
POLITECNICO DI MILANO
FACOLTÀ DI INGEGNERIA DELL’INFORMAZIONE

Master of Science in Telecommunications Engineering

ANALYSIS AND IMPLEMENTATION OF A
VIRTUAL TRAINER FOR THE BENCH PRESS
PRACTICE BUILT ON A WIRELESS SENSOR

NETWORK

Supervisor: Prof. Antonio Capone

Assistant
Supervisor: Eng. Alessandro Redondi

Master Graduation Thesis by:
Alessandro Sciuto
Student ID 734546

Academic Year 2010 - 2011

POLITECNICO DI MILANO
FACOLTÀ DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Specialistica in Ingegneria delle Telecomunicazioni

STUDIO E IMPLEMENTAZIONE DI UN
VIRTUAL TRAINER PER IL SOLLEVAMENTO

PESI SU PANCA PIANA BASATO SU UNA
RETE DI SENSORI

Relatore: Prof. Antonio Capone

Correlatore: Ing. Alessandro Redondi

Tesi di Laurea Specialistica di:
Alessandro Sciuto
Matricola 734546

Anno Accademico 2010 - 2011

Abstract

Wireless Sensors Networks (WSN) have widely expanded during the last
decade within a huge range of applications, among which Sport Applications.
This dissertation focuses on a WSN employed as a Virtual Trainer in a Bench
Press exercise.

The work has been divided into two main parts: in the first section, a net-
work protocol has been implemented, in order to allow many similar WSNs to
simultaneously transmit at the lowest transmission Power Level possible without
interfering with each others. In the second section, the application algorithm is
presented, which consists of acquisition, processing and analysis of the data com-
ing from a 3-axis accelerometer. The user’s Training Profile is estimated with a
known “force-velocity” model and used to evaluate the user’s performance.

Both building blocks are eventually tested and experimentally evaluated.

3

Sommario

Negli ultimi anni, le reti di sensori (Wireless Sensor Networks) hanno trovato
applicazione in un ampio numero di settori, tra cui quello sportivo. Il lavoro pro-
posto presenta una rete di sensori utilizzata come Virtual Trainer in un esercizio
di sollevamento del bilanciere su panca piana.

La Tesi é divisa in due blocchi: nella prima, viene descritto un protocollo di
rete che mira a consentire la coesistenza di un gran numero di reti di sensori che
trasmettono contemporaneamente minimizzando allo stesso tempo la potenza in
trasmissione. Nella seconda parte, invece, viene descritto l’algoritmo applicativo,
il cui compito é quello di acquisire, processare e analizzare i dati provenienti da
un accelerometro a tre assi. Il profilo d’allenamento (Training Profile) dell’atleta
é stimato mediante un noto modello “forza-velocitá” ed é impiegato per valutarne
le performance.

Infine, alcuni test sono stati effettuati su entrambe le parti presentate al fine
di misurarne l’efficienza.

4

Contents

1 Introduction 7

2 Wireless Sensor Networks 10
2.1 Sensors . 11
2.2 Network . 11

2.2.1 IEEE 802.15.4 Standard 14
2.3 Applications . 14

2.3.1 Military . 14
2.3.2 Environment . 15
2.3.3 Home . 15
2.3.4 Health . 15

3 Software and Hardware 16
3.1 TinyOS . 16
3.2 NesC . 17
3.3 Hardware Abstraction Architecture 19
3.4 Hardware . 20

3.4.1 MEMSIC MICAz . 20
3.4.2 Shimmer . 22

4 WSN in Sport: a survey 25
4.1 Body Sensor Networks . 25
4.2 Virtual Trainers . 27

4.2.1 Golf . 28
4.2.2 Tennis . 30
4.2.3 Body Training and the gym scenario 31

5

CONTENTS 6

5 Network Protocol 33
5.1 Channel Scan . 34
5.2 Beacon Sending . 36
5.3 Association . 39
5.4 Power Level Selection . 41

6 Application 44
6.1 Training Overview . 45

6.1.1 Hill’s hyperbolic equation 45
6.1.2 Power-Velocity curve . 46

6.2 Data Acquisition . 46
6.3 Data Processing . 48

6.3.1 Accelerometer Calibration 48
6.3.2 Training Profile . 49
6.3.3 Power Measurements . 52
6.3.4 Graphical User Interface 53

7 Performance 55
7.1 Network Protocol . 55
7.2 Application . 60

8 Conclusions 63
8.1 Future Developments . 65

Bibliography 70

Chapter 1

Introduction

In the later years, the scientific community has highly focused on the develop-
ment of tiny low-cost wireless devices. These efforts brought to the growth, the
expansion and the success of the Wireless Sensor Networks (WSNs). A Wireless
Sensor Network is a group of low-cost low-speed and low-power sensors (often
called motes) able to sense data from the environment and to transmit them via
wireless links.

Although the peculiarities and the features of this network were well-suitable
for a wide range of applications, at first these devices were almost used only in
Military Applications. However, the easy scalability, the low complexity and the
high customization allow the integration of this network in more area such as
Environment, Home, Healthcare or Sport applications.

This Master Thesis presented a Body Sensor Network designed and devel-
oped for a Sport Applications. A Body Sensor Network (BSN) is a group made
of wearable motes such as the one just described. These sensors were initially
developed for healthcare applications, but their small size, light weight and low
complexity made them very useful also in a sport environment.

Indeed, Virtual Trainers revolutionized the training methods of both profes-
sional and amateur athletes. Nowadays, the gap between a winner and a loser
in the high level competitions is really small. Improving the performance of few
milliseconds or few meters per second is the goal of the most part of trainers
and coaches. This can be achieved with the aid of these devices that, unlike the
systems developed inside laboratories or “off-court” environments, allows the ath-
letes to keep training in their usual context (such as a golf pitch or a swimming

7

CHAPTER 1. INTRODUCTION 8

pool), obtaining more meaningful data than the ones available with the older
techniques. Besides, amateur athletes or people that sporadically train, can take
advantage of the virtual trainers in order to learn the basic movements of a spe-
cific sport or gym exercise, replacing sometimes the “real” trainers who can be
often unavailable like, for instance, during peak-time in a crowded gym.

The aim of the WSN proposed is to obtain a Training Profile and a Power
Evaluation of the user in a Bench Press exercise. This WSN consists of two motes,
a Base Station connected to a PC and a mote with an integrated accelerometer
attached to the barbell. This work was divided into two different sections.

In the first part a Network Protocol was designed and built in order to im-
prove the Quality of Service (QoS) when a large number of wireless networks is
contemporaneously transmitting, using, though, the lowest power level possible
to minimize the power consumption. In this protocol, the BS, after evaluating
the Noise Floor values of all the radio channels, selects the best one and starts
sending broadcast beacon messages. When the mote receives this message, asso-
ciates with the BS replying with an association packet and waiting for the relative
ACK. Eventually, the two motes choose the Tx Power Level according to the QoS
parameters decided.

In the second part the Application is introduced, including the Data acquisi-
tion, sending and processing. It shows how to get meaningful information from
the accelerometer readings, focusing then on the practical purpose of this Thesis.
It explains, in fact, what the two outputs mean, how to obtain and how to analyse
them.

The outcome of the work will be deeply reported and explained in the rest of
the dissertation:
Chapter 2 introduces the Wireless Sensor Networks, the main features and the
common applications.
Chapter 3 presents a detailed description of the Software and the Hardware com-
ponents employed during the whole work.
Chapter 4 is an overview on the history and the development of WSNs in the
Sport environment, and a couple of practical examples are also presented.
Chapter 5 describes the first main part of this Master Thesis, that is the Network
Protocol.
Chapter 6 is about the second part of this work, the Application one, that ex-

CHAPTER 1. INTRODUCTION 9

plains the outputs and the aim of the WSN proposed.
Chapter 7 illustrates the performance of the WSN, for both the Network Protocol
and the Application algorithms. Finally, in Chapter 8 some considerations about
the implemented network are presented, along with possible future developments.

Chapter 2

Wireless Sensor Networks

Wireless Sensor Network refers to a group of spatially dispersed and dedicated
sensors. This technology greatly expanded at the beginning of the 21st century,
and its features fit for a wide range of feasible applications, such as military ap-
plications, environment monitoring, surveillance, health care and virtual trainer
in sport. Examples of monitored data range from simple measurements, like tem-
perature or humidity values, to more elaborated information, like accelerations
or vibrations.

Figure 2.1: Typical Wireless Sensor Network architecture

10

CHAPTER 2. WIRELESS SENSOR NETWORKS 11

2.1 Sensors

A sensor node (also known as “mote”) is a device capable of processing, com-
municating and gathering data from the environment. These devices have already
been used in decades, but the project of the present sensor nodes has been started
in the 1998 by the DARPA (“Defense Advanced Research Projects Agency”) and
the NASA (“National Aeronautics and Space Administration”) .

Typically, the modern mote consists of a controller, a transceiver, RAM and
flash memories, power source and one or more sensors[1]. The controller per-
forms tasks, data processing and supervises the other components. Usually, the
controller is actually a microcontroller (although other options are for instance
desktop microprocessor or digital signal processors) because of its low cost and
power consumption and the ease of programming. The transceiver has four op-
erational states: transmit, receive, idle and sleep. It transmits and receives data
over the radio channel. Apart from the infrared and lasers, it needs an antenna
in order to communicate within the radio frequency space, where WSN tends
to make use of license-free communication frequencies. The RAM memory is
used to store dynamic data, while the flash one to save long-lived data and the
execution code. The power source provides power the mote needs to sense, com-
municate and process the data. It can be stored either in batteries or capacitors.
Eventually, according to the goal is designed for,the mote can be equipped with
one or more sensors. These sensors are hardware devices that can be classified
into passive active ones. Passive sensors do not need active probing to sense the
data and they are self powered. The active ones, instead, probe the environment
and need energy from a power source. An example of passive sensor is a PIR
(Passive Infrared Sensor), while a camera is an active one. Figure 2.2 shows some
examples of motes.

2.2 Network

In a WSN, the intercommunication between nodes can be achieved with dif-
ferent approaches, according to the purpose and the specific tasks the sensors
are designed for. The range of factors that may influence a WSN design is wide,
and it includes fault tolerance, scalability, sensor network topology, hardware con-
straints and power consumption [2]. For instance, sensors may break down due

CHAPTER 2. WIRELESS SENSOR NETWORKS 12

(a)

(b)

(c)

Figure 2.2: Different motes: (a) MICAz - (b) TelosB - (c) Shimmer

for example to a lack of power, but this failure should not affect the whole net-
work task. Moreover, there are transmission techniques (e.g. Bluetooth) that
are not efficient when a large number of nodes is employed or other ones, such
as Infrared, that are tolerant to interference but requires LOS (Line of Sight)
transmission.

