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Abstract

This work studies from a theoretical and practical point of view the application of lattice
filters, as proposed by S. Gibson (UCLA), for the rejection of a non-stationary disturbance.
In Adaptive Optics applications, the effect of turbulence in some layers of the atmosphere
severely affects the imaging quality. Such an effect can be modeled as a non-stationary
disturbance affecting the phase distribution in the pupil of a ground based telescope. The
application of lattice filters in this setting can overcome the common performance limitations
usually encountered by employing linear time invariant control in Adaptive Optics imple-
mentations. The performance of lattice filters is compared with another adaptive control
methodology, originally proposed by Ellerbroek and Rhoadarmer (1998, 2001), where a re-
cursive least square algorithm is applied. Realistic simulations have been carried out with
both stationary and non-stationary turbulence. Some experimental validations have also been
performed using an optical breadboard with a deformable mirror.
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Sommario

Questo lavoro studia da un punto di vista sia teorico sia pratico l’applicazione dei lattice
filters, come proposta da S. Gibson (UCLA), per contrastare un disturbo non stazionario.
Nelle applicazioni di Adaptive Optics, l’effetto della turbolenza in alcuni livelli dell’atmosfera
colpisce gravemente la qualità delle immagini. Questo tipo di effetto può essere modellato
come un disturbo non stazionario che interessa la distribuzione della fase nella pupilla di
un telescopio terrestre. L’impiego dei lattice filters in questo ambito permette di superare
le comuni limitazioni di performance che si incontrano implementando un controllo lineare
tempo invariante nelle applicazioni di Adaptive Optics. La performance dei lattice filters
viene confrontata con un’altra tecnica di controllo adattativo, originariamente proposta da
Ellerbroek e Rhoadarmer (1998, 2001), nella quale viene impiegato un algoritmo recursive
least square. Sono state compiute delle simulazioni realistiche con turbolenza sia stazionaria
sia non stazionaria. Alcune validazioni sperimentali sono poi state realizzate utilizzando una
breadboard ottica equipaggiata di specchio deformabile.
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Chapter 1

Introduction

For thousands of years, astronomical observations played a crucial role in our attempts to
reveal the mysteries of the universe. The introduction of the telescope at the beginning of
the seventeenth century, resulted in a big leap in the angular resolution with respect to the
naked-eye. Ground-based telescopes are nowadays an indispensable tool in astronomy.
The spherical wavefront phase of a light beam coming from a star can be considered perfectly
flat because of the distance. When it arrives to the Earth’s atmosphere, it has to go through
several layers of atmospheric turbulence that arises from large scale temperature inhomo-
geneities caused by solar heating: by mixing air of different temperatures, it is responsible
for random local fluctuations in the refractive index. It means that the light beam wavefront
phase is no longer flat when it arrives to the telescope aperture: some parts of the incoming
light beam will be delayed with respect to others parts. We have a distortion in the wavefront
phase that get the angular resolution worse. This can lead to twinkling, that is a random
intensity variation of light, quivering and spreading of stars. That’s the reason why we can’t
achieve the diffraction limit with ground-based telescopes: we can say them to be seeing
limited.
To know more details about angular resolution and the effects of turbulence on images, you
can see [1],[2].
Adaptive Optics (AO) is a scientific and engineering discipline which goal is to reduce the
wavefront phase distortion by controlling a deformable mirror (DM). To generate the control
law, a feedback of the wavefront phase error is needed and it is given by a wavefront sensor
(WFS).
In the second chapter of this Thesis the optical problem is introduced. The Classical AO
control approach with its limitations is presented. Then the Adaptive AO control approach
proposed by Steve Gibson is described in details: this approach relies on lattice filters. In
the third chapter lattice filters are described and they are compared with the recursive least
square (RLS) algorithm. In the fourth chapter the real Multi Input Multi Output (MIMO)
system is described and a technique to decouple the system is proposed. In the fifth chapter
the simulations are explained and the most important results are shown. In the sixth chapter
the real experiment setting is presented and some experimental results are shown.
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Chapter 2

Classical control loop VS adaptive
control loop

In this Chapter, we will describe the optical problem and the Classical solution developed
by AO. Then, we will see why this classical approach is not enough and why we need an
Adaptive approach. We will focus on the one proposed by Steve Gibson.

2-1 The optical problem

To explain the optical problem, consider the schematic drawing in Figure 2-1.

Figure 2-1: optical problem
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4 Classical control loop VS adaptive control loop

When the beam coming from a star arrives at the outer layer of the atmosphere, it has a
perfectly flat wavefront phase. Then the beam has to go through the atmosphere, where
turbulence generates a distortion in the wavefront phase. We denote the distortion w(ρ, t): it
is a function of the spatial position in the telescope aperture ρ ∈ R2 and of the time t.

The AO system tries to compensate this wavefront phase distortion by actively introducing
an opposite distortion with a DM: we denote c(ρ, t) the phase correction induced by the DM.
The residual wavefront phase y(ρ, t) is given by the following expression:

y(ρ, t) = w(ρ, t) + c(ρ, t) (2-1)

After applying the wavefront correction, a beam splitter divides the light beam in two parts:
the first part of the corrected light beam leaves the AO system and it is used by the science
camera to generate an image of the object of interest; the remainder of the light is directed
to the WFS, which provides quantitative information about residual phase.

With the WFS, an estimation of the phase is available. Then we can see that the WFS
measure is the feedback for the controller that generates the control law for the DM.

By rejecting the wavefront phase distortions, AO is able to reduce the detrimental effect of
atmospheric turbulence on the imaging process: large ground-based telescopes may reach
close to diffraction limit. Figure 2-2 is an example of what we can see without AO and how
the image improves with AO:

Figure 2-2: example of an image without and with AO

2-2 The Classical AO control approach

The classical AO control approach consists in a linear time invariant (LTI) control loop: the
regulator can be a simple proportional integrative derivative (PID) controller or an optimal
(LQG - linear quadratic Gaussian - or H2) controller. Initially we simplify the treatment by
considering a Single Input Single Output (SISO) version of the system (The MIMO general-
ization will be discussed in section 4-1):

• w(ρ, t) = w(t) ∈ R

Alessandro Scotti Master of Science Thesis



2-2 The Classical AO control approach 5

• c(ρ, t) = c(t) ∈ R

• y(ρ, t) = y(t) ∈ R

Therefore the drawing in Figure 2-1 can be represented with the block diagram in Figure 2-3
where there is the classical controller R(z) (for example an optimal controller), the deformable
mirror DM (z), the wavefront sensor WF S(z), the latency due to the measurement delay
z−1 and the time-invariant wavefront phase distortion w. This distortion is induced by the
atmospheric turbulence, which is modeled by the stationary transfer function T (z). d is a
zero-mean white noise process.

Figure 2-3: classical AO loop

The main delay is the reading time of the WFS, that’s the reason why this is the only delay
considered in the scheme.

We can define G(z) as the closed-loop transfer function from the signal v to the residual phase
y and S(z) as the transfer function from the disturbance w to the residual phase y:

G(z) = R(z)DM (z)WF S(z)z−1

1 + R(z)DM (z)WF S(z)z−1 (2-2)

S(z) = WF S(z)z−1

1 + R(z)DM (z)WF S(z)z−1 (2-3)

Notice that this control loop is not adaptive in the sense in which the term adaptive is used
in control and filtering literature, where it normally refers to the practice of updating the
control and/or filter gains in real time.

By defining (2-2) and (2-3) we can represent the block diagram in Figure 2-3 in a more
schematic way (Figure 2-4).

The new signal ω ∈ R in Figure 2-4 represents the disturbance signal in the new diagram: it
was between the DM and the WFS (Figure 2-3) , while now we have moved it after the plant
G(z). We can write that:

y = G(z)v + ω (2-4)
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6 Classical control loop VS adaptive control loop

Figure 2-4: classical AO loop - schematic diagram

2-3 The classical approach limitation

The atmospheric stationary turbulence w can be represented in several ways [3]. We will
consider an Auto Regressive (AR) model of order M . However, the most interesting signal
is ω (not w), that is the disturbance in the new block diagram (Figure 2-4). This signal is
generated by S(z) which is a time-invariant transfer function (TF). Therefore we can also
model ω as an AR process, and we can write:

ω(k) =
M∑

j=1
Ajω(k − j) + d(k) (2-5)

Where d(k) is a zero-mean white noise process and Aj are the AR coefficients used to model
the turbulence.

In the Kolmogorov model, the atmospheric turbulence can be described by four parameters,
that are represented by the AR coefficients Aj :

• L0: is the outer scale of turbulence.

• r0: is the Fried parameter ;

• vx: is the wind velocity in x direction;

• vy: is the wind velocity in y direction;

The goal of the classical control loop is to find, for example, the optimal controller R(z) that
minimizes this cost function:

J = E
{

yT (k)y(k) + uT
in(k)Quin(k)

}
, (2-6)

where Q is a positive-defined regularization matrix that represents the weight for the control
variable.

Now suppose we have two different turbulence parameters vectors:

• p1 = [L(1)
0 , r

(1)
0 , v

(1)
x , v

(1)
y ] at time t1;
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2-3 The classical approach limitation 7

• p2 = [L(2)
0 , r

(2)
0 , v

(2)
x , v

(2)
y ] at time t2 ̸= t1;

At time t1, we can find [1] the optimal controller R1(z) that minimizes the cost function J for
the turbulence parameters vector p1. Likewise, at time t2, we can find the optimal controller
R2(z) that minimizes the cost function J for the turbulence parameters vector p2.

The problem of the classical control scheme is found when turbulence is non-stationary, be-
cause it is time invariant. If we have tuned the optimal controller R1(z) to take into account
the first turbulence parameters vector p1, as the turbulence parameters tend to p2, the con-
troller R1(z) is non optimal anymore.

The most advanced concepts about optimal controllers rely upon a priori knowledge of the
turbulence statistics to improve their performance. The required a priori knowledge is ob-
tained by matching physical parameters to the expected turbulence conditions or are acquired
in a separate identification experiment [1].

