVS = FctVS

52 s e l f . FctS = FctS

s e l f . FctM = FctM

54 s e l f . FctB = FctB

s e l f . BctVS = BctVS

140

56 s e l f .FdVS = FdVS

s e l f . FdS = FdS

58 s e l f .FdM = FdM

s e l f .FdB = FdB

60 s e l f .BdVS = BdVS

s e l f . VelS = VelS

62 s e l f . accZ = accZ

s e l f . accPS = accPS

64 s e l f . accPM = accPM

s e l f . accPB = accPB

66 s e l f . accNS = accNS

s e l f . accNM = accNM

68 s e l f . accNB = accNB

s e l f . accNoise = accNoise

70 s e l f . maxstress = maxstress

s e l f . m in s t r e s s = minst r e s s

72 s e l f .LCRP = LCRP

s e l f .LCLP = LCLP

74 s e l f . engEff = engEff

76 class SetOfVeh ic l e s () :

def i n i t (s e l f , l i s t = None) :

78 s e l f . l i s t = l i s t

80 def toCuda (s e l f) :

transform the membership f unc t i on o f the s e t v e h i c l e s in a s u i t a b l e

82 # matrix to pass to the cuda i n t e r f a c e

maxlength = 1

84 for (kind , perc) in s e l f . l i s t :

i f perc i s not 0 :

86 for (Att , Value) in kind . d i c t . i t e r i t em s () :

i f Att in MembershipFunctions :

88 maxlength = max(maxlength , l en (Value))

CudaMembFunctions = numpy. z e r o s (2 * maxlength) . astype (numpy . f l o a t 3 2)

90 CudaMembFunctions [0] = maxlength

CudaMembFunctions [1] = 2 * maxlength * l en (MembershipFunctions)

92 CudaProp = numpy. array ((l en (Prop e r t i e s))) . astype (numpy. f l o a t 3 2)

for (kind , perc) in s e l f . l i s t :

94 i f perc i s not 0 :

for at t in MembershipFunctions :

96 for (Att , Value) in kind . d i c t . i t e r i t em s () :

i f Att i s at t :

98 l ength = len (Value)

Dom = numpy. z e r o s (maxlength) . astype (numpy. f l o a t 3 2)

100 Cod = numpy. z e r o s (maxlength) . astype (numpy. f l o a t 3 2)

141

for i in range (maxlength) :

102 i f i < l ength :

Dom[i] = Value [i] [0]

104 Cod [i] = Value [i] [1]

else :

106 Dom[i] = Dom[i − 1] + 1

Cod [i] = 0

108 CudaMembFunctions = numpy. hstack ((CudaMembFunctions , Dom,

Cod))

for at t in Prop e r t i e s :

110 for (Att , Value) in kind . d i c t . i t e r i t em s () :

i f Att i s at t :

112 CudaProp = numpy. hstack ((CudaProp , numpy . array ((Value)) .

astype (numpy. f l o a t 3 2)))

s e l f . CudaMembFunct = CudaMembFunctions

114 s e l f . CudaPropert ies = CudaProp

116 def posOfVeh (s e l f , kindVeh) :

i = 0

118 for (kind , perc) in s e l f . l i s t :

i f perc i s not 0 :

120 i f kind i s kindVeh :

return i

122 else :

i += 1

124

class car s (ob j e c t) :

126 def i n i t (s e l f , p o s i t i o n = None , v e l o c i t y = None ,

kind = None , s t r e s s = 0 , c o l o r = None) :

128 s e l f . p o s i t i o n = po s i t i o n

s e l f . v e l o c i t y = v e l o c i t y

130 s e l f . kind = kind

s e l f . s t r e s s = s t r e s s

132 # i f checked , i t has j u s t changed lane

s e l f . alreadyDone = False

134 # ex t e rna l o b j e c t or ”not a v e h i c l e mode” Fal se

s e l f . extObj = False

136 # the car i s v i s i b l e to the o th e r s

s e l f . v i s i b i l i t y = True

138 # in t e r n a l t imer s e t to zero

s e l f . t imer = 0

140 s e l f . c o l o r = s e l f . kind . c o l o r

142 def ev a lFe e l i n g s (s e l f , l ane) :

ns t r e s s i s always p o s i t i v e

142

144 i f s e l f . s t r e s s >= 0 :

i f s e l f . kind . maxstress i s 0 :

146 n s t r e s s = 0

else :

148 n s t r e s s = s e l f . s t r e s s / s e l f . kind . maxstress

i f random . random () < s e l f . kind .LCRP(n s t r e s s) :

150 return l ane . r i gh t

else :

152 i f s e l f . kind . min s t r e s s i s 0 :

n s t r e s s = 0

154 else :

n s t r e s s = (s e l f . s t r e s s / s e l f . kind . min s t r e s s)

156 i f random . random () < s e l f . kind .LCLP(n s t r e s s) :

i f you are in a jam s i t u a t i o n t r y to change lane

158 # to ge t out from the jam

i f random . random () < l i n (s e l f . v e l o c i t y , s e l f . kind . VelS) :

160 i f l ane . r i gh t i s None :

return l ane . l e f t

162 i f l ane . l e f t i s None :

return l ane . r i gh t

164 i f random . random () < 0 . 7 :

return l ane . l e f t

166 else :

return l ane . r i gh t

168 # uncomment to reduce to decrease the ping−pong e f f e c t

i f i t i s commented then the system seems more r e a c t i v e

170 # in a jam s i t u a t i o n

#s e l f . s t r e s s = 0

172 else :

return l ane . l e f t

174 return None

176 class ex t e rn a l (car s) :

def i n i t (s e l f , p o s i t i o n = None , kind = None , v i s i b i l i t y = None ,

178 emiss ionRate = None , k i ndD i s t r i bu t i on = None ,

i n i t i a l V e l o c i t y = None , absorptionProb = None ,

180 in f lu enceRad iu s = None , probe = False , bu f f e rCapac i ty =

None) :

s e l f . v e l o c i t y = 0

182 s e l f . p o s i t i o n = po s i t i o n

s e l f . kind = kind

184 # ex t e rna l o b j e c t or ”not a v e h i c l e mode” True

s e l f . extObj = True

186 # the car i s v i s i b l e to the o th e r s

s e l f . v i s i b i l i t y = False

143

188 s e l f . emiss ionRate = emiss ionRate

s e l f . k i ndD i s t r i bu t i on = k indD i s t r i bu t i on

190 s e l f . i n i t i a l V e l o c i t y = 12

s e l f . absorptionProb = absorptionProb

192 s e l f . in f lu enceRad iu s = in f lu enceRad iu s

loop de t e c t o r modal i ty o f f

194 s e l f . probe = probe

s e l f . counter = 0

196 s e l f . b u f f e r = []

s e l f . bu f f e rCapac i ty = bu f f e rCapac i ty

198

def ob s t a c l e (s e l f , dimension , c o l o r) :

200 ob s t a c l e = v eh i c l e s ()

ob s t a c l e . l ength = dimension

202 ob s t a c l e . c o l o r = co l o r

ob s t a c l e . name = ’ Obstac le ’

204 s e l f . kind = ob s t a c l e

s e l f . v i s i b i l i t y = True

206

def onRamp(s e l f , emissionRate , k indDis t r ibu t ion , buf ferCapac ity , c o l o r) :

208 ramp = v eh i c l e s ()

ramp . l ength = 3

210 ramp . c o l o r = co l o r

ramp . name = ’On Ramp ’

212 s e l f . kind = ramp

s e l f . v i s i b i l i t y = False

214 s e l f . emiss ionRate = emiss ionRate

s e l f . k i ndD i s t r i bu t i on = k indD i s t r i bu t i on

216 s e l f . bu f f e rCapac i ty = bu f f e rCapac i ty

218 def offRamp (s e l f , absorptionProb , in f lu enceRad iu s , bu f ferCapac ity ,

sampRate , c o l o r) :

220 ramp = v eh i c l e s ()

ramp . l ength = 3

222 ramp . c o l o r = co l o r

ramp . name = ’ Off Ramp ’

224 s e l f . kind = ramp

s e l f . absorptionProb = absorptionProb

226 s e l f . in f lu enceRad iu s = in f lu enceRad iu s

s e l f . bu f f e rCapac i ty = bu f f e rCapac i ty

228 s e l f . sampRate = sampRate

s e l f . avLatency = None

230 s e l f . throughput = None

i f i n f l u ence rad ius i s n e ga t i v e then make i t i n v i s i b l e

232 # (the v e h i c l e s do not s low down in the proximy)

144

i f i n f lu enceRad iu s < 0 :

234 s e l f . v i s i b i l i t y = False

else :

236 s e l f . v i s i b i l i t y = True

238 def loopDetector (s e l f , in f lu enceRad iu s , c o l o r) :

ramp = v eh i c l e s ()

240 ramp . l ength = 1

ramp . c o l o r = co l o r

242 ramp . name = ’Loop Detector ’

s e l f . kind = ramp

244 s e l f . v i s i b i l i t y = False

s e l f . in f lu enceRad iu s = in f lu enceRad iu s

246 s e l f . probe = True

248 class l ane (ob j e c t) :

def i n i t (s e l f , i l i s t = None , l e f t = None , r i gh t = None , SetOfVeh =

None) :

250 s e l f . l e f t = l e f t

s e l f . r i gh t = r i gh t

252 s e l f . SetOfVeh = SetOfVeh

s e l f . in i tConten t s (i l i s t)

254

def i n i tConten t s (s e l f , i l i s t = None) :

256 i f i l i s t i s not None :

L i s t = i l i s t

258 else :

L i s t = []

260 dummy=v eh i c l e s ()

dummy. name = ’Dummy ’

262 dummy.maxV = 40

dummy. l ength = 0

264 first dummy = car s (−10 , 0 , dummy)

first dummy . extObj = True

266 L i s t . i n s e r t (0 , f irst dummy)

s e l f . f irst dummy = first dummy

268 i f i l i s t i s not None :

l ength = len (i l i s t)

270 l a s t v e h i c l e = i l i s t [l ength − 1]

l a s t v e h i c l e p o s i t i o n = l a s t v e h i c l e . p o s i t i o n

272 else :

l a s t v e h i c l e p o s i t i o n = 0

274 position dummy = l a s t v e h i c l e p o s i t i o n + 1000

las t f i r s t dummy = car s (position dummy , dummy.maxV, dummy)

276 last second dummy = car s (position dummy + 10 , dummy.maxV, dummy)

145

l a s t f i r s t dummy . extObj = True

278 last second dummy . extObj = True

L i s t . append (la s t f i r s t dummy)

280 L i s t . append (last second dummy)

s e l f . l a s t f i r s t dummy = las t f i r s t dummy

282 s e l f . last second dummy = last second dummy

s e l f . con ten t s = L i s t

284 CudaInt = numpy. z e r o s (4 * l en (s e l f . con ten t s)) . astype (numpy. f l o a t 3 2)

for i , car in enumerate (L i s t) :

286 CudaInt [4 * i] = car . p o s i t i o n

CudaInt [4 * i + 1] = car . v e l o c i t y

288 CudaInt [4 * i + 2] = car . s t r e s s

i f car . kind i s not dummy:

290 CudaInt [4 * i + 3] = s e l f . SetOfVeh . posOfVeh (car . kind)

else :

292 # a nega t i v e va l ue f o r the kind i s re served f o r e x t e rna l o b j e c t s

CudaInt [4 * i + 3] = −1

294 s e l f . CudaInter face = CudaInt

s e l f . CudaBuffer = numpy. z e r o s l i k e (CudaInt) . astype (numpy. f l o a t 3 2)

296 s e l f . CudaNumThreads = len (L i s t)

298 def s e t L e f t (s e l f , l e f t) :

s e l f . l e f t = l e f t

300

def ge tLe f t (s e l f) :

302 return (s e l f . l e f t)

304 def s e tR igh t (s e l f , r i gh t) :

s e l f . r i gh t = r i gh t

306

def getRight (s e l f) :

308 return (s e l f . r i gh t)

310 def de l e t e (s e l f , car) :

Index = s e l f . con ten t s . index (car)

312 del s e l f . con ten t s [Index]

CudaIndx = in t (4 * Index)

