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Abstract

The validation of novel Earth observations from satellite borne sensors is
an actual and important issue for the scientific community. The exploita-
tion of the large amount of data coming from space requires their accuracy
assessment by comparison with well consolidated satellite or ground based
techniques. This is the case of the SAR products, different either for the kind
of sensors used or for the mission characteristics or for the kind of data and
data processing.
This thesis collects the results obtained in the framework of two different
projects both funded by the Italian Space Agency in tackling the above
problem. In the first case data come from the ENVISAT satellite mission,
and the products under analysis are DInSAR time series of deformations, in
the second case data come from the COSMO-SkyMed satellite mission and
the products are radargrammetry digital surface models, DSMs.
The focus of the work is on the comparison strategies rather than on the
validation results themselves. In order to make different observations of
a same phenomenon comparable, they have to be transformed, very often
predicted in space and time, thus introducing errors. Of course it is possible
to design validation campaigns in such a way to avoid as much as possible a
subsequent data manipulation (for instance making reference observations in
the same place and simultaneously with respect to those under evaluation)
but very often already existent datasets are used and the way to compare
them is to be defined.
A general formulation of the problem would be that of finding the transfor-
mation which minimize those errors. This approach was initially pursued
by giving a stochastic interpretation to the observations and invoking as
optimality principle that of minimizing the variance of prediction errors. The
solution found, however, requires an observations behaviour that is not obeyed
in the actual world unless some data pre-processing is applied. Different ad
hoc solutions were therefore adopted and a-posteriori compared. The question
is still open, but some key elements have been pointed out.
This dissertation reflects in part the way we approached the problem: a general
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introduction is given on stochastic fields modelling as well as on collocation
and kriging prediction techniques and a general optimal validation procedure
is presented. Then the two real cases we dealt with within MORFEO and
COSMO-SkyMed are presented, each in a different part of the manuscript.
After recalling the techniques used in the former case to monitor landslide
deformations and in the latter to produce digital surface models, the data han-
dling is described. The strategies adopted are then introduced and compared
by using a reference DSM as benchmark. Finally the results are reported
both in terms of evaluating strategies and in terms of validation results.

More precisely, within the ASI MORFEO project the main goal was to find a
procedure to validate deformation time series obtained using two DInSAR
algorithms (SBAS developed by the IREA of Naples and SPINUA developed
by Politecnico of Bari). The validation was done making a local comparison
of LOS deformation values and LOS deformation velocities between SBAS
and SPINUA time series themselves, and between independent time series
derived from GPS observations on the landslide of Ivancich (Assisi, central
Italy). This study area was selected because already monitored by SAR and
GPS from several years. The comparison was performed at a local level since
the deformation field irregularity makes the spatial-temporal prediction error
so high to compromise the result of the validation itself. More precisely,
the deformation velocity of each GPS point was compared with the velocity
of the three nearest SAR permanent scatterers and the cross-comparison
between SBAS and SPINUA was done per areas of homogeneous deformation
behaviour, testing the equality between the mean deformation velocities of
the two datasets.
One of the limit of the comparison procedure is in the GPS dataset used as
truth: it revealed to have a too poor accuracy for the validation purpose.
It would be necessary to: select GPS stations in areas with high density of
permanent scatterers, and recognized to be zones of homogeneous deformation
behaviour (GPS permanent stations would be preferable), locate SAR corner
reflectors near GPS stations to avoid additional interpolation errors, make
more measurement campaigns with sessions longer than 24 hours in order to
obtain very accurate coordinate estimates (few millimeters).
Regarding SPINUA and SBAS cross-comparison, statistical tests on mean
velocities in areas with homogeneous behaviour show that the two algorithms,
when applied to the same image dataset and after a planimetric bias correction
see a statistically equal deformation movement.

To what concern height fields, namely the COSMO-SkyMed project, the
purpose was to find a methodology to validate and merge together different
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DSMs of comparable accuracy; the work was performed on a test area located
near the city of Como on ASTER and SRTM height models, used as test fields,
in view to be applied to COSMO-SkyMed products initially not available to
the project.
The validation was performed in two ways always on the grid of the DSM
under analysis: an internal validation permits to identify and remove outliers
on the base of their statistical behaviour with respect to their neighbours;
both the model resulted to have a very low percentage of outliers (lower then
1%). After that, an external validation procedure was defined; it consists
in a proper comparison with a higher precision DSM taken as reference, in
this case it has been considered a LiDAR DSM. The estimated accuracies of
ASTER and SRTM agreed with those found in literature.
Subsequently, different methodologies for merging different DSMs, with com-
parable accuracy and resolution, were tested. In particular, a generalized
collocation procedure to make predictions of the height field or of its linear
functional from different functionals of the field itself was implemented. This
technique was applied to merge the point-wise ASTER DSM with 30m reso-
lution and the average SRTM DSM with 90m resolution either to produce an
average DSM on the SRTM grid or a point-wise DSM on the ASTER grid.
The final DSM is as or more accurate than the original one. However this
strategy is strongly penalized by the empirical estimation of the covariance
function as well as by data managing problems. One has always to select
areas with a homogeneous behaviour, to be treated separately. This choice is
quite arbitrary and heavy.
Merging strategies based on morphology dependent weighted average between
height values referred to a same grid were finally adopted, as they prove to
be more efficient than weighted average based on global constant weights.
Once the products of COSMO-SkyMed were made available within the project,
the procedure to validate and merge different datasets were partially applied
to create a DSM starting from sparse point coordinates, computed applying
radargrammetry to ascending and descending COSMO-SkyMed stereo-pairs
in two test areas near the city of Como (northern Italy).
The results showed that applying the radargrammetric approach to COSMO
SkyMed Spotlight images is worthy; DSMs with an accuracy of about 7-8m
with a resolution of 5m x 5m can be obtained. These DSMs could be used to
improve and detail the SRTM DSM, freely available all over the world; to
this aim the developed generalized collocation technique could represent an
useful tool.
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Introduction

This dissertation reports the work done by the author within two projects:
MORFEO and COSMO-SkyMed.
MORFEO (the acronym stands for “MOnitoraggio del Rischio da Frana
utilizzando dati EO” that in English is “Monitoring land slide risk exploiting
Earth observation technology”) was a project financed by the Italian Space
Agency (ASI) which lasted three years and ended in November 2010. The
goal of the project was the integration of traditional field information with
satellite data to increase the capability of mapping, monitoring and forecasting
landslide events (ASI [2011], Guzzetti et al. [2009a]). In particular, our group
had to tackle the problem of validation of deformation time series obtained
from SAR-ENVISAT images with independent GNSS data.
COSMO-SkyMed (ASI [2007]) is a project, financed by ASI, which exploits
data coming from four satellites (the last one was launched on November
6th, 2010) equipped with high resolution SAR sensors operating in X band
and endowed with innovative and flexible data acquisition and transmission
systems; new digital terrain models and deformation maps will be produced
both at regional and local scale from those data. Within this project our
group had to validate the new digital terrain models against ones with higher
accuracy and resolution and eventually merge them to obtain an improved
model.

A mathematical interpretation of the two problems is the following: the same
field is observed by two different techniques, at different times, in different
positions, with different accuracies. How can we use one observation set
to validate the other one, namely to say that this latter is observing the
same field of the former one? Deterministic and random fields theory can be
exploited to make predictions of the common field from the two datasets in
such a way to make them comparable. Statistical tests will be then applied
to the validation purposes.

We studied this validation problem both on a theoretical basis, by assuming to
deal with a homogeneous and isotropic random field, and on a more practical
way, by taking into account the peculiar nature of the available datasets.
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This thesis begins with an introductory overview on fields with an emphasis
on their stochastic modelling (Chapter 1). We then come to the particular
cases of the MORFEO (Part I) and the COSMO-SkyMed (Part II) projects,
the first related to a deformation field, the second to an height one. In
both cases, we firstly describe the data nature: the characteristics of the
considered field and the kind of observations used in the comparison and then
the procedures applied to the validation purposes.
This dissertation is organized as follows.
Chapter 1 reports an introduction about fields and the way they are de-
scribed. This Chapter also includes a part dedicated to the description of
predictors and in particular to collocation and kriging. Prediction is an impor-
tant element because to compare two datasets it is necessary they refer to the
same time-spatial position. In Chapter 2 the work carried out within the
MORFEO project is described. Appendix A describes an optimal validation
technique developed within this project.
With Chapter 3 begins the second part of the thesis devoted to the work
done within the COSMO-SkyMed project. This Chapter reports an overview
regarding Digital Elevation Models, the techniques used to acquire data and
a description of the available DSMs in the study area. Chapter 4 illustrates
the developed validation procedure while Chapter 5 the problem of fusion
of different DSMs. Chapter 6 is dedicated to the study of DSMs from
radargrammetry and in particular to the methods that can be used to create
DSMs starting from sparse point height information.
Conclusions will end this document.
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Chapter 1

Fields

In this Chapter some basic notations regarding fields are introduced. The
validation and fusion problems we have to face are in fact solved by exploiting
the fields theory. The same field is observed in different ways, and field
prediction and transformation techniques are needed to derive comparable
values. The emphasis is here on the stochastic field theory because it is useful
to better understand most of the data processing. In Section 1.1 a general
reasoning on how to model a field is described. It follows a focus on the
problem of predicting the stochastic part of a field: Section 1.2 reports some
basic theory, Section 1.3 illustrates the Wiener-Kolmogorov principle, Section
1.4 and Section 1.5 describe collocation and kriging which apply this principle.

1.1 The prediction problem

Natural fields are often subjected to not perfectly known laws and their
geometric and material structure is usually variable in a way that cannot be
precisely defined. As a result, even a very detailed and precise knowledge of
the field F (t) at many points t1, . . . , tM will leave room for an unpredictable
variation when moving to a new point t.
Therefore, very much as in statistics, an empirical approach has to be adopted
trying to learn from observations how the field F (t) behaves and use this
information to make predictions.
Let us start with a classification of possible components of F (t) which can be
useful to the empirical analysis of its observations.
Assuming that the domain D, on which the observations are given, has a
diameter ∆ defined as:

∆ = max
t1t2∈D

|t2 − t1| (1.1)
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where |t2 − t1| can be the Euclidean distance between two points but also a
different distance.
Assume further that the observations are given at M points ti, i = 1, 2, . . . ,M
with a mean distance d̄ defined as:

d̄ =
1

M

M∑
i=1

|ti − tn(i)| (1.2)

where tn(i) is the nearest neighbour of ti such that:

|ti − tn(i)| ≤ |ti − tj| ∀j 6= i (1.3)

The field F (t) can be in general split into four components:

F (t) = T (t) + P (t) +R (t) + S (t) (1.4)

T (t) is the trend component and it represents a significant variation of F (t)
on the scale of ∆. Typically T (t) is represented by a polynomial of some
order p.
P (t) is the periodic component, on scales comparable to ∆. This component
can be represented by means of a Fourier basis up to some maximum frequency
N.
The regional component R (t) represents localized effects, with a resolution
that can be around 1

10
∆. It is typically reconstructed by combining splines,

i.e. functions with limited support, translated to the centres of a regular grid.
So T (t), P (t) and R (t) represent the deterministic part of the field while
S(t) is the stochastic or random component of F (t).
S(t) is considered as a sample from a random function defined by some
probability distribution on a suitable space containing all the possible signals
S(t).
A prediction theory is developed on the basis of simple hypotheses regarding
the stochastic behaviour of the field as presented in Section 1.3. Of course
representation 1.4 does not apply to all cases. There might be cases in
which one or more components are not present, or where there is no clear-cut
separation between one and the other. Therefore a parsimony criterion has
to be followed in constructing the empirical model: a simpler model is always
preferable to a richer one even if it leaves larger residuals. Furthermore it is
convenient to follow a stepwise strategy, where one component at a time is
estimated via least squares, and the residuals of this estimation are considered
as new observations where the next component has to be sought. Here we
focus our attention on the description of the stochastic part of the field and
on the methods available to make a prediction of the random field at any
point t; they will be recalled frequently in this thesis.
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1.2 Basic definitions and notations

1.2.1 Random functions

Let T be a subset of <n(n = 1, 2, 3, . . . ) and Ω be an event space endowed
with a probability distribution P; a function u defined on T ⊗ Ω, i.e. u(t, ω),
with t ∈ T and ω ∈ Ω, is a random function.
It can have two interpretations.
In the first case, for each sample value ω, u(t, ω) is a function belonging to
some space U . Take any set V ⊂ U such that

AV ≡ {ω, u(t, ω) ∈ V } (1.5)

is an event, i.e. a set of which we know P (AV ), then put

PU(V ) = P (AV ). (1.6)

If we extend PU to the (minimal) σ-algebra containing all {V } of the form
(1.5), we induce on U a probability distribution and we can view {u(t, ω)} as
a stochastic variable with values in U .
The particular u(t, ω̄) for a given ω̄ ∈ Ω is called a realization of the random
function. This can be considered as a sample value in U of the random
variable {u(t, ω)}.
In the second case, we consider for each value of the parameter t the function
u(t, ω) as a random variable, so that all together {u(t, ω)} represents a family
of random variables.
When T is a finite set, we can always conventionally put

T ≡ {t1 = 1, t2 = 2, . . . , tN = N} (1.7)

and then we have a collection of N random variables u = [u1, u2, . . . , uN ]+

which is completely described, in a probabilistic sense, by a joint distribution
function

P (u1 ≤ a1, u2 ≤ a2, . . . , uN ≤ aN) = Fu(a1, a2, . . . , aN). (1.8)

When T is infinite, we distinguish between two cases: T is discrete (e.g.
T ≡ 1, 2, . . .) or T has the power of continuum (e.g. T ≡ [0, 1] or
T ≡ <n . . . ); in the former case we say that the random function is discrete,
in the latter that it is continuous.
In this last case we have to identify a tool to represent the probability
distribution of {u(t, ω)}. This is usually done by specifying a sequence
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of distributions, called finite dimensional distribution of the random
function {u(t, ω)}, defined as

F (t1, . . . , tN ; a1, . . . , aN) = P {u(t1, ω) ≤ a1, . . . , u(tN , ω) ≤ aN} (1.9)

for ∀N > 0 and, given N, for every N-tuple (t1, t2, . . . , tN).
It is by means of a theorem by Kolmogorov, that we know when we can use
a sequence

FN(tN , aN) (1.10)

where tN = [t1, t2, . . . , tN ]+ and aN = [a1, t2, . . . , aN ]+, to build a true prob-
ability distribution on the space of all functions defined on T,FT .
An example, where the full sequence of FN(tN , aN) is specified, is given by
means of a so called gaussian family, i.e. a family of gaussian distributions:

uN =


u(t1, ω)
u(t2, ω)

...
u(tN , ω)

 ≈ N [ū, Cu,u] (1.11)

where

ū =


ū(t1)
ū(t1)

...
ū(tN)

 (1.12)

and

Cuu =


C(t1, t1) C(t1, t2) · · · C(t1, tN)

... C(t2, t2) · · · C(t2, tN)

... · · · . . .
...

... · · · · · · C(tN , tN)

 (1.13)

In the above definition we must have indeed

ū(t) = E {u(t, ω)} (1.14)

and
C(t, t′) = E {[u(t, ω)− ū(t)] [u(t′, ω)− ū(t′)]} (1.15)

Since we know that the marginal distribution of a gaussian variate is again
gaussian, we have only to be sure that the function C(t, t′) (also called
the covariance function) used to construct the matrices (1.13) is always



1.2. Basic definitions and notations 5

symmetric and positive definite.
These properties are guaranteed if C(t, t′) = C(t′, t) and for instance

C(t, t′) =
+∞∑
n=1

cnϕn(t)ϕn(t′) (1.16)

with cn > 0 and {ϕn(t)} any sequence of smooth functions.
In such a case in fact the quadratic form

N∑
i,k=1

λiλkC(ti, tk) =
+∞∑
n=1

cn

N∑
i,k=1

ϕn(ti)ϕn(tk)λiλk =
+∞∑
n=1

cn

[
N∑
k=1

ϕn(tk)λk

]2

> 0

(1.17)
is always positive definite, as it should be.
When T is all of <1, or a subset of it, and we think of t as a “time” variable,
we say that {u(t, ω)} is a stochastic process; when T is <2 (or a subset)
or a surface (e.g a sphere), we say that {u(t, ω)} is a random field(R.F.).
In this dissertation we will refer to deformation and height random fields.

1.2.2 Moments

The average or first moment of the R.F. {u(t, ω)} is the function defined on T

ū(t) = E {u(t, ω)} (1.18)

The R.F. {u(t, ω)} is said to be centred if ū(t) = 0. If {u(t, ω)} is not centred,
however, as it is obvious, the R.F. {u(t, ω)} − ū(t) is.
We call simple moments of order N of the R.F., the functions defined on
TN ,

MN(t1 t2 . . . tN) = E {u(t1, ω)u(t2, ω) . . . u(tN , ω)} (1.19)

We call central moments of order N of {u(t, ω)} the functions

MN(t1 t2 . . . tN) = E {[u(t1, ω)− ū(t1)][u(t2, ω)− ū(t2)] . . . [u(tN , ω)− ū(tN)]}
(1.20)

Among the central moments, it is of paramount importance the central
moment of order 2, also called covariance function

C(t1, t2) = M2(t1, t2) = E {[u(t1, ω)− ū(t1)] [u(t2, ω)− ū(t2)]} =
E {u(t1, ω)u(t2, ω)} − ū(t1)ū(t2)

(1.21)

We note, by taking t1 = t2 = t in (1.21), that the variance of the process is
given by

σ2[u(t, ω)] = C(t, t) (1.22)
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which implies that C(t, t) has to be always positive.
The notion of covariance function is so important that it raises the question
on whether some given C(t1, t2) can be considered as the covariance function
of some R.F.; i.e. we want to characterize the family of all covariance
functions.
To this aim the following lemma is providing a first idea.
C(t1, t2) is a covariance function if and only if it is a positive definite function,
i.e., given by any N-tuple (t1, t2, . . . tN) and ∀N , the matrix

CN = {C(ti, tk)} i, k = 1, 2, . . . , N (1.23)

is a covariance matrix (i.e. symmetric and positive definite).

1.2.3 Homogeneous and isotropic random fields

A random field is said to be strongly homogeneous if all shifted fields
{vτ (t, ω) = u(t+ τ, ω)} have the same probability distributions as {u(t, ω)}
∀τ ∈ T .
This essentially means that ∀N, ∀t1, t2, . . . , tN the vector

[u(t1 + τ, ω) . . . u(tN + τ, ω)]+ (1.24)

has the same distribution as the vector [u(t1, ω) . . . u(tN , ω)]+, irrespectively
of the value of τ . We notice that such a concept can indeed be applied only on
condition that the domain T is invariant under translation, i.e., T is <1,<2,
etc. A field is said to be isotropic when it is uniform in all orientations.
It can be useful to remark that the concept of homogeneity translates the
property that, whatever window of size L×L we open on u(t, ω), we expect to
find in it a statistically similar behaviour. Therefore if we take any particular
function u0(t) and we ask ourselves if it can be considered as a sample drawn
from a homogeneous R.F., at first we should see whether there are features
in one part of u0(t) which are significantly different from those contained into
another part.
Let us now turn to the characterization of the moments of a homogeneous
R.F.
If {u(t, ω)} is homogeneous, then

ū(t) = E {u(t, ω)} = ū (constant) (1.25)

C(t1, t2) = E {[u(t1, ω)− ū][u(t2, ω)− ū]} = C(t1 − t2) (1.26)
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Taking τ = −t, since {u(t, ω)} and {u(t+ τ, ω)} ≡ {u(0, ω)} must have the
same distribution, we immediately see that

E {u(t, ω)} = E {u(0, ω)} , ∀t (1.27)

i.e (1.25) holds true.
The vectors [{u(t1, ω)} , {u(t2, ω)}]+ and [{u(t1 + τ, ω)}, {u(t2 + τ, ω)}]+ must
also have the same distribution, and in particular, putting τ = −t1, they
must have the same distribution as [u(0, ω), u(t2 − t1, ω)].
Accordingly

C(t1, t2) = E {[u(t1, ω)− ū] [u(t2, ω)− ū]} =
= E {[u(0, ω)− ū] [u(t2 − t1, ω)− ū]} = C(t1 − t2)

(1.28)

which proves (1.26).
It is useful to notice that, by taking t2 = t1 = t, we can claim that

σ2 [u(t, ω)] = E
{

[u(t, ω)− ū]2
}

= C(0) (1.29)

which we already know since all {u(t, ω)} have the same distribution, ∀t.
A R.F. {u(t, ω)} is said to be weakly homogeneous, or homogeneous up
to the second order, if (1.25) and (1.26) hold.
Nevertheless (1.25) and (1.26) are not enough to say that {u(t, ω)} is homo-
geneous, in fact they do not even imply that the distributions of the first and
second order F (t1; a1), F (t1, t2; a1, a2) are shift-invariant.
Thus, strong homogeneity does imply weak homogeneity, while the vice-versa
is not true in general.
Nevertheless, due to the particular form of their distribution functions, for
gaussian R.F., it is true that (1.25), (1.26) imply strong homogeneity.
Without entering in the details (more in Reguzzoni and Venuti [2011]), some
properties about the covariance function are reported.
If C(τ) is a covariance function of a homogeneous R.F., it has to be an even
function

C(−τ) = C(τ) (1.30)

C(τ) is a covariance function (of a homogeneous R.F.) only if

|C(τ)| ≤ C(0) (1.31)

In particular (1.31) shows that a covariance function is always bounded
outside the origin and that it can only be unbounded if the R.F. has not a
finite variance.
To be specific, in what follows, we consider random fields with finite variances
everywhere, so that C(0) is always finite and C(τ) is always absolutely
bounded.
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1.3 Wiener-Kolmogorov predictors

The following theory aims at solving the first basic problem of predicting
the value of a R.F. u(t) at any point t, from a set of scattered noisy data Yi
sampled from u(t). It is assumed that:

1. u(t) is a HIRF (Homogeneous Isotropic Random Field) on T = <1,<2, . . . ;

2. E {u(t)} = 0 on T ;

3. E {u (t)u (t+ τ)} = C (|τ |) known, where τ represents the distance
between the points t and t+ τ ;

4. Yi = u (ti) + νi with i = 1, 2, . . . , N observations;

5. E {u (ti) νk} = 0, ∀i, k;

6. νi is white noise that means:

E {νi} = 0 E {νiνk} = σ2
νδik (1.32)

The objective is to build a predictor of the R.F. based on the observables
{Yi} and the variance of its estimation error. Where:

• û (t) = G (t;Yi, . . . , YN) is the predictor;

• e (t) = û (t)− u (t) is the pointwise estimation error;

• E2 (G) = E {e2 (t)}, is the mean square estimation error (m.s.e.e.).

In order to have a good predictor, it is natural to try to choose a predictor G
in some class G, in such a way that the m.s.e.e. is as small as possible; this is
known as the Wiener Kolmogorov (W.K.) principle 1.
In the following W.K. principle is illustrated.
Choose the optimal predictor û (t) = G (t;Yi, . . . , YN) such that:

û (t) = argmin
G∈G
E2. (1.33)

Written in this way the problem is purely finite dimensional and its solution
depends entirely on what is assumed to be known of the composite N + 1
dimensional R.V.

1Note that N. Wiener and A. Kolmogorov developed this theory in a quite independent
way and along different lines of thought.
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V =

[
u (t)
Y

]
(1.34)

Y =

 Yi...
YN

 (1.35)

If, for instance, the full probability distribution of vector V is known, a
theorem of elementary probability theory can provide a quite general answer
to the problem as illustrated in the following.
Define G as the L2

Y class, namely the class of those measurable functions
G (Y ) such that:

E
{
G (Y )2} < +∞ (1.36)

then the solution of the W.K. problem is given by

û (t) = E {u (t) |Y } = u (t) |Y , (1.37)

i.e. the conditional average u (t) given the observables, minimizes the m.s.e.e.
In this case the corresponding m.s.e.e. is given by

E2 ≡ E
{

[u (t)− u (t)]2 |Y
}

(1.38)

The proof of this theorem can be found in Papoulis [1991]; it can be noticed
that in order to compute û (t), the conditional distribution of u (t) given Y
should be known, meaning that the distribution of the whole vector V should
be known.
Nevertheless there is a notable exception for which the predictor can be
computed with the information given in hypothesis 1 to 6. This is when
V is a Gaussian variable; in this case it is known that the average of û(t)
given Y is just a linear function of Y and a homogeneous function, since both
E {u (t)} = 0 and E {Y } = 0; as a matter of fact this means that there is a
constant vector λ such that:

û (t) = u (t) |Y = λ+Y (1.39)

In other words, the class of admissible estimators is limited to the class of
Homogeneous Linear Functions, namely

GL ≡
{
G (Y ) = λ+Y , λ ∈ <N

}
(1.40)

The solution of the W.K. principle in the class GL is given by
û (t) = λ+Y
CY Y = Cuu(t)

CY Y = Cuu + σ2
νI

(1.41)
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where:

u =

u (t1)
...

u (tN)

 (1.42)

Cuu = E
{
uut
}

=

C (0) · · · C (t1 − tN)
...

. . .
...

... · · · C (0)

 (1.43)

Cuu(t) = E {uu (t)} =

C (t− t1)
...

C (t− tN)

 = Ct
u(t)u (1.44)

In addition the m.s.e.e. in GL (1.40) is given by:

E2 ≡ E
{[
u (t)− λ+Y

]2}
= C (0)− Cu(t)uCY YCuu(t) (1.45)

In the following two W.K. predictors are presented: collocation and kriging.
The former assumes that the signal has a zero mean, the latter provides an
unbiased estimate when the signal has an unknown constant mean.

1.4 Collocation

Assume that the observations (Y0) are sampled from a random field and they
are composed by signal (s) plus noise (ν):

Y0(ti) = s(ti) + ν(ti) i = 1, 2, ..., N (1.46)

with the following stochastic features:

• E [s (ti)] = E [ν (ti)] = 0 ∀ti

• E [s (ti) s (tj)] = Cs (ti, tj) = signal covariance function

• E [ν (ti) ν (tj)] = Cν (ti, tj) = σ2
νδij; noise covariance function, with

δij =

{
1 i = j
0 i 6= j

The aim is to estimate the signal value in t0 by using a linear combination of
the available observations:
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ŝ (t0) =
∑
i

λiY0i = λ+Y 0 (1.47)

To determine the combination weights λ, the Wiener-Kolmogorov principle is
invoked:

E
{

[s(t0)− ŝ(t0)]2
}

= min
λ.

(1.48)

Namely the mean square estimation error should be minimized. The result of
the minimization is:

ŝ(t0) = C+
SS0

(CSS + Cνν)
−1 Y 0 (1.49)

where:

CSS0 =


CS(t1, t0)
CS(t2, t0)

. . .
CS(tN , t0)

 (1.50)

CSS =


CS (t1, t1) CS (t1, t2) . . . (t1, tN)
CS (t2, t1) CS (t2, t2) . . . (t2, tN)

... . . .
. . .

...
CS(tN , t1) . . . . . . CS(tN , tN)

 (1.51)

Cνν =


σ2
ν 0 0 0

0 σ2
ν 0

...

0 0
. . .

...
... · · · · · · σ2

ν

 = σ2
νI (1.52)

with N the number of available observations.
If t0 is an observation point the procedure is indicated as “filtering” because
it permits to separate the signal from the noise; if t0 is not an observation
point it is called “prediction”.
The estimation error is the difference between the true signal and the estimated
signal:

e (t0) = s (t0)− ŝ(t0) (1.53)

Since the true signal is unknown, just an estimate of the error variance can
be done and it is evaluated as:

E2 (t0) = σ2 {e (t0)} = CS (t0, t0)− C+
SS0

(CSS + Cνν)
−1CSS0 (1.54)
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It can be said that, in general, the signal covariance matrix is a symmetric
matrix as follows:

CSS =


CS (t1, t1) CS (t1, t2) CS (t1, t3)

...
... CS (t2, t2) CS (t2, t3)

...
... · · · . . .

...
... · · · · · · CS (tN , tN)

 (1.55)

and in case data are assumed to be extracted from an homogeneous field,

• E [s (t)] = constant, that is verified because E [s (t)] = 0;

• E [s (ti) s (tj)] = CS (ti, tj) = CS (|ti − tj|).
Finally, if the data are regularly distributed (grid points), the signal covariance
matrix is a Toeplitz matrix (where ∆ is the grid step).