Since atmospheric parameters like the wind velocity and the atmospheric turbulence strength
change on time scales of minutes, it becomes necessary to constantly update the controller to
the changing atmospheric statistics in order to prevent a loss in performance. To account for
non-stationary turbulence and track the changes, we need to introduce an adaptive control
loop.
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8 Classical control loop VS adaptive control loop

2-4 The Adaptive control approach

Different adaptive control schemes have been proposed. The one proposed by Ellerbroek and
Rhoadarmer (1998, 2001) relies on a RLS algorithm to adaptively optimize the wavefront
reconstructor of an AO system on the basis of closed-loop WFS measurements [1]. Another
adaptive control strategy is based on lattice filtering: this approach relies on Internal Model
Control (IMC), because we have a reconstruction of the open-loop WFS signal (ω̂) by sub-
tracting the influence of the DM wavefront corrections from the closed-loop measurements y
(this is clearer in Figure 2-8).

In this Thesis we will present and analyze in details the second one, proposed by Gibson [4],
[5], [6], [7], [8], [9], [10], [11], [12].

This control strategy employs augmentation of a LTI classical feedback loop with an adaptive
loop. Therefore we obtain the following block diagram (Figure 2-5):

Figure 2-5: classical loop augmented by adaptive loop

Where D̂M (z) is a first-order model of the deformable mirror, ŴF S(z) is a first-order model
of the wavefront sensor, and F (z) is the lattice filter and represents the adaptive controller
of the loop. R(z) can be tuned like a simple proportional integrative (PI) controller.

Remembering how we defined G(z), we can observe that the closed-loop with R(z), D̂M (z),
ŴF S(z) and z−1, is an estimation of the closed-loop TF from v to y: so we can call this loop
Ĝ(z) (Figure 2-6).
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2-4 The Adaptive control approach 9

Figure 2-6: classical loop augmented by adaptive loop - Ĝ(z)

To highlight the delay in the next block diagrams, we can shift the delay block before the
lattice filter and rework the block diagram like in Figure 2-7, but we have to redefine G(z)
and S(z) before:

G(z) = R(z)DM (z)WF S(z)
1 + R(z)DM (z)WF S(z)z−1 (2-7)

S(z) = WF S(z)
1 + R(z)DM (z)WF S(z)z−1 (2-8)

Figure 2-7: classical loop augmented by adaptive loop - shifted delay

Then it is possible to represent the classical AO loop augmented by the adaptive loop with
a compact diagram (Figure 2-8). We can observe that the input of the lattice filter is an
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10 Classical control loop VS adaptive control loop

estimation of the atmospheric turbulence ω. Indeed, we have that y = G(z)v + ω; it follows
that y − Ĝ(z)v = ω̂. The output of the lattice filter is the control signal u. The reference r
is zero because we want a flat residual phase.

Figure 2-8: classical loop augmented by adaptive loop - compact scheme

Alessandro Scotti Master of Science Thesis



2-4 The Adaptive control approach 11

The lattice filter block F (z) is actually a copy of another identical block in the bottom part
of the diagram, whose gains are updated by a lattice algorithm (Figure 2-9):

Figure 2-9: adaptive loop

The goal of the lattice algorithm is to minimize the signal error e that is given by this
expression:

e = ω̂ − z−1F (z)Ĝ(z)ω̂ = ω̂(1− z−1F (z)Ĝ(z)) (2-9)

We can observe that if there wasn’t the delay z−1, it would be enough to have F (z) = Ĝ(z)−1

to minimize the error signal e. But because of the delay, we need an adaptive lattice filter
whose gains are updated to replace Ĝ(z)−1 but also to predict the atmospheric turbulence
ω(i) because the transfer function T (z) is a non-stationary TF and the delay in the loop
allows only to know ω(i− 1). This technique is called Adaptive Inverse Control [13].

We can now define the TF from r to y and the TF from ω to y

Hry(z) = G(z)
1 + z−1F (z)(G(z)− Ĝ(z))

(2-10)

Hωy(z) = 1− z−1F (z)Ĝ(z)
1 + z−1F (z)(G(z)− Ĝ(z))

(2-11)
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12 Classical control loop VS adaptive control loop

Notice that if the model Ĝ(z) is identical to G(z), then the lattice filter F (z) does not affect
the stability of the system. But if the modeling error G(z) − Ĝ(z) is sufficiently large, the
adaptive loop can cause the system to be unstable [8]. If lattice filter works perfectly and the
modeling error is small, we manage to obtain Hwy = 0 (i.e. total turbulence rejection).

In the next chapter we will discuss about lattice filters to better understand how they work
and what is their difference from RLS.
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Chapter 3

Lattice Filters

In the previous Chapter we chose to use lattice filter instead of RLS in the adaptive control
loop. In this Chapter, we will describe how lattice filters work and the features that make
them interesting to compare with RLS. We are going to explain the a posteriori-based lattice
filter. In literature you can also find the a priori-based lattice filter, but it is not useful for our
application. To know more about the a priori lattice filters, you can refer to [14]. Actually,
there are several ways to implement lattice filter (like normalized lattice filter or array-based
lattice filter), but they are only different representations of the same methodology [14]. The
a posteriori-based is the simplest one.

3-1 Exponentially-weighted recursive least-square algorithm (λ-RLS)

We have already seen that stationary turbulence can be modeled with an AR process of order
M. If we consider a non-stationary turbulence, we can write:

ω(k) =
M∑

j=1
Aj(k)ω(k − j) + d(k) (3-1)

where the coefficients A1(k), A2(k), ..., AM (k) are time-variant, d(k) ≈WN(0, λ2).

Now suppose we want to minimize the error signal e with an exponentially-weighted RLS
algorithm, not with a lattice filter (Figure 3-1). Notice that we can use RLS algorithm
because the least square (LS) problem has been developed to be used with AR processes, and
F (z) is used to learn how to reject ω.
The exponentially-weighted LS problem seeks the parameters vector ϑi at time i that solves
this problem:

min
ϑ

λi+1ϑT Πϑ+
i∑

j=1
λi−j

∣∣∣ω̂(j)−ψjϑ
∣∣∣2
 (3-2)
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14 Lattice Filters

Figure 3-1: adaptive control with only a λ-RLS algorithm

Where Π is a positive-defined regularization matrix, and λ is the forgetting factor (0≪ λ ≤ 1).
The signal error we want to minimize is e and it is defined (at time i) by

e(i) = ω̂(i)−ψiϑi (3-3)

The signal ω̂(i) is the AR process we don’t know, and it is a number (estimation of the real
disturbance ω(i)). We assume that ω̂(i) can be modeled as:

ω̂(i) = A1(i)ω̂(i− 1) + A2(i)ω̂(i− 2) + ... + AM (i)ω̂(i−M) + d(i) (3-4)

Then we can observe that the signal ω̂ is filtered by a time-invariant known TF (Ĝ(z)). So
we can call p the output of Ĝ(z) in the bottom part of the diagram in Figure 3-1. Observe
that p is related to ω̂ and we assume p can be modeled with an AR process of order M . Now,
we can define ψiϑi as:

ψiϑi = C1(i)p(i− 1) + C2(i)p(i− 2) + ... + CM (i)p(i−M) =

=
[

p(i− 1) p(i− 2) · · · p(i−M)
]


C1(i)
C2(i)

...
CM (i)

 (3-5)
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3-1 Exponentially-weighted recursive least-square algorithm (λ-RLS) 15

where ψi is the observation vector at time i. The goal of the RLS algorithm is to find the
parameters vector ϑi = [C1(i)C2(i)...CM (i)]T that minimizes the error signal e at time i
(equation (3-3)) , starting by ϑi−1.

The λ-RLS algorithm has this expression:

ϑi = ϑi−1 + Piψ
T
i [ω̂(i)−ψiϑi−1] (3-6)

Pi = 1
λ

(
Pi−1 −

Pi−1ψi
TψiPi−1

λ +ψiPi−1ψi
T

)
(3-7)

where Pi is a square matrix of dimension M ×M and P0 = Π−1.
This formula shows that we can only time-update the parameters vector ϑ from time t = i to
time t = i + 1. This is one of the RLS algorithm’s limitations, it is a fixed-order algorithm;
the other limitation is the computational cost: it is O(M2) at every time step.
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16 Lattice Filters

3-2 A posteriori-based Lattice Filters description

Now, consider the following exponentially-weighted LS cost function

min
ϑM

λi+1ϑT
M ΠMϑM +

i∑
j=1

λi−j
∣∣∣ω̂(j)−ψM,jϑM

∣∣∣2
 (3-8)

that can be also written in a vectorial form:

min
ϑM

[
λi+1ϑT

M ΠMϑM + (Y i −HM,iϑM )T Λi(Y i −HM,iϑM )
]

(3-9)

where:
Λi = diag

(
λi, λi−1, ..., λ, 1

)
(3-10)

ΠM = η−1diag
(
λ−2, λ−3, ..., λ−(M+1)

)
(3-11)

and η is a positive scalar that weighs the a priori estimation of the parameters vector ϑM .

This cost function is the same of (3-2), but we have changed the notation highlighting the
order M of the LS problem. Indeed, to analyze order-recursive problems (like lattice filters),
it is necessary to indicate both the size of a vector/matrix and the time instant at which it
becomes available.

For example, if we consider the parameters vector ϑi at time i that has size M (i.e. solution
of a LS problem of order M), we shall write ϑM,i. In the same way we shall write HM,i to
refer to an observations matrix with column dimension M and with data up to time i − 1.
Similarly, we shall write ΠM to refer to an M×M regularization matrix.

In the cost function (3-8) we define:

Y i =


ω̂(1)
ω̂(2)

...
ω̂(i)

 (3-12)

HM,i =


ψM,1
ψM,2

...
ψM,i

 =


p(0) 0 · · · 0
p(1) p(0) · · · 0

...
... . . . ...

p(i− 1) p(i− 2) · · · p(i−M)

 (3-13)

Now we need to define:

Ŷ M,i = HM,iϑM,i = the order M estimation of Y i
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3-2 A posteriori-based Lattice Filters description 17

ω̂M (i) = ψM,iϑM,i = the order M estimation of ω̂(i), that is the last entries of Y i

ω̂M+1(i) = ψM+1,iϑM+1,i = the order M + 1 estimation of ω̂(i)

where ϑM+1,i is the solution of the following LS problem:

min
ϑM+1

λi+1ϑT
M+1ΠM+1ϑM+1 +

i∑
j=1

λi−j
∣∣∣ω̂(j)−ψM+1,jϑM+1

∣∣∣2
 (3-14)

Notice that in this situation, the real signal is ω̂ and the order M estimation of ω̂ is ω̂M .

