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�Strada: striscia di terra che si percorre a piedi. Diversa dalla strada è la strada

asfaltata, che si distingue non solo perché la si percorre con la macchina, ma in

quanto è una semplice linea che unisce un punto a un altro. La strada asfaltata

non ha senso in se stessa; hanno senso solo i due punti che essa unisce. La strada

è una lode allo spazio. Ogni tratto di strada ha senso in se stesso e ci invita alla

sosta. La strada asfaltata è una trionfale svalutazione dello spazio, che per suo

merito oggi non è che un semplice ostacolo al movimento dell'uomo e una perdita

di tempo. Prima ancora di scomparire dal paesaggio, le strade sono scomparse

dall'animo umano: l'uomo ha smesso di desiderare di camminare con le proprie

gambe e di gioire per questo. Anche la propria vita ormai non la vede più come

una strada, bensì come una strada asfaltata: come una linea che conduce da un

punto a un altro, dal grado di capitano al grado di generale, dal ruolo di moglie al

ruolo di vedova. Il tempo della vita è diventato per lui un semplice ostacolo che è

necessario superare a velocità sempre maggiore�

M. Kundera, L'immortalità, p. 242-243.



Abstract

This work is part of the environment-aware processing, a �eld of recent in-

terest that promises to signi�cantly push the boundaries of audio signal pro-

cessing. The environment-aware processing uses information arising from

the environmental response to enable the acoustic systems to become aware

of their own characteristics and geometry and those of the environment that

they operate in. This information allows advanced and innovative space-time

processing solutions.

In particular the thesis addresses the problem of inference from acoustic

measurements on the geometric characteristics of the environment. Recently

a number of techniques for localization of re�ective surfaces appeared in liter-

ature. These techniques exploit di�erent information extracted from acoustic

measurements to infer the position of the re�ectors in the environment. Usu-

ally the extracted information, combined with some a priori knowledge, de-

�nes a non-linear constraint on re�ector position. Using multiple constraints

(e.g changing the hardware position) a cost function is formulated whose

minimization yields the estimated line or plane (for 2D or 3D geometries) on

which the re�ector lies.

In this work we take a slightly di�erent approach for the localization of

re�ective surfaces. Instead of extracting information related to a speci�c

geometric constraint, we are interested in �looking� at the acoustic scene, i.e.

obtaining an overview of what is happening in di�erent positions in space,

and successively estimating the environment geometry from a number of such

acoustic �snapshots�. Therefore, we want to imitate, to a certain extent, the

procedures used in computer vision to reconstruct the environment geometry

taking visual snapshots from di�erent points of view.

The acoustical snapshots are de�ned using a non-linear transformation

applied to acoustic measurements that maps the data in a space in which the
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geometric primitives are represented by linear constraints.

Unlike most of other methods, the acoustic observation of the environ-

ment allows us to �nd not only the line on which the re�ector lies but also its

extension. This property can turn useful in irregular, complex environments

where occlusions and limited visibility of acoustic re�ectors are present.

Furthermore, the representation of acoustic measurements de�ned in this

work can potentially be used also to infer on radiometric properties of the

environment (e.g. radiation pattern and re�ection coe�cients) and therefore

it has a number of potential other applications.





Sommario

Le applicazioni avanzate di elaborazione dei segnali acustici, in particolare

quelle basate su array di sensori, sono fortemente sensibili alla risposta acus-

tica dell'ambiente. Il riverbero sonoro generato in un ambiente con�nato

è solitamente visto da tali tecniche come un fattore di disturbo che è nec-

essario compensare, mentre la natura ci insegna come la risposta ambien-

tale a stimoli acustici è fonte di informazioni fondamentali sulle caratteris-

tiche dell'ambiente stesso. Trasformare la risposta acustica da un fattore

di errore in una risorsa richiede una profonda comprensione dei fenomeni di

propagazione ed una accurata modellizzazione acustica dell'ambiente. Questo

può essere fatto eccitando l'ambiente attraverso emissioni sonore generate da

fonti che mostrino una struttura temporale e spaziale.

L'environment-aware processing permette ai sistemi acustici di diventare

consapevoli delle proprie caratteristiche e di quelle dell'ambiente in cui oper-

ano. Esso consente avanzate soluzioni spazio-temporali di elaborazione che

sfruttano le informazioni aggiuntive fornite dalla risposta acustica dell' am-

biente di interesse. Tale tipo di approccio promette di far avanzare in modo

signi�cativo i con�ni della elaborazione dei segnali audio. In particolare, tali

tecniche possono essere utilizzate per aumentare le prestazioni di algoritmi

per la localizzazione e caratterizzazione delle sorgenti in ambienti riverber-

anti, per migliorare gli algoritmi di compensazione del riverbero, per eseguire

il rendering dell'ambiente virtuale etc.

Un punto essenziale comune alle tecniche di environment-aware process-

ing è l'utilizzo simultaneo di sensori e fonti sonore allo scopo di inferire sulle

caratteristiche dell'ambiente. Recentemente, numerose tecniche per la local-

izzazione delle super�ci ri�ettenti sono apparse in letteratura. Tali tecniche

sfruttano informazioni estratte da misurazioni acustiche per stimare la po-

sizione delle pareti nell'ambiente. Normalmente le informazione estratte, in
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combinazione con qualche assunzione a priori, determinano la de�nizione di

un vincolo non-lineare sulla posizione del ri�ettore. Combinando più vincoli

(ad esempio per posizioni di sorgenti o microfoni di�erenti) una funzione di

costo è de�nita e la stima della linea corrispondente al ri�ettore è ottenuta

attraverso una procedura di minimizzazione. I metodi proposti generalmente

di�eriscono per il tipo di hardware richiesto e per le assunzioni a priori de�-

nite e possono essere più adatti a tipi di�erenti di scenario.

In questo lavoro a�rontiamo il problema della inferenza sulla geometria

dell'ambiente partendo da un approccio di�erente. Invece di estrarre in-

formazioni relative ad un vincolo geometrico speci�co, siamo interessati a

�guardare� la risposta acustica nel suo complesso, vale a dire ottenere una

panoramica su ciò che sta accadendo nello spazio al variare delle posizioni

delle sorgenti, e successivamente stimare la geometria dell'ambiente da un

numero di tali �immagini� acustiche. L'idea è quella di imitare le procedure

utilizzate in computer vision per ricostruire la geometria dell'ambiente scat-

tando istantanee visive da punti di vista di�erenti. Come nella computer

vision si ha bisogno della luce per illuminare la scena, noi avremo bisogno

di sorgenti acustiche per stimolare una risposta nell'ambiente. Tale risposta

sarà parzialmente acquisita da un array di microfoni che rappresenta la nostra

camera acustica.

Le misurazioni acustiche ottenute dall'array di microfoni saranno descritte

con coordinate opportune. Analogamente alle immagini in ottica, in cui ogni

pixel rappresenta un raggio passante per il corrispondente centro ottico, per il

caso in esame mapperemo i dati a disposizione nello spazio dei raggi acustici

attraverso una funzione non lineare. Tale rappresentazione delle misurazioni

acustiche sarà denominata �immagine acustica�. Diversamente dal caso rel-

ativo all'ottica, tuttavia, non è possibile costruire un dispositivo che catturi

la magnitudo dei raggi provenienti da una data direzione direttamente. Per

ottenere tali informazioni sarà necessario utilizzare tecniche di analisi spazio-

temporali del segnale acquisito che introdurranno una distorsione rispetto

all'immagine acustica ideale. Da diverse immagini acustiche così ottenute

si prenderà in considerazione il problema dell'inferenza e della ricostruizione

della geometria �illuminata�.

Sebbene il metodo proposto in questo lavoro risulti in genere più esigente

a livello hardware rispetto agli algoritmi pre-esistenti in letteratura (vedremo
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che per �vedere� porzioni più grandi di spazio si richiede un array di microfoni

lungo o in movimento ed una sorgente in movimento) l'osservazione acustica

dell'ambiente consentirà, a di�erenza degli altri metodi, di stimare non solo la

direzione dei ri�ettori ma anche la loro estensione. In particolare le estensioni

saranno stimabili per ri�ettori i cui punti terminali sono visibili dall'array di

microfoni. Tale proprietà risulterà molto utile in ambienti irregolari e com-

plessi in cui occlusioni e visibilità limitata delle pareti in�uenzano notevol-

mente il campo acustico complessivo e devono essere prese in considerazione

dai sistemi acustici in una ottica di environment-aware processing.

Inoltre, l'approccio proposto ha anche una serie di altre caratteristiche

interessanti. Una trasformazione non lineare mappa le informazioni in uno

spazio in cui le primitive geometriche sono rappresentate da vincoli lin-

eari. Questo comporta che nessuna procedura iterativa di minimizzazione

o soluzione complessa in forma chiusa è richiesta e le stime possono essere

ottenute usando il metodo dei minimi quadrati. Inoltre, vedremo che non

sarà necessario controllare le sorgenti dirette che illuminano la scena acus-

tica. L'algoritmo può localizzare super�ci ri�ettenti senza le informazioni

sulla posizione di tali sorgenti. Inoltre, se visibili, le posizioni delle sorgenti

dirette non solo non sono richieste come dato al problema ma possono essere

inoltre stimate automaticamente anch'esse dalle immagini acquisite.

Le prestazioni degli algoritmi di stima proposti saranno analizzate nel

senso delle proprietà statistiche del secondo ordine. Tale analisi sarà in primo

luogo utile per la progettazione di sistemi con le caratteristiche di varianza-

/covarianza desiderate per gli output del problema. Inoltre, essa sarà anche

utilizzata per migliorare le prestazioni stesse degli algoritmi utilizzando una

procedura iterativa che permetterà di approssimare una stima a massima

verosimiglianza (ML) delle incognite.

In�ne, le immagini acustiche introdotte potranno essere eventualmente

utili in altre applicazioni. Sebbene in questo lavoro tali immagini vengano

utilizzate per dedurre solo le informazioni geometriche, esse catturano in-

fatti anche le caratteristiche radiometriche dell'ambiente (ad esempio i radi-

ation pattern delle sorgenti e i coe�cienti di ri�essione delle pareti) quindi

esse hanno molte potenziali ulteriori applicazioni, principalmente per quanto

riguarda l'estrazione di informazioni dall'ambiente ma anche, per esempio la

predizione della pressione acustica in un punto generico dello spazio.
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Chapter 1

Introduction

The �rst chapter aims to introduce the problem addressed in this thesis and

to present the motivation for this work. The concepts presented here will be

formalized and explained in more detail in the following chapters.

Advanced sound processing applications, particularly those based on ar-

ray processing, are critically sensitive to the environmental acoustic response

because their design does not account for the complex propagation phenom-

ena that cause it. Reverberations are usually seen as a liability to take coun-

termeasures against, while nature teaches us that the information provided

by the acoustic interaction with the environment can become a valuable as-

set that enables complex navigational tasks and more. Turning the acoustic

response from a liability into an asset requires a thorough understanding of

propagation phenomena, and an accurate acoustic modelling of the environ-

ment. This can be done by listening to how the environment renders sound

emissions generated by sources, as long as such emissions exhibit a temporal

as well as a spatial structure. These issues are addressed in the European

project SCENIC (Self-Con�guring ENvironment-aware Intelligent aCoustic

sensing) [1].

The environment-aware processing enables acoustic systems to become

aware of their own characteristics and geometry and those of the environment

that they operate in. It allows advanced space-time processing solutions that

take advantage of the additional information provided by the environmental

acoustic response. That kind of approach to acoustical problems promises

to signi�cantly push the boundaries of audio signal processing. In fact, the

environment-awareness can be used to boost the performance of algorithms

16



1. Introduction 17

for localization and characterization of sources in reverberant environments

[2] that are now able to predict the e�ect of reverberations on the sound�eld

and therefore to exploit reverberations to improve their accuracy. It results

also important in order to improve dereverberation algorithms and to perform

wave�eld rendering [3] that, thanks to that kind of approach, can virtually

knock out the walls of the environment in which it operates (i.e. the system

removes the e�ect of reverberations) and renders the acoustics of a virtual

environment.

In Figure 1.1, we show a �ow diagram of the information that are used for

the environment-aware processing. One key point is that, in order to achieve

this status of awareness, sensors and sources have to be used together in

a synergistic fashion. Inference is the �rst step in environment-aware signal

processing. It is the study of the acoustic measurements for the estimation of

the characteristics of an acoustic environment and the sources within it. The

thesis deals with this part of the problem and, in particular, the localization

of the re�ective surfaces.

Motivated by the recent progress in environment-aware processing the

problem of inference is becoming an important issue in audio signal process-

ing. This problem generally considers two types of information: low-level

features include the location of acoustic re�ectors relative to a microphone

array and the directivity of an acoustic source and high-level features in-

clude temperature and reverberation time. Recently a number of techniques

for localization of re�ective surfaces appeared in literature. These techniques

exploit di�erent information extracted from acoustic measurements to infer

the position of the re�ectors in the environment. Usually the extracted in-

formation, in combination with some a priori knowledge, de�nes a non-linear

constraint on re�ector position. Combining multiple constraints (e.g. for

di�erent source or microphone positions) a cost function is de�ned whose

minimization yields the estimated line or plane (for 2D or 3D geometries) on

which the re�ector lies. Proposed methods generally achieve a considerable

accuracy but di�er in assumptions made and hardware used making some of

them more suitable for certain scenarios than others.

In this work we take a slightly di�erent approach for the problem of the

localization of re�ective surfaces. Instead of extracting information related to

a speci�c geometric constraint, we are interested in �looking� at the acoustic
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Figure 1.1: A �ow diagram of the environment-aware processing: through the sound

system, environment is stimulated and its response is acquired; From the information

deriving from environment response you infer on the audio system and/or environment

description; The self awareness and environment-awareness are used to the desired purpose.

scene, i.e. obtaining an overview of what is happening in di�erent positions in

space, and successively estimating the environment geometry from a number

of such acoustic �snapshots�. Therefore we are imitating, to a certain extent,

the procedures used in computer vision to reconstruct the environment ge-

ometry taking visual snapshots from di�erent points of view. As in computer

vision we need the light to illuminate the scene, we will need acoustic sources

to stimulate a response in the environment. That response will be partially

acquired by a microphone array that represent our acoustic camera.