314 s e l f . CudaInter face = numpy. d e l e t e (s e l f . CudaInterface , [CudaIndx ,

CudaIndx + 1 ,

CudaIndx + 2 , CudaIndx + 3])

316 s e l f . CudaBuffer = numpy. d e l e t e (s e l f . CudaBuffer , [CudaIndx , CudaIndx +

1 ,

CudaIndx + 2 , CudaIndx + 3])

318 s e l f . CudaNumThreads −= 1

146

320 def evalChanges (s e l f) :

for c in s e l f . con ten t s :

322 i f not c . extObj :

i f not c . alreadyDone :

324 newLane = c . ev a lFe e l i n g s (s e l f)

i f newLane i s not None :

326 i f s e l f . t r a n s f e r (c , newLane) :

s e l f . d e l e t e (c)

328 e l i f (c . kind i s not s e l f . f irst dummy . kind) :

s e l f . eva lExte rna l (c)

330

def TransferFromCuda (s e l f) :

332 # used to update the lane using the information

obta ined by the CUDA TransFunction

334 for i , car in enumerate (s e l f . con ten t s) :

update only the o b j e c t s which are not e x t e rna l

336 i f (not car . extObj or car . kind i s s e l f . f irst dummy . kind) :

car . p o s i t i o n = s e l f . CudaInter face [4 * i]

338 car . v e l o c i t y = s e l f . CudaInter face [4 * i + 1]

car . s t r e s s = s e l f . CudaInter face [4 * i + 2]

340 car . alreadyDone = False

#car . t imer += 1

342

def Globa lTrans i t i on (s e l f) :

344 # the random array f o r the e va l ua t i on o f the s t r e s s

of each v e h i c l e s

346 Number = s e l f . CudaNumThreads

NumOfBlocks = Number//ThreadsPerBlock + 1

348 Rand = numpy. random . random(Number) . astype (numpy. f l o a t 3 2)

N = numpy. array ((Number)) . astype (numpy. in t32)

350 TransFunction (drv . In (Rand) , drv . In (s e l f . CudaInter face) ,

drv . Out(s e l f . CudaBuffer) , drv . In (N) ,

352 b lock=(ThreadsPerBlock , 1 , 1) , g r id=(NumOfBlocks , 1))

B = s e l f . CudaInter face

354 s e l f . CudaInter face = s e l f . CudaBuffer

s e l f . CudaBuffer = B

356 s e l f . TransferFromCuda ()

358 def t r a n s f e r (s e l f , car , t o lane) :

i f to lane i s not None :

360 i = to lane . p o s s i b l eCa r (car)

i f i i s not None :

362 car . alreadyDone = True

sense o f s a t i s f a c t i o n in changing lane

364 car . s t r e s s /= 5

147

cuda i n t e r f a c e as to be changed

366 CudaIndx = in t (4 * i)

t o lane . CudaInter face = numpy. i n s e r t (to lane . CudaInterface ,

368 [CudaIndx , CudaIndx , CudaIndx , CudaIndx] ,

[car . pos i t i on , car . v e l o c i t y , car . s t r e s s ,

370 to lane . SetOfVeh . posOfVeh (car . kind)])

t o lane . CudaBuffer = numpy. i n s e r t (to lane . CudaBuffer ,

372 [CudaIndx , CudaIndx , CudaIndx , CudaIndx] ,

[0 , 0 , 0 , 0])

374 to lane . CudaNumThreads += 1

to lane . con ten t s . i n s e r t (i , car)

376 return True

return False

378

def po s s i b l eCa r (s e l f , car) :

380 precIndx , indx = s e l f . index (car)

i f indx i s not None :

382 x = (car . p o s i t i o n − s e l f . con ten t s [precIndx] . p o s i t i o n − car . kind .

l ength −

s e l f . con ten t s [precIndx] . kind . l ength)

384 y = (s e l f . con ten t s [indx] . p o s i t i o n − car . p o s i t i o n − car . kind . l ength

−

s e l f . con ten t s [indx] . kind . l ength)

386 i f car . v e l o c i t y < 0 :

print ”A le r t ! ” , car . v e l o c i t y , car . pos i t i on , car . kind . name

388 i f ((x > (s e l f . con ten t s [precIndx] . v e l o c i t y) **1.2 − car . v e l o c i t y +

abs (s e l f . con ten t s [precIndx] . v e l o c i t y − car . v e l o c i t y) + 3)

and

390 (3 + (car . v e l o c i t y) **1.25 − s e l f . con ten t s [indx] . v e l o c i t y < y)

) :

return indx

392 else :

return None

394

def i ndex (s e l f , car) :

396 # i t re turns the i nd i c e s o f the c l o s e s t

f ron t and back v i s i b l e cars

398 Length = len (s e l f . con ten t s)

I n t e r v a l = [0 , Length − 1]

400 while True :

MedIndx = (I n t e r v a l [0] + I n t e r v a l [1]) //2

402 l e f t c a r = s e l f . con ten t s [I n t e r v a l [0]]

midcar = s e l f . con ten t s [MedIndx]

404 r i g h t c a r = s e l f . con ten t s [I n t e r v a l [1]]

i f (l e f t c a r . p o s i t i o n <= car . p o s i t i o n <= midcar . p o s i t i o n) :

148

406 I n t e r v a l = [I n t e r v a l [0] , MedIndx]

else :

408 I n t e r v a l = [MedIndx , I n t e r v a l [1]]

i f (I n t e r v a l [1] == I n t e r v a l [0] + 1) :

410 break

i f not car . extObj :

412 f r o n t p o s i t i o n = car . p o s i t i o n + car . kind . l ength

back po s i t i on = car . p o s i t i o n − car . kind . l ength

414 # check f o r the c l o s e s t back and f r on t v i s i b l e v e h i c l e s

f r on t c a r = s e l f . con ten t s [I n t e r v a l [1]]

416 backcar = s e l f . con ten t s [I n t e r v a l [0]]

while (not f r on t c a r . v i s i b i l i t y and I n t e r v a l [1] < Length) :

418 I n t e r v a l [1] += 1

f r on t c a r = s e l f . con ten t s [I n t e r v a l [1]]

420 while (not backcar . v i s i b i l i t y and I n t e r v a l [0] >= 0) :

I n t e r v a l [0] −= 1

422 backtcar = s e l f . con ten t s [I n t e r v a l [0]]

i f (f r o n t p o s i t i o n <= fron t c a r . p o s i t i o n − f r on t c a r . kind . l ength and

424 back po s i t i on >= backcar . p o s i t i o n − backcar . kind . l ength) :

return I n t e r v a l

426 else :

return (None , None)

428 else :

return I n t e r v a l

430

def i n s e r tEx t e rn a l (s e l f , ext) :

432 # i t i n s e t s an ex t e rna l o b j e c t in a lane

Index = s e l f . index (ext) [1]

434 i f Index i s not None :

s e l f . con ten t s . i n s e r t (Index , ext)

436 # cuda i n t e r f a c e as to be changed

CudaIndx = in t (4 * Index)

438 i f ext . v i s i b i l i t y :

s e l f . CudaInter face = numpy. i n s e r t (s e l f . CudaInterface ,

440 [CudaIndx , CudaIndx , CudaIndx ,

CudaIndx] ,

[ext . pos i t i on , 0 , ext . kind .

length , −1])

442 s e l f . CudaBuffer = numpy. i n s e r t (s e l f . CudaBuffer ,

[CudaIndx , CudaIndx , CudaIndx ,

CudaIndx] ,

444 [ext . pos i t i on , 0 , ext . kind . length ,

−1])

else :

446 s e l f . CudaInter face = numpy. i n s e r t (s e l f . CudaInterface ,

149

[CudaIndx , CudaIndx , CudaIndx ,

CudaIndx] ,

448 [−1 , 0 , 0 , −1])

s e l f . CudaBuffer = numpy. i n s e r t (s e l f . CudaBuffer ,

450 [CudaIndx , CudaIndx , CudaIndx ,

CudaIndx] ,

[−1 , 0 , 0 , −1])

452 s e l f . CudaNumThreads += 1

454 def eva lExte rna l (s e l f , ext) :

update the p o s i t i o n (as index) in the lane

456 s e l f . d e l e t e (ext)

s e l f . i n s e r tEx t e rn a l (ext)

458 # i f i t i s an emi t te r

i f ext . emiss ionRate i s not None and ext . k i ndD i s t r i bu t i on i s not None :

460 i f l en (ext . bu f f e r) < ext . bu f f e rCapac i ty :

pos = ext . p o s i t i o n

462 rat e = ext . emiss ionRate

using a poi sson d i s t r i b u t i o n we c a l c u l a t e the p r o b a b i l i t y

464 # of having at l e a s t one occurrence o f a v e h i c l e in the i n t e r v a l

[0 , e x t . counter + 1]

466 prob = 1 − (math . exp(−(ra t e * (ext . counter + 1) * unitTime)))

i f the random t e s t succeed , randomly choose a kind o f v e h i c l e

468 # d i s t r i b u t e d as k i ndD i s t r i bu t i o n

i f random . random () <= prob :

470 Sum=0

for (kind , percentage) in ext . k i ndD i s t r i bu t i on . l i s t :

472 Sum += percentage

rand = random . cho i c e (range (Sum))

474 rand += 1

scan=0

476 for (kind , percentage) in ext . k i ndD i s t r i bu t i on . l i s t :

scan += percentage

478 i f rand <= scan :

chosenVehic le = kind

480 break

newCar = car s (pos , ext . i n i t i a l V e l o c i t y , chosenVehic le)

482 ext . bu f f e r . append (newCar)

ext . counter = 0

484 else :

ext . counter += 1

486 i f ext . bu f f e r != [] :

i = s e l f . p o s s i b l eCa r (ext . bu f f e r [0])

488 i f i i s not None :

ext . bu f f e r [0] . alreadyDone = True

150

490 s e l f . t r a n s f e r (ext . bu f f e r [0] , s e l f)

del ext . bu f f e r [0]

492 # i f the b u f f e r i s f u l l do not c r ea t e any o ther v e h i c l e s

but i n s t e ad j u s t put the v e h i c l e s a l ready in the b u f f e r

494 else :

i f ext . bu f f e r != [] :

496 i = s e l f . p o s s i b l eCa r (ext . bu f f e r [0])

i f i i s not None :

498 ext . bu f f e r [0] . alreadyDone = True

s e l f . t r a n s f e r (ext . bu f f e r [0] , s e l f)

500 del ext . bu f f e r [0]

i f i t i s a s ink

502 i f ext . absorptionProb i s not None and ext . in f lu enceRad iu s i s not None :

i f l en (ext . bu f f e r) <= ext . bu f f e rCapac i ty :

504 # t h i s case i s used to s imu la te open road t o l l i n g system

in the o f f− t o l l p l a za

506 i f ext . in f lu enceRad iu s < 0 :

i n f l u e n c ePo s i t i o n = (ext . p o s i t i o n − ext . kind . l ength − 50)

508 for c in s e l f . con ten t s :

i f ((i n f l u e n c ePo s i t i o n <= c . p o s i t i o n + c . kind . l ength)

510 and not c . extObj) :

i f you grab i t then s t o r e i t in the b u f f e r

512 i f random . random () <= ext . absorptionProb :

i f ext . bu f f e rCapac i ty != 0 :

514 ext . bu f f e r . append (c)

s e l f . d e l e t e (c)

516 else :

i f bu f f e rCapac i t y i s 0 then the capac i ty

518 # of the b u f f e r i s i n f i n i t e

s e l f . d e l e t e (c)

520 else :

c a rPo s i t i on = c . p o s i t i o n

522 c . p o s i t i o n = ca rPos i t i on + ext . in f lu enceRad iu s + ext . kind .

l ength

otherw i se t e l e p o r t i t beyond the ramp

524 i f s e l f . t r a n s f e r (c , s e l f) :

s e l f . d e l e t e (c)

526 # i f you cannot do i t l e a v e i t there

else :

528 c . p o s i t i o n = ca rPos i t i on

else :

530 i n f l u e n c ePo s i t i o n = (ext . p o s i t i o n − ext . kind . l ength

− ext . in f lu enceRad iu s)

532 for c in s e l f . con ten t s :