The four main WSN topologies are:

• Point-to-Point;

• Star;

• Tree;

• Mesh.

The Point-to-Point network (also know as “Peer-to-Peer”) allows each node (or
peer) of the network to communicate with another node without going through
a centralize hub (as shown in Figure 2.3a).

The Star network consists in one or more sensors linked to a centralized hub,
that is connected with every node of the network, while the latter are not able
to communicate with each others (Figure 2.3b).

CHAPTER 2. WIRELESS SENSOR NETWORKS 13

(a)

Central hub

(b)

Figure 2.3: Point-to-Point (a) and Star (b) topology

The Tree network is a hierarchical network. At the top of the tree there is a
node, called Root Node, that is the main router of the network. One level down,
there are one or more central hubs connected to the node of the level above.
These hubs are then linked to one or more nodes, as happens in the star network.
Indeed, the tree topology could be seen as an hybrid of both the two already
described before. An example of the Tree network is shown below in Figure 2.4a.

In the Mesh network, instead, each node may communicate with every other
node of the network, allowing data to "hop" from one node to another. This
"freedom" makes the Mesh topology one of the most complex and most expensive
one. A typical model of Mesh network is illustrated in Figure 2.4b.

Central hubs

Root Node

(a) (b)

Figure 2.4: Tree (a) and Mesh (b) topology

CHAPTER 2. WIRELESS SENSOR NETWORKS 14

2.2.1 IEEE 802.15.4 Standard

The majority of WSN adopts the IEEE 802.15.4 Standard. This protocol
provides only the lower network layers, MAC (Media Access Control) and the
PHY (PHYsical) layers, of a personal area network (WPAN) mainly used for
low-cost low-power low-speed ubiquitous communication[3]. The idea of IEEE
802.15.4 Standard is to allow communications between devices up to 10 meters
with a rate of 250 kbps. Key features of this standard are also real-time suitability
and collision avoidance (CSMA/CA).

The PHY layer handles the data transmission service, operating in one of the
unlicensed frequency bands:

• 868.0-868.6 MHz (Europe);

• 902-928 MHz (North America);

• 2400-2483.5 MHz (Worldwide);

The MAC layer transmits MAC frames, which structure is very flexible, in or-
der to satisfy the needs of the different tasks and network topologies, through
the physical channel [4]. In a beacon-enable network, the slotted CSMA/CA is
adopted, while in a non beacon-enable one it utilizes the unslotted CSMA/CA.

2.3 Applications

It is possible to classify WSN applications in several categories, as follows.

2.3.1 Military

At the beginning, WSN development was especially focused on military pur-
poses. Battlefield surveillance, like area monitoring for detecting enemies intru-
sion, was one of the first uses of this technology. In this scenario fault tolerance,
self-organizing capacity and rapid deployment are crucial. Moreover, the low-cost
and the high density of the motes make sure that destroying part of the nodes
does not affect the functionality of the whole network, that is why WSNs are
widely used in military applications. Indeed, apart from battlefield surveillance,
they are employed in: targeting and target tracking systems, nuclear, biological
or chemical attack detection.

CHAPTER 2. WIRELESS SENSOR NETWORKS 15

2.3.2 Environment

Area monitoring is a common use of WSNs for military operations as much
as for environment intents. Motes sensing may detect and generate alarms for
particular events, such as fires or flood, but they could also be useful for precision
agriculture, tracking of movements of small animals or pollution studies.

2.3.3 Home

Power consumption control is really important in WSN home applications. In
fact, it is possible and easy to save energy monitoring and controlling the domestic
appliances and the other home equipments just making them communicate with
one sensor attached to each of this device and letting them interact (e.g. with
internet connection).

2.3.4 Health

WSNs can find place also in the healthcare area. This technology, for example,
can be employed in hospital, where it is possible to track and monitor patients.
Wearable sensors are largely used for this reason as much as for getting patients’
heartbeat or patients’ unexpected behaviours (like a fall or some kinds of limb
movements in order to detect convulsions). Wearable sensors (it will be widely
shown in Chapter 4) are also used in many sports as virtual trainers to improve
athletes’ performance.

Chapter 3

Software and Hardware

This Chapter will discuss all the software and hardware components used
to implement this work. At first, the software ones will be introduced, where
an overview of the TinyOS operative system will be presented. Afterwards, the
different hardware devices will be described in details.

3.1 TinyOS

TinyOS [5] is an open-source operative system developed by the Univerisity
of California at Berkeley and designed for low-power wireless devices. However,
there are some differences between the typical operative system and TinyOS. The
main one is that the first has a kernel1 that interfaces all the components, while
the latter offers a direct access to the hardware. Furthermore, TinyOS allows
only static memory allocation, guaranteeing time and space efficiency.

The first version was released on October 2002, and it was followed by many
updates until the last 1.15 version on December 2005. The first 2.x version came
out on February 2006, with a completely new software, simpler and more editable,
capable to be adapted to different hardware platforms.

TinyOS has been implemented in NesC, a programming language created for
the developing of embedded system applications that will be better described in
the next section.

1The kernel is a program that constitutes the central core of a computer operating system.
It has complete control over everything that occurs in the system.

16

CHAPTER 3. SOFTWARE AND HARDWARE 17

3.2 NesC

NesC (“Network Embedded Systems C”) is a dialect of the C programming
language, which allows the development of robust and modular embedded sys-
tems. Its main features are:

• Separation of construction and composition: in a NesC application, users
may assemble pre-existent components with others created ad-hoc. These
components are “wired” in order to build whole programs and have to define
and implement their specifications.

• Component specifications through interfaces: a component may either pro-
vide or use interfaces. The first ones describe which functionalities the
component provides to its user, the latter are the interfaces it needs to
obtain the desired output.

• Interfaces are bidirectional: interfaces implement two different sets of func-
tions: one to be implemented by the interface’s provider (commands) and
the other one to be implemented by the interface’s user (events).

• Static structure: components are statically interconnected to each others,
and this structure can not be edited run-time.

• Concurrency: the NesC concurrency model (as the TinyOS one) makes sure
that the processes execute their activities on shared data at the same time.

Components and interfaces

As stated earlier, a NesC application consists of one or more components
wired to form an application executable. A component is a code block that
executes some operations that can “provide” or “use” interfaces. An interface
is a file within are listed a set of events and commands. Components may be
modules or configurations. Modules implement one or more interfaces and their
functions and events, while Configurations wire together all the components used
in the application, connecting the interfaces a component uses with the ones other
components provide.

CHAPTER 3. SOFTWARE AND HARDWARE 18

Commands and events

A interface’s command can be called by a component only if it uses that in-
terface. Indeed, it is declared in the interface file, it requires input parameters
and returns an output value. They can be invoked with the call primitive. A
command may also not return an output, as in the void functions. For instance,
in order to start a timer that fires every “TIME” ms, the code line is:

call Timer<TMilli>.startPeriodic(TIME);

Events, instead, represent hardware interruption managers. They must be
implemented by the application that uses the module. The hardware interrup-
tions may are due to internal reasons, like a fired timer, or to external ones, like
the reception of a message. The syntax is similar to the commands one, but
this time the primitive used to invoke the event is signal. Both commands and
events can have an asynchronous or synchronous concurrency behaviour. The
asynchronous event or command is generated by a hardware interruption that,
once it has been triggered, starts immediately delaying the execution of the pro-
gram, that will continue from the point it has been stopped right away the end
of the interruption. The synchronous one is the default type: it is not able to
manage hardware interruptions, it can be stopped by an asynchronous event and
can be called only by tasks.

Tasks

Tasks are a set of instructions that can be execute without been stopped by
any other command. This allows tasks to run even while a node is executing
other functions: indeed, they are useful when a mote has to compute heavy and
long operations. Tasks enter in a tasks queue that works with a FIFO (First In
First Out) policy. This behaviour avoids race conditions on shared variables. An
example of task declaration is:

task void taskname (){

...

}

CHAPTER 3. SOFTWARE AND HARDWARE 19

where taskname is whatever name is assigned to the task, and it can be dis-
patched with the sintax below:

post taskname ()

.

3.3 Hardware Abstraction Architecture

The Hardware Abstraction Architecture (HAA) for TinyOS 2.0 is an hard-
ware abstraction model which is supposed to balance the requirements of code
reusability and portability as well as the optimization and the performance effi-
ciency [6]. As shown in Figure 3.1, it includes three main layers:

• Hardware Presentation Layer (HPL);

• Hardware Abstraction Layer (HAL);

• Hardware Interface Layer (HIL).

HW platform 2

HPL 2

HAL 2

HIL 2

HW platform 3

HPL 3

HAL 3

HIL 3

HW platform 1

HPL 1

HAL 1

 HIL 1

HW platform 4

HPL 4

HAL 4

HIL 4

Platform-specific
applications

Platform-specific
applications

Cross-platform applications

HW/SW
boundary

Figure 3.1: Hardware Abstraction Architecture in TinyOS

CHAPTER 3. SOFTWARE AND HARDWARE 20

Hardware Presentation Layer

It is the lowest level in the model, and its components are placed directly
over the HW/SW interface. It communicates with the hardware offering to the
components above a simpler interface with more usable function calls. HPL com-
ponents are stateless and are able to initialize, start and stop hardware modules,
to get and set the operations in the control registers, to enable/disable interrupts
and to provide service routines for the generated interrupts.

Hardware Abstraction Layer

The components of this layer represent the core of the architecture. They take
advantage of the raw interfaces offered by the HPL in order to build abstractions
that hide the complexity of the hardware resources. Unlike the HPL components,
the HAL ones can maintain state in order to perform resource control if needed.
The abstractions provided at this level are simpler than the HPL ones, even if
the HAL is still dependent on the hardware layer.

Hardware Interface Layer

This level provides to the application level hardware-independent functions.
These functions allow the abstractions offered by the hardware layer to run on
different platforms. The complexity of the HIL components is represented by
the trade-off between the capabilities of the hardware and the current “API con-
tract”2. If the first exceeds the latter, the HIL “downgrades” the platform-specific
applications provided by the HAL in order to level-off with the chosen interface.

3.4 Hardware

In this work, two different types of “motes” have been used: MICAz and
Shimmer. The features of both will be presented in the following sections.

3.4.1 MEMSIC MICAz

The MEMSIC MICAz [7] is a third generation device used for low-power,
2An application programming interface (API) is a source code-based specification intended

to be used as an interface by software components to communicate with each other.