However, to do so we have to represent the acoustic measurements ob-

tained by the microphone array with suitable coordinates. Similarly to im-

ages in optics, where each pixel represents a ray passing through the pixel

point and the optical center, we map the acoustic measurements in the space

of acoustic rays. Such representation of the acoustic measurements will be
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referred here as the �acoustic image�. Unlike optics, however, it is not pos-

sible to build a device that captures the magnitude of rays coming from a

given direction. To obtain information about direction we use space-time

processing techniques and in doing so we introduce distortion with respect

to the ideal acoustic image. From several acoustical images obtained in the

described manner, we want to take into account the inference problem and

reconstruct the �illuminated� geometry.

Although generally more demanding with respect to dedicated algorithms

for geometry inference (we will see that in order to �see� bigger portions

of space it requires a long or moving array and a moving source), unlike

most of other methods, the acoustic observation of the environment allows

us to �nd not only the line on which the re�ector lies but also its extension.

In particular, the extension can be estimated if the re�ector endpoints are

acoustically visible from the microphone array. This property can turn useful

in irregular, complex environments where occlusions and limited visibility of

acoustic re�ections greatly characterize the overall sound�eld and have to be

taken into account by the environment-aware systems operating inside such

environments. Furthermore, the proposed approach has also a number of

other interesting features. A non-linear transformation applied to acoustic

measurements maps the data in the space in which the geometric primitives

are represented by linear constraints. No iterative minimization procedures

or complex solutions in a closed form are required and the solutions can

be found using the least squares method. Moreover, we will see that the

sources that are used have not necessarly to be controlled, the algorithm

can localize re�ective surfaces without the information of the position for

the direct sources. Moreover, if visible, the method can also estimate the

position of them.

Finally, apart from a re�ector estimation, the acoustic images introduced

here can eventually be used in other applications. Although in this work the

obtained acoustic images are used to infer only on the geometric information,

they capture both geometric and radiometric (e.g. radiation pattern and

re�ection coe�cients) properties of the environment and therefore they have

a number of potential applications, mainly applications aimed at extracting

some information about the environment or even predicting the acoustic

pressure �eld in generic positions in space.
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The work is organized as follows: in Chapter 1, we give to the reader a

general framework covering fundamental aspects of acoustics with particular

attention to the nature of sound and its propagation in the environment.

We describe also the main characteristics of microphones. In Chapter 2 we

introduce the problem, make a short review of existing methods, discuss the

parametrization adopted and some basic assumptions. In Chapter 3 we de-

�ne the domain of acoustic rays here referred as the RaySpace, represent

the geometric primitives of interest and map the acoustic measurements in

the RaySpace. We formalize also the concept of acoustic image and describe

how to build it from the acquired signals. Chapter 4 explains the estima-

tion procedures for the localization of sources and re�ectors. We take into

account both the cases of con�gurations with single or multiple re�ectors. In

Chapter 5, we analyze the statistical performance in terms of second order

statistics. This performance analysis is useful not only for system design but

it will also be used to improve the estimation accuracy. Finally, in Chapter

6 the simulation results validate the performance analysis and experimental

results illustrate the applicability of the method in a real world scenario. The

conclusions will summarizes the results, makes the �nal remarks and suggest

the future work directions.



Chapter 2

Fundamentals of Acoustics

This chapter aims to give the reader a general framework covering fundamen-

tal aspects of the nature of sound and its propagation in the environment.

A last section will be devoted to the characteristics of microphones. The

concepts and terminology presented here will be used throughout the work.

1 The physical nature of Sound

1.1 Sound propagation

Sound is a mechanical wave propagating in elastic media, as gases, liquids

and solids. Sound is transmitted through gases, plasma, and liquids as lon-

gitudinal waves, also called compression waves. Longitudinal sound waves

alternate pressure deviations from the equilibrium pressure, causing local

regions of compression and rarefaction. They are caused by an object, the

sound source, which makes vibration movements and transmits its movement

to adjacent particles due to the mechanical properties of the medium. The

excited particles are displaced from its original position and elastic forces of

the medium tend to restore it. Because of the inertia of the particles, they

overshoots the resting position, bringing into play elastic forces in the op-

positie direction, and so on. These particles in turn trasmit their motion to

those closest causing a local pressure variation, [4].

Through solids sound can be transmitted also as transverse waves that are

waves of alternating shear stress at right angle to the direction of propagation.

However, in this work we consider only the transmission of sound in air as

21
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longitudinal waves.

Sound speed, c[m/s], depends on the medium, and other factors. More

dense is the molecular structure, easier it is for the moleculas to transfer

sound energy. More precisely, it can be proved that:

c =

√
Eν
ρ
, (2.1)

where Eν is the volumetric elastic modulus for the medium [N/m2] and ρ is

the density of the medium [Kg/m3].

In the speci�c case of air there are useful approximated formulas as:

c = 331.4 + 0.6t, (2.2)

where t is the temperature [◦C], [5].

1.2 Acoustic wave

Sound waves can be represented graphically using a Cartesian graph, showing

the time (t) on the horizontal axis, and the acoustic pressure (p) of a �xed

point on the ordinate. The acoustic pressure p(t) is de�ned as the di�erence

between the pressure at one point at time t and the static pressure that would

exist in the absence of acoustic phenomenon. There are di�erent types of

sound waves, and each is identi�ed by a particular graph pattern, [5].

The simple waves can be represented with sinusoidal graphs (Figure 2.1)

and correspond to pure tones perceived as a whistle more or less acute de-

pending on the frequency.

The majority of sound waveshapes depart radically from the simple sine

wave and in many cases they have not even a periodic trend. Thanks to

the Fourier theorem each wave, also aperiodic, under certain mathematical

conditions (always veri�ed for physical signals) can be written as a sum

(possibly in�nite) of simple harmonic waves. Given a time signal x(t), we

de�ne the Fourier transform of x(t) as a frequency signal X(f) de�nes as:

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt, (2.3)

and the amplitude and phase spectrums of the acoustic wave as:

A(f) = |X(f)| , Q(f) = ∠(X(f)). (2.4)
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Figure 2.1: Simple sinusoidal wave (pure tone).

Amplitude and phase spectrums contain all the information about the origi-

nal signal, but in a di�erent form. The Amplitude spectrum allows to show

the magnitude associate to all the constituent frequencies of the acoustic

signal.

In the particular case of a periodic signal, its Fourier transform is a dis-

crete set of values, which in this case is called the discrete spectrum. The

lowest frequency is called the fundamental harmonic and it is the one that

has more weight in the �nal reconstruction of the signal. Other frequencies

are multiples of the fundamental and are called secondary harmonics. In this

case, the corresponding inverse formula of synthesis is the Fourier series of

the original periodic signal, [4] [6].

1.3 Density of energy & Sound Intensity

In this section we are going to introduce other physical quantities useful for

the study of the energy characteristics of an acoustic �eld. The root-mean-

square (rms) sound pressure is integral average of the square of the sound

signal pressure over a given duration:

prms =

√
1

T

∫ T

0

p(t)2dt, (2.5)

where T is the time of integration for the signal. The rms pressure is most

often used to characterize a sound wave because it is directly related to the

energy carried by the sound wave, which is called the intensity.
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The acoustic intensity of a sound wave is the average amount of energy

transmitted per unit time through a unit area in a speci�ed direction. The

units of intensity are [W/m2]. The intensity is obtained as the product of

the sound pressure and the particle velocity, ~v:

~I = p~v. (2.6)

The direction of the intensity is the average direction in which the energy is

�owing. For a plane progressive wave, the modulus of acoustic intensity is:

I =
p2rms
Z

, (2.7)

where Z = ρc is the characteristic acoustic impedance (ρ is the density of

the medium and c is the speed of sound). Sound intensity level or acoustic

intensity level is a logarithmic measure of the sound intensity, in comparison

to a reference level and it is measured in decibel(dB):

LI = 10log10(
I1
I0

). (2.8)

The standard reference sound intensity is I0 = 10−12W/m2.

The sound energy density D describes the time medium value of the

sound energy per volume unit; it gives information about the sound energy

which is at a de�ned place in the room, [5]. The sound energy density for an

even-proceeding sound wave is:

D =
I

c
. (2.9)

2 Acoustic Fields

2.1 The Free Field

We de�ne as free �eld a sound �eld generated in a homogeneous and isotropic

medium. Although many practical problems of acoustics are associated with

structures, such as buildings and rooms, the analysis of sound in the free

�eld is useful because it allows us to understand the nature of sound waves

in this undisturbed state. Then, these basic characteristics can be adapted

to more complex problems.
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We consider a punctual source of sound in a free �eld. It is easy to

understand that the sound intensity decreases as the square of the radius of

the distance from the point-source (as the area of any small section on the

surface of the sphere increases as the square of the radius, Fig. 2.2).

A1

A2

A3

A4

Figure 2.2: The same sound energy is distributed over spherical surfaces of increasing

area.

More speci�cally:

I =
W

4πr2
, (2.10)

where I is the modulus of the intensity of sound per unit area, W is the

power of source and r is the distance from the source.

Because power per unit area is proportional to the square of acoustic

pressure, for the pressure it can be proven that an inverse distance law esists:

P =
k

r
, (2.11)

where P is the acoustic pressure and k is an appropriate constant, [4]. For

every doubling of the distance from the sound source, modulus of intensity

per unit area is quartered and pressure si halved.

2.2 Sound & Structures

When an acoustic wave encounters a wall along its path, the incident acoustic

energy (Ei) partially goes back to the room (Er), partially is absorbed by

the wall (Ea) and partially is transmitted outside the room (Et).
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We de�ne the re�ector coe�cient r = Er

Ei
, the absortion coe�cient a = Ea

Ei

and the transmission coe�cient t = Et

Ei
. It is easy to understand that the

following relation will be true:

a+ t+ r = 1. (2.12)

In the room acoustic usually is used a coe�cient of apparent absorption

α = a+ t, [5].

The absorption characteristics and the absorption coe�cient of a wall vary

with the angle of impiges upon the material and so it should be indicated as

aθ where θ is the angle of incidence. In an established di�usive sound �eld in

a room, sound is travelling in all possible directions. In many cases we need

an absorption coe�cient that is averaged over all possible angle and that is

called random incidence absorption coe�cient. It is usually referred as the

absorption coe�cient of the material a.

The absorption coe�cient of a material varies with the frequency. Coef-

�cients are typically published at the standard frequencies of 125, 250, 500,

1000 and 4000 Hz. In some cases, the absorption coe�cient of a material can

be given as a single number called noise reduction coe�cient (NRC), that is

the average of the coe�ciets for 500, 1000 and 2000 Hz, [4].

The energy that comes back to the room consists of the re�ected part, of

the di�used part and of the part assorbed that returns to the room due the

elastic properties of the wall. Re�ection depends partly on the size of the

re�ecting object. Sound is re�ected from objects that are large compared to

the wavelength of the impinging sound. Sound re�ections follow the same

rule of light: the direction of propagation of incident and re�ected wave lie

on the same plane and the re�ection angle, calculated from the normal to

the plane of incidence, is equal to the angle of incidence.

The wave re�ected from a surface propagates as if it was originated from

a virtual source (Fig. 2.3) located in a symmetrical position relative to the

surface with respect to the real source. That virtual source is called image

source. When sound strikes more than one surface, multiple re�ections will

be created, [4].

If the surface on which the wave impacts is not perfectly smooth but

presentes small substructures, it could be a not specular re�ection (Fig. 2.4).

The re�ection will continue to be mirrored in the case where the wavelength
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Figure 2.3: Re�ections from a plane surface.

of the incident sound is large compared to the characteristic size of surface

irregularities. If the wavelength is comparable to the size of the substructures

present in the wall, the sound energy is spread evenly in all directions of

the environment. This process is known as acoustic di�usion. A perfectly

di�usive sound space is one that has the same acoustic properties anywhere

in the space. If the wavelength is much smaller, each single surface of the

wall will determine independent specular re�ections, [4].

Another important phenomenon concerning the interaction between sound

waves and structures during the propagation is the di�raction. When a wave

encounters an obstacle in its path, it does not fully follow the laws of the

optical geometry but it can bend and also the space beyond the line of sight

can be a�ected by it. Huygens formulated a principle that is the basis of

the mathematical analysis of di�raction: every point of a wave front may be

considered as the source of secondary wavelets that spread out in all direc-

tions with a speed equal to the speed of propagation of the waves. According

to the principle of Huygens, every point on the wavefront of sound that has

passed through an aperture or passed a di�racting edge is considered a point

source radiating energy back into the shadow zone. The sound energy at any

point in the shadow zone can be mathematically obtained by summing the
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Figure 2.4: Interaction of an acoustic wave with a wall as a function of wavelength

(λ1 = 3.4m λ2 = 0.34m λ3 = 0.034m).

contributions of all of these point sources on the wavefronts. Low-frequency

waves di�ract (bend) more than high-frequency waves. That is why di�rac-

tion is less noticeable for light than it is for sound because of the relatively

short wavelength of light. In general, if the dimensions of the obstacle are

comparable to the wavelength of the incident wave, the acoustic perturbation

is able to go around it with shadow phenomenon negligible. If the size of

the obstacle is greater than the wavelength of the incident wave, occurring

phenomena of partial acoustic shadowing, [5].

3 Reverberation

3.1 Early & Late Re�ections

Reverberation is de�ned as the combined e�ect of multiple sound re�ections

within a room. The reverberation characteristics of a room are a�ected by

several factors: the shape and size of the room, the materials of which the

room is constructed, and the objects present in the room. The materials of

the walls are especially important since they determine how much sound is

absorbed and how much is re�ected, [7].

The impulse response of a reverberating room from a source S to a receiver

R can be modeled by splitting the problem into three distinct phases (Fig.

2.5):
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Figure 2.5: Impulsive response of a reverberating environment.

1. The direct signal from the source arrives at the receiver with a delay

in time proportional to the distance.

