
POLITECNICO DI MILANO

Corso di Laurea Specialiatica in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

A Framework for Managing the

INDENICA Virtual Service Platform

Relatore: Prof. Dr. Luciano Baresi

co-Relatori: Dr. Benjamin Satzger

Prof. Dr. Schahram Dustdar

Prof. Dr. Sam Jesus Guinea Montalvo

Tesi di Laurea Specialistica di:

Conte Luigi - Mat. 750214

Anno Accademico 2010-2011

Ringraziamenti

Giunto al termine di questo lavoro desidero ringraziare ed esprimere la mia
riconoscenza nei confronti di tutte le persone che, in modi diversi, mi sono
state vicine e hanno permesso e incoraggiato sia i miei studi che la realiz-
zazione e stesura di questa tesi.
Un grazie di cuore alla mia famiglia che mi ha aiutato in ogni modo in tutti
questi anni di studio, senza di loro non avrei mai raggiunto questa meta!

I miei più sentiti ringraziamenti vanno a chi mi ha seguito durante la redazione
del lavoro di tesi, il Prof. Benjamin Satzger, dandomi consigli e confronti
che mi hanno aiutato ad intraprendere, ogni volta, le scelte più appropri-
ate. Come non dimenticare il Dr. Prof. Luciano Baresi il Dr. Prof. Sam

Guinea che non solo mi hanno permesso di fare questa esperienza presso
la Technische Universität Wien ma sono stati sempre disponibili a risolvere
qualsiasi mia richiesta di aiuto. Un ringraziamento particolare al Dr. Prof.
Shahram Dustdar per la �ducia �n da subito dimostratami nell'assegnarmi
questo argomento di tesi e per non avermi fatto mancare nulla durante la
mia permanenza a Vienna. Devo inoltre ringraziare per la loro disponibilità
Christian Inzinger, Philipp Leitner e Waldemar Hammer che mi hanno for-

I

nito dei suggerimenti più che utili alla conclusione del mio lavoro di tesi.

Come non ringraziare tutti gli amici del PoliMi, gli amici del gruppo sportivo
CUS Milano ed in modo particolare DiGio e Jhon (sì, la "h" va proprio lì)
con i quali ho a�rontato questi anni di intenso studio, seguito numerosi corsi
e sono sempre stati accanto a me anche durante la mia permanenza all'estero.

Voglio ringraziare tutti i miei amici, che in questi anni non mi hanno mai
fatto mancare a�etto e �ducia e mi sono stati accanto nei momenti più dif-
�cili. Il loro prezioso aiuto e i loro consigli sono stati fondamentali anche
per il raggiungimento di questo traguardo. Un ringraziamento particolare a
Giorgio, Silvia e a tutti gli amici del gruppo exchange students in Vienna

che spesso mi hanno permesso di staccarmi dal mio lavoro di tesi per qualche
ora di sano divertimento ¨̂ .

Abstract

Today, companies have to cope with an increasingly heterogeneous IT land-
scape and it is getting more and more challenging to integrate and gov-
ern their enterprise information systems. Self-adaptive systems attracted
signi�cant attention but we need a good software technology that enables
dynamic and recon�gurable software development. A lot of development
approaches were studied and used in order to develop these self-adaptive
systems. Service-oriented architectures (SOA) have been identi�ed as a par-
tial solution to these problems and have been widely adopted. This has led
to a high number of service platforms that are available today. To shield
applications from the heterogeneity of the di�erent service platforms the lo-
gical next step is to create virtual service platforms (VSP). Such VPSs seem
promising but as of today there are no approaches for how to manage them.
In this work we propose a framework that helps to manage and control VSPs.
The framework combines ideas from the areas of Autonomic Computing and
adaptive systems. It's main components are a monitoring engine based on
complex event processing and an adaptation engine based on a business rule
engine. The engines can be �exibly structured and combined to adjust to
the infrastructure that is to be managed. Moreover, graphical user interfaces
are provided that will enable the clients to de�ne rules and to deploy them
into the VSP. We conduct a case study based on a warehouse management
that will be able to demonstrate the functionality and performance of the
framework.