CHAPTER 3. SOFTWARE AND HARDWARE 21

wireless sensor network (Figure 3.2) that works in the unlicensed 2.4 GHz fre-
quency. It is a 58 × 32 × 7 mm mote, powered by two AA batteries. Its processor

Figure 3.2: The MEMSIC MICAz mote

is based on the Atmel ATmega128L, a low-power microcontroller equipped with
128 KBytes of flash memory, 4 KBytes of SRAM3, a 51-pin expansion connector
and its peak operating frequency is 16 MHz. The transceiver is a single radio
chip, CC2420, which is well-adapted to the IEEE 802.15.4 standard (2.2.1). In
order to connect the mote to a PC and install the application, a programming
board is needed. It could be a USB board (MIB520) or a serial one (MIB510),
as shown in Figure 3.3.

Figure 3.3: A MIB520 (left) and a MIB510 (right) Programming Board

Radio

As just mentioned, CC2420 is the radio chip used by the MICAz family. The
3The SRAM (Static Random Access Memory) is a type of semiconductor memory where the

word static indicates that, unlike dynamic RAM (DRAM), it does not need to be periodically
refreshed

CHAPTER 3. SOFTWARE AND HARDWARE 22

Power Level Power [dbM] Current [mA]
31 0 17.4
27 −1 16.5
23 −3 15.2
19 −5 13.9
15 −7 12.5
11 −10 11.2
7 −15 9.9
3 −25 8.9

Table 3.1: CC2420 Power Levels

CC2420 is a true single-chip 2.4 GHz IEEE 802.15.4 compliant designed for low-
power and low-voltage wireless applications [8]. The CC2420 supports a 250 kb/s
data rate with 16 channels.The RF frequency of these channels is given by the
equation:

Fch = 2405 + 5× (k − 11) MHz, k = 11, 12, ..., 26

The radio has 4 different working states: sleep, idle, receiver and transmitter.
If the radio is in the first state, the chip is disabled. In the second one, the chip is
still not busy, but it is just partially turned off, ready to switch immediately on
if needed. The last two states are the activity states. The CC2420 can transmit
at 8 different power levels, and table 3.1 shows the correlation between the power
level, the power in dbM and the current draw.

3.4.2 Shimmer

Shimmer is a small sensor platform well-suited for wearable applications [9].
The core element in this mote is the low-power MPS430F1611 microprocessor,
that is in charge of controlling all the device operations. It provides 48 Kbytes of
program flash memory, 256 Kbytes of data flash memory and 10 Kbytes of RAM.
It is also equipped with an integrated 3-axis accelerometer and with a MicroSD
slot with capacities up to 2 Gbytes that allows large storage and long-term data
acquisitions. It has a long operating life, because of its 280 mAh battery, that
can be easily rechargeable with the provided USB External “Dock” (Figure 3.4).

CHAPTER 3. SOFTWARE AND HARDWARE 23

(a) (b)

Figure 3.4: (a) The Shimmer Sensor Mote - (b) The USB External “Dock”

Radio Overview

For wireless data streaming this platform presents both Bluetooth 4 and IEEE
802.15.4 radio modules. It utilizes the Roving Networks RN-46 Class 2 Bluetooth
module [10] to support the first, and the ChipCon CC2420 radio transceiver just
discussed above (3.4.1) for the latter. Depending on the protocol, almost every
feature of the Shimmer Platform behaves in a different way, this is why one or
the other should be chosen according to the needs of the selected application.
The table 3.2 shows the main differences between the two techniques.

Feature 802.15.4 Bluetooth
Power Consumption Better Worse

Agility/Connection Speed Better Worse
Pre-built Application No Yes
Number of nodes Good Poor

Range Ok Ok
Mesh Implementations Yes No
Ability to customize Yes No

FCC Modular Certification No Yes
Data Rate Worse Better

Table 3.2: IEEE 802.15.4 vs Bluetooth

4Bluetooth is a low-cost, low-power, robust, short-range wireless communication protocol
which was founded by Ericsson in 1994 in order to replace the traditional phone and computer
cables with wireless links.

CHAPTER 3. SOFTWARE AND HARDWARE 24

Accelerometer

An accelerometer is a device that measures is own proper acceleration, that is
the acceleration relative to an inertial observer who is at rest relative to the object
being measured. The quantity measured is known as g-force, which corresponds
to the acceleration of the object relative to free-fall. Because of this character-
istics, accelerometers are well-suited for detecting sense orientation, vibration,
shock or falling. An accelerometer may be single or multi axis: in the Shimmer
motes employed in this work, a Freescale MMA7260Q [18] 3-axis accelerometer
is integrated (Figure 3.5).

Figure 3.5: Freescale MMA7260Q 3-axis Accelerometers integrated in Shimmer
motes

The main features of this device are: the flexibility to select 1.5g,2g,4g or
6g of acceleration range, low power consumption, low component count, high
sensitivity, high frequency and high resolution for fall, tilt, motion or vibration
sensing.

Chapter 4

WSN in Sport: a survey

In the last decade, athletes’ performance has been helped by training as much
as by science. Indeed, the difference between a winner and a loser is getting
thinner and thinner, and the aid of a technology support or device may be vital
to “cross the line” that divides an average player from a champion. Wireless
Sensor Networks fit perfectly in this scenario: the easiness of the topology, along
with the opportunity to attach the sensors directly on the athlete’s body without
caring about cables or wires, makes the WSNs widely used in a lot of different
sports. After a brief introduction to Body Sensor Networks, this Chapter will
present an overview on WSNs sport applications with a special care for the one
concerning this work.

4.1 Body Sensor Networks

A Body Sensor Network (BSN), also called Body Area Network (BAN), de-
scribes a network made up of wearable computing devices. At first, BSN devices
were developed only for healthcare applications. Indeed, with their flexible and
compact design, they became a key element in order to obtain a more proactive
and affordable approach to healthcare area [11] [12].

Since the number of elderly over age 65 is expected to double in about ten
years’ time [13], researches and projects around BSNs notably increased, because
they were supposed to represent the ideal support for monitoring patients, espe-
cially aged people in ambulatory or rest home settings. However, the researches
have continued, looking for even more feasible scenarios and useful applications

25

CHAPTER 4. WSN IN SPORT: A SURVEY 26

in the medical field. As a result, in the later years there has been a remark-
able increase in the number (and in the variety) of wearable sensor devices for
health monitoring, ranging from simple pulse monitors to much more expensive
implantable sensors. Figure 4.1 shows a simple example of a BSN application.

Figure 4.1: Example of BSN for healthcare monitoring

During the development and testing of this technology, there have been some
medical and social challenges to go through such as:

• Interoperability and Scalability: BSNs should ensure seamless data transfer
across the most common WSN protocol (Bluetooth, ZigBee1, IEEE 802.15.4
standard), plug-and-play2 device interaction and high scalability in order
to provide all the functionalities regardless of the number of nodes actually
connected to the network;

• System devices: the motes employed would have to be small sized, light,
with low power consumption and low in complexity. Moreover, especially
for long-term usage, they should be equipped with additional data storage
when real-time connection is not available.

1ZigBee is a specification for a suite of high level communication protocols using small,
low-power digital radios based on an IEEE 802 standard for personal area networks.

2In computing, plug-and-play is a term used to describe the characteristic of a computer bus,
or device specification, which facilitates the discovery of a hardware component in a system,
without the need for physical device configuration, or user intervention in resolving resource
conflicts.

CHAPTER 4. WSN IN SPORT: A SURVEY 27

• Invasion of privacy: some patients may look at BSNs as a threat for their
privacy. In order to go beyond this sceptical view, the network and the
devices used have to ensure secure and safe data transmission.

• Data consistency: since there might be several nodes attached to each pa-
tient, all data have to be collected and examined in such a way that, even if
they are transmitted across more than one mote or gathered in more than
one PC or similar, they will eventually provide all the information needed,
thus the quality of patient care will not degrade.

• Interference: either in an ambulatory or in a hospital or in a rest home
scenario, the number of different BSNs can be considerable, this is why
the wireless links used need to ensure low interference and high coexistence
between devices belonging to different networks.

4.2 Virtual Trainers

However the growth of BSNs was due in particular to medical and clinical
applications, nowadays they are employed in healthcare as much as in sport. In
fact, traditionally, the measurements of athlete performance were done in a lab-
oratory environment. But, even the more sophisticated and advanced laboratory
was not able to reproduce exactly the real scenario that the athlete should have
faced during his performance (e.g. a football pitch, a tennis court, a swimming
pool, etc.) [14]. The most common instrument used to evaluate athletes and
players movements was an optical motion tracker [15]. This system could keep
track of people movements because of some reflective markers positioned on the
body and, with an array of high-speed IR-illuminated video cameras, was able
to convert the different positions acquired into joint angles, driving eventually
a stick-figure animation. As an example, in the past some measurements were
acquired from some baseball players in USA, employing this technique. Apart
from the difference with the real sport scenario mentioned just above, the critical
issue for most of the players was that the markers were quite uncomfortable, and
they could not act like in real games.

Following the success of BSNs, trainers started to use this innovation in place
of the older systems, and the results were high remarkable. For instance, a

CHAPTER 4. WSN IN SPORT: A SURVEY 28

runner gait changes considerably from treadmill running and outside running.
Even better, the improvement due to the first wireless virtual trainers was higher
for sports like tennis, volleyball or similar, where studying athlete’s performance
during a proper training or match makes possible to evaluate the mental factors as
well as the physical ones. Some specific applications concerning wireless sensors
employed as virtual trainers will be now illustrated in the following sections.

4.2.1 Golf

The popular sport of Golf requires some detailed and well-executed movements
in order to swing the golf club properly. A good and consistent golf swing means
a lot (and improves the score) for a golf amateur as well as for a professional.
After a deep analysis of the Golf model swing, a BSN has been used in order to
detect the most common mistakes people that approach golf make while playing
a swing [16].

Figure 4.2: The four-phase motion of a golf swing: (a) Takeaway, (b) Backswing,
(c) Downswing, (d) Follow-through

Given that a proper swing consists of a four-phase motion (Takeaway, Back-
swing, Downswing, Follow-through) as shown in Figure 4.2, there are two
typical mistakes a new player makes, resulting in a bad shot: wrist rotation and
out-of-plane movements. Wrist rotation is the clockwise or counter-clockwise ro-
tation of the wrist, causing a deviation of the ball flight path on the right or on
the left of the target respectively. The second mistake occurs when, during the

CHAPTER 4. WSN IN SPORT: A SURVEY 29

whole swing, the golf club does not remain on a plane at the address position,
and can be due to wrong movements like over-bending the elbows, raising the
arms too high or not raising the arms enough.

The BSN is structured as follows (Figure 4.3):

• two nodes on the golf club (red dots);

• one on the right wrist (green dot);

• one on the left arm (orange dot);

• one on the back at waist level (blue dot).

Figure 4.3: BSN for detecting wrist rotation and out-of-plane mistakes in a golf
swing

TelosB motes embedded with a tri-axial accelerometer and a bi-axial gyro-
scope3 are used for the measurements. The sampling frequency chosen, a trade-
off between the bandwidth constraints and a valid samples resolution, is 50 Hz.
These sensors transmit all the data to a Base Station (it can be an other mote or
a PDA4), that is in charge of collecting all data from the other nodes, processing
them and providing the final feedback on the golf swing played.