CSS =

CS (0) CS (∆) CS (2∆)
... CS (0) CS (∆)
... · · · CS (0)

 (1.56)

1.4.1 Covariance function estimation

The procedure consists into three steps:

1. Empirical covariance function estimation assuming that the nD random
field is homogeneous and isotropic (Section 1.2.3).

Figure 1.1: Empirical covariance.
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2. Covariance function interpolation using a positive definite model. Pos-
sible models are, for instance:

CS (τ) = Ae−a|τ |, CS (τ) = Ae−aτ
2
, CS (τ) =

{
A (a− |τ |) |τ | ≤ a

0 |τ | > a
(1.57)

where A and a are parameters to be estimated.

Figure 1.2: Empirical covariance and empirical covariance model.

3. Noise variance estimation

σ2
ν = Cemp (0)− Ĉs (0) (1.58)

noting that the value of the empirical covariance function in the origin
should not be used in the signal covariance function interpolation
because it is the sum of the signal and the noise variance.

If ĈS (0) > Cemp (0) for numerical reasons, then the variance of the
noise has to be forced equal to zero or set-up to an a-priori value.

1.5 Kriging

Assume that the observations are sampled from a random field with an
unknown constant mean value that is, in general, different from zero. They
can be modelled as:
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Figure 1.3: Empirical covariance and empirical covariance model; estimation
of σ2

ν .

Y0 (ti) = s (ti) + ν (ti) = µ+ u (ti) + ν (ti) (1.59)

where:

• E [u (ti)] = 0

• E [s (ti)] = µ = unknown mean

• E [ν (ti)] = 0

• E [(s (ti)− µ) (s (tj)− µ)] = E [u (ti)u (tj)] = Cu (ti, tj) = signal covari-
ance function

• E [s (ti) s (tj)] = Cu (ti, tj) + µ2

• E [ν (ti) ν (tj)] = Cν (ti, tj) = noise covariance function

• [s (ti) ν (tj)] = E [u (ti) ν (tj)] = 0, meaning that the signal and the noise
are uncorrelated.

Since µ is unknown, the direct estimate of the signal covariance function from
the data is quite complicated; therefore the following function is defined in
such a way that it does not depend on the mean value:

γs (ti, tj) =
1

2
E
[
(s (ti)− s (tj))

2] =
1

2
E
[
(u (ti)− u (tj))

2] = γu (ti, tj)

(1.60)
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This function is called variogram. It is important to remind that γ(t, t′) is a
variogram if and only if each matrix

Γ ≡ [γ(ti, tk)] , i, k = 1, . . . , N (1.61)

is conditionally definite negative, that is ∀t1, . . . , tN , ∀N{
λ+Γλ ≤ 0 ∀λ 6= 0,
e+λ ≡ 0

(1.62)

As for collocation, the purpose is to estimate the signal value in t0 by using a
linear combination of the available observations:

ŝ (t0) =
∑
i

λiY0i = λ+Y 0 (1.63)

and demanding that the estimate is unbiased:

E [ŝ (t0)] = µ (1.64)

This condition corresponds to force that:∑
i

λi = 1 (1.65)

which is in general not satisfied in the case of collocation.
In order to determine the vector λ of combination weights, the following
system must be solved: {

(ΓSS − Cνν)λ+ αe = ΓSS0

eTλ = 1
(1.66)

where:

e =


1
1
...
1

 (1.67)

ΓSS0 =


γs (t1, t0)
γs (t2, t0)

...
γs (tN , t0)

 (1.68)

ΓSS =


γS (t1, t1) γS (t1, t2) . . . γS (t1, tN)
γS (t2, t1) γS (t2, t2) . . . γS (t2, tN)

...
...

. . .
...

γS (tN , t1) γS (tN , t2) · · · γS (tN , tN)

 (1.69)



16 Chapter 1. Fields

Cνν =


σ2
ν 0 0 0

0 σ2
ν 0 · · ·

0 0
. . . · · ·

...
...

... σ2
ν

 = σ2
νI (1.70)

with N the number of available observations and α the Lagrange multiplicator.
The variance of the estimation error e (t0) = s (t0)− ŝ (t0) is given by:

E2 (t0) = σ2 [e (t0)] = α + λ+ΓSS0
(1.71)

It can be noticed that the variance of the estimation error of the kriging
solution is always larger (or at most equal) than the corresponding variance
of the collocation solution. On the other hand the unbiasness condition is
not generally satisfied by collocation.

1.5.1 Variogram estimation

Like the covariance function estimation, an empirical variogram is evaluated
from the data and then interpolated with a proper conditionally negative
definite function.
When the field u(t) is homogeneous and isotropic, there is a relation between
the covariance function and the variogram:

γs(τ) = CS (0)− CS (τ) (1.72)

where τ , under the hypothesis of homogeneous and isotropic field, is given by
|t1 − t2|.
Figure 1.4 shows an example of variogram.
There exist also variogram models that do not have the corresponding covari-
ance model since the class of processes u(t) with homogeneous and isotropic
increments is larger than that defined by homogeneous and isotropic fields.
In fact, not all variograms can be derived from covariance functions by using
(1.72). For example the class of variogram:

γs (τ) = A|τ |a 0 < a ≤ 2 (1.73)

does not come from a covariance family; consider for example a=1 (Figure
1.5), setting (1.72) the covariance model obtained is:

CS (τ) = CS (0)− A|τ | (1.74)

that is not acceptable because the condition

|CS (τ) | < CS (0) ∀τ ∈ < (1.75)
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is not satisfied.

Figure 1.4: Example of variogram model.

Figure 1.5: Example of a not acceptable covariance function.
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Part I

Deformation fields
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Chapter 2

Deformation fields: their
analysis within MORFEO

This Chapter is a report of the work done by our group within the ASI
MORFEO project. It consisted in the validation of EO-SAR deformation time
series obtained applying two different DInSAR algorithms, SBAS developed
by the IREA of Naples and SPINUA of Politecnico of Bari, to the elaboration
of the same stack of SAR ENVISAT images.
Multipass Differential Interferometry Synthetic Aperture Radar (DInSAR,
Section 3.2.3) is gaining a great importance in monitoring landslide events;
compared with classical surveying techniques such as levelling, it provides
advantages in terms of costs, coverage, data accessibility and availability of
data archives. On the other hand, it is important to remind that not all
the surface displacements can be detected by this technique; the following
conditions have to be fulfilled:

• landslides should be located in a visible (from a radar sensor) area to
avoid geometric distortions such as layover or foreshortening;

• terrain deformations should be detectable by the radar that acquires
information just along the so called radar line of sight (LOS);

• displacements should be seen by the SAR system. The movement has
to be slow with respect to sampling frequency, in turn depending on
the satellite revisit time;

• the area of interest should contain permanent scatterers (PS), i.e. points
characterized by high coherence. Urban areas are therefore more suited
to be monitored by SAR techniques with respect to country ones where
there are less man-made artefacts.
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Since the application of DInSAR techniques to the study of slope instability
is a relative new and challenging topic (Colesanti [2006]), they need to be
validated on the base of more consolidate techniques.
Within MORFEO, DInSAR products obtained through the two algorithms
were compared between themselves (cross-comparison) and with independent
deformations obtained by GPS (validation). It has to be underlined that
GPS and SAR do see different aspects of the same deformation field: they
observe this field in different locations and at different times. Moreover, while
SAR observes the spatial and temporal evolution of a slow-moving landslide
just along its line of sight (Cascini et al. [2009], Guzzetti et al. [2009b]), GPS
detects the 3D deformation vector.
The first step of the study was the choice of the test area. The landslide
interesting the Ivancich quarter of Assisi, central Italy, was finally selected.
This landslide is in fact slowly moving, about 1 cm/year, and involves an
urbanized area. Moreover, it was monitored both by SAR and GPS already
at the beginning of the project; more precisely, it was monitored by the
University of Perugia through GPS annual campaigns whose data were made
partially available to the MORFEO project. It is important to highlight that
Ivancich GPS monitoring network was not designed according to validation
purposes, that is to say, taking into account SAR PS disposal, GPS and
SAR accuracies and deformation field spatial correlation. On the other hand,
without historical data and a long GPS deformation series no validation could
be done.
The definition of the way to compare these two kinds of observations, GPS
and SAR, was the main goal of the work. Different strategies were considered
before choosing the finally adopted ones, characterized by a local comparison
of LOS deformation values and LOS deformation velocities.
More precisely, the deformation velocity of each GPS point was compared with
the velocity of the three nearest SAR permanent scatterers. This is because,
even in case the two systems observe the deformation field with comparable
accuracies, the proximity between the SAR permanent scatterers and the
GPS monitoring point under comparison is fundamental. The deformation
field irregularity in fact makes the spatial-temporal prediction error so high
to affect the result of the validation itself.
For the same reason, also the cross-comparison between SBAS and SPINUA
was performed locally; in this case, the comparison between the two SAR
datasets was done per areas of homogeneous deformation behaviour; more
precisely, for each homogeneous area, the mean deformation velocities observed
by SBAS and SPINUA were compared.
This Chapter contains a report on this validation work and it is organized as
follows. Section 2.1 describes the characteristics of the Ivancich landslide used
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as test area. Section 2.2 presents the two algorithms, SPINUA and SBAS,
used to generate deformation time series from ENVISAT images and that had
to be validated. Section 2.3 focuses on GPS: monitoring network description
and data processing; it has to be specified that GPS observations resulted
to be noisy and a great part of the work was dedicated to the elaboration
of GNSS observations and to study the quality of the estimated coordinates.
Section 2.4.1 illustrates the cross-comparison between SPINUA and SBAS
data while Section 2.4.2 explains the validation procedure of SAR data using
GPS. In this contest, an optimal validation procedure was developed and it
is reported in Appendix A.
It should be said that this study grew up step by step, facing unexpected
problems, acquiring a lot of knowledge on the critical aspect of the whole
validation work. For this reason, more than a final result on GPS-SAR
comparison, it is interesting to underline all those elements that have an
important role in the validation process as explained in Section 2.5.

2.1 The landslide area

The landslide, considered as test area for the validation, interests a urban area
of Assisi town (central Italy), whose edification started in the years 1950-1960,
as a planned expansion toward East of the historical town center. It has
an estimated extension of about 50 hectares, and its estimated perimeter
can be seen in Figure 2.1. The area is located on a slope (average gradient
21%) where no signs of motion where noticed at the time of first edification.
The urbanization of the area caused relevant changes to the flow regimen
of surface waters, deviating and in some cases closing existing ditches and
streams. Around 1970 the first phenomena connected with an active landslide
started to show, with damages to buildings, walls and street paving. The
landslide is a creep with a sliding surface located at an average depth of
some tens of meters, with a maximum of about 60 meters. Even if the rate
of movement is slow, the Assisi landslide has caused relevant damages to
buildings, streets and infrastructures for the effect of accumulation in time
(more than 50 years) of relative displacements. The damaged buildings include
important complexes such as the civic Hospital and the Franciscan Cappuccini
monastery. The area has been monitored since the years 1970-1980 using
geotechnical techniques
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Figure 2.1: Location and estimated border of the landslide.

(drilling, inclinometers, piezometers, etc.), and by means of a conventional
topographic survey (performed with total stations) of the surface movements
for a number of control points. Around the end of the ’80s, such measurement
activity was interrupted for the excessive cost and the difficulty of terrestrial
surveys in urban area. Since about 1980, some interventions have been
undertaken on the landslide area by the Assisi municipality and other public
subjects but most of the works realized acted on the surface waters regimen
and did not interest the deep sliding surface. In the last years a more effective
intervention campaign, finalized to a drainage of deep waters was started by
Provveditorato Interregionale alle Opere Pubbliche per la Toscana e l’Umbria
with funds of the Italian Government and it is still in progress. See Canuti
et al. [1986] and Salvati et al. [2006] for more details about this landslide.
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2.2 SBAS and SPINUA algorithms

Fundamentals about synthetic aperture radar (SAR), interferometric tech-
nique (InSAR) and differential interferometric technique (DInSAR) can be
found in Section 3.2.3 and 3.2.3. In recent years several interferometric dif-
ferential processing methodologies have been introduced and experimented
on multi-temporal interferometric data with the aim of detecting long term
deformations. In particular two strategies can be distinguished:

• the Persistent Scatter Interferometry (PSI) approach which studies the
phase information over single isolated objects characterized by a high
temporal phase stability. This approach is usually implemented by
computing differential interferograms of all the acquisition with respect
to the same reference master image, then performing advanced phase
analysis on the pixels exhibiting a stable SAR response throughout the
stack (Ferretti et al. [2001]);

• other methods that exploit more deeply the spatially distributed infor-
mation in differential interferograms; these are obtained from pairs of
images with the best value of spatial baseline. Those methods infer,
with various procedure, the connected time series of phase value due to
deformations (Usai [2003], Mora et al. [2003]).

In the first case, originated by PS technique, the analysis is carried out
at full resolution on stable scatterers in order to separate the atmospheric,
topographic and deformation components. Key assumption is the stability
of the radar response, which occurs mainly in presence of dominant point
scatterers. The SPINUA (Stable Point INterferometry over Un-urbanised
Area) processing chain, which has been developed by the remote sensing group
of Dipartimento Interateneo di Fisica - Politecnico di Bari follows mainly this
PSI strategy (Bovenga et al. [2004]).
The SBAS (Small BAseline Subset) algorithm instead follows the second
strategy (Berardino [2002]). Key features of the this technique are the large
number of useful SAR data acquisitions, that allows an increase of the temporal
sampling rate of the monitoring, and the high degree of spatial coverage over
the area of interest, related to the use of small baseline interferograms only.
The technique is applied pixel by pixel to all the areas exhibiting a sufficiently
high coherence degree and it is robust with respect to possible errors of the
DEM used in the derivation of the differential interferograms. Moreover, the
availability of both time and space information permit to effectively remove the
atmospheric artefacts in the results via a proper spacetime filtering operation.
The scattering is supposed to be distributed within the resolution cell and
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Figure 2.2: Visualization of permanent scatter position in a example map. In
red those points located in the Ivancich landslide body.

spatial multilooking is implemented to enhance the phase stability. As a
consequence of this operation, the spatial resolution is lower than the one
obtained by the PSI approach. It this sense SBAS is particularly suitable for
small scale analysis on wide areas. Nevertheless also with this algorithm it
is possible to implement a subsequent large scale analysis carried out at full
resolution (Berardino [2002]).
SBAS data used in this work are of this second type, that is high resolution
data. It is out of this thesis to go deeply in the description of these algorithms;
what is important to understand is that both the software provides coordinates
and LOS deformation time series with respect to a reference time, for a set
of points. Figure 2.2 illustrates the position of permanent scatterers in the
area around Assisi, the point color depends on the estimated velocity of
deformation; in red those points located in the Ivancich displacing zone.

DInSAR techniques observe the deformation field just along the line of sight
with a frequency that depend on satellite revisit time (Figure 2.3 1).

In fact as explained in Section 3.2.3, DInSAR techniques exploit the concept
of interference between SAR images acquired, as much as possible with the
same angular view, in repeated passes of the SAR sensor over the same scene.

1This image has been taken from Cascini et al. [2009].



2.3. GPS data analysis 27

Figure 2.3: The radar geometry for displacement measurement.

The phase of each SAR image measures the distance of the target from the
sensor with an accuracy of fraction of wavelength. Accordingly, the phase
of the beating (interference) acquired in different times provide the measure,
again with an accuracy of a fraction of wavelength, of the target displacement
between the two passes along the radar line of sight. DInSAR data to be
validated consist in a deformation dataset obtained by the elaboration of the
same number of ENVISAT images acquired following descending orbits, the
moving area remains in shadow with respect to ascending orbit, more or less
with a temporal distance of about 35 days (Table 2.1 reports the date of the
images used; yyyy-dd-mm stands for year-day-month). More information
regarding the ENVISAT satellite can be found in ESA [2011]).

2.3 GPS data analysis

The Ivancich landslide has been monitored at first (1970 - 1980) by geotechnical
techniques and by means of conventional topographic surveys (performed
with total stations) of the surface movements for a number of control points.
Then, since 1995, by classical plus GPS techniques (this is a well-known
technology and it is not here described, see Biagi [2006] for details). The
group of prof. Radicioni of University of Perugia was responsible for this
monitoring (Cilli et al. [2002], Fastellini et al. [2011]). Thanks to an agreement
with the Provveditorato alle Opere Pubbliche di Firenze e Perugia, raw data
and the results of the GPS campaigns held in 2006, 2007 and 2008 by this
group were made available within the MORFEO project; this permitted to
make the validation of SAR products using GPS since the first year of the
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Year n
Elaborated Images

(Single Look Complex)
2003 2 2003-10-10, 2003-11-14

2004 6
2004-01-23, 2004-02-27, 2004-04-02,<2004-06-09>,

2004-09-24,2004-10-29, 2004-12-03

2005 6
2005-02-11, 2005-04-22, [2005-05-27], 2005-07-01,

2005-09-09 , 2005-11-18

2006 5
2006-01-27, 2006-06-16, 2006-08-25, 2006-09-29,

2006-11-03

2007 6
2007-01-12, 2007-03-23, 2007-06-01, 2007-08-10,

2007-10-19, 2007-12-28

2008 5
2008-03-07, 2008-05-16, 2008-07-25, 2008-10-03,

2008-12-12

2009 6
2009-01-16, 2009-02-20, 2009-05-01, 2009-07-10,

2009-09-18, 2009-11-27
2010 3 2010-02-05, 2010-04-16, 2010-05-21 <2010-06-24>

Table 2.1: Date of the images elaborated with SPINUA, between [] the image
elaborated with SPINUA and not with SBAS, between<> the images

elaborated by SBAS and not by SPINUA.

project. The 1995 GPS network consisted in 6 reference (fiducial) points
located in geologically stable sites (named from S01 to S06) and 14 monitoring
points on the landslide body (named from M01 to M14) as represented in
Figure 2.4. This scheme is typical of a monitoring network developed using
classical instrumentation and it is not matter of discussion.
During the following years the network was enhanced and in 2006 it consisted
in 28 monitoring points on the displacing area and 5 fiducial points (S04 was
excluded because its marker was damaged). In 2009 and 2010 our group
continued the landslide monitoring through three GPS campaigns (indicated
as MORFEO campaigns in the following) on a sub-sample of the original
network points (see Figure 2.5), changing the modality of data acquisition
but using the same instrumentation: four receivers borrowed by University
of Perugia (TOPCON receivers) plus two LEICA receivers bought with
MORFEO funds. The instrumentation used consists in geodetic receivers
able to acquire double frequency observations; in particular:

• TOPCON TPS E-GGD receivers with TPSLEGANT2 antennas;

• LEICA GX1230GG receivers with AX1202GG antennas;
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Figure 2.4: Ivancich GPS monitoring network (1995).

Figure 2.5: Location of GPS points monitored during MORFEO campaigns.
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Figure 2.6: GPS landmark.

Figure 2.7: Instrumentation.

The monumentation of the vertices was realized with stainless steel centering
devices mounted on concrete foundation (Figure 2.6). The GPS antenna was
mounted on the fixed marker by means of removable stainless steel rod with
a constant vertical offset of 60 or 90 centimetres (Figure 2.7).

In the following more details about the acquisition campaigns, GPS data
treatment, obtained results and critical aspects in the use of GPS for validation
will be given because they are needed to justify the accuracy of the data used
in the validation. We underline again that the GPS network was not designed
to validation purposes, but for the monitoring of the horizontal movement
of the landslide, accurate height deformations being derived from levelling
observations. Unfortunately these data were never made available to the
project. Therefore, the accuracy of the monitoring points was not always
sufficient for the validation purpose due to problem related to spatial location,
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bad satellite visibility and multipath effects.
During the campaigns held in 2006, 2007 and 2008, framing points (S01 and
S03) acquired data for all survey duration, executed in two consecutive days.
Receivers located on the landslide body (indicated as M points), acquired data
just for a hour session and only sometimes the survey was simultaneously done
by more than one receiver. During the MORFEO campaigns the modality of
acquisition for points S did not change. For the rover points M instead the
survey consisted in two measurement sessions per day, held simultaneously
by 4 receivers (4 points acquired data the first day and 4 the following day).
Sessions lasted two hours during the 2009 campaign, three hours during
that of April 2010 and two hours again in that of October 2010. From one
session to the other, receivers and antennas were exchanged and the station
setting remade to reduce some of the possible systematic errors. Double and
independent determinations of the same coordinates in two different sessions
supported an outlier rejection phase; the duration of each measurement session
is reflected into the coordinate accuracy: the longer the time, the higher
the accuracy. The accuracy of estimated coordinates obtainable using phase
double differences in static relative positioning, as a function of measurement
duration and baseline length, is shown in Table 2.2.

Distance/Time 1 km 10 km 20 km 100 km 1000 km
10 minutes 1.5 cm 2.5 cm 5 cm na na

1 hour 1.0 cm 1.5 cm 2 cm 5 cm na
24 hours 0.3 cm 0.5 cm < cm 1 cm 1.5 cm
1 week 0.1 cm 0.1 cm 0.3 cm 0.3 cm < 1 cm

Table 2.2: Obtainable accuracies with double frequency phase observations
using relative static positioning. Accuracies are function of the distance

between the receivers and the measurement duration (“na” stands for not
assessable) (Biagi [2006]).

As it will be explained later, long deformation time series are necessary to
validate SAR deformation series; for this reason only those points surveyed also
during MORFEO campaigns, held in 2009 and in 2010, could be considered
for the validation; 2 points belonging to the framing network, S01 and S03,
and 9 points located on the landslide body: M01, M04, M06, M07, M09, M14,
M25, M26, M32 (see Figure 2.5). Figures 2.8 to 2.19 show the duration of
the different measurement campaigns in different years.
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Figure 2.8: 2006 GPS campaign: GPS points surveyed during the first day of
measurement (May 23rd 2006).

Figure 2.9: 2006 GPS campaign: GPS points surveyed during the second day
of measurement (May 24th 2006).

Figure 2.10: 2007 GPS campaign: GPS points surveyed during the first day
of measurement (May 16th 2007).

Figure 2.11: 2007 GPS campaign: GPS points surveyed during the second
day of measurement (May 17th 2007).
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Figure 2.12: 2008 GPS campaign: GPS points surveyed during the first day
of measurement (November 19th 2008).

Figure 2.13: 2008 GPS campaign: GPS points surveyed during the second
day of measurement (November 21st 2008).

Figure 2.14: 2009 GPS campaign: GPS points surveyed during the first day
of measurement (May 5th 2009).

Figure 2.15: 2009 GPS campaign: GPS points surveyed during the second
day of measurement (May 6th 2009).
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Figure 2.16: 2010 GPS campaign: GPS points surveyed during the first day
of measurement (April 13th 2010).

Figure 2.17: 2010 GPS campaign: GPS points surveyed during the second
day of measurement (April 14th 2010).

Figure 2.18: 2010 GPS autumn campaign: GPS points surveyed during the
first day of measurement (October 6th 2010).

Figure 2.19: 2010 GPS autumn campaign: GPS points surveyed during the
second day of measurement (October 7th 2010).
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2.3.1 GPS data processing

At the beginning (first year of the project) a comparison between GPS and
DInSAR products was done by using the coordinates of 2006, 2007 and 2008
campaigns obtained by University of Perugia using the commercial software
Geogenius developed by Spectra Precision Terrasat (Fastellini et al. [2011]).
GPS information was simply a list of projected coordinates (E, N, h) for 28
GPS points located in the moving area; at that time the raw data were not
available to us.
In the meanwhile the GPS observations of MORFEO campaigns were col-
lected. They were elaborated using the commercial software Leica LGO and
the scientific Bernese GPS software 5.0 of Astronomical Institute, University
of Bern (Dach et al. [2007]). The new coordinates showed large discontinuities
with respect to the Perugia ones, much more than the ones expected by the
single landslide movement, that we addressed to the different data processing
(Figure 2.20 show an example of how the estimate coordinates differ according
to the used software).

Figure 2.20: Deformation velocities estimates using different software; the
example of GPS point M07.

To overcome these inconsistencies, it was decided to homogeneously ri-
elaborate raw data files of the GPS campaigns held by University of Perugia
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in 2006, 2007 and 2008. Data adjustment regarded just the subset of rover
points surveyed also during the MORFEO campaigns.
The data processing was done firstly using the Leica LGO software just to
make a first screening of data and subsequently by using Bernese software
which besides a more careful and aware definition of the observations process-
ing, allowed more affordable results. The main difference between the two
software is that LGO elaborates single-base adjustment only while Bernese
allows for a multi-base data adjustment, namely a least square compensation
of the observations of all the stations acquiring data simultaneously. This ad-
justment strategy generates a better control on the quality of the observations.
Compensations was done by fixing just one framing station (S01 or S03) at a
time. The baseline S01-S03 was used to verify the quality of the observations
of the chosen reference station. In single-base elaboration, observations of
station S03 were not used to estimate the M points coordinates while in
multi-base adjustment point S03 was estimated together with the other M
points. Results obtained using S03 as reference point rather than S01 were
used to detect possible outliers. Tropospheric effects were removed (both for
the dry and the wet component) using a Saastamoinen-Niell model without
any further analysis.

2.3.2 Elaboration results and outlier removal

The comparison between LGO and BERNESE estimated coordinates and
between those estimated using the observations of different sessions high-
lightened differences not compatible with the coordinate estimated precision.
An exam of the results was therefore performed to look for outliers and
noisy observations. When observations have no particular problems, results
are stable and don’t depend on the elaboration strategy. On the contrary
when observations are noisy and contain some cycle-slips, different processing
strategies can bring to erroneous results, different from one software to another.
When the estimated coordinates are significantly different from one session to
the other, it is necessary to understand which are the problematic observations.
Problems in the observations can depend on different factors, such as:

• multipath;

• satellite visibility from measuring points;

• errors in the modelling of delays in the signal propagation.

In the first case the errors depend on the acquisition period, for example from
the session in the morning to the session in the afternoon; in fact multipath
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effects depend on satellites position, that is on the direction of coming signals
and on the electromagnetic behaviour of the area around the receiver. Since
satellites configuration recurs from one day to the other with a delay of 4
minutes, multipath effects have almost the same periodical behaviour; further-
more few satellites in view with a bad distribution can reduce the positioning
precision. Finally sudden variations in the water vapour content, that usually
cannot be modelled a priori, cause a variation of the accuracy of the height
component of all the stations.
Points affected by problems during different campaigns are probably sub-
jected to multipath, that is by a bad environmental resonance. Once those
problematic surveying points have been identified, there are different ways to
detect and eliminate inaccurate observations:

• make a direct control of the quality of the observations interesting the
problematic station;

• evaluate the results of adjustment made on different data sub-samples;

It can be noticed that even if adjustment software applies algorithms for
automatic control and rejection of outliers, it cannot identify problems caused
by the elaboration of simultaneous observations referring to more than one
satellite and more than one station at a time, as it happens in the least
squares adjustment. As a matter of fact, the procedure for outlier rejection
based on raw observations is able to identify true outliers that are those spiky
values much higher than the noise with respect to the mean. Vice versa, if in
a certain time interval the noise changes a lot, also the mean value can be
interested by some changes not identifiable point by point. This shifting can
be identified only a posteriori, after the introduction of a deterministic model
that describes the geometric congruence of observation scheme.
Another way to select bad observations is the compensation of the suspected
baseline in cinematic mode; that means that the relative position of a rover
point with respect to a master is estimated epoch by epoch. When an outlier
or a cycle slip is present, the estimated coordinates change a lot in the different
epochs.
It is important to underline that the outlier detection capability starting
from adjustment results depend upon the survey scheme (this aspect was
taken into account during the MORFEO campaigns). For example, sessions
done in the morning and repeated in the afternoon of the same day make
accidental the errors related to satellite configuration: a bad configuration
in the morning can change in the afternoon and vice versa. Simultaneous
sessions from different points underline problems related to particular station
or to particular satellites. Long sessions permit to select just those intervals
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without problems, since they last enough to estimate point coordinates with
a sufficient accuracy. This analysis brought to the elimination of 4 points
over the 9 considered. Data cleaning followed a conservative approach: it was
decided to remove a point rather than degrade its accuracy, as this would have
made the subsequent validation completely unreliable. The points considered
affordable for the validation were: M01, M04, M07, M09 and M25.
The result of phase observations adjustment is the determination of GPS
stations coordinates in a global cartesian reference frame, in this case the
WGS84 IGS05 reference frame. It is important to notice that GPS coordinates
were estimated using as reference the point S01 whose coordinates were
in turn estimated using as reference point the Perugia permanent station.
More precisely, the position of S01 was determined using the simultaneous
observations of S01 and Perugia acquired during the campaign in 2009. The
coordinates of point S01 in IGS05 used to fix the landslide monitoring network
are: X=4554648.2317m, Y=1021932.8953m and Z=4333034.8895m.