151

i f ((i n f l u e n c ePo s i t i o n <= c . p o s i t i o n + c . kind . l ength <= ext .

p o s i t i o n

534 − ext . kind . l ength) and not c . extObj) :

i f you grab i t then s t o r e i t in the b u f f e r

536 i f random . random () <= ext . absorptionProb :

i f ext . bu f f e rCapac i ty != 0 :

538 ext . bu f f e r . append (c)

s e l f . d e l e t e (c)

540 else :

i f bu f f e rCapac i t y i s 0 then the capac i ty

542 # of the b u f f e r i s i n f i n i t e

s e l f . d e l e t e (c)

544 else :

c a rPo s i t i on = c . p o s i t i o n

546 c . p o s i t i o n = ca rPos i t i on + ext . in f lu enceRad iu s + ext . kind .

l ength

otherw i se t e l e p o r t i t beyond the ramp

548 i f s e l f . t r a n s f e r (c , s e l f) :

s e l f . d e l e t e (c)

550 # i f you cannot do i t l e a v e i t there

else :

552 c . p o s i t i o n = ca rPos i t i on

else :

554 # not ab l e to s t o r e in the b u f f e r

return False

556 i f ext . sampRate i s not None :

i f ext . counter i s ext . sampRate :

558 T = 0

for c in ext . bu f f e r :

560 T += c . t imer

i f ext . bu f f e r != [] :

562 ext . avLatency = T/ len (ext . bu f f e r)

ext . throughput = len (ext . bu f f e r)

564 ext . bu f f e r = []

ext . counter = 0

566 else :

ext . counter += 1

568 # i f i t i s a loop de t e c t o r

i f ext . probe :

570 i n f l u e n c ePo s i t i o n = ext . p o s i t i o n − ext . kind . l ength − ext .

in f lu enceRad iu s

sav ing the v e h i c l e s w i th in the i n f l u ence rad ius

572 j = newIndex − 1

newList = []

574 while 0 < j < newIndex :

152

i f not s e l f . con ten t s [j] . extObj :

576 i f (i n f l u e n c ePo s i t i o n <= s e l f . con ten t s [j] . p o s i t i o n +

s e l f . con ten t s [j] . kind . l ength <= ext . p o s i t i o n − ext . kind .

l ength) :

578 newList . append(s e l f . con ten t s [j])

j −= 1

580 else :

break

582 else :

j −= 1

584 mis s ingVeh ic l e s = len ([x for x in ext . bu f f e r i f x not in newList])

ext . counter += miss ingVeh ic l e s

586 ext . bu f f e r = newList

588 def returnLane (s e l f , num) :

given a number and lane i t re turns

590 # the lane o f d i s t ance num from s e l f

l ane = s e l f

592 i f num >= 0 :

for i in range (num) :

594 lane = lane . getRight ()

return l ane

596 i f num < 0 :

for i in range (num) :

598 lane = lane . g e tLe f t ()

return l ane

600

def RandomInit (s e l f , k i n d s d i s t r i b u t i o n , numVeh, max distance ,

min d istance ,

602 v min , v max) :

i t randomly i n i t i a l i z e s a lane

604 for (f i r s t k i n d , f i r s t p e r c e n t a g e) in k i n d s d i s t r i b u t i o n . l i s t :

i f f i r s t p e r c e n t a g e i s not 0 :

606 s lowes t = f i r s t k i n d

for (kind , perc) in k i n d s d i s t r i b u t i o n . l i s t :

608 i f kind .maxV < s l owes t .maxV and perc i s not 0 :

s l owes t = kind

610 k ind ar ray = [s lowes t]*numVeh

Sum=0

612 for (kind , percentage) in k i n d s d i s t r i b u t i o n . l i s t :

Sum += percentage

614 for i in range (numVeh−1) :

rand = random . cho i c e (range (Sum))

616 rand += 1

scan=0

153

618 for (kind , percentage) in k i n d s d i s t r i b u t i o n . l i s t :

scan += percentage

620 i f rand <= scan :

k ind ar ray [i] = kind

622 break

p o s i t i o n d i s t r i b u t i o n = numpy. z e r o s (numVeh) . astype (numpy. f l o a t 3 2)

624 p o s i t i o n d i s t r i b u t i o n [0] = k ind ar ray [0] . l ength

for i in range (1 ,numVeh) :

626 p o s i t i o n d i s t r i b u t i o n [i] = (p o s i t i o n d i s t r i b u t i o n [i −1] +

k ind ar ray [i −1] . l ength +

628 min d i s tance + random . random () *
(max distance − min d i s tance) +

630 k ind ar ray [i] . l ength)

v e l o c i t y d i s t r i b u t i o n = numpy. z e r o s (numVeh) . astype (numpy. f l o a t 3 2)

632 for i in range (numVeh) :

maximumVelocity = min(v max , k ind ar ray [i] . maxV)

634 minimumVelocity = min(v min , k ind ar ray [i] . maxV)

v e l o c i t y d i s t r i b u t i o n [i] = (minimumVelocity +

636 random . random () *(maximumVelocity −

minimumVelocity))

638 s t a t e = []

for j in range (numVeh) :

640 car=car s (p o s i t i o n d i s t r i b u t i o n [j] , v e l o c i t y d i s t r i b u t i o n [j] ,

k ind ar ray [j] , 0)

642 s t a t e . append(car)

s e l f . in i tConten t s (s t a t e)

644

class S t r e e t () :

646 def i n i t (s e l f , SetOfVeh = None , SetOfLanes = None , NumLanes = None) :

s e l f . SetOfVeh = SetOfVeh

648 s e l f . NumLanes = NumLanes

i f SetOfLanes i s None :

650 r ightLane = lane (None , None , None , SetOfVeh)

else :

652 # the f i r s t e lement o f the l i s t i s the r i gh tmos t lane

r ightLane = SetOfLanes [0]

654 s e l f . RightMostLane = rightLane

l e f tLan e = rightLane

656 for j in range (NumLanes − 1) :

i f ((SetOfLanes i s not None) and (j + 1) < l en (SetOfLanes)) :

658 l e f tLan e = SetOfLanes [j + 1]

l e f tLan e . s e tR igh t (r ightLane)

660 r ightLane . s e t L e f t (l e f tLan e)

else :

662 l e f tLan e = lane (None , None , r ightLane , SetOfVeh)

154

r ightLane . s e t L e f t (l e f tLan e)

664 r ightLane=l e f tLan e

s e l f . LeftMostLane = l e f tLan e

666 s e l f . UpdatePosDummies ()

668 def UpdatePosDummies (s e l f) :

used to have the dummies always as the l a s t e l ements even when we

add

670 # something

MaxDistance = 0

672 Lane = s e l f . RightMostLane

while Lane i s not None :

674 MaxDistance = max(MaxDistance , Lane . l a s t f i r s t dummy . p o s i t i o n)

Lane = Lane . g e tLe f t ()

676 Lane = s e l f . RightMostLane

while Lane i s not None :

678 Lane . l a s t f i r s t dummy . p o s i t i o n = MaxDistance

Lane . last second dummy . p o s i t i o n = MaxDistance + 10

680 # update the cuda i n t e r f a c e

I = Lane . CudaNumThreads

682 Lane . CudaInter face [4 * (I − 1)] = Lane . last second dummy . p o s i t i o n

Lane . CudaInter face [4 * (I − 2)] = Lane . l a s t f i r s t dummy . p o s i t i o n

684 Lane = Lane . g e tLe f t ()

686 def Globa lTran s i t i onSt re e t (s e l f) :

updat ing o f the mu l t i l ane model , the update

688 # i s done from l e f t to r i g h t (the l e f tmo s t has the precedence)

l ane = s e l f . LeftMostLane

690 while l ane i s not None :

l ane . evalChanges ()

692 lane = lane . getRight ()

l ane = s e l f . LeftMostLane

694 # i t i s p o s s i b l e to p a r a r e l i z e in CUDA t h i s par t

while l ane i s not None :

696 lane . Globa lTrans i t i on ()

lane = lane . getRight ()

698

700 def s l ow in g p e r t u rba t i on (s e l f) :

i t s l ows down the f i r s t car in each lane

702 lane = s e l f . LeftMostLane

while l ane i s not None :

704 l = len (lane . con ten t s)

indexVeh ic l e s = range (l)

706 indexVeh ic l e s . r e v e r s e ()

155

for j in i ndexVeh ic l e s :

708 i f not l ane . con ten t s [j] . extObj :

l ane . CudaInter face [4 * j + 1] /= 5

710 break

l ane = lane . getRight ()

712

def c r eat eObstac l e (s e l f , l ane = None , pos = None ,

714 dimension = 200 , c o l o r = 0 . 45) :

i f l ane i s None :

716 lane = s e l f . RightMostLane

i f pos i s None :

718 l = len (lane . con ten t s)

indexVeh ic l e s = range (l)

720 indexVeh ic l e s . r e v e r s e ()

for j in i ndexVeh ic l e s :

722 i f not l ane . con ten t s [j] . extObj :

pos = lane . con ten t s [j] . p o s i t i o n + 200

724 break

i f (pos + 2 * dimension) >= lane . l a s t f i r s t dummy . p o s i t i o n :

726 lane . l a s t f i r s t dummy . p o s i t i o n = pos + 2 * dimension + 10

lane . last second dummy . p o s i t i o n = pos + 2 * dimension + 20

728 # update the cuda i n t e r f a c e

s e l f . UpdatePosDummies ()

730 obst = ex t e rn a l (pos + dimension)

obst . ob s t a c l e (dimension , c o l o r)

732 lane . i n s e r tEx t e rn a l (obst)

734 def randObstacle (s e l f) :

i t c r ea t e s a random ob s t a c l e in f r on t o f the f i r s t v e h i c l e

736 randIndx = random . cho i c e (range (s e l f . NumLanes))

obstLane = s e l f . LeftMostLane . returnLane (randIndx)

738 s e l f . c r eat eObstac l e (obstLane)

740 def createOnRamp(s e l f , l ane = None , pos = None , emiss ionRate = None ,

k i ndD i s t r i bu t i on = None , bu f f e rCapac i ty = 100 , c o l o r =

0 . 33) :

742 i f l ane i s None :

l ane = s e l f . RightMostLane

744 l = lane . CudaNumThreads

i f pos i s None :

746 pos = cont [l − 3] . p o s i t i o n + 200

i f pos >= lane . l a s t f i r s t dummy . p o s i t i o n :

748 lane . l a s t f i r s t dummy . p o s i t i o n = pos + 1000

lane . last second dummy . p o s i t i o n = pos + 1010

750 s e l f . UpdatePosDummies ()

156

OnRamp = ex t e rn a l (pos)

752 OnRamp. onRamp(emissionRate , k indDis t r ibu t ion , buf ferCapac ity , c o l o r)

l ane . i n s e r tEx t e rn a l (OnRamp)

754

def createOffRamp (s e l f , l ane = None , pos = None , absorptionProb = None ,

756 in f lu enceRad iu s = None , bu f f e rCapac i ty = 0 , sampRate =

None ,

c o l o r = 0 . 5) :

758 i f l ane i s None :

l ane = s e l f . RightMostLane

760 l = lane . CudaNumThreads

i f pos i s None :

762 pos = cont [l − 3] . p o s i t i o n + 200

i f pos >= lane . l a s t f i r s t dummy . p o s i t i o n :

764 lane . l a s t f i r s t dummy . p o s i t i o n = pos + 1000

lane . last second dummy . p o s i t i o n = pos + 1010

766 s e l f . UpdatePosDummies ()

i f (sampRate i s not None and bu f f e rCapac i ty i s not None

768 and bu f f e rCapac i ty < sampRate) :

bu f f e rCapac i ty = sampRate

770 OffRamp = ex t e rn a l (pos)

OffRamp . offRamp (absorptionProb , in f lu enceRad iu s , bu f ferCapac ity ,

772 sampRate , c o l o r)

l ane . i n s e r tEx t e rn a l (OffRamp)

774

776 def createLoopDetector (s e l f , l ane = None , pos = None ,

in f lu enceRad iu s = 36 , c o l o r = 0) :

778 i f l ane i s None :

l ane = s e l f . RightMostLane

780 l = lane . CudaNumThreads

i f pos i s None :