3A gyroscope is a device for measuring or maintaining orientation, based on the principles
of angular momentum.

4A personal digital assistant (PDA), also known as a palmtop computer, or personal data
assistant, is a mobile device that functions as a personal information manager.

CHAPTER 4. WSN IN SPORT: A SURVEY 30

Each sensor, before sending the samples acquired to the Base Station, per-
forms a preprocessing with a five-point moving average filter, in order to remove
the noise. Afterwards, the data collected are manually separated (with the help
of a video recording) depending on whether swing segment described in Figure
4.2 they belong to. For each segment, a quantitative model is built, consisting of
a PCA [21] and a LDA [22], which outputs the parameters of a linear regression
that eventually quantifies the degree of improperness of the movement.

4.2.2 Tennis

The service swing for a tennis player is crucial as much as the swing for a
golf player discussed in the previous paragraph. In order to perform a powerful
serve, the player needs to execute the correct movement with all the joints and
the limbs concerned. Anticipated by some studies on the kinematic model5 of the
tennis serve, a BSN has been designed to analyse and evaluate this important
shot [17].

Figure 4.4: BSN with accelerometers for examining a tennis player’s serve

The network consists of three different nodes equipped with either ±10g
ADXL210 or ±2g ADXL202 accelerometers set as illustrated in Figure 4.4:

• one ADXL202 accelerometer attached on the knee (yellow dot);

• one ADXL202 accelerometer attached on the waist (green dot);
5Kinematics is the branch of classical mechanics that describes the motion of points, bodies

(objects) and systems of bodies (groups of objects) without consideration of the forces that
cause it

CHAPTER 4. WSN IN SPORT: A SURVEY 31

• one ADXL210 accelerometer attached on the wrist (red dot).

The sampling frequency is set at 500 Hz, the data are transmitted via a
Bluetooth connection to a Base Station and two video cameras are positioned in
front of the players to register the whole acquisition. The goal of the experiment
is to underline the differences between an elite player serve and an amateur one.
Data processing in this case is actually quite simple. Indeed, the yardstick to
compare the two categories of player is the average acceleration acquired by the
motes, and the standard deviation is also calculated to indicate the repeatability
of the serve swings belonging to the same class. As a result, the BSN identified the
major differences around the impact time: professional players, in fact, generate
more waist torsion as well as more acceleration magnitude of the hand right before
hitting the ball.

4.2.3 Body Training and the gym scenario

An other scenario where wireless virtual trainers are widely employed is body
training. Everyone, from a professional athlete to people who practise sporadi-
cally, can profit by the use of these devices during, for instance, a gym session.

Figure 4.5: An example of virtual trainer used for detecting lower limbs explosive
strength .

Indeed, they may represent an add-on to improve trainings (as already men-
tioned above), a “replacement” of real trainers who sometimes can be unavailable
(e.g. at peak-time in a gym), or also an useful device in order to avoid injuries.

CHAPTER 4. WSN IN SPORT: A SURVEY 32

Consequently, people may save money, time and “pain”: this is why nowadays the
use of such devices keeps increasing also in the gyms.

Some examples of applications in this scenario are: detecting upper and lower
limbs explosive strength (Figure 4.5), measuring upper and lower limbs power,
providing a training profile (Hill’s Curve, explained in details in Chapter 6),
training optimization and much more besides. Business around these products
is increasing as well, in fact there are some companies which are already devel-
oping and selling devices that perform these operations (e.g. Sensorize [19], in
Italy, is greatly focused on these types of sensors), but lately more and more
semiconductor companies are getting interested on this field too.

The following chapters will describe a WSN projected for an application simi-
lar to the one just illustrated in this paragraph: indeed, its goal will be provide a
training profile of the user and evaluating the power generated from his (or her)
upper limbs during a bench press practice.

Chapter 5

Network Protocol

This Chapter will describe the first section of this work, that is a network
protocol developed in order to obtain a connection with high QoS (“Quality of
Service”) while transmitting with the lowest possible power level. The WSN
topology is quite simple: a single Shimmer mote attached to the barbell and a
Base Station in charge of collecting and analysing the data. This protocol is
divided in 4 different step:

1. Channel Scan: when both the Base Station and the Mote switch on, they
start scanning the 16 radio channels (3.4.1): the first one executes several
readings of the noise floor of each channel, selecting eventually the channel
with the lowest (or more negative) value; the latter listens periodically to
every channel until it finds the beacon message of the Base Station;

2. Beacon Sending: after that the best channel is selected, the Base Station
begins to send beacon frames, waiting for the mote’s reply;

3. Association: when the mote intercepts a beacon message, replies to the
BS with an association message, in order to set a ubiquitous and exclusive
connection with the BS;

4. Power Level Selection: once the connection has been established, the
two sensors select the lowest power level that satisfies the QoS parameters
chosen with an ad-hoc algorithm.

33

CHAPTER 5. NETWORK PROTOCOL 34

5.1 Channel Scan

The very first step when the Base Station switches on is the Channel Scan.
Indeed, since the WSN presented may be widely employed in crowded places like
gyms, and consequently a large number of this sensors might be used at the same
time, this protocol must allow to transmit the data in the best channel possible.
It means that the packet traffic in the channel has to be as little as possible, thus
also the Rssi1 value must be the lowest possible.

The Rssi is a measure in dBm of the signal power on the radio link. Apart from
detecting the transmitting channel QoS, it can be also useful for calculating the
distance between two nodes. In the CC2420 radio chip, the Rssi is provided by a
platform-specific HAL interface. However in this section the Rssi measurements
are not related to a received packet (as it will be discussed in the last section),
but they represent noise floor readings. The noise floor is the noise given from
the sum of all the undesired sources in a specific channel. The lower is this value,
the better is the channel.

In order to achieve noise floor readings with the CC2420 chip, a CC2420ControlP
component is employed, wired to two different interfaces: the CC2420Config
and the Read<uint16_t> interfaces (from now on called ChannelConfig and
RssiRead respectively2). For each channel, 40 readings of the noise value are
performed during a 1.2 seconds interval (one reading each 30 ms): indeed, ob-
serving the channel for such a relatively long time allows the Base Station to
obtain more meaningful results about the quality of the channel listened.

The Channel Scan works as follows: right after the Base Station switches
on, and so does its radio, the startPeriodic command of the ListeningTimer

(Timer<TMilli>) interface is called, and every 30 ms it fires in order to perform
a noise floor reading. Before starting listening the noise level, the BS has to set
its radio on the channel selected. For this reason, the first time that the fired()
event occurs, it selects the channel calling the following command:

1In telecommunications, Rssi (“Received Signal Strength Indication”) is a measurement of
the power present in a received radio signal.

2In nesC, an interface can be renamed with the as keyword. In fact, in the same application,
more than one instance of the same interface may be used. If so, renaming the interfaces is
an useful method in order to avoid confusion and differentiate each interface. From now on, in
the discussion the nickname (if it exists) of the interface will be followed by its real name in
brackets.

CHAPTER 5. NETWORK PROTOCOL 35

call ChannelConfig.setChannel(j);
where j is an uint8_t variable that identifies the number of the channel set.
However, the channel setting is not over. Indeed, the sync() command, always
belonging to the ChannelConfig interface, must be called. This command, along
with the syncDone(error_t error) void event, form what in nesC is called a
split-phase operation [20]. Basically, this means that the synchronization will be
completed only when the called abstraction will issue a callback.

Figure 5.1: Channel Scan Flowchart

CHAPTER 5. NETWORK PROTOCOL 36

When the channel is eventually selected, the BS reads the first noise floor
value calling the read() command of the RssiRead interface. This command is
also part of a split-phase operation, thus the result of this call will be found in
the readDone(error_t error, uint16_t data) void event. The data parame-
ter represents the noise floor value. However, the Rssi values given by TinyOS are
not in dBm units hence, in order to get a significant value, it has been converted
using the following equation:

int8_t noise_val= (int8_t)(((data-0x7F)&0xFF) - 45);

Executing the line code above, the BS turns a 16 bits unsigned integer in a 8
bits signed one, and then 45 is subtracted from the result to obtain the correct
Rssi value in dBm. This operation is repeated every time the ListeningTimer

fires, until the readings counter reaches 40. Each time a value is read, the mean
of Rssi is updated using the standard formula:

new_mean =
old_mean× (N − 1) + val

N
;

where val is the last value acquired, N the number of readings, old_mean and
new_mean the mean value before and after the last reading. Every time a
better Rssi value is found, it is chosen as a threshold, and the next values will
be compared with it. Eventually, when this operation has been done for all the
16 channels of the CC2420 radio chip, the best channel is selected, and the BS is
ready to go through step 2: Beacon Sending.

5.2 Beacon Sending

Right after the transmitting channel is chosen, the Base Station starts sending
broadcast beacon frames. The beacon frame is the typical TinyOS packet, with
8 bytes of header followed by the payload (Figure 5.2). The header is constituted
by:

• one byte to indicate whether the packet is an AM Packet or not;

• two bytes for the Destination Address (FF FF if broadcast);

• two bytes for the Source Address;

CHAPTER 5. NETWORK PROTOCOL 37

• one byte to indicate the Message Length;

• one byte for the Group ID;

• one byte for the for the Active Message Handler Type.

Figure 5.2: The Header of the typical TinyOS packet (above) and the Beacon
Message payload (below)

The Beacon Message Payload, instead, is a 4 bytes payload that includes the
Base Station ID and the channel number. The first byte is an unsigned 8 bits
used as a frame indicator: each type of frame used in this work, indeed, contains
as first byte of the payload an exclusive value that must set every frame apart
from the others. The beacon packets are transmitted every 50 ms waiting for the
mote to intercept them.

Indeed, when the mote switches on, it starts scanning every channel period-
ically in order to find the beacon frame of its own Base Station, without trans-
mitting any packet. The scan is performed as explained above for the BS: the
channelScan timer fires every 100 ms and, when it does, it sets a new radio
channel always using the sync() command and the syncDone(error_t error)

event of the BSResearch (CC2420Config) interface. Whenever the mote receives
a packet, it checks for its payload and especially for the beacon frame indica-
tor and the BS ID. Indeed, in order to intercept only the beacon messages of

CHAPTER 5. NETWORK PROTOCOL 38

Figure 5.3: Example of Beacon Sending: the mote is listening to the radio channel
waiting for intercepting the beacon message that contains the known BS id. If it
receives the beacon of other BS (ch. 11 and 15), it keeps scanning the channels,
until it finds its BS (ch. 22)

CHAPTER 5. NETWORK PROTOCOL 39

the BS which it is supposed to connect, the mote, after it switches on, already
knows the indicator value and Base Station ID which it is looking for. Hence, if
these values are the ones expected, it stops scanning, and starts communicating
with the BS in the channel where the beacon has been found, in order to set an
ubiquitous connection as it will show in the next paragraph. Once the BS starts
sending beacon frames, if it does not receive any packet from the mote for the
following 2 minutes, it starts again from the Channel Scan step. This happens
because the BS could not receive anything from the mote either because it does
not switch on yet or because it has some trouble in replying to the beacon: hence,
the BS starts again the channel scanning, indeed the noise floor situation might
be changed during the time spent waiting for the mote reply.