2.3.3 GPS coordinates

Table 2.3 reports the estimated coordinates in WGS84-IGS05 of the points
used in the validation. By comparing the results of 2006-2008 and 2009-2010
campaigns, it can been observed that the standard deviation of the last
campaigns are halved with respect to the ones of the first three campaigns.
This effect is linked to the session duration that changed from 1 hour in the
campaigns of 2006-2007 and 2008 to 2 hours in the 2009 and 3 hours in the
campaign held in April 2010 (see Figures 2.8 -2.19). It can also be underlined
that the coordinate variances don’t change significantly between sessions of 2
and sessions of 3 hours. This is the reason that justifies measuring sessions of
2 hours duration during the last campaign held in October 2010. The accuracy
of the estimated coordinates reported in Table 2.3 was evaluated applying
a calibration of the coordinates variance-covariance matrix as explained in
Section 2.3.4.
From global cartesian coordinates (Table 2.3), the projected ones (E, N, h)
can be computed simply applying a reference system transformation. They
are reported in Table 2.4.
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GPS X Y Z σX σY σZ

POINT [m] [m] [m] [mm] [mm] [mm]
2006

M01 4554563.1820 1019749.8958 4333073.2578 5.7 4.2 5.4
M04 4554610.5765 1020011.4264 4332939.5432 6.1 4.2 5.4
M07 4554481.5745 1019909.6058 4333142.8540 7.5 4.3 5.8
M09 4554393.2091 1020111.3531 4333248.8523 6.0 4.6 6.1
M25 4554420.4888 1020373.5136 4333234.9886 7.4 4.4 8.7

2007
M01 4554563.1711 1019749.8998 4333073.2587 6.0 5.1 5.1
M04 4554610.5577 1020011.4307 4332939.5218 6.8 4.5 5.5
M07 4554481.5682 1019909.5954 4333142.8446 8.1 4.9 6.5
M09 4554393.1990 1020111.3362 4333248.8424 5.8 3.9 6.0
M25 4554420.4711 1020373.5102 4333234.9684 7.3 4.2 6.5

2008
M01 4554563.1606 1019749.8909 4333073.2448 6.8 4.7 6.3
M04 4554610.5668 1020011.4272 4332939.5224 7.0 4.5 6.7
M07 4554481.5660 1019909.5969 4333142.8188 5.0 3.6 4.5
M09 4554393.2252 1020111.3193 4333248.8444 7.7 4.9 6.2
M25 4554420.4683 1020373.5118 4333234.9629 6.9 4.5 6.6

2009
M01 4554563.1637 1019749.8996 4333073.2499 2.7 2.3 2.4
M04 4554610.5597 1020011.4241 4332939.5265 2.7 2.1 2.4
M07 4554481.5662 1019909.5922 4333142.8271 3.0 2.2 2.6
M09 4554393.2240 1020111.3275 4333248.8286 2.8 2.1 2.5
M25 4554420.4747 1020373.5100 4333234.9607 2.9 2.1 2.5

Spring 2010
M01 4554563.1718 1019749.8943 4333073.2469 2.5 2.0 2.3
M04 4554610.5784 1020011.4210 4332939.5214 3.5 2.2 2.8
M07 4554481.5881 1019909.5913 4333142.8191 2.6 2.0 2.3
M25 4554420.4881 1020373.5030 4333234.9590 2.8 2.1 2.5

Autumn 2010
M01 4554563.1591 1019749.8846 4333073.2548 3.0 2.4 2.4
M04 4554610.5594 1020011.4189 4332939.5411 2.8 2.0 2.3
M07 4554481.5796 1019909.5593 4333142.8250 2.9 2.0 2.3
M25 4554420.4754 1020373.5091 4333234.9653 3.0 1.9 2.4

Table 2.3: GPS point estimated coordinates X, Y, Z and relative standard
deviation.
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GPS E N h σE σN σh

POINT [m] [m] [m] [mm] [mm] [mm]
2006

M01 306225.7590 4770790.4286 419.9440 4.3 4.2 6.6
M04 306465.7433 4770615.2640 404.1817 4.5 4.3 6.8
M07 306401.6785 4770866.8647 434.7822 4.7 4.4 8.2
M09 306620.7803 4770966.9098 476.3778 4.5 4.9 7.0
M25 306868.6247 4770892.4318 528.2247 4.3 4.7 10.4

2007
M01 306225.7655 4770790.4358 419.9375 4.7 4.5 6.7
M04 306465.7515 4770615.2601 404.1543 4.6 4.4 7.4
M07 306401.6697 4770866.8638 434.7696 4.3 5.5 9.1
M09 306620.7661 4770966.9122 476.3611 3.9 4.2 7.2
M25 306868.6252 4770892.4293 528.1978 3.9 4.1 9.0

2008
M01 306225.7591 4770790.4341 419.9191 4.5 4.7 8.1
M04 306465.7459 4770615.2551 404.1607 4.3 4.6 8.6
M07 306401.6712 4770866.8462 434.7506 3.6 3.9 5.5
M09 306620.7435 4770966.8994 476.3784 5.1 5.2 8.3
M25 306868.6273 4770892.4269 528.1923 4.3 4.7 8.4

2009
M01 306225.7669 4770790.4343 419.9262 2.3 2.2 2.9
M04 306465.7447 4770615.2633 404.1579 2.2 2.1 2.9
M07 306401.6667 4770866.8529 434.7557 2.2 2.2 3.3
M09 306620.7514 4770966.8872 476.3681 2.1 2.1 3.1
M25 306868.6240 4770892.4214 528.1951 2.1 2.1 3.2

Spring 2010
M01 306225.7598 4770790.4277 419.9291 1.9 2.0 2.7
M04 306465.7371 4770615.2478 404.1673 2.4 2.1 3.8
M07 306401.6605 4770866.8328 434.7657 2.0 2.0 2.8
M25 306868.6140 4770892.4125 528.2023 2.2 2.1 3.0

Autumn 2010
M01 306225.7535 4770790.4435 419.9239 2.1 2.3 3.3
M04 306465.7400 4770615.2751 404.1668 1.9 2.2 3.0
M07 306401.6315 4770866.8484 434.7586 1.9 2.2 3.1
M25 306868.6231 4770892.4244 528.1986 2.0 2.2 3.1

Table 2.4: GPS point estimated coordinates E,N,h with relative standard
deviation.
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2.3.4 Covariance matrix calibration

In deformation monitoring the amplitude of the analysed phenomena is often
comparable with observation errors. In the GPS case, as it is well known,
the coordinates variance-covariance matrices of the observed points are under
estimated; this is due to errors both in the stochastic and in the deterministic
model of the least square adjustment (Teunissen [1996]). Therefore, if we
want to verify whether the coordinates of a point are significantly varying
in time, as it is in this validation study, we need to determine more realistic
covariances. Adopting proper surveying schemes, it is possible to calibrate the
covariance matrices by assuming that their shape is mainly due to the network
configuration while the scale, namely the σ̂2

0, is by far too optimistic. In other
words, it can be assumed that modelling errors result in an underestimation
of a multiplicative factor proportional to the trace of the variance-covariance
matrix itself

Tr(C) = σ2
X + σ2

Y + σ2
Z . (2.1)

So, the procedure consists in an “a posteriori” (based on the estimated
coordinates) trace estimation to calibrate the covariance matrix C of each
single GPS point obtained from the least squares adjustment; it is:

Ccal =
σX2

aposteriori
+ σ2

Yaposteriori
+ σZ2

aposteriori

σ2
X + σ2

Y + σ2
Z

C =
Traceaposteriori

TraceC
C. (2.2)

Obviously, to apply this procedure we need redundant estimations of the
coordinates of the same point; the estimate of the calibration coefficient, in
fact, becomes more robust when the number of samples used to determine
it increases (Sansò [1996]). A posteriori variances of the coordinates were
computed from the 2010 campaign for the 1, 2 or 3 hour sessions covariance
matrix calibration. During this campaign each rover point was surveyed with
two sessions of 3 hours for a total duration of 6 hours of acquisition for each
point. Acquisitions were divided further on in 6 sessions of 1 hour duration
each, and in 3 of 2 hours. For each point three different variances were
computed considering six estimates of 1 hour, three estimates of 2 hours and
then two estimates of 3 hours. The mean of the variances of 1 hour session
for all the points, that of the variances of 2 hours and that at the variances
of 3 hours was used to estimate the a posteriori trace of the corresponding
session of 1, 2 or 3 hours duration. It is important to notice that this choice
is conservative with respect to validation. In fact, an analysis of the variances
before and after the calibration shows that they don’t change too much from
a point to another. Since it was necessary to use these variances to test
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σ2
X σ2

Y σ2
Z σXY σXZ σYZ

[mm2] [mm2] [mm2] [mm2] [mm2] [mm2]

M01
before cal. 0.07 0.04 0.06 0.00 0.03 0.00
after cal. 32.45 17.99 29.64 -0.52 13.38 0.75

M04
before cal. 0.08 0.04 0.06 -0.01 0.03 0.00
after cal. 37.07 18.00 28.92 -3.19 14.02 -0.46

M07
before cal. 0.12 0.04 0.07 -0.01 0.05 -0.01
after cal. 55.55 18.09 34.15 -4.15 24.43 -2.70

M09
before cal. 0.08 0.05 0.08 0.01 0.03 -0.01
after cal. 35.57 20.93 36.61 2.69 13.60 -2.86

M25
before cal. 0.12 0.04 0.16 0.01 0.09 0.02
after cal. 54.75 19.17 75.15 6.46 43.03 8.41

Table 2.5: 2006 campaign: covariance matrices of GPS estimated coordinates
before and after the calibration.

the difference on coordinates estimated in two different sessions, it has been
chosen to use a stable, representative and uniform value. This approach
is certainly more well-grounded then the usual practise of multiplying the
coordinate standard deviation for a factor 10.
Table 2.5 shows an example of the variance-covariance matrix calibration of
the estimated coordinates for the year 2006.

2.3.5 Deformation projection along LOS

The displacement components in different years can be computed as the
difference between the coordinates of the current year and those of a reference
epoch, in this case the day 143 of 2006; covariances should be propagated
correctly. Displacements are then to be projected along SAR line of sight
(LOS) to compare them with corresponding DInSAR deformations; also in
this case covariances should be correctly propagated. This projection is done
considering the radar acquisition geometry; for example, in case of descending
orbit the formula to apply is:

defLOS = −defE sin(α) cos(β) + defN sin(α) sin(β)− defh cos(α) (2.3)

where:
defE = E(t1)− E(t2);
defN = N(t1)−N(t2);
defh = h(t1)− h(t2).

(2.4)
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with t1 < t2, α the SAR looking angle and β the angle between ground range
direction and East, as shown in Figure 2.21. In this case α is 23◦ and β
is 11.5◦. It can be useful to underline that negative displacements mean
that the distance SAR sensor-point (slant-range distance) is increasing, that
is to say that the point on the surface is sliding down. Considering these
angular values and Equation 2.3, it can be said that deformation along LOS
is given by the algebraic sum of 92% of the vertical displacement, 40% of the
displacement component along East and 8% of the displacement component
along the North direction.

Figure 2.21: Descending imaging geometry.

An equivalent way to compute the displacement along LOS is to use cosine
directors that express the LOS direction with respect to GPS global cartesian
coordinate system. It can be written as:

defLOS = defX cosX + defY cosY + defZ cosZ (2.5)

where:
defX = X(t2)−X(t1);
defX = Y (t2)− Y (t1);
defZ = Z(t2)− Z(t1).

(2.6)

with t1 < t2 and cosX = 0.63, cosY = 0.52 and cosZ = 0.57.
LOS deformations in different years of the points selected for the validation,
with relative standard deviations (std), are reported in Table 2.6. The esti-
mated deformation velocities of GPS points are reported in Table 2.7. Point
M09 has been neglected because it was not surveyed during the campaigns
held in April and October 2010 (it was inaccessible because located in a
building site) and a robust estimation of the deformation velocity was not
possible: its time series was not long enough.
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GPS vGPS σvGPS
Is vGPS significantly

point [cm/y] [cm/y] different from zero?
M01 -0.34 0.25 no
M04 0.27 0.13 no
M07 -0.32 0.54 no
M25 0.13 0.10 no

Table 2.7: GPS estimated velocities, vGPS , and relative standard deviation
σvGPS

.

2.4 Validation of SBAS and SPINUA defor-

mation time series

In this Section there is a dissertation on the procedure developed to validate
deformation series obtained using SBAS and SPINUA algorithms.
As said at the beginning of this Chapter, the work can be divided into two
parts: the first one regards the cross-comparison between SPINUA and SBAS
deformation series to see if the two algorithms agree with each other, the
second one the comparison of SBAS and SPINUA separately with independent
deformation series of GPS points located in the landslide area.
The former was performed per areas of supposed uniform deformation be-
haviour. Since there were a lot of SAR permanent scatterers in the landslide
area (see Figure 2.22), the comparison was done making a test on the average
deformation velocities seen by SBAS and SPINUA (taking into account all
the available deformation series, 39 observations on a time span of about 7
years (Table 2.1)) and considering a uniform deformation zone at a time.
Areas of uniform deformation behaviour were selected as those areas in which
most of SAR permenent scatterers, belonging to both SPINUA and SBAS
datasets, observe the same land movement. It is not a rigorous and clean way
to make the comparison, but in absence of other source of information, such
as geological and geotechnical reports, it was not possible to select a-priori
the areas with a uniform behaviour. Regarding the comparison with GPS, it
was decided to compare the deformation velocity of each GPS point with the
ones of the three nearest neighbours SAR permanent scatterers because the
lower the distance between SAR and GPS, the higher is the probability that
the observations refer to the same movement. There can be discontinuities
not detectable by satellite observations only. The comparison with GPS was
performed selecting a time span covered by both the observation techniques.
It has to be taken into account that the irregularity of the deformation field
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makes the spatial-temporal prediction error, estimated using stochastic pre-
dictors, so high to affect the results of the validation itself.
It can be underlined till now that the accuracy of GPS deformation was too
low for validation purposes.

2.4.1 Comparison between SBAS and SPINUA

This section reports the work done to compare EO-SAR SBAS and SPINUA
deformation time series. It was performed on a set of data obtained by the
elaboration of the same number of ENVISAT descending images (Table 2.1
reports the dates of the used images as year-day-month, yyyy-dd-mm).
An horizontal rigid translation was present between deformation maps created
using the two different interferometric chains related to a different reference
master image (this offset is generally of the order of few meters or at maximum
of few tens of meters and it has to be removed before comparing the soil
displacement velocities evaluated using the two algorithms). In this particular
case, the estimated translations along East and North, calculated by the
Politecnico of Bari, were -34.24m E and 31.20m N to be added to SPINUA
planimetric coordinates.
Figure 2.22 illustrates the location of SAR SBAS and SPINUA after this
translation.
Another aspect that must be considered is that DInSAR techniques permit to
obtain deformations with respect to a reference point that, for the difference
in the elaboration applied, is different in the SBAS and in the SPINUA
algorithm. The difference in the hooking point in general creates a constant
offset between velocities and should be properly considered. In this particular
situation, this offset was negligible.
The first step of the comparison procedure was the identification of the areas
supposed to have an homogeneous deformation behaviour. It was decided to
look for these sub-areas of deformation behaviour in areas of 100m radius
around 6 GPS points (M01, M04, M07, M09, M14 and M25) plus two areas
outside the landslide body, more precisely around the SBAS points 7152 and
8055 (shown in Figure 2.22).
In absence of independent information, the behaviour of each sub-area was
considered homogeneous if the majority of SAR deformation velocities evalu-
ated using the two different algorithms were similar just at a first glance.
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Figure 2.22: Location of SBAS and SPINUA permanent scatterers.

The following steps were:

• for each sub-area, estimate of the velocity of each single point by linearly
interpolating the corresponding deformation time series. It should be
noted that the assumption of linear motion, reasonable in this case by
looking to the data, was an approximation that could affect the result
of validation;

• evaluation of the significance associated to each estimated velocity
through a standard t of Student test to verify the presence of movement.
Estimated velocity was considered significant if the value toss was higher
that the value tlim;

• for each sub-area, evaluation of the mean deformation velocities of
SPINUA derived velocities and of SBAS derived velocities and corre-
sponding standard deviations;
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• evaluation of the significance of the computed mean deformation veloci-
ties;

• for each sub-area, application of a standard t of Student test (under
the hypothesis of normal samples) to compare SBAS and SPINUA
mean deformation velocities. More precisely, the t test was performed
only after that the statistical equality of estimated velocity standard
deviations was verified via a Fisher test.

As example, it is here reported the case of some areas of deformation behaviour
near GPS point M07 (for more details see the report of the MORFEO
project (ASI [2011])). Figure 2.23 shows the location of the areas of uniform
deformation behaviour while Tables 2.8-2.11 show the estimated velocities,
velocity standard deviations, empirical values toss = v̂

σ̂2
v

and theoretical values,

tlim, relative to a significance level of 2.5% and 38 degrees of freedom adopted
to verify the significance of the estimated velocity of the selected permanent
scatterers.

Figure 2.23: Area A07.
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SAR Velocity Std
toss tlim

Is the velocity
PS [cm/y] [cm/y] significant?

SPINUA
1226 -0.10 0.02 -4.68 2.34 yes
1231 -0.02 0.02 -1.28 2.34 no

SBAS
7680 -0.08 0.03 -3.23 2.34 yes
7702 -0.10 0.04 -2.53 2.34 yes

Table 2.8: A071: t test on velocities.

SAR Velocity Std
toss tlim

Is the velocity
PS [cm/y] [cm/y] significant?

SPINUA

1248 -0.39 0.03 -15.08 2.34 yes
1253 -0.38 0.02 -15.63 2.34 yes
1254 -0.43 0.02 -17.88 2.34 yes
1258 -0.39 0.03 -15.48 2.34 yes
1259 -0.27 0.02 -11.91 2.34 yes
1264 -0.39 0.02 -17.04 2.34 yes

SBAS

7552 -0.40 0.03 -11.82 2.34 yes
7581 -0.39 0.04 -10.13 2.34 yes
7582 -0.42 0.04 -11.69 2.34 yes
7601 -0.43 0.04 -10.54 2.34 yes

Table 2.9: A072: t test on velocities.

SAR Velocity Std
toss tlim

Is the velocity
PS [cm/y] [cm/y] significant?

SPINUA
1236 -0.37 0.03 -12.83 2.34 yes
1237 -0.39 0.03 -15.12 2.34 yes
1243 -0.40 0.02 -19.14 2.34 yes

SBAS
7442 -0.40 0.03 -13.93 2.34 yes
7490 -0.46 0.03 -15.23 2.34 yes

Table 2.10: A073: t test on velocities.
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SAR Velocity Std
toss tlim

Is the velocity
PS [cm/y] [cm/y] significant?

SPINUA
1222 -0.51 0.02 -23.14 2.34 yes
1225 -0.52 0.02 -22.65 2.34 yes

SBAS
7527 -0.54 0.03 -18.10 2.34 yes
7528 -0.51 0.03 -17.03 2.34 yes

Table 2.11: A074: t test on velocities.

The test results are summarized in Table 2.12 and Table 2.13. For each
area of homogeneous deformation behaviour, mean velocity of SBAS PSs
and SPINUA PSs and their standard deviations are reported in column 2
and 3 respectively; then in column 4 is reported the result of Fisher test for
the comparison of the standard deviation of the mean velocity estimated on
SBAS and SPINUA points (“yes” means that they are statistically equal),
column 5 contains the result of the t test for mean velocities comparison. All
the test were performed with a significance value equal to 5%. In grey the
areas with a movement significantly different from zero.
Tables 2.12 and 2.13 show that in all considered cases the two systems observe
the same deformation velocity, both in the case it was significantly different
from zero or not; more precisely, velocities become significantly different from
zero when higher than 1 mm/year. Moving areas are the ones located in the
center of landslide body, around GPS points M04, M07, M09, M14.

2.4.2 Validation of SAR deformation series using GPS

This validation procedure takes into account the proximity between the SAR
permanent scatterers and the GPS monitoring points. The deformation field
irregularity, in fact, makes the spatial-temporal prediction error too high and
this can affect the result of the validation itself. On the other hand, it has to
be said that, dealing with deformation fields, the proximity of points is not
always synonymous of same deformation behaviour: there can be discontinu-
ities not detectable using just satellite observations (and here the necessity
of integration with external source of information regarding the landslide
movement). In addition, a georeferencing error between SAR and GPS can
be present.
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Dataset
ˆ̄v σ̂v̄ σ̂v̄SBAS

= σ̂v̄SPINUA
ˆ̄vSBAS = ˆ̄vSPINUA

[cm/y] [cm/y] ? ?
SBAS -0.02 0.03

A
0
1

1

SPINUA -0.02 0.03
yes yes

SBAS 0.00 0.04

A
0
4

1

SPINUA -0.01 0.03
yes yes

SBAS -0.01 0.03

A
0
4

2

SPINUA -0.04 0.03
yes yes

SBAS -0.06 0.06

A
0
7

1

SPINUA -0.09 0.01
yes yes

SBAS -0.37 0.05

A
0
7

2

SPINUA -0.41 0.02
yes yes

SBAS -0.39 0.02

A
0
7

3

SPINUA -0.43 0.04
yes yes

SBAS -0.52 0.01

A
0
7

4

SPINUA -0.53 0.02
yes yes

SBAS -0.51 0.12

A
0
9

1

SPINUA -0.48 0.02
yes yes

SBAS -0.61 0.02

A
0
9

2

SPINUA -0.65 0.03
yes yes

SBAS -0.15 0.05

A
0
9

3

SPINUA -0.12 0.04
yes yes

SBAS -0.77 0.04

A
1
4

1

SPINUA -0.77 0.06
yes yes

SBAS -0.56 0.04

A
1
4

2

SPINUA -0.60 0.04
yes yes

SBAS -0.58 0.00

A
1
4

3

SPINUA -0.63 0.04
yes yes

SBAS -0.61 0.02

A
1
4

4

SPINUA -0.65 0.03
yes yes

SBAS -0.68 0.01

A
1
4

5

SPINUA -0.81 0.06
yes yes

SBAS -0.01 0.03

A
2
5

1

SPINUA -0.03 0.01
yes yes

SBAS 0.00 0.00

A
2
5

2

SPINUA -0.03 0.03
yes yes

Table 2.12: Results of cross-comparison between SPINUA and SAR dataset
(Table A).
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Dataset
ˆ̄v σ̂v̄ σ̂v̄SBAS

= σ̂v̄SPINUA
ˆ̄vSBAS = ˆ̄vSPINUA

[cm/y] [cm/y] ? ?

SBAS 0.03 0.00

A
7
1
5
2

1

SPINUA 0.02 0.01
yes yes

SBAS -0.05 0.01

A
7
1
5
2

2

SPINUA -0.04 0.01
yes yes

SBAS -0.07 0.05

A
7
1
5
2

3

SPINUA -0.08 0.04
yes yes

SBAS 0.03 0.04

A
7
1
5
2

4

SPINUA 0.01 0.03
yes yes

SBAS -0.01 0.03

A
7
1
5
2

5

SPINUA -0.04 0.03
yes yes

SBAS 0.02 0.06

A
8
0
5
5

1

SPINUA -0.07 0.06
yes yes

SBAS 0.03 0.04

A
8
0
5
5

2

SPINUA 0.00 0.02
yes yes

SBAS -0.02 0.04

A
8
0
5
5

3

SPINUA -0.04 0.03
yes yes

SBAS 0.00 0.04

A
8
0
5
5

4

SPINUA -0.04 0.01
yes yes

Table 2.13: Results of cross-comparison between SPINUA and SAR dataset
(Table B).
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The validation was performed comparing deformation velocities that:

• were computed considering deformations in an equivalent time period.
To be precise, regarding SAR data, displacement velocities were esti-
mated considering just the LOS deformations between 2007 and 2010
(a total of 19 observations), that is the period covered by the GPS
observations too. All deformation were expressed with respect to an
ENVISAT image acquired in the date nearest to GPS campaign held in
May 2006;

• were estimated through a linear interpolation of deformation time series
via least squares; in absence of a stochastic model for the deformations
to be interpolated, they were considered independent of one another
and with the same variance.

Practically, the validation consisted in a comparison test between deformation
time series velocities; in particular, between the deformation velocities of 4
GPS points: M01, M04, M07 and M25 and that of the 3 corresponding nearest
SAR points (in total 12 comparison between GPS and SBAS deformation
velocities and 12 between GPS and SPINUA).
Once computed, the estimated velocities, v, and relative standard deviation,
σv, were used to evaluate if the estimated velocities were significantly different
from zero. It was done through Student tests setting the significance level
α = 5%. Velocities, corresponding standard deviations and the results of the
the comparison test between SBAS-GPS and SPINUA-GPS are reported in
Table 2.14-2.17. Finally, Figures 2.24-2.27 show the deformation observed by
SAR and GPS.
From the results obtained by cross-comparison (Section 2.4.1), on the basis
of statistical tests on mean velocities of points located in sub-areas assumed
to have an homogeneous deformation behaviour (selected, from time to time,
within an area of 100 m radius around GPS point), it can be said that the
areas around GPS points M01, M04 and M25 are not moving in a significant
way. From the same cross-comparison, it is that 3 over 4 areas around point
M07 are moving with a velocity significantly different from zero of about
0.4 and 0.5 cm/year. Considering deformation time series of those SAR
points located nearest to GPS points, there are some inconsistencies with
respect to the mean result. It has to be clarified that the results obtained
in GPS-SAR comparison refer to different points with respect to the data
used for cross-comparison (see Section 2.4.1): firstly, points belonging to the
same area of 100 m radius can have a different deformation behaviour and
secondly, SAR deformation velocities for GPS comparison were evaluated on
a shorter time series.
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(a) SBAS

(b) SPINUA

Figure 2.24: Deformation observed by SAR PSs nearest to point M01.

SBAS
γ

Dist vSAR σvSAR
vSAR 6= 0 vSAR = vGPS

PS [m] [cm/y] [cm/y] ? ?
8022 0.72 95.07 -0.33 0.07 yes yes
8045 0.72 96.18 -0.28 0.07 yes yes
7927 0.69 112.54 -0.23 0.12 yes yes

SPINUA
γ

Dist vSAR σvSAR
vSAR 6= 0 vSAR = vGPS

PS [m] [cm/y] [cm/y] ? ?
1387 0.76 97.09 -0.09 0.08 no yes
1390 0.80 100.38 -0.05 0.08 no yes
1276 0.82 142.27 0.12 0.06 yes no

Table 2.14: Velocities of SBAS PSs nearest to GPS point M01.
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(a) SBAS

(b) SPINUA

Figure 2.25: Deformation observed by SAR PSs nearest to point M04.

SBAS
γ

Dist vSAR σvSAR
vSAR 6= 0 vSAR = vGPS

PS [m] [cm/y] [cm/y] ? ?
7553 0.74 29.96 -0.43 0.07 yes no
7638 0.76 34.93 -0.13 0.05 yes no
7639 0.72 36.80 -0.16 0.10 yes no

SPINUA
γ

Dist vSAR σvSAR
vSAR 6= 0 vSAR = vGPS

PS [m] [cm/y] [cm/y] ? ?
1419 0.86 28.22 -0.16 0.06 yes no
1434 0.81 35.59 -0.00 0.08 no no
1438 0.81 37.97 -0.01 0.11 no yes

Table 2.15: Velocities of SBAS PSs nearest to GPS point M04.
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(a) SBAS

(b) SPINUA

Figure 2.26: Deformation observed by SAR PSs nearest to point M07.