782 pos = cont [l − 3] . p o s i t i o n + 200

i f pos >= lane . l a s t f i r s t dummy . p o s i t i o n :

784 lane . l a s t f i r s t dummy . p o s i t i o n = pos + 1000

lane . last second dummy . p o s i t i o n = pos + 1010

786 s e l f . UpdatePosDummies ()

loopDet = ex t e rn a l (pos)

788 loopDet . loopDetector (in f lu enceRad iu s , c o l o r)

l ane . i n s e r tEx t e rn a l (OffRamp)

790

def createOnTol l (s e l f , pos i t i on , emissionRate , k i ndD i s t r i bu t i on) :

792 lane = s e l f . LeftMostLane

while l ane i s not None :

794 s e l f . createOnRamp(lane , pos i t i on , emissionRate , k i ndD i s t r i bu t i on)

157

l ane = lane . getRight ()

796

def c r e a t eO f fTo l l (s e l f , pos i t i on , absorptionProb , in f lu enceRad iu s ,

798 buf ferCapac ity , sampRate) :

l ane = s e l f . LeftMostLane

800 while l ane i s not None :

s e l f . createOffRamp (lane , pos i t i on , absorptionProb , in f lu enceRad iu s ,

802 buf ferCapac ity , sampRate)

lane = lane . getRight ()

804

806

808 class FuzzyModule () :

def i n i t (s e l f , L ingu ist icTerms = None , Inputs = None) :

810 s e l f . L ingu ist icTerms = Lingu ist icTerms

s e l f . Inputs = Inputs

812 s e l f . SetOfRules = []

814 def AddRule (s e l f , antecendent , consequent) :

an anteceden t o f the form [[” x ” , ”A”] , [” y ” , ”B”]] means x i s A and

y i s B

816 # [” x ” , ”notA ”] means x i s not A

a consequent i s o f the form [”C”] s ince a c c e l e r a t i o n i s im p l i c i t

818 s e l f . SetOfRules . append ([antecendent , consequent])

820 def toCuda (s e l f) :

numOfRules = len (s e l f . SetOfRules)

822 numOfAntColumns = 0

AntRules = numpy. empty (0) . astype (numpy. in t32)

824 ConsRule = numpy. empty (0) . astype (numpy. in t32)

PhiFactor = numpy. empty (0) . astype (numpy. in t32)

826 for r u l e in s e l f . SetOfRules :

numOfAntColumns = max(numOfAntColumns , l en (ru l e [0]))

828 for r u l e in s e l f . SetOfRules :

ConsIndx = s e l f . L ingu ist icTerms . index (ru l e [1] [0]) + 1

830 ConsRule = numpy. hstack ((ConsRule , numpy. array ((ConsIndx)) . astype (

numpy. in t32)))

for ant in r u l e [0] :

832 i f (ant [1] . s t a r t sw i t h (”not”)) :

AntIndx = s e l f . L ingu ist icTerms . index (ant [1] [3 :]) + 1

834 VarIndx = s e l f . Inputs . index (ant [0]) + 1

AntRules = numpy. hstack ((AntRules , numpy. array ((AntIndx)) . astype

(numpy. in t32)))

158

836 AntRules = numpy. hstack ((AntRules , numpy . array ((−VarIndx)) .

astype (numpy. in t32)))

else :

838 AntIndx = s e l f . L ingu ist icTerms . index (ant [1]) + 1

VarIndx = s e l f . Inputs . index (ant [0]) + 1

840 AntRules = numpy. hstack ((AntRules , numpy . array ((AntIndx)) . astype

(numpy. in t32)))

AntRules = numpy. hstack ((AntRules , numpy . array ((VarIndx)) . astype

(numpy. in t32)))

842 for i in range (numOfAntColumns − l en (ru l e [0])) :

AntRules = numpy . hstack ((AntRules , numpy. array ((0)) . astype (numpy.

in t32)))

844 AntRules = numpy . hstack ((AntRules , numpy. array ((0)) . astype (numpy.

in t32)))

for l i n g in PhiParmeter :

846 PhiIndx = s e l f . L ingu ist icTerms . index (l i n g) + 1

PhiFactor = numpy. hstack ((PhiFactor , numpy. array ((PhiIndx)) . astype (

numpy . in t32)))

848 s e l f . CudaAntRules = AntRules

s e l f . CudaConsRules = ConsRule

850 s e l f . PhiFactor = PhiFactor

s e l f . CudaNAntColumns = numpy. array ((numOfAntColumns)) . astype (numpy.

in t32)

852 s e l f . CudaNRules = numpy. array ((numOfRules)) . astype (numpy. in t32)

854

856

”””Some u t i l i t y f unc t i on s ”””

858

def l i n (input , func t ion) :

860 # t h i s f unc t i on re turns the va l ue o f the s c a t t e r e d func t i on

l ength = len (funct ion)

862 for i in range (l ength) :

i f input < func t ion [0] [0] :

864 return 0

e l i f input > func t ion [length − 1] [0] :

866 return 0

e l i f func t ion [i] [0] <= input <= funct ion [i + 1] [0] :

868 # i t f i n d s the p o s i t i o n o f the inpu t

p o s i t i o n = i

870 break

l i n e a r approximation

872 x = funct ion [p o s i t i o n] [0]

y = funct ion [p o s i t i o n + 1] [0]

159

874 f x = funct ion [p o s i t i o n] [1]

f y = funct ion [p o s i t i o n + 1] [1]

876 i f x == y :

i f f x != f y :

878 print (’ i t i s not a funct ion ’)

else :

880 return (f x)

s l op e=(f x − f y) /(x−y)

882 return (f y + s l op e *(input−y))
884

def createRandHighway (length , numLanes , emissRate ,

886 k indDis t r ibu t ion , in fRadius , numObstacles , numRamps)

:

a simple highway random genera tor

888 i n i t i a l P o s i t i o n = 2

Str = S t r e e t (k indDis t r ibu t ion , None , numLanes)

890 Str . createOnTol l (i n i t i a l P o s i t i o n , emissRate , k i ndD i s t r i bu t i on)

13 meters o f i n f l u ence rad ius 40 cars o f b u f f e r capac i ty 40 seconds

892 # of sample ra te

Str . c r e a t eO f fTo l l (l ength + i n i t i a l P o s i t i o n , 1 , in fRadius , 100 , 10)

894 p o s i t i o n = i n i t i a l P o s i t i o n

maxSpaceOffOnRamp = 200

896 maxInflunceRadius = 30

i f numRamps i s 0 :

898 i n t e r v a l = length

else :

900 i n t e r v a l = length/numRamps

for i in range (numRamps) :

902 SpaceOffOnRamp = maxSpaceOffOnRamp * random . random ()

p o s i t i o n += random . random () * (i n t e r v a l /2) + (i n t e r v a l /2)

904 Str . createOffRamp (Str . RightMostLane , pos i t i on , random . random () ,

30 + maxInflunceRadius * random . random ())

906 Str . createOnRamp(Str . RightMostLane , p o s i t i o n + 200 + random . random () *
maxSpaceOffOnRamp , random . random () ,

908 k indD i s t r i bu t i on)

maxDimObstacle = 70

910 p o s i t i o n = i n i t i a l P o s i t i o n

i f numObstacles i s 0 :

912 i n t e r v a l = length

else :

914 i n t e r v a l = length/numObstacles

for i in range (numObstacles) :

916 dimObstacle = 30 + maxDimObstacle*random . random ()

160

p o s i t i o n += (random . random () * (i n t e r v a l /2) + (i n t e r v a l /2) +

dimObstacle)

918 choosenIndx = random . cho i c e (range (numLanes))

l ane = Str . LeftMostLane . returnLane (choosenIndx)

920 Str . c r eat eObstac l e (lane , pos i t i on , dimObstacle)

return Str

922

””” v i s u a l i z a t i o n f unc t i on s ”””

924

def draw car (car , i n d ex o f l an e , numRoadPiece , height , width , matrix ,

926 d imens ion of road , s eparat ion wid th , v i su a l s ep a r a t i on ,

one lane wid th) :

928 # the index o f the lane the l e f tmo s t i s 0

i t draws a car i n s i d e a matrix

930 p o s i t i o n = car . p o s i t i o n

k i n d o f c a r = car . kind

932 back po s i t i on = po s i t i o n − k i n d o f c a r . l ength

i f car . extObj :

934 co l o r = k i n d o f c a r . c o l o r

else :

936 co l o r = car . c o l o r

v eh i c l e w id th = one lane width −2* v i s u a l s e p a r a t i o n

938 wrap fac tor = (back po s i t i on //width)%numRoadPiece

y = (wrap fac tor * d imens ion o f road + separat ion wid th + i n d e x o f l a n e*
940 one lane wid th + v i s u a l s e p a r a t i o n)

i t c a l c u l a t e the p o s i t i o n o f the car module the border o f the screen

942 x = round (back po s i t i on%width)

i f wrap fac tor == numRoadPiece−1:

944 # the l a s t raw case

i f (x + 2 * k i n d o f c a r . l ength) <= width :

946 # i t does not go ou t s i d e the screen

for i in range (i n t (2* k i n d o f c a r . l ength)) :

948 for j in range (i n t (v eh i c l e w id th)) :

matrix [i n t (y)+j] [i n t (x)+i]= co l o r

950 else :

otherw i se draw the car one p i ece on t h i s raw and we wrapp the

r i g h t

952 # down corner wi th the l e f t up corner note t ha t the s imu la t i on has

not

c l o s ed boundaries , however f o r t h i s i s done f o r a matter o f

954 # v i s u a l i z a t i o n

for i in range (i n t (width−x)) :

956 for j in range (i n t (v eh i c l e w id th)) :

matrix [i n t (y)+j] [i n t (x)+i]= co l o r

161

958 for i in range (i n t (2* k i n d o f c a r . length −(width−x))) :

for j in range (i n t (v eh i c l e w id th)) :

960 matrix [s eparat ion wid th + i n d e x o f l a n e * one lane wid th +

v i s u a l s e p a r a t i o n + j] [i] = co l o r

962 else :

i f (x+2* k i n d o f c a r . l ength)<=width :

964 # i t does not go ou t s i d e the screen

for i in range (i n t (2* k i n d o f c a r . l ength)) :

966 for j in range (i n t (v eh i c l e w id th)) :

matrix [i n t (y)+j] [i n t (x) + i]= co l o r

968 else :

otherw i se draw the car one p i ece on t h i s raw

970 for i in range (i n t (width−x)) :

for j in range (i n t (v eh i c l e w id th)) :

972 matrix [i n t (y)+j] [i n t (x)+i]= co l o r

for i in range (i n t (2* k i n d o f c a r . l ength − (width−x))) :

974 # the o ther p i ece in the next raw

for j in range (i n t (v eh i c l e w id th)) :

976 matrix [i n t (y+d imens ion o f road)+j] [i]= co l o r

return (matrix)

978

def v i s u a l p o s i t i o n (l e f tmos t l an e , numLanes , numRoadPiece ,

980 width , he igh t) :

given a s t a t e o f the CA i t re turns an array o f the p o s i t i o n s o f the

cars

982 # to be represen ted

d imens ion o f road = he igh t //numRoadPiece

984 separat ion wid th = d imens ion o f road //4

one lane wid th = (d imens ion o f road − s eparat ion wid th) //(numLanes)

986 v i s u a l s e p a r a t i o n = one lane wid th //8

s t r e e t mat r i x = numpy. ones ((height , width)) . astype (numpy. f l o a t 3 2)

988 # i t i n i t i a l i z e s the matrix corresponding to the r ep r e s en ta t i on o f the

s t r e e t i t draws the separa t i on (in b l a c k)

990 for i in range (numRoadPiece) :

for j in range (i n t (s eparat ion wid th)) :

992 for l in range (i n t (width)) :

s t r e e t mat r i x [i * i n t (d imens ion o f road)+j] [l]=0

994 i f numRoadPiece* i n t (d imens ion o f road)+in t (separat ion wid th)<=he igh t :

for j in range (i n t (s eparat ion wid th)) :

996 for l in range (i n t (width)) :

s t r e e t mat r i x [numRoadPiece* i n t (d imens ion o f road)+j] [l] = 0

998 for i in range (numRoadPiece) :

for j in range (1 , numLanes) :