2. The early re�ections with the environment occur. This is the most

important phase of the impulse response for the perception of the en-

vironment in which we are. The early echo pattern depends on the

positions and directivities of the source and receiver and they can be

described by the image source method. Each image source visible to

the receiver contributes a delayed impulse, whose time delay is equal to

the distance between the source and the listener divided by the speed

of sound. The echo amplitude is inversely proportional to the distance

travelled, to account for spherical expansion of the sound, and pro-

portional to the product of the re�ection coe�cients of the surfaces

encountered. Due to a frequency-dependent absorption of incident ray

on the wall, frequency-dependent losses should be considered.

3. The late reverberation are no longer distinguishable as separate pulses

as a result of the large number of re�ections in the room. The energy

losses due to dissipation during the wave propagation and energy ab-

sorption of the walls cause an exponential decay in the amplitude of



2. Fundamentals of Acoustics 30

late reverberation. During late reverberation, the dependency on the

positions of the source and receiver decreases, [7] [4].

This model describes qualitatively as the sound propagates and decays in a

reverberant environment. We want to pose the problem of how to describe

quantitatively the characteristics of a reverberant room. For this purpose

two di�erent approaches are presented in the following sections.

3.2 Physical approach

The physical approach seeks to describe exactly the propagation of sound

from the source to the listener for a given room. From a signal processing

standpoint, it is convenient to think of a room with sources and receivers as

a system with inputs and outputs, where the input and output signal ampli-

tudes correspond to acoustic variables at points in the room. For example,

consider a system with one input associated with a spherical sound source,

and one outputs associated with the acoustical pressures at an acquisition

device. If the room can be considered a linear, time-invariant (LTI) system

(movements in the room are neglected), a transfer function completely de-

scribes the transformation of sound pressure from the source to the receiver:

y(t) =

∫ ∞
0

h(τ)x(t− τ)dτ, (2.13)

where h(t) is the system impulse response (for the given geometry and source

and receiver positions), x(t) is the source of sound and y(t) is the resulting

signal. This concept is easily generalized to the case of multiple sources and

multiple listeners. By measuring the impulse response of an existing room for

the given set of sources and receivers, and then rendering the reverberation

by convolution it is possible to obtain the exact propagation of the sound in

the environment.

When these measures are not available, we can attempt to predict its

impulse response based on purelly physical simulation. This requires detailed

knowledge of the geometry of the room, properties of all surfaces in the room,

and the positions and directivities of the sources and receivers. Given this

prior information, it is possible to apply the laws of wave propagation and

interaction with surfaces to predict how the sound will propagate in the space.
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The advantage of this approach is that it o�ers a direct relation between

the physical speci�cations of the room and the resulting reverberation. How-

ever, this approach is computationally expensive and stricly tied to the source

and receiver locations used for, [7].

3.3 Perceptual approach

The perceptual approach seeks to describe only the perceptually salient char-

acteristics of reverberation. For this purpose we introduce the global descrip-

tors of the reverb. They do not even allow to build a direct input-output

relationship as the physical approach to the problem but they give an overall

description of the room that is often what it takes for all practical purposes.

These descriptors are also less tied to a single experiment (for given positions

of sources and re�ectors) and give information on the characteristics of the

room itself.

We list now the main global descriptors used to characterize a reverberant

room:

• EDC is the energy decay curve and it can be obtained by integrating

the impulse response h(t) of the room as follows:

EDC(t) =

∫ ∞
t

h2(τ)dτ. (2.14)

The integral computes the energy remaining in the impulse response

after time t.

• T60 is the time that is required in order to have a decrease of 60dB in

the energy decay curve:

T60 = {t : EDC(t) = EDC(0)− 60dB} . (2.15)

It is usually taken as the duration time of the reverberation. The

reverberant time is directly proportional to the volume of the room

and inversely proportional to the amount of absorptions.

• EDR is the energy decay relief, a time-frequency representation of the

energy decay:

EDR(tn, fk) =
M∑
m=n

|H(m, k)|2 , (2.16)
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where H(m, k) is the k-th bin of the STFT at time m, and M is the

number of temporal frame. It computes the energy remaining in the

impulse response after time tn and in the frequency band centered on

fk. EDR(0, f) gives the power gain as a function of frequency and it

is called frequency response envelope, G(f).

• ∆fmax is the average separation in Hz of resonant modes in the room

spectrum. It is approximated as:

∆fmax =
4

T60
. (2.17)

This model is justi�ed for frequencies higher than:

fg = 2000

√
T60
V
, (2.18)

where V is the volume of the room.

• Nt is the number of echoes that will occur before time t and it is equal

to the number of image sources enclosed by a sphere with diameter ct

centered at the listener. The number of image sources enclosed by the

sphere can be estimated by dividing the volume of the sphere with the

volume of the room:

Nt =
4π(ct)3

3V
. (2.19)

From this equation it is clear that the density of echoes grow quadrat-

ically with time.

• C is the clarify index and it is one acoustical measure of the direct to

reverberant ratio

C = 10 log10

{∫ 80ms

0
h2(t)dt∫∞

80ms
h2(t)dt

}
. (2.20)

This is essentially an early to late energy ratio, which is correlated

to the intelligibility of signals in reverberant environments. The time

80ms is the reference integration time of human ears, [7].
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4 Microphones

4.1 Pressure and Gradient pressure mics

A microphone is an acoustic-to-electric transducer or sensor that converts

sound into an electrical signal. Di�erent types of microphones have di�erent

ways of converting energy but they all share a mobile component, the di-

aphragm. This is a thin piece of material which is displaced when a pressure

wave occurs. Depending on how the diaphragm is excited we can distinguish

two types of microphones: the pressure microphone and the pressure gradient

microphone.

The pressure microphones measure the instantaneous pressure produced

by a sound wave acting on a diaphragm at a point of the sound �eld in which it

is placed. In Figure 2.6, we show a section view and a front view of a pressure

microphone. Only one side (front) of the microphone diaphragm is exposed

to the sound �eld and the other (rear) side is sealed o� by a soundproof

case. So the diaphragm will be vibrated by changes in sound pressure only

at the front side. A small capillary tube connects the interior air mass to the

outside, providing a slow leakage path so that static atmospheric pressure will

equalize itself on both sides of the diaphragm under all pressure conditions.

Very small holes in the backplate are usually evenly distributed on a uniform

grid. During the actual back and forth motion of the diaphragm, the air

captured in the holes provides damping of the diaphragm's motion at its

principal resonance, which is normally in the range of 8− 12kHz.
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Figure 2.6: Section view and front view of a pressure microphone.

A perfect pressure microphone responds identically to a change in pressure

originating in any direction, and therefore arriving at the diaphragm from

any angle of incidence. This is why they are also called omnidirectional
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microphones.

The pressure gradient microphone senses sound pressure at two very

closely spaced points corresponding to the front and the rear side of the

diaphragm. In fact there isn't a soundproof case but the diaphragm is in

contact with the environment at both ends. Conseguently the motion is

driven by the di�erence, or gradient, between the two pressures. The gradi-

ent pressure microphone response depends on the propagation angle of the

incident wave.
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Figure 2.7: Pressure gradient when placed longitudinaly and trasversaly in a progressive

plane wave.

In Figure 2.7, we show two opposite situation of trasversaly and longi-

tudinaly position and the pressure acquired in two di�erent points. If the

two points are positioned trasversal the wave propagation, there will be no

pressure gradient between them and thus no signal at the microphone's out-

put. In contrast, the response is maximum in the longitudinal case. More

precisely, the directional sensitivity response equation in polar coordinates

is:

ρ = cos(θ), (2.21)

where ρ represent the gain in magnitude of the response and θ is the polar

angle.

In Figure 2.8, we show the basic �gure-8 response of the gradient micro-

phone in decibel. It is important to notice that the response is maximum at

0◦ and 180◦ but the polarity of the signal is negative in the back hemisphere



2. Fundamentals of Acoustics 35

relative to the front hemisphere ( the diaphragm displacement are in the

opposite direction ). The frequency range over which the desired polar re-

sponse is maintained depends on the size of the microphone and the e�ective

distance from the front of the diaphragm to the back. The �rst null in re-

sponse take place when the received frequency has a wavelength that is equal

to the distance between the two valued points. Because they are sensitive

in two directions, pressure gradient microphones are also called bidirectional

microphones, [8].

Figure 2.8: Directional response in polar coordinates of the gradient microphone, re-

sponse level in decibel.

4.2 First order directional microphones

The great majoriy of directional microphones used today are members of the

�rst-order cardioid family. The term �rst order refers to the polar response

equation and its inclusion of a cosine term to the �rst power. These micro-

phones derive their directional patterns from the combination of a pressure

microphone and a gradient microphone.

The earliest directional microphones actually combined separate pressure

and gradient elements in a single housing, trasducted both signals and com-

bined their outputs electrically to achieve the desired pattern. Today, most

directional microphones with a dedicated pattern have a single diaphragm
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and impose a calculated front to back time delay in the paths of sound to

achieve the desired pattern.

In Figure 2.9, we summarize the mechanical principle for the directional

microphone obtains with a single diaphragm.

0° 90° 180°

Figure 2.9: Mechanical views of a single diaphragm cardioid microphone.

The general form of the polar equation for the �rst order directional

microphones is:

ρ = A+Bcos(θ), (2.22)

where A + B = 1. Figure 2.10 shows the graphs and the coe�cients of the

four main �rst order cardioid patterns in logarithmic scale.

For some speci�c applications (e.g �lm,sports with high ambient noise) it

is necessary to use a microphone with directional properties exceeding those

of the �rst-order family. High directionality microphones generally fall into

three categories:

1. Interference-type microphones. These designs achieve high direcional-

ity by providing progressive wave interference of high frequency sound

arriving o�-axis, thus favorite sound arriving on-axis.

2. Focusing of sound by means of re�ectors and acoustical lenses. These

designs are analogous to optical methods.

3. Second and higher-order designs. These microphones make use of mul-

tiple gradient element to produce high directionality.

For the high order design category, a microphone of order p will have the

following general form of the polar equation:

ρ = A+Bcosp(θ). (2.23)
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4.3 Directional properties

O�axis response can seriously alter the sound of a microphone in real-world

use, since in a room there are re�ections of the direct sound picked up o� axis

and combined with the on-axis signal. The combination can radically alter

the transduced sound quality through frequency-dependent reinforcements

and cancellations. For directional microphones, an important characteris-

tic is the ability of the transducer to select sounds coming from the on-axis

direction and reject those coming from other directions. In this section we

introduce some microphone characteristics related to the polar response pat-

tern and that describe the ability of the microphone to focus on the desired

direct sound and reject ambient sound:

• Acceptable Angle (AA) for a microphone is de�ned as the frontal an-

gle where the sensitivity is within 3dB of the on-axis response. In

the case of an omnidirectional pattern, all angles of incidence have a

sensitivity of 0dB relative to the on-axis response of the microphone.

Conseguently, the acceptance angle is ±180◦.

• Random E�ciency Energy (REE) is a measure of the on-axis direc-

tivity of the microphone, relative to its response to sounds originating

from all directions. An REE = 0.333, for example, indicates that the

microphone will respond to reverberant acoustical power arriving from

all directions with one-third the sensitivity of the same acoustical power

arriving along the major axis of the microphone.

• Distance Factor (DSF ) is a measure of the �reach� of the microphone in

a reverberant environment, relative to an omnidirectional microphone.

For example, a microphone with a distance factor of 2 can be placed at

twice the distance from a sound source in a reverberant environment,

relative to the position of an omnidirectional microphone, and exhibit

the same ratio of direct-to-reverberant sound pickup as the omnidirec-

tional.

In the table 2.1 we summarize the properties of the �rst order cardioid mi-

crophones, [8].
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Polar Eq AA Output 180◦ REE DSF

Omnidirectional 1 ±180◦ 0dB 1 1

Bidirectional cos(θ) ±45◦ 0dB .333 1.7

Subcardioid .7 + .3 cos(θ) ±90◦ −8dB .55 1.3

Cardioid .5 + .5 cos(θ) ±60.5◦ −∞ .333 1.7

SuperCardioid .37 + .63 cos(θ) ±57.5◦ −11.7dB .268 1.9

HyperCardioid .25 + .75 cos(θ) ±52.5◦ −6dB .25 2

Table 2.1: Characteristics of the family of �rst-order microphones.

(a) Subcardioid(A = 0.7, B = 0.3) (b) Cardioid(A = 0.5, B = 0.5)

(c) Supercardioid(A = 0.37, B =

0.63)

(d) Hypercardioid(A = 0.25, B =

0.75)

Figure 2.10: Logarithmic polar graphs for the �rst order cardioid family.



Chapter 3

Problem formulation and related

work

In this chapter we will give an introduction to the previous works on the

problem of �nding re�ective surfaces in the environment. We will present

the hypothesis and the basic ideas of these methods. Then, in the second

section, we will formulate the problem as taken into account in the present

work and introduce the parametrization that will be used after. The second

section will also emphasize on the relaxed assumptions made in this work

compared to previous works.

1 Previous work

The problem of �nding re�ective surfaces in the environment has recently

been addressed by a number of authors. The proposed methods were devel-

oped mostly for 2D geometries with possible extensions to 3D.

All the methods assume valid the hypothesis of optical acoustics (usually

only the �rst most signi�cant re�ections are considered) but use di�erent

equipment and data. They di�er in the number of microphones, the number

and knowledge of acoustic source positions, the knowledge of emitted probing

signal and the synchronization with the microphones. Mostly the methods

localize the re�ector matching the estimated room impulse responses (RIRs)

with template re�ections or building constraints from measured times of ar-

rival (TOAs) or directions of arrival (DOAs).

39
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However, all the methods suppose walls to be in�nite and as a consequence

the re�ections to be always visible by the acoustic system.

In [9], it is presented a solution which uses only a microphone and an om-

nidirectional loudspeaker. The loudspaker rotates on a circular pattern in a

continuous fashion and emits a controlled noise and the microphone is located

at the center of the circle. The rotation of the loudspeaker induces a time-

dependent impulse response between the microphone and the loudspeaker

and makes it possible to discern re�ections coming from objects located at

di�erent positions. In particular, A likelihood map is built by means of a

template matching between the signal acquired at the microphone and a

template signal obtained by simulating the propagation to all the potential

obstacles locations. The re�ector position is found in correspondence of the

maximum of the likelihood map.