5.3 Association

When the mote intercepts the beacon packet of its own BS in one of the
channel, and selects the latter as the transmitting channel, it sends an association
packet to the BS in order to prove it is the mote which the Base Station is
associated. Along with the Beacon procedure already discussed, this might be
seen almost like a three-way handshake.

This method is widely used in TCP (“Transmission Control Protocol”) to
establish a connection between a server and a client. The name of this technique
refers to the three messages exchanged between the two entities, that usually are:

1. SYN: is the message the Client sends to the Server, that contains a random
value A in the sequence number field;

2. SYN-ACK: the Server replies with a SYN-ACK message, where the ac-
knowledged random value is set to A+1 and another random value Y is
added as sequence number;

3. ACK: eventually, the Client confirms the connection sending to the Server
the acknowledged value Y+1 and setting the sequence number to A+1.

In this scenario, the Beacon Message could be seen as the first of this three
steps. The second one is represented by the association packet the mote sends to
the BS. The payload of this packet includes 7 bytes, divided as shown in Figure
5.4:

CHAPTER 5. NETWORK PROTOCOL 40

Figure 5.4: Association Packet Payload

where ass_id is the identification value of the association frames, BS_id and
mote_id are respectively the Base Station and the mote node id and sampling
time indicates the rate the accelerometer will sample the data. Right before this
message is forwarded, an ACK is requested using the Ack (PacketAknowledg-
ments) interface. When the packet is received by the BS, this ACK is sent to
the mote, and it corresponds to the final step of the association protocol. If the
mote does not receive the ACK, it tries to resend the packet again. If the ACK
does not arrive after 10 attempts, the association fails and the protocol has to
start again from the beginning (hence the mote returns scanning the channel
waiting for listening to the beacon frames). However, if it does, the association
is finished and the protocol can go through its fourth and last step: the Power
Level Selection.

Figure 5.5: The Revised “Three-way Handshake” technique used for the motes
association

CHAPTER 5. NETWORK PROTOCOL 41

5.4 Power Level Selection

Once the best channel is chosen and the two devices are connected, the last
thing left to set is the Power Level. The aim of this operation is to obtain a low
power but high efficient communication between the mote and the Base Station.
The 8 power levels and their relative dBm and current draw values for the CC2420
radio chip have already been illustrated in Table 3.1.

The protocol is supposed to choose the lowest possible level that satisfy the
QoS parameters requested. These parameters are usually well-defined by two
values: the PER (Packet Error Rate) and the Rssi value of the received packets.
The PER is the number of incorrectly received packets divided by the total num-
ber of received packets. Nevertheless, in this work PER means the ratio between
the number of packets received by the Base Station and the number of packets
sent by the mote:

PER =
Packets_receivedBS

Packets_sentmote

The Rssi has already been explained in 5.1, but the command to call in order
to get this value is different from the noise floor one discussed above. In this
case, in fact, the CC2420Packet interface is used and the command syntax is the
following:

async command int8_t getRssi(message_t* p_msg);

where p_msg is the received message.

Figure 5.6: Power Test Packet Payload

However, as for the noise floor readings, this value needs also to be subtracted
by 45 to obtain a meaningful Rssi value.

The Power Level can be set according to both these values or to just one of

CHAPTER 5. NETWORK PROTOCOL 42

them. This protocol works checking only the first one: if the PER value calculated
is below a chosen threshold, the power level is selected.

After that the ACK is received, the mote starts a periodic timer that fires
every 50 ms. This interval has been chosen because it is the same one that will be
used when the data packets will be sent, so it can return a reasonable estimate of
the PER. Every time the fired() event connected to this timer runs, the Mote
sends to the BS a packet which payload includes (Figure 5.6):

• one byte for the usual frame indicator value;

• two bytes for the mote ID;

• two bytes for the packet counter;

• one bytes for the power level which the packet is sent.

Figure 5.7: Example of Power Packets Transmission

The mote sends 100 packets to the Base Station: all packets are the same
except for the packet counter bytes. This value increase every time a packet is
sent, and it is useful for the Base Station to identify if there is any packet missing.

CHAPTER 5. NETWORK PROTOCOL 43

Right After the 100th packet is sent, the mote starts a Time-out, that allows it
to wait for the Base Station’s reply.

Meanwhile, the Base Station has started another periodic timer (using the
PowerSettingTimer interface) that lasts 5030 ms. This timer has a purely com-
puting meaning. It may happen, in fact, that the BS would not received the
last packet (or any packet at all) from the mote because, for example, the power
level is too low. Otherwise, every time the BS receives a power packet, checks its
packet counter and gets its Rssi value3. When the timer fires, the Base Station
sends to the mote its power report: this is a packet which payload contains, apart
from an other frame indicator value, the power level and the node ID, one byte
for the PER and one for the Rssi calculated (Figure 5.7).

On the other side, when the mote received the report, stops the Time-out
and analyses the packet received. If the PER is lower than 10, the current power
level is selected, otherwise the mote sets the power level to the next one available
and repeats the same operations just described. If no one of the 8 levels satisfies
the QoS requirements, it sends to the BS a packet telling that the power level
is inadequate, and the whole protocol starts once again from step 1. On the
contrary, when a power level is selected, the Network Protocol is finished, and
the WSN can start transmitting data packets.

3Even if the Rssi value is not employed in order to select the Power Level, it was used in
several tests which will be illustrated in Chapter 7

Chapter 6

Application

The second section of this work is dedicated to acquisition, processing and
analysis of the data sampled by the integrated Freescale MMA7260Q 3-axis ac-
celerometer (3.4.2) of the Shimmer mote. As shown in Figure 6.1, the Shimmer
mote has to be placed on the barbell, while the Base Station can be connected
to a PC in order to collect and save the data acquired.

Figure 6.1: Example of application proposed for this WSN: the blue diamond
shows where the Shimmer mote should be placed

This paragraph will describe both the TinyOS block code, which is in charge
of acquiring the samples from the accelerometer and the Matlab [23] one, that
computes these measurements and shows, through the aid of a GUI (Graphical
User Interface), the final outputs of this WSN: the training profile of the user
(Hill’s and Power-Velocity curves) and the Power Analysis of some standard bench
press practices. Before starting this dissertation, though, a brief introduction to
the Hill Curve and the Power-Velocity curve will be presented, in order to make
the outputs analysis clearer.

44

CHAPTER 6. APPLICATION 45

6.1 Training Overview

As stated before, the first output of the proposed work is to provide a training
profile for the user. This profile is based on the Hill’s Equation, a widely used
formula based on the correlation between the Force and the velocity. Given the
Hill equation, then, it can be obtained an other important curve to completely
define the subject’s training profile, that is the Power-Velocity curve. In this
section will be explained the meaning, the fitting and the analysis of these curves.

6.1.1 Hill’s hyperbolic equation

The Hill’s curve is given by the equation:

C = (N + a)× (V + b)

in whichN is force, V is velocity, and a, b and C are constants with the dimensions
of force, velocity and power respectively.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

v [m/s]

N

[
K
g
]

First Acquisition
Second Acquisition
Third Acquisition

Figure 6.2: Training improvement through Hill’s Curve: Strength

The Hill’s equation was introduced by A.V. Hill to describe the relationship
between the oxygen tension and the saturation of haemoglobin [24]. Followed
by more detailed studies, it began greatly useful for describing how the muscle
action is related to the velocity of shortening of movements. Indeed, the Hill’s
equation implies that velocity of muscle’s contraction is inversely proportioned
to the load.

CHAPTER 6. APPLICATION 46

According to this hyperbolic equation, athletes are able to monitor their train-
ing level and decide which feature they prefer to improve. The Hill’s curve shows
that the development of great strengths will not necessarily enhance the speed.
Figure 6.2 and 6.3 show two examples of Hill’s curve and how this one may change
if the athlete would rather improve either his strength or his speed.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

v [m/s]

N

[
K
g
]

First Acquisition

Second Acquisition

Third Acquisition

Figure 6.3: Training improvement through Hill’s Curve: Velocity

6.1.2 Power-Velocity curve

The second important relationship used in this work is given by the Power-
Velocity curve. It is directly extracted from the Hill’s Curve by multiplying its
x and y coordinates in order to obtain values with the dimensions of power. An
example of this curve is illustrated in Figure 6.4.

This curve adds some useful information about the user’s training profile, such
as the maximum power the muscles are able to provide. Given that, indeed, it
is possible to create a “power profile”, and the user may choose a specific power
range within he would rather practise.

6.2 Data Acquisition

Right After the Network Protocol described in Chapter 5 finished all its oper-
ations, the mote is almost ready to sense the data. Indeed, the last operation left
to do is setting the Shimmer interfaces in charge of initializing the accelerometer.

CHAPTER 6. APPLICATION 47

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

v [m/s]

Po
w

[K
g

x
v]

 (
N

[K
g]

)

Hill’s curve

Power−Velocity curve

Figure 6.4: Power-Velocity Curve

The most part of commands are provided by the shimmerAnalogSetup interface
that, for instance, sets the accelerometer sensitivity to 4g. It also includes the
triggerConversion() command which starts the data acquisition. This com-
mand is in fact called every 10 ms (the sampling interval), using the known
command of the Timer<TMilli> interface.

Each time this command is called, it activates the data transfer through the
Msp430DmaChannel interface. However, the packets forwarding is not immediate,
like it happens in the different steps of the Network Protocol, but it is handled
by tasks. This allows the mote to collect five different readings before sending
the packet to the Base Station. Figure 6.5 shows the simple structure of the Data
Packet Payload:

Figure 6.5: Data Packet Payload

where, apart from the five 2-bytes spots reserved to the accelerometer read-
ings, there is one byte at the beginning of the payload containing the sequence
number of the packet. Indeed, even if the mote is able to sample and send read-
ings of all the accelerometer and gyroscope axis, in this work only one axis is

CHAPTER 6. APPLICATION 48

used, so the data packet will only include the samples of the x axis.
When the mote is ready to copy the data into the payload, the copyData()

task is dispatched. This task simply saves the accelerometer readings inside
the proper packet field and increments a counter in order to check how many
samples have already been copied. Only after the fifth reading is completed, the
sendData() task is computed. This task is in charge of sending the Data Packet
with the usual send - sendDone split-phase operation performed by the AMSend

interface. These operations keep running inside the mote until it switches off.