1000 for k in range (i n t (v i s u a l s e p a r a t i o n)) :

for l in range (i n t (width)) :

162

1002 s t r e e t mat r i x [i n t (d imens ion o f road) * i
+ in t (separat ion wid th) + in t (one lane wid th) * j

1004 − i n t (v i s u a l s e p a r a t i o n //2)+k] [l] = 0

lane = l e f tmo s t l a n e

1006 i n d e x o f l a n e = 0

v i su a l mat r i x = s t r e e t mat r i x

1008 while l ane != None :

for c in l ane . con ten t s :

1010 i f c . kind i s not l ane . f irst dummy . kind :

don ’ t draw the dummies

1012 v eh i c l e k i n d = c . kind

v i su a l mat r i x = draw car (c , i n d ex o f l an e , numRoadPiece , height ,

1014 width , v i sua l mat r ix , d imens ion of road ,

s eparat ion wid th , v i su a l s ep a r a t i on ,

1016 one lane wid th)

lane=lane . getRight ()

1018 i n d e x o f l a n e += 1

return (v i su a l mat r i x)

1020

glumpy 1.1

1022 def Rea l Time Visua l i za tor (s t r e e t , num of lanes , numRoadPiece ,

width , he igh t) :

1024 global time , i n i t i a l t im e , frames

time , i n i t i a l t im e , frames = 0 ,0 ,0

1026

window = glumpy .Window(width , he igh t)

1028

@window . event

1030 def on mouse press (x , y , LEFT) :

s t r e e t . s l ow in g p e r t u rba t i on ()

1032 #s t r e e t . randObstac l e ()

1034

@window . event

1036 def on i d l e (* args) :
global time , i n i t i a l t im e , frames , c l ock

1038 c lock = 0

window . c l e a r ()

1040 V = v i s u a l p o s i t i o n (s t r e e t . LeftMostLane , num of lanes , numRoadPiece ,

width , he igh t)

I = glumpy . Image (V, cmap=glumpy . colormap . Hot , vmin=0, vmax=1)

1042 I . b l i t (0 , 0 , window . width , window . he igh t)

window . draw ()

1044 time += args [0]

c l ock += args [0]

163

1046 i f Normalized :

i f c lock == 1 :

1048 s t r e e t . G loba lTrans i t i onS t re e t ()

c lock = 0

1050 frames += 1

else :

1052 s t r e e t . G loba lTrans i t i onSt re e t ()

frames += 1

1054 i f time− i n i t i a l t i m e > 5 . 0 :

fp s = f l o a t (frames) /(time−i n i t i a l t i m e)

1056 print ’FPS : %.2 f (%d frames in %.2 f seconds) ’ % (fps , frames ,

time−i n i t i a l t i m e)

1058 frames , i n i t i a l t i m e = 0 , time

window . mainloop ()

1060

1062

code = ”””

1064

#de f i n e DIMMEMBFUNC $DIM MEMB FUNC

1066 #de f i n e DIM PROPERTIES $DIM PROPERTIES

#de f i n e DIM FIRST ANT RULE $DIM FIRST ANT RULE

1068 #de f i n e DIM FIRST CONS RULE $DIM FIRST CONS RULE

#de f i n e DIM SECOND ANT RULE $DIM SECOND ANT RULE

1070 #de f i n e DIM SECOND CONS RULE $DIM SECOND CONS RULE

#de f i n e HALFNUM COLUMNS FIRST $HALFNUM COLUMNS FIRST

1072 #de f i n e HALFNUMCOLUMNSSECOND $HALFNUMCOLUMNS SECOND

#de f i n e NUM RULES FIRST $NUM RULES FIRST

1074 #de f i n e NUM RULES SECOND $NUM RULES SECOND

#de f i n e DIM PHI FACTORS $DIM PHI FACTORS

1076

1078 d e v i c e c on s t a n t f l o a t MembFunctions [DIMMEMBFUNC] ;

d e v i c e c on s t a n t f l o a t Proper t i e s [DIM PROPERTIES] ;

1080 d e v i c e c on s t a n t i n t Firs tAntRules [DIM FIRST ANT RULE] ;

d e v i c e c on s t a n t i n t Firs tConsRules [DIM FIRST CONS RULE] ;

1082 d e v i c e c on s t a n t i n t SecondAntRules [DIM SECOND ANT RULE] ;

d e v i c e c on s t a n t i n t SecondConsRules [DIM SECOND CONS RULE] ;

1084 d e v i c e c on s t a n t i n t PhiFactor [DIM PHI FACTORS] ;

1086

d e v i c e void SumPre (f l o a t Inp , f l o a t * funct ion , i n t dimension , f l o a t *
Out) {

1088 i f (Inp == 0) {

Out [0] = 0 ;

164

1090 Out [1] = 1 ;

}

1092 e l s e {

f o r (i n t i =0; i < (dimension − 1) ; ++i) {

1094 f l o a t s l o p e I nv ;

i f ((f unc t i on [i + dimension] == func t i on [i + 1 + dimension]) &&

(Inp == func t i on [i + dimension])) {

1096 Out [0] += func t i on [i + dimension] ;

Out [1] += 1;

1098 }

i f (((f unc t i on [i + 1 + dimension] < Inp) && (Inp <= func t i on [i +

dimension])) | | ((f unc t i on [i + dimension] <= Inp) && (Inp <

f unc t i on [i + 1 + dimension]))) {

1100 s l o p e I nv = (func t i on [i + 1] − f unc t i on [i]) /(f unc t i on [i + 1 +

dimension] − f unc t i on [i + dimension]) ;

Out [0] += ((func t i on [i] + (Inp − f unc t i on [i + dimension]) *
s l o p e I nv)) ;

1102 Out [1] += 1;

}

1104 }

i f (f unc t i on [dimension − 1 + dimension] == Inp) {

1106 Out [0] += func t i on [dimension − 1 + dimension] ;

Out [1] += 1;

1108 }

}

1110 } ;

1112 d e v i c e f l o a t LinEval (f l o a t Inp , f l o a t * funct ion , i n t dimension) {

f l o a t Out ;

1114 i f ((Inp < f unc t i on [0]) | | (Inp > f unc t i on [dimension − 1])) {

Out = 0;

1116 re turn Out ;

}

1118 e l s e i f (Inp == func t i on [dimension − 1]) {

Out = func t i on [dimension − 1 + dimension] ;

1120 re turn Out ;

}

1122 e l s e {

i n t x ;

1124 i n t y ;

f o r (i n t i =0; i< (dimension − 1) ; ++i) {

1126 i f ((f unc t i on [i] <= Inp) && (Inp <= func t i on [i + 1])) {

x = i ;

1128 y = i +1;

break ;

165

1130 }

} ;

1132 f l o a t f x = func t i on [x + dimension] ;

f l o a t f y = func t i on [y + dimension] ;

1134 f l o a t s l o p e ;

s l o p e = (f y − f x) /(f unc t i on [y] − f unc t i on [x]) ;

1136 Out = (f x + s l op e * (Inp − f unc t i on [x])) ;

re turn Out ;

1138 }

} ;

1140

d e v i c e f l o a t FuzzyEval (f l o a t * Inp , f l o a t *MembershipF , i n t DomDim,

i n t *AntRules , i n t *ConsRule , i n t numOfColumnsRules , i n t numberOfRules

) {

1142 f l o a t Num = 0;

f l o a t Den = 0;

1144 i n t FunctionLength = 2 * (DomDim) ;

f o r (i n t i =0; i < numberOfRules ; ++i) {

1146 i n t numOfCons = ConsRule [i] ;

f l o a t we i gh t = 1 ;

1148 f o r (i n t j =0; j < numOfColumnsRules ; ++j) {

i f (AntRules [2 * j + i * (2 * numOfColumnsRules)]

> 0) {

1150 i n t numOfFunction = AntRules [2 * j + i *
(2 * numOfColumnsRules)] ;

i n t numOfVariable = AntRules [2 * j + i *
(2 * numOfColumnsRules) + 1] ;

1152 i f (numOfVariable < 0) {

wei gh t = min(weight , abs (1 −

LinEval (Inp[−numOfVariable −

1] , (MembershipF +

numOfFunction * FunctionLength

) , DomDim))) ;

1154 }

e l s e {

1156 wei gh t = min(weight , LinEval (Inp [

numOfVariable − 1] , (

MembershipF + numOfFunction *
FunctionLength) , DomDim)) ;

}

1158 }

} ;

1160 f l o a t Out [] = {0 ,0} ;

SumPre (weight , (MembershipF + numOfCons * FunctionLength) ,

DomDim, Out) ;

166

1162 Num += (wei gh t * Out [0]) ;

Den += (we i gh t * Out [1]) ;

1164 } ;

i f (Den != 0) {

1166 re turn Num/Den ;

}

1168 e l s e {

re turn Den ;

1170 }

} ;

1172

g l o b a l vo id TransFunction (

1174 f l o a t *Rand ,

f l o a t * source ,

1176 f l o a t * output ,
i n t *NumOfThreads

1178) {

i n t DomDim = (i n t) MembFunctions [0] ;

1180 i n t KindMembOffset = (i n t) MembFunctions [1] ;

i n t KindPropOffset = (i n t) Proper t i e s [0] ;

1182 i n t t i d = threadIdx . x + b l o c k I d x . x * blockDim . x ;

f l o a t d e l t a p l u s ;

1184 f l o a t t au p l u s ;

f l o a t PerceivedFct ;

1186 f l o a t de l ta minus ;

f l o a t tau minus ;

1188 f l o a t d e l t a n e x t ;

f l o a t t au nex t ;

1190 f l o a t worstCol lTime ;

i f (t i d == 0) {

1192 output [4 * (t i d)] = source [4 * (t i d)] ;

output [4 * (t i d) + 1] = source [4 * (t i d) + 1] ;

1194 output [4 * (t i d) + 2] = source [4 * (t i d) + 2] ;

output [4 * (t i d) + 3] = source [4 * (t i d) + 3] ;

1196 }

e l s e i f ((t i d >= *NumOfThreads − 2) && (t i d < *NumOfThreads)) {

1198 output [4 * (t i d)] = source [4 * (t i d)] + source [4 * (t i d) + 1] ;

output [4 * (t i d) + 1] = source [4 * (t i d) + 1] ;

1200 output [4 * (t i d) + 2] = source [4 * (t i d) + 2] ;

output [4 * (t i d) + 3] = source [4 * (t i d) + 3] ;

1202 }

e l s e i f (t i d < *NumOfThreads) {

1204 i n t myKindIndx = (i n t) source [4 * t i d + 3] ;

i f (myKindIndx >= 0) {

1206 i n t V i s i b l eFron t Index = 1;

167

whi l e (source [4 * (t i d + Vi s i b l eFron t Index)] < 0) {

1208 Vis i b l eFron t Index += 1;

}

1210 i n t V i s i b l eNex t Index = Vi s i b l eFron t Index + 1;

wh i l e (source [4 * (t i d + Vi s i b l eNex t Index)] < 0) {

1212 Vis i b l eNex t Index += 1;

}

1214 i n t V i s i b l eBackIndex = −1;

wh i l e (source [4 * (t i d + Vi s i b l eBackIndex)] < 0) {

1216 Vis i b l eBackIndex −= 1;

}

1218 f l o a t myHalfLength = Proper t i e s [myKindIndx * KindPropOffset + 3] ;

i n t f rontKindIndx = (i n t) source [4 * (t i d + Vi s i b l eFron t Index) + 3] ;

1220 i n t nextKindIndx = (i n t) source [4 * (t i d + Vi s i b l eNex t Index) + 3] ;

i n t backKindIndx = (i n t) source [4 * (t i d + Vi s i b l eBackIndex) + 3] ;

1222 f l o a t f ron tHa l fLeng th ;

i f (f rontKindIndx < 0) {

1224 f ron tHa l fLeng th = source [4 * (t i d + Vi s i b l eFron t Index) + 2] ;

}

1226 e l s e {

f ron tHa l fLeng th = Proper t i e s [f rontKindIndx * KindPropOffset + 3] ;

1228 }

f l o a t nextHal fLength ;