In [10], the necessity for a priori knowledge of the source signal is removed.

The approach is based on the inverse mapping of the multi-path propagation

problem and acoustic source localization.

In [11], it is presented another method for reconstructing the 2D geom-

etry of the surrounding environment using a single microphone standing in

a known position and a loudspeaker rotating around the microphone. The

microphone receives, along with the direct signal, delayed and dimmed repli-

cas of the signal associated to wall re�ections. A knowledge of the probing

signal allows the extraction of a RIR from the acquired signal applying a

crosscorrelation operation. Maxima of the impulse response give TOA mea-

surements that de�ne the locus of candidate re�ection points as an ellipse.

Di�erent source positions de�ne di�erent elliptic constraints and the re�ector

can be represented as a line of tangency to all the ellipses. So the re�ector is

estimated by a minimization of a cost function obtained as a combination of

quadratic constraints that represent the tangent to such elliptical sufaces. In

case of multiple re�ectors the TOAs are labelled by means of a generalized

Hough transform.

This approach is modi�ed in [12] to take account of not controlled emis-

sion and unknown source position. The method is based on estimates of

at least three acoustic impulse responses (AIRs) between stationary micro-

phones located at arbitrary but known relative positions and a sound source

located at an unknown position. A Two-step approach is uses. At �rst the
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authors estimate the location of the source relative to the position of a ref-

erence microphone and the time di�erences of arrival (TDOAs) associated

with direct paths. Secondly, they use the estimated position for the estima-

tion of the TOAs related to �rst-order re�ections, to constrain the possible

re�ector locations as in the previous work. In case of multiple re�ectors the

related ellipses are grouped iteratively.

The same approach is further extended in subsequent work. The previ-

ous methods for estimation of the line re�ector rely on solving a non-linear

and non-convex optimization problem that can converge to non-optimal so-

lutions in certain practical environments. In [13], authors address some of

these problems by deriving a closed-form solution for the single-re�ector case,

which yields a more robust solution when compared to the other approach.

The article proposes also a second-stage correction in order to improve ro-

bustness of the method in the presence of errors in the estimated TOAs. This

consists in �nd meaningful coordinate points, that are geometrically related

to the estimated line re�ector from the closed-form solution and the set of

ellipses related to the TOAs and estimate the re�ector by the points that

exhibit greatest collinearity.

In [14], another way to solve the problem of non-optimal solutions for

the non-linear and non-convex optimization for [12] is presented. The au-

thors propose an exact minimization procedure that determines the correct

global minimum of the cost function while circumventing the problem of lo-

cal minima. This result is obtained by the reformulatation of the probelm

as the constrained minimization of a second-order polynomial, which admits

an exact solution. In this paper is also proposed a methodology for error

propagation analysis, which aims to characterize the error that the re�ector

localization is a�ected by using some prior information on the error on TOA

measurements.

In [15], the approach in [12] is generalized for localization of three-dimensional

surfaces by planes parametrization in the geometric space. Besides extending

the approach to a 3D geometry, this paper provides a generalization of the

Hough transform to arbitrary con�gurations of source and receivers.

In [16], the authors use a di�erent approach using the estimation of the

Directions of Arrival (DOAs) for di�erent positions of the acoustic source

instead of TOAs. That is an interesting evolution beacause the measure-
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ment of the Time Of Arrival of the re�ected path implicitly requires the syn-

chronization between source and microphones, which is not viable in many

applications. Once the location of the source and the DOA of the re�ected

path are estimated, the line that parameterizes the position of the obstacle

is constrained to be tangential to a parabola having the focus in the source

and directrix the measured DOA. A parabola is easily described by its ma-

trix quadratic form, as for ellipses and, as in [12], a cost function is de�ned

as combination of multiple constraints. Once again multiple constraints are

obtained for multiple positions of the source and the re�ector is estimated

with a minimization of the cost function subject to these constraints.

In [17], is presented a method for the localization of major re�ectors in a

room that use robust beamforming techniques based solely on the recorded

microphone signals of a circular array. The main advantage of this method

is that it does not involve measuring room impulse responses and so, it can

generally be applied for any source signals which su�ciently excite all room

modes. The method consists of the three-step procedure: �rst, the (DOAs),

corresponding to all sources and re�ections are determined, then the signals

originating from these DOAs are extracted, and �nally, the time di�erences

of arrival(TDOAs) are estimated from crosscorrelation analysis of the ex-

tracted direct sound and its re�ections, from which the distances from the

circular array to the re�ectors are inferred. Convex-optimized beamform-

ers are used for both localization and extraction of early re�ections in order

to control the robustness of the beamformersi compared to the signal to

noise ratio. Similar procedure is performed in 3D environments in [18] using

a spherical microphone array and an adaptation of the Convex-optimized

beamformer technique.

It is also worth mentioning the work in [19] where consider the problem

of estimating room geometry from a single acoustic room impulse response

(RIR), a 1 − D function of time. The uniqueness of the mapping between

the geometry of a planar polygonal room and a single RIR is veri�cated and

it is presented an algorithm that performs the �blindfolded� room estimation.

The results are used to construct an algorithm for localization in a known

room using only a single RIR.

Finally in [20] authors propose a method for re�ector localization in sim-

ple 3D environments using a �xed compact array of M microphones with an
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integrated and synchronized loudspeaker that probes the environment with a

known test signal. To identify strong re�ectors, they propose to use a regular-

ized least-squares procedure and �t known re�ection templates to measured

RIRs. It produces a sparse set of strong re�ections with known DOA and

range. These re�ections are analyzed and further classi�ed into 1st, 2nd and

3rd-order re�ections or clutter, from which the room model can be correctly

inferred.

2 Problem formulation and parametrization

In this work we use a linear microphone array and a moving acoustic source

with unknown position end emitting signal. The presented work is devel-

oped for 2D geometry and we consider only specular re�ections, assume 2D

propagation (i.e. perfectly absorbing �oors and ceilings). The extension to

3D cases can be done with some considerations and modi�cations, using a

planar array.

With reference to Figure 3.1, let us suppose to have a microphone array

that captures the sound�eld produced by an acoustic source within a 2D

environment. Our objective is to estimate the position of the re�ective surface

in the space. We remove the hypothesis of in�nite extension of re�ective

surfaces taking into account the limited visibility of acoustic re�ections and,

in particular we are not interested in estimating only the line that contains

the re�ector but also its endpoints (points A and B in Figure 3.1).

The presence of re�ectors will cause re�ections to appear. According to

the Snell's law they can be thought as originated from image sources obtained

by mirroring the source with respect to re�ectors (see S and S ′ shown in

Figure 3.1). However the visibility of image source is limited in space by the

extension of the re�ective surface. In fact the rays originated from the image

source are bounded to intersect the re�ector as shown in the Figure 3.1. The

observation of a number of this visibility discontinuities, together with the

estimate of the image source positions, will allow us to obtain estimates of

A and B.

If we have a moving source that �illuminates� the environment, we can

take various acoustic images at di�erent times of the space surroundings.

Our objective is the reconstruction of the geometric properties of the room
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Figure 3.1: Problem setup: a microphone array captures the suond�eld produced by an

acoustic source within an environment with a single re�ective surface.

using these images. It's important to notice that the direct source and its

sound emissions does not have to be controlled. The microphone array and

loudspeaker are not synchronized. The probing signal and source positions

are not necessarily known. We need only that the environment will be excited

from di�erent positions in space in order to guarantee acquisition of di�erent

�views� of the acoustic scene. That means that, in a real scenario, we can use

real and uncontrolled sound sources for the acquisition of the acoustic images

and the estimation of the desired geometric properties of the environment.

Reconstruction of the environment from a series of images is a well known

problem in computer vision. However, what is visible in optics is not necessar-

ily visible acoustically and vice versa (think about small objects, transparent

surfaces or low reverberant walls). This motivates the acoustic probing and

sensing in order to estimate the position of re�ectors.

However the computer vision procedure is not easily extended to acous-

tics. First we must de�ne the concept of �acoustic image�, i.e. represent the

acoustic measurements with suitable coordinates.
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In optical �eld, the images are de�ned as a sampled version of the Plenop-

tic function, introduced in [21]. The Plenoptic function de�nes the intensity

of the light �ow for every possible location, at every possible direction, for

every wavelength, and, for dynamic scened, at every time. It is an ideal-

ized concept, and one does not expect to completely specify it for a natural

scene. Obviously one cannot simultaneously look at a scene from every pos-

sible point of view, for every wavelength, at every moment of time. But, by

describing the Plenoptic function, one can examine the structure of the in-

formation that is potentially available to an observer by visual means. When

you want to characterize the function for a real environment, you measure and

de�ne a sampled version of Plenoptic function in most important variables

of dependencies. Usually several assumptions (e.g. static scenes, grayscale

images, reduction of degrees of freedom on camera locations) are made in

order to reduce the dimensionality of the problem [22].

Popular parametrizations of the Plenoptic function are Lumigraph [23]

and Light Field [24]. The Lumigraph is a subset of the complete Plenoptic

function that describes the �ow of light at all positions in all directions. It

considers only the subset of light leaving a bounded object (or equivalently

entering a bounded empty region of space), exploiting the fact that radiance

along any ray remains constant (in a trasparent medium as the air). That

allows to reduce the domain of interest to four dimensions. The Light Field

uses a similar approach in order to map the Plenoptic function in the space

of oriented lines.

In order to make the reconstruction of the environment from an acoustic

point of view, we think of the acoustic image as a sample of the Plena-

coustic function that has the same role of the Plenoptic function in optics.

The Plenacoustic function was at �rst introduced in [25] as a instantaneous

acoustic pressure at given location without the directional information as the

longer wavelengths of acoustic waves make it di�cult to measure. However,

as observed also in [25], this omnidirectional function can be turned into a

directional one using the phase information.

For the purpouse of this work we consider the Plenacoustic function as a

function of position and direction. In order to make this extension to a direc-

tional function, we will use the space-time processing techniques to estimate

the power coming from a given direction of arrival (DOA). That allows to
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take sampled version of the directional Plenacoustic function (the magnitude

of a set of rays in the environment) using a microphone array. As a conse-

quence we represent geometric primitives of interest (rays, sources, receivers

and re�ectors) and the acoustic measurements (i.e. the acoustic image) in

the space of oriented lines here referred as the RaySpace. It's important to

note that the primitives representation in the RaySpace will be an injective

map and so the problem to estimate the geometrical properties of the envi-

ronment in the geometric space is equivalent to search these estimation in

the RaySpace. So, our goal will be to extract geometric informations on the

environment (i.e the primitives representation into the RaySpace) from the

acquired images (i.e the estimated magnitude of the rays).

The domain, the RaySpace, is the same used in [26] for rendering ap-

plications. However in [26] the environment representation in the RaySpace

were the starting point for the modelling of acoustic propagation in generic

environments. Here we would like to turn them into the result of our analysis

and thus we need to reverse the problem.



Chapter 4

The Acoustic Images

In this chapter we present the RaySpace parametrization for the acoustic

rays. In the �rst section, we map into the RaySpace a minimal set of founda-

mental objects that are su�cient to characterize the propagation in the en-

vironment. In the second section, we will present the ideal acoustic camera

and its real sampled version (the microphone array) that is used in order to

capture acoustic rays.

1 Geometric primitives

1.1 Representation of a ray

The acoustic ray can be seen as an oriented line in the geometric space. A

line in R2 is represented by the equation:

l1x1 + l2x2 + l3 = 0. (4.1)

We parameterize a ray with the coordinates [l1, l2, l3]
T of the line on which

the ray lies. We notice that k[l1, l2, l3]
T , with k ∈ R and k 6= 0, represent the

same ray. As a consequence, this parametrization de�nes a class of equiva-

lence, as it uses scalable - homogeneous - coordinates. However, rays have a

travel direction. In order to distinguish rays lying on the same line but with

opposite orientations, we limit the range of the scalar k to the positive or

negative interval:

47
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l1 = k[l1, l2, l3]
T , k > 0,

l2 = k[l1, l2, l3]
T , k < 0. (4.2)

A generic point in the (l1, l2, l3) space corresponds to a ray in the geomet-

ric space and thus this parametrization is here referred as the RaySpace. The

equivalence class inherent in the RaySpace implies that the RaySpace is a

projective space P2 that span the Eucledian space (R3) by such homogeneous

coordinates of lines.

For clarity of visualization, in this work we usually rather than visualizing

the whole three dimensonal RaySpace, we depict the primitives in a reduced

2D RaySpace, obtained by intersecting the RaySpace with a prescrived plane

as shown in Figure 4.1 (b). We notice, however, that in the reduced RaySpace

we cannot distinguish rays with the same direction but opposite orientations.

It is not a problem for the purposes of this work because we will use a linear

microphone array to capture only the rays coming from a part of the space

(i.e. having an appropriate orientation).

x

y

Geometric Space Ray Space

l1 x l2 y l3+ + =0

(a) (b)

l

l

l 3

2

1

Reduced Ray Space

kl ,  k >0 
l=[l   ,l   , l   ]1 2 3

T

Figure 4.1: A ray in geometric space (a) and RaySpace (b).

1.2 Representation of sources and receivers

Acoustic source and receiver can be seen as points in geometric space. We

represent a point P = (x1, x2) in the RaySpace by the set of all rays that
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Figure 4.2: A point in geometric and ray space (a); the orientation of rays with respect

to a point in the geometric space and their con�guration in the ray space (b),(c).

pass through it. From 4.1, a ray l i passing from a point A with homogeneous

coordinates xA = k[xA, yA, 1]T , k > 0 if:

xTAl = 0. (4.3)

Using the condition 4.3, all rays passing through the point A are de�ned

as:

A = {(l1, l2, l3) ∈ R3|l1xA + l2yA + l3 = 0} = {l ∈ P2|xTAl = 0}.