The a posteriori error vector is defined as:

rM,i = Y i −HM,iϑM,i (3-15)

So the last element of the a posteriori error vector will be the a posteriori error:

rM (i) = ω̂(i)− ω̂M (i) = the order M a posteriori error;

rM+1(i) = ω̂(i)− ω̂M+1(i) = the order M + 1 a posteriori error;

Lattice filters are not concerned with updating ϑM,i to ϑM+1,i: the purpose of lattice filters is
to update the a posteriori error from rM (i) to rM+1(i) with a direct recursive formula. This
kind of lattice is called the a posteriori-based lattice filter:

rM+1(i) = rM (i)− κM (i)bM (i)

This is an important result as it means that you can recursively calculate the a posteriori
error from order 1 to M with the same computational burden that you have if you only
calculate the order M a posteriori error: the computational cost is O(M) at every time step.

Once you have calculated r1(i), r2(i), ..., rM (i), you can solve this problem:

min
[

r1(i) r2(i) · · · rM (i)
]

And find the optimal order j̄ ∈ (1, M) of the parameters vector ϑj̄,i that minimizes the error
between ω̂(i) and its estimation ψj̄,iϑj̄,i, where:

ψj̄,iϑj̄,i =
[

p(i− 1) p(i− 2) · · · p(i− j̄)
]


C1(i)
C2(i)

...
Cj̄(i)

 (3-16)

Master of Science Thesis Alessandro Scotti



18 Lattice Filters

Figure 3-2: adaptive control with lattice filter

3-2-1 Lattice filter recursive formula

The recursive formula to update the a posteriori error from rM (i) to rM+1(i) is:

rM+1(i) = rM (i)− κM (i)bM (i)

In this section it will be explained what the terms κM (i) and bM (i) are.

First of all, we need to consider these several equivalent partitions of the observation matrix
HM+1,i:

HM+1,i =


ψM+1,1
ψM+1,2

...
ψM+1,i

 =


p(0) 0 · · · 0
p(1) p(0) · · · 0

...
... . . . ...

p(i− 1) p(i− 2) · · · p(i−M − 1)


=
[
x0,i x1,i · · · xM,i

]
=
[

HM,i xM,i

]
=
[
x0,i H̄M,i

]
=
[
x0,i H̄M−1,i xM,i

]
We can now define:

• bM,i = xM,i −HM,iϑ
b
M,i = a posteriori backward prediction error vector in estimating

xM,i with HM,i
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3-2 A posteriori-based Lattice Filters description 19

where ϑb
M,i is the solution of this LS problem:

min
ϑb

M

[
λi+1ϑbT

M ΠMϑ
b
M + (xM,i −HM,iϑ

b
M )T Λi(xM,i −HM,iϑ

b
M )
]

(3-17)

and bM (i) is the last entries of the vector bM,i, it means that

bM (i) = p(i−M − 1)−
[

p(i− 1) p(i− 2) · · · p(i−M)
]
ϑb

M,i

and we can calculate it with a recursive formula:

bM+1(i) = bM (i− 1)− κb
M (i)fM (i)

• fM,i = x0,i− H̄M,iϑ
f
M,i = a posteriori forward prediction error vector in estimating x0,i

with H̄M,i

where ϑf
M,i is the solution of this LS problem:

min
ϑf

M

[
λiϑfT

M ΠMϑ
f
M + (xM,i −HM,iϑ

f
M )T Λi(xM,i −HM,iϑ

f
M )
]

(3-18)

and fM (i) is the last entries of the vector fM,i, it means that

fM (i) = p(i− 1)−
[

p(i− 2) p(i− 3) · · · p(i−M − 1)
]
ϑf

M,i

and we can calculate it with a recursive formula:

fM+1(i) = fM (i)− κf
M (i)bM (i− 1)

• κM (i), κb
M (i), κf

M (i) are called reflection coefficients and are defined as follows:

κM (i) = ρT
M (i)

ζb
M (i) κb

M (i) = δM (i)
ζf

M (i)
κf

M (i) = δT
M (i)

ζb
M (i−1)

• ζb
M (i), ζf

M (i) are (modified) cost variables, and have both a recursive formula to time-
updating:

ζb
M (i) = λζb

M (i− 1) + |bM (i)|2
γM (i) ζf

M (i) = λζf
M (i− 1) + |fM (i)|2

γM (i−1)

• γM (i) is called conversion factor and has a recursive formula to order-updating:
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20 Lattice Filters

γM+1(i) = γM (i)− |bM (i)|2
ζb

M (i)

• ρM (i), δM (i) have a recursive formula to time-updating:

ρM (i) = λρM (i− 1) + rT
M (i)bM (i)

γM (i) δM (i) = λδM (i− 1) + fT
M (i)bM (i−1)

γM (i−1)

Now we can write the complete algorithm with the initialization:

1. from m = 0 to m = M − 1 , set:
δm(−1) = ρm(−1) = 0;
γm(−1) = 1;
bm(−1) = 0;
ζf

m(−1) = η−1λ−2;
ζb

m(−1) = η−1λ−m−2;

2. for i ≥ 0, repeat:

• set:
γ0(i) = 1;
b0(i) = f0(i) = p(i− 1);
r0(i) = ω̂(i);

• from m = 0 to m = M − 1, repeat:
ζf

m(i) = λζf
m(i− 1) + |fm(i)|2

γm(i−1)

ζb
m(i) = λζb

m(i− 1) + |bm(i)|2
γm(i)

δm(i) = λδm(i− 1) + fT
m(i)bm(i−1)

γm(i−1)

ρm(i) = λρm(i− 1) + rT
m(i)bm(i)

γm(i)

γm+1(i) = γm(i)− |bm(i)|2
ζb

m(i)

κm(i) = ρT
m(i)

ζb
m(i)

κb
m(i) = δm(i)

ζf
m(i)

κf
m(i) = δT

m(i)
ζb

m(i−1)
bm+1(i) = bm(i− 1)− κb

m(i)fm(i)
fm+1(i) = fm(i)− κf

m(i)bm(i− 1)
rm+1(i) = rm(i)− κm(i)bm(i)

In Figure 3-3 is shown the block diagram of the a posteriori-based lattice filter algorithm.
The lattice filter algorithm has 2 parameters that can be tuned by the user:

• λ, that is the forgetting factor (0 ≪ λ ≤ 1) and it has the same function as in RLS: if
we want to track a time-varying signal, we have to set λ < 1.

• η, that appears in the equation of the regularization matrix ΠM (3-11): it is a positive
scalar (usually large) and it influences transients in learning stage.

To know more details about a posteriori-based lattice filter, you can refer to [14].
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3-2 A posteriori-based Lattice Filters description 21

Figure 3-3: the a posteriori-based lattice filter

3-2-2 How to calculate parameters vector at time i

Once we have found the order j̄ ∈ (1, M) of the AR model that minimizes the error signal e
at time i, we need to calculate the parameters vector ϑj̄,i at time step i.

Starting from the initial conditions ϑ0,i = 0, ϑb
0,i = 0 and up to order j̄ we have that [14]:

ϑj̄,i =
[
ϑj̄−1,i

0

]
+ κj̄−1(i)

[
−ϑb

j̄−1,i

1

]
, j̄ ≥ 1 (3-19)

That can be also written [14] as:

ϑj̄,i =
j̄−1∑
l=0

κl(i)
[
−ϑb

l,i

1

]
, j̄ ≥ 1 (3-20)

Hence, we have to calculate the parameters vector ϑj̄,i of order j̄ ∈ (1, M), where j̄ is the
order found optimal by the a posteriori-based lattice filter. To do that, we need to know:

• the reflection coefficients κl(i) from l = 0 up to l = j̄ − 1.
We already know these coefficients because we need them to evaluate the a posteriori
error rM (i) in the lattice algorithm (actually, to order update bM (i) and fM (i)).

• the vector ϑb
l,i from l = 1 to l = j̄ − 1 (because ϑb

0,i = 0) that is the solution of the LS
problem in (3-17).
We don’t know this vector yet.

We could evaluate ϑb
l,i by using an exponentially-weighted RLS algorithm, but we would lose

the advantage in using lattice filter instead of RLS. Notice that in that case it would be
computationally heavier than RLS because we would need to solve a LS problem for every
order l up to l = j̄ − 1. We need to find a more computationally efficient way.

Master of Science Thesis Alessandro Scotti



22 Lattice Filters

We can observe that at time i the parameters vector that solves the LS problem is the vector
ϑb

l,i that appears in the following formula:

bl(i) = p(i− l − 1)−
[

p(i− 1) p(i− 2) · · · p(i− l)
]
ϑb

l,i (3-21)

It suggests that, if we manage to write the signal bl(i) in an explicit form that reveals the
coefficients of the parameters vector ϑb

l,i, we have an alternative way to find the solution to
the problem (3-17).