6.3 Data Processing

In this work, the software used for processing the accelerometer samples is
Matlab. Matlab is a programming environment for algorithm development, data
analysis, visualization and numerical computation [23]. A simple java application
helps to move the data from the mote to this environment. Indeed, this applica-
tion saves all the readings into txt files, which can be read by Matlab and saved
into a vector or a matrix using the textread command. The Data processing
consists of three main sections:

1. Accelerometer Calibration: the data acquired from the accelerometer
are actually raw data and they are not in g-force units. The accelerometer
must be calibrated executing some simple operations in order to convert
the samples;

2. Training Profile: this section will illustrate how the Hill’s Curve and the
Power-Velocity curve can be drawn to define the user’s training profile;

3. Power Measurements: the final step will describe how the power of each
repetition can be calculated and how this information can be useful for the
proposed application.

Eventually, the GUI used to show all the operations performed by the WSN
will be presented.

6.3.1 Accelerometer Calibration

The accelerometers are devices that need to be calibrate as accurate as pos-

CHAPTER 6. APPLICATION 49

sible, because even very small biases may result in very significant drift changes.
Usually, they should be calibrated every once in a while, but it is not mandatory
if the environment in which they are used is always the same. Otherwise, they
have to be calibrated when there are significant temperature changes, because
the biases and the gain factors are very sensitive to these factors [25].

In this work, the calibration is executed externally, before the application
starts running. The mote is placed in three different positions, at -1g, 0g and
1g. For each of this position, the accelerometer performs several readings that
are saved into three different files using the java application mentioned above. A
mean of these values is calculated and eventually, the calibration is achieved with
the equation below:

xcal =
xsample − x0g

(x1g − x−1g)× 0.5

where xsample is the raw accelerometer reading, x0g, x1g and x−1g are the values
read by the accelerometer when it is placed at 0g, 1g and -1g respectively. The
xcal values obtained are in g-force units, where the g-force is the acceleration of
gravity.

When the accelerometer is calibrated and the data are finally converted, it
is possible to start the real processing in order to obtain the first output of the
proposed WSN: the Training Profile.

6.3.2 Training Profile

As stated before, the first curve that must be considered in order to give
meaningful information about the training level of the user is the Hill’s curve.
The algorithm used to draw it is the one performed by B. Wohlfart and K.A.P.
Edman of the University of Lund, Sweden [26]. This method allows to fit the Hill’s
hyperbolic equation starting from experimental data using statistical techniques
and regression analysis based on variables with the dimensions of force, velocity
and power.

The algorithm does not force constraints on the maximum number of data
collected; indeed the greater is this number, the better the algorithm works.
Besides, the robustness of the algorithm increases if the Vmax and Fmax data are
included in the data set, where these values represent respectively the maximum
velocity that can be achieved with F = 0 and the maximum force with V = 0.

CHAPTER 6. APPLICATION 50

However, three is the minimum number of “V and F couples” needed in order to
obtain a significant fitting, and it is also the number of acquisitions chosen for
the proposed work (in line with most of the applications on the market).

0 1 2 3 4 5 6−3

−2

−1

0

1

2

3

time [s]

ac
ce

le
ra

tio
n

[g
−f

or
ce

]

Figure 6.6: Window interval when a low-load practice is performed

The dataset acquisition works as follows. The user is asked to execute three
different sets of the bench press exercise with respectively a low, a medium and a
high load. For each set, 4 or 5 repetitions should be completed, trying to perform
them as fast as possible. A Matlab function is created in order to convert the
raw data of the Shimmer mote placed on the barbell from acceleration to velocity
units. The goal of this function is to divide the accelerometer signal into as much
windows as the number of the repetitions. Once the signal is fragmented, every
window is integrated to obtain a velocity signal. The function then returns the
mean of the peaks of each window.

Several attempts had been executed to decide where exactly each window
should have started and stopped. Eventually, two different intervals have been
adopted to obtain the best measurements (even if, as it will be widely explained in
Chapter 7, these values are not really accurate) , according to the load employed
in the practice. When low or medium loads are used, the interval is the one that
starts each time the accelerometer signal has a transition from negative to positive
and stops when the signal reaches a minimum (Figure 6.6). Otherwise, with high
loads, it starts when the transition is from a positive to a negative value, and
stops, as in the previous case, when the signal reaches a local minimum (Figure
6.7). However, these transition are kept into account only if the variance between

CHAPTER 6. APPLICATION 51

adjacent samples is greater than a given threshold (more details will be provided
during the performance evaluations in Chapter 7).

0 1 2 3 4 5 6 7 8 9−3

−2

−1

0

1

2

3

time [s]

ac
ce

le
ra

tio
n

[g
−f

or
ce

]

Figure 6.7: Window interval when a high-load practice is performed

Given the V and F values , the Wohlfart’s and Edman’s algorithm can be
computed in five steps:

1. Three variables are defined: X = V , Y = F and Z = V × F ;

2. Nine different sums are calculated (e.g. S(X) =
∑3

k=1X(k), where 3 is the
number of acquisitions) for X, Y, Z,XZ, Y Z,XY,X2, Y 2, Z2;

3. The values otained above are used for calculating the products of deviations
from the mean (e.g. [XY] = S(XY)−

(
1
k

)
×S(X)×S(Y)) for the following

products: XY,XZ, Y Z,X2, Y 2, Z2;

4. The parameters Bx, By, A are achieved with the following equations:

Bx =
[XZ][Y 2]− [Y Z][XY]

[X2][Y 2]− [XY]2
;

By =
[Y Z]−Bx[XY]

[Y 2]
;

A =

(
1

k

)
× [S(Z)−Bx × S(X)−By × S(Y)] ;

CHAPTER 6. APPLICATION 52

5. Given the Hill’s equation in the form presented in 6.1.1, the parameters of
the hyperbolic equation are set:

a = −Bx;

b = −By;

C = A+Bx ×By;

After that, the Hill’s curve is finally determined. And, by simply multiplying
the x and y vectors of the latter and plotting the correlation between the velocity
and the values calculated, the Power-Velocity curve can be drawn, as already
shown in Figure 6.4.

6.3.3 Power Measurements

Once the application created the user’s training profile, it is possible to go
through its second main output: the Power Evaluation of the bench press
practice. A function very similar to the one used in the previous paragraph
to determine the velocity peaks is employed. However this function, instead
of returning the mean of all the peaks spotted, it returns a vector containing
the velocity maximum for every repetition of the practice set. This is why the
application then can be allowed to return the power measurements for every one
of these repetitions, obtained by multiplying each peak by the load used in the
set (in Kg units).

As it will be described in 6.3.4, the user decides the Power range within he
wants to train by selecting a specific type of training (e.g. Explosive Strength)
or just setting this range on his own. The power values acquired are compared
to the ones of the Power-Velocity curve by converting them to percentage values,
and the application returns the following output (see Figure 6.8):

• a green bar if the repetition is executed at the right velocity;

• a yellow bar if the execution is good, but not perfect;

• a red bar if the execution is poor.

CHAPTER 6. APPLICATION 53

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

Reps Number

P
o
w
e
r

[
%
]

Figure 6.8: Example of Power Evaluation output

6.3.4 Graphical User Interface

In order to display the outputs obtained in a better and clearer way, a GUI
(Graphical User Interface) is built. It contains button panels and edit text spaces
that allow to run the Matlab functions just discussed in the previous section. The
GUI consists of:

(A) Two axis employed to display the Hill’s curve, the Power-Velocity curve (the
first) and the Power evaluation bars (the latter);

(B) Three Push Buttons for plotting the curve in these axis plus an other one in
charge of clearing them;

(C) Four Edit Text spaces to upload the Text (.txt) Files containing the three
acquisitions for the Hill’s Curve and the one for the practice set (and the
relative spots for the load values);

(D) One Pop-Up Menu icon which is used to select the desired type of training;

(E) Two Static Text spaces that show the Load and the Power ranges proposed
for the selected training.

The execution order of the operations is the same discussed earlier. At first,
the user inserts the three different acquisition and their relative loads and, by

CHAPTER 6. APPLICATION 54

pushing the Start button, he will obtain his personal Hill’s curve in the graph on
the top. The Power-Velocity curve, instead, can be easily obtained with the Get
Power button. After that, he can choose the type of training between 5 different
options: Maximum Strength, Explosive Strength, Hypertrophy, Quick
Strength Endurance, Resistance Endurance. According to the training
selected, the GUI will show the Load and the Power range suggested in order
to perform as good as possible. If none of these options are selected, the user
can set his own personal Power Range in the corresponding spaces next to the
graph on the bottom. This graph is in charge of showing the Power Evaluation of
the practice set by adding the file with the acquisition in the suitable space and
pushing the Start Practice button. The user, then, can obtain power estimation
of new sets only by changing the uploaded file with the one wanted.

Figure 6.9: An Example of the GUI employed

Chapter 7

Performance

The network protocol and the application have been tested to check both
their behaviour in some realistic environments (such as a crowded gym) and
their accuracy in the data processing. The first one, indeed, needs to ensure the
lowest PER possible even if a lot of devices are used at the same time and in the
same place. The performance of the latter, on the contrary, is not affected by the
noise or the packet traffic, but several measurements have been tested to obtain
velocity values as precise as possible.

The aim of this Chapter is to describe the strengths and the weaknesses
of the proposed work, focusing first on the Network Protocol and then on the
Application performance.

7.1 Network Protocol

Setting a suitable power level is fundamental to achieve efficient data trans-
mission. Indeed, the Transmission Power behaviour is highly linked to features
like, for example, the distance between the devices. In order to make it clearer,
some experimental data have been acquired. Two motes, one acting as a Base
Station and one as a transmitting mote, like in the WSN proposed in this work,
have been used. For all the duration of the experiment, the Base Station re-
mained still in its position while the mote have been gradually moved away from
it. The motes have been placed in LOS (Line of Sight), 0.5 meter above the
ground (Figure 7.1). For every distance examined, the mote sent 100 packets to
the BS, and this operation have been repeated three times.

55

CHAPTER 7. PERFORMANCE 56

Figure 7.1: LOS Transmission between the Base Station and the mote

The graph below shows the relationship between Distance and PER (Figure
7.2) when a −25 dBm transmission power is used.

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

80

90

100

distance [m]

P
E
R

Figure 7.2: Distance/PER relationship with Tx Power = -25 dBm

The green circles represent the measured values while the blue curve describes
the course of the means of each set of samples. As it might be seen, the PER
becomes already consistent for distances over 2 meters, and the transmission fails
(PER = 100) when the mote is 3.5 meters far from the Base Station. The Rssi
of the received packet is also correlated with the distance. Figure 7.3 illustrates
how this correlation works: the further is the mote from the Base Station, the
worse is the Rssi value (that is, the more negative).