III

Estratto

Negli ultimi anni molte aziende hanno sviluppato diverse soluzioni di sistemi
informativi nella propria infrastruttura. A causa della diversa natura di
questi sistemi informativi, queste aziende hanno avuto il problema di dover
integrare e amministrare questi sistemi eterogenei. Pensare di voler gestire
insieme questi sistemi con la sola forza umana è ormai impossibile e i con-
�ni di questi sistemi non sono più interni alla sola azienda. Una possibile
soluzione alla loro gestione, che ha inoltre suscitato particolare attenzione,
sono i sistemi auto-adattativi. Abbiamo però bisogno di una tecnologia soft-
ware adatta allo sviluppo di software dinamico e ricon�gurabile. Sono stati
studiati diversi approcci di sviluppo software per questa tipologia di sistemi
auto-adattativi e l'architettura orientata ai servizi (SOA) sembra essere una
buona soluzione adatta a migliorare la loro accuratezza, il tutto portando alla
soddisfazione dei requisiti di business. Infatti, una composizione di servizi
può essere riorganizzata dinamicamente senza il bisogno di spegnere i singoli
servizi ma soprattutto in modo trasparente all'utente. Questo è il motivo
per cui abbiamo bisogno di una infrastruttura che possa elaborare decisioni
dinamicamente e a runtime. Un altro aspetto da non sottovalutare è che vi è
una crescente dipendenza da servizi esterni oltre che una crescente frammen-
tazione di questo ecosistema di servizi e lo sviluppatore di servizi si troverà
a doverli orchestrare. La creazione di piattaforme virtuali di servizi (VSP)
da parte delle aziende sarà un modo per evitare possibili in�uenze nelle ap-
plicazioni della propria infrastruttura. Le VSP sono una buona soluzione
e creano un livello di astrazione sui propri servizi ma nella situazione at-
tuale non sappiamo ancora come realmente amministrarle. Durante questi
ultimi anni sono stati condotti diversi studi di ricerca su quale possa essere
il miglior design per le VSP. In aggiunta, numerosi studi di ricerca si sono
focalizzati sulla modellizzazione di sistemi auto-adattativi che possano abil-
itare la gestione delle VSP ed alcuni hanno portato anche allo sviluppo e
implementazione di alcuni prototipi.
Attenzione particolare in questo lavoro di tesi è stata rivolta nell'identi�cazio-

V

ne di un modello di gestione di VSP basato su sistemi auto-adattativi ed
autonomic-computing e che allo stesso tempo potesse ereditare le migliori
caratteristiche degli studi precedenti in modo da amministrare al meglio
questi sistemi eterogenei. Introdurremo diverse tecnologie so�ermandoci in
modo particolare su componenti per l'elaborazione di eventi complessi (CEP)
che consentiranno di �ltrare e aggregare eventi provenienti dai servizi moni-
torati nella VSP. Verrà de�nito anche un modello di eventi della VSP e che
i diversi servizi monitorati dovranno rispettare qualora vorranno mandare
informazioni al framework di gestione della VSP. Dopo aver implementato
la parte di monitoraggio ed elaborazione delle informazioni del framework,
avremo bisogno di un componente in grado di de�nire ed integrare nella VSP
politiche di business. In�ne, verranno sviluppati dei componenti in grado di
applicare adattamenti sui sistemi monitorati. Sarà anche studiato un mec-
canismo di comunicazione tra i componenti interni al framework adatto a
supportare la �essibilità degli stessi componenti voluta. Questo consentirà
di avere diversi livelli gerarchici di monitoraggio e adattamento in modo da
de�nire politiche di basso livello per i singoli sistemi monitorati e politiche di
alto livello per la completa gestione dinamica della stessa VSP. In aggiunta,
saranno sviluppati un servizio adatto alla memorizzazione delle informazioni
che il framework necessita (ad esempio, le diverse regole di CEP e politiche
di business saranno salvate in questo componente) e un tool completamente
gra�co che consentirà ai clienti di de�nire le diverse regole di monitoraggio e
adattamento, i parametri di con�gurazione di sistema e il binding tra eventi
tipici del sistema monitorato con il modello di eventi de�nito nel framework
oltre che salvarle nello stesso.
Dopo aver disegnato e implementato questo framework, forniremo un caso
di studio basato sulla gestione di una warehouse. Questo caso di studio ci
permetterà di testare l'e�ettivo funzionamento della piattaforma oltre che
mostrare le prestazioni.

Contents

Ringraziamenti I

Abstract III

Estratto V

1 Introduction 1

1.1 Analysis of the problem . 1
1.2 Motivation . 3
1.3 Contribution . 6
1.4 Organization . 7

2 State of the Art 9

2.1 SOA . 9
2.1.1 Web Services . 11

2.2 Autonomic Computing . 12
2.3 Publish-Subscribe . 14
2.4 Complex Event Processing (CEP) 15

2.4.1 Esper . 16
2.5 Business Rules Management 17

2.5.1 JBoss Drools . 18
2.6 Model Driven Development 19

3 Related Work 23

3.1 A Service Oriented Middleware for Context-Aware Applications 23
3.2 Adaptive SOA Solution Stack 25
3.3 Dynamic monitoring framework for the SOA execution envi-

ronment . 26
3.4 COMPAS . 27
3.5 QUA . 27
3.6 SALMon . 29

IX

3.7 MOSES . 29
3.8 VIDRE . 31

4 Design 33

4.1 Description . 33
4.2 Main System Components . 34

4.2.1 Repository . 36
4.2.2 Monitoring Engine . 37
4.2.3 Adaptation Engine . 37
4.2.4 Interfaces . 38
4.2.5 Con�guration GUI . 38