We also need to remind the vector ϑf
l,i, that is the solution of the LS problem in (3-18) and

that appears in the following formula:

fl(i) = p(i− 1)−
[

p(i− 2) p(i− 3) · · · p(i− l − 1)
]
ϑf

l,i (3-22)

Remember that the recursive expressions to order-update the a posteriori backward and
forward prediction errors are:

bl(i) = bl−1(i− 1)− κb
l−1(i)fl−1(i)

fl(i) = fl−1(i)− κf
l−1(i)bl−1(i− 1)

In our application, we know that the initial backward and forward prediction errors conditions
are (section 3-2-1):

b0(i) = f0(i) = p(i− 1)

Let’s consider first l = 1. We have:

b1(i) = b0(i− 1)− κb
0(i)f0(i) = p(i− 2)− κb

0(i)p(i− 1) (3-23)

that is identical to (3-21) if l = 1 and here we have the value of the parameters vector (that
is a scalar if l = 1):

ϑb
1,i = κb

0(i) (3-24)

We also need to calculate f1(i) to solve the next equations. We have:

f1(i) = f0(i)− κf
0(i)b0(i− 1) = p(i− 1)− κf

0(i)p(i− 2) (3-25)

that is identical to (3-22) so that we can say:

ϑf
1,i = κf

0(i) (3-26)

Now, we can try to do the same for l = 2. We have that:
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b2(i) = b1(i− 1)− κb
1(i)f1(i) = p(i− 3)− κb

0(i− 1)p(i− 2)− κb
1(i)

(
p(i− 1)− κf

0(i)p(i− 2)
)

= p(i− 3)− p(i− 2)
(
κb

0(i− 1)− κb
1(i)κf

0(i)
)
− p(i− 1)κb

1(i)

= p(i− 3)−
[

p(i− 1) p(i− 2)
] [ κb

1(i)
κb

0(i− 1)− κb
1(i)κf

0(i)

]

where we can recognize the same structure of (3-21) if l = 2. It means that we can find the
parameters vector with this simple expression:

ϑb
2,i =

[
κb

1(i)
κb

0(i− 1)− κb
1(i)κf

0(i)

]
(3-27)

In the same way we can find the expression of the vector ϑf
2,i:

ϑf
2,i =

[
κf

0(i)− κf
1(i)κb

0(i− 1)
κf

1(i)

]
(3-28)

We also show the expressions of the vectors if l = 3 (the procedure is similar to the previous
ones):

ϑb
3,i =

 κb
2(i)

κb
1(i− 1)− κb

2(i)κf
0(i) + κb

2(i)κf
1(i)κb

0(i− 1)
κb

0(i− 2)− κb
1(i− 1)κf

0(i− 1)− κb
2(i)κf

1(i)

 (3-29)

ϑf
3,i =

 κf
0(i)− κf

1(i)κb
0(i− 1)− κf

2(i)κb
1(i− 1)

κf
1(i)− κf

2(i)κb
0(i− 2) + κf

2(i)κb
1(i− 1)κf

0(i− 1)
κf

2(i)

 (3-30)

We could continue to find every ϑb
l,i (and ϑf

l,i ) up to l = j̄ − 1: we will see that these vectors
are function of the reflection coefficients κb

l (t) and κf
l (t) from l = 0 to l = j̄ − 2 and from

t = i − j̄ + 2 to t = i, that are already known by the computation of the Lattice Filter
algorithm. It means that we can find the parameters vector ϑj̄,i with the same computational
cost we have to evaluate the optimal order j̄, and it is O(M), one order magnitude less than
RLS.
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Actually, we have two recursive equations for the parameters vectors ϑb
l,i and ϑf

l,i that allow
the practical implementation [15].
Starting from the initial conditions ϑb

0,i−1 = 0, ϑf
0,i = 0, we have:

ϑb
l,i =

[
0

ϑb
l−1,i−1

]
− κb

l−1(i)
[
−1
ϑf

l−1,i

]
, l ≥ 1 (3-31)

ϑf
l,i =

[
ϑf

l−1,i

0

]
− κf

l−1(i)
[
ϑb

l−1,i−1
−1

]
, l ≥ 1 (3-32)
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3-3 Generation of the control signal 25

3-3 Generation of the control signal

Once we have found the optimal parameters vector ϑj̄,i of order j̄ ∈ (1, M) at time i, we can
finally generate the control law u(i) that is the output of the lattice filter F (z):

u(i) =
[

ω̂(i− 1) ω̂(i− 2) · · · ω̂(i− j̄)
]
ϑj̄,i (3-33)

Figure 3-4: adaptive control with lattice filter

With this control variable, if Ĝ(z) = G(z) and the lattice algorithm works perfectly, we can
fully reject the turbulence wavefront phase distortion ω. In real situations, Ĝ(z) ̸= G(z) and
we can’t achieve a perfect reconstruction of the turbulence at time-step i, but this adaptive
control allows us to reduce the wavefront phase distortion and to have an almost flat residual
phase y.
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3-4 Parameters vector convergence: Lattice Filter VS RLS

To verify that lattice filters work well, we have to do a convergence analysis and compare it
with the one of RLS.

To do that, we consider several random fixed-order AR(M) processes. To make the simulation
not too complicated, we chose M=4. Then, we have generated 12 different AR(4) processes
like this:

y(k) = a
(i)
1 y(k − 1) + a

(i)
2 y(k − 2) + a

(i)
3 y(k − 3) + a

(i)
4 y(k − 4) + ξ(k) (3-34)

where ξ is a white-Gaussian-noise of mean 0 and variance 1 (ξ ≈ WGN(0, 1)), and i ∈
[1, 12] represents the AR model we are considering. In Tabel 3-1 are listed the parameters
a

(i)
1 , a

(i)
2 , a

(i)
3 , a

(i)
4 for all the AR processes we used:

index i a
(i)
1 a

(i)
2 a

(i)
3 a

(i)
4

1 0.2 0.18 0.1 0.3
2 0.4 0.25 0.04 0.2
3 0.7 0.12 0.08 0.02
4 0.01 0.6 0.2 0.17
5 0.1 0.2 0.3 0.35
6 0.35 0.3 0.2 0.1
7 0.05 0.01 0.08 0.06
8 -0.3 0.09 -0.17 0.2
9 -0.2 0.4 -0.08 0.3
10 0.2 -0.3 -0.15 -0.23
11 -0.1 -0.2 -0.3 -0.4
12 0.8 0.02 0.04 0.08

Table 3-1: list of the different AR parameters

The parameters vector is defined as: θ(i) = [a(i)
1 a

(i)
2 a

(i)
3 a

(i)
4 ]T .

Now, if we choose a RLS order 4 algorithm or a lattice order 4 algorithm to estimate each of
the AR processes described by (3-34), we have the following prediction model:

ŷ(k) = â
(i)
1 y(k − 1) + â

(i)
2 y(k − 2) + â

(i)
3 y(k − 3) + â

(i)
4 y(k − 4) (3-35)

If we consider a simulation time of N steps and we use RLS, for the convergence property of
RLS we know that

if N →∞, then â
(i)
j → a

(i)
j (3-36)

where j ∈ [1, 4].

We have done a simulation with N=15000 and we have tried to estimate all the AR processes
in Table 3-1 with an order 4 lattice filter algorithm with λ = 0.9999 and η = 1000.
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For instance, the estimation of the first AR process (i = 1) produces the following trend of
the AR parameters (Figure 3-5):

Figure 3-5: parameters trend in estimating the first AR (i=1) with order 4 lattice filter

We can observe that there is an initial transient in which the value of the parameters oscillates
around the real value a

(1)
j , and then the parameters converge to the real value.

Now, we can do (for each of the i processes) the following operation to highlight the error
trend in estimating the AR parameters:

ε
(i)
j = a

(i)
j − â

(i)
j (3-37)

where i ∈ [1, 12], j ∈ [1, 4].
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(a) error trend in estimating a
(1)
1 (b) error trend in estimating a

(1)
2

(c) error trend in estimating a
(1)
3 (d) error trend in estimating a

(1)
4

Figure 3-6: error trend in estimating AR parameter a
(1)
j

For example, if i = 1, we have ε
(1)
j = a

(1)
j − â

(1)
j , and in Figure 3-6 is shown what we obtain

for each j.

Then, for each time-step N, we can evaluate the following mean error:

ε̄j(N) = 1
12

12∑
i=1

ε
(i)
j (N) = 1

12

(
ε

(1)
j (N) + ε

(2)
j (N) + · · ·+ ε

(12)
j (N)

)
, j ∈ [1, 4] (3-38)

So that we will have 4 different mean errors, one for each j parameter of the AR process:

• ε̄1(N) = 1
12
∑12

i=1 ε
(i)
1 (N);

• ε̄2(N) = 1
12
∑12

i=1 ε
(i)
2 (N);

• ε̄3(N) = 1
12
∑12

i=1 ε
(i)
3 (N);

• ε̄4(N) = 1
12
∑12

i=1 ε
(i)
4 (N);

with N = 1, 2, · · · , 15000.
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We show these values in the following figures (Figures 3-7/3-10), where the yellow lines in
each figure are the lower and upper bound of the errors (representing the variance of the
error). It means that they represent, at each time-step N, the maximum and the minimum
value of

[
ε

(1)
j , ε

(2)
j , · · · , ε

(12)
j

]
,with j ∈ [1, 4]:

Figure 3-7: trend of ε̄1 with his upper and lower bound (lattice)

Figure 3-8: trend of ε̄2 with his upper and lower bound (lattice)
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Figure 3-9: trend of ε̄3 with his upper and lower bound (lattice)

Figure 3-10: trend of ε̄4 with his upper and lower bound (lattice)

From these figures we can conclude that also in lattice filter we have that:

if N →∞, then â
(i)
j → a

(i)
j . (3-39)

Notice that at the beginning we have a bigger variance, that reduces itself with the increasing
of the time N.
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To make a comparison, we have done the same thing for RLS (we have tried to estimate the
12 AR processes in Table 3-1 with a RLS algorithm, and then we have evaluated the mean
error ε̄j , j ∈ [1, 4]), and these are the results:

Figure 3-11: trend of ε̄1 with his upper and lower bound (RLS)

Figure 3-12: trend of ε̄2 with his upper and lower bound (RLS)
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Figure 3-13: trend of ε̄3 with his upper and lower bound (RLS)

Figure 3-14: trend of ε̄4 with his upper and lower bound (RLS)

We can say that lattice filter and RLS have almost the same convergence properties for the
AR processes we have considered in this evaluation. Actually, lattice filters have the same
performance of RLS only if they are implemented with infinite-precision arithmetic operations.
In finite-precision implementation each algorithm will perform differently [15]. Because RLS
and lattice minimize the same cost function (see Section 3.1-3.2), we already expected that
they would had the same performance. But lattice filter has a limitation: it could lead to
divergence in some particular situation. To know more about this topic you can see [16].