1230 i f (nextKindIndx < 0) {

nextHal fLength = source [4 * (t i d + Vi s i b l eNex t Index) + 2] ;

1232 }

e l s e {

1234 nextHal fLength = Proper t i e s [nextKindIndx * KindPropOffset + 3] ;

}

1236 f l o a t backHal fLength ;

i f (backKindIndx < 0) {

1238 backHal fLength = source [4 * (t i d + Vi s i b l eBackIndex) + 2] ;

}

1240 e l s e {

backHal fLength = Proper t i e s [backKindIndx * KindPropOffset + 3] ;

1242 }

f l o a t V max = Proper t i e s [myKindIndx * KindPropOffset + 2] ;

1244 f l o a t V opt = Proper t i e s [myKindIndx * KindPropOffset + 1] ;

f l o a t MaxStress = Proper t i e s [myKindIndx * KindPropOffset + 4] ;

1246 f l o a t MinStress = Proper t i e s [myKindIndx * KindPropOffset + 5] ;

d e l t a p l u s = source [4 * (t i d + Vi s i b l eFron t Index)] − source [4 * (t i d

)] − myHalfLength − f ron tHa l fLeng th ;

1248 de l ta minus = source [4 * (t i d)] − source [4 * (t i d + Vi s i b l eBackIndex

)] − myHalfLength − backHal fLength ;

168

d e l t a n e x t = source [4 * (t i d + Vi s i b l eNex t Index)] − source [4 * (t i d)

] − myHalfLength − nextHal fLength ;

1250 i f (source [4 * (t i d) + 1] == source [4 * (t i d + Vi s i b l eFron t Index) +

1]) {

t au p l u s = 999;

1252 }

e l s e {

1254 t au p l u s = d e l t a p l u s /(source [4 * (t i d) + 1] − source [4 * (t i d +

Vi s i b l eFron t Index) + 1]) ;

}

1256 i f (source [4 * (t i d) + 2] > 0) {

f l o a t slowParameter = (MaxStress − source [4 * (t i d) + 2]) /(0 . 1 +

source [4 * (t i d) + 1]) ;

1258 i f ((t au p l u s < 0) && (source [4 * (t i d) + 2] >= (0 .5 * MaxStress)

)) {

PerceivedFct = slowParameter ;

1260 }

e l s e {

1262 PerceivedFct = min(tau p lus , slowParameter) ;

}

1264 }

e l s e {

1266 PerceivedFct = tau p l u s ;

}

1268 i f (source [4 * (t i d) + 1] == 0) {

worstCol lTime = 999;

1270 }

e l s e {

1272 worstCol lTime = d e l t a p l u s / source [4 * (t i d) + 1] ;

}

1274 i f (source [4 * (t i d + Vi s i b l eBackIndex) + 1] == source [4 * (t i d) +

1]) {

tau minus = 999;

1276 }

e l s e {

1278 tau minus = de l ta minus /(source [4 * (t i d + Vi s i b l eBackIndex) + 1]

− source [4 * (t i d) + 1]) ;

}

1280 i f (source [4 * (t i d) + 1] == source [4 * (t i d + Vi s i b l eNex t Index) +

1]) {

t au nex t = 999;

1282 }

e l s e {

1284 t au nex t = d e l t a n e x t /(source [4 * (t i d) + 1] − source [4 * (t i d +

Vi s i b l eNex t Index) + 1]) ;

169

}

1286 f l o a t F i r s t Inp [] = { de l ta minus , tau minus , d e l t a p l u s , PerceivedFct

, worstCollTime , source [4 * (t i d) + 1] } ;

f l o a t Firs tAcc = FuzzyEval (Firs tInp , (MembFunctions +

KindMembOffset * myKindIndx) , DomDim, FirstAntRules ,

FirstConsRules , HALFNUM COLUMNS FIRST, NUM RULES FIRST) ;

1288 f l o a t SecondInp [] = { de l t a nex t , t au nex t } ;

f l o a t SecondAcc = FuzzyEval (SecondInp , (MembFunctions +

KindMembOffset * myKindIndx) , DomDim, SecondAntRules ,

SecondConsRules , HALFNUMCOLUMNSSECOND, NUM RULES SECOND) ;

1290 f l o a t DecidedAcc ;

i f (Firs tAcc <= 0) {

1292 DecidedAcc = min(FirstAcc , SecondAcc) ;

}

1294 e l s e i f (SecondAcc < −0.25) {

DecidedAcc = (Firs tAcc + SecondAcc) /2;

1296 }

e l s e {

1298 DecidedAcc = FirstAcc ;

}

1300 f l o a t newVel ;

newVel = min(V max , min(max (0 . 0 , d e l t a p l u s) , max (0 . 0 , source [4 * (

t i d) + 1] + DecidedAcc))) ;

1302 output [4 * (t i d) + 1] = newVel ;

output [4 * (t i d)] = source [4 * (t i d)] + newVel ;

1304 output [4 * (t i d) + 2] = source [4 * (t i d) + 2] + (source [4 * (t i d) +

1] − V opt) * Rand [t i d] ;

output [4 * (t i d) + 3] = source [4 * (t i d) + 3] ;

1306 i f (output [4 * (t i d) + 2] > MaxStress) {

output [4 * (t i d) + 2] = MaxStress ;

1308 }

i f (output [4 * (t i d) + 2] < MinStress) {

1310 output [4 * (t i d) + 2] = MinStress ;

}

1312 i f ((MinStress /2 < output [4 * (t i d) + 2]) && (output [4 * (t i d) + 2]

< 0)) {

i f (t au p l u s < 0) {

1314 output [4 * (t i d) + 2] /= 2;

}

1316 e l s e {

f l o a t Co l l [2] ;

1318 f l o a t Dist [2] ;

Co l l [0] = LinEval (tau p lus , (MembFunctions + KindMembOffset *
myKindIndx + PhiFactor [0]) , DomDim) ;

170

1320 Col l [1] = LinEval (tau p lus , (MembFunctions + KindMembOffset *
myKindIndx + PhiFactor [1]) , DomDim) ;

Dist [0] = LinEval (d e l t a p l u s , (MembFunctions + KindMembOffset *
myKindIndx + PhiFactor [2]) , DomDim) ;

1322 Dist [1] = LinEval (d e l t a p l u s , (MembFunctions + KindMembOffset *
myKindIndx + PhiFactor [3]) , DomDim) ;

f l o a t f a c t o r = 0;

1324 f o r (i n t i =0; i <2; ++i) {

f o r (i n t j =0; j <2; ++j) {

1326 f a c t o r = max(f ac tor , min(Co l l [i] , Di s t [j])) ;

}

1328 }

output [4 * (t i d) + 2] *= (1 + f a c t o r) ;

1330 }

}

1332 }

e l s e {

1334 output [4 * (t i d)] = source [4 * (t i d)] ;

output [4 * (t i d) + 1] = source [4 * (t i d) + 1] ;

1336 output [4 * (t i d) + 2] = source [4 * (t i d) + 2] ;

output [4 * (t i d) + 3] = source [4 * (t i d) + 3] ;

1338 }

}

1340 } ;

1342 ”””

1344

1346 ### passenger v e h i c l e s

passenger = v eh i c l e s (’ passenger v e h i c l e ’ , # name

1348 0 . 0 , # co l o r

28 , # optimal v e l o c i t y

1350 36 , # max speed

2 . 0 , # leng th

1352 [[0 , 1] , [3 , 1] , [5 , 0]] , # FctVS

[[3 , 0] , [5 , 1] , [7 , 0]] , # FctS

1354 [[5 , 0] , [7 , 1] , [9 , 0]] , # FctM

[[− 1 0 0 0 0 , 1] , [− 0 . 0 0 1 , 1] , [0 , 0] , [7 , 0] , [9 , 1] , [1 0 0 0 0 , 1]] ,

FctB

1356 [[0 , 1] , [3 , 1] , [5 , 0]] , # BctVS

[[0 , 1] , [1 0 , 1] , [1 5 , 0]] , # FdVS

1358 [[1 0 , 0] , [2 5 , 1] , [4 0 , 0]] , # FdS

[[2 5 , 0] , [5 0 , 1] , [8 0 , 0]] , # FdM

1360 [[5 0 , 0] , [9 0 , 1] , [1 0 0 0 0 0 , 1]] , # FdB

171

[[0 , 1] , [5 , 1] , [1 0 , 0]] , # S back

1362 [[0 , 1] , [1 0 , 1] , [1 4 , 0]] , # S jam v e l o c i t y

[[− 0 . 3 0 , 0] , [0 , 1] , [0 . 2 0 , 0]] , # VS acc

1364 [[0 , 0] , [1 . 6 , 1] , [3 . 1 , 0]] , # PS acc

[[1 . 6 , 0] , [3 . 1 , 1] , [4 . 6 , 0]] , # PM acc

1366 [[3 . 1 , 0] , [4 . 6 , 1] , [6 . 7 , 0]] , # PB acc

[[− 5 . 0 , 0] , [− 3 . 3 , 1] , [0 , 0]] , # NS acc

1368 [[− 6 . 7 , 0] , [− 5 . 0 , 1] , [− 3 . 3 , 0]] , # NM acc

[[− 8 . 4 , 0] , [− 6 . 7 , 1] , [− 5 . 0 , 0]] , # NB acc

1370 0 .20 , # noi se

500 , # max s t r e s s

1372 −450, # min s t r e s s ,

lambda x : x , # LCRP

1374 lambda x : x) # LCLP

1376 ### p l a i n t ru c k s

long = v eh i c l e s (’ long v eh i c l e ’ , # name

1378 0 .15 , # co l o r

20 , # optimal v e l o c i t y

1380 25 , # max speed

4 . 5 , # leng th

1382 [[0 , 1] , [5 , 1] , [7 , 0]] , # FctVS

[[5 , 0] , [7 , 1] , [9 , 0]] , # FctS

1384 [[7 , 0] , [9 , 1] , [1 1 , 0]] , # FctM

[[− 1 0 0 0 0 , 1] , [− 0 . 0 0 1 , 1] , [0 , 0] , [9 , 0] , [1 1 , 1] , [1 0 0 0 0 , 1]] ,

FctB

1386 [[0 , 1] , [1 , 1] , [2 , 0]] , # BctVS

[[0 , 1] , [2 0 , 1] , [3 0 , 0]] , # FdVS f ron t

1388 [[2 0 , 0] , [4 0 , 1] , [6 0 , 0]] , # FdS f ron t

[[4 0 , 0] , [7 0 , 1] , [1 0 0 , 0]] , # FdM

1390 [[7 0 , 0] , [1 1 0 , 1] , [1 0 0 0 0 0 , 1]] , # FdB

[[0 , 1] , [5 , 1] , [1 0 , 0]] , # S back

1392 [[0 , 1] , [8 , 1] , [1 2 , 0]] , # S jam v e l o c i t y

[[− 0 . 4 0 , 0] , [0 , 1] , [0 . 1 0 , 0]] , # VS acc

1394 [[0 , 0] , [0 . 9 , 1] , [1 . 8 , 0]] , # PS acc

[[0 . 9 , 0] , [1 . 8 , 1] , [2 . 7 , 0]] , # P acc

1396 [[1 . 8 , 0] , [2 . 7 , 1] , [3 . 6 , 0]] , # PB acc

[[− 2 . 9 , 0] , [− 1 . 9 , 1] , [0 , 0]] , # NS acc

1398 [[− 3 . 9 , 0] , [− 2 . 9 , 1] , [− 1 . 9 , 0]] , # N acc

[[− 4 . 9 , 0] , [− 3 . 9 , 1] , [− 2 . 9 , 0]] , # NB acc

1400 0 .10 , # noi se

300 , # max s t r e s s

1402 −700, # min s t r e s s ,

lambda x : x , # LCRP

1404 lambda x : x **1 .25) # LCLP

172

1406

1408

PhiParmeter = [”FctVS” , ”FctS” , ”FdS” , ”FdM”]

1410 MembershipFunctions = [”FctVS” , ”FctS” , ”FctM” , ”FctB” , ”BctVS” , ”FdVS” , ”

FdS” , ”FdM” , ”FdB” ,

”BdVS” , ”VelS” , ”accZ” , ”accPS” , ”accPM” , ”accPB” ,

1412 ”accNS” , ”accNM” , ”accNB”]