5 Implementation 39

5.1 Repository . 39
5.1.1 MongoDB . 40
5.1.2 Events Manager . 40

5.2 Monitoring Engine . 41
5.3 Adaptation Engine . 43
5.4 Interfaces . 43

5.4.1 Monitoring Interface 44
5.4.2 Adaptation Interface 45

5.5 IMF Tools . 45
5.5.1 Main Selector . 46
5.5.2 Environment Con�gurator 46
5.5.3 Incoming Events . 46
5.5.4 Monitoring Engines . 47
5.5.5 Outgoing Events . 47
5.5.6 Adaptation Engines 47

5.6 UML Class Diagrams . 47
5.6.1 IMF Runtime . 47
5.6.2 IMF Tools . 49

6 Evaluation 51

6.1 Warehouse case study . 51
6.1.1 Main Components . 52

6.2 Performance . 55
6.2.1 Basic Scenario . 58
6.2.2 Advanced Scenario . 58

Conclusions 61

X

Bibliography 63

A INDENICA Management Platform User Manual 69

A.1 Usage Guide . 69

B Case Study ESPER Monitoring Rules 85

B.1 Warehouse . 85
B.2 Yard . 86

C Case Study DROOLS Adaptation Rules 87

C.1 Warehouse . 87
C.2 Yard . 89
C.3 Loading Bay . 91

XI

XII

List of Figures

1.1 Virtual Service Platform in a heterogeneous service environ-
ment. 5

2.1 Service Oriented Architecture [29]. 10
2.2 Autonomic MAPE System[34]. 13
2.3 Publish-Subscribe System. 15
2.4 Common architectural components required to manage busi-

ness rules. 17
2.5 Model Driven Architecture (MDA)[41]. 20

3.1 CMS and ANS main components and interaction. 24
3.2 SOA Solution Stack (S3) model. 25
3.3 AS3 element model. 26
3.4 Runtime compliance governance architecture. 28
3.5 Design of the cross-layer adaptation middleware. 29
3.6 SALMon Platform Architecture. 30
3.7 MOSE Platform Architecture. 31
3.8 VIDRE Platform Architecture. 32

4.1 Overview of an INDENICA Virtual Service Platform. 34
4.2 Totally Integrated Automation Pyramid. 35
4.3 Composing components to modules in SCA. 35
4.4 Overall architecture of INDENICA Management Framework

framework. 36
4.5 INDENICA Management Framework integration interfaces. . 37

5.1 Monitoring Engine overview. 42
5.2 Adaptation Engine overview. 43
5.3 Hierarchy style of Monitoring and Adaptation Engines. 44
5.4 Monitoring Interface. 45
5.5 Adaptation Interface. 46
5.6 UML class diagram IMF Runtime. 48

XIII

5.7 UML class diagram IMF Tools. 49

6.1 Warehouse from an external point of view. 52
6.2 Warehouse from a schematic point of view. 53
6.3 UML class diagram of the Case Study main platform and GUI. 54
6.4 UML class diagram of the warehouse component. 55
6.5 UML class diagram of the yard and loading dock components. 55
6.6 Exemplary UML sequence diagram. 56
6.7 Case Study Basic Scenario. 58
6.8 Case Study Advanced Scenario. 59

A.1 Con�guration Launch Dialog. 70
A.2 Connect to Repository Database. 70
A.3 Establish Database Connection. 70
A.4 Environment Con�guration Dialog. 71
A.5 Create new Environment Con�guration. 71
A.6 New Environment Con�guration Dialog. 72
A.7 Environment Con�guration Defaults and Usage Hints. 72
A.8 Sample Infrastructure Instance Environment Con�guration. . 73
A.9 Launch Incoming Events Dialog. 73
A.10 Load previously created Con�guration. 74
A.11 Incoming Events Dialog. 75
A.12 An exemplary Monitoring Event Type. 76
A.13 ServiceInvocationFailure Event Type. 77
A.14 Launch the outgoing Adaptation Events Dialog. 77
A.15 Exemplary Adaptation Interface Event. 78
A.16 Exemplary Adaptation Interface Event. 79
A.17 Launch Monitoring Engine Con�guration. 79
A.18 Exemplary Monitoring Rule. 80
A.19 Launch Adaptation Engine Con�guration. 81
A.20 Exemplary Adaptation Rule. 81
A.21 Exemplary Adaptation Rule. 82

Chapter 1

Introduction

The following chapter shows the general scenario in which we had to work.

In particular, in Section 1.1 we try to describe the general problem in the

actual information systems. In Section 1.2 we give a motivation of the

problems introduced before. In Section 1.3 we describe our contribution in

order to solve the problems introduced. Finally, in Section 1.4 we introduce

and explain all the contents in the next chapters.