The previous equation shows that a point (source or receiver) in the

geometric space corresponds to a plane passing through the origin in the

RaySpace (see Figure 4.2 (a)). As a point in the geometric space is a plane
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in the RaySpace, it divides the space into two half-spaces. This allows us to

test the orientation of a ray with respect to the point. In particular, all the

rays that has the point in the geometric space to their left with respect to

the travel direction are given by (Figure 4.2 (b)):

A+ = {l ∈ P2|xTAl > 0}. (4.4)

Similarly, all rays that have the point on their right are given by (Figure 4.2

(c)):

A− = {l ∈ P2|xTAl < 0}. (4.5)

1.3 Representation of a re�ector

In the geometric domain the re�ector R is a line segment and it is completely

de�ned by the two endpoints A = (xA1 , x
A
2 ) and B = (xB1 , x

B
2 ). As for points,

we represent the re�ector in the RaySpace as the set of all rays that pass

through it (through all the intermediate points). In the RaySpace this cor-

respond to the set of all planes representing the in�nite intermediate points

between A and B.

R = A ∪ ... ∪ Pi ∪ ... ∪B. (4.6)

In accordance with the image source principle, when we evaluate the

visibility of the environment from a mirrored source, we do not consider the

re�ectors in the half-space where the mirrored source lies. This motivates the

de�nition of two re�ectors, one for each face of the line segment. Traditional

projective geometry does not account for oriented re�ectors, while Oriented

Projective Geometry provides the tools required for representing them. With

reference to Figure 4.3, the two rays l1 and l4 that fall onto the opposite faces

of the line segment R in the travel direction have the endpoints A and B on

opposite sides: A is on the right for l1 and on the left for l4 and therefore

xA
T l1 < 0 and xA

T l4 > 0.

We exploit this inequalities when we represent the two oriented re�ector

R1 and R2 corresponding to the not-oriented re�ector R in the RaySpace:

R1 =
{
l ∈ P2

∣∣xA
T l < 0

}
∩
{
l ∈ P2

∣∣xB
T l > 0

}
= A− ∩B+. (4.7)
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Figure 4.3: Four subspaces de�ned by the two endpoints in the RaySpace b) and the

corresponding rays in the geometric space a).

R2 =
{
l ∈ P2

∣∣xA
T l > 0

}
∩
{
l ∈ P2

∣∣xB
T l < 0

}
= A+ ∩B−. (4.8)

Obviously, the rays which have the points on the same side (l2 and l3) do

not belong to the re�ector and they are included in the subspaces A+ ∩ B+

and A− ∩B−.
The not-oriented re�ector can be expressed in a closed form as the union

of the two oriented re�ectors that compose it:

R = R1 ∪R2 =
{
A− ∩B+

}
∪
{
A+ ∩B−

}
. (4.9)

All the rays originated from an oriented re�ector Ri with endpoints A

and B form the visibility region from that re�ector (the set of all rays that

are re�ected by Ri). By intersecting this region with the rays that fall onto

another oriented re�ector Rj with endpoints C and D we obtain the visibil-

ity region of Rj from Ri. These rays could be present in case of multiple

re�ection:

ν(Ri, Rj) = (A+/− ∩B−/+) ∩ (C+/− ∩D−/+). (4.10)
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If the environment is composed of more than two re�ectors, mutual oc-

clusions could arise. This corresponds to an overlapping of visibility regions

in the RaySpace.

2 Acoustic images

2.1 Ideal acoustic camera

Let suppose for a moment to have an ideal acoustic camera capable of cap-

turing the complex amplitude of all acoustic rays that fall onto it. Actually,

as the captured rays are not bounded to pass through a single point (camera

center), this measuring device represents an ideal Plenacoustic camera. We

want to use that camera in order to obtain information about the environ-

ment. We suppose to have a linear acoustic camera that is represent as a line

segment in the geometric space. As a line segment, it has the same repre-

sentation in the RaySpace of a re�ector (i.e. the set of all rays that intersect

the line segment).

In Figure 4.4, we show a possible environment with a re�ector R with

endpoints A and B and an acoustic camera AC with endpoints C and D.

The gray area represents the region of visible by the acoustic camera, which

in this case can be interpreted as the set of all rays that can be captured by

the camera. The red area represents the rays that intersect both re�ector

and acoustic camera. It is the region of visibility of the re�ector from the

acoustic camera, ν(R,AC), and it contains all the rays that could be re�ected

by the re�ector and acquired by the acoustic camera. In the case of an ideal

acoustic camera, we acquire all the intensity of the rays in the red area in the

con�guration analyzed. Up to now we discussed only the representation of

geometric primitives in function of acoustic rays that are generated (source),

are collected (receiver) or are re�ected (re�ector) by them. Each ray that

parametrize the geometric primitive will have a corresponding amplitude

associated with it.

However, without an acoustic source to �illuminate� the environment,

the acoustic camera wont acquire anything except a noise. Suppose now

to �light up� the environment with an acoustic source. For simplicity in
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Figure 4.4: The ideal acoustic camera measures the sound�eld produced by a source in

an environment with a single re�ector (a); the ray space representation of acoustic image

(b).

Figure 4.4 (a) the source is placed behind the acoustic camera in order to

reduce its direct in�uence on the captured sound�eld (we suppose that the

ideal acoustic camera sense only the rays that fall onto it by the opposite

direction). The source begins to populate the environment with acoustic

rays. The presence of re�ectors will cause re�ections to appear. They can

be thought as originated from image source obtained by mirroring the source

with respect to re�ectors as shown in Figure 4.4 (a). The visibility of image

source is limited in space as the rays originated from it that intersect the

re�ector. Some of this rays will be captured by the acoustic camera, i.e. the

rays originated from the image source that belong to the area of visibility

of the re�ector from the acoustic camera. The intensity of these rays are

registered by the camera and these measurements represent a single acoustic

image.

Notice that in this ideal case the acoustic camera captures also the di�use

re�ections. As a consequence, along with the line segment representing the

image source (i.e. the specular re�ections), the whole visibility region lights

up. Therefore a single Plenacoustic image is enough for re�ector estimation.

In fact, the visibility regions constitute an equivalent representation of the
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re�ectors in the RaySpace, and we can reconstruct the environment geometry

by looking and examining this ideal Plenacoustic image.

However, unlike optics where most surfaces can be considered Lambertian

(all sufaces have a constant radiance or luminance that is independent of

the viewing direction), in acoustics the specular re�ections dominate the

di�usive re�ections. Thus the amplitudes of di�use re�ection will have a

considerably lower amplitudes and will hardly be observable. Furthermore

in real world scenarios we do not have an ideal acoustic camera but we

use instead a microphone array. As a consequence we have to take more

images illuminating di�erent portions of the re�ector's visibility region. This

is accomplished moving the source in space (see Figure 4.4 (a) and (b)).

2.2 Microphone array

In real scenarios, an ideal acoustic camera representable by a line segment

that is able to acquire punctually the magnitude of all rays that fall into each

point of the line and for all the direction of arrival does not exist. Instead of

it, we use a linear microphone array that is composed by M microphones mi

with i = 1, ...,M .

A real microphone array has several limitation compared to an ideal Ple-

nacoustic camera. The continuos line segment of an ideal acoustic camera is

sampled in the microphone array with each node of sampling in the position

of a microphone. Consequently, also the acquired acoustic image will be sam-

pled because it is possible to associate a magnitude only to the rays a�ecting

a material point where there is a microphone. So we will have informations

about the intensity only of the rays that lie on the planes in the RaySpace

corresponding to the microphones positions in geometric space (see Figure

4.5 (a) and (b)).

We de�ne as Pi(θ) the spatial pseudospectrum of the microphone mi, the

magnitude acquired by the microphone from the direction of arrival θ. We

de�ne also as Pi(l) the corresponding magnitude of rays of incidence on the

microphone mi.

A single microphone acquires only the overall intensity of the sound re-

sulting from the contributions of each directions of incidence attenuated ac-

cording to its own polar pattern. It is not possible to separate the directional

contributions (the intensities of the various incident rays) and to obtain Pi(θ)
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Figure 4.5: The microphone array measures the sound�eld produced by a source in an

environment with a single re�ector (a); the ray space representation of acoustic image (b).

analyzing the acquisition of a single microphone.

So, for the estimation of the acoustic image representing the environment

in the RaySpace we have to do the following steps for every microphone mi,

i = 1, ...,M :

1. window the contributions of all microphones with the window function

wi centered at mi;

2. use a beamforming technique to estimate the spatial pseudospectrum

Pi(θ) and associate it to the point mi;

3. obtain the corresponding Pi(l) mapping the values of Pi(θ) in the

RaySpace.

Any beamforming method that takes into account the correlation between

the sources (signals from various paths are attenuated and delayed versions of

the same direct source signal) can be applied for this purpose. In simulations

and experiments we will use wideband Capon method [27] applied to the

linear array. However, if the speci�c application requires to improve accuracy

and resolution, other robust and superdirective methods can be used.

It is important to notice that the width of the window function is a

fundamental parameter of the method. To be able to observe a bigger portion

of space the microphone array needs to have a big extension, either having

one long array or virtually moving a smaller array (e.g. translating along a
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rail). On the other hand, in order to obtain estimates of rays going through

the pointmi, we have to use microphones close to it with decreasing in�uence

of microphones farther away.

Using a wide window would mean considering phenomena that not a�ect

the considered point mi. As the image sources are not visible from all points

in space we risk also to add only noise increasing the number of contributions

without a considerable gain on direction estimation accuracy. What's more

important, using a number of microphones with a big extension in space

we violate the far-�eld assumption (the assumption that the DOA is the

same for all the microphones in the window) made by the DOA estimation

techniques used in this work. It is worthwhile to note that although there are

also near�eld techniques, they use information that are not available for our

analysis (usually they require the distance of the sound source). We can not

use also Music method [28] because it assumes that the (direct and image)

sources are uncorrelated and it is not our case.

Once we have the magnitude of sampled DOA, Pi(θ) from the beamform-

ing method, for all microphones we have to map the values on the RaySpace

in order to obtain the Pi(l). Given the coordinates pi = [xi, yi]
T of the micro-

phone mi, the directions of arrival are mapped into points in the RaySpace

using the following non-linear relation:

l(θ) = [−cos(θ), sin(θ), cos(θ)xi − sin(θ)yi]. (4.11)

Then we can associate the intensity of the DOAs for all microphones to

the corresponding rays.

Finally we obtain the acoustic image shown in Figure 4.5 (b). It is a

sampled and �blurred� version of the image we would obtain using the ideal

acoustic camera, as seen in Figure 4.4 (b). In fact, we compute the pseu-

dospectrum for sampled points mi and for sampled DOA using the beam-

forming method.

Furthermore, instead of having impulses representing the image source

(with amplitudes depending on radiometric properties of the environment),

they are convolved with the aperture function of the DOA estimation tech-

nique depending on the used window function and the number of microphones

involved in the estimation.
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Note that the amplitude along the line representing the image source will

vary according to the radiation pattern of the source, the polar pattern of the

acoustic camera, the re�ection coe�cients and the travel path distance. The

line position into the acoustic image depends also directly by the geometric

con�guration i.e the position of re�ector and of the direct source. This means

that in an optic of estimation, if the con�guration is unknow we can extract

information about it from the image. The beamforming methods return

also the phase spectrum related to the environmental response but for the

purposes of the work the phase information can be discarded.

In case of wideband sources we can obtain a number of acoustic images for

di�erent frequency bands of interest or (if we are not interested in extracting

radiometric information) obtain a single image combining images at di�erent

frequencies (making a suitable average of the obtained images).



Chapter 5

Estimation algorithms

In this chapter we analyze the sampled and �blurred� version of the acous-

tic images of the environment acquired by the microphone array in order to

extract the estimations of geometrical features. First, we will present algo-

rithms for the localization of a single (direct or image) source and a single

re�ector. Then, these techniques are adapted for cases of multiple re�ectors.

1 Single source localization

First we take into account the localization problem for a single source due the

analysis of a single acoustic image. The source to be estimated can be either

the direct source that emits a signal in the environment or an image source

generated from a single re�ector, if the direct source is in a position that

makes the direct in�uence on the captured sound�eld negligible (e.g behind

a microphone array of directional microphones that point in the opposite

direction). For now on, the notation will refer to this second case, but the

technique is the same in both the cases.

We start from an image obtained using the microphone array. An example

is shown in Figure 5.3 (a). First we have to detect the NS′ microphones that

see the image source S ′. For this purpouse, we calculate the global maximum

of the scanned image (P (l)) and we consider a microphone mi if and only

if the maximum of the acquired magnitudes for that microphone (i.e. the

maximum of Pi(l)) is over a threshold de�ned as a percentage of the global

maximum.

58
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Figure 5.1: Diagram for the algorithm of estimation for a single source localization.

After that we de�ne the rays of acquisition from the image source for the

microphone array as:

ŝi = arg max
l

(|Pi(l)|),∀i ∈ IS′ , (5.1)

where IS′ denotes the subset of indices such that mi with i ∈ IS′ is �illumi-

nated� by the image source S ′. The (homogeneous) points si = [si1, s
i
2, s

i
3]
T ,

i ∈ IS′ , should all stay on the plane S ′ as depicted in Figure 5.3 (a). So,

using equation (4.3), we can write:

xTS′s
i = 0, i ∈ IS′ ,

where xS′ = k[xS′ , yS′ , 1]T , k > 0, are homogeneous coordinates of S ′. In-

dicating sj = [si1j , s
i2
j , ...]

T , i1, i2, ... ∈ IS′ , for j = 1, 2, 3, and HS′ = [s1, s2],

dS′ = −s3, it should be possible to �nd the coordinates of the image source,

pS′ = [xS′ , yS′ ]
T , as the solution of the following linear system:

HS′pS′ = dS′ . (5.2)

In real cases, we must consider the presence of noise that a�ects the esti-

mates of the magnitude associated to each microphone and for each direction
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of incidence. Although the estimate of the direction of arrival from the image

source, through the main techniques of beamforming, is asymptotically not

distorted, the presence of noise added to the single estimate an error factor

that must be considered.