SBAS
γ

Dist vSAR σvSAR
vSAR 6= 0 vSAR = vGPS

PS [m] [cm/y] [cm/y] ? ?
7581 0.68 37.14 -0.62 0.07 yes yes
7552 0.74 44.91 -0.40 0.11 yes yes
7582 0.68 45.01 -0.57 0.07 yes yes

SPINUA
γ

Dist vSAR σvSAR
vSAR 6= 0 vSAR = vGPS

PS [m] [cm/y] [cm/y] ? ?
1259 0.81 37.68 -0.34 0.07 yes yes
1254 0.83 45.12 -0.29 0.04 yes yes
1258 0.80 47.02 -0.21 0.07 yes yes

Table 2.16: Velocities of SBAS PSs nearest to GPS point M07.
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(a) SBAS

(b) SPINUA

Figure 2.27: Deformation observed by SAR PSs nearest to point M25.

SBAS
γ

Dist vSAR σvSAR
vSAR 6= 0 vSAR = vGPS

PS [m] [cm/y] [cm/y] ? ?
6702 0.72 35.01 -0.12 0.12 no yes
6725 0.77 67.39 -0.27 0.11 no no
6750 0.71 67.86 -0.10 0.10 no yes

SPINUA
γ

Dist vSAR σvSAR
vSAR 6= 0 vSAR = vGPS

PS [m] [cm/y] [cm/y] ? ?
1106 0.88 67.00 0.01 0.06 no yes
1098 0.89 68.38 0.08 0.06 no yes
1142 0.76 94.49 0.14 0.10 no yes

Table 2.17: Velocities of SBAS PSs nearest to GPS point M25.
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As a matter of fact,for the comparison it is important that the considered SAR
points are those nearest to GPS point and it is reasonable to estimate SAR
deformation velocity on the same time step covered by GPS measurements.
Obviously, in this way, the accuracy of deformation velocity evaluated using
SAR diminishes (it is based on 19 values instead of 39) and this can transform
significant velocities, estimated using smaller velocities standard deviations,
in not significant velocities. Excepting point M07, that was seen in motion
both from the 3 SBAS points and 3 SPINUA nearest PSs, in the other cases
the results are:

• point M01: 1 velocity over 3 was significantly different for SPINUA and
2 over 3 for SBAS;

• point M04: 1 velocity over 3 was significantly different for SPINUA and
2 over 3 for SBAS;

• point M25: no point is in motion for SPINUA and 1 velocity over 3 is
significant for SBAS.

These results high-lightened an intrinsic limit of the validation procedure
when applied to points that don’t have the same spatial position, where the
deformation values change point by point on a not well determinable way. A
procedure that consists in a comparison, area by area, between SAR mean
deformation velocity and GPS point-wise deformation velocity would be in
fact more robust if both the datasets would be located in an area with known
uniform deformation behaviour. Unfortunately, in the case in exam, it was
not possible to verify this condition.
Another problem found in the point-wise comparison between SAR and GPS
was that the GPS deformation series were too short for validation purposes;
in fact GPS deformation velocities were estimated on a limited deformation
series, 5 values against 19 for SAR, and the velocity accuracy resulted to be
too low.
In the present study, all 4 GPS points had a velocity not significantly different
from zero (see Table 2.7). Nevertheless, the high estimated velocity variability
made that, in a lot of cases, the comparison tests said that SAR and GPS see
the same deformation pattern. Statistics for SPINUA reported that 9 tests
over 12 are positive while for SBAS 8 tests over 12. Considering the single
GPS points, for point M01 and M25 the test was positive for 5 over 6 PSs
both for SPINUA and SBAS. For point M07, all PSs, both for SPINUA and
SBAS, verified the equality hypothesis between SAR and GPS. Finally, for
point M04, the test was overcome for 1 over 3 points for SPINUA and for
none for SBAS.
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Another important consideration can be done on the absolute value of the
deformations seen by SAR and GPS. Even when, from the statistical point of
view, SAR and GPS seemed to observe the same deformation pattern, the
absolute value could be very different. Nevertheless the limited accuracy of
GPS dataset made the validation procedure ineffective.

2.5 Remarks

The purpose of the comparison was to establish if terrain deformations ob-
tained using the SBAS and the SPINUA elaboration chains were in agreement
between themselves and with those got through GPS measurement surveys,
done with annual frequency on a network of points, materialized on the
ground, designed to monitor the landslide movement but not for validation
purposes.
Regarding SPINUA and SBAS cross-comparison, statistical tests for the com-
parison of mean velocities in areas with homogeneous behaviour permitted to
conclude that the two algorithms, when applied to the same images dataset
and after the correction of the planimetric bias between points for which
the movement velocity is determined, see a statistically equal deformation
movement. It has to be underlined that the choice of different reference
points for the two methodologies, that brings to a constant bias to velocity
estimation is, in this case, not significantly different from zero.
Regarding the validation of SAR deformation series, the main result consists
in the focusing of the main general limits of this comparison, such as the
impossibility of making the validation due to the non sufficient accuracy of
GPS measurements. Even if GPS and SAR would have the same accuracy
level, it would be important that they would be near in the landslide body.
This is because, since the deformation field can be very irregular (and this is
frequent considering landslides, particularly when the displacement area is a
strong urbanized area as Ivancich), the prediction error becomes too big and
it compromises the result of the validation itself.
In these situations, a solution can be the identification of areas with homo-
geneous behaviour (with the help of external information sources) in which
there are observations of both techniques (this is not always true but for the
case of a proper location of corner-reflectors near the GPS receivers) that can
be compared in term of mean velocity.
The use of velocity as the comparison term introduces the hypothesis of linear
displacement and this can also be false.
Assuming that the displacement is linear with respect to time, and in the
case of Assisi landslide it seems reasonable, it is important that the velocity
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estimation is based on very accurate time series. In this particular case, the
high variability of GPS deformations with respect to SAR ones, as the limited
number of GPS points, makes the velocity estimation always significantly
equal to zero and not useful for the validation.
Therefore, the MORFEO validation project revealed to be not applicable for
the poor quality of GPS observations and for the GPS network disposal with
respect to the SAR permanent scatterers distribution, not suitable consider-
ing the spatial coherence of the phenomena to monitor. On the other hand,
the necessity to have long historical deformation series, demanded to survey
the already monitored GPS network that were not designed for validation
purposes.
On the base of the acquired knowledge, it can be said that to make the SAR
deformation series validation using GPS, it would be necessary to:

• select GPS stations in areas with high density of permanent scatterers
and recognized to be zones of homogeneous deformation behaviour;
GPS permanent stations would be preferable

• where possible, locate SAR corner reflectors near GPS stations;

• make more measurement campaigns and in between each survey, make
measurement sessions longer than 24 hours.

Obviously this approach would require much more time and more resources.

Nevertheless, it should be underlined the importance of validation procedures
of EO products. The experience acquired in this study can be a good starting
point to plan new and more effective validation procedures for future works.
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Part II

Height fields
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Chapter 3

Height fields and DEMs

The second part of this thesis is about the COSMO-SkyMed project activities:
validation and fusion of DEMs which present different characteristics in terms
of accuracy, resolution and type of information included.
In this case surface models are produced from different observations of the
same height field. The validation aims at establishing if the validating model
represents the same surface of a reference one, within a given range of accuracy.
The fusion, when sensible, produces a unique model of the height field. Briefly,
the problem is how to build a model for the Earth surface representation
starting from “observations” of its height with respect to a surface chosen as
reference. The kind of observations and the way to estimate a model from
them result in models characterized mainly by resolution and accuracy.
All these concepts will be clarified in the present Chapter. We begin by
introducing the concept of digital terrain modelling (Section 3.1) to give the
background necessary to understand the work. Subsequently, in Section 3.2
the techniques used to acquire height samples are described. Since COSMO-
SkyMed data products are generated from SAR data, more emphasis is given
to SAR systems and interferometric/radargrammetric techniques. After that,
Section 3.3 describes how to build the model from observations. Section 3.4
introduces the parameters used to describe how these models are able to
represent the real surface. Finally, Section 3.5 contains a short description of
DEMs available in the area of Como and used for the validation and fusion
work illustrated in Chapter 4 and Chapter 5 respectively.

3.1 DEM definition

The term Digital Terrain Model (DTM) was defined by two engineers of the
Massachusetts Institute of Technology (Miller and Laflamme [1958]) that in
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the late 1950s defined a DTM as follows:
“a DTM is simply a statistical representation of the continuous surface of the
ground by a large number of selected points with known X, Y, Z coordinates
in an arbitrary coordinate field”.
Since the 1960s, several other terms like Digital Elevation Model (DEM),
Digital Height Model (DHM) and Digital Ground Model (DGM) have been
introduced. These terms (DTM, DEM, DHM, and DTEM) are often assumed
to be synonyms but sometimes they really refer to different products also in
relation to the various definitions attributed to words like height, elevation
and terrain. More information in El-Sheimy et al. [2005].
Generally the word DTM assumes a wider meaning, containing four groups
of information:

1. landforms such as elevation, slope and other more complex geomorpho-
logical quantities;

2. terrain features, such as hydrographic features, transportation networks,
etc.;

3. natural resources and environment;

4. socioeconomical data, such as population distribution, capital income,
etc..

The definition of DTM may be generalized in this way (Li et al. [2005]): “it
is an ordered set of sampled data points that represent the spatial distribution
of various type of information on the terrain”.
A mathematical expression to describe the model is:

[KP ] = [f(up, vp)] [K] = 1, 2, 3, ...,m P = 1, 2, 3, . . . , n (3.1)

where KP is one attribute value of the k -th type of terrain feature at the
location of point P, (uP , vP ) is the 2D coordinates pair of point P, m is
the total number of terrain information types and n is the total number of
sampled points. When m is equal to 1 and the terrain information is the
height, the result is the mathematical expression of DEM which is a subset
of a DTM.
In this thesis a DEM is considered as an altimetric model that consists in
a set of data that allows to calculate, using an interpolating method, the
height of a point of the ground with a given precision. We will consider the
orthometric height of a point P, namely the length of the plumb line from P
to the geoid, or the ellipsoidal height of P that is the length of the normal to
a reference ellipsoid through P, from P to the ellipsoid.
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An important distinction is between the terms DTM (Digital Terrain model)
and DSM (Digital Surface Model). The former refers to the altitude of the
bare ground while the latter includes roofs, vegetation and other manufactures
as shown in Figure 3.1 1.

Figure 3.1: DSM vs DTM.

Altimetric models represent an alternative to the traditional use of contour
lines in describing the terrain altimetry. While contour lines can overlap
planimetric maps giving a very efficient representation of terrain morphology,
altimetric models provide a visual description of terrain morphology only if
the grid that they represent is drawn according to an axonometric projection.
Therefore contour lines are used for terrain visualization while data of an
altimetric model give the height information in a format uniquely suitable for
numeric elaboration with a computer (Cilloccu et al. [2007]).
In fact, the most common methods to represent surface in digital forms are
three:

• contour lines;

• triangulated irregular network (TIN);

• grids (Lattice or elevation matrix).

In this dissertation just DEMs in grid form are considered.
DEMs are used for different purposes ranging from basin characterization,
which requires the investigation of large areas, to the evaluation of water

1This figure is taken from Cilloccu et al. [2007].
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pounding capacity at the clod level, which requires very accurate height
estimates.

The generation of a DEM can be subdivided into two steps: terrain data
capture and model construction. The former regards the acquisition of
terrain observations and can be done using different techniques (see Section
3.2). The latter refers to the formation of a set of relations among the
different observations to build the model itself. This is created defining an
interpolation method that permits to reconstruct from a dataset of sampled
points a continuous model of the Earth surface (Section 3.3).

3.2 DEM generating techniques

Various techniques are used to acquire samples of the Earth surface for DEM
generation, such as:

• cartographic digitization by using existing topographic maps and digi-
tizers;

• field surveying by using total station theodolite and GPS;

• airborne laser scanning (LiDAR);

• photogrammetry by using stereo pairs of aerial and satellite images;

• radargrammetry and SAR interferometry.

Sample data accuracy depends strongly on the type of measurement performed;
the technique, the instrument and the modality (static or dynamic) adopted
to acquire data determine their quality.
Table 3.1 summarizes pro and cons of the different DEM acquisition methods.
In terms of measurement accuracy, a millimetric level can be reached by ground
survey, centimeter-level by photogrammetry and meter-level by digitization
from maps. The accuracy of photogrammetric data depends on the images
used. For DEM data acquisition using InSAR the accuracy is about 5 meters.
In the following just the techniques adopted to generate the digital models
used in this study are shortly described (for field surveying tecniques see Keim
et al. [1999] and Biagi [2006]). More details are given on SAR systems and
the techniques, interferometry and radargrammetry, used to generate DEMs
from SAR data since they represent the way COSMO-SkyMed products are
generated.
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Figure 3.2: Basic components of an ALS systems.

3.2.1 Airborne laser scanning

Airborne Laser Scanner (ALS), usually called airborne LiDAR (Light De-
tection And Ranging) in the commercial sector, is an active remote sensor
that sends off electromagnetic energy, with wavelengths ranging from 1040 to
1060 nm, and records the energy scattered back from the terrain surface and
the objects on it; the recorded signal is immediately converted to a digital
representation and stored directly onto a computer. The type of surface hit
by the pulses determines the intensity of returned signals.
It is a complex system as shown in Figure 3.22 that consists of three tech-
nologies: LASER, inertial navigation system (INS) and GPS.

Details on laser scanning can be found in Wehr and Lohr [1999]; here it is
shown the basic relations of airborne laser scanner and the factors influencing
the accuracy of the 3D coordinates of the point measured with it (Baltsavias
[1999]).
For a pulse laser, the range (R) and the range resolution (∆R) can be defined
as:

R = c·t
2

∆R = c·∆t
2

(3.2)

where t is the time interval between sending and receiving a pulse, c is the
speed of light (≈ 300, 000 km/s) and ∆t is the resolution of time measurement.

For a continuous wave (CW) laser, instead, they can be evaluated as:

2This figure has been taken from Brenner [2006].
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R = 1
4π

c
f
ϕ

∆R = 1
4π

c
f
∆ϕ

(3.3)

where f is the frequency (Hz); ϕ is the phase (rad); and ∆ϕ is the phase
resolution (rad).
The accuracy of laser ranging is defined as

σR ∼
1√
S/N

(3.4)

where σR is the ranging precision (m) and S/N is the signal to noise ratio.

The error sources in the derived coordinates can be listed as:

• errors in the direct georeferencing parameters detection provided by
GPS-IMU units;

• errors in the measured laser range;

• errors in the spatial rotational offsets between the various reference
systems;

• errors in the measured orientation angles relating laser beam and laser-
unit coordinate system.

The ALS system produces data that can be characterized as sub-randomly
distributed 3D points cloud whose distribution depends on the scanning
pattern of the laser scanner system.
Since the results are usually given in WGS84, the final results also depend
on the accuracy of the transformation from WGS84 to the local coordinate
system, including correction for the geoid undulations, which can be significant
with respect to the potential accuracy of ALS.
Furthermore, a data processing is needed both to remove outliers and to model
data of a given specific model (e.g., a DTM) as a subset of a measured digital
surface model (DSM). This processing consists in filtering, classification and
modelling. Filtering refers to the separation of those measurements which
derive from ground surface reflection from those which derive from vegetation
and buildings. Classification means to find a specific geometry or statistic
structure of the data. Modelling refers to the identification of the Earth
surface data and manufactures like buildings. It is important to highlight
that the quality of DTMs or DSMs is very dependent, besides the overall
measurements density and the accuracy of the laser scanner system, on
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Figure 3.3: Stereo model.

the post-processing software used to implement filtering and interpolation
algorithms. As a rule of thumb, being the flying height of most existing ALS
systems in the range of 20 to 6000 m (typically 200 to 300 m), the height
accuracy can be considered in the range of 10 to 60 cm (typically 15 to 20
cm) while planimetric accuracy between 0.1 and 3 m (typically 0.3 to 1 m).

3.2.2 Photogrammetry

Photogrammetry makes use of a pair of stereo images to reconstruct the
original shape of 3D objects, that is, to form the stereo-model (Figure 3.3).
The problem consists in determining the coordinates of a point in a ground
reference system, measuring the coordinates of the same point in the image
reference system of each photograph.

The relation between an image point coordinates, the corresponding ground
point and the projection center (camera) coordinates is given by the collinear-
ity equations which assume these three points standing on a straight line.

If the orientation parameters of each photograph (3 rotations and 3 transla-
tions) are known and the image coordinates of P in the two images have been
measured, by means of the collinearity equations, it is possible to calculate
the ground coordinates XP , YP , ZP of the point P.
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The images of the same point P in two photos are called homologous points.
In analytical photogrammetry, the search of homologous points is carried out
by an operator, while in digital photogrammetry this search is done automati-
cally by a procedure called image matching. Photogrammetric techniques can
be applied both on aerial and space images. Error sources in derived object
points from photogrammetric techniques include:

• errors in the internal characteristics of the implemented imaging system
as principal distance, principal point coordinates, etc.;

• errors in the external characteristics of implemented imaging system;
they are errors in the estimation of the position and the orientation
of the imaging system that can be done directly with a GPS-IMU
instrument or indirectly using the collinearity equations on points of
known coordinates, called control points;

• errors associated with the image coordinate measurements of conjugate
points in overlapping stereo-images;

• errors in the utilized mathematical model to link image coordinates and
ground coordinates.

Much more information can be found in Kraus [1992].

A sensor used to acquire satellite images to use as stereo-pairs is ASTER and
it is described a little bit in detail in Section 3.5.3.

3.2.3 Radargrammetry and SAR interferometry

Radargrammetry and SAR interferometry are two techniques that allow to
produce DEMs from SAR images: the former through the measurement of
parallax while the latter through the determination of phase shifts between
two echoes. Before describing these techniques, the SAR system is introduced.

SAR

SAR stands for Synthetic Aperture Radar; it is an active system that works
with microwaves. It is not dependent on sunlight and allows continuous
day/night operation.
Figure 3.4 shows the geometry of the radar imaging.
The radar is on-board a flying platform that can be an air-plane or a satellite.
It transmits a cone-shaped microwave beam (1 to 1000 GHz) to the ground
with a side-looking angle θ0 in the direction perpendicular to the flying track.
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Figure 3.4: Radar imaging geometry.

Each time, the energy sent by imaging radar forms a radar footprint on the
ground. This area may be regarded as consisting of many small cells. The
echo backscattered from each ground cell within the footprint is received and
recorded as a pixel in the image plane according to the slant range between
the antenna and the ground cell.
The raw direction of a SAR image, called azimuth, is defined by the trajectory
of the platform that carries the antenna, while the column direction, named
slant range, is defined by the radar beam direction, usually perpendicular to
the platform trajectory. The echo time-delay is:

t =
2R

c
(3.5)

where R is the radar-target distance.
The echo amplitude is related to the terrain backscattering properties which
depend on several physical parameters of the terrain such as the dielectric
constant (permittivity), the surface roughness and the local slope. Each echo
contains also a phase information that is related to the average propagation
time of the radar wave, on the nature of the elementary scatterers contained
in the pixel footprint and on their geometric distribution.
After a quite complex processing, each pixel of a SAR image contains the
amplitude of the received wave and the phase value related to the radar slant
range (Figure 3.5 shows an example of amplitude image while Figure 3.6
represents a phase image acquired by an hypothetical SAR sensor flying at a
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high of 780 Km over the Earth and with a normal baseline of 100 m 3).

Figure 3.5: Example of amplitude image (Vesuvio volcano, Southern Italy).

Figure 3.6: Example of phase image (Vesuvio volcano, Southern Italy).

These two components are recordable as a complex number and the SAR
image can also be called a radar complex image.

3These images have been taken from the “SAR imaging” course held at Politecnico di
Milano - Polo Territoriale di Como (Monti Guarnieri [2011]).
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Figure 3.7: Resolution of radar imaging.

The quality of a SAR image is related to its spatial resolution, i.e. to the
capability of resolving separate terrain elements on the Earth’s surface. It
is defined by the azimuth, the slant-range and the ground-range resolution.
According to electromagnetic wave theory, the azimuth resolution (∆x) can
be computed as:

∆x =
Rλ

L
(3.6)

where R is the slant-range, λ is the wavelength of the microwave, L is the
length of the aperture of radar antenna and ∆x is the width of the footprint
as shown in Figure 3.7.
The slant-range resolution (∆R) is:

∆R =
cτp
2

(3.7)

while the ground-range resolution (∆y)

∆y =
∆R

sin θi
=

cτp
2 sin θi

(3.8)

where c is the speed of light, τp the pulse duration and θi is the side-looking
angle. Equations 3.6 and 3.8 show that slant range resolution depends
only on the property of the microwave and on the looking angle while the
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azimuth resolution is mainly determined by the position and by the size of the
antenna. The longer the antenna length, the better the azimuth resolution.
For space-borne systems, the slant range distance being of several hundreds
of kilometres, an acceptable resolution (e.g. 10 m) requires an antenna length
of many kilometres that is impossible to realise. To overcome this problem
the synthetic aperture radar has been invented. It is based on the principle
of the Doppler frequency shift caused by the relative movement between the
antenna and the target.
In this way the azimuth resolution (∆x) of the SAR is improved to the value:

∆x =
L

2
. (3.9)

Principle of Radargrammetry

Radargrammetry is similar to photogrammetry (Section 3.2.2). In this case
the stereo model is formed by two SAR images acquired from the same
side but with different incidence angles; differently from SAR interferometry,
which exploits the information given by the phase, radargrammetry uses only
the amplitude information of SAR images. It can be implemented using an
interactive approach or an automated one.
The radargrammetric approach was first used in the 1950s; then it was less
and less used, due to the quite low resolution of radar imagery in amplitude, if
compared to their high resolution in phase. In the last decade the availability
of very high resolution data has transformed the radargrammetric approach
in a valid alternative to generate DSMs from SAR data (Raggam et al. [2010]
and Toutin and Chénier [2009]). In particular this method can be used to fill
gaps due to the lack of coherence in interferometric DSM in order to obtain
the best product (Crosetto and Pérez Aragues [2000]).
The 3D reconstruction relies on the following issues:

1. determining the sensor-object stereo model;

2. searching for homologous pixels using image matching techniques;

3. determining 3D coordinates by solving an intersection problem.

In order to establish the correspondence between the image and the object
space, a rigorous SAR image formation model (SIFM) must be defined.
It is based on two basic SAR mapping equations, namely the range and the
Doppler equations:

RS =
∣∣∣ (−→P −−→S ) ∣∣∣ = SP (3.10)
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Figure 3.8: Stereo configuration of radargrammetry.

fD = −2 ·
−→
SP ·

−→
V S

λ · SP
(3.11)

where
−→
P = (XP , YP , ZP ) is the location of the target point on the ground,

−→
S = (XS, YS, ZS) the satellite position,

−→
VS the satellite velocity vector, RS

the slant range distance, fD the Doppler centroid frequency and λ the radar
wavelength. The SIFM includes different groups of parameters: orbital
parameters, sensor parameters and SAR processing parameter. Furthermore,
the model parameters are often known with inadequate accuracy and should be
refined using a calibration procedure based on the measurements of tie points
and ground control points. For more details see Crosetto and Pérez Aragues
[2000].

Figure 3.8 shows the general stereo configuration of radargrammetry, in which
two SAR images are acquired with different radar look angles along two
different flight paths.

There is a plane formed by the two-sensor positions (
−→
S1,
−→
S2) and the object

position (
−→
P ). This implies that the object position is determined by the inter-

section of two radar rays with different look angles, leading to a complanarity
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condition expressed as follows:

−→
S1 +

−→
R1 −

−→
S2 −

−→
R2 = 0 (3.12)

where
−→
S1 and

−→
S2 denote the 3D position vectors of sensors 1 and 2, respectively,

while
−→
R1 and

−→
R2 denote the sensor-object vectors of two radar rays. The

complanarity condition can be interpreted as the intersection of range spheres
and Doppler cones and thus two range equations and two Doppler equations.
In the general case of zero-Doppler geometry, meaning that the target is
acquired on a heading that is perpendicular to the flying direction of satellite,
they can be written as:

|
−→
P −

−→
S1| = |

−→
R1| = R1

|
−→
P −

−→
S2| = |

−→
R2| = R2

(3.13)

−→
V1 · (

−→
P −

−→
S1) = 0

−→
V2 · (

−→
P −

−→
S2) = 0

(3.14)

where ~V1 and ~V2 denote the 3D velocity vectors of sensors 1 and 2, respec-
tively. In essence, Equations 3.13 and 3.14 represent the stereo model of
radargrammetry. The accuracy of DEM by radargrammetry is affected by:

• terrain features such as topographic slopes;

• geographical conditions and geometric distortions in relation to radar
looking angles;

• intersection angle.

Toutin (Toutin [2002]) has found that the DEM accuracy is almost linearly
correlated with the terrain slopes with the larger errors in the steepest slopes.
He also found that for the aspect the best and the worst results generally occur
in the foreslopes and backslopes and that the more pronounced the relief, the
higher the correlation between the elevation accuracy and the aspect.

Principles of Interferometric SAR

SAR interferometry, also called InSAR (Interferometric SAR), is the technique
that from a pair of SAR images of the same area taken at slightly different
positions, the master and the slave image, allows to compute an interferogram
and to use the phase differences recorded in it to derive a topographic map of
the Earth’s surface. The interferogram is calculated multiplying one image
by the complex conjugate of the other one. The interferogram is a complex



78 Chapter 3. Height fields and DEMs

Figure 3.9: Geometry of SAR imaging for heighting.

image too and its phase equals the phase difference between the two images.
According to wave propagation theory, the phase delay measured by the
antenna, proportional to the slant-range R between the antenna and the
target point, is:

Φ =
4πR

λ
(3.15)

Assume Ŝ1 be the complex image taken at position A1 with its phase com-
ponent Φ1 and Ŝ2 the complex image taken at position A2 with its phase
component Φ2 as shown in Figure 3.9.
Then the interferogram phase is equal to:

φ = ∆Φ = Φ2 − Φ1 =
4 · π · δR

λ
(3.16)

The interferometric SAR phase depends on the change in the nature and
geometric distribution of the scatterers occurred between the acquisitions
of the two images and on the propagation time difference of the radar wave
between the two-way paths, master-footprint and slave-footprint. Quanti-
tatively, temporal as well as spatial decorrelation can be measured by their
reduction of coherence γ which is the correlation coefficient of two complex
SAR images u1 [i, k], u2 [i, k] defined as:
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γ [·] =
|E {u1 [·]u∗2 [·]} |√

E {|u1 [·] |}E {|u2 [·] |}
(3.17)

where E {·} represents a two-dimensional local average in the image plane.
From Equation 3.16, the slant range difference (δR) between R1 (the distance
from a target point P to A1) and R2 (the distance from a target point P to
A2) can be calculated by the following formula:

δR = R1 −R2 =
λ

4 · π
φ (3.18)

where λ is the wavelength. When B << R1 the difference between two slant
ranges can be approximated by the baseline component in the slant direction
(i.e., the so-called parallel baseline, see Figure 3.10) as in Equation 3.19:

δR ≈ B‖ = B sin(θ − α) (3.19)

where θ is the side-looking angle. Then the following relation holds:

sin(θ − α) =
R2

1 +B2 −R2
2

2BR1

=
R2

1 +B − (R1 + δR)2

2BR1

(3.20)

and since:

θ = sin−1

(
λ · φ

4π ·B

)
+ α (3.21)

the heigth of the point P (from P to the same reference datum) can be derived
from the following equation:

h = H −R1 · cos θ (3.22)

where α is the angle of the baseline with respect to the horizontal line and
H is the flying height. From Equation 3.22 it can be seen that to compute
the height a precise estimate of the baseline and a precise computation of the
phase difference are necessary.
Assuming that the baseline can be determined by a GPS instrument on
board, the discussion focuses on the determination of the phase difference
φ. First of all, an operation of co-registration between the master and the
slave image is required since the two images may have different orientations
due to different antenna attitudes at different times. The processing consists
in a transformation of the two images in the same reference system and
in a resampling, usually using bilinear interpolation, into pixels with the
same size in terms of ground distance so that they could match each other.
The transformation is usually modelled by a polynomial function whose
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Figure 3.10: Across - track InSAR configuration.