1.1 Analysis of the problem

Nowadays, in particular for companies that implemented di�erent informa-
tion systems solutions during the years, there are many problems connected
to the actual information systems nature. For example, implementing di�er-
ent solutions during the years leads to the huge problem of integrating these
solutions in order to let them work together. As a result, these companies
are a�ected by the managing problem of these heterogeneous services. Try-
ing to manage everything by considering it as a closed world environment is
unrealistic. In fact dynamic and open environments are now the norm and
many unpredictable stakeholders arise. For these reasons requirements can-
not be detected in advance thus we need a �exible support for the changes.
This has led to the use of many development approaches like incremental,
prototype-based or modular because changes need redeployment. Incremen-
tal (or iterative) development is a cyclic software development process cre-
ated in order to solve the problems that the waterfall model had. Like the
waterfall model, it starts by planning and �nishes with the deployment phase,
but there could be many cycles in the development process before reaching
the exit (deployment). In this way the developer can �x the deployed system

1

2 Chapter 1. Introduction

because, for example, some tests failed or some requirements were not satis-
�ed. This approach has some disadvantages like rigidity for each phase (not
overlap each other) and mapping requirements to increments may be not
easy. Prototype-based development is an object oriented approach in which
there are not classes. The main feature of this development approach is the
delegation: the language runtime dispatches the right method or �nds the
right piece of data by simply following a series of delegation pointers until
it �nds a match. The major disadvantages of prototype-based development
are that the system structure can be damaged in case of many changes and
that it doesn't �t on large applications. Modular development uses explicit
models that describe development activities and products. This means that
diagrams are used instead of the code for the development. By making pro-
cess and product models, the developer is allowed to de�ne and use complex
steps during the development that are correct by design. The main disad-
vantage for this development approach is the time to draw and validate the
models [6].
Another development approach that had a good success within the last years
in many application domains is the component-based development. A soft-
ware component is a software package, a Web service or a module that en-
capsulates a set of functions or data. Examples in which component-based
approach is successfully used are web-based systems, desktop and graphical
applications. The communication between these components is obtained by
using the interfaces. An important feature of this approach is that is possible
to substitute components also at runtime by just taking care of using the
same interface [14].
A component-based software is actually one of the best solutions to the
problems mentioned before. In this scenario, services become key actors in
open-world systems, thus resources are available on a network as services
[3]. The interface and programming model for application service develop-
ment in a service platform is made up by some infrastructure assets (e.g.,
communication middleware or databases) and platform services. In a service
platform we have variance of functional and non-functional properties, more-
over its interface varies with the requirements of the domain. For example,
the mass data storage and scalability are important for enterprise systems
security services but they are engineering-related services in the industry
automation domain. Integrated service applications in the Internet of the
Future will need platforms designed based on both the speci�c functional
and non-functional needs, and support to services integration across plat-
form boundaries because service-based applications will integrate services
from multiple platforms from di�erent domains.

1.2. Motivation 3

By taking a look at the companies, their matured experience tells that:

• di�erent domains (like embedded real time vs. telecom real time vs.
web-based information systems) need di�erent service platforms (some-
times still have to be developed) tailored to �t that speci�c domain;

• the Internet of the Future will lead to an integration over those tailored
service platforms;

• the already fragmented service platforms prevent the integration pro-
cess of services between platforms.

In order to have the possibility to use combinations of hardware and software
that could best �t a part of the enterprise [54], we need high heterogeneity.
This high heterogeneity will also help us to meet all the di�erent functional
and non-functional requirements. In a scenario with high heterogeneity, the
same data could be represented in di�erent ways but most of that data can
be marshalled from one system to another one or some components in the
distributed system can have di�erent capabilities than other ones [8]. There
is a common trend to develop heterogeneous systems because most of the
organisations run applications on di�erent platforms that might also support
di�erent languages. Heterogeneous systems, like all software systems, need
to evolve when requirements change. Unfortunately, supporting the evolu-
tion of these systems is very di�cult because of the di�erent platforms and
di�erent languages used [18].

1.2 Motivation

As far as we are in a scenario characterised by several heterogeneous systems
and we want to use them together, a good idea is to do this by using a vir-
tual service platform that could provide a globally integrated environment
of these heterogeneous services in which they can cooperate. The service-
centric computing vision will help us to get all these services cooperate and
form a service ecosystem.
A lot of service platforms for use by applications are already available on
the market and in the future there will be more of these platforms. There is
also an increasing need to merge non-SOA platforms into service-based ap-
plications. These are some of the reasons because is needed high degree and
heterogeneity of the already existing platforms instead of less heterogeneity.
The result of the missing heterogeneity is di�erent types of fragmentation of
service platforms:

4 Chapter 1. Introduction

Quality fragmentation : several service platforms are needed in order
to support all the Quality of Service (QoS) requirements like latency,
availability, throughput, reliability, etc.

Interface fragmentation : usually interfaces for services are di�erent even
if they o�er the same service behaviour so a binding to a speci�c in-
terface results in a dependency on that service platform supplier.

Technical fragmentation : there are di�erent situations when we may
have this fragmentation but are all related to the di�erent technologies
used to implement the same service.