For that reason, we estimate pS′′ as the (weighted) least squares (LS)

solution of 5.2, given by:

p̂S′ = (HT
S′WS′HS′)

−1HT
S′WS′dS′ , (5.3)

where WS′ is the weighting matrix assumed, for now, to be the identity

matrix. This gives us an estimate of the image source position as shown in

Figure 5.3 (a). In �gure 5.1 we show a diagram of the alghorithm for the

localization of single source.

2 Single re�ector

Now we want to use the single image source estimation from the section before

in order to obtain an estimation of the re�ector endpoints that exploiting

several acoustic images acquired by moving the direct source.

As observed earlier, not all microphones mi sense the image source S ′ and

the visibility of S ′ is limited by the dimensions of the re�ector. In particular,

the edges of re�ector's visibility region lie on the planes that represent the

endpoints A and B, as depicted in Figure 4.4 (b). So, our goal is now to

estimate the edge rays. Knowing the image source position p̂S′ and the last

microphone(s) that sense it we can estimate the ray(s) on the edge of the

visibility region, â and/or b̂.

For the estimation of the last microphone(s) that sense the image source

from the single re�ector, we use the same procedure de�ned before for the

NS′ microphones that see S ′.

Let us suppose that mi is the obtained last microphone, and mi+1 the

�rst one that are not illuminated by the image source (see Figure 5.3 (a)).

Due to the sampling implicit on the use of a microphone array, we cannot

say the exact point where the edge ray a intersect the line (the same applies

for b). However we expect that in average it intersect the array in mean

point mt, pt = (pi + pi+1)/2. The estimated edge ray â is then given by the

intersection of planes mt and S ′ as shown in Figure 5.3 (a):
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xTS′a = 0,

xTt a = 0.
(5.4)

From (5.4) a = [a1, a2, a3]
T is a vector spanning the null space of [xS′ ,xt]

T .

Supposing that a3 6= 0 (this can always be guaranteed changing the reference

system) it can be normalized to 1. Indicating G = [pS′ ,pt]
T and 1 = [1, 1]T ,

we can �nd the remaining two coordinates, indicated with a∗ = [a1, a2]
T , as:

Ga∗ = −1,
â∗ = −G−11.

(5.5)

Moving the source S we get a number of di�erent acoustic images and as

a consequence a number of edge rays âi, i = 1, ..., NA and b̂j, j = 1, ..., NB

(see Figure 5.3 (b)). They lie on the edges of the visibility region, i.e. on the

planes A and B. In a similar way as done for the image source position in

(5.3), we estimate the re�ector endpoint positions using the LS method:

p̂A = (HT
AWAHA)−1HT

AWAdA
p̂B = (HT

BWBHB)−1HT
BWBdB.

(5.6)

where HA = [a1, a2], HB = [b1,b2], dA = −1, dB = −1 and, for now,

WA = WB = I.

Notice however that in order to estimate A and B the edge rays âi and b̂j

have to be visible by the microphone array. This requires a long or moving

array and a moving source that illuminates the environment.

In Figure 5.2 we show a diagram that explains the algorithm for the

estimation of a re�ector endpoint.

3 Re�ector line estimation

Now we describe two methods for the computation of the line lR = (lR1, lR2, lR3)

containing the re�ector i.e the point in the RaySpace that represent the corre-

sponding line. Note that this line is the result of classical estimation methods

for the localization of re�ective surfaces existing in the literature that do not

allow to calculate the endpoints of the re�ectors.
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Figure 5.2: Diagram for the algorithm of estimation for an endpoint of a single re�ector.

Once the endpoints A andB are estimated the line containing the re�ector

can be computed as the intersection of planes A and B in the RaySpace (i.e.

joining the points A and B in the geometric space) as shown in Figure 5.3

(b):

xTAlR = 0,

xTBlR = 0.
(5.7)

where xA and xA are the homogeneous coordinates for the endpoints of

the re�ector. However, as shown before, in order to obtain the estimates

for A and B, we need a number of acoustic images for di�erent position of

direct source and a long or moving array in order to sense the edge rays of

the re�ector in di�erent con�gurations.

The second method that we are going to present assumes to know the

actual homogenous coordinates xS of the direct source or an estimation of

them obtained with the techniques previously seen. Let x̂S′ be the estimate

homogeneous coordinates of the image source for the �rst-order re�ection

from the given re�ector. The re�ector straight line can be obtained as:
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lR = xS − x̂S′ +
1

2

(
x̂TS′G1x̂S′ − xTSG1xS

)
G2, (5.8)

where:

G1 =

 1 0 0

0 1 0

0 0 0

 , G2 =

 0

0

1

 (5.9)

Note that, unlike the previous method, in order to obtain the estimation,

we don't need a number of acoustic images for di�erent position of direct

source and a long or moving array in order to sense the edge rays because

we need only the direct and image source of a single acquisition (or their

estimation). However, it requires that the direct source is known or visible

from the microphone array.

4 Multiple re�ectors

In this section, we want to extend the previous methods to the cases in

which multiple sources (direct source and image sources) are visible to the

microphone array. That will allow us to estimate the position of multiple

re�ectors in a complex con�guration.
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However, a number of modi�cations is necessary in order to account for

the presence of multiple sources and re�ectors in the environment.

4.1 Localization of multiple sources

Suppose to have a con�guration in which there are more than one source

(direct sources and/or image sources) visible by the microphone array and

their in�uence is not negligible. Our goal is to estimate their positions from

a single acoustic image. Note that this problem occurs even when there is

a single re�ector but the signal emitted by the direct source appears to be

signi�cant and must be considered.

In presence of multiple sources we can not calculate simply the global

maximum of the scanned image for each microphone mi (i.e. the global

maximum of Pi(l)) because a single microphone could acquire more than

one signal from di�erent sources. So we have to look for a number of local

maxima of Pi(l) ∀i that have the acquired magnitude over a threshold, TS,

de�ned once again as a percentage of the global maximum of the scanned

image. We de�ne RS the set of all the rays that have these properties:

RS =
{
l ∈ P2| ∃i, l ∈ arg locmax

l
(|Pi(l)|), Pi(l) > TS

}
(5.10)

Now RS contains all the rays acquired from all sources visible from the

microphone array. In order to obtain the estimated locations using 5.3, we

have to cluster the rays of RS into sets representing contributions from dif-

ferent sources. This problem can be reformulated as follows: �nd the set of

planes in the RaySpace (i.e. sources in the geometric space) that minimizes

the sum of distances between the rays in RS and the nearest plane (the total

least square error). Exploiting the properties of the projective spaces, the

problem will be handled in a suitable 2D reduced RaySpace (the acoustic im-

age) . As a consequence the problem of �nding planes reduces to a problem

of �nding lines that minimize the total least square error. A suitable reduced

RaySpace can be obtained excluding the rays that are parallel to the mi-

crophone array. Now we present two di�erent methods for �nding optimal

lines.
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Method 1: comparison of clusters

First, we assume that there are only two sources visible from the array.

Our aim is to �nd an exact algorithm for the de�nition of the corresponding

straight lines. A brute force approach to the problem would be to de�ne

all possible partitions of the points available in two distinct sets, for each

partition calculate the regression lines and take as solution the con�guration

with lower total least square error. This approach, although exact, has a

computational complexity which makes it unenforceable except in academic

cases. In fact, the number of partitions corresponds to cardinality of the

power set for RS and is therefore amounting to 2n, where n represents the

number of points considered. So we must search an approach that allows to

decrease the number of con�gurations to compare.

The �gure 5.4 a) shows a set of points and their two optimal straight

lines S∗1 and S∗2 . In �gure there are also two additional dotted lines which

cross exactly in the middle of the angles between S∗1 and S∗2 . They are

called decision bounders and they divide the space into four region that are

assigned alternatively to one or the other line. So, if we de�ne the two

bounders, we can de�ne the clusters of points and, from them, the optimal

lines corresponding to the two sources.

In �gure 5.4 b) we show also that we can traslate and rotate the given

bounders in such a way as to obtain two new bounders that divide the points

into the same clusters and such that:

1. The two bounders remains orthogonal;

2. One of the decision bounder goes through two input points;

3. The other decision bounder goes through an input point.

Now we can �nd all the possible bounders that have these properties.

For all that bounders we can de�ne the two clusters of points, compute

the corresponding LS lines and calculate the total least square error. After

that, we take the optimal lines (i.e the optimal sources locations) from the

con�guration with the lowest total least square error, [29].

The proposed algorithm has the advantage of ensuring the optimality of

the solution obtained from it as it tests all the possible con�gurations. That

algorithm has a complexity of O(n3) which is considerably better than the
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Figure 5.4: A set of rays, the two optimal lines and their bounders a); The corresponding

translated and rotated bounders b).

brute force case. It could, however, be eccessive in cases where the number

of points is high. Moreover, even if the algorithm can be extended to cases

with more sources (for references see [29]), it will have a complexity ( O(nk
2
)

where k is the number of lines) that makes it unusable in not trivial cases.

Another negative aspect of the algorithm is that it requires to know a priori

the number of lines to search. We want an algorithm that automatically

de�nes the number of sources seen from the microphone array.

These reasons justify the de�nition of an algorithm which, although not

certifying the optimality of the solution obtained in the sense of the total

least square error as the previous method, is very robust, has a computational

cost suitable for more complex cases and de�nes automatically the number

of sources seen. This method uses the Hough transform.

Method 2: robust Hough

The Hough transform is a technique that allows to recognize special con-

�gurations of points in an image representable as a matrix exploiting their

parametric representation. In the case of interest, it is used for the identi�-

cation of straight lines. These lines are parameterized according to length ρ
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and angle θ of the vector perpendicular to them and having the origin in the

reference center. So a line is de�ned by a point of coordinates (ρ, θ) in the

parameters space. (Figure 5.5).

x

y

ρ

θ

ρ

θ
a) b)

Figure 5.5: A line in the geometrical space a) and its representation in the parameters

space b).

Since the Hough transform operates on a digital image represented as ma-

trices of discrete samples, at �rst we perform a quantization of the continuous

values of variables in RS for the reduced RaySpace.

Then, for an arbitrary point on the image with coordinates (x0, y0), we

de�ne the lines that go through it as:

r(θ) = x0 cos(θ) + y0 sin(θ), (5.11)

where r (the distance between the line and the origin) is function of θ. This

corresponds to a sinusoidal curve in the (r, θ) plane, which is unique for

the point. If the curves corresponding to two points are superimposed, the

location (in the Hough space) where they cross corresponds to the line (in

the original image space) that passes through both points. More generally, a

set of points that form a straight line will produce sinusoids which cross at

the parameters for that line. Thus, the problem of detecting collinear points

can be converted to the problem of �nding concurrent curves.

In the case dealt, the points will not necessarily be perfectly aligned

because they are a�ected by noise. Then we apply to the �gure obtained by
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corresponding Hough space.

Hough transform in the parameter space a medium �lter with appropriate

width of the mask. If we know the number of sources to look for, we can

pick up the corresponding number of peaks in the transform. Otherwise, if

the number of visible sources is not de�ned a priori, it is possible to apply a

threshold and select the number of local maxima above this threshold.

The straight lines obtained with the Hough transform do not necessarily

minimize the total least square of points corresponding to the rays, as the

transform works simply by points counter. For overcome this drawback, we

put in series to Hough transform a k-means clustering algorithm, initialized

with the solution of the previous step, using as distance the notion of classical

Euclidean distance. This algorithm can be described as follows:

1. Join points to the nearest line and build the corresponding clusters;

2. For each cluster, calculate the least square line associated;

3. Check that the points are still assigned to the nearest line, if yes exit,

if not repeat from 1.

The k-means clustering algorithm does not guarantee generally, when

initialized randomly, global convergence. That explains the need to use as

initialization a guess close to the solution, obtained through the peaks of

the Hough transform for the image �ltered in a suitable manner. In the full
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version, the method has a low computational cost dominated by the research

of the peaks relating to the Hough transform and complexity dependent by

the levels of quantization of the parameters. In most cases it is also su�cient

a single cycle of k-means clustering, as clusters are correctly de�ned by the

output of the Hough transform. The algorithm results very robust and since

the k-means algorithm is extremely fast, you can apply it multiple times with

di�erent initializations to con�rm the goodness of the solution obtained.

4.2 Estimation of visibility region edges

As in the case of a single re�ector (with a negligible direct signal), the vis-

ibility of image sources is limited by the dimensions of the corresponding

re�ector. In that case, the estimate of the �rst and last microphone acquir-

ing the existing signal deriving from the only image source was simply done

by calculating the total energy gained by each microphone, and �nding if this

energy exceeded a certain threshold de�ned as a percentage of the maximum

intensity.

In the case with more re�ectors, or in each case of more sources visible

to the array, this technique is not applicable because the energy acquired

by a microphone is the sum of the individual components that derived from

di�erent sources, which must be distinguished. We therefore propose two

methods for the extension of previously presented algorithm.

Method 1: beamforming methods

The �rst proposed solution is to use the knowledge of the position of

interested image source, estimated in the previous step, to calculate the en-

ergy incident from this direction through a beamforming method. Similarly

as done to obtain the acoustic image, we have to window the array with a

function wi in order to test if the microphone mi receives energy from the

direction of the given image source.

Note that, given the position of the image source S ′ and the speed of

sound c, it is possible to calculate the exact time delay for each microphone

in the same window without using the far�eld hypothesis (near�eld case).

For example if we consider the two microphones mi and mj the delay in time

τij can be obtained as:
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τij = (|S ′ −mi| − |S ′ −mj|) /c, (5.12)

where |·| is the euclidean norm.

Such delays can be used to calculate the incident energy, through the choosen

beamforming method, by the source of interest and allow to go beyond the

classical assumptions of far�eld of these methods.

It is usefull to underline that nevertheless once again the window wi
has to have limited aperture in order to reduce in�uence of neighbouring

microphones. In any case, the method needs a window that considers more

than one microphone because a single microphone senses only the overall

signal and can not distinguish the various contributions. Consequently, the

de�nition of the �rst and last acquiring microphones will be blurred of the

amplitude of the used window.