Figure 3.11: The process of DEM data acquisition by InSAR.
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coefficients are estimated using some points, considered as control points,
of known coordinates. Image-matching techniques are used to find for each
point of the master image the corresponding point in the slave image. Once
the images are co-registered, the interferometric phase can be computed but
only in principal value (from -φ to φ) since the integral number of microwave
cycle is unknown. A data processing, called phase unwrapping, based on the
information of neighbouring pixels, has been developed to solve this problem
and find the full value of the interferogram phase. Figure 3.11 shows an
example of interferometric phase.

Figure 3.12: Example of interferogram, after flattening (Vesuvio volcano,
Southern Italy).

Differential SAR Interferometry

A short parenthesis can be opened to illustrate differential SAR interferometry
(DInSAR) which is the technique that allows to measure directly the movement
of a point along the LOS direction (the SPINUA and SBAS algorithms
illustrated in Section 2.2 apply this technique). In fact, if the two SAR
images are acquired from the same position (i.e. the baseline has a zero
length), the interferogram measures directly the displacement undergone by
the terrain in the antenna-target direction. DInSAR exploits this potentiality
eliminating from classical interferograms (i.e. generated with the ordinary
baseline configurations) the effects of terrain topography. This is done using
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at least three images or two SAR images and a pre-existing DEM of the
imaged scene.
The former case can be explained as follows. Consider 3 passes M, S and S’
of the same satellite over a given area (Figure 3.13).

Figure 3.13: Differential InSAR geometry.

The interferometric phase differences due to the different antenna-footprint
travel paths are:

φMS =
4 · π
λ

δRMS =
4 · π
λ

BMS‖ (3.23)

φMS′ =
4 · π
λ

δRMS′ =
4 · π
λ

BMS′‖
(3.24)

where B‖ is the component of the baseline parallel to slant range direction
(Eq. 3.19). The ratio between the phase differences

φMS

φMS′
=
BMS‖

BMS′‖

(3.25)

equals the ratio between the parallel components of the baselines BMS and
BMS′ and hence is totally independent of terrain topography. Let us assume
a terrain deformation between the S and S’ satellite passages which originates
a displacement of several pixel footprints that does not affect the correlation
of the SAR images acquired before and after the displacement. In this case,
a new phase term, corresponding to the component ∆ρ of the displacement
along the slant range direction (LOS), is added to the term dependent of the
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topography:

φMS′ =
4 · π
λ
·
(
BMS′‖

+ ∆ρ
)

(3.26)

The phase contains both the information about the terrain topography and
the one about the terrain displacement. Usually phase variations due to
movements can not be distinguished from ones generated by the topography
and this the reason why it is not possible to measure terrain displacements
using only one interferogram. A second interferogram has to be employed;
firstly, it has to be unwrapped and then multiplied by the ratio of the parallel
baseline component. Subtracting the two interferograms, the topography
term can be removed:

φMS′ −
BMS′‖

BMS‖

φMS =
4 · π
λ

∆ρ. (3.27)

The left term of the equation is known from the interferometric phases and the
orbit geometry. Hence the displacement component ∆ρ along the slant range
direction can be measured for each pixel of the double difference interferogram.
The other way to recover the displacement field from a single interferometric
image pair is, as said before, to use a DEM of the imaged scene. The effect of
the topography in fact can be removed simulating a synthetic interferogram
with the DEM and the orbital parameters of the two SAR images; then it
can be subtracted from the real one, leaving the phase related to terrain
movement (Crosetto [1998]).
To have a detailed review of SAR interferometry, see, e.g. Bamler and Hartl
(Bamler and Hartl [1998]).

3.3 DEM construction

The architecture of a DEM derives from the model used to represent it. At
the end of data acquisition process, a relatively unordered set of data elements
is available. It can be used to construct a usable DEM only if the topological
relations between data as well as an interpolation model that approximates
the surface behaviour are defined. It is important to remember that an
optimal surface model should:

• represent accurately the surface;

• be suitable for efficient data collection;

• minimize data storage requirements;
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• maximize data handling efficiency;

• be suitable for surface analysis.

Interpolation can be defined as the process of estimating the value of attributes
at a certain site from measurements made at surrounding point locations,
which are denoted as sample-reference points. Interpolation methods can be
classified according to different criteria:

• exact or inexact interpolation methods;

• global or local interpolation methods;

• stochastic or deterministic interpolation methods.

Exact interpolation generates a surface that passes through the reference
points. If this is not the case, the interpolation method is defined as a inexact
interpolator and the differences between the given and interpolated elevations
are used to define the quality of the interpolator itself.
A global interpolation uses all the available samples to estimate the elevation
at the interpolation points, while a local interpolation estimates the unknown
elevations using the elevations associated with the nearest sample points.
In deterministic interpolation the assumptions on the Earth surface regularity
are implicitly made by representing this surface as a combination of given
functions. Stochastic methods derive this information from the sampled
data, by computing statistics such as the empirical covariance function or the
empirical variogram.
It can be underlined that the interpolation is applied twice: an interpolation
method permits to go from the set of acquired height data to the model. For
example from a set of sparse points a model of ASCII grid format is construct
giving a series of coordinates on a set of equally distributed points. Once the
model is built, the user has to define an interpolation method to compute the
height of whatever point located in the domain.
The topographic modeller should be very careful in selecting the technique to
interpolate the initial sampling data points of altitude because it can affect
considerably the DEM quality.
More in Aguilar et al. [2005] and Chaplot et al. [2006].

3.4 Quality of DEMs

Several factors affect the quality of DEMs. An initial source of errors can
be attributed to the data collection since the quality of the estimated height
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depends on the acquisition technology applied (see Table 3.1). Other sources of
error include the spatial structure of altitude and the interpolation technique
for DEM generation, in particular the last one can have a great impact on
the quality of a DEM.
The accuracy of a DEM is evaluated comparing the DEM data with a set
of check points measured by using high precision methods. The pairwise
comparison (each check-point value is compared by the value given by the
model in the same position) allows the calculation of the mean error (ME), the
root mean square error (RMSE), the standard deviation and similar statistics.
The RMSE is the measure most frequently used both in experimental and in
theoretical analysis of DEM accuracy (Li [1988]) and it was used also in this
validation/fusion work. It is defined as:

RMSE =

√∑
DH2

i

N
(3.28)

where DHi represents at each i-th check point the difference between the
model and the real surface and N the number of DH. Figure 3.14 can be
helpful to understand what this value represents: T is the terrain surface
while M the surface modelled by the DEM.

Figure 3.14: The terrain surface, DEM surface and check points.

These points must be very accurate and enough to guarantee error control
reliability. The evaluation of a DEM accuracy depends on the kind of check
points used, on their number and on their distribution. Cuartero et al. [2005]
reported that common sources of check points are topographic contour maps,
whose accuracy is not well known and that the error control is frequently
performed with a number of points that is insufficient to guarantee the test
reliability. The number of check points is an important factor in reliability
influencing the range of stochastic variations of the SD values. The estimate
of errors in a DEM is usually made by following the U.S. Geological Survey
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recommendation of a minimum of 28 check points but it has been showed
that many more points are needed to achieve a reliability closer to what is
accepted in more statistical tests.
The expression that relates reliability to the number of check points is:

R(e) =
1√

2(n− 1)
× 100% (3.29)

where R(e) represents the confidence value in percentage, and n is the number
of check points used in the accuracy test. So 100 check points are needed to
obtain a SD value of 5%; with 28 check points the confidence value reached is
equal to 20%.
Another way to evaluate the accuracy of a DEM is considering the height
difference (DH) between the DEM surface and the terrain surface as a random
variable. The extreme values of the set of values assumed by the variable DH,
DHmin and DHmax, indicate the general location of all the other values and
the range R, defined as:

R = DHmax −DHmin (3.30)

can be taken as a measure of the dispersion of the random variable. The use
of the range may be considered a poor measure of the accuracy of a DEM
since it depends only on two values and it ignores the probability distribution
of the variable DH.
Other powerful measures are the mathematical expectation and standard
deviation of the variable. Considering DH as a random variable, then the set
DH1, DH2, ..., DHn represents a sample from this variable with a frequency of
1/N if N check points are used. By definition, the sample mean of DH(DH)
and the standard deviation (SD(DH)) may be computed as follows:

DH =
∑

iDHi

N
(3.31)

SD(DH) =

√∑
i (DHi−DH)2

N
(3.32)

Consequently a combination of the mathematical expectation and standard
deviation can be used as a measure of the DEM accuracy as follows:

Ac = DH + SD(DH). (3.33)

3.5 DEM available on the area of Como

The DEMs available in the area of Como and used for this study are:
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• a LiDAR DSM;

• a DSM from photogrammetry;

• the ASTER DSM;

• the SRTM DSM.

These models are described in the following sections with a level of detail
that depends on the available information. Particular attention is dedicated
to ASTER and SRTM DSMs since they were used as test fields during the
fusion studies when COSMO-SkyMed data were not yet available (Chapter
5).

Figure 3.15: LiDAR data distribution.
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Figure 3.16: LiDAR DSM.

3.5.1 LiDAR DSM

Regione Lombardia made a LiDAR campaign on the area covered by the lake
of Como (northern Italy) in 2003. The dataset is composed by 126 tiles but
for this work just the tiles covering the city of Como were considered; they
are tiles 110, 116, 117, 118, 122, 123 in Figure 3.15. For these tiles, Regione
Lombardia delivered to the Laboratory of Geomatica of Como the raw data
of this LiDAR survey, in particular the data referring to first and last pulses.

Data refers to ellipsoidal heights in ETRF89, projected in UTM32. Filtering
techniques have been applied to create a DSM with a resolution of 2m x
2m and an accuracy of about 50cm. The calculation was done using some
routines developed in GRASS (Brovelli and Lucca [2009], Lucca [2012]). This
DSM is extended 8km in East and 6km in North. It is in ASCII-grid format
and it is shown in Figure 3.16.

3.5.2 DSM from photogrammetry

This DSM was cut off from a DSM delivered by Regione Lombardia, created
using images acquired after 2007. The product came from a unique acquisition
process done using a digital photocamera and an GPS-IMU instrumenta-
tion for direct georeferencing of images. It is in ASCII-grid format and its
characteristics are reported in Table 3.2. Its extension is visible in Figure
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3.17.

Resolution 2m
Extension Lombardy
Accuracy 1.5m in height

Height Orthometric

Reference system
Version # 1: Roma 40

Version # 2: WGS84-IGM95 (ETRF89)

Reference coordinate
Version # 1: Gauss-Boaga west fuse

Version # 2: UTM fuse 32

Table 3.2: Characteristics of DSM from photogrammetry.

Figure 3.17: DSM from photogrammetry.

3.5.3 ASTER DSM

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)
is a high-resolution multispectral sensor built by METI (Ministry of Economy,
Trade and Industry of Japan) on board the National Aeronautics and Space
Administration’s (NASA’s) Terra satellite that was launched in December
1999. Figure 3.18 shows the satellite Terra and the ASTER sensors mounted
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on it 4. Table 3.3 summarizes the characteristics of Terra ASTER that has
been acquiring data in operational mode since March 2000.
Images are acquired in 14 spectral bands using three separate telescopes and
sensor systems.

Figure 3.18: The satellite Terra and the ASTER sensors.

Technical specifications Terra ASTER stereo
Bands in visible/near-infrared 3

Bands in short wavelength infrared 5
Bands in thermal infrared 6

Stereo capability

Yes
Bands 3N and 3B

(nadir and aft-looking telescopes)
0.78-0.86 µm

Stereo imaging geometry Along-track
Base-to-height(B/H) ratio 0.6

Pixel size 15 m
Scene coverage 60 Km x 60 Km

Orbital path
Near-polar

sun-synchronous
Orbital altitude 705 Km

Orbital inclination 98.2◦

Repeat cycle 16 days

Table 3.3: Technical specifications of ASTER sensor and Terra satellite
orbital parameters.

4This figure has been taken from a presentation on ASTER given in August the 2nd,
2005 at JPL by Mike Abrams (http://asterweb.jpl.nasa.gov/bibliography.asp).
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Figure 3.19: Simplified diagram of the ASTER along-track stereo imaging
geometry.

These include three visible and near-infrared (VNIR) bands with a spatial res-
olution of 15m, six short-wave-infrared (SWIR) bands with spatial resolution
of 30m and five thermal infrared (TIR) bands that have spatial resolution of
90m. VNIR Band3 is also acquired using a backward looking telescope, thus
providing along track stereo coverage, at a base-to-height (B/H) ratio of 0.6,
from which high quality digital elevation model are generated. Figure 3.19 5

shows the ASTER along-track stereo imaging geometry.

ASTER provides different standard data products whose characteristics are
reported in Table 3.4 (from Jet Propulsion Laboratory).

ASTER DEM standard data are produced with 30m postings, and have Z
accuracies generally between 10m and 25m as RMSE. A DEM can be created
as a Relative DEM (no ground control) or an Absolute DEM (with ground
control, which must be supplied by the user). These high spatial resolution
DEMs (up to 7m absolute horizontal and vertical accuracy with appropriate
ground control, and up to 10m relative accuracy without ground control) can
be used to derive absolute slope and aspect good to 5 degrees

5from Hirano et al. [2003]
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Level Product Description
1A Radiance at sensor Image data plus radiometric and ge-

ometric coefficients. Data are sepa-
rated by telescope

1B Registered radiance at
sensor

1A data with radiometric and geo-
metric coefficients applied

1AE Radiance at sensor Expedited L1AE data product cre-
ated from ASTER Expedited Level-
0. Image data plus radiometric and
geometric coefficients. Data are sep-
arated by telescope

1BE Registered radiance at
sensor

Expedited L1BE data product cre-
ated from ASTER Expedited Level-
1AE. 1AE data with radiometric and
geometric coefficients applied

2 AST09 Surface radiance-
VNIR,SWIR

Radiance corrected for atmospheric
effects

2 AST09T Surface
radiance-TIR

Radiance corrected for atmospheric
effects

2 AST09XT Surface
radiance-VNIR,SWIR
Crosstalk Corrected &
Radiance corrected for
atmospheric effects -
VNIR

Crosstalk Corrected SWIR

2 AST07 Surface
reflectance-VNIR,SWIR

Derived from surface radiance with
topographic corrections

2 AST07XT Surface
reflectance-VNIR,SWIR
Crosstalk Corrected

Derived from surface radiance with
topographic corrections - VNIR &
Crosstalk Corrected SWIR

2 AST08 Surface kinetic
temperature

Temperature-emissivity separation
algorithm applied to atmospherically
corrected surface radiance data

2 AST05 Surface emissivity Temperature-emissivity separation
algorithm applied to atmospherically
corrected surface radiance data

3 ASTER GDEM Global Digital Elevation Model
(GDEM), 1 x 1 degree tiles, 30m post-
ings, GeoTIFF format

3
AST14 Digital elevation
model

DEM produced by stereo correlation
of nadir and aft Band 3 data

AST14OTH Orthorecti-
fied

15 orthorectified L1B radiance im-
ages, in GeoTiff

AST14DMO Orthorecti-
fied + DEM

15 orthorectified L1B images + DEM

Table 3.4: Definition/specifications for ASTER DEM data products.
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Figure 3.20: ASTER DSM.

over horizontal distances of more than 100m. ASTER DEMs should meet
1 : 50, 000 to 1 : 250, 000 map accuracy standards (Abrams et al. [2002]).
An ASTER Global Digital Elevation Model (GDEM) was released to the
public on June 29th 2009. It was created processing automatically 1.5 million
scenes to produce approximately 1.3 million single-scene ASTER DEMs.
ASTER GDEM is in geotiff format with geographic (latitude, longitude)
coordinates and a 1 arc-second (30m) resolution; it covers land surfaces
between latitude 83◦N and 83◦S.
The ASTER GDEM validation report (Team [2009]) indicates a RMSE of
about 10m for United States but it is said that this value can be extrapolated
with confidence to other parts of the world and that the overall accuracy of
the ASTER GDEM, on a global basis, can be taken approximately 20m at
95% confidence for vertical data.
The ASTER DSM used is this work is part of this ASTER Global Digital
Elevation Model and it is represented in Figure 3.20.

3.5.4 SRTM DSM

The Shuttle Radar Topography Mission (SRTM) was jointly performed by
NASA, the German Aerospace Center (DLR) and the Italian Space Agency
(ASI).
Between February 11st and 22nd 2000, two antenna pairs operating in C and
X bands were simultaneously illuminating and recording radar signals on
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Figure 3.21: SRTM space segment.

board the Shuttle Endeavour. It was the first single-pass interferometer in
space. Two single-pass interferometers were built and operated in parallel:
the master channels (to transmit and receive) of both interferometers used
the original components in the shuttle cargo bay, the secondary (receive-only)
antennas were mounted at the tip of a 60m long lightweight mast as shown
in Figure 3.21.
Two different products can be generated from the radar data provided by the
in and on board antennas: the interferometric DEM (generated as explained
in Section 3.2.3) and image products derived from data recorded by the
inboard antenna. The mission had provided the first global high-quality DEM
at a resolution level of 1 arc sec (not available) and 3 arc sec, characteristics
of which are summarized in Table 3.5. It is important to underline that data
at 1 arc sec resolution are available just for North America while for the rest
of the world just the 3 arc sec resolution DSM, obtained as a mean of the
DSM at 1 arc sec resolution, is published. For this reason the SRTM DSM
was considered as a mean DSM during the validation/fusion work. For more
details about the mission see Rabus et al. [2003].

SRTM DSM was validated using a globally distributed set of ground control
points acquired using Kinematic Global Positioning System. Table 3.6 reports
the result of this validation (see Rodriguez et al. [2006] for more details).

Figure 3.22 shows the SRTM DSM for the area of Como.
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Resolution 3 arc sec
Extension from 57◦S to 60◦N latitude

Realization year 2000

Accuracy
±16 m as absolute vertical accuracy
±6 m as relative vertical accuracy 1

Height Orthometric
Reference system WGS84
1 The relative accuracy describes the error in a local 200 km

scale while the absolute value stands for the error budget
throughout the entire mission. The precision shall be valid
for 90% of the data, i.e. the error represents about 1.6 SD.

Table 3.5: Characteristics of SRTM GDSM.
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Absolute Geolocation Error 11.9 7.2 8.8 9.0 12.6 9.0
Absolute Height Error 5.6 6.0 6.2 8.0 9.0 6.2
Relative Height Error 9.8 4.7 8.7 6.2 7.0 5.5

Table 3.6: SRTM validation results. All quantities represent 90 percent errors
in meters.

Figure 3.22: SRTM DSM.
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Chapter 4

DEMs validation within the
COSMO-SkyMed project

This Chapter reports a DEM validation procedure. It was developed in view
of the COSMO-SkyMed products validation, but before those data were made
available to the project. We studied and applied it to the validation of two
different DSMs, used as test fields: the ASTER point-wise DSM (Section 3.5.3)
and the SRTM average DSM (Section 3.5.4). The validation was performed
in two ways.
The first one consists in comparing the information of each node of a grid
with the one brought by the points laying in its neighbourhood; since this
validation does not require additional information but the DEM itself, it is
called “internal validation” and is reported in Section 4.1.
The second one consists in comparing the validating DEM with another model
characterized by higher accuracy and resolution; in this case the LiDAR DSM
was considered as the reference model. Since it requires an external source of
information it is called “external validation” and it is explained in depth in
Section 4.2.

4.1 Internal Validation

This validation procedure was implemented within GRASS by Triglione dur-
ing his master thesis (Triglione [1999]). The purpose of internal validation
is to find outliers in a dataset of gridded points distributed on a bidimen-
sional surface. This is done on one point at a time making an estimate of
its height and dispersion coefficient at a local level. This estimated value is
then compared with the observed one by a proper statistical test procedure;
the observation is considered an outlier if significantly different from the
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prediction from its neighbours.
The prediction is made by assuming the interpolating surface to be a polyno-
mial function (from a constant plane to a bicubic surface) whose parameters
are estimated via least squares. Robust predictions are used as well.
Since a DEM is a matrix of big dimensions, the interpolation of all the data
with a unique model of very high degree is completely meaningless because
it requires enormous memory availability and very long calculation times to
obtain disappointing results in term of precision. Therefore outlier identifica-
tion is done considering local functional models: iteratively the attention is
focused on each DEM element and on the points in its neighbourhood. For
this purpose a window of odd dimension centred in point P (x0, y0) scrolls the
grid as a mask and gives the appropriate importance to the information of
the nearest points.
With this generic approach it is possible to study the behaviour of the data
illuminated by the window, making linear (and not linear) filtering and statis-
tical inference to understand on the base of the behaviour of the other points,
with a given significant level, if the generic point P (x0, y0) is reliable or not.
A basic assumption is that the argument values associated to the mask are
affected by white noise which represents the difference between the measure-
ments and the correct model. Interpolating surface choice influences the value
of the residual between estimated and measured values and determines the
judgement on the observed central value P (x0, y0). The software gives the
possibility to chose between different type of interpolating surface:

1. mean horizontal plane
hms(x, y) = a0 (4.1)

(with just 1 parameter a0, in the case of least square estimate it corre-
sponds to the sampled mean);

2. linear surface
hlin(x, y) = a0 + a1x+ a2y (4.2)

(with 3 parameters: a0, a1, a2);

3. bilinear surface

hbil(x, y) = a0 + a1x+ a2y + a3xy (4.3)

(with 4 parameters: a0, a1, a2, a3);

4. quadratic surface

hquad(x, y) = a0 + a1x+ a2y + a3xy + a4x
2 + a5y

2 (4.4)

(with 6 parameters: a0, a1, a2, a3, a4, a5);
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5. biquadratic surface

hbiq(x, y) = a0 + a1x+ a2y + a3xy + a4x
2+

+ a5y
2 + a6x

2y + a7xy
2 + a8x

2y2 (4.5)

(with 9 parameters: a0, ..., a8);

6. bicubic surface

hbic(x, y) = a0 + a1x+ a2y + a3xy + a4x
2 + a5y

2+

+ a6x
2y + a7xy

2 + a8x
2y2 + a9x

3 + a10y
3+

+ a11xy
3 + a12x

3y + a13x
2y3 + a14x

3y2 + a15x
3y3

(4.6)

(16 parameters: a0, ..., a15).

Whatever is the chosen surface h(x, y), data model is described by the following
observation equation:

hoss,i = h (x, y) + νi, i = 1, 2, ...,m (4.7)

where νi ∼ N [0, σ2
0 I].

The reliability of the mask central value hoss,0 = hoss (0, 0) can be infered

from the gap between hoss (0, 0) itself and its estimate ĥ0 evaluated from
neighbouring observations in accordance with the assumed model.
The hypothesis to test is:

H0 : ∆h = |hoss,0 − ĥ0| = 0 (4.8)

with a statistic S (h,∆h) that grows in modulus when ∆h grows and de-
screaseas as much as the deterministic model (the interpolator) is adequate
to explain the observation. Therefore hoss,0 is suspected to be an outlier if the
empirical value of the statistic overcomes a costant estabilished on the base
of theoretical considerations. Once defined the metodology to make the test,
interpolation model, mobile window size and significant level α should be set.
A command called r.outldetopt helps the user in choosing the optimal method
of interpolation and the moving window size on the base of the specific dataset
under analysis (for more details on how this program works see Triglione
[1999]). Table 4.1 reports the interpolation method and the moving window
size used for the validation of ASTER and SRTM DSMs.
The statistics S (h,∆h) of known distribution when the hypothesis

H0 : ∆h = 0 (4.9)
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DEM Interpolation method Window size
ASTER bilinear 5x5
SRTM bilinear 5x5

Table 4.1: Interpolation method and window size used in validation.

is true is distributed as a t of Student with Nk−m degrees of freedom, where
Nk is the number of data contained in the moving window (the central value is
not counted) and m represents the number of parameters of the interpolating
model.

S =

√
Nk

Nk + 1

∆h

σ̂0

=

√
Nk

Nk + 1

∆h

σ0

σ0

σ̂0

∼
Z√
χ2
Nk−m

Nk−m

= t(Nk−m) (4.10)

For example, if the interpolating method is bilinear and the window side
dimension is 5, the statistics has degree of freedom equal to Nk−m = 24−4 =
20. Once the statistic has been defined, the distinction between what is an
outlier and what not depends on the value of significance α used in the
test on the normalized residuals. The value of α used to make the test is
fixed in an adaptive way to avoid to consider as outliers too many points
(when α is too high) or too few (when α is too low). More precisely, the
significance level α is established on the base of the effective nature of the
data: a threshold beyond which is reasonable to consider the observations as
“unlikely” can be deduced comparing the distribution curve of the normalized
absolute residuals (empirical values of the t of Student distribution) with the
homologous theoretical distribution curve. The chosen alpha is the one that
corresponds to the intersection between these two curves; for more details see
the reference Triglione [1999].

4.1.1 Internal Validation of ASTER DSM

In Table 4.2 the absolute and the relative frequencies of the empirical t for the
ASTER DSM are reported while Table 4.3 shows the theoretical probability.
In Figure 4.1 empirical and theorical cumulative distribution for ASTER are
represented. The optimum value for α is 0.0108. There are 136 outliers over
70380 points (0.19%); their position is displayed in Figure 4.2.
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Interval
Absolute Relative

Frequency F Frequency f=F/N
[0-1.5) 19810 0.603062
[1.5-3) 13025 0.396511
[3-4) 12 0.000365

[4-inf) 2 0.000061

Table 4.2: Frequencies of |temp| for ASTER.

Interval
Probability per

Probability
number of data

[0-1.5) 27947 0.850764
[1.5-3) 4670 0.142160
[3-4) 209 0.006372

[4-inf) 23 0.000704

Table 4.3: Probability of |ttheo| for ASTER.

Figure 4.1: Empirical and cumulative distribution function of the statistic for
ASTER.
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Figure 4.2: Outlier location for ASTER DSM.

4.1.2 Internal Validation of SRTM DSM

Tables 4.4 and 4.5 the empirical frequencies and the theoretical probability
of the t distribution for the SRTM DSM are reported and in Figure 4.3
represented. The optimum alpha to make the outlier rejection is the one that
corresponds to the intersection of this two lines: in this case the optimum
value is α = 0.0112. There are 59 outliers over 7676 points (0.77%) and their
position is displayed in Figure 4.4.

Interval
Absolute Relative

Frequency F Frequency f=F/N
[0-1.5) 4921 0.754061
[1.5-3) 1586 0.243028
[3-4) 17 0.002605

[4-inf) 2 0.000307

Table 4.4: Frequencies of |temp| for SRTM.
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Interval
Probability per

Probability
number of data

[0-1.5) 5552 0.850764
[1.5-3) 928 0.142160
[3-4) 42 0.006372

[4-inf) 5 0.000704

Table 4.5: Probability of |ttheo| for SRTM.

Figure 4.3: Empirical and cumulative distribution for SRTM.

Figure 4.4: Outlier location for SRTM DSM.
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4.2 External Validation

As explained at the beginning of this Chapter, the external validation of
a DEM is done comparing it with a model that is more accurate an more
resolute. In this case the SRTM and ASTER DEMs validation was performed
against the LiDAR DSM, which is the most accurate and resolute DSM
available in the test area. Notice that the SRTM DSM is an average DSM.
The low resolution (3 arc second) free model used was derived making the
mean of a more resolute one (1 arc second resolution). A data-preprocessing
was necessary before entering the DSM comparison, it is described in the
following Section 4.2.1.

4.2.1 Data pre-processing

First of all, LiDAR heights were ellipsoidal while SRTM and ASTER heights
were orthometric (H); so the ellipsoidal height for ASTER and SRTM were
computed following the formula:

h = H +N (4.11)

where N is the geoid ondulation, in this case evaluated using the global
geoid model EGM96 (Lemoine et al. [1998]). Following Eq. 4.11, the set
of ASTER and SRTM geographic coordinates (φ, λ,H) were transformed in
(φ, λ, h). Then, a reference system transformation was performed to transform
ASTER and SRTM DEMs from geographic coordinates (φ, λ, h in WGS84) to
cartographic coordinates (E,N, h in WGS84-UTM). The transformation was
implemented because this was the reference system in which the coordinates
of LiDAR points were delivered. Due to this transformation data were not
anymore distributed as a grid and a gridding was necessary. This operation
was done using a bilinear interpolation; many different grids were produced,
different for size and position, at the end choosing the solution that best
approached the LiDAR DSM. But how to make this choice? Which is the
parameter that represents this “similarity” with the truth? The answer is
also the principle on which the external validation was based on and it is
explained in Section 4.2.2.