These three forms of fragmentation slow the development of service-based
applications and so the growing up of a service ecosystem, in particular large-
scale integrated applications crossing several domain borders. Moreover, the
fragmentation of these complex distributed heterogeneous systems makes the
control very di�cult for the companies so we need a new development ap-
proach for these service platforms.
Actually, the challenge is not only administering the whole complex dis-
tributed environment. Regarding the service platform, the platform service
developer can be both client and consumer of the service platform's ser-
vices and he furnishes the domain-speci�c business logic. The application
developer has the role of orchestrating these services by having in mind the
domain-speci�c business logic. All these factors lead to an increase in busi-
ness service's dependency on the functioning and availability of platform
services.
In order to survive, in particular with the growing of services eco-systems,
the service provider has to consequently minimise the e�ects of external and
internal (in-house) in�uence and has to invest into application development.
The growing dependency on external services and the fragmentation will lead
the companies to create Virtual Service Platforms in order to prevent those
in�uences in their application infrastructure. But we will also need advanced
interoperability and portability constraints in case of domains where appro-
priate platforms are still missing nowadays. These Virtual Service Platforms
can vary based on the application domain but the general form is obtained
by creating an abstraction layer over the existing services.
INDENICA[30] is a research project co-funded by the European Commis-
sion within the 7th Framework Programme in the area Internet of Services,
Software & Virtualisation (ICT-2009.1.2) and it tries to discover the best
practices to build these Virtual Service Platforms by providing an exem-
plary implementation. An outline of the Virtual Service Platform role in

1.2. Motivation 5

a heterogeneous service environment and the three kinds of fragmentation
described before can be found in Figure 1.1. That schema is a good example

Figure 1.1: Virtual Service Platform in a heterogeneous service environment.

for identifying di�erent kinds of fragmentation:

• technical fragmentation because of the multiple technologies, middle-
ware, protocols (mainly contained in the layer of external services and
in-house services that are used in the Virtual Service Platforms);

• These service-based interfaces su�er from the interface fragmentation;

• We also face quality fragmentation when domain-speci�c assets are
spread around the di�erent layers of the service-oriented architecture.

Virtual domain-speci�c service platforms can be used for several purposes
but the most important from our point of view are:

• the access to application-speci�c services is centralised by the integra-
tion of external service platforms;

• o�ering protection of service and application infrastructures against
potential discontinuation of external or internal services;

• integrating application and/or domain-speci�c functionality with in-
house and external services;

• supporting vertical and horizontal integration of services over domain
and abstraction level borders;

6 Chapter 1. Introduction

• providing integrated system management functionality and support of
QoS monitoring and �exible adaptation and con�guration mechanisms.

Services and applications are then enabled by the Virtual Service Platforms
to view the all service environment as a complete defragged service delivery
platform independent from the technical realisation. We have a domain-
speci�c view of external and internal services by using the Virtual Service
Platform. Therefore the growing dependency on external service and plat-
form vendors can be largely avoided and will make the real-time enterprise
a reality by simplifying the development of the applications. The use of
these Virtual Service Platforms with all their rami�cations to enable the
support for horizontal and vertical service integration goes beyond the en-
terprise level being an important part of the service and service platform
ecosystem's foundation.

1.3 Contribution

Virtual Service Platforms are a good solution but we still don't know how
to really manage these components. We will develop an INDENICA Man-
agement Framework (IMF) in order to provide a working framework for the
Virtual Service Platform proposed by INDENICA. The IMF will be designed
as a domain-speci�c platform with emphasis on openness and interoperability
and will address the problems introduced in Section 1.2. Being interoper-
able by design, the IMF can also be used to provide a virtualization layer
for existing infrastructures.
One of the main IMF features is that its platforms can be modi�ed after
deployment. In this way it provides capabilities to make decisions, that are
usually made at design time, at runtime. In general, the IMF will provide
the following results:

• it vanishes the complexity caused by the fragmentation mentioned in
the sections before. The reuse of functionality is one of the most impor-
tant aspects that leads to a complexity reduction in platform ecosys-
tems;

• it supports platform convergence and interoperability in order to vanish
the dependency on external services and platform vendors by providing
a common base for platforms that integrate system management and
interoperability capabilities. The system management complexity will
be reduced by making it reusable across the platforms. Capabilities in
the system management will also comprehend components for dynamic
adaptation of service in order to satisfy QoS requirements;

1.4. Organization 7

• it will be a reusable infrastructure provided by tools for supporting
monitoring, governance and adaptation of services in a Virtual Service
Platform. It will not be a service-infrastructure but a runtime archi-
tecture that can be integrated in a single interoperable platform. It
will not be possible to develop a runtime platform in order to support
the whole range of platforms for all the domains so we will develop the
INDENICA Management Framework by focusing on a general scenario
that covers all the way from embedded industrial control to high-end
ERP systems.