Prop e r t i e s = [”optV” , ”maxV” , ” l ength ” , ”maxstress ” , ” min s t r e s s ”]

1414 F i r s t I npu t s =[” backDistance ” , ”backCollTime” ,

” f ron tD i s tance ” , ” frontCol lTime ” , ”worstCollTime ” , ” v e l o c i t y ”]

1416 FirstFuzzy = FuzzyModule(MembershipFunctions , F i r s t I npu t s)

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctB”] , [” f ron tD i s tance ” , ”FdB”] ,

1418 [” v e l o c i t y ” , ” notVelS”]] , [”accPM”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctB”] , [” f ron tD i s tance ” , ”FdM”] ,

1420 [” v e l o c i t y ” , ” notVelS”]] , [”accPS”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctB”] , [” f ron tD i s tance ” , ”FdS”]] , [

” accZ”])

1422 FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctB”] , [” f ron tD i s tance ” , ”FdVS”

]] , [”accZ”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctM”] , [” f ron tD i s tance ” , ”FdB”]] , [

” accZ”])

1424 FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctM”] , [” f ron tD i s tance ” , ”FdM”]] , [

” accZ”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctM”] , [” f ron tD i s tance ” , ”FdS”]] , [

”accNS”])

1426 FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctM”] , [” f ron tD i s tance ” , ”FdVS”

]] , [”accNS”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctS”] , [” f ron tD i s tance ” , ”FdB”]] , [

”accNM”])

1428 FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctS”] , [” f ron tD i s tance ” , ”FdM”]] , [

”accNM”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctS”] , [” f ron tD i s tance ” , ”FdS”]] , [

”accNM”])

1430 FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctS”] , [” f ron tD i s tance ” , ”FdVS”

]] , [”accNM”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctVS”] , [” f ron tD i s tance ” , ”FdB”

]] , [”accNB”])

1432 FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctVS”] , [” f ron tD i s tance ” , ”FdM”

]] , [”accNB”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctVS”] , [” f ron tD i s tance ” , ”FdS”

]] , [”accNB”])

1434 FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctVS”] , [” f ron tD i s tance ” , ”FdVS”

]] , [”accNB”])

173

FirstFuzzy . AddRule ([[”backCollTime” , ”BctVS”] , [” backDistance ” , ”BdVS”] , [

” frontCol lTime ” , ”FctB”] , [” f ron tD i s tance ” , ”FdB”]] , [”accPS”])

1436 FirstFuzzy . AddRule ([[”backCollTime” , ”BctVS”] , [” backDistance ” , ”BdVS”] , [

” frontCol lTime ” , ”FctB”] , [” f ron tD i s tance ” , ”FdM”]] , [”accPS”])

FirstFuzzy . AddRule ([[”backCollTime” , ”BctVS”] , [” backDistance ” , ”BdVS”] , [

” frontCol lTime ” , ”FctM”] , [” f ron tD i s tance ” , ”FdB”]] , [”accPS”])

1438 FirstFuzzy . AddRule ([[”backCollTime” , ”BctVS”] , [” backDistance ” , ”BdVS”] , [

” frontCol lTime ” , ”FctM”] , [” f ron tD i s tance ” , ”FdM”]] , [”accPS”])

FirstFuzzy . AddRule ([[” frontCol lTime ” , ”FctB”] , [” v e l o c i t y ” , ”VelS”]] , [”

accPB”])

1440 FirstFuzzy . AddRule ([[”worstCollTime ” , ”FctVS”] , [” f ron tD i s tance ” , ”FdVS”

]] , [”accNM”])

FirstFuzzy . AddRule ([[”worstCollTime ” , ”FctVS”] , [” f ron tD i s tance ” , ”FdS”

]] , [”accNM”])

1442 FirstFuzzy . AddRule ([[”worstCollTime ” , ”FctVS”] , [” f ron tD i s tance ” , ”FdM”

]] , [”accNS”])

1444 SecondInputs =[”NextDistance” , ”NextCollTime ”]

SecondFuzzy = FuzzyModule(MembershipFunctions , SecondInputs)

1446 SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctVS”] , [”NextDistance” , ”FdVS”

]] , [”accNB”])

SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctVS”] , [”NextDistance” , ”FdS”]] , [

”accNB”])

1448 SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctVS”] , [”NextDistance” , ”FdM”]] , [

”accNB”])

SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctVS”] , [”NextDistance” , ”FdB”]] , [

”accNM”])

1450 SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctS”] , [”NextDistance” , ”FdVS”]] , [

”accNM”])

SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctS”] , [”NextDistance” , ”FdS”]] , [”

accNM”])

1452 SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctS”] , [”NextDistance” , ”FdM”]] , [”

accNS”])

SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctS”] , [”NextDistance” , ”FdB”]] , [”

accNS”])

1454 SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctM”] , [”NextDistance” , ”FdVS”]] , [

”accNS”])

SecondFuzzy . AddRule ([[”NextCollTime ” , ”FctB”] , [”NextDistance” , ”FdVS”]] , [

”accNS”])

1456

1458 k indD i s t r i bu t i on = SetOfVeh ic l e s ([(long , 20) , (passenger , 80)])

1460 def CudaInit (code , k indDistr , FirstFuModule , SecondFuModule) :

k indDis t r . toCuda ()

174

1462 FirstFuModule . toCuda ()

SecondFuModule . toCuda ()

1464 code = s t r i n g . Template (code)

DIMMEMB FUNC = len (k indDis t r . CudaMembFunct)

1466 DIM PROPERTIES = len (k indDis t r . CudaPropert ies)

DIM FIRST ANT RULE = len (FirstFuModule . CudaAntRules)

1468 DIM FIRST CONS RULE = len (FirstFuModule . CudaConsRules)

DIM SECOND ANT RULE = len (SecondFuModule . CudaAntRules)

1470 DIM SECOND CONS RULE = len (SecondFuModule . CudaConsRules)

DIM PHI FACTORS = len (SecondFuModule . PhiFactor)

1472 HALFNUMCOLUMNS FIRST = FirstFuModule . CudaNAntColumns

HALFNUMCOLUMNS SECOND = SecondFuModule . CudaNAntColumns

1474 NUM RULES FIRST = FirstFuModule . CudaNRules

NUMRULES SECOND = SecondFuModule . CudaNRules

1476 Code = code . s u b s t i t u t e (DIMMEMB FUNC = DIMMEMB FUNC,

DIM PROPERTIES = DIM PROPERTIES,

1478 DIM FIRST ANT RULE = DIM FIRST ANT RULE,

DIM FIRST CONS RULE = DIM FIRST CONS RULE,

1480 DIM SECOND ANT RULE = DIM SECOND ANT RULE,

DIM SECOND CONS RULE = DIM SECOND CONS RULE,

1482 HALFNUMCOLUMNS FIRST = HALFNUM COLUMNS FIRST,

HALFNUMCOLUMNS SECOND = HALFNUMCOLUMNS SECOND

,

1484 NUM RULES FIRST = NUM RULES FIRST,

NUMRULES SECOND = NUMRULES SECOND,

1486 DIM PHI FACTORS = DIM PHI FACTORS)

mod = SourceModule (Code)

1488 MembFunctions = mod . g e t g l o b a l (”MembFunctions”) [0]

P rop e r t i e s = mod . g e t g l o b a l (” Prop e r t i e s ”) [0]

1490 FirstAntRules = mod . g e t g l o b a l (” FirstAntRules”) [0]

FirstConsRules = mod . g e t g l o b a l (” FirstConsRules ”) [0]

1492 SecondAntRules = mod . g e t g l o b a l (”SecondAntRules ”) [0]

SecondConsRules = mod . g e t g l o b a l (”SecondConsRules”) [0]

1494 PhiFactor = mod . g e t g l o b a l (”PhiFactor”) [0]

drv . memcpy htod (MembFunctions , k i ndD i s t r i bu t i on .CudaMembFunct)

1496 drv . memcpy htod (Proper t i e s , k i ndD i s t r i bu t i on . CudaPropert ies)

drv . memcpy htod (FirstAntRules , FirstFuModule . CudaAntRules)

1498 drv . memcpy htod (FirstConsRules , FirstFuModule . CudaConsRules)

drv . memcpy htod (SecondAntRules , SecondFuModule . CudaAntRules)

1500 drv . memcpy htod (SecondConsRules , SecondFuModule . CudaConsRules)

drv . memcpy htod (PhiFactor , SecondFuModule . PhiFactor)

1502 return mod

1504 Module = CudaInit (code , k indDis t r ibu t ion , FirstFuzzy , SecondFuzzy)

TransFunction = Module . g e t f un c t i on (”TransFunction ”)

175

1506

1508 numVeh = 5000

maxAvDistance = 20

1510 minAvDistance = 10

v min = 10

1512 v max = 15

numRoadPiece = 20 # number o f p i e c e s you want to d i v i d e the screen

1514 width = 1350 # width o f the window

he igh t = 650 # he i gh t o f the window

1516 numLanes = 3

1518

Right = lane (None , None , None , k i ndD i s t r i bu t i on)

1520 Le f t = lane (None , None , None , k i ndD i s t r i bu t i on)

LeftMost = lane (None , None , None , k i ndD i s t r i bu t i on)

1522

Right . RandomInit (k indDis t r ibu t ion , numVeh , maxAvDistance , minAvDistance ,

v min , v max)

1524 Le f t . RandomInit (k indDis t r ibu t ion , numVeh, maxAvDistance , minAvDistance ,

v min , v max)

LeftMost . RandomInit (k indDis t r ibu t ion , numVeh , maxAvDistance , minAvDistance

, v min , v max)

1526

Str = S t r e e t (k indDis t r ibu t ion , [Right , Left , LeftMost] , numLanes)

1528 #Str . createOnRamp (None , 1000 , 1 , k i ndD i s t r i bu t i on)

#Str . createOffRamp(None , 6000 , 1 , 25 , 100 , 10)

1530 #Str = createRandHighway (20000 , numLanes , 1 . 5 , k i ndD i s t r i bu t i on , 25 , 4 , 1)

#Rea l T ime Vi sua l i za tor (Str , numLanes , numRoadPiece , width , h e i g h t)

1532

1534 t0 = time . c lock ()

for i in range (1000) :

1536 Str . G loba lTrans i t i onSt r ee t ()

1538 print time . c lock () − t0

cozsim.py

176

References

[1] A.J.R. Amaya, O. Lengerke, C.A. Cosenza, M.S. Dutra, and M.J.M.

Tavera. Comparison of defuzzification methods: Automatic control of

temperature and flow inheat exchanger. Automation Control-Theory and

Practice, InTech, December 2009. 21

[2] A. Aw and M. Rascle. Resurrection of second order models of traffic

flow. SIAM Journal of Applied Mathematics, 60(3):916–938, 2000. 7

[3] M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shibata, and

Y. Sugiyama. Phenomenological study of dynamical model of traffic

flow. J. Phys. I France, 5:1389–1399, 1995. 6

[4] S.C. Benjamin, N.F. Johnson, and P.M. Hui. Cellular automata models

of traffic flow along a highway containing a junction. Journal of Physics

A: Mathematical and General, 29(12):3119–3127, 1996. 12

[5] E.R. Berlekamp, J.H. Conway, and R.K. Guy. Winning Ways for Your

Mathematical Plays II. Academic Press, NewYork, 1982. 9

[6] V. Blue, F. Bonetto, and M. Embrechts. A Cellular Automata of Vehic-

ular Self Organization and Nonlinear Speed Transitions. Transportation

Research Board Annual Meeting, Washington, DC,,), 1996. 10

[7] M. Brackstone and M. McDonald. Car-following: A historical review.

Transportation Research Part F, 2:181–196, 1999. 5, 40, 98

[8] E. Van Broekhoven and B. De Baets. Fast and accurate center of gravity

defuzzification of fuzzy system outputs defined on trapezoidal fuzzy

partitions. Fuzzy Sets and Systems, 157:904–918, 2006. 21

177

[9] E.G. Campari and G. Levi. A realistic simulation for highway traffic by

the use of cellular automata. Lecture Notes in Computer Science, 2329:763–

772, 2002. 10, 32

[10] R.E. Chandler, R. Herman, and E.W. Montroll. Traffic dynamics:

Studies in car-following. Operations Research,INFORMS, 6(2):165–184, 1958.