The Rssi value has been evaluated only on the received packets: this means

CHAPTER 7. PERFORMANCE 57

0 0.5 1 1.5 2 2.5 3 3.5−100

−95

−90

−85

−80

−75

−70

−65

distance [m]

R
s
s
i

[
d
B
m
]

Figure 7.3: Distance/Rssi relationship with Tx Power = -25 dBm

that, if the Base Station does not receive, for instance, 5 packets, the Rssi mean
is only based on 95 values out of 100. Hence, it is fair to assume that if the PER
is not consistent, the estimation is quite near to the real Rssi average (that is the
one that takes into account also the missed packets). Otherwise, the bigger is the
PER, the less meaningful is the Rssi value (it gets underestimated). If no packet
is received (at 3.5 meters in Figure 7.3), then the Rssi value is set to −100 dBm.

−100 −95 −90 −85 −80 −75 −70 −650

10

20

30

40

50

60

70

80

90

100

Rssi [dBm]

P
E
R

Figure 7.4: Rssi/Per relationship with Tx Power = -25 dBm

Another useful information can be extracted from these measurements if the

CHAPTER 7. PERFORMANCE 58

relationship between the PER and the Rssi is analysed. Although the PER values
do not depends on the Rssi ones, from the graph in Figure 7.4 an useful rule in
defining the Power Transmission parameters can be detected:

• if Rssi < -95 dBm then PER = 100% ;

• if -95 dBm < Rssi < -85 dBm then 10% < PER < 100% ;

• if Rssi > -85 dBm then PER < 10%.

In order to show how the quality of the motes’ connection increases along with
the Power Transmission chosen, the same measurements have been collected for 3
more different power levels: −15 dBm, −7 dBm and 0 dBm. The settings of the
experiment are the same of the one illustrated before in Figure 7.1. The following
graphs (Figures 7.5 and 7.6) show how the Distance/PER and the Distance/Rssi
relationship change according to the power level employed.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

distance [m]

P
E
R

Tx Power: −25 dBm
Tx Power: −15 dBm
Tx Power: −7 dBm
Tx Power: 0 dBm

Figure 7.5: Distance/Per relationship with different Tx Power Levels

The experimental data show what it has been expected. For a given distance,
the higher is the Tx Power, the lower is the PER and the less negative is the
Rssi. This explains why the Network Protocol presented in Chapter 5 is mainly
focused on the selection of a suitable Tx Power: even for little distances, the
difference between the PER at a power level i and the one at a power level i+ 1

can be significant. This can be noted, for example, in Figure 7.5, where, at 3

CHAPTER 7. PERFORMANCE 59

0 1 2 3 4 5 6 7 8−100

−90

−80

−70

−60

−50

−40

distance [m]

R
s
s
i

[
d
B
m
]

Tx Power: −25 dBm
Tx Power: −15 dBm
Tx Power: −7 dBm
Tx Power: 0 dBm

Figure 7.6: Distance/Rssi relationship with different Tx Power Levels

meters distance, the PER of a −15 dBm transmission is almost seven times less
than the one of a −25 dBm transmission.

Anyway, the performance of the Network Protocol proposed in Chapter 5 is
not just a matter of distance between nodes, but also a matter of traffic and
noise in the channel. In order to show the robustness of this protocol, another
experiment has been set. As for the previous one, the aim of this test was the
evaluation of the PER and the Rssi over 100 packets sent from the mote to the
Base Station, but the working hypothesis changed. At first, given the channel,
the Tx power and the distance between the motes, the parameters just mentioned
have been calculated gradually increasing the number of motes transmitting on
the same channel, in order to simulate a “crowded gym” scenario. Every measure
has been repeated four times. Secondly, the same measurements have been col-
lected adopting the network protocol used in this work. Basically, the Tx power
and the distance remained the same, while the channel has been selected with
the new protocol. The results of this experiment are shown in Figure 7.7.

The improvement from the “One-Channel Transmission” to the “Propose Method”
is highly remarkable, especially when BSnumber ≥ 4. The first one (red curve),
indeed, grows as an exponential-like function, while the new protocol one (blue
curve) is still around PER = 0%. The experiment has been stopped when nine
different motes were simultaneously transmitting, because no packet arrived to

CHAPTER 7. PERFORMANCE 60

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

BS Number

PE
R

One Channel−Transmission

Proposed Method

Figure 7.7: BS Number/Per Transmission Methods Comparison [Dis: 1m, Tx
Power: -25dBm]

destination when all these motes where transmitting on the same channel.
However, a very interesting result can be obtained from this graph. The red

curve shows that, according to the PER threshold proposed in Chapter 5 (around
10%) only 2 BS can be used with the “One-Channel Transmission” method. Oth-
erwise, it is fair to suppose that this number would be quite larger if the new
protocol is used. Indeed, Figure 7.7 shows that the blue curve is not influenced
by the number of BS transmitting, because they are working in different frequen-
cies. Since the permitted channels are 16, this allows to reckon that this behaviour
must be the same until 16 different BS (one per channel) are transmitting.

7.2 Application

As already mentioned earlier (6.3.2), the Application presents some inaccura-
cies in the extraction of the velocity peaks. The main issue in evaluating these
values is the course of the accelerometer signal. This is due to the structure of
the latter (3.4.2): a positive acceleration is followed by a transition to a negative
peak before coming back to zero and the other way round. Besides, when the
acceleration variations are close to each others, this transitory may be hidden
within them.

In order to simplify this idea, Figure 7.8a and 7.8b illustrate respectively the

CHAPTER 7. PERFORMANCE 61

accelerometer signal for a “Down-Stop-Up” and a “Down-Up” movement of the
arm. It can be easily noticed that the sum of the two signals in Figure 7.8a is
not equal to the one in the Figure 7.8b, for the reasons explained above.

(a) (b)

Figure 7.8: Example of “Down-Stop-Up” (a) and a “Down-Up” (b) movements of
the arm.

Given that, the signal has been divided in different windows, one for each
repetition (6.3.2), to obtain a better estimation of the velocity peaks. Several
experiments have been performed in order to select the best window possible and,
as described in Chapter 6, two intervals of integration have been chosen. The
selected intervals are different between the low loads and the high loads because
in the first one the transitory is highly influential, hence only the “Up” movement
is detected. In the latter, on the contrary, the transitory of the previous repetition
is almost non influential for the next one, so all the “Down-Up” movement can
be detected.

Nevertheless, the velocity values were still not so accurate. The last problem
left to solve, in fact, was that the peaks achieved were greater than the values
expected. This has been noticed because it is known that the maximum velocity
that the human arm can reach is around 2.6 - 2.8 m/s [27]. All the values
concerning the low loads and calculated with the algorithm proposed, though,
were 1.5 m/s higher than the ones expected. In order to avoid this overestimation,
it has been decided to subtract this number to all the peaks, resulting in a good
but not perfect estimation.

On the other hand, the algorithm in charge of drawing the Training Profile
curves performs really well even if some data are miscalculated. As an example,
Figure 7.9 shows the Hill’s curve given by this algorithm when the acquisition of
the high load has been forced to be wrong. It can be seen, in fact, that despite

CHAPTER 7. PERFORMANCE 62

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

100

v [m/s]

N

[
K
g
]

Figure 7.9: Hill’s Curve fitted with incorrect data

this value (red dot) is almost the same of the middle load one (first green dot),
the fitting of the curve still works properly.

Chapter 8

Conclusions

As widely explained in Chapter 2, a Wireless Sensor Network is a group of
low-cost low-speed and low-power consumption devices, also known as motes,
capable of sensing data from the environment and transmitting them through
wireless links. Because of its features, this technology greatly expanded in the
last decade finding easy and feasible applications in different categories such as
Military, Home, Healthcare and Sport.

The use of such networks in Sport totally transformed the way athletes, both
the professional and the amateur ones, train. Indeed, the opportunity to take
advantage of a virtual trainer in order to improve some skills or learn some basic
training movements (depending on the user’s level) was successfully welcomed by
the consumers. The elite athletes, in fact, have been finally able to train in their
usual context but, in the same time, to use a technologically advanced device that
allows them to obtain better performance and better result without being forced
to have recourse to outdated and inadequate laboratories. Indeed in sports like,
for instance, swimming, baseball or tennis (Chapter 4) the differences between a
lab environment and an usual training pitch or court is really consistent, and the
employment of these devices made a massive impact on athletes’ performance.

On the other hand, even people who sporadically play sports or go to the
gym can highly exploit various types of virtual trainers: learning basic skills of
a sport, preventing injuries or simply replacing “real” trainers when they are not
available (e.g. peak-times in a gym) are only some of the common applications
that also a non-elite sportsman can make use of.

This dissertation focused on a WSN used as a virtual trainer in the Bench

63

CHAPTER 8. CONCLUSIONS 64

Press practice. This WSN consists of two motes, a Base Station attached to a PC,
where it can download and process the data collected, and a Shimmer mote placed
right on the barbell in charge of acquiring the data. The work was divided in two
main sections: at first, a Network Protocol was developed in order to optimize
the transmission between the motes and the coexistence of many similar WSNs.
This Protocol consists in 4 steps and works as follows. When the BS switches
on, it starts scanning all the 16 different radio channels in order to detect the
Noise Floor of each one. At the end of this process, the BS sets the channel with
the best (more negative) Noise Floor value. Right after that, it begins sending
broadcast beacon packets in the selected channel, waiting for the mote’s reply.
Meanwhile, when the mote switches on, it starts listening periodically to all the
radio channels as well, but without sending any packet. When it intercepts the
beacon message that contains some known values (such as the Base Station ID
and the beacon frame indicator), it stops scanning the channels and sends ad
association packet to the BS, which replies with an Acknowledgement (ACK).
When the two devices are connected, a power selection procedure (last step of
the protocol) starts in order to choose the lowest power level possible that satisfies
the Quality Of Service (QoS) parameters of the network.

The second part of this Thesis concerns data acquisition, processing and anal-
ysis. Once the mote are connected and the power level is set, indeed, the Shimmer
mote starts sending data packets to the BS containing accelerometer readings.
The accelerometer samples every 10 ms, and the packets are sent to the Base
Station every 50 ms (five readings for each packet). These samples are collected
by the BS in txt files using an appropriate java application and, when all the
data are collected, it can start processing and analysing them using the Matlab
environment.