Notice that to realize the convergence analysis we used the forced lattice filter (i.e. we have
forced the order to be fixed at 4 during the all simulation and not to change from 1 to 4
as it should be in the lattice algorithm). In fact, the normal lattice filter changes order at
every time step: it means that it changes the parameters vector dimension at every time step.
For this reason, the estimated parameters â

(i)
j do not converge but continue jumping between
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some values close by the convergence value a
(i)
i .

For example, if we consider the first AR process in Table 3-1 and we try to estimate it with
a normal order 4 lattice filter, we have this trend of the parameter â

(1)
1 (Figure 3-15):

Figure 3-15: trend of â
(1)
1 using normal lattice filter

Even if we have not parameters convergence in normal lattice filter, we manage to obtain a
great process reconstruction, even better than the one produced by the forced lattice filter.
In Figure 5-10 we have the first AR process in Table 3-1 (blue), the normal lattice estimation
(green) and the forced lattice estimation (red) in a short time-horizon:
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N

 

 
real AR(4) 
normal lattice estimation
forced lattice estimation

Figure 3-16: estimation of AR process with normal and forced lattice filters

We can observe that the normal lattice filter works better than the forced one in this particular
case. To proof that, we have evaluated the root mean square (RMS) value between:
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• the real AR(4) y(k) and the normal lattice estimation ŷL,N (k):

RMS
(1)
L,N =

√√√√ 1
N

N∑
k=1

(y(k)− ŷL,N (k))2 = 0.8303 (3-40)

• the real AR(4) y(k) and the forced lattice estimation ŷL,F (k):

RMS
(1)
L,F =

√√√√ 1
N

N∑
k=1

(y(k)− ŷL,F (k))2 = 0.9853 (3-41)

Then, we have evaluated these 2 RMS values for all the AR processes in Table 3-1, where
RMS(i) is the RMS value related to the AR process with index i in Table 3-1:

RMS values - normal VS forced

index i RMS
(i)
L,N RMS

(i)
L,F

1 0.8303 0.9853
2 0.8516 0.9972
3 0.9174 0.9915
4 0.8518 1.0064
5 0.8484 0.9871
6 0.8546 0.9984
7 0.9578 1.0079
8 0.8792 1.0091
9 0.9321 0.9998
10 0.8394 1.0029
11 0.8226 0.9932
12 0.9508 1.0087

Table 3-2: list of RMS values in normal and forced lattice filter in estimating AR(4) processes

From this table we can observe that normal lattice filter works always better than the forced
one in our simulations. This cannot lead to any conclusion, we can only observe what happens
in our specific situation.

The RMS value if we use RLS (RMS
(i)
RLS) is very close to the RMS of the forced lattice filter.
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3-5 Order VS performance in RLS and in Lattice

We have seen that order 4 forced lattice filter and order 4 RLS have the same performance.
Then, we have observed that (in our examples) normal lattice filter works better than forced
lattice filter.

Now, we want to evaluate the performance of the algorithms increasing their order from 1
to 20. What we are going to evaluate is again the RMS value between the real AR(M)
process and its estimation by RLS, normal lattice and forced lattice. To make this evaluation
more general, we have considered 5 different AR(M) processes for each order M, and we have
calculated the mean between their RMS values to generate the order M RMS value.

Assuming k ∈ [1, 5] as the number of different AR realizations of the same order M, and
M = [1, 2, 3, 4, 5, 6, 8, 10, 20] as the order of the AR process, we can define:

• RMSM
L,N,k as the RMS value between the k-th realization of the process AR(M) and its

estimation with normal lattice filter;

• RMSM
L,F,k as the RMS value between the k-th realization of the process AR(M) and its

estimation with forced lattice filter;

• RMSM
RLS,k as the RMS value between the k-th realization of the process AR(M) and

its estimation with RLS;

and then, we can define:

• ¯RMS
M
L,N as the mean of the k RMS values evaluated with order M normal lattice;

• ¯RMS
M
L,F as the mean of the k RMS values evaluated with order M forced lattice;

• ¯RMS
M
RLS as the mean of the k RMS values evaluated with order M RLS;
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In Table 3-3 we show the mean RMS values:

¯RMS values increasing the order

index M ¯RMS
M
L,N

¯RMS
M
L,F

¯RMS
M
RLS

1 0.9967 0.9967 0.9967
2 0.8929 1.0008 1.0008
3 0.8878 1.0024 1.0024
4 0.8851 0.9972 0.9972
5 0.9137 0.9993 0.9993
6 0.9100 0.9983 0.9983
8 0.8936 0.9968 0.9968
10 0.8909 0.9949 0.9949
20 0.8467 0.9888 0.9888

Table 3-3: list of RMS values increasing the order of the algorithms

In Figure 3-17 we plot the values in Table 3-3:

Figure 3-17: ¯RMS values in Table 3-3

In this Figure 3-17 we can see once more that RLS and forced lattice filter have the same
performance and that order 4 lattice filter is a good compromise between complexity and
performance. Also we can observe once more that, in our simulations, the normal lattice
works better than the forced one. The strange decreasing trend of the ¯RMS value after order
M = 5 is probably due to numerical errors.
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Chapter 4

The MIMO system: channels
decoupling

In the previous Chapters we have considered a SISO system with scalar disturbance and
scalar output. This is the easiest situation because we only have one channel, but it is not
the real situation. In this Chapter we will generalize to the MIMO situation and we will show
a configuration that allows to decouple the channels of the system.

4-1 From SISO to MIMO

Let’s consider again the classical control loop without the adaptive loop. For now, we neglect
the WFS delay. In the real situation, the disturbance w = w(ρ, t) is a surface (function of R2)
and we have a MIMO system like in Figure 4-1, where w has been transformed in a vector
for the simulation:

Figure 4-1: MIMO system

With MIMO system things become more difficult: the DM block is represented by a P × P
matrix, where P is the number of channels. This DM matrix is not diagonal, it is a full
matrix where every element is a TF, and the consequence is that every control command
[uin1 , uin2 , · · ·uinP ] ∈ uin has an influence on every DM actuator command [c1, c2, · · · cP ] ∈ c
(Figure 4-2):
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Figure 4-2: MIMO system - channels coupling

For example, if we consider P = 2, the the DM matrix is a 2× 2 matrix:

DM (z) =
[

DM11(z) DM12(z)
DM21(z) DM22(z)

]
(4-1)

where DMi,j is a TF, with (i, j) ∈ [1, 2].

We can say that the DM command vector c is given by:

[
c1
c2

]
=
[

DM11(z) DM12(z)
DM21(z) DM22(z)

] [
uin1

uin2

]
(4-2)

We can represent the system like in Figure 4-3, where we can well notice the channels coupling:

Figure 4-3: MIMO system with P = 2
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4-2 MIMO channels decoupling

To decouple system’s channels we can realize the following configuration of the classical (in-
ternal) control loop [12]:

Figure 4-4: MIMO system decoupling configuration with P = 2

In the same way, we can extend this configuration to the generic P × P situation:

Figure 4-5: MIMO system decoupling configuration

Where:

• Γ is called the Poke Matrix and represents the mapping from f to ϕ. This poke matrix
can be identified with an experiment on the system [4].

• The matrix V defines a parametrization of actuator space: the columns of V represent
DM modes that are commanded independently by the control loop.
To define this matrix, we can realize a singular value decomposition (SVD) of the Poke
Matrix Γ:

Γ = QΓΣV T
Γ (4-3)

and to set V = VΓ.

• The reconstructor matrix E0 is chosen to satisfy

E0ΓV = I (4-4)
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it means that E0 is chosen as the pseudo-inverse of ΓV .

Proof. We have that:

y = E0ΓV uin = E0(QΓΣV T
Γ )V uin.

If we choose V = VΓ, we have:

y = E0(QΓΣV T
Γ )VΓuin

But we know that, because of the SVD, (V V T
Γ ) = (V T

Γ V ) = I. It means that

y = E0(QΓΣ)uin

To decouple the channels, we want that E0QΓΣ = I, so we need

E0 = (QΓΣ)† = (ΓV )†

Under this condition, the control channels represented by the components of the vector uin
are uncoupled. The control command represented by a single element of uin affects only the
error signal represented by the corresponding element of the error vector y.
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Now, we can augment the classical loop with the adaptive loop, but we need to redefine what
we called G(z) and S(z) respectively in equation (2-7) and (2-8). Indeed the classical loop
contains 2 more elements (V and E0) and R(z) is a diagonal matrix:
R(z) =diag(R1(z)R2(z) · · ·RP (z)), where P is the number of channels and Ri(z) is the con-
troller for the channel i. Furthermore DM (z) and WF S(z) are full matrices of TF.

Therefore, reminding us of the WFS delay, we can now redefine:

G(z) = E0WF S(z)DM (z)V R(z)
1 + z−1E0WF S(z)DM (z)V R(z)

(4-5)

S(z) = E0WF S(z)
1 + z−1E0WF S(z)DM (z)V R(z)

(4-6)

and in Figure 4-6 we have the complete MIMO block diagram with channels decoupling.

Figure 4-6: MIMO system with adaptive loop
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Chapter 5

Simulations

In Chapter 4 we have described how we can decouple the MIMO system using the matrices
V and E0. Now, we have to describe how we can represent the DM and the WFS in the
simulation to make it realistic and how we can realize a realistic turbulence for the simulation.

5-1 The simulation of the atmospheric turbulence

5-1-1 Stationary turbulence

In this section we explain very briefly how the turbulence can be generated. The goal of this
section about turbulence is not to be exhaustive. An extensive treatment of this topic can be
found in [17], [18], [19], [20].