4.2.2 Validation

To validate something a comparison with a reference model should be done.
This comparison requires that the value of the heights to be compared refers
to the same position in space. At each point position, a difference between
two values coming from different datasets can be calculated as:
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δhi = h1i − h2i (4.12)

Here a distinction has to be done if an average DEM, as SRTM, or a point
wise DEM, as ASTER, is considered.
In case of DEMs which represent a mean surface, the comparison involved
mean values; put h1i be the value given by the average DEM to be validated,
for example the SRTM DSM, then h21 has to be a mean value of the model
used as reference, for example the LiDAR DSM. Practically, around each grid
node i of coordinates Ei, Ni, hi of the average DEM, a square area A of the
dimension of the grid side, centred in h1i is created and all reference data
(href) falling in A selected (see Figure 4.5). The average of all these values
hrefj represents h2i:

h2i =

∑
j∈A hrefj
N

(4.13)

Figure 4.5: Validation of a mean DEM.

where N is the number of reference points in the area A.
In case of point-wise DEM, as ASTER, the value of δh is computed following
Equation 4.12 again, but for the fact that the value h2i is the height of the
LiDAR point that is nearest to the point of coordinates Ei, Ni, hi described



106 Chapter 4. DEMs validation within the COSMO-SkyMed project

by each node of the DEM under validation. Figure 4.6 helps to understand
this concept.

h2i = hrefNN
(4.14)

Figure 4.6: Validation of a point-wise DEM.

Basically for each node i of the ASTER grid, δh is the difference between the
height of this node and the height of the reference dataset associated to that
node using a nearest neighbour interpolation.
Once for each grid node of the DEM to be validated a value of δhi is found,
the mean of these delta squared, Eq. 4.15, is the sought similarity indicator:

σ2 =
∑
i

δh2
i

N
(4.15)

where N is the number of grid node compared.
The accuracy σ of the model is given by the square of this value σ2 and
describes how the model is close to the reference DEM (this reference DEM
is considered to be free of errors). A DEM is validated if this value σ2 is less
then the nominal variance given by DEMs producers. The nominal accuracy
of SRTM is 16m. The value obtained comparing SRTM with LiDAR DSM
is 13.20m; then the model is validated. For ASTER instead the nominal
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accuracy is given in a range between 10m and 25m (Section 3.5.3) and since
the one evaluated from the comparison with LiDAR in the area of Como is
12.32m, the ASTER DSM over Como can be considered validated. It can be
useful to clarify a point: the position (E, N) of the points of the grid where
interpolate ASTER and SRTM sparse data was chosen as the one that allows
to obtain a minimum σ2 in the comparison between the model to validate,
the ASTER or the SRTM ones, and the reference LiDAR DEM. Nevertheless
a sensitivity study shown that the gridding didn’t influence the validation
results since all the values of σ2 found were less than the nominal accuracy of
the DSMs to validate.
Another analysis was done to see if the value of σ2 depends on surface
morphological parameters such as the slope and the aspect values; it is
reported in the following Section.

4.2.3 Validation based on slope and aspect classifica-
tion

Before entering the validation problems, a brief introduction on the meaning
of slope and aspect parameters is necessary.

Slope and aspect definition

Slope is usually measured in degrees or percentage and it is defined as the
rate of change in elevation ∆z over a change in lateral extent. The rate of
change of elevation in both the x and y direction can be used to identify the
direction and the magnitude of the steepest gradient. These two parameters
can be found by taking the partial derivatives of the elevation z with respect
to x and y. Therefore, slope (magnitude) can be found combining the two
component partial derivatives

Slope =

√(
δz

δx

)2

+

(
δz

δy

)2

(4.16)

Elevation will change in both x and y directions, and hence the slope resulting
from a change in lateral extent is the vector sum of the slope in the x direction
and the slope in the y direction.

Figure 4.7 illustrates these concepts.
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Figure 4.7: Definition of slope and aspect.

where:

• Slope in x = αx;

• Slope in y = αy.

The aspect value assigned to each cell in an aspect map represents the direction
(north, south, and so forth) to which that cell is oriented. Equation 4.17
describes how that direction is computed, where β (Figure 4.7) is computed
as the angle clockwise from north.

tan β =
δz

δx
/
δz

δy
(4.17)

Note that

Slope =

√(
δz

δx

)2

+

(
δz

δy

)2

=

√(
∆zx
∆x

)2

+

(
∆zy
∆y

)2

(4.18)

and the angle of the slope with respect to the horizontal equals the tangent
of the slope. With regard to grid data, the resulting slope value assigned to
each cell will reflect the overall slope based on the relationship between that
cell and its neighbours.

Validation of ASTER DSM

A study was carried out to see if the mean of the square residuals (the value
of σ2 computed as explained in Section 4.2.2) changes significantly according
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Figure 4.8: Classification based on slope. Figure 4.9: Classification based on aspect.

Figure 4.10: ASTER DSM: classification based on slope and aspect.

to the values of slope and aspect of the surface, computed on the model that
best approaches the real surface, the LiDAR DSM.
The values of slope and aspect associated to each ASTER node were computed
considering the DSM generated with a nearest neighbour interpolation of
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LiDAR dataset in the position of ASTER nodes (this is the same grid used for
a global validation explained in Section 4.2.2). Practically these calculations
were performed using the routine r.slope.aspect in GRASS. The data were
divided into 4 classes of slope (0−5◦; 5−12◦; 12−21◦;> 21◦ where 5◦, 12◦, 21◦

are the values that correspond to 25, 50, 70 percentile) and 8 classes of aspect
(North, North-West, West, South-West, South, South-East, East, North-East)
for a total number of 32 classes. Figures 4.8 and 4.9 represent the slope
classes and the aspect classes respectively. Figure 4.10 shows the slope and
aspect classification map. Class by class the ASTER DSM were compared
with the corresponding LiDAR derived DSMs, thus computing a different
value of accuracy for each class.

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 5◦ 754 732 641 561 657 681 698 764
5− 12◦ 1019 1050 756 659 789 711 705 802
12− 21◦ 833 898 562 597 843 772 634 612
> 21◦ 796 1022 246 335 722 1033 1018 591

Table 4.6: ASTER: class size.

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 5◦ 6.65 7.19 7.18 7.69 7.68 7.95 7.75 7.19
5− 12◦ 8.74 9.10 9.26 10.25 10.55 10.22 10.25 9.46
12− 21◦ 11.39 11.91 12.31 13.28 12.76 11.40 12.40 12.12
> 21◦ 19.51 20.07 17.60 18.22 16.05 11.76 14.79 16.99

Table 4.7: ASTER: class standard deviation [m].

Parameter Femp
Ftheo Test results

α = 0.01 α = 0.05
Slope 172.18 4.87 3.07 Significant dependence

Aspect 4.03 3.64 2.49 Less relevant dependence

Table 4.8: Femp for slope and aspect for ASTER.
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The size of each class is reported in Table 4.6 and the slope and aspect
dependent accuracies are reported in Table 4.7. The accuracy decreases as
the slope increases and changes also with the aspect.
An analysis of variance was done to determine the dependence of σ2 on slope

Figure 4.11: Classification based on slope. Figure 4.12: Classification based on aspect.

Figure 4.13: SRTM DSM: classification based on slope and aspect.
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and aspect values (to have more details on the followed procedure see Sansó
[1993] and Lucca [2012]). The test statistic is a Fisher distribution and the
hypothesis to test is if the value of sigma doesn’t depend on slope/aspect
values. Table 4.8 reports the empirical and theoretical values of this statistics.
When the empirical value Femp is lower than the theoretical one, the hypothesis
is accepted meaning that the value of the variance does not depend on the
corresponding parameter. Looking at Table 4.8 it can be observed that there
is a significant dependency on slope and a less relevant dependency on aspect.

Validation of SRTM DSM

For SRTM the value of slope and aspect of each node corresponds to the values
of slope and aspect calculated for a grid in which each node is the mean value
of LiDAR points falling in the cell (as explained in Section 4.2.2). For SRTM 4
classes of slope (0−3◦, 3−10◦, 10−20◦, > 20◦) and 4 classes of aspect (North,
West, South, East) were consider for a total number of 16 classes. Figure 4.11
and 4.12 represent the classification of SRTM DSM according to slope and
aspect respectively. Figure 4.13 shows the slope-aspect classification. In this
case, the aspect classes considered were just 4 instead of 8 as for the ASTER
case because otherwise the absolute frequencies of each category was too
small. The size and accuracy of each class are reported in Table 4.9 and 4.10
respectively. An analysis of variance was done also in this case and Table 4.11
reports the empirical and theoretical values of the statistic, both for the slope
and aspect values, for SRTM and ASTER respectively. The results show that
with a significance level equal to 0.01 (but also with alpha = 0.05%), the ac-
curacy of the SRTM DSM depends on the surface slope and less on the aspect.

Aspect
N W S E

S
lo

p
e

0− 3◦ 224 176 99 174
3− 10◦ 120 216 99 137
10− 20◦ 121 183 109 199
> 20◦ 171 218 53 225

Table 4.9: SRTM: class size.
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Aspect
N W S E

S
lo

p
e

0− 3◦ 3.06 3.73 4.28 3.00
3− 10◦ 6.93 9.59 6.48 7.52
10− 20◦ 9.72 15.68 8.93 11.51
> 20◦ 14.38 28.63 12.10 19.04

Table 4.10: SRTM: class standard deviation [m].

Parameter Femp
Ftheo Test results

α = 0.01 α = 0.05
Slope 23.01 6.99 3.86 Significant dependence

Aspect 6.42 6.99 3.86 Less relevant dependence

Table 4.11: Femp for slope and aspect for SRTM.

4.3 Remarks

An internal validation procedure is necessary to identify those data that have
an anomalous behaviour with respect to the model they belong to. When they
can be considered as outliers, at a certain level of probability, they should be
removed because they could affect the estimated accuracy of the model once
compared with a more accurate one.
It was observed that the percentage of suspected and then removed outliers,
both in ASTER and in SRTM DSM, was very low (less then 1%). Regarding
the validation of the two models using the LiDAR DSM as reference, it can
be said that the estimated accuracies were in agreement with ones given by
the corresponding DSM producer.
The variance analysis performed allows to conclude that the way the model
is able to describe the real surface, as expected, depends on the slope and
aspect values of the surface itself. In other words, it can be said that in both
cases, ASTER and SRTM DSMs, this dependency exists even it is not so
relevant for the aspect factor. This result was exploited during DSMs merging
step. Taking into account different weights for cells belonging to different
slope-aspect classes in fact allows to obtain a quite significantly improved
model, as shown in the following Chapter.
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Chapter 5

DEMs fusion within the
COSMO-SkyMed project

This Chapter reports a study on the way two different DEMs can be merged
together to obtain an improved model. It was developed in view of COSMO-
SkyMed products merging when they were not yet available.
Fusion of overlapping DEMs generated from data captured with different
techniques or in different times allows to find inconsistencies, to improve
density and accuracy, to eliminate gaps. This is the reason why the fusion of
digital surfaces, i.e. their optimal combination into a new single dataset, is a
crucial topic in the geomatic sciences (Papasaika et al. [2008], Papasaika et al.
[2009], Audenino et al. [2001], Schultz et al. [1999], Knöpfle et al. [1998]).
We focused our attention on two DEMs, used as test fields, that, besides
having a different grid, represent two different “functionals” of the Earth
surface. The heights of the first (ASTER) are point-wise values while those
of the second one (SRTM) are averages. A first study was done to see if
the information given by the averaged DEM could be improved using the
information given by the point-wise one. The fusion was performed making a
weighted mean as explained in Section 5.1. A second study was performed to
see if the point-wise DEM could be improved using the information given by
the averaged DEM. The fusion in this case was implemented via collocation.
This part is developed in Section 5.2.

5.1 Improving an average DEM with a point-

wise one

Suppose to have two DEMs, one point-wise and the other average, that refer
to two grids of different size and shifted one respect to the other. The value
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of the height of each cell of the average DEM is indicated as hm (m stands for
mean) while the height for the point-wise DEM is indicated as hp (p stands
for point-wise). Each point hp has a value of accuracy σp associated to it;
this value can be the same for all the points hp if just a variance is considered
(for example a global one) or can be different from point to point (suppose to
have an error map). A value hm2 equal to the weighted average of hp standing
in the window can be associated (Equation 5.1) to each cell of the average
DEM (the weight for each observation is the inverse of its variance as some
authors suggest, see Papasaika et al. [2008] and Knöpfle et al. [1998]).

hm2 =

∑
i

1
σ2
pi

hpi∑
i

1
σ2
pi

(5.1)

The variance of hm2, σ2
m2, can be computed using the variance propagation

law as:

σ2
m2 =

∑
i

σ2
pi

σ4
pi(∑

i
1
σ2
pi

)2 =
1∑
i

1
σ2
pi

(5.2)

For each cell of the averaged DEM, a new value can be computed as the
weighted mean of the two original values, one from the averaged DEM (hm1)
and the other from the point-wise one (hm2) :

hnew =

1
σ2
m1
hm1 + 1

σ2
m2
hm2

1
σ2
m1

+ 1
σ2
m2

(5.3)

5.1.1 Improving SRTM using ASTER

Following the procedure explained in Section 5.1 a new DEM on the same grid
of SRTM was created. This procedure was implemented in different ways:

• considering the nominal accuracy both for the ASTER (10m) and the
SRTM DSM (16m) (Section 3.5.3 and 3.5.4);

• considering the accuracy derived from LiDAR comparison both for the
ASTER (12.32m) and the SRTM DSM(13.20m)(see Section 4.2.2);

• considering the accuracy derived from slope and aspect classification
both for ASTER and SRTM.
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The resulting DEMs were compared with the LiDAR dataset, the accuracies
are reported in Table 5.1. As expected, in all the cases an improvement was
obtained with respect to the initial accuracy of SRTM DSM. Furthermore,
the different weighting strategies proved to be effective.

Models (on SRTM grids) Accuracy [m]
SRTM 13.20

Fusion with constant nominal accuracy 11.52
Fusion with accuracy based

11.48
on LiDAR comparison

Fusion with accuracy based on
10.75

slope and aspect classification

Table 5.1: Accuracy of new DEM obtained with fusion.

5.2 Improving a point-wise DEM with an av-

eraged one

The height field can be consider as a stochastic scalar field on a 2D plain
domain; at each location of coordinates x, y the height is a random variable
with a certain distribution. Assume that this field has been observed with
different techniques and there are observations which can be considered as
point-wise values while others evaluations of the height field represent average
values. For instance, observations of the field that come from photogrammetry
or GPS measurements associate to a point in the position x, y a value of height
that refers exactly to that point. On the contrary, when the 3D coordinates
of a point have been evaluated using SAR interferometry, the value of height
associated to a point P of coordinates x, y, derives from a particular pixel of
the SAR image, this value brings in turn in consideration all the echoes of
the scatterers that lie in the pixel footprint (see Section 3.2.3).
A study was done to understand if by a statistical method as collocation it is
possible to use all the observations, coming from different field functionals, to
predict the height of a generic point P located in this field. In Section 5.2.1
the theory is explained while in Section 5.2.2 a case study is presented.

5.2.1 Predicting theory

Suppose to have a scalar field u(P, ω): at each point P of coordinate x, y
belonging to this field a random variable is associated. Suppose to have
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Figure 5.1: Field observations.

different observations of this field coming from different functionals of the
field itself. Point-wise observations (yo

p
) can be considered as the sampled

values of the random variables located at different position x, y; they are in
the form of a vector of n components:

yo
p

=


zop1
zop2
...
zopn

 . (5.4)

Averaged observations (yo
m

) can be considered as extractions from the func-
tional that attributes to each point P an average of all the values assumed by
the point itself and by its neighbours. It assumes the form of a vector of m
rows (m is the number of observations which refers to the average functional of
the field and it can be different from the number of point-wise observations).

yo
m

=


zom1

zom2

...
zomm

 . (5.5)

Collocation is applied to compute the coefficients λ and µ to be used in the
linear prediction of the field u in a generic point P

û(P ) =
[
λt µt

] [yo
p

yo
m

]
. (5.6)



5.2. Improving a point-wise DEM with an averaged one 119

Each point-wise observation can be considered as the sum of the real value
plus an observation noise νp:

yo
p

= u (zp) + νp. (5.7)

Each averaged observation which is the mean of the values of the field in an
area A is represented by the integral over the area A of true value of u plus a
noise νm:

yo
m

=
1

Ai

∫∫
u (zi) dAi + νm. (5.8)

Collocation is a prediction instrument belonging to the Wiener-Kolmogorov
estimators and in particular is the predictor that minimizes the mean of
square differences between the field u and its linear prediction û (see Section
1.4).

E
{

[u(P )− û(P )]2
}

= min
λ,µ

(5.9)

As a first step the square of the difference is evaluated as:

[u (P )− û (P )]2 =
[
u (P )− λtyo

p
− µtyo

m

]2

=

=
[
u (P )− λt

(
u+ νp

)
− µt

(
1
Ai

∫∫
u (zi) dAi + νm

)]2

=

= u (P )2 + λtupu
t
pλ+ λtνpν

t
pλ+ µtūmū

t
mµ+

+µtνmν
t
mµ− 2u (P )λtu− 2u (P )λtνp+

−2u (P )µtūm − 2uµtνm + λtū (zp) νp+
+λtuµtū+ λtuµtνm + λtνpµ

tū+
+λtνpµ

tνp + µtūµtνm

(5.10)

where:

um =

um (P1)
...

um (Pm)

 (5.11)

with:

um (Pi) =
1

|Ai|

∫∫
Ai

u (x, y) dx dy (5.12)

where Ai is the area around Pi where u(P ) is averaged and

|Ai| =
∫∫

Ai

u(x, y) dx dy (5.13)
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Before making the mean of function 5.10 some hypothesis should be set; in
particular the field is assumed to be homogeneous and isotropic with zero
mean (it is a basic hypothesis to apply collocation), the measuring errors νp,
νm are white and uncorrelated with respect to the field u and with respect to
each other. In formulas we have:

E (u) = 0 ∀P
E
{
ν2
p (P )

}
= σ2

νp

E {ν2
m (P )} = σ2

νm

E {νp (P ) νp (Q)} = 0 ∀P 6= Q
E {νm (P ) νm (Q)} = 0 ∀P 6= Q
E {νp (P )u (Q)} = 0 ∀P 6= Q
E {νm (P )u (Q)} = 0 ∀P 6= Q

(5.14)

So the equation φ
(
λ, µ

)
that is to minimize becomes:

φ
(
λ, µ

)
= E

{
[u(P )− û(P )]2

}
=

= Cu (0) + λtCppλ+ λtCνpνpλ+ µtCmmµ+ µtCνmνmµ+
−2λtCp − 2µtCm + 2λtCpmµ

(5.15)

where Cpm is

Cpm (P, P ′) = E {u (P )um (P ′)} (5.16)

and Cmm

Cmm (P, P ′) = E {um (P )um (P ′)} =

E
{

1
|A(P )|

∫∫
A(P )

u (Q) dxQ dyQ
1

|A(P ′)|

∫∫
A(P ′)

u (Q′) dxQ′ dyQ′
}

(5.17)

To find λ and µ we compute the differential of the target function with respect
to λ and µ, and put it to zero ∀δλ and ∀δµ:

δφ(λ,µ)
δλ

= 0
δφ(λ,µ)
δµ

= 0
(5.18)

that is: {
2δλtCppλ+ 2δλtCνpνpλ− 2δλtCp + 2δλtCpmµ = 0
2δµtCmmµ+ 2δµtCνmνmµ− 2δµtCm + 2δµtCpmλ = 0

(5.19)

from which we have:{
Cppλ+ Cνpνpλ− Cp + Cpmµ = 0
Cmmµ+ Cνmνmµ− Cm + Cpmλ = 0

(5.20)
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that written in matrix forms is:[
Cpp + Cνpνp Cpm

Cmp Cmm + Cνmνm

] [
λ
µ

]
=

[
Cp
Cm

]
(5.21)

Once the coefficients λ and µ have been computed by solving the system 5.21,
Formula 5.6 can be applied to determine the value of the field (û(P )) in every
prediction points P.
This is the theory behind the prediction of a punctual value using both a
point-wise and a average functional. Now the problem is how to implement
the calculation of the covariance function between point-wise and average
observations (Cpm) and between the average observations themselves (Cmm).
Suppose to know the covariance function of the point-wise field Cpp (for
example it has been estimated by a certain dataset of point-wise observations).
The average observation of the field can be considered as the mean value
over an area of radius R of the punctual values of the field. The mean
value, theoretically expressed as an integral, can be numerically evaluated
for instance as the sum of 24 values around the center of the circular area,
each of them multiplied for the proper sector of a circle, divided by the total
area A. Obviously the impact of this discretization on the final results of
collocation should be studied. This aspect has been not considered in this
work but it will be an argument for future developments. Figure 5.2 show
the discretization of the area around each averaged observation of the height
field.

Figure 5.2: Discretization of the area around a mean value.

Considering this discretization of the integral on the area A, the covariance be-
tween a punctual observation and a mean observation (Cpm) can be considered
as:
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Cpimj
=

1

Aj

24∑
k=1

AkCpipk (5.22)

and

Cmimj
=

1

Ai

1

Aj

24∑
k=1

24∑
w=1

AkAwCpkpw . (5.23)

Figure 5.3 and Figure 5.4 can help in understanding the concept expressed
by equation 5.22 and 5.23.

Figure 5.3: Cpimj
.

Figure 5.4: Cmimj
.
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5.2.2 Case study

Using the method explained in the previous Section 5.2.1, a study was
performed to see if SRTM DEM could be improved using ASTER DEM. In
order to cover varying terrain characteristics, six study sites with different
morphologies were chosen in the area around the lake of Como. The covariance
functions of each area were estimated from the ASTER sparse data obtained
from preprocessing by using a free software developed by the australian centre
for precision agriculture called VESPER (Variogram Estimation and Spatial
Prediction plus ERror)(Whelan et al. [2002]). This software allows to analyse
relatively quickly large datasets. The program permits to fit the cloud points
with different models: spherical, exponential, gaussian, linear with sill, stable,
generalised Cauchy, matern, double spherical and double exponential. As a
matter of fact we estimated the empirical variogram of the data, thus avoiding
the approximated evaluation of their average, interpolated it with a proper
model and derived the covariance function, (C(τ)), from the variogram model
by exploiting the relation (Eq. 5.24):

γs(τ) = Cs(0)− Cs(τ) (5.24)

which holds true for homogeneous and isotropic fields. From the covariance
function, one can evaluate the correlation length of the height field. This
correlation was used to define a window size in order to perform a local
collocation prediction. It must be highlighted that the prediction was done
using just those observations (both for ASTER and SRTM) that lied in the
square window, centred in the prediction point, with side length equal to 2
times the correlation length. More precisely ASTER point-wise observations
and SRTM average observations were used to predict both the point-wise
value on the position of the ASTER grid and the average value of the field
on the position of the SRTM grid. With the prediction a new DEM was
obtained and after validated with the LiDAR reference DSM. The procedure
was implemented for six different testing sites: two planes, two mountainous
areas and two hill areas; their characteristics and the results obtained are
illustrated in the following. The study site is an area around the town of Como,
Italy, characterized by mountains, hilly regions and flat areas, mainly urban.
The method was applied in six different areas with different morphological
characteristics since the results can be different according to them (Papasaika
et al. [2009]). The six study sites are located as Figure 5.5 shows and the
results are reported in the following sections.
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Figure 5.5: Study sites.

Study site # 1

The extension of the area is about 600m along East and 1300m along North.
The limit of the region, given in projected coordinates (WGS84, UTM32),
are: 506250m W, 506850m E, 5072150m S, 5073500m N. Elevation values
ranges between about 245m and 270m as ellipsoidal height.
The empirical variogram is described by an exponential function with equation
(Eq. 5.25):

y = A
(
1− e−αd

)
(5.25)

and the corresponding covariance function is:

y = Ae−αd (5.26)

where: {
A = 15.75
α = 3.84× 10−3 (5.27)

They are both represented in Figure 5.6.
The RMSE between the points and the interpolated variogram model is equal
to 0.8839m2. The value of the nugget effect, i.e. the variance of the noise
can be considered equal to zero (σ2 = 1 × 10−4 ). To make the prediction,
just the observation standing in a window of 2000m centred in the prediction
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Figure 5.6: Empirical variogram and covariance function in study site # 1.

Number of Interpolation Data Accuracy
cells Model used [m]

900
Bilinear ASTER1 7.04

Collocation
ASTER 9.00

ASTER & SRTM 6.96
1 This is the grid obtained as explained in Section 4.2.1

Table 5.2: Accuracy of different DEMs in study site # 1.

point were taken into account.
Figure 5.6 shows the absence of the so called nugget effect; it is reasonable

since the nugget represents the variance of the uncorrelated part of the signal.
It is linked both to measurements errors and discrepancies in the way the
model is reconstructed; since the observations that generate the variogram
come from a existing DEM (ASTER DEM in particular), in other words refer
to a smoothed surface, it is reasonable that there is no nugget effect since the
incoherent part of the signal was already removed.

Table 5.2 summarizes the statistics of the different DEMs with respect to
the LiDAR dataset. The RMSE obtained comparing the DEM obtained by
bilinear interpolation of ASTER sparse points in this area test and LiDAR
DSM is equal to 7.04m2; this value is lower than 12.32 m calculated for the
whole area (see Section 4.2.2) because this area test is mainly flat. Making
the gridding using collocation and just ASTER observations, the RSME
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(a) (b)

Figure 5.7: Collocation results in study site # 1 using both ASTER and
SRTM observations of the height field. (a) Predicted heights [m]; (b)

Prediction error variance in
[
m2
]
.

grows a little bit passing from about 7m to 9m; this indicates that in this
region bilinear interpolation is preferable to collocation. Nevertheless it can
be underlined that when collocation is used to make a gridding on the base
of both ASTER and SRTM observation, the resulting DEM has an higher
accuracy with respect to the others. This is due to the fact that SRTM has
an higher accuracy (2.47m, Table 5.8) with respect to ASTER (see Table 4.7
and 4.10, in particular the first lines regarding lower slopes) and it is able to
add information to the model. Figure illustrates 5.7 the new DEM created
on the ASTER grid with relative prediction errors applying collocation to
ASTER and SRTM observations.

Study site # 2

This area extends about 500 m along East and 1300 m along North. Height
values ranges between 260 m and 290 m as ellipsoidal height.
The limit of the region, given in projected coordinates (WGS84, UTM32),
are: 506910 m W, 507420 m E, 5071520 m S and 5072810 m N.
The empirical variogram is interpolated by an exponential model of equation
(Eq. 5.28):

y = A
(
1− e−αd

)
(5.28)

and the corresponding covariance function (eq. 5.29):

y = Ae−αd (5.29)
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Figure 5.8: Empirical variogram, interpolated variogram model and
corresponding covariance function in study site # 2.

Number of Interpolation Data Accuracy
cells Model used [m]

731
Bilinear ASTER 6.77

Collocation
ASTER 9.99

ASTER & SRTM 7.35

Table 5.3: Accuracy of different DEMs in study site # 2.

where {
A = 32.94
α = 1.6× 10−3 (5.30)

The RMSE between points and interpolated model is equal to 0.8238m2. The
nugget effect is negligible Cν = 1× 10−4. The window size is equal to 2000m.

They are both represented in Figure 5.8.

Table 5.3 summarizes the statistics of the different DEMs with respect to the
LiDAR dataset. In this case bilinear interpolation allows to create the more
accurate DEM; nevertheless the prediction using both ASTER and SRTM
observations with collocation permit to obtain a good result (RMSE equal to
7.35 m). Also in this case adding the average observations in the collocation
procedure, the accuracy of the final model increases.

In Figure 5.9 the DEM created on the ASTER grid, using collocation from
ASTER and SRTM observations, with the relative prediction errors is repre-
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sented.

(a) (b)

Figure 5.9: Collocation results in study site # 2 using both ASTER and
SRTM observations of the height field. (a) Predicted heights [m]; (b)

Prediction error variance in
[
m2
]
.