There are two different outputs for the proposed application:

1. The user is asked to perform, as fast as he can, three different acquisition
sets of about 5 repetitions each one, with a low, a medium and a high
load respectively. The velocity peaks are extracted from these sets and
the Training Profile of the user is shown using the Hill’s Curve and the
Power-Velocity curve (6.1.1);

2. The user, then, can start training performing as mush practice sets as he
wants. For each set, according to the Training Profile and the type of

CHAPTER 8. CONCLUSIONS 65

training selected by the user, the application provides a power evaluation
of every repetition of the set showing its percentage value compared to
the maximum one obtained in the Power-Velocity curve. If this number
is within the power-range selected, a green bar (excellent) is visualized.
Otherwise, the color of the bar will be yellow (good) or red (poor).

Eventually, the performance of the two different sections have been estimated.
The results of several tests show that the Network Protocol proposed, where a
Base Station decides to transmit on the best channel possible, can be up to 16
times better than a scenario where all the BS sends and receives packets on the
same channel. This is actually very helpful in crowded environments, such as the
gyms. Adopting this Protocol, a large number of WSNs can work simultaneously
without interfering with each others.

The Application algorithm presents, instead, some inaccuracies on the evalu-
ation of the velocity peaks, due to the nature of the accelerometer signal, which
presents a long transitory after that an acceleration variation is detected. This
may affect the proper evaluation of quick movements such as the one of the bar-
bell during the bench press exercise. However, this error is partially smoothed
by the Hill’s curve fitting algorithm that, as it was proved in 7.2, works properly
even if some data are miscalculated.

8.1 Future Developments

The work of this Master Thesis may be seen as a “starting point” both for
improving some of the limitations underlined by the performance analysis in
Chapter 7 and for implementing new suitable features. The following paragraph
will present some of these possible developments.

Velocity Peaks Accuracy

The main issue highlighted by the Application algorithm performance was the
partially inaccuracy of the velocity peaks calculated. The reasons of this error
have already been explained in 7.2, nevertheless it might be possible to introduce
some improvements to the existent algorithm which may result in better velocity
estimations. For instance, the application of the Kalman Filter or the Particle
Filter may allow to reduce the miscalculation.

CHAPTER 8. CONCLUSIONS 66

Real-Time Outputs

The Matlab Graphical User Interface employed is also able to directly connect
with the motes and acquiring the data without the aid of the java application
used in this work. In the old version of TinyOS 1.x (3.1) this interaction was
simpler and the connect function was used in order to let the Matlab environment
connect to the Serial Port. Java classes were still used, but not for saving the
data in txt files as mentioned in Chapter 6. Indeed, they were only in charge
of generating Java representation of the TinyOS packets, which were eventually
sent through the serial port to the Matlab function connected.

In TinyOs 2.x, although it includes a totally new software, this interaction
is still allowed, so it would be possible to draw the Hill’s curve dynamically and
to obtain a real-time estimation of the power repetition by repetition during the
set, and not just at the and of it.

Accelerometer Calibration

As mentioned in 6.3.1, the Accelerometer is a device that needs to be cali-
brated from time to time, especially when biases and gain factors changes can be
consistent, due for example to temperature alterations. In the WSN proposed,
the calibration of this device has been performed externally before beginning the
data acquisition, but a simple program can be added to the software in charge
of requesting a calibration, for instance, every x days. This may slightly increase
the accuracy of the measurements and the outputs.

New Exercises Application

The proposed work can also be configured for other types of trainings, such
as the Leg Press, Leg Curl or Lat Machine exercises, just to name a few. The
network protocol will be exactly the same, while the application (and the relative
GUI) will change in order to fit the specific training requirements.

List of Figures

2.1 Typical Wireless Sensor Network architecture 10
2.2 Different motes: (a) MICAz - (b) TelosB - (c) Shimmer 12
2.3 Point-to-Point (a) and Star (b) topology 13
2.4 Tree (a) and Mesh (b) topology 13

3.1 Hardware Abstraction Architecture in TinyOS 19
3.2 The MEMSIC MICAz mote . 21
3.3 A MIB520 (left) and a MIB510 (right) Programming Board 21
3.4 (a) The Shimmer Sensor Mote - (b) The USB External “Dock” . . 23
3.5 Freescale MMA7260Q 3-axis Accelerometers integrated in Shim-

mer motes . 24

4.1 Example of BSN for healthcare monitoring 26
4.2 The four-phase motion of a golf swing: (a) Takeaway, (b) Back-

swing, (c) Downswing, (d) Follow-through 28
4.3 BSN for detecting wrist rotation and out-of-plane mistakes in a

golf swing . 29
4.4 BSN with accelerometers for examining a tennis player’s serve . . 30
4.5 An example of virtual trainer used for detecting lower limbs ex-

plosive strength . 31

5.1 Channel Scan Flowchart . 35
5.2 The Header of the typical TinyOS packet (above) and the Beacon

Message payload (below) . 37

67

LIST OF FIGURES 68

5.3 Example of Beacon Sending: the mote is listening to the radio
channel waiting for intercepting the beacon message that contains
the known BS id. If it receives the beacon of other BS (ch. 11 and
15), it keeps scanning the channels, until it finds its BS (ch. 22) . 38

5.4 Association Packet Payload . 40
5.5 The Revised “Three-way Handshake” technique used for the motes

association . 40
5.6 Power Test Packet Payload . 41
5.7 Example of Power Packets Transmission 42

6.1 Example of application proposed for this WSN: the blue diamond
shows where the Shimmer mote should be placed 44

6.2 Training improvement through Hill’s Curve: Strength 45
6.3 Training improvement through Hill’s Curve: Velocity 46
6.4 Power-Velocity Curve . 47
6.5 Data Packet Payload . 47
6.6 Window interval when a low-load practice is performed 50
6.7 Window interval when a high-load practice is performed 51
6.8 Example of Power Evaluation output 53
6.9 An Example of the GUI employed 54

7.1 LOS Transmission between the Base Station and the mote 56
7.2 Distance/PER relationship with Tx Power = -25 dBm 56
7.3 Distance/Rssi relationship with Tx Power = -25 dBm 57
7.4 Rssi/Per relationship with Tx Power = -25 dBm 57
7.5 Distance/Per relationship with different Tx Power Levels 58
7.6 Distance/Rssi relationship with different Tx Power Levels 59
7.7 BS Number/Per Transmission Methods Comparison [Dis: 1m, Tx

Power: -25dBm] . 60
7.8 Example of “Down-Stop-Up” (a) and a “Down-Up” (b) movements

of the arm. 61
7.9 Hill’s Curve fitted with incorrect data 62

List of Tables

3.1 CC2420 Power Levels . 22
3.2 IEEE 802.15.4 vs Bluetooth . 23

69

Bibliography

[1] J. A. Stankovic (2008) “Wireless Sensor Networks” - IEEE Wireless Commu-
nications, 92-95

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci (2002), “Wireless
sensor networks: a survey” - Computer Networks, 38:393-422

[3] G. Lu, B. Krishnamachari, C.S. Raghavendra (2004), “Performance Evalua-
tion of the IEEE 802.15.4 MAC for Low-Rate Low-Power Wireless Networks”
- Performance, Computing, and Communications, 2004 IEEE International
Conference , 701-706

[4] E. Callaway, P. Gorday, L. Hester, J.A. Gutierrez, M. Naeve B. Heile (2002),
“Home Networking with IEEE 802.15.4: A Developing Standard for Low-Rate
Wireless Personal Area Networks”

[5] University of california at berkeley. TinyOS website, http://www.tinyos.net/.

[6] V. Handziski, J. Polastre, J.H. Hauer, C. Sharp, A. Wolisz, D. Culler, D. Gay
(2004) “Hardware Abstraction Architecture”

[7] MEMSIC, “MICAz Datasheet”, http://www.memsic.com/support/documentation/wireless-
sensor-networks/category/7-datasheets.html?download=148%3Amicaz

[8] ChipCon Products from Texas Instruments, “2.4 GHz IEEE 802.15.4 / ZigBee-
ready RF Transceiver”

[9] Shimmer website, http://www.shimmer-research.com/

[10] Roving Networks, Bluetooth Module RN-46,
http://www.rovingnetworks.com/modules.htm

70

BIBLIOGRAPHY 71

[11] B.P.L. Lo, S.Thiemjarus, R.King and G.Z. Yang (2005) “Body Sensor Net-
work: a wireless sensor platform for pervasive healthcare monitoring”

[12] C.Otto, A.Milenkovic, C.Sanders, E.Jovanov (2006) “System Architecture
for a wireless body area sensor network for ubiquitous health monitoring” Uni-
versity of Alabama in Huntsville

[13] U.S. Census Bureau, U.S. Interim Projections by Age, Sex, Race, and His-
panic Origin, http://www.census.gov/ipc/www/usinterimproj/

[14] D.A. James, N. Davey, T. Rice (2004) “An Accelerometer Based Sensor Plat-
form for Insitu Elite Athlete Performance Analysis” IEEE Wireless Communi-
cations

[15] M. Lapinski, E. Berkson, T. Gill, M. Reinold, J.A. Paradiso (2009) “A Dis-
tributed Wearable, Wireless Sensor System for Evaluating Professional Base-
ball Pitchers and Batters”

[16] H. Ghasemzadeh, V. Loseu, E. Guenterberg, R. Jafari (2009) “Sport Train-
ing Using Body Sensor Networks: A Statistical Approach to Measure Wrist
Rotation for Golf Swing”

[17] A. Ahmadi, D.D. Rowlands, D.A. James (2006) “Investigating the transla-
tional and rotational motion of the swing using accelerometers for athlete skill
assessment” IEEE 2006, Exco, Daegu

[18] Freescale MMA7260Q Accelerometer Datasheet, http://www.freescale.com/

[19] Sensorize web site, http://www.sensorize.it/

[20] TinyOS wiki, Modules and the TinyOS Execution Model,Split-Phase oper-
ations, http://docs.tinyos.net/tinywiki

[21] J, Yu, Q. Tian, T. Rui, T. Huang (2007) “Integrating Discriminant and
Descriptive Information for Dimension Reduction and Classification” IEEE
Transaction on Circuits and System for Video Technology

[22] Q. Li, J. Ye, C. Kambhamettu (2004) “Linear Projection Methods in Face
Recognition under Unconstrained Illuminations : A comparative study” IEEE
Computer Society

BIBLIOGRAPHY 72

[23] Matlab website, http://www.mathworks.it/products/matlab/

[24] S. Goutellea, M. Maurinc, F. Rougierb, X. Barbautb,L. Bourguignona, M.
Ducherb, P. Mairea (2008) “The Hill equation: a review of its capabilities in
pharmacological modelling”

[25] S.H. Peter, W. Golnaraghi, F. Golnaraghi (2010) “A Triaxial Accelerome-
ter Calibration Method Using a Mathematical Model” IEEE Transactions on
Instrumentantion and Measurement

[26] B. Wohlfart, K.A.P. Edman (1993) “Rectangular Hyperbola fitted to muscle
force-velocity data using three-dimensional regression analysis”

[27] G. Dintiman, B. Ward (1988) “Sport Speed”