The turbulence correlation matrix

We can start saying that the atmospheric turbulence w is a Nx × Ny grid at every time
instant. In our situation we have Nx = 14, Ny = 7. The Figure 3-7 is an example of the 3D
representation of the stationary turbulence wavefront phase.
As we told in Chapter 2, the atmospheric turbulence can be described by 4 parameters:

• L0: is the outer scale of turbulence. This is the characteristic size of the large-scale
turbulence inhomogeneities. It is expressed in meters [m];

• r0: is the Fried parameter. It is a measure of the optical quality of the atmosphere
and it indicates the size of a telescope which can operate at the diffraction limit. It is
expressed in meters [m];

• vx: is the wind velocity in x direction. It is expressed in [m/s];

• vy: is the wind velocity in y direction. It is expressed in [m/s].
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If we consider this parameters fixed, we are talking about stationary atmospheric turbulence.
In Figure 5-1 we have these parameters: L0 = 2[m], r0 = 0.56[m], vx = 4[m/s], vy = 0[m/s]:
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Figure 5-1: atmospheric turbulence at a random time step

For stationary atmospheric turbulence the spatial covariance of the phase between two points
at distance r is given by:

Cϕ(r) = Γ(11/6)
25/6/π8/3

[24
5

Γ(6/5)
]5/6 (L0

r0

)5/3 (2πr

L0

)5/6
K5/6

(2πr

L0

)
(5-1)

where K() is the MacDonal function, and Γ is the Gamma function [17], [18].

Subspace identification to find a turbulence state space model

Let y(k) be a vector containing the values of the stationary turbulent phase on a column of
the phase grid. Then, we can represent y(k) as the output of the following linear state space
model:

x(k + 1) = Ax(k) + Ke(k)
y(k) = Cx(k) + e(k)

(5-2)

where x ∈ Rn, y ∈ RNy , A ∈ Rn×n, C ∈ RNy×n, K ∈ Rn×Ny and e(k) is a zero mean with noise
process.

It is possible, with a subspace identification method, to estimate matrices A, C, K, starting
from the function Cϕ(r) [17].

First of all, let Λk = E[y(i + k)y(i)T ] be the covariance matrix of the output y between two
output samples y(i + k) and y(i) (it has dimension Ny ×Ny). It can be found from Cϕ(r).

The state space model in 5-2 can be also written in a different way:

x̄(k + 1) = Ax̄(k) + Gu(k)
Λk = Cx̄(k) + Du(k)

(5-3)
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where x̄ ∈ Rn×Ny , and u(k) is an impulsive input matrix of dimension Ny×Ny that is defined
as:

u(k) =
{

I, k = 0
0, k ̸= 0

(5-4)

Assuming as initial condition x(0) = 0, we directly have that D = Λ0, so that we can rewrite
it as:

x̄(k + 1) = Ax̄(k) + Gu(k)
Λk = Cx̄(k) + Λ0u(k)

(5-5)

Now, starting from the initial condition, we can find the following Markov parameters [19]:

Λ1 = Cx̄(1) = CG

Λ2 = Cx̄(2) = CAx̄(1) = CAG

Λ3 = Cx̄(3) = CAx̄(2) = CA2x̄(1) = CA2G

...
Λi = · · · = CAi−1G

(5-6)

and we can construct the following block Hankel matrix:
Λ1 Λ2 · · · Λs

Λ2 Λ3 · · · Λs+1
...

... . . . ...
Λs Λs+1 · · · Λ2s−1


︸ ︷︷ ︸

Y1,s,s

=


CG CAG · · · CAs−1G

CAG CA2G · · · CAsG
...

... . . . ...
CAs−1G CAsG · · · CA2s−2G



=


C

CA
...

CAs−1


[

G AG · · · As−1G
]

= OC

(5-7)

where O ∈ RNys×n, C ∈ Rn×Nys. The integer s is chosen by the user. Notice that, if we do i
realizations of Λk (k ∈ [1, i]), we need to have 2s− 1 ≤ i.

Now, we need to find matrices O and C in order to find out A, C, G. If we do a SVD of the
matrix Y1,s,s that has dimension Nys×Nys, we obtain [20]:

Y1,s,s =
[

U Ū
] [ Σ 0

0 Σ̄

] [
V T

V̄ T

]
= UΣV T + Ū Σ̄V̄ T (5-8)

but Σ ∈ Rn×n has the largest singular values of Y1,s,s. Hence, we can do this approximation:

Y1,s,s ≃ UΣV T (5-9)

where we can choose n = rank(Y1,s,s), and U ∈ RNys×n, V T ∈ Rn×Nys.
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This means that, from the SVD, we can find an estimation of O and C:

Ô = Ū Σ̄1/2

Ĉ = Σ̄1/2V̄ T
(5-10)

Ô and Ĉ can be chosen up to a similarity transformation T : ÔT = O and T −1Ĉ = C.

Then, we can finally find out an estimation of matrices A, C, G:

Ĉ = Ô(1 : l, 1 : n);
Â = Ĉ†Ô(l + 1 : 2l, 1 : n) ← ĈÂ = Ô(l + 1 : 2l, 1 : n);
Ĝ = Ĉ(1 : n, 1 : l);

(5-11)

Now, we can estimate the state covariance matrix P , that is the solution of the Riccati
equation:

P̂ = ÂP̂ ÂT + (Ĝ− ÂP̂ ĈT )(Λ0 − ĈP̂ ĈT )−1(Ĝ− ÂP̂ ĈT ) (5-12)

and then find out also an estimation of the Kalman gain K:

K̂ = (Ĝ− ÂP̂ ĈT )(Λ0 − ĈP̂ ĈT )−1 (5-13)

Therefore, we have found a state space Kalman model equivalent to the one in 5-2 to generate
the turbulence column y in simulation:

x(k + 1) = Âx(k) + K̂e(k)
y(k) = Ĉx(k) + e(k)

(5-14)

Moreover, because we assume a frozen flow turbulence, we can evaluate the other columns of
the grid by augmenting the model in formula 5-2 saying that:

yl+1(k + 1) = yl(k) (5-15)

where l is the number of the column, l ∈ (1, 13). Hence, we have now a linear state space model
of the stationary turbulence w. It will be in radians. To know more about the identification
of the state space model you can see also [19],[20].

5-1-2 Non-Stationary turbulence

To generate a non-stationary turbulence wavefront phase, we have used the following trick: we
have changed the turbulence parameters in a uniform way and we have generated a covariance
matrix of the set of parameters. From each of these covariance matrices a state space model
was identified. Then, we have generated the non-stationary turbulence by switching between
the several stationary models at predetermined time instants. Every time the system matrices
were changed, the state vector x was kept constant. It was hoped that by preserving the state,
the transition between different stationary turbulence regimes would be smoother.
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5-2 Realistic Simulation Scheme

Remembering how we have decoupled the system, this is the MIMO block diagram for the
matrix G(z) that we have already seen in the previous Chapter:

Figure 5-2: MIMO system decoupling configuration

where DM (z) represents the real DM and WF S(z) represents the real WFS. Unfortunately,
in the simulation we can only use models of both DM and WFS.

The easiest way to describe them is with a static model (i.e. without considering their
dynamics), and this is what we have done to implement the simulation.
To even more simplify it, we only have considered an open-loop G(z) without the internal
controller R(z) and without the feedback of the internal loop.

5-2-1 Realistic scheme with open-loop G(z)

Figure 5-3 shows the block diagram in the open-loop configuration (with no feedback and no
internal controller), without the disturbance w and without the WFS delay z−1:

Figure 5-3: open-loop G(z) real simulation

In this system we have that the following relations hold:

• s′ = Hf where H represents the mapping from voltages f to slopes s′. This matrix
represents both the DM and the WFS;

• s′ = Erϕ where Er represents the mapping from phase ϕ to slopes s′. Matrix Er

describes the phase reconstruction;

It means that we have:
s′ = Erϕ = Hf (5-16)
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Hence:
ϕ = E†

rHf = Γf (5-17)

Matrix H is identified from the real system. Matrix Er was computed using the Hudgin
geometry [21].

This MIMO system has 37 channels, because the DM has 37 independent actuators. It means
that v is a column vector of dimension 37×1. The matrices that appear in the block diagram
are:

• V : has dimension 37× 37 (f is a column vector 37× 1)

• H: has dimension 254× 37 (s′ is a column vector 254× 1)

• E†
r : has dimension 98× 254 (ϕ is a column vector 98× 1)

• E0: has dimension 37× 98 (y is a column vector 37× 1)

Notice that Γ has dimension 98× 37.
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Now we have to add the turbulence w. Because w is the distorted phase, to correctly add the
disturbance we have to add it to the signal ϕ, that is the reconstructed phase. It means that
w is a column vector of dimension 98× 1 (it follows from the 14× 7 size of the phase screen):

Figure 5-4: open-loop G(z) real simulation with turbulence w

Hence, in this simulation, we have that the closed-loop TF G(z) from v to y is actually an
open-loop TF:

y = G(z)v = (E0E†
rHV )v = (E0ΓV )v (5-18)

The TF from the disturbance w to the residual phase y is:

S(z) = E0 (5-19)

Notice that all the TF are static. The only dynamic element is the turbulence w. Anyway, it
is important to remark that the goal of the adaptive control loop is to predict the estimated
turbulence ω̂ at time i because of the delay z−1 in the loop (Figure 5-5).
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We can then augment the classical open-loop G(z) with the adaptive control loop and obtain
the complete block diagram for the MIMO system with also the WFS delay z−1 (Figure 5-5):

Figure 5-5: realistic MIMO block diagram adaptive control

In this diagram, w is a column vector of dimension 98 × 1, but S(z) = E0 has dimension
37× 98. It means that the new disturbance ω is a column vector of dimension 37× 1.
To realize the adaptive control of the MIMO system, we need 37 lattice filters, one for each
channel.

Actually, the matrix Ĝ(z) can be considered identical to G(z) or we can suppose that Ĝ(z) =
G(z)+∆G, where ∆G is a diagonal matrix of the same dimension as G(z) that symbolizes the
difference that we have between G(z) and Ĝ(z). Now we have only considered Ĝ(z) = G(z),
but in the real experiment this equality is never verified: if this modeling error is too large,
we can cause the system to be unstable with the adaptive loop closed [8].
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5-3 Simulation results with stationary turbulence

Now, we can show the results we obtained in rejecting a stationary turbulence with Ĝ(z) =
G(z) and with an order 4 normal lattice filer. But first, we have to explain some details about
the simulation to make every thing clear.