In order to provide infrastructure components and tools to support the ef-
fective creation of domain-speci�c Virtual Service Platform, the IMF will be
composed of two main elements: IMF Runtime and IMF Tools. The IMF
Runtime is the real Virtual Service Platform that will provide capabilities of
monitoring and adaptation. The IMF Tools is a GUI that will help the user
to con�gure the whole IMF Runtime.

1.4 Organization

The reminder of this thesis is structured as follows:

• Chapter 2 details the current state of the art in the areas of SOA,
publish-subscribe systems, autonomic computing, complex event pro-
cessing, business rules management and model driven development.
There will also be presented particular engines for complex event pro-
cessing and business rules management.

• Chapter 3 provides an overview of related work in the area of systems'
managing and adaptation in companies based on the service oriented
architecture. In particular, we will describe some architectural designs
and some developed frameworks.

• Chapter 4 we provide a general description of the INDENICA Man-
agement Framework. We will also describe all the design decisions.
In particular we will introduce all the main INDENICA Management
Framework functionality and components.

• Chapter 5 covers a presentation of the prototype implementation
of the INDENICA Management Framework. In particular we will de-
scribe all the components developed and the technologies used in order
to get the platform working and satisfy all the requirements.

8 Chapter 1. Introduction

• Chapter 6 contains an evaluation of the INDENICA Management
Framework on a warehouse general scenario in which we had to cover
embedded industrial control and high-end ERP systems requirements.

Chapter 2

State of the Art

The following chapter shows the state of the art of the technologies that helped

the development of INDENICA Runtime Platform. In Section 2.1 we talk

about the base system architectural concept used as a model for the deploy-

ment of INDENICA Runtime Platform: SOA. Because of the complexity of

Web Services, we need new ways to manage them so in Section 2.2 we

talk about the autonomic computing. In Section 2.3 we talk about publish-

subscribe system, one of the best solution to let these distributed systems

communicate. The communication is based on events and in Section 2.4

we propose a way to manage those events. In Section 2.5 we talk about rule

engines, a good way to transfer business rules in our system. In Section

2.6 we talk about how is possible developing application based on models.

2.1 SOA

Most of the new programming languages use objects as paradigm but there
wasn't a way to use these objects among di�erent programming languages
or platforms. In order to solve this problem, there were made new pro-
posals like component-based technologies. These components encapsulated
the objects and were able to serve di�erent services, based on the objects
properties, to the clients and this is the reason because they were called
services. Service Oriented Architecture (SOA) is the architectural concept
where business functions are used as services. When we design services, we
have to consider some factors such as encapsulation (services should hide the
implementation details), service contract (an agreement on how service and
client will communicate and execute the operations), autonomy (the service
should perform all the operations it o�ers in total autonomy), latency (be-

9

10 Chapter 2. State of the Art

cause of the HTTP communication), etc. [17].
As shown in Figure 2.1, each component in the system can be discovered
dynamically and can play one of the three following roles:

Service Provider : entity that creates a web service and possibly publishes
its interface and access information to the service registry.

Service Requestor : entity that locates entries in the service broker using
various �nd operations and then binds to the service provider in order
to invoke one of its web services.

Service Broker : entity that acts as a repository for the interfaces pub-
lished by the service providers.

Figure 2.1: Service Oriented Architecture [29].

The general sequence is as follows: the service provider implements the ser-
vice and publishes the service to the service broker; the service requestor
discovers the service in the service broker and invokes the service in the ser-
vice provider.
The main technologies used in the architecture are XML (data description),
SOAP (service invocation), WSDL (service description) and UDDI (service
discovery).
Simple Object Access Protocol (SOAP) is a lightweight protocol used to ex-
change information and independent from the platform, programming model,
transport. There are three main parts of the SOAP protocol:

Envelope : describes what should be in the message and how it can be
processed.

2.1. SOA 11

Encoding rules : rules to describe the encoding of the application data
types.

RPC representation : representation of the remote procedure call. In
particular, it is represented by a XML structure with the method name
and all the method parameters are sub-elements in the XML message.

Web Service Description Language (WSDL) tries to solve a particular SOAP
problem: it doesn't describe which kind of messages should be transmitted
and where. So WSDL describes the communication in a XML structured
way.
Universal Description, Discovery and Integration (UDDI) is a technology
that enables to discover and �nd services. In this context, discovery means
that you can discover the service and also get all the information to invoke it.
UDDI is in general represented by a registry where it is possible to publish
all the information about a new service or make queries about some services
[13, 42, 56, 50].

2.1.1 Web Services

"AWeb service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in a

machine-processable format" [13].
Some advantages that we can have by using the web services are:

• interoperability between di�erent applications on di�erent platforms;

• use of "open" standard protocols: data format and protocols are mostly
text-based and this enables an easy development;

• use of HTTP as transport standard so we don't need to modify our
�rewall settings;

• can be used combined together (without any dependence from the
provider and the location) in order to create complex and integrated
services.