Study site # 3

The area extends about 1300m along East and 1300m along North. The limit
of the region, given in projected coordinates (WGS84, UTM32), are: 503460m
W, 504810m E, 5074580m S and 5075930m N. Height values ranges between
250m and 500m as ellipsoidal height.

The empirical variogram is interpolated by a gaussian model of equation:

y = A(1− e−αd2) (5.31)

and the corresponding covariance function is:

y = Ae−αd
2

(5.32)

where {
A = 4510.5
α = 2.80× 10−6 (5.33)
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Figure 5.10: Empirical variogram, interpolated variogram model and
corresponding covariance model in study site # 3.

Number of Interpolation Data Accuracy
cells Model used [m]

2025
Bilinear ASTER 10.82

Collocation
ASTER 12.54

ASTER & SRTM 12.44

Table 5.4: Accuracy of different DEMs in study site # 3.

The RMSE between point and interpolating model is equal to 160.5m2. The
window size is equal to 2400m. The nugget is equal to 3.35 m2. Empirical
variogram, interpolated variogram model and corresponding covariance model
are represented in Figure 5.10.

Table 5.4 summarizes the statistics of the different DEMs respect to the
LIDAR dataset. The accuracy of DEM obtained from a bilinear interpolation
of the ASTER data is higher than in study test #1 and #2; this result is
coherent with the classification of ASTER DEM accuracy with respect to
slope values (Table 4.7): except for very low slope values, the higher the slope,
the lower the accuracy of the ASTER GDEM. Regarding collocation, it can
be noted that merging ASTER with SRTM does not permit to increase the
accuracy of the generated DEM in a significant way; this is due to the fact
that the accuracy of SRTM DSM diminishes when slope increases and the
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(a) (b)

Figure 5.11: Collocation results in study site # 3 using both ASTER and
SRTM observations of the height field. (a) Predicted heights [m]; (b)

Prediction error variance in
[
m2
]
.

average observations are not able to furnish significant information to the
model.
In Figure 5.11 the predicted heights and the errors of prediction in case of
collocation using both ASTER and SRTM observations are represented.

Study site # 4

This study site extends about 1350m along North and 1350m along East. The
limit of the region, given in projected coordinates (WGS84, UTM32), are:
503400m W, 504780m E, 5070020m S, 5071400m N. Height ranges between
350m and 425m as ellipsoidal height. The empirical variogram is interpolated
by a gaussian model of equation

y = A(1− e−αd2) (5.34)

and the corresponding covariance function is

y = Ae−αd
2

(5.35)

where {
A = 382.9
α = 2.84× 10−6 (5.36)

as shown in Figure 5.12.
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Figure 5.12: Empirical variogram, interpolated variogram model and
corresponding covariance model in study site # 4.

Number of Interpolation Data Accuracy
cells Model used [m]

2116
Bilinear ASTER 9.87

Collocation
ASTER 10.42

ASTER & SRTM 10.40

Table 5.5: Accuracy of different DEMs in study site # 4.

RMSE between the empirical variogram and the interpolated variogram model
is equal to 12.37 m, the nugget effect is equal to 3.888 m2 and the window
size equal to 2400 m.

The comparison here was performed with the DEM from photogrammetry
(Section 3.5.2) since LIDAR DSM doesn’t cover this area of interest. Table 5.5
reports the accuracy of the generated DEMs. It can be noticed that in this
area there is a small difference between the bilinear prediction and collocation.
Another element to underline is that there is no significant improvement in
merging ASTER and SRTM DSMs; also in this case the averaged observation
of the field isn’t accurate enough to be able to improve the quality of the
resulting DEM.

In Figure 5.13 the predicted heights and the prediction errors using both
ASTER and SRTM observations are represented.
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(a) (b)

Figure 5.13: Collocation results in study site # 4 using both ASTER and
SRTM observations of the height field. (a) Predicted heights [m]; (b)

Prediction error variance in
[
m2
]
.

Study site # 5

The area extends about 1300m in East and 1330m along North located as
shown in Figure 5.5. The limit of the region, given in projected coordinates
(WGS84, UTM32), are: 507090m W, 508440m E, 5073560m S and 5074910m
N. Height values ranges between 350m and 1000m as ellipsoidal height.

The empirical variogram in this region was computed using LiDAR data
because the empirical variogram of ASTER data were not limited and was not
possible to extrapolate the covariance function (Section 1.5.1). The empirical
variogram is interpolated by a gaussian model of equation:

y = A(1− e−αd2) (5.37)

and the corresponding covariance function is:

y = Ae−αd
2

(5.38)

where {
A = 13537
α = 8.71× 10−6 (5.39)

They are both represented in Figure 5.14.
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Figure 5.14: Empirical variogram, interpolated variogram model and
corresponding covariance model in study site # 5.

Number of Interpolation Data Accuracy
cells Model used [m]

2025
Bilinear ASTER 15.32

Collocation
ASTER 15.38

ASTER & SRTM 15.44

Table 5.6: Accuracy of different DEMs in study site # 5.

RMSE between the empirical variogram and the interpolated variogram model
is equal to 902.5; the window size is equal to 2000m and the nugget effect is
equal to 34.15m2. Table 5.6 summarizes the statistics of the different DEMs
respect to the LIDAR dataset. It can be noticed that in this mountainous
area the bilinear interpolation and collocation permit to obtain DEMs with
the same level of accuracy. Another result is that, since SRTM DSM describes
the Earth surface with a level of accuracy more or less equal to the one of
the ASTER DEM, there is no significant difference if collocation is applied
only on ASTER observations of the height field or on ASTER and SRTM
observations.

In Figure 5.15 the new DEM created on the ASTER grid, using collocation
from ASTER and SRTM observations, with the relative prediction errors is
represented.
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(a) (b)

Figure 5.15: Collocation results in study site # 5 using both ASTER and
SRTM observations of the height field. (a) Predicted heights [m]; (b)

Prediction error variance in
[
m2
]
.

Study site # 6

The area is located as represented in Figure 5.5. The limit of the region,
given in projected coordinates (WGS84, UTM32), are: 504720m W, 506070m
E, 5071910m S and 5073260m N. It extends about 1330m along North and
1320m along East. Height ranges between 251m and 573m as ellipsoidal
heights.

The empirical variogram is interpolated by a gaussian model of equation 5.40

y = A(1− e−αd2) (5.40)

and the corresponding covariance function is:

y = Ae−αd
2

(5.41)

where {
A = 20697
α = 1.83× 10−6 (5.42)

as shown in Figure 5.16.
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Figure 5.16: Empirical variogram, interpolated variogram model and
corresponding covariance function in test site # 6.

Number of Interpolation Data Accuracy
cells Model used [m]

2025
Bilinear ASTER 14.02

Collocation
ASTER 16.40

ASTER & SRTM 16.48

Table 5.7: Accuracy of different DEMs in study site # 6.

RMSE between points and the interpolating model is equal to 34.86m2, the
window size equal to 2000 m and the estimated nugget effect equal to 7.55
m2.
Table 5.7 reports the accuracy of the different DSM on test area # 6. It can
be seen that the difference between the collocation prediction considering
just ASTER point-wise observations and the one that takes also SRTM
observations into account is negligible.
In Figure 5.17 the predicted heights and the errors of prediction in case of
collocation using both ASTER and SRTM observations are represented.

5.2.3 Different application of the developed theory

The purpose of the work illustrated in the previous section was to understand if
it was possible to improve the accuracy of ASTER DSM through a collocation
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(a) (b)

Figure 5.17: Collocation results in study site # 6 using both ASTER and
SRTM observations of the height field. (a) Predicted heights [m]; (b)

Prediction error variance in
[
m2
]
.

procedure that takes into account also the average observations of the height
field. Once this method was developed, it was also applied to understand if
it could be used to improve the SRTM DSMs. At the base of this approach
there is the same theory explained in Section 5.2.1; the only difference is that
in this case the point-wise and the averaged observation of the field are used
to predict the average value and not the point-wise value of the height field.
Again SRTM observations were considered as the averaged observations of
the field while ASTER observations were taken as the point-wise ones.
DEMs obtained merging ASTER and SRTM data on SRTM grids using
collocation were compared to the DEMs obtained just using a weighted
average of them. The results are reported in Table 5.8. It can be underlined
how, for most of the studied cases, the accuracy of these DEMs increases
according to the morphology of the terrain. DEMs in plain areas are more
accurate than DEM sin hill area which are more accurate than DEMs on
mountainous areas; it is coherent with the results found in Section 4.2.3
showing the dependence of ASTER and SRTM DEM accuracy on slope
values. It can be seen that for the analysed sites, fusion with collocation
permits to reach good results even if the best merging techniques seem to be
a fusion just using a weighted average based on slope and aspect classification.
Furthermore it is important to say that the collocation method proposed in
Section 5.2.1 is very consuming from a computational point of view while
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making a weighted average is faster.

Accuracy [m]
Plain Hill Mountain

Model (on the SRTM grid) 1 2 3 4 5 6
SRTM 2.47 2.94 10.42 6.28 19.23 16.30

SRTM prediction
6.05 5.17 12.20 6.78 18.75 18.98

using collocation
Fusion by collocation

3.74 3.85 11.34 9.00 13.24 14.49
prediction

Weighted average fusion
3.52 2.24 9.20 8.01 11.85 10.15

(nominal accuracy)
Weighted average fusion

3.29 2.17 9.07 7.78 11.69 10.06
(accuracy from LiDAR)
Weighted average fusion

2.10 2.15 8.13 - 10.51 10.08
(variable accuracy)

Table 5.8: Fusion on the SRTM grid.

5.3 Remarks

The generalized collocation procedure here presented needs for sure some
refinements.
The weakest point is in the height field empirical function evaluation, due
to the assumptions of homogeneity and isotropy which are needed but very
often not satisfied.
When this assumption is forced, by not proper interpolations of the estimated
empirical values with a given model, this results in high prediction errors.
In fact, what the collocation predictor will be able to reconstruct is just the
homogeneous and isotropic behaviour of the assumptions. Moreover, this step
is always time consuming and quite arbitrary.
Nevertheless, such stochastic predictions are really flexible and allow the
merging of average and point-wise models, which becomes a quite challenging
issue in this days when SAR avarage DSMs are and will be made available.
Let us disregard for a moment the prediction error introduced by an approxi-
mated covariance model, and just compare the results obtained by using the
general collocation with the SRTM or ASTER only DSMs predicted with the
same technique. We can appreciate in this case the improvement obtained in
the final DSMs, either pointwise or average.
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A more general remark can be done on the use of stochastic predictors instead
of deterministic ones not for DSMs users but for DSMs producers: they seem
to us the more suitable for solving problems of optimization involved in DEMs
generation especially from different already existent models.
In this respect we would like to investigate further the problem of local predic-
tions based on those techniques, which allow for a more rough definition of the
covariance model and a faster and automatic application to DEM generation.
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Chapter 6

Validation and fusion of
COSMO-SkyMed products

Validation and fusion procedures explained in Chapter 4 and Chapter 5 were
thought to be applied to DSMs generated with interferometric techniques.
Unfortunately, none of such DSMs were made available to the COSMO-
SkyMed project, so that the developed procedures could be applied only
partially. The data made available consisted in a set of sparse coordinates
computed exploiting radargrammetric principles on COSMO-SkyMed radar
stereo-pairs. Our group dealt with the validation of these datasets. As a
matter of fact, the importance of the radargrammetric approach is rapidly
growing due to the high resolution imagery (up to 1 m Ground Sample
Distance GSD) which can be acquired by COSMOSkyMed, TerraSAR-X and
RADARSAT-2 sensors in spotlight mode (Capaldo et al. [2011]) and also
these new data need to be validated.
Furthermore, a fusion problem was tackled to understand how to merge
data coming from ascending and descending stereo-pairs of the same area.
This Chapter is organized as follows. Initially there is a short presentation
of COSMO-SkyMed mission (Section 6.1). Then, Section 6.2 illustrates
the characteristic of the software used to make the elaboration of COSMO-
SkyMed images. Section 6.3 describes the characteristics of the available
data and Section 6.4 the way they were interpolated. Section 6.5 reports
the validation work and Section 6.6 some considerations on the effect of a
filtering procedure, based on the coherence values associated to points, to the
accuracy of produced DSMs. Section 6.7 analyses the dependence of DSMs
accuracy on morphological parameters such as slope and aspect and Section
6.8 is dedicated to the fusion problem.
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Orbit type SSO
Inclination 97.86◦

Revolutions/day 14.8125
Orbit Cycle 16 days
Eccentricity 0.00118

Argument of Perigee 90◦

Semi Major Axis 7003.52 km
Nominal Height 619.6 km

LTAN 6:00 A.M.
Number of satellites 4

Phasing 90◦

Deployment Progressive

Table 6.1: COSMO Sky-Med orbit charachteristics.

6.1 Cosmo-SkyMed

COSMO-SkyMed (Constellation of small Satellites for Mediterranean basin
Observation) is an Earth Observation System commissioned and funded by
the Italian space Agency (ASI) and Italian Ministry of Defense (MoD). The
system consists of a constellation of four Low Earth Orbit mid-sized satellites,
each equipped with a multi-mode high-resolution Synthetic Aperture Radar
(SAR) operating at X-band and fitted with particularly flexible and innovative
data acquisition and transmission equipment. Some high level performances
of this system are:

• large amount of daily acquired images;

• satellite worldwide accessibility;

• all weather and day/night acquisition capabilities;

• very fast interval between the finalization of the user request for the
acquisition of a certain geographic area and the release of the remote
sensing products;

• very fine image quality (i.e. high spatial and radiometric resolution);

• possibility to chose between wide images with low spatial resolution
and more reduced coverage but with sub-meter resolution.

Table 6.1 reports the orbit characteristics of the constellation.
The SAR sensors mounted on-board are multimode sensors operating in:
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• spotlight mode, for metric resolutions over small images (10km × 10km);

• two stripmap modes, for metric resolutions (from 3m to 5m) over tenth
of km images; one mode is polarimetric with images acquired in two
polarizations;

• two ScanSAR for medium to coarse (from 30m to 100m) resolution over
large swath (200km).

Figure 6.1 shows the three acquisition modes of the COSMO-SkyMed sensor.

Figure 6.1: The 3 acquisition modes of COSMO-SkyMed sensor.

6.2 Elaboration of raw data

Point coordinates were extracted appling the radargrammetric approach
(3.2.3) to COSMO Sky-Med stereo pairs acquired in SpotLight mode. All
products used belong to the level 1A SCS category products (Single look,
Complex, Slant range) which are focused data in slant range zero Doppler
projection (the target is acquired on a heading that is perpendicular to the
flying direction of satellite). The software used to elaborate these images is
called SISAR (Software per immagini satellitari ad Alta Risoluzione) which
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is a scientific software developed at the Geodesy and Geomatic Institute of
the University of Rome “La Sapienza”.
DSM generation using radargrammetric techniques consists of two basic steps:
the stereo pair orientation and the image matching. Software SISAR permits
the image orientation of SAR stereo pairs in zero-Doppler geometry: this
is done using both rigorous (or physically based) model and the Rational
Polynomial Functions (RPFs) model. The last one consists of purely analytical
functions linking image to terrain coordinates, independently of specific
platform, sensor characteristics and acquisition geometry. It performs a 3D
orientation based on two range and two zero-Doppler equations allowing
for the least squares estimation of some calibration parameters, related to
satellite position, satellite velocity and to the range measure using a set of
GCP (Ground Control Points). As for the image matching, the critical issue
is the definition of a strategy to search the homologous points in the two
images; in the SISAR software a matching procedure has been developed
based on a coarse-to-fine hierarchical solution with an effective combination of
geometrical constraints and an Area Base Matching (ABM) algorithm (Crespi
et al. [2010]).

6.3 Data Description

Data to be validated were extracted using two stereopairs (one ascending
and the other descending) of COSMO-SkyMed images acquired in SpotLight
modality and in zero-Doppler/slant-range geometry. Table 6.2 reports the
characteristic of these stereo pairs.

Area

Mean
Acquisition Coverage incidence

Orbit
Look

B/H
time [km2] angle side

(deg)

Como

June 24th 2011 10 × 10 27.8 Desc Right 0.8
June 28th 2011 10 × 10 55.4 Desc Right 0.8
June 17th 2011 10 × 10 50.8 Asc Right 0.6

August 7th 2011 10 × 10 28.9 Asc Right 0.6

Table 6.2: Image acquisition modality description.

Data refer to two different areas located near the city of Como as shown in
Figure 6.2.
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Figure 6.2: Study sites.

Geographic limits of Region 1, given in projected coordinates (UTM32,
WGS84), are: 504165m W, 505635m E, 5073375m S and 5075180m N. Geo-
graphic limit of region 2, given in projected coordinates (UTM32, WGS84),
are: 506825m W, 508145m E, 5071295m S and 5072745m N. For each region
there are two datasets of point coordinates, one extracted from the ascending
stereopair and one from the descending stereo pair. Figures 6.3 and 6.4 show
the distribution of those points while Tables 6.3 and 6.4 report some statistics
of the different datasets. Furthermore, to each point is associated a value of
coherence that is the cross-correlation between homologous points evaluated
during the image-matching phase. Theoretically, the value of coherence ranges
from 0 to 1 (maximum correlation) but coordinates are rendered just for
those couple of points with a cross-correlation value higher than 0.75. This
parameter can be considered as a reliability index of the height information
associated to a terrain object obtained from a couple of homologous points.

6.4 Interpolation

Data were interpolated using bilinear splines on a grid of 5 m × 5 m. This
value of resolution was suggested from the research group that elaborated SAR
images and it is consistent with the average density of data. Radar points
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Figure 6.3: Region 1 and distribution of SAR points (in blu the points
extracted from the ascending stereo pair).

East [m] North [m] Height [m]
min 504165.00 5073375.00 204.02

230004 max 505634.86 5075179.99 498.56
Ascending points mean 504768.03 5074163.73 360.99

std 337.37 542.87 74.72

min 504165.00 5073375.00 215.77
132287 max 505634.96 5075179.94 498.54

Descending points mean 504692.53 5074281.47 373.78
std 361.35 526.22 82.88

Table 6.3: Region 1: Point statistics.
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Figure 6.4: Region 2 and distribution of SAR points (in blu the points from
ascending orbit).

East [m] North [m] Height [m]
min 506825.00 5071295.01 215.72

251341 max 508144.99 5072744.99 452.49
Ascending points mean 507495.80 5071995.73 291.62

std 366.99 408.54 40.26

min 506825.00 5071295.06 211.39
89668 max 508145.00 5072745.00 404.60

Descending Points mean 507449.69 5071948.46 288.39
std 364.33 388.68 26.76

Table 6.4: Region 2: Point statistics.
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located on the lake surface were not considered for interpolation because they
were related to bugs in the image matching programme.
Figure from 6.5 to 6.6 show the interpolated DSM from ascending (DSMA),
descending (DSMD) and ascending plus descending (DSMAD) points for
Region 1 and Region 2 respectively.

6.5 Validation

Firstly, an internal validation of generated DSMs was performed following
the methodology explained in Section 4.1 that allows to identify and remove
possible outliers. The parameters set to make this validation were:

• Window size: 3× 3 pixels;

• Interpolation method: bilinear;

• Significance level (α): 0.0002.

Tables 6.5 and 6.6 summarize the results obtained considering the following
input parameters. It can be noticed that the percentage of outliers is very
low; this means that most of the cells give an information on the height field
that is statistically coherent with the one given by the neighbouring cells.

Model # of cells # of outlier %
DSMA 82324 14 0.017
DSMD 82324 19 0.023
DSMAD 82324 30 0.036

Table 6.5: Region 1. Results of internal validation.

Model # of cells # of outlier %
DSMA 76560 14 0.031
DSMD 76560 19 0.013
DSMAD 76560 36 0.047

Table 6.6: Region 2. Results of internal validation.
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Figure 6.5: Region 1. Top: (left) DSMA, (right) DSMA −DSMLiDAR;
Center: (left) DSMD, (right) DSMD −DSMLiDAR; Bottom: (left) DSMAD,

(right) DSMAD −DSMLiDAR.
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Figure 6.6: Region 2. Top: (left) DSMA, (right) DSMA −DSMLiDAR;
Center: (left) DSMD, (right) DSMD −DSMLiDAR; Bottom: (left) DSMAD,

(right) DSMAD −DSMLiDAR.
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Subsequently, to find the accuracy of the generated DMSs, they were compared
with the LiDAR dataset, more precisely to the LiDAR DSM with resolution
equal to 5m, obtained by sub-sampling a LiDAR DSM with resolution equal
to 2.5m (in the following indicated as R1LB5 and R2LB5). The LiDAR DSM
was the most accurate available DSM and surely with an accuracy of an
order of magnitude higher than that of radargrammetric products, which was
expected to be in the order of 10m. The global accuracy of the six DSMs
produced with the whole dataset (coherence greater that 0.75) is reported
in Table 6.7 for Region 1 and in Table 6.8 for Region 2. The statistics were
evaluated on the 95% of the whole population; the threshold for the rejection
(LE95) is indicated in the last column of Tables 6.7, 6.8.

Model
Number RMSE sigma bias

LE95
of cells [m] [m] [m]

DSMA 82324 7.56 7.39 -1.61 20.24
DSMD 82324 9.64 9.61 0.82 30.34
DSMAD 82324 7.24 7.08 -1.51 19.72

Table 6.7: Region 1: Bilinear interpolated DSMs accuracy.

Model
Number RMSE sigma bias

LE95
of cells [m] [m] [m]

DSMA 76560 8.70 8.58 -1.47 23.88
DSMD 76560 11.54 11.52 0.68 33.08
DSMAD 76560 8.70 8.60 -1.31 22.76

Table 6.8: Region 2: Bilinear interpolated DSMs accuracy.

Analysing Tables 6.7 and 6.8 some considerations can be done. Estimated
accuracies are higher for the DSMs generated using the points obtained from
the ascending stereo-pair. This could be due both to the fact that descending
images were more affected by problems related to foreshortening and to the
fact that the number of points used for the interpolation is lower. The use of
both ascending and descending data results in a DSM whose accuracy is not
significantly different from that of the ascending one.
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6.6 Filtering on coherence value

Some analysis was performed considering also the value of coherence associated
to each point; it was conducted to see if the accuracy of the final DSM could
depend on the coherence of points used for interpolation. For each region,
three DSMs were obtained with a bilinear spline interpolation of just those
points with an accuracy higher than 0.85. Figures 6.7 and 6.8 illustrate those
DSMs and the difference with the corresponding reference DSM. The global
accuracies of the six DSMs are reported in Tables 6.9 and 6.10 for Region
1 and Region 2 respectively. The statistics were evaluated on the 95% of
the whole population; the threshold for the rejection is indicated in the last
column of Tables 6.9 and 6.10. Comparing Tables 6.9 and 6.10 with Tables
6.7 and 6.8, it can be noticed that the use of higher coherent points is worthy
as the generated DSMs accuracies increase of half a meter or more.

Model
Numbers RMSE sigma bias

LE95
of cells [m] [m] [m]

DSMA 82324 7.37 7.22 -1.44 18.90
DSMD 82324 9.20 9.14 1.01 22.04
DSMAD 82324 6.77 6.33 -1.39 17.37

Table 6.9: Region 1: Bilinear interpolated DSMs accuracy (coherence >
0.85).

Model
Numbers RMSE sigma bias

LE95
of cells [m] [m] [m]

DSMA 76560 8.10 7.91 -1.73 21.30
DSMD 76560 11.08 11.06 -0.65 33.20
DSMAD 76560 7.98 7.81 -1.63 22.19

Table 6.10: Region 2: Bilinear interpolated DSMs accuracy (coherence >
0.85).
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Figure 6.7: Region 1 (coherence > 0.85). Top: (left) DSMA, (right)
DSMA −DSMLiDAR; Center: (left) DSMD, (right) DSMD −DSMLiDAR;

Bottom: (left) DSMAD, (right) DSMAD −DSMLiDAR.



152 Chapter 6. Validation and fusion of COSMO-SkyMed products

Figure 6.8: Region 2: coherence > 0.85. Top: (left) DSMA, (right)
DSMA −DSMLiDAR; Center: (left) DSMD, (right) DSMD −DSMLiDAR;

Bottom: (left) DSMAD, (right) DSMAD −DSMLiDAR.
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Figure 6.9: The LiDAR derived 5m × 5m resolution model (R1LB5).

6.7 Slope and aspect classification

6.7.1 Region 1

As in the case of ASTER and SRTM (Section 4.2.3) the LiDAR derived model
in Region 1 (R1LB5) was used for a morphology dependent accuracy estimate
(Figure 6.9 shows the reference DSM). Figure 6.10 and Figure 6.11 illustrate
the surface of region 1 classified by slope only, by aspect only and by slope
and aspect together. Classes of accuracy were formed according to 4 classes of
slope (the limits between the different classes, 15◦, 27◦, 40◦ corresponds to the
25th, 50th and 75th percentile of the dataset) and 8 classes of aspect (North,
North-East, East, South-East, South, South-West, West, North-West). Table
6.11 reports the class size of the slope-aspect classification.
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Figure 6.10: Region 1: classification based on slope (left) and on aspect
(right).

Figure 6.11: Region 1: classification based on slope and on aspect.
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Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 15◦ 1759 1566 1845 2387 2940 3044 2827 2338
15− 27◦ 1779 1467 1794 2632 3357 3665 3550 2533
27− 40◦ 1759 1318 1629 2518 3387 3835 3934 2718
> 40◦ 1448 1082 1420 2348 2999 3678 3982 2853

Table 6.11: Region 1: class size.

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 15◦ 10.00 9.62 9.48 8.72 8.99 9.11 9.66 10.07
15− 27◦ 9.39 9.21 9.61 9.53 9.83 9.35 8.53 9.15
27− 40◦ 9.08 9.05 10.39 9.98 10.30 9.52 8.46 9.12
> 40◦ 10.84 10.42 11.65 11.62 11.25 9.86 9.54 11.46

Table 6.12: Region 1: DSMA accuracy [m].

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMA
slope 35.16 4.87 3.07

aspect 17.58 3.64 2.49

Table 6.13: Region 1: analysis of variance results for DSMA.

Analysis of variance for DSMs generated using all the dataset

Tables 6.12, 6.14 and 6.16 show the value of variance in each slope and aspect
class for the three DSMs of Region 1. It can be observed that for all the
classes the DSM obtained from the ascending stereo-pairs performs better
than that from the descending one. For each DSM the analysis of variance
results are also reported (Tables 6.13, 6.15 and 6.17). If the empirical value
is higher than the theoretical one, it means that there is a dependence with
respect to the parameter. It can be seen that for all analysed DSMs there is
a relevant dependence on both the morphological parameters.



156 Chapter 6. Validation and fusion of COSMO-SkyMed products

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 15◦ 13.37 14.47 12.50 11.39 11.32 11.74 11.83 10.72
15− 27◦ 13.11 15.51 13.18 11.64 12.74 14.81 14.00 13.33
27− 40◦ 12.44 15.11 13.87 12.08 14.64 16.57 15.61 14.25
> 40◦ 11.56 12.21 15.01 11.75 16.27 19.58 18.20 15.21

Table 6.14: Region 1: DSMD accuracy [m].

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMD
slope 26.29 4.87 3.07
aspect 22.16 3.64 2.49

Table 6.15: Region 1: analysis of variance results for DSMD.

ASPECT
N NW W SW S SE E NE

S
L

O
P

E 0− 15◦ 9.98 10.77 9.51 8.76 8.34 9.18 9.92 8.95
15− 27◦ 9.43 10.39 9.37 9.19 10.16 9.69 9.14 9.40
27− 40◦ 8.98 9.47 10.85 9.44 10.37 10.21 9.56 9.34
> 40◦ 10.05 9.92 11.55 10.51 11.96 11.45 10.73 10.72

Table 6.16: Region 1: DSMAD accuracy [m].

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMAD
slope 38.43 4.87 3.07
aspect 8.80 3.64 2.49

Table 6.17: Region 1: analysis of variance results for DSMAD.
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Analysis of variance for DSMs generated using just those points
with a coherence higher than 0.85

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 15◦ 9.90 9.26 9.29 8.98 8.64 8.99 9.56 9.92
15− 27◦ 9.58 9.05 9.38 9.08 9.25 9.05 8.40 9.22
27− 40◦ 8.96 9.08 10.35 9.64 9.47 9.03 7.90 9.06
> 40◦ 9.92 9.28 10.29 10.49 10.07 9.28 8.41 10.38

Table 6.18: Region 1: DSMA accuracy [m] (coherence>0.85).