Our turbulence w is in radians [rad] while the reconstructed phase ϕ is in meters [m]. It
means that, to add the disturbance w to ϕ, we have to convert it to meters:

[m] = [rad] λ

2π
(5-20)

where λ = 632.8× 10−9 and it is the light beam wavelength.

Then, we have the following block diagram:

Figure 5-6: open-loop real simulation scheme

Because E0ΓV = I (see equation 4-4), when we multiply ϕ by the matrix E0, we obtain y in
the same measure unit as the signal v, that is absolutely not meters. Even ω has the same
measure unit. It means that, the residual phase y that we feedback is not meters neither
radians. In order to evaluate the performance of the system, the RMS value of y will be
evaluated in radians. That’s the reason why we convert y in radians in Figure 5-6.
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To avoid this procedure, we can easily implement the following equivalent block diagram for
our simulation:

Figure 5-7: open-loop real simulation scheme - second version

With this diagram, we have only to convert the turbulence from [rad] to [m], then we can
measure the signal z, that will be in meters. To convert it to radians we only have to applicate
the conversion in formula 5-20. Then, the residual phase y is the feedback for the adaptive
loop.
Now, we can evaluate the RMS values of w and z (the residual phase) over the all grid (that
is a 14 × 7 grid) at every time step, on a time horizon of N=1000 secs, and we have also
plotted the rejection in percentage at every time step on the entire grid:
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Figure 5-8: RMSz, RMSw and stationary turbulence rejection

Alessandro Scotti Master of Science Thesis



5-3 Simulation results with stationary turbulence 53

We can see that the blue line is almost always below the red line, it means that there is a
rejection of the turbulence most of the time. The mean rejection is equal to 18.56%.

Then, we have compared the performance of different order lattice filters to see which one
works better with this kind of turbulence:
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Figure 5-9: rejection VS order in lattice filters

From this figure we decided to choose M = 4 for our lattice filter. Actually, we can see that
it is not the best performance we can achieve, but the performance increases very slightly if
we choose an order between 5 and 10. We assumed that the less computational burden we
have if we take M = 4 is more important than the increasing of performance we have if we
take an order between 5 and 10.
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5-4 Simulation results with non-stationary turbulence

Here we have generated a non-stationary turbulence as we explained in 5-1-2. To generate it,
we decided to change only the parameter r0 every 200 secs:

• r0(t <= 200) = 0.6 [m];

• r0(t <= 400) = 0.59 [m];

• r0(t <= 600) = 0.58 [m];

• r0(t <= 800) = 0.57 [m];

• r0(t <= 1000) = 0.56 [m].

We have tried to reject this non-stationary turbulence with our order 4 lattice filter, and this
is what we obtained:
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Figure 5-10: RMSz, RMSw and non-stationary turbulence rejection

What we can observe is that the performance remain very close to those ones we have with
stationary turbulence. Actually this is a slow and not realistic variation of the turbulence,
mainly because of the frozen flow assumption: future improvements could focus on understand
how a more realistic non-stationary turbulence can be generated. Anyway, we can see that
in this example our lattice filter manage to reject the turbulence even if it is non-stationary.
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Chapter 6

Experimental Setting and Results

In this Chapter, we present the real system and some experimental results we obtained ap-
plying the adaptive configuration. First we have tried to reject a static aberration, then a
stationary atmospheric turbulence.

6-1 The Experimental setup

6-1-1 Description of the experiment

H
e
N
e

C1
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L1

P1

L2

I1

M1

DM

L3

L4

L5

LA

L6

P2

Figure 6-1: experiment

Figure 6-1 shows the optical setup used in the experiments. Light from a HeNe laser source
with a wavelength of 632.8nm is spatially filtered by focusing it with a 11mm lens L1 into a
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30µm pinhole P1. A flat wavefront is then created by collimating the output of the spatial
filter with a 500mm lens L2. An iris I1 limits the diameter of the beam to 10mm. The
membrane of the deformable mirror DM (MMDM37, OKOTech, The Netherlands) is reim-
aged by L3 (200mm) and L4 (100mm) into a microlens array LA (127 microlenses with a
focal distance of 18mm). Voltage to the electrodes of the deformable mirror is supplied by a
high voltage amplifier (OKOTech, The Netherlands) with 40 channels. The amplifier has an
output range of 0 up to 300V, nonetheless, a power supply delivers 150V for safe operation
of the deformable mirror. The image of the microlens array is recorded with a camera C1
(svs340, SYS-VISTEK, Germany). Lens L5 (200mm) images the pupil into a 50µm pinhole
P2 followed by a photodiode (TSL250R-LF, TAOS, Korea). Lens L6 (500mm) also images
the pupil into a camera C2 (svs340, SYS-VISTEK, Germany). The system is operated by
a desktop PC running Linux. The high voltage amplifier is driven by a 16 bit analog out-
put card (PD2-AO-96/16A, United Electronic Industries, The United States). Whereas the
voltage from the photodiode is acquired with a 16 bit analog input card (PCI-6220, National
Instruments, The United States). Two framegrabbers cards (Leonardo CL Full, Arvoo, The
Netherlands) are used to acquire the signal from C1 and C2. Custom software and MATLAB
(Version R2011a, The MathWorks, The United States) are used to run the experiments.

This is a picture of the real setup:

Figure 6-2: picture of the real system
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6-1-2 The block diagram configuration

In section 5-2 we have discussed the block diagram for the realistic simulation. Now, we need
to describe the block diagram we have in the experiment. The open-loop G(z) in the realistic
simulation (Figure 5-4) is this:

Figure 6-3: open-loop G(z) real simulation with turbulence w

First of all, we don’t have H anymore, but we have HREAL that represents both the real DM
and the real WFS with their dynamics. We don’t know HREAL. Then, we need matrix E†

r

to reconstruct the phase from the slopes vector s′.

The open-loop G(z) used for the experiment is in Figure 6-4:

Figure 6-4: open-loop G(z) real experiment with turbulence w

that we can also represent like:

Figure 6-5: open-loop G(z) real experiment with turbulence w - compact
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It means that G(z) and S(z) can be defined in this way (we don’t know G(z)):

G(z) = E0ΓREALV = E0E†
rHREALV (6-1)

S(z) = E0 (6-2)

To represent the adaptive control configuration, we also need to define Ĝ(z). Notice that in
the real experiment we always have Ĝ(z) ̸= G(z):

Ĝ(z) = E0ΓV = E0E†
rHV (6-3)

that is exactly what is shown in Figure 5-4: it is what we called G(z) in the realistic simulation,
where we don’t make any difference between G(z) and Ĝ(z).

Now that we have defined all the matrices, we can show the top part of the block diagram of
the real experiment with the WFS delay, without showing the bottom part in which lattice
parameters are updated:

Figure 6-6: top part of adaptive control block diagram - open loop G(z)
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Problem: in the system in Figure 6-1 however there is no real turbulence source. Therefore
Gibson’s scheme needs to be modified and the disturbance is added in a different way. Since
only the DM can be used as a turbulence generator, we only can introduce w in a voltage
form. It means that the turbulence has to be added to the signal v and we need to modify
the block diagram like in Figure 6-7:

Figure 6-7: top part of adaptive control block diagram for the experiment - open loop G(z)

where Q(z) is a matrix of TF that should be chosen to maintain the TF from w to y equal
to S(z) = E0. It means that we have to choose Q(z) to satisfy this equation:

G(z)Q(z) = S(z) (6-4)

But we only know Ĝ(z), it means that:

Q(z) = Ĝ(z)−1S(z) = (E0ΓV )−1E0 = (ΓV )−1 (6-5)

and d = Q(z)w is the turbulence in the new configuration.
In this new configuration, we have that

y = G(z)(v + d) = G(z)v + G(z)d. (6-6)

But d = Q(z)w = Ĝ(z)−1
S(z)w. So, if we assume that the modeling error G(z) − Ĝ(z) is

small, we have that:

y = G(z)v + G(z)Ĝ(z)−1
S(z)w ≃ G(z)v + S(z)w = G(z)v + ω (6-7)

Hence, we have that this equation holds:

y − Ĝ(z)v = ω̂ (6-8)

that is the same we have in Figure 6-6. We can say that Figure 6-6 and in Figure 6-7 are
different representations of the same scheme (assuming a small modeling error). So, we can
use the block diagram in Figure 6-7 in our experiment.
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6-2 The Experimental results

6-2-1 Results with static aberration

First of all, we have tried to reject a static aberration. This disturbance is due to the non
flatness of the deformable mirror. It means that, even if we don’t add any turbulence to the
system, we have an intrinsic aberration due to the initial distortion of the DM. This is a static
disturbance, like an offset. If we try to reject this kind of aberration with our lattice adaptive
loop with an order 4 lattice filter and we measure the RMS value of the residual phase y, this
is what we obtain:
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Figure 6-8: RMSstatic and RMSy with static aberration due to the DM

where the red line is the RMS of the static aberration. We can observe that we have a really
acceptable rejection (more than 75% rejection) if we have a static aberration. What we can
observe from Figure 6-8 is that we have an initial learning period, which is around 20 secs
(very fast). Then, we manage to reject the aberration even if this rejection is not constant as
we expected.
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6-2-2 Results with stationary turbulence

In the second experiment we have tried to reject a stationary atmospheric turbulence identical
to the one we have tried to reject in the simulation Chapter (see Section 5-3). The difference
is that now we have the stationary turbulence w and also the static aberration due to the
DM. The RMS of the residual phase we obtain is the blue one:
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Figure 6-9: RMSstatic+w and RMSy with stationary turbulence

We can observe the initial learning period as before. Then, we manage to reject quite well the
new atmospheric turbulence even if the main rejection is related to the static aberration. The
turbulence w is not actually so well rejected. Probably this is because the model of the DM
and of the WFS (that is the matrix H) is not a good estimation of the real model. It means
that we have a quite large modeling error G(z)− Ĝ(z) that often amplifies the turbulence.
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Chapter 7