The main reason to implement a web service is the decoupling o�ered by
the standard interface exposed by the Web Service itself. Any change on
the applications running in the user system or in the Web Service doesn't
a�ect the interface. This is a good property that enables to create complex
systems made out of decoupled components and a strong usability of the

12 Chapter 2. State of the Art

code.
A new architectural style to implement web services is REST (Representa-
tional State Transfer). REST is a hybrid style derived from several network-
based architectural styles. The central REST feature is that it tries to have
an uniform interface between the components and this distinguishes it from
other network-based styles. There are four interface constraints that de-
�ne REST: identi�cation of resources, manipulation of resources through
representations, self-descriptive messages and hypermedia as the engine of
application state. In order to have the focus on the components' roles, the
interaction constraints between the components and their interpretation of
signi�cant data elements, REST ignores the details of component implemen-
tation and protocol syntax. A resource is the key abstraction of information
in REST. Thus, any information that can be named can be a resource (e.g., a
document or image, a temporal service). REST components perform actions
on a resource by using a representation to capture the current or intended
state of that resource and transferring that representation between compo-
nents. All REST interactions are stateless so each request contains all of the
information necessary for a connector to understand the request, indepen-
dent of any requests that may have preceded it [23].

2.2 Autonomic Computing

Actual company systems are characterised by the integration of heteroge-
neous environments into company-wide systems and extension of the bound-
aries into the Internet. This evolution led to more complexity in systems
managing. In this scenario we are already over the human managing limits
and architects cannot predict most of the interactions among the components
because of their complexity. We need new ways to control these systems and
the best way seems to be the one that lets themselves adapt by giving them
high level rules. This is the aim of autonomic computing (a branch of arti�-
cial intelligence) even if the realisation of the solution won't be so easy and
will involve many researchers in di�erent �elds. By self-management, auto-
nomic systems can maintain and adjust their settings, demands, workloads
and manage software or hardware failures.
In the autonomic system there are several components, each of them auto-
nomic. As shown in Figure 2.2, every component consists of one or more
managed elements and an autonomic manager. The autonomic manager is
characterised by four components that represent the main activities in an
autonomic system:

2.2. Autonomic Computing 13

• Monitor: receive incoming data from the managed element and aggre-
gates, collects, �lters and reports details.

• Analyse: problem detection by modelling complex situations and un-
derstanding the current system state.

• Plan: adaptation choice in order to achieve goals and objectives.

• Execute: changes the behaviour of the managed element by executing
actions on it.

Figure 2.2: Autonomic MAPE System[34].

IBM found four main aspects of self-management [34]:

self-con�guration : in the current computing we have data centers with
di�erent vendors and platforms so installing and con�guring is time
consuming and increases the probability of errors; in the autonomic
systems all the con�guration is automatic and follows high-level poli-
cies.

self-optimization : in the current computing there are a lot of manually set
parameters and they could grow by the introduction of new releases; in
the autonomic systems the components try every time to change these
parameters in order to reach the best performance.

14 Chapter 2. State of the Art

self-healing : understanding which could be the cause of a problem in the
current computing could take weeks of programmers' work; in the au-
tonomic systems the problems are automatically discovered and �xed.

self-protection : in current computing the detection and recovery from
attacks or from cascading failures is manual; in the autonomic systems
not only the detection and recovery are automatic but they also try to
prevent system failures.

The acronym MAPE (monitor-analyse-plan-execute) aims to represent the
four main activities executed by an autonomic manager: monitoring the
managed elements and executing something on them based on the high-level
rules set up. The managed elements represent the components without any
autonomic rule and could be hardware or software. As shown in Figure 2.2,
we can use multiple autonomic managers in a hierarchical fashion for multiple
resources: low-level managers deal with resources at a smaller granularity
and/or smaller locality, top-level managers can be used for business decision-
making and/or policy and QoS levels. The automated rules planning process
follows few steps like describing the domain, �nding the initial state, creating
some actions that can bring the system from the initial state to a state that
satis�es the high-level objectives [48].

2.3 Publish-Subscribe

With the Internet the distributed systems are now made up of many entities
around the world. The old way of communication between these entities,
such as synchronous or point to point, is not working well anymore so we
need a more �exible communication. Publish-subscribe seems that could �t
the requirements for these new systems. As shown in Figure 2.3, in this
model of asynchronous communication based on events there are three main
actors:

Subscriber : expresses the interest on some events by subscribing on topics
or de�ning some patterns.

Publisher : publishes events in the system.

Broker : event noti�cation service that receives the events from the pub-
lisher and sends them to the correct subscriber(s).

There are di�erent publish-subscribe variations because subscribers are often
interested in particular events and not in all of them.