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMA
slope 8.74 4.87 3.07

aspect 23.01 3.64 2.49

Table 6.19: Region 1: analysis of variance results for DSMA

(coherence>0.85).

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 15◦ 12.38 13.68 11.48 10.35 10.08 10.63 10.93 9.93
15− 27◦ 12.75 14.24 12.14 10.74 11.54 13.13 12.95 12.58
27− 40◦ 11.92 14.33 13.07 11.31 13.13 13.53 13.65 13.08
> 40◦ 11.48 11.21 14.07 11.31 14.33 15.97 15.04 14.09

Table 6.20: Region 1: DSMD accuracy [m] (coherence>0.85).

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMD
slope 30.95 4.87 3.07

aspect 17.18 3.64 2.49

Table 6.21: Region 1: analysis of variance results for DSMD

(coherence>0.85).
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Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 15◦ 9.13 9.86 8.24 7.69 7.75 8.18 8.87 8.80
15− 27◦ 8.91 9.40 8.19 8.15 8.65 8.70 8.58 8.85
27− 40◦ 8.44 8.52 9.65 8.64 9.04 8.65 8.26 8.87
> 40◦ 9.17 8.59 10.35 9.45 10.47 9.76 9.30 9.80

Table 6.22: Region 1: DSMAD accuracy [m] (coherence>0.85).

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMAD
slope 26.77 4.87 3.07
aspect 5.02 3.64 2.49

Table 6.23: Region 1: analysis of variance results for DSMAD

(coherence>0.85).

6.7.2 Region 2

Analogously, the LiDAR derived model (R2LB5) was used for a morphology
dependent accuracy estimate (Figure 6.12).

The same reasoning was followed for Region 2 where four classes of slope (the
limits between the different classes of slopes, 16◦-29◦-43◦ corresponds to the
25th, 50th and 75th percentile of the dataset) and eight classes of aspect (North,
North-East, East, South-East, South, South-West, West, North-West) were
formed. Figure 6.13 shows the slope classification and aspect classification
separately, Figure 6.14 the classification based on both of them. Table 6.24
reports the size of the different classes in Region 2.

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 16◦ 2691 2690 2719 2129 2114 1724 2189 2177
16− 29◦ 2393 2449 2821 2151 2049 1587 2011 1854
29− 43◦ 2310 2513 3003 2394 2137 1511 2048 1873
> 43◦ 3263 2843 3843 2803 2851 1971 2917 2532

Table 6.24: Region 2: class size.
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Figure 6.12: The LiDAR derived 5 × 5 m resolution model (R2LB5).

Figure 6.13: Region 2: classification based on slope (left) and on aspect
(right).
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Figure 6.14: Region 2: classification based on slope and on aspect.

Analysis of variance for DSMs generated using all the sparse dataset

Tables 6.25, 6.27 and 6.29 contain respectively the accuracy for the DSM
obtained by the ascending (DSMA), the descending (DSMD) and the union
of ascending and descending points (DSMAD). Table 6.26, 6.28 and 6.30
show the analysis of variance results. Also in this case there is a relevant
dependence both slope and aspect.

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 16◦ 10.69 13.28 10.20 10.87 10.01 9.75 9.93 10.21
16− 29◦ 10.63 10.66 10.36 11.12 10.59 10.49 10.69 11.27
29− 43◦ 10.83 11.31 10.86 10.99 11.42 11.84 11.72 12.39
> 43◦ 13.51 13.04 12.30 12.68 12.38 12.53 12.99 14.05

Table 6.25: Region 2: DSMA accuracy [m].
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Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMA
slope 61.83 4.87 3.07

aspect 11.18 3.64 2.49

Table 6.26: Region 2: analysis of variance results for DSMA.

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 16◦ 13.57 13.18 15.59 16.34 14.99 14.61 12.86 13.79
16− 29◦ 13.30 15.48 17.72 24.95 17.88 15.69 12.93 12.54
29− 43◦ 13.55 14.45 18.39 25.46 17.67 15.55 13.08 12.68
> 43◦ 13.64 15.78 16.95 21.13 15.33 14.03 12.83 14.36

Table 6.27: Region 2: DSMD accuracy [m].

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMD
slope 7.84 4.87 3.07

aspect 85.66 3.64 2.49

Table 6.28: Region 2: analysis of variance results for DSMD.

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 16◦ 10.40 12.90 10.55 10.78 10.01 10.11 9.69 10.64
16− 29◦ 10.70 11.03 10.36 13.24 10.87 10.78 10.15 10.56
29− 43◦ 10.91 10.81 10.74 11.66 11.41 11.43 11.43 11.76
> 43◦ 12.81 12.64 12.19 12.60 11.98 11.90 12.37 13.12

Table 6.29: Region 2: DSMAD accuracy [m].
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Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMAD
slope 32.39 4.87 3.07
aspect 10.53 3.64 2.49

Table 6.30: Region 2: analysis of variance results for DSMAD.

Analysis of variance for DSMs generated using just those points
with a coherence higher than 0.85

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 16◦ 9.94 12.54 9.26 9.57 8.74 8.62 9.09 9.37
16− 29◦ 9.66 9.35 9.57 9.85 9.43 9.37 9.67 10.59
29− 43◦ 9.86 9.85 9.88 9.74 10.23 10.31 10.60 11.38
> 43◦ 12.36 11.70 11.11 11.20 10.95 10.85 11.67 12.80

Table 6.31: Region 2: DSMA accuracy [m] (coherence>0.85).

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMA
slope 35.92 4.87 3.07
aspect 11.15 3.64 2.49

Table 6.32: Region 2: analysis of variance results for DSMA

(coherence>0.85).

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 16◦ 14.64 13.90 17.35 18.63 16.45 16.24 13.42 14.70
16− 29◦ 13.92 16.98 21.43 31.30 22.36 18.27 13.75 13.69
29− 43◦ 14.28 16.11 22.50 33.51 22.06 17.80 13.11 12.63
> 43◦ 12.41 15.38 19.25 27.61 19.64 15.63 12.07 13.39

Table 6.33: Region 2: DSMD accuracy [m] (coherence>0.85).
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Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMD
slope 9.80 4.87 3.07

aspect 97.45 3.64 2.49

Table 6.34: Region 2: analysis of variance results for DSMD

(coherence>0.85).

Aspect
N NW W SW S SE E NE

S
lo

p
e

0− 16◦ 9.96 12.21 9.33 9.37 8.73 8.69 8.69 9.72
16− 29◦ 9.48 9.52 9.37 11.88 9.47 9.26 9.44 9.94
29− 43◦ 9.87 9.73 9.81 10.09 10.07 10.07 10.37 10.86
> 43◦ 12.04 11.49 11.12 11.23 10.62 10.64 11.11 12.02

Table 6.35: Region 2: DSMAD accuracy [m] (coherence>0.85).

Model Parameter Femp
Ftheo

α = 0.01 α = 0.05

DSMAD
slope 24.37 4.87 3.07
aspect 9.06 3.64 2.49

Table 6.36: Region 2: analysis of variance results for DSMAD

(coherence>0.85).

6.8 Fusion

The purpose of the work was to find a way to merge ascending and descending
DSMs to obtain new DSMs with higher accuracies. Fusion was done associat-
ing to each grid node a weighted mean between the DSM coming from the
ascending stereo-pair (DSMA) and the DSM coming from the descending one
(DSMD). The weights are given by the inverse of the variances associated to
each cell.

h =
1

σ2
ASC

hASC +
1

σ2
DESC

hDESC (6.1)

A value of accuracy can be associated to each estimated height; this can be
computed in different ways, more precisely:
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• the accuracy value obtained comparing the DSM with the LiDAR
reference DSM. In this way to all the cell is attributed a value of
accuracy equal to the square root of the mean of the square residuals;

• the morphology dependent accuracy.

Tables 6.37 and 6.39 report the results of the fusion of ascending (DSMA)
and descending (DSMD) models.

Numbers Source of Rmse Sigma Bias
LE95

of cells error [m] [m] [m]

82324
global estimated

6.87 6.82 -0.79 17.53
accuracy

80391
morphology dependent

6.80 6.74 -0.85 17.39
accuracy

Table 6.37: DSM accuracy in Region 1 (coherence>0.75).

Numbers Source of Rmse Sigma Bias
LE95

of cells error [m] [m] [m]

82324
global estimated

7.04 7.02 -0.54 16.70
accuracy

80391
morphology dependent

6.97 6.95 -0.59 16.86
accuracy

Table 6.38: DSM accuracy in Region 1 (coherence>0.85).

Numbers Source of Rmse Sigma Bias
LE95

of cells error [m] [m] [m]

76560
global estimated

8.38 8.37 -0.34 21.37
accuracy

76560
morphology dependent

8.18 8.17 -0.42 20.96
accuracy

Table 6.39: DSM accuracy in Region 2 (coherence>0.75).



6.8. Fusion 165

Numbers Source of Rmse Sigma Bias
LE95

of cells error [m] [m] [m]

76560
global estimated

8.16 8.10 -0.96 20.63
accuracy

76560
morphology dependent

7.95 7.87 -1.12 20.15
accuracy

Table 6.40: DSM accuracy in Region 2 (coherence>0.85).

Model Coherence
Number RMSE sigma bias

LE95
of cells [m] [m] [m]

R1−DSMAD >0.75 82324 7.24 7.08 -1.51 19.72
R1−DSMAD >0.85 82324 6.77 6.33 -1.39 17.37

R2−DSMAD >0.75 76560 8.70 8.60 -1.31 22.76
R2−DSMAD >0.85 76560 7.98 7.81 -1.63 22.19

Table 6.41: Region 1: Bilinear interpolated DSMs accuracies.

The accuracy of the 0.85 coherence DSMs is not significantly different from
that of 0.75 coherence DSMs, 7m accuracy for Region 1 and 8m for Region 2.
The same can be said from the comparison between the DSMs obtained from
the interpolation of the ascending and descending sparse data together and
those obtained by the fusion of the separate ascending and descending DSMs.
In fact, looking at Table 6.41 which summarizes the results of Table 6.7, 6.8,
6.9, 6.10 it seems that there is no significant difference. The straightforward
interpolation of the two datasets, ascending and descending one, seems to be
the more convenient in this case, at least at this 95% implemented RMSE
evaluation.
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Conclusions

The validation of new interferometric products, deformation time series and
digital surface models, was the main motivation of this thesis. The work was
funded by the Italian Space Agency within two different projects, MORFEO
and COSMO-SkyMed, both aiming at the assessment of the potentiality of
new Earth observations from satellite-borne sensors and in particular from
radar ones.

Interferometric SAR techniques are becoming more and more efficient either
in Earth surface deformation monitoring and in surface modelling. Different
techniques for the SAR images analysis are available both for the phase and
the intensity contents exploitation.

Within the MORFEO project, for instance, the potential support of differen-
tial interferometric SAR products to local deformation monitoring, such as
landslides, was evaluated within the many other possible consolidated or new
techniques available. In this framework two different algorithms SBAS and
SPINUA, developed by two different Italian research groups, the CNR-IREA
Napoli group and the Politecnico di Bari group, were applied to the same
stack of ENVISAT SAR images to determine LOS deformation time series of
point lying on landslide test-sites.

Within the COSMOSkyMed project, the validation of differential interfero-
metric SAR products for urban areas deformation monitoring (IREA Napoli)
was performed as well as the validation of new digital surface modelling
computed by radargrammetric techniques (UNIROMA).

Our contribution to both projects consisted in the definition of procedures
for comparison, validation and fusion of the radar products. More precisely,
within the MORFEO project we had to perform a cross comparison between
landslides deformation time series produced on the same test area of Ivanchic
landslide by the two above mentioned DInSAR techniques and a comparison
with independent GNSS deformation time series derived from observation
campaigns partly performed within the project itself. Within the CSM project
the comparison was to be performed between DSMs for validation purposes
and fusion strategies were studied for the generation of possible integrated,
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high accurate models.
The comparison problem of both projects was approached on two different
levels: one more theoretical, the other more practical as we need to produce
not only possible methodologies but fully working algorithms and results.
We had room to study an optimal validation strategy based on Wiener-
Kolmogorov stochastic field linear prediction theory. This was published and
fully reported in this dissertation even if it could not be directly applied
to the deformation fields or height fields of MORFEO and CSM projects.
A stochastic approach was also proposed and implemented to solve for the
fusion of DSMs problem which results quite promising but still to be made
suitable to a more automatic blind application.
A common principle in all the tackled problems can be invoked: it is that
of minimizing the errors introduced in the data manipulations (projections,
predictions in space and time) needed to make different aspects of the same
field (either surface deformation or height field) seen by different techniques
comparable.
The errors depend on the data distribution but also on the field regularity
properties. This general issue can be declined in different ways such as for
instance what is the best point where to make the comparison and possibly
the fusion? Which is the grid where to produce a final DSM? What is the
best technique to make interpolation?
There is still a lot to do, but some conclusion can be drawn. For the
landslide deformation validation, for instance, it was clearly proven that
SAR accuracies need high performing GNSS positioning systems to assure
millimetric accuracies of the point coordinates; the landslide behaviour is
not homogeneous at all. Very localized predictions are needed especially
when a classification of the different moving patches is not possible. Local
comparisons based on Nearest Neighbour interpolation were applied to obtain
the validation results. In this respect the two techniques produce equivalent
results. As for the external validation, this was not possible due to the poor
accuracy of the GNSS time series.
The limiting factor in DSM generation and manipulation was their non
homogeneous and isotropic behaviour, which makes the stochastic approaches
quite useless: such properties are in fact needed for the estimation of the
field covariance function. Even in this case a local approach could be a
solution, but this is still a challenging issue to deal with. Nevertheless,
comparisons were performed by applying possible and reasonable, even if
not optimal, interpolation techniques depending on the kind of data at hand.
Outlier rejection based on internal consistency tests and external validation
against a very accurate and high resolution LiDAR DSM were performed
always obtaining accuracies comparable with the nominal ones. Moreover,
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morphology dependent accuracies were evaluated based on a previous terrain
classification by slope and aspect characteristics. Those accuracies were then
used to improve a simple weighted average solution to the fusion problem.
Radargrammetric DSMs in two different test sites in COMO were generated
by bilinear interpolation on a 5m resolution grid. They were then validated
always against a LiDAR DSM showing an accuracy of about 7.5m. The use of
such detailed local SAR derived models could be used to integrate the SRTM
low resolution global DSM. Again the way to perform such an integration
represents an interesting topic in the field this thesis tried to explore.
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M. Gilardoni, F. Sansò, and G. Venuti. Optimal cross validation of different
surveying techniques. In Atti del 7 ◦ Hotine-Marussi Symposium, pages 1–9.
Springer Verlag, 2010.
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Appendix A

Optimal cross-validation of
different surveying techniques

When monitoring deformations by means of different sensors, one has to be
sure that the various observations do see the same variations in time of the
Earth surface. As an example one can think of a deformation as seen by
the SAR technique and the deformation of the same surface as seen by GPS
(see Chapter 2). To this aim a hypothesis testing procedure has to be set
up (Koch [1999]). The first question is how to compare the different data
sets, which usually do not refer neither to the same positions in space nor
to the same time. The standard prediction of one set of variables from the
other, for instance, is not always the best solution. It is better to use both
observation sets to predict one and the same functional of the ”random field”
describing the deformation pattern and to evaluate the difference between
the two predictions. This difference has to be small on condition that the
signal we try to estimate has a fixed amplitude in mean quadratic sense. The
problem is formally solved and a few examples are illustrated. This work was
presented at the 7◦ Hotine-Marussi symposium held in Rome in July 2009
(Gilardoni et al. [2010]).

A.1 Definition of the problem

The problem we want to discuss, described in abstract form is as follows: let
{u(t)}, t ∈ T , be a random field, defined on some set T (T ⊆ <n), with zero
mean

E{u(t)} = 0, (A.1)

and covariance function
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E{u(t)u(s)} = C(t, s) (A.2)

and assume that there is a vector of ”observations” performed on u(t), which
are linear functionals of u(t) with some additive noise

Y = L(u) + ν. (A.3)

For (A.3) to be meaningful we need that the components Li( i = 1, . . . , N) of
L to be bounded linear stochastic functionals; namely we shall assume that,
adopting Krarup’s notation (Krarup [2006])

E{Li(u)2} = Lit{Lis[C(t, s)]} = C(Li, Li) < +∞; (A.4)

in addition it is assumed that

E{ν} = 0, E{νν+} = Cν (A.5)

where Cν is a known covariance matrix, and finally that u and ν are linearly
independent, implying

E{L(u)ν+} = 0; (A.6)

Note that, under the above conditions, the covariance of Y is known and
given by

CY = C(L,L+) + Cν . (A.7)

Suppose that a similar situation is independently duplicated; namely there
is another random field {w(t)}, t ∈ T , generally not centered, but with the
same covariance for u, and another vector of observations

Z = K(w) + η (A.8)

with, K = {Ki; i = 1, 2, . . . ,M) and

C(ki, ki) < +∞, (A.9)

E{η} = 0, E{η, η+} = Cη, E{K(w)η+} = 0. (A.10)

We further assume that ν and η are linearly independent of one another and,
both, of u(t) and w(t).
The hypothesis to test is:

H0 : u = w, (A.11)

i.e. that the two sets of measurements Y and Z refer to one and the same
random field. Among other things, this implies that there is no bias between
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u and w. So the problem becomes that of finding a suitable statistics to verify
(A.11). To be simple, we will try to find a linear function of the observables
that becomes zero in the average when (A.11) is satisfied and that is as small
as possible in variance, in a suitable sense, so as to be very sensitive to all
departures from (A.11). To understand the possible applications of a schema
like that we make two examples.
Example 1 : Assume you want to build a digital elevation model (DEM),
Chapter 3, for a piece of the Earth surface considering data coming from two
different techniques; e.g. a SAR surveying (SRTM) and photogrammetry. The
two techniques will produce fields with different knots so that the hypothesis
that there is no bias between them is not immediately verifiable. Even more
the SAR will give a grid of mean heights, while the photogrammetric model
refers to almost point-wise observations.
Example 2 : Assume a landslide to be monitored by SAR and GPS. The first
techniques observes the on going deformation along the line of sight (LOS)
at some highly coherent points; the second observes the deformation vector
at some other points in the same area. In this case, by projecting the GPS
3D deformation vector along the SAR LOS, u(t) will be the LOS component
of the deformation pattern (see Chapter 2). The hypothesis is now that the
two techniques see the same pattern, so that one can be used to validate the
other.

In Section A.2 those problems will be formalized through a suitable target
function that will be minimized. Then Section A.3 example 2 is developed.

A.2 The optimization problem

As we said, under the assumption (A.1), the sensible thing to do is to try to
estimate a linear functional M(·) from both observation sets and then to take
the difference of the estimates. As we know that, by a Wiener-Kolmogorov
optimal predictor (see Section 1.3), no information can be drawn on any
subspace of functionals orthogonal to both Y and Z, instead of defining one
problem for a general M(·), we rather define directly the statistic

S = λ+Y − µ+Z (A.12)

that we shall try to make as small as possible in mean quadratic sense. Under
the assumption (A.1) and hypothesis (A.11), S has zero average and its
variance, representing the departure from zero, is:

F (λ, µ) = σ2(S) = E{S2} = λ+CY λ+ µ+CZµ− 2λ+CY Zµ (A.13)
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where (from (A.7))

CY = C(L,L+) + Cν ,
CZ = C(K,K+) + Cη,
CY Z = C(L,K+).

(A.14)

Obviously, we cannot look for an unconstrained minimum of the variance
(A.13), because this is indeed obtained at λ = 0, µ = 0. Therefore we must
keep the couple (λ, µ) on a surface far away from zero by imposing a suitable
condition. The theory gets its simplest and most elegant form, if we choose
the following normalization condition:

G(λ, µ) = E{(λ+Y + µ+Z)2} = λ+CY λ+ µ+CZµ+ 2λ+CY Zµ = 1 (A.15)

It is interested to remark that exactly the same equations would be obtained
by imposing separately the two variables λ+Y and µ+Z to have a unit variance.
The minimization of the Lagrange target function

L(λ, µ) = F (λ, µ)− γG(λ, µ) (A.16)

leads to the following normal system:(
CY −CY Z
−CZY CZ

)
=

(
λ
µ

)
= γ

(
CY CY Z
CZY CZ

)(
λ
µ

)
(A.17)

This is a generalized eigenvalue problem: for each eigenvalue γn, we have the
corresponding eigenvector [λ+

n , µ
+
n

]+, which can be normalized with condition

(A.15). By multiplying A.17 by [λ+
n , µ

+
n

], and taking into account (A.15), one
gets:

γn = F (λn, µn), (A.18)

and the original problem becomes that of finding the minimum eigenvalue
of (A.17) and the corresponding eigenvector. This is similar to canonical
analysis discussed in literature (Wackernagel [1995]). It can be observed that
the problem can be dimensionally reduced. Getting, for instance, λ from the
first row of (A.17)

λ = αC−1
Y CY Zµ (A.19)

and substituting in the second one, it results

(CZ − α2CZYC
−1
Y CY Z)µ = 0 (A.20)
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with

α =
1 + γ

1− γ
(A.21)

Note that (A.21) implies

γ(α) =
α− 1

α + 1
(A.22)

and that

γ(−α) =
1

γ(α)
(A.23)

Since F (λ, µ) is positive by definition (see A.13) , due to (A.18), γ is positive
too. Then from (A.22) it can be seen that either α > 1 or α < −1 , which
is complying with the fact that the values of α from (A.20) come in couples
with the same modulus. Since (A.22) α > 1 implies γ < 1, then from (A.23)
we have that α < 1 implies γ > 1.
It follows that we have to find the minimum positive α, such that α2 is an
eigenvalue of (A.20), and the corresponding eigenvector µ. There on, we
compute λ from (A.19). It is not difficult to see that, if (α, λ, µ) is the triple
corresponding to γmin, then (−α, λ,−µ) is the triple corresponding to γmax.
Remark 1. Let us consider a particular case that we shall develop in Section
A.3: this is when Z is one dimensional. In this case, we have:

CZ = σ2
Z = C(K,K) + σ2

η (A.24)

CY Z =


...

C(Li, K)
...

 ≡ cz (A.25)

and the equation for the eigenvalues is simply

σ2
Z − α2c+

ZC
−1
Y cZ = 0 (A.26)

with the two solutions:

α = ± σZ[
c+
ZC
−1
Y cZ

]1/2 (A.27)

Getting the positive root, which is the one that provides the value γmin, the
corresponding eigenvector is [

λ = αµC−1
Y cZ , µ

]
, (A.28)
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where µ has to be fixed so as to satisfy the normalization condition (A.15).
Indeed, this last condition is quite irrelevant, while the interesting this is that
by using (A.28) one finds the sought statistics

S = µ(αc+
ZC
−1
Y Y − Z) (A.29)

In turn, by using (A.27), this can be written as:

S = µσZ

 c+
ZC
−1
Y Y√

c+
ZC
−1
Y cZ

− Z

σZ

 (A.30)

The multiplicative constant in S has not a particular meaning, in fact it is
one and the same scale for both S and its standard deviation. What is in
parenthesis, though, is quite suggestive: S is basically the best linear predictor
of Z from Y, normalized to have variance 1, minus Z, also normalized to
variance 1. That seems a good solution to our validation problem. It is
interesting to apply (A.30) when Y too is one dimensional. To make it simple,
we assume even that σY = σZ = 1 and ρ > 0. By applying (A.30) we find

S = µ (Y − Z) (A.31)

A.3 A case study

As deeply described in Chapter 2, within the Space Italian Agency project
MORFEO, the Politecnico of Milano had to perform the DInSAR data
validation by means of GPS. The optimal statistic previously described was
applied considering GPS data and SBAS DInSAR LOS deformation time
series regarding the Ivancich landslide (section 2.1); in particular the estimated
coordinates, for the year 2006 and 2007, of 25 points belonging to the GPS
monitoring network (Section 2.3) and SBAS (Section 2.2) deformations series
available on 55 highly coherent points located as in Figure A.1. Since the
GPS data used referred to 2006 and 2007 campaigns, from the DInSAR
deformation series we retrieved those related to the same time span. The
optimal statistics (A.30) was applied, by comparing the multi-dimensional
SAR data set, denser then the GPS one, with each GPS point, that is to say,
performing 25 different tests.
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Figure A.1: GPS (circles) and SAR (triangles) points on the monitored
landslide.

The field u defined on t ∈ T ≡ <2, observed by both GPS and SAR, apart
from the mean, is the LOS deformation field, that it is assumed to have a
homogeneous and isotropic variogram

γ(|s− t|) =
1

2
E
{

[u(t)− u(s)]2
}

(A.32)

which is related to the covariance function by the following relation

γ(|s− t|) = C(t, t) + C(s, s)− 2C(s, t). (A.33)

Note that the LOS is considered constant over the area. From SAR data we
estimated the covariance function of u, by computing first their empirical
variogram (Figure A.2) and then exploiting relation A.33 (Sansò et al. [2008]).
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Figure A.2: Empirical variogram (blue circles) and interpolated,
conditionally negative defined, model (red line).

Even more, the estimate of the nugget effect gave us an estimate of noise
variance σ2

ν of the SAR data, which can not be directly computed by the SAR
data analysis.
We found

C(|s− t|) = 0.13 e(−15.31|s−t|) (A.34)

while the nugget effect results to be negligible. The values predicted from
SAR and the GPS LOS projected observations are shown in Figure A.3. The
Y vector is now that of LOS SAR deformations after their estimated mean
removal, while Z is the GPS LOS projected deformation again after the same
mean removal.
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Figure A.3: SAR predicted LOS deformations (triangles)and GPS LOS
projected observations (circles)

The GPS LOS deformations reduced by their average with the accordingly
propagated standard deviation and the predicted values (from the SAR data,
after the mean removal) with the relative prediction error standard deviation
are reported in Table A.1. In the last column of the same table we report the
corresponding statistics S values. By assuming S to be normally distributed,
and by using a significance level α = 5%, as it can be seen from Table A.1,
for all the points but two the hypothesis is accepted.

A.4 Conclusions

The conclusion about “equivalence” of SAR and GPS is somehow obscured
by the relatively large variance of noise in GPS data. Anyway, by performing
a proper noise propagation, the result is that the two data sets must be con-
sidered compatible but for two points, which have to be monitored separately.
As a general remark, the assumption of zero average for u(t) is critical. The
full use of a kriging approach would show that basically the disagreement
within the two data sets is in the average.
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n. Y [cm] σY [cm] Z [cm] σZ [cm] S
1 0.00 0.36 0.09 0.66 0.01
2 -0.08 0.31 0.57 0.54 -1.13
3 -0.15 0.27 0.79 0.33 -2.22
4 0.04 0.34 -0.36 1.31 0.43
5 -0.16 0.29 -0.21 0.52 -0.39
6 0.25 0.31 0.91 0.45 -0.16
7 0.17 0.27 0.99 0.87 -0.25
8 0.02 0.36 0.11 0.73 0.89
9 0.00 0.36 0.93 0.88 -0.63
10 0.00 0.36 0.74 1.08 0.05
11 0.34 0.29 4.17 1.22 -1.29
12 0.01 0.36 -0.61 0.88 1.41
13 0.04 0.36 0.37 0.67 0.75
14 -0.00 0.36 4.64 0.95 -3.27
15 -0.06 0.36 -0.34 0.82 -0.45
16 -0.13 0.31 1.35 0.79 -1.82
17 0.29 0.30 1.15 1.58 0.62
18 -0.01 0.34 -0.60 1.17 0.29
19 -0.17 0.32 -1.33 0.55 0.79
20 0.08 0.32 -0.79 1.01 0.92
21 0.06 0.34 2.72 1.41 -0.97
22 -0.02 0.34 0.84 1.15 -0.65
23 -0.05 0.35 0.57 0.84 -0.81
24 -0.01 0.36 -0.04 0.41 -0.35
25 -0.02 0.36 -1.54 0.71 1.06

Table A.1: Test results: residual LOS deformation predicted from SAR (Y),
standard deviation of the estimated prediction error (σY ), residual GPS LOS

deformation (Z); standard deviation of the residual GPS LOS deformation
(σZ), value of the statistic S.
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