Conclusions and Future Work

In this Thesis we have analyzed the adaptive control loop proposed by Steve Gibson to
reject the non-stationary atmospheric turbulence. We have seen that lattice filters have a
computational cost that is one order of magnitude less than RLS. From the theory we know
that the performance of lattice filters is identical to that of RLS when infinite precision
arithmetics operations are performed. Then, we have seen that the forced lattice filters have
the same performance as RLS. However, in finite-precision implementation each algorithm will
perform differently [15]. We have also seen that lattice filters have some divergence problems
in some situation. This observation has not been investigated in this thesis, see [16] for more
information. We have done some realistic simulations to evaluate the performance of this
adaptive configuration and we have seen that we manage to reject almost the 20% of the
turbulence, even without the internal controller R(z) (i.e. with an open-loop G(z)). We have
seen that it is theoretically possible to reject both stationary and non-stationary turbulence.
In our simulations we have tried to generate some realistic non-stationary turbulence by
alternating different linear state space models identified from the spatial covariance of different
stationary turbulence regimes. It was found that generating non-stationary turbulence in this
way has some limitations. Finally, we have done some simple experiment on the real system,
where it can be seen that the static aberration due to the initial shape of the DM is effectively
canceled. Experiments with a realistic non-stationary turbulence did not provide the expected
performance. This might be due to the modeling error G(z)− Ĝ(z). Nonetheless, due to the
limited time available, the cause for this poor performance was not fully investigated.
There are a lot of future improvements that can be realized. For example:

• an internal controller R(z) (for example a PI controller) could be tuned and a closed-loop
G(z) could be used to increase the performance;

• the issue of generating realistic non-stationary turbulence should be further investigated
to realize more realistic simulations and experiments;

• a more accurate identification of the real system could be realized. If we manage to
decrease the modeling error G(z)− Ĝ(z) we can improve the performance in the exper-
iments;
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• limitations of lattice filters could be studied deeply and some corrective measures could
be taken;

• a comparison with a similar adaptive loop in which Extended Kalman Filter is used can
be performed;

• some useful criteria to select the order of the forced lattice filter j̄ at every time step
could be found: for example, it could be taken a low order at the beginning or when
the turbulence changes (in case of non-stationary turbulence) to have a faster transient,
and then the order could be increased to have best performance.
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Appendix A

Lattice Filters Matlab Code

1 function [ theta_j ] = lattice_filter ( omega_hat_i , p_im1 , i , k )
2
3 % This is the function to implement lattice filters in Matlab
4
5 % inputs of the function:
6 % - omega_hat_i is the signal we want to estimate
7 % - p_im1 is the signal we want equal to omega_hat_i
8 % - i is the time step
9 % - k is the lattice filter order

10
11 % output of the function:
12 % - theta_j is the parameters vector
13
14
15 M = k+1;
16 eta = 1000 ; % this is the weight for the initial estimation

parameters vector
17 lambda = 0 . 9 9 9 9 ; % forgetting factor (it has to be major than 0.96)
18 t = M ;
19 c = 2 ;
20 j = 1 ;
21
22
23 % this is the initialization of the variables that are reset at every

time step
24 kappa = zeros (k , 1 ) ;
25 f = zeros (t , c ) ;
26 r = zeros (t , c ) ;
27 vett_r = zeros (1 , M−1) ;
28 theta_i_b = zeros (k , k ) ;
29 theta_i_f = zeros (k , k ) ;
30
31 % the following variables have to be passed from time i to time i+1

Master of Science Thesis Alessandro Scotti



66 Lattice Filters Matlab Code

32 persistent zeta_f
33 persistent zeta_b
34 persistent delta
35 persistent gamma
36 persistent rho
37 persistent b
38 persistent theta_im1_b
39 persistent kappa_b
40 persistent kappa_f
41
42
43 if isempty ( zeta_f )
44
45 % this is the initialization at time t=0
46 zeta_f = zeros (t , c ) ;
47 zeta_b = zeros (t , c ) ;
48 delta = zeros (t , c ) ;
49 gamma = zeros (t , c ) ;
50 rho = zeros (t , c ) ;
51 b = zeros (t , c ) ;
52 theta_im1_b = zeros (k , k ) ;
53 kappa_b = zeros (k , k ) ;
54 kappa_f = zeros (k , k ) ;
55
56 for m = 1 : 1 : ( M−1)
57 delta (m , 1 ) = 0 ;
58 rho (m , 1 ) = 0 ;
59 gamma (m , 1 ) = 1 ;
60 b (m , 1 ) = 0 ;
61 zeta_f (m , 1 ) = eta^(−1) ∗ lambda^(−2) ;
62 zeta_b (m , 1 ) = eta^(−1) ∗ lambda^(−m−2−1) ;
63 end
64
65 end
66
67 if (i>=2)
68
69 % this is the initialization at every time step i
70 gamma ( 1 , 2 ) = 1 ;
71 b ( 1 , 2 ) = p_im1 ;
72 f ( 1 , 2 ) = p_im1 ;
73 r ( 1 , 2 ) = omega_hat_i ;
74
75 % the following ’for’ calculates the variables at time step i.
76 % the colomn 1 has the value of the variable at time i-1
77 % the column 2 has the value of the variable at time i
78 % the rows represent the order of the variables (row 0 is order

1, and so on)
79
80 for m = 1 : 1 : ( M−1)
81 zeta_f (m , 2 ) = lambda ∗ zeta_f (m , 1 ) + ( abs ( f (m , 2 ) ^2) /

gamma (m , 1 ) ) ;
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82 zeta_b (m , 2 ) = lambda ∗ zeta_b (m , 1 ) + ( abs ( b (m , 2 ) ^2) /
gamma (m , 2 ) ) ;

83 delta (m , 2 ) = lambda ∗ delta (m , 1 ) + ( ( conj ( f (m , 2 ) ) ’ ∗ b (m
, 1 ) ) / gamma (m , 1 ) ) ;

84 rho (m , 2 ) = lambda ∗ rho (m , 1 ) + ( ( conj ( r (m , 2 ) ) ’ ∗ b (m , 2 )
) / gamma (m , 2 ) ) ;

85 kappa_b (m , k ) = delta (m , 2 ) / zeta_f (m , 2 ) ;
86 kappa_f (m , k ) = conj ( delta (m , 2 ) ) ’ / zeta_b (m , 1 ) ;
87 kappa (m , 1 ) = conj ( rho (m , 2 ) ) ’ / zeta_b (m , 2 ) ;
88 gamma ( m+1 ,2) = gamma (m , 2 ) − ( abs ( b (m , 2 ) ) ^2 / zeta_b (m , 2 ) ) ;
89 b ( m+1 ,2) = b (m , 1 ) − ( kappa_b (m , k ) ∗ f (m , 2 ) ) ;
90 f ( m+1 ,2) = f (m , 2 ) − ( kappa_f (m , k ) ∗ b (m , 1 ) ) ;
91 r ( m+1 ,2) = r (m , 2 ) − ( kappa (m , 1 ) ∗ b (m , 2 ) ) ;
92
93 % here we put in the first column the variable value at time

i-1
94 zeta_f (m , 1 ) = zeta_f (m , 2 ) ;
95 zeta_b (m , 1 ) = zeta_b (m , 2 ) ;
96 delta (m , 1 ) = delta (m , 2 ) ;
97 rho (m , 1 ) = rho (m , 2 ) ;
98 gamma (m , 1 ) = gamma (m , 2 ) ;
99 b (m , 1 ) = b (m , 2 ) ;

100
101
102 for p = 1 : ( k−1)
103 kappa_b (m , p ) = kappa_b (m , p+1) ;
104 kappa_f (m , p ) = kappa_f (m , p+1) ;
105 end
106
107 end
108
109 for p = 2 : 1 : M
110 vett_r (p−1) = r (p , 2 ) ;
111 end
112
113 x = min ( abs ( vett_r ) ) ;
114
115
116 for t = 2 : 1 : M
117 if x == abs ( vett_r (t−1) )
118 j = t−1; % j is the order chosen by the lattice filter at

time i
119 break
120 end
121 end
122
123 end
124
125
126 % now, we have to calculate the parameters vector
127
128 if j>=2
129 for m = 1 : ( j−1)
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130 if m==1
131 theta_i_b (m , m+1) = kappa_b (m , k ) ;
132 theta_i_f (m , m+1) = kappa_f (m , k ) ;
133 else
134 theta_i_b ( 1 : m , m+1) = [ 0 theta_im1_b ( 1 : m−1,m ) ’ ] ’ − kappa_b

(m , k ) ∗ [−1 theta_i_f ( 1 : m−1,m ) ’ ] ’ ;
135 theta_i_f ( 1 : m , m+1) = [ theta_i_f ( 1 : m−1,m ) ’ 0 ] ’ − kappa_f (m

, k ) ∗ [ theta_im1_b ( 1 : m−1,m ) ’ −1] ’ ;
136 end
137 end
138 end
139
140
141 theta_j = zeros (k , 1 ) ;
142
143 if j==1
144 theta_j ( 1 , 1 ) = kappa ( 1 , 1 ) ;
145 else
146 theta_j ( 1 , 1 ) = kappa ( 1 , 1 ) ;
147 for p = 2 : j
148 theta_j ( 1 : p , 1 ) = [ theta_j ( 1 : ( p−1) ,1 ) ’ 0 ] ’ + kappa (p , 1 ) ∗ [−

theta_i_b ( 1 : ( p−1) , p ) ’ 1 ] ’ ;
149 end
150 end
151
152 theta_im1_b ( : , : ) = theta_i_b ( : , : ) ;
153
154 end % end of the function
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Glossary

List of Acronyms

AO Adaptive Optics

AR Auto Regressive

DM Deformable Mirror

IMC Internal Model Control

LTI Linear Time Invariant

LQG Linear Quadratic Gaussian

LS Least Square

MIMO Multi input Multi Output

PI Proportional Integrative

PID Proportional Integrative Derivative

RLS Recursive Least Square

RMS Root Mean Square

SISO Single Input Single Output

TF Transfer Function

WFS Wavefront Sensor

SVD Singular Value Decomposition
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