5

[11] G. Chen and T.T. Pham. Introduction to fuzzy sets, fuzzy logic, and

fuzzy systems. Boca Raton, FL: CRC Press, 2001. 18

[12] D. Chowdhury, L. Santen, and A. Schadschneider. Vehicular traffic:

A system of interacting particles driven far from equilibrium. Current

Science, 77(411), 1999. 31

[13] A. Clarridge and K. Salomaa. Analysis of a cellular automaton model

for car traffic with a slow-to-stop rule. Theoretical Computer Science,

411(38–39):3507–3515, 2010. 13

[14] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena. Genetic

Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowl-

edge Bases. In: Advances in Fuzzy Systems: Applications and Theory, World

Scientific, Singapore, 2001. 20

[15] J.A.M. Felippe de Souza, L. Schnitman, and T. Yoneyama. A new

Mamdani-like fuzzy structure. Proc. of the WSES Int. Conf. on Fuzzy Sets

and Fuzzy Systems, Tenerife, Canary Islands, Spain, pages 120–126, February

2001. 20

[16] S. Wolfram (Ed.). Theory and Applications of Cellular Automata. World

Scientific Press, Singapore, 1986. 9, 25

[17] H. Emmerich and E. Rank. An improved cellular automaton model for

traffic flow simulation. Physica A: Statistical and Theoretical Physics, 234(3–

4):676–686, 1997. 10

178

[18] M. Errampalli, M. Okushima, and T. Akiyama. Fuzzy logic based lane

change model for microscopic traffic flow simulation. Journal of Advanced

Computational Intelligence and Intelligent Informatics (JACIII), 12(2):172–181,

2008. 5, 40, 98

[19] M. Fukui and Y. Ishibashi. Traffic flow in 1D cellular automaton model

including cars moving with high speed. J. Phys. Soc. Japan, 65(6):1868–

1870, 1996. 10, 12

[20] M. Gardner. Mathematical games. Sci. Amer., pages 223–225, 1970–71. 9

[21] Nikolas Geroliminis and Jie Sun. Hysteresis phenomena of a macro-

scopic fundamental diagram in freeway networks. Transportation Research

Part A, 45:966–979, 2011. 92

[22] B.D. Greenshields, D.Shapiro, and E.L Ericksen. Traffic Performance

at Urban Street Intersections. Technical Report, Bureau of Highway Traffic,

Yale University, New Haven, CT, 1, 1947. 5

[23] I.D. Greenwood. A New Approach to Estimate Congestion Impacts for

Highway Evaluation-Effects on Fuel Consumption and Vehicle Emis-

sions. PhD thesis, University of Auckland, New Zealand, 2003. 35, 70, 71

[24] S.F. Hafstein, R. Chrobok, A. Pottmeier, M. Schreckenberg, and F.C.

Mazur. A high-resolution cellular automata traffic simulation model

with application in a freeway traffic information system. Computer-Aided

Civil and Infrastructure Engineering, 19(5):338–350, 2004. 54

[25] S.F. Hafstein, R. Chrobok, A. Pottmeier, J. Wahle, and M. Schreck-

enberg. Cellular automaton modeling of the autobahn traffic in North

Rhine-Westphalia. Proceedings of the 4-th MATHMOD Vienna, 4-th IMCAS

Symposium on Mathematical Modelling, ARGESIM Report no. 24, ed. I. Troch

and F. Breitenecker, Vienna, Austria, pages 1322–1331, 2003. 10, 32

[26] Dirk Helbing. Traffic and related self-driven many-particle systems.

Reviews of Modern Physics, 73:1067–1141, October 2001. 31

179

[27] R. Herman and R.B. Potts. Single lane traffic theory and experiment.

Proceedings Symposium on Theory of Traffic Flow. Ed. R. Herman, Elsevier Pub-

lications Co., pages 120–146, 1959. 5

[28] Serge P. Hoogendoorn and Piet H.L. Bovy. State-of-the-art of ve-

hicular traffic flow modelling. Proceedings of the Institution of Mechanical

Engineers, 215(1):283–303, 2001. 5

[29] J. Kari. Theory of cellular automata: A survey. Theoretical Computer

Science, 334:3–33, 2005. 23

[30] B.S. Kerner and H. Rehborn. Experimental properties of phase transi-

tions in traffic flow. Phys. Rev. Lett., 79:4030–4033, 1997. 82, 92

[31] R. Klir and B. Yuan. Fuzzy sets and fuzzy logic: Theory and applica-

tions. Prentice-Hall, PTR, Upper Saddle River, NJ, 1995. 15

[32] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. Dis-

order effects in cellular automata for two-lane traffic. Physica A: Statistical

and Theoretical Physics, 265(3–4):614–633, 1999. 9, 55

[33] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. To-

wards a realistic microscopic description of highway traffic. Journal of

Physics A, 33:477–485, 2000. 32, 85

[34] Myer Kutz. Handbook of Transportation Engineering. Myer Kutz Assoc.

Inc., pages 8.1–8.17, 2004. 77

[35] M.H. Lighthill and G.B. Whitham. On kinematic waves II: A theory

of traffic flow on long crowded roads. Proceedings of The Royal Society of

London Ser., A 229:317–345, 1955. 6

[36] S. Maerivoet and B. De Moor. Transportation Planning and Traffic

Flow Models. Katholieke Universiteit Leuven, Department of Electrical Engi-

neering ESAT-SCD (SISTA), Technical Report, 05–155, July 2005. 8

[37] S. Maerivoet and B. De Moor. Cellular automata models of road traffic.

Physics Reports, 419(1):1–64, November 2005. 6, 9

180

[38] D. Makowiec and W. Miklaszewski. Nagel-Schreckenberg model of

traffic-Study of diversity of car rules. International Conference on Com-

putational Science, 3993:256–263, 2006. 10

[39] E.H. Mamdani. Applications of fuzzy algorithm for control a simple

dynamic plant. Proceedings of the IEEE, 121(12):1585–1588, 1974. 20

[40] E.H. Mamdani and S. Assilian. An experiment in linguistic synthesis

with a fuzzy logic controller. International Journal of ManMachine Studies,

7(1):1–13, 1975. 20

[41] T. Nagatani. Self-organization and phase transition in the traffic-flow

model of a two-lane roadway. Journal of Physics A:Mathematical and General,

26:781–787, 1993. 9, 55

[42] K. Nagel. Particle hopping models and traffc flow theory. Physical Review

E, 53(5):4655–4672, 1996. 9, 10

[43] K. Nagel and M. Schreckenberg. A cellular automaton model for free-

way traffic. Journal de Physique I, 2(12):2221–2229, 1992. 10, 32, 34, 36

[44] K. Nagel, D. E. Wolf, P. Wagner, and P. Simon. Two-lane traffic rules

for cellular automata: A systematic approach. Phys. Rev. E, 58(2):1425–

1437, 1998. 9

[45] L. Neubert, L. Santen, A. Schadschneider, and M. Schreckenberg.

Single-vehicle data of highway trac: A statistical analysis. Phys. Rev. E,

60:6480–6490, 1999. 82, 85

[46] M.A. Pollatsche, A.Polus, and M. Livneh. A decision model for gap

acceptance and capacity at intersections. Transportation Research Part B,

36:649–663, 2002. 5

[47] P.Wagner. Traffic simulations using cellular automata: Comparison

with reality. Traffic and Granular Flow, World Scientific, 1996. 10

[48] Kamini Rawat, Vinod Kumar Katiyar, and Pratibha Gupta. Two-lane

traffic flow simulation model via cellular automaton. International Journal

of Vehicular Technology, 2012, 2012. 10, 32

181

[49] P.I. Richards. Shock waves on the highway. Operation Research, 4(1):42–51,

1956. 6

[50] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane

traffic simulations using cellular automata. Physica A: Statistical and The-

oretical Physics, 231(4):534–550, 1996. 9, 55

[51] M. Sasvri and J. Kertsz. Cellular automata models of single-lane traffic.

Physical Review E, 56(4):4104–4110, 1997. 10

[52] A. Schadschneider.The Nagel-Schreckenberg model revisited. Eur. Phys.

J. B, 10:573–582, 1999. 10

[53] A. Schadschneider and M. Schreckenberg. Cellular automaton models

and traffic flow. Journal of Physics A: Mathematical and General, 26:679–683,

1993. 10

[54] T. Toledo. Driving behaviour: Models and challenges. Transport Reviews,

27(1):65–84, January 2007. 5

[55] T. Toledo, C. Choudhury, and M. Ben-Akiva. A lane-changing model

with explicit target lane choice. Transportation Research Record, 1934:157–

165, 2005. 5

[56] J. von Neumann. The general and logical theory of automata. In: Cerebral

Mechanisms in Behavior: The Hixon Symposium, L. A. Jeffress (Ed.), New York,

pages 1–41, 1948. 8

[57] P. Wagner, K. Nagel, and D.E. Wolf. Realistic multi-lane traffic rules

for cellular automata. Physica A: Statistical and Theoretical Physics, 234(3–

4):687–698, 1997. 9

[58] L. Wang, B.H. Wang, and B. Hu. Cellular automaton traffic flow model

between the Fukui-Ishibashi and Nagel-Schreckenberg models. Physical

Review E, 63(5):056117, 2001. 12

[59] Dietrich E. Wolf. Cellular automata for traffic simulations. Physica A,

263:438–451, 1999. 6, 31, 85

182

[60] S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys.,

55:601–644, 1983. 9, 25

[61] S. Wolfram. A New Kind of Science. Wolfram Media, Inc., 2002. 9, 10

[62] L.A. Zadeh. Fuzzy sets. Informations and Control, 8:338–353, 1965. 15

[63] L.A. Zadeh. Fuzzy logic. IEEE Computing Magazine, 21(4):83–93, 1988. 21

[64] M. Zamith, R.C.P. Leal-Toledo, M. Kischinhevsky, E. Clua,

D. Brando, A. Montenegro, and E.B. Lima. A probabilistic cellular

automata model for highway traffic simulation. Procedia Computer Sci-

ence, 1:337–345, 2010. 10

[65] H.M. Zhang. A non-equilibrium traffic model devoid of gas-like behavior.

Transportation Research Part B, 36:275–290, 2002. 7

183

	Title Page-letter
	Dedication-letter
	thesis
	List of Figures
	1 Introduction
	1.1 Research Motivation and Objectives
	1.2 Outline of the Dissertation

	2 The State of the Art
	2.1 Overview of Traffic Flow Models
	2.2 Cellular Automata Traffic Flow Models in Literature
	2.2.1 Deterministic Models
	2.2.2 Stochastic Models

	3 Preliminaries
	3.1 Fuzzy Logic and Fuzzy Systems
	3.1.1 Fuzzy Logic and Fuzzy Sets
	3.1.2 Fuzzy System Modeling

	3.2 Cellular Automata
	3.2.1 Some Basic Definitions
	3.2.2 First CA Traffic Model Example: The Wolfram 184 Model
	3.2.3 Second CA Traffic Model Example: The NaSch Model

	4 A New Approach to Single-Lane CA Traffic Models via CCA
	4.1 Introduction: Why a Different Model
	4.2 Description of the Model
	4.3 Fuzzy Decision Modules
	4.3.1 Fuzzifier
	4.3.2 Fuzzy Inference
	4.3.3 Defuzzification

	5 A Multi-Lane Stochastic CCA Traffic Model
	5.1 The Update of Stress and the Desire of Lane-Changing
	5.2 The Lane-Changing Process
	5.3 Description of the Multi-Lane Model

	6 Simulation and Results
	6.1 The Simulator ozsim
	6.2 Setting the Kinds of Vehicles
	6.3 The Experiment Scenarios
	6.4 Analysis of the Experimental Results

	7 Conclusion and Future Work
	Appendices
	A The Python Code of the Simulator
	B The Implementation with PyCuda
	B.1 Cuda and PyCuda: An Overview
	B.2 PyCuda Code of the Simulator

	References