Method 2: correlation matrix

We now propose an alternative solution for the same problem. This

method derives from the observation that, since the knowledge of the es-

timated source allows to work with time delays in near�eld hypothesis, it is

no longer necessary to use only microphones close to estimate the energy by

beamforming. We de�ne the directional energy matrix E ∈ RM×M , whereM

is the number of microphones, such that for all couple of indices, Eij is the

the energy associated through a beamforming method from the given source

to the two microphones by using time delays calculated as seen before. That

is a symmetric matrix.

This matrix has the diagonal terms that are not-directional and can be

very high even in microphones that do not acquire the signal from the studied

source, due to the presence of other sources. To overcome this drawback we

use instead the directional correlation matrix C ∈ RM×M de�nes as follow:

Cij =
Eij√

Eii
√
Ejj

. (5.13)

At this point, the method is based on considering the matrix C as a 2D

image. The idea is to estimate the position of the last microphones that

acquire the signal coming from the image source of the studied re�ector,

searching for the edges of the 2D image representing the correlation matrix



5. Estimation algorithms 71
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Figure 5.7: An example con�guration and one of the corresponding directional corre-

lation matrix.

of the acquired signal. In fact it is easy to see how the terms Cij will be

low if at least one of the two indices correspond to a microphone that is not

a�ected by the signal of interest. In �gure 5.7, we show an example of the use

of this method for a simulated con�guration. We can clearly see the edges

corresponding to the last microphones that acquire the signal from the given

image source.

The main disadvantage of this method is that it requires the calculation

of the whole correlation matrix for each studied source and, if the number

of microphones and the number of re�ectors are high, it can have an high

computational cost. The advantage is that it uses all the information avail-

able and the de�nition of the �rst and last acquiring microphones will not

be blurred of the amplitude of the a window function.

4.3 Localization of multiple re�ectors Endpoints

As in the case of a single re�ector, we move the direct source in di�erent

positions in order to obtain di�erent acoustic images of the examinated en-

vironment. For each acoustic image, we obtain a collection of the rays corre-

sponding to visible endpoints for the re�ectors in the studied con�guration.

These rays are grouped in di�erent clusters, one for each visible endpoint,

using the same techniques described for the source estimation.

After clustering the edge rays are used to estimate the edges of the given
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visibility region in the ray space, i.e. estimate endpoints of the corresponding

re�ector. The procedure is the same as the one described for a single re�ector

case. In �gure 5.8, we summarize the method.
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Figure 5.8: Estimation steps: 1) acoustic image is obtained from acoustic measure-

ments; 2) Hough transform is used in order to individuate lines in the image; 3) positions

of the image sources are estimated; 4) for each position mi suitable techniques are used

in order to test the visibility of the image sources; 5) if observable the edge rays are in-

dividuated and mapped to the RaySpace; 6) a number of edge rays are obtained moving

the acoustic source; 7) clusters of edge rays are used to estimate re�ector endpoints.



Chapter 6

Performance analysis

In this chapter we present an analysis of the properties of the estimation

methods introduced before. In particular, in the �rst section we will derive

expressions for second order statistics of estimates. This performance analysis

is useful not only for system design but it will also be used to improve the

estimation accuracy. The second section will be dedicated to the resolution

analysis for the image source estimations.

1 Statistical analysis

1.1 Source localization

We start considering the accuracy of (5.1). The points ŝi correspond to

maximum of Pi(l) that is stricly correlated to the maximum of Pi(θ). The

maximum of Pi(l) are the estimated direction of arrival that we model as:

θ̂i = θi + εi, (6.1)

where εi is the estimation error.

Discussion about beamforming methods is outside the scope of this work.

Any method that takes into account the correlation between the sources

(signals from various paths are attenuated and delayed versions of the same

direct source signal) can be applied for this purpose. During this analysis we

will suppose to know the performance of the given beamforming method and

73
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as a consequence to know the NS′×NS′ covariance matrix of DOA estimates

Cθ. This covariance matrix will depend on the method used, windowing

function w (i.e. the number of microphones used for the estimation), the

spacing between microphones and signal frequency, directions of arrival and

signal-to-noise ratio (SNR).

It is important to note that Cθ is not diagonal as we estimate di�erent

θi using contributions from same microphones (shifting the window w) and

thus θi will be correlated with θj, j = i ± 1, ..., Nw − 1, where Nw is the

window length. We suppose DOA estimates to be unbiased, i.e. εi to be zero

mean.

Expanding ŝi = si(θ̂i) in �rst order Taylor series around the true value

si(θi):

si(θ̂i) ' si(θi) +
∂si(θi)

∂θi

T

(θ̂i − θi),

we approximate the variances/covariances of estimated points as:

[Cs]ij = E
[
(si(θ̂i)− si(θi))(s

j(θ̂j)− sj(θj))
T
]

' ∂si(θi)
∂θi

T
[Cθ]ij

∂sj(θj)

∂θj
,

(6.2)

where E[�] is the expectation operator, [Cθ]ij indicates the covariance between

θi and θj, Cs is the 3NS′ × 3NS′ covariance matrix of estimated points and

[Cs]ij indicates the 3×3 submatrix containing the covariances between points

ŝi and ŝj. From (4.11) with k = 1:

∂si(θi)

∂θi

T

= [sin(θi), cos(θi),− sin(θi)xi − cos(θi)yi]
T . (6.3)

Writing (6.3) in (6.2) we have the desired covariance matrix.

Now we analyse the accuracy of the LS estimation of the image source

position given by (5.3). In (5.2) both HS′ and dS′ are a�ected by errors,

Hε
S′ = [sε1, s

ε
2] and dεS′ = −sε3. We model them as an additive noise:

HS′pS′ = dS′ + nS′ ,

nS′ = −(sε1xS′ + sε2yS′ + sε3).

Using (6.2), we calculate the covariance matrix of nS′ as:
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[
CnS′

]
ij

= [xS′ , yS′ , 1] [Cs]ij [xS′ , yS′ , 1]T . (6.4)

The covariance of p̂S′ is then given by:

CpS′
= (HT

S′WS′HS′)
−1HT

S′WS′CnS′
WT

S′HS′(H
T
S′WS′HS′)

−1. (6.5)

1.2 EndPoints localization

Now we consider the accuracy of the estimation for the endpoints. The

estimate in (5.5) is a�ected by two independent types of errors.

1. Error εt = −(a1x
ε
t + a2y

ε
t ) caused by the sampling of the array (we

assume that the detection method always detects correctly the micro-

phones mi and mi+1 for the given source). This error depends on ge-

ometry and is constant for given source (S ′) and array positions (mt).

As a consequence it adds a bias to the estimation of a∗ that can be

controlled decreasing the distance between microphones d;

2. Error εS′ = −(a1x
ε
S′ + a2y

ε
S′) on image source position estimate caused

by the blurring of the image. It is assumed to be zero mean with

variance obtained from covariance matrix (6.5):

cεS′ = E[ε2S′ ] = a∗TCpS′
a∗. (6.6)

Then Ga∗ = −1+ [εS′ , εt]
T and the covariance matrix of a∗i is approximated

as:

[Ca∗ ]ii ' G−1

[
cεS′ 0

0 0

]
G−T . (6.7)

Finally the covariances of estimates in (5.6) are obtained similarly to

(6.5):

CpA
= (HT

AWAHA)−1HT
AWACnA

WT
AHA(HT

AWAHA)−1,

CpB
= (HT

BWBHB)−1HT
BWBCnB

WT
BHB(HT

BWBHB)−1,
(6.8)
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where using (6.7):

[CnA
]ij = pTA [Ca∗ ]ij pA,

[CnB
]ij = pTB [Cb∗ ]ij pB.

(6.9)

Unlike (6.4) the covariance matrices in (6.9) are diagonal as di�erent edge

rays are obtained with di�erent observations, i.e. moving the source S, and

are therefore uncorrelated. As already observed, due to the spatial sampling

of the microphone array, the single edge rays âi and b̂j are biased. As

a consequence the estimates of re�ector endpoints p̂A and p̂B are biased

in general. However, the bias on edge rays can be modelled as uniformly

distributed between the two microphone samples (last one that sense the

image source and the �rst one that does not) and thus p̂A and p̂B can be

considered asymptomatically unbiased (for NA and NB going to in�nity).

1.3 Re�ector line estimation

We take into account the analysis of variance/covariance for the estimations

of the line containing the re�ector in the two modalities described in the

chapter 5. At �rst, we consider the analysis of (5.7).

We suppose to know the covariance matrices for the endpoints, CpA
and

CpB
. We suppose also that for the re�ector straight line lR = (lR1, lR2, lR3),

lR3 = 1. The assumption is legitimate in any case where this parameter is

not zero. This can be obviated changing the reference system. Now we de�ne

HR = [pA,pB]T , lR′ = (lR1, lR2) and dR = [−1,−1]T . So, the system (5.7)

can be formulated as:

HRlR′ = dR. (6.10)

In (6.10), HR is a�ected by errors, Hε
R = [pεA,p

ε
B] and. We model it as

an additive noise:

HRlR′ = dR + nR, (6.11)

nR =

[
xεAlR1 + yεAlR2

xεBlR1 + yεBlR2

]
Using CpA

and CpB
, we can calculate the covariance matrix of nR under the

assumption that the coordinates for one endpoint are indipendent from the

coordinates of the other (i.e that there aren't image sources that sense both
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the endpoints). If this assumption is not veri�ed, we must also consider the

cross-covariances.

Now, we analyse the variance/covariance for the re�ector straight line

calculated as in (5.8). We expand the estimation l̂R = lR(x̂S′) in �rst order

Taylor series around the true value lR(x′S) and we approximate the vari-

ances/covariances of estimated points as:

ClR '
∂lR(x̂S′)

∂xS′

T

CS′
∂lR(x̂S′)

∂xS′
, (6.12)

From (6.10) we have that:

∂lR(x̂S′)

∂xS′
=

[
−1 0 xS′

0 −1 yS′

]
(6.13)

1.4 ML estimation

The previous performance analysis is useful for di�erent reasons. At �rst,

that analysis can be used to design the acquisition system in order to obtain

desired variance/covariance properties. We will show an example in the next

chapter. Furthermore, it can also be used to improve the estimation accuracy.

In fact the weighted LS estimates (5.3) and (5.6) become maximum likelihood

(ML) estimates for WS′ = C−1nS′
, WA = C−1nA

and WB = C−1nB
and the idea

is to estimate these weights from the previous results. In fact the covariance

matrices CnS′
, CnA

and CnB
depend on source and re�ector positions (see

(6.4) and (6.9)) and therefore they cannot be known a priori (they represent

the goal of our estimate). Nonetheless the LS estimates can approach ML

estimates iteratively. The algorithm proceeds as follows:

1. obtain initial estimates p̂S′ , p̂A and p̂B with WS′ = I, WA = I and

WB = I;

2. estimate ĈnS′
, ĈnA

and ĈnB
using the estimations from the previous

point;

3. obtain new estimates p̂S′ , p̂A and p̂B with WS′ = Ĉ−1nS′
, WA = Ĉ−1nA

and WB = Ĉ−1nB
;

4. repeat from step 2.
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The iterative procedures stops when the desired iteration number is reached.

Simulations will show that the algorithm gets close to the ML performance

in just one iteration with a considerable gain with respect to LS estimates.

2 Resolution of the method

We take into account the problem of resolution i.e the ability of the method

to distinguish two re�ectors. We make the assumption that the �rst order

re�ections are visible. So we reformulate the problem as follows: be able

to separate the contributions of two image sources corresponding to two

re�ectors, i.e. distinguish the two peaks in the spatial pseudospectrum.

Given the DOA estimation technique we suppose to know the angular

resolution of the method ∆αmin(θ) (i.e the minimum angle to resolve two

di�erent peaks). This resolution will depend on the method used, windowing

function w (i.e. the number of microphones used for the estimation),and

the number and values of the signal frequencies that are used to apply the

beamforming method. It will be also function of the directions of arrival (as

shown in the de�nition) because we expect to have a better resolution for

image sources in front of the array than decentralized with respect to it.

In order to analyze the resolution of the method, we suppose that we can

de�ne exactly the direction of arrival of the rays. At �rst, we suppose also

to have a single microphone (a single windowed set of microphones, Figure

6.1) that sense the signals that arrive from the two di�erent re�ectors. Let

de�ne with pS1′ and pS2′ the euclidean coordinates for the image sources for

the two re�ectors and pS the euclidean coordinates for the direct source. Let

de�ne also lR1 and lR2 the homogeneous coordinates for the two re�ectors

straight lines. We have that the following formulas can be used to write the

euclidean coordinates for the image sources as functions of the coordinates

of the direct source and the re�ectors straight lines:

pS1′ = G2 ∗
(
I3 − 2

G1lR1l
T
R1

lTR1G1lR1

)
pS (6.14)

pS2′ = G2 ∗
(
I3 − 2

G1lR2l
T
R2

lTR2G1lR2

)
pS (6.15)
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with

G1 =

1 0 0

0 1 0

0 0 0

 , G2 =

[
1 0 0

0 1 0

]
. (6.16)

Now the minimum requirement for separation is that the angle formed

by pS1′ , pS2′ and the central microphone of the window is greater than the

resolution of the method of beamforming ∆αmin(θ). Then, using the law of

the cosine and denoting by m the euclidean coordinates of the microphone,

we have the following condition:

arccos

(
|pS1′ −m|2 + |pS2′ −m|2 − |pS1′ − pS2′ |2

2 |pS1′ −m| |pS2′ −m|

)
> ∆αmin(θ), (6.17)

where as θ we use the mean of the direction of arrival for the two image

sources and |·| is the euclidean norm.

Figure 6.1: Resolution problem: the angular distance of the image sources have to be

higher than the method resolution.

Exploiting the fact that the restriction of the cosine function between
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0− π is monotonically decreasing, we can rewrite (6.17) as:

|pS1′ −m|2 + |pS2′ −m|2 − |pS1′ − pS2′ |2

2 |pS1′ −m| |pS2′ −m|
< cos (∆αmin(θ)) . (6.18)

Let us now consider the real case in which there will be a number of

microphones M with euclidean coordinates mi with i = 1, ...,M . In this

case, the image sources corresponding to the re�ectors are certainly resolved if

there are microphones that sense only the �rst image source and microphones

that sense only the second. Otherwise, the previous condition must be tested

on each set of windowed microphones to verify the existence of microphones

that can distinguish the two re�ectors.



Chapter 7

Simulations and Experiments

In this chapter we will present simulations and experiments in order to vali-

date the estimation techniques introduced in the previous chapters. The sim-

ulations have also the purposes to show a use of the statistical analysis for the

design of a system for re�ector estimation with a desired accuracy, to analyse

the performance for di�erent values of SNR and to show the gain obtained

using the iterative algorithm instead of LS. Experiments were performed to

demonstrate the e�ectiveness of the methods in cases of real acquisitions.

1 Simulations

1.1 Number of Microphones

In the �rst test we want to design a system for re�ector estimation using the

variance/covariance analysis described before. For simplicity we suppose to

have an array with �xed microphone spacing d = 10cm. The design variable

is the number of microphones M . At disposal we have two soundbars each

one composed by 5 loudspeakers spaced by 20cm. The soundbars, placed

behind the array at distance 2m, are used to excite the environment with a

white noise (see Figure 7.1).

The project scope statement requires the system to be able to estimate

the position of a 1.5m long re�ector placed 2m in front of the array with

var(xD) = var(xC) ≤ 4 · 10−6 and var(yD) = var(yC) ≤ 4 · 10−4 at SNR =

20dB.
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Figure 7.1: System con�guration: microphone array (green line) is used to estimate the

position of the test re�ector (red line) excited by 10 acoustic sources (blue circles).

Due to the 10cm microphone spacing we use the 3-sample rectangular

window w and the wideband Capon method [27] to perform beamforming.

Now we use the analytical expressions for the covariance of the re�ector end-

points in order to obtain the expected variances as a function of the interested

variables. We use the covariance matrix Cθ estimated from simulations to

performe the analysis. We repeat the calculus for di�erent values of the

number of microphones (the design variable). It is always assumed that the

array of microphones is centered relative to the re�ector. Furthermore, the

number of microphones varies between 14 and 36 because it can be deduced

that 14 is the minimum number of microphones (under the speci�cations

de�ned above) necessary for estimating the endpoints and beyond 36, ad-

ditional microphones would acquire only noise (they would be outside the

region a�ected by the image source).

In Figure 7.2, we show the results of theoretical estimation for the variance

of the endpoints. We show the plots for the complete range of values for the

number of microphones and the details on the interested regions. Note that

it is possible to consider only one endpoint because the system is completely

simmetric. The greatest bene�t in terms of reducing the variance of the

estimate by adding microphones occurs when the number of microphones
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Figure 7.2: Endpoint estimation variance in function of the number of microphones (red)

and the desired variance (blue); being the system completely symmetric only the data for

point C is visualized.

is still low. Moreover there is not a regular behavior of the solution to

the variation of the number because there are additional microphones that

are used only for the estimation of the image source and microphones that

increase the number of endpoints perceived.

Examining the �gure the optimal (lower) number of microphones M that

satis�es the speci�cations is found to be 26. Finally we perform 1000 inde-

pendent simulations in order to validate the analytical results. In simulations

microphones and loudspeakers are modelled with cardioid patterns directed

towards the re�ector. Data are reported in the following table where it can

be observed how the simulated values con�rm the theoretical analysis:
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Variance x y

Desired 4 · 10−6 4 · 10−4

Theoretical (26 Mics) 3.582 · 10−6 3.933 · 10−4

Simulated (26 Mics) 3.357 · 10−6 3.643 · 10−4

Table 7.1: Results for the system design; Theoretical and simulation variances.

1.2 Covariance/SNR

In the second test we analyse the performance for di�erent values of SNR

and the gain obtained using the iterative algorithm instead of LS. The array

used in simulation has 25 microphones. We use a wideband capon method

to perform the beamforming. In particolar, the product of an harmonic and

geometric mean is performed on the beamforming values for all the frequen-

cies analyzed. The geometric mean causes the suppression of peaks that are

not present in all the frequencies and allows to use a maximal frequency that

is more than the theoretical one (to prevent aliasing). This improves the

resolution of the method (i.e reduces the width of the peaks). This method

is used in all the following simulations and experiments. The con�guration

is shown in Figure 7.3 (a). Figure 7.3 (b) shows an example of the obtained

acoustic images (visualized in the reduced ray space with l1 = 1) for a single

source position and SNR = 20dB. We can note as the direct source allows to

illuminate the re�ector that is seen by the microphone array. The acquired

part of the RaySpace shows also that both the endpoints for the re�ector are

visible. The gap between the end of the acquired area and the microphone

array endpoints derives from the width of windows and it corresponds to one

microphone (a window of 3 microphones is used). The re�ector estimation

obtained moving the source across 21 di�erent positions in space is shown in

Figure 7.3 (a).

The Figure 7.4 shows the variances of endpoint estimates for di�erent

values of SNR. In particular: the theoretical variance obtained using analyt-

ical expressions for the LS technique; the simulation variance estimated from

1000 independent realizations for the LS technique; the simulation variance

for one cycle of the iterative algorithm; and the theoretical variance for the

ML technique.

The �gure puts in evidence a number of aspects:
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Figure 7.3: The con�guration in the geometric space a) with estimation example (black

dotted line); example of the measured acoustic image shown in the reduced RaySpace b).

• the theoretical variance approximates well the variance obtained using

simulations. Moreover, the error estimation is higher for low values of

the signal-to-noise ratio;

• the iterative algorithms achieves a signi�cant gain with respect to LS

technique (i.e. a reduction of the variances for the endpoints estima-

tion);

• one cycle of the iterative algorithm gets close to the performance of the

ML technique and as a consequence the gain obtained by successive

iterations is negligible.
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Figure 7.4: The theoretical variance obtained using analytical expressions for the LS

technique (red dotted line); the simulation variance estimated from 1000 independent

realizations for the LS technique (red line); the simulation variance for one cycle of the

iterative algorithm (blue line); and the theoretical variance for the ML technique (green

dotted line).

1.3 Multiple re�ectors examples

Now we show some results obtained using con�gurations with multiple re-

�ectors. The simulation examples for the cases with two and three re�ectors

are shown in Figures 7.5 and in Figure 7.6. In �gure 7.5 a) and 7.6 a) we

show the con�gurations in the geometric space and the estimations obtained

through simulations. In the 7.5 b) and 7.6 b) we show the corresponding

solution in the reduced RaySpace.
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Figure 7.5: Example with two re�ectors. The con�guration in the geometric space a)

with estimation examples (black dotted lines); example of the measured acoustic image

shown in the reduced RaySpace b).
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Figure 7.6: Example with three re�ectors. The con�guration in the ray space a) with

estimation examples (black dotted lines); example of the measured acoustic image shown

in the reduced RaySpace b).

In Figure 7.7, we show the the Hough transforms for images in Figures

7.5 b) and 7.6 b) for a �xed direct source. We can see the peaks of the Hough
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Figure 7.7: a) Hough transform of image in Figure 7.5 b) Hough transform of image in

Figure 7.6.

transform that correspond to the image sources of the re�ectors.
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2 Experiments

2.1 Experimental setup

Finally we perform experiments in order to test the methods through real

acquisitions. The acquisitions were performed in the Sound and Music Com-

puting Lab at the Politecnico di Milano inside an anechoic chamber. An

anechoic chamber is a room designed to stop re�ections of sound. It is also

insulated from exterior sources of noise. These two properties are very use-

full to perform experiment and test the methods of estimation. The walls

of the con�gurations are created using re�ective panels. The direct source

is reproduced using a directional loudspeaker (see Figure 2.1). The source

emits in all the experiments a noise for an acquisition time of 2 seconds.

(a) The loudspeaker. (b) The microphone array.

Figure 7.8: Experimental equipment for real acquisitions.

The �rst experiments are permormed using a microphone array of 13

microphones (see Figure 2.1). The frequency of acquisition is in all the

experiments 44100Hz. It is important to note that the microphone array is

linear but not uniform (the distance between microphones is variable). This

does not appear to be a problem for the method under consideration because

the developed methods can be easily adapted to this type of array. Obviously

the use of such array means that we expect to have higher errors made in

the approximation of the �nal point of acquisition if the ray interest a part

of the array with higher distance between the microphones.
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The last experiment is performed using a con�guration that represent a

closed environment. In this case we use a uniform array of 16 microphones.

The frequency of acquisitions is still 44100Hz.

2.2 Localization of acoustic source

In the �rst experiment we test the system for localization of acoustic sources.

The loudspeaker emitting a white noise is placed in front of the array as shown

in Figure 7.9 a). The acoustic image acquired by the array is shown in Figure

7.9 b). In Figure 7.9 the actual and estimated source positions are visualized

in both geometric space a) and RaySpace b).

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5
Geometric Space

x[m]

y[
m

]

Microphones
Loudspeaker
Estim Loudspeaker

a) b)

Figure 7.9: Con�guration in the geometric space a) and the corresponding acoustic

image b) with the estimated source position.

2.3 Re�ector line estimation

Next we place a 60cm long re�ector in front of the array. The experimental

setup is shown in Figure 7.10. The presence of the re�ector causes re�ections

to appear. The array is then used to estimate the position of both real

and image loudspeakers. As we can note in Figure 7.11 (b), in the acquired

RaySpace we can see both the planes (lines if shown in the recuced RaySpace)

corrisponding to the direct source from the loudspeaker and the image source

generated by the �rst re�ection of the single re�ector and they are both
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Figure 7.10: Experimental setup for the �rst con�guration.

estimated. They can then be used to estimate the line on which the re�ector

lies. The results of the experiment are shown in Figure 7.11 a) and b) and

are confronted with simulation results shown in Figure 7.11 c) and d).

We remember that the straight line on which the re�ector lies is the only

result of the previous methods for re�ector estimation. This experiment

shows also as the desribed method can be used to estimate not only the

geometry of the environment but also the con�guration of the acoustic system

(the position of the direct source) if it is not a data for the problem. This will

be possible whenever the direct source is visible by the microphone array.

2.4 EndPoint estimation

Finally the re�ector endpoints can be estimated if a number of edge rays

is observed (theoretically ≥ 2). This can be achieved using a long array

and/or moving the acoustic source. We use for the estimation of re�ector

endpoints 10 di�erent positions for the loudspeaker as shown in Figure 7.12

(a). The microhones array position is on the contrary �xed.

It is easy to see that only one endpoint is visible by the array from the

image sources generated by the loudspeaker positions. The other endpoint

can not be estimated. The Figure 7.12 b) shows the estimated image sources

and the corresponding edge rays in the reduced RaySpace. It is also shown

the line corresponding to the visible endpoint. The �gure 7.12 a) shows the
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Figure 7.11: Con�guration and experiment estimates in the geometric a) and ray space

b); con�guration and simulation estimates in the geometric c) and ray space d).

results in the geometric space.

2.5 Room estimation

Now we take into account one case of a more complex environment. The

con�guration is shown in Figure 7.14. This con�guration is used to test

the methods because it appears to be problematic for classical approaches

in the literature. In particular, the estimate of the blue wall in the �gure
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Figure 7.12: Source positions in the geometric space a) and corresponding edge ray

estimates in the ray space b) used for endpoint estimation.

is di�culty executable by methods that do not take into account partial

visibility and occlusions of the re�ector or that use hardware systems with

limited dimension.

The Figure 7.14 shows the visibility of the blue wall with respect to the

array of microphones in function of the position of the direct source. In

particular, the direct sources in the red area do not allow to see this wall, in

the blue allow a partial view of the wall (and thus to see the corresponding

end point) and in the green allow a total view of the corresponding image

source by the microphone array. It is evident the importance that the method

can be used under conditions of partial visibility.

The Figure 7.15 shows a detail of the area of interest for the acquisitions

made. This is the region actually reconstructed in the anechoic chamber as

the remaining walls have negligible e�ects on the acquired signal. In Figure

7.13, we show the experimental setup for the con�guration.

As previously mentioned we use a linear and uniform array of 16 micro-

phones to accomplish these acquisitions. The positions of the direct sources

are shown in Figure 7.15 with red circles. The dotted red lines are the esti-

mated walls.

To perform the estimations for the straight lines of visible re�ectors we

use a mean of the estimated straight lines for all the direct sources that allow
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Figure 7.13: Experimental setup for the last con�guration.

to see the corresponding image sources.

This experiment shows the e�ectiveness of the proposed method in real

scenarios for more complex environments.
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Figure 7.14: Con�guration of the simulated room in the experiment. It is pointed out the

visibility of the blue wall by the green microphone array dividing the room in completely

visible (green points), partially visible (blue points) and non-visible (red points)
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Figure 7.15: The detail of the con�guration used for the experiment with the extimated

walls(red dotted lines) and endpoints (red dots). The red circles are the positions of the

used direct sources.



Conclusions

This work describes an innovative approach to the problem of inference on

the geometric and acoustic properties of the environment through the simul-

taneous use of sensors and sound sources. The information resulting from the

processing of the acquired signals are mapped into a space called RaySpace

which corresponds to a sampled and distorted version of the Plenacoustic

function of the environment. The RaySpace parametrization allows to de�ne

the concept of acoustic images. The acoustic images are an overall descrip-

tion of the acoustic scene and contain information about the geometric and

radiometric properties of the environment.

The thesis has shown that such acoustic images can be used in an appro-

priate way to estimate the positions of the re�ective surfaces. Furthermore,

the new approach to the problem shows interesting properties with respect

to the methods already reported in the literature. In particular it allows to

estimate not only the line corresponding to the interested re�ector but also

its size and its extreme points.

Although in this work the obtained acoustic images are used to infer only

on the geometric properties, the information in the acoustic images go beyond

the geometry of the environment. These snapshots of the acoustic scene also

contain numerous other information such as the re�ection coe�cients of the

walls and the radiation pattern of the sources. Consequently, application of

the techniques described in this paper will lead to further progress within the

environment-aware processing. The potential of the method are not limited

to the estimation of the acoustical properties of the environment but may lead

to develop innovative methods that exploit this information. For example it

may allow to predict the acoustic pressure �eld in generic positions in space

through a �nite and spatially limited acquisition.
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