2.4. Complex Event Processing (CEP) 15

Figure 2.3: Publish-Subscribe System.

topic-based : the �rst implementation of publish-subscribe system where
there are di�erent spaces named by the topic keyword so publishers
publish the event in the correct space and subscribers subscribe on one
or more spaces. This works like the channels or we can see this method
like one topic can be a group and all the components of that group can
listen to that topic or say something on that group.

content-based : the events are no more classi�ed based on an external
criterion but on the actual attributes that they have. Subscribers can
subscribe on contents that are de�ned by name-value pairs with com-
parison operators (=, >, <, ≥, ≤) where the name is the attribute
name of the event.

type-based: events are �ltered not by the topic but by their type. From
one point of view it could be better because it enables closer integration
with the language and we can ensure type safety at compile time. The
reader can understand that type-based can easily become a content-
based if we turn public all the attributes of the event.

There are several designs of publish-subscribe system and we cannot say
which one could be the best one at all [21, 22].

2.4 Complex Event Processing (CEP)

Traditional computing uses databases that contain static data. In the re-
altime computing everything is based on streaming events. Complex Event
Processing (CEP) is a set of techniques and tools used to help understanding
and controlling event-driven information systems pioneered in late 1990's at
Cambridge University in the UK, the California Technology Institute and
Standford University.

16 Chapter 2. State of the Art

Complex events are events that can only happen if lots of events happened.
In the Event Driven Architecture (EDA) we have loose coupling because the
creator of the event doesn't know who is going to consume it.
There are di�erent event consuming styles:

Simple event processing : the event occurs and an action is initiated.

Stream event processing : stream of ordinary and notable events that
are �ltered to raise signi�cant events.

Complex event processing : ordinary events of di�erent types and longer
time spans where the correlation can be casual, temporal or spatial.

In order to get it working we need a stream processing engine that could
manage those events. We can run more that one of these engines in order
to satisfy performance, scalability and fault tolerance requirements. The
Complex Event Processing Language (EPL) is the language used in the CEP
platform in order to de�ne the logic to generate complex events. CEP engines
give some bene�ts to businesses like identifying revenue opportunities in real
time, quickly deploying and managing new services, detecting and stopping
fraud as it happens, spotting favourable market conditions as they arise,
reducing errors as they are made and detected [32, 44].
One of the �rst two CEP engines commercially available was Apama, based
on the research by Dr. John Bates and Dr. Giles Nelson at Cambridge [36].

2.4.1 Esper

Esper [20] is a lightweight open-source CEP engine written entirely in Java
and fully embeddable into any Java process-custom, JEE, ESB and BPM
available under a GPL license. It is capable of triggering custom actions
when event conditions occur among event streams. When millions of events
are coming it would make it impossible storing them in a database and later
query and that is why we need engines like Esper that can support high-
volume event correlation.
Esper is able to handle events as JavaBeans, arbitrary java classes, java
Map objects, or XML documents. The expression of conditions, correlation
and spanning time windows is in Event Query Language (EQL): an object-
oriented event stream query language very similar to SQL in its syntax but
it signi�cantly di�ers in being able to deal with sliding window of streams
of data [4, 5]. An example of EQL query can be the following one:� �

select *

from StockTick(symbol='AAPL').win:length (2)

2.5. Business Rules Management 17

having avg(price) > 6.0� �
Listing 2.1: EQL Esper Query example.

In the Listing 2.1 we have the event class StockTick with attributes String
symbol and Double price. This EQL query will trigger a new event every
time average over the last two (win:lenght()) StockTicks having the symbol
"AAPL" is above the value of 6.0.

2.5 Business Rules Management

A business rules1 engine is a system that executes one or more business rules
coming from legal regulation or company policies in a production environ-
ment. This system enables to de�ne, test, execute and maintain the company
policies separate from application code and typically supports rules, facts,
priority, mutual exclusion and preconditions. In any IT applications, busi-
ness rules change more frequently than the rest of the application code and
in Figure 2.4 we can better understand which are the main components to
manage them.

Figure 2.4: Common architectural components required to manage business rules.

Using rules can make easy expressing solutions to di�cult problems and
consequently have those solutions veri�ed, they are much easier to read than
code and we can create a single repository of knowledge (a knowledge base)
which is executable. We have data and logic separation: data is in the do-
main objects and the logic is in the rules.

1A business rule is a statement that de�nes or constrains some aspect of the business.

18 Chapter 2. State of the Art

Rule systems are capable of solving very, very hard problems, providing an
explanation of how the solution was arrived at and why each "decision" along
the way was made (not so easy with other of AI systems like neural networks
or the human brain - "I have no idea why I scratched the side of the car").
The rule engines generally di�er in how rules are executed:

production/inference rules : rules used to represent constructs like IF

condition THEN action.

reaction/EventConditionAction rules : the reactive rule engines detect
and react to incoming events and process events.

The main di�erence between these rules is that production rule engines ex-
ecute when a user or application invokes them and a reactive rule engine
reacts automatically when events occur. Most of the engines in the market
support both rule execution ways [38, 53].

2.5.1 JBoss Drools

Drools[31] is a Java open source implementation of rule engine distributed
under the Apache license [25]. The inference engine has the main role of
matching facts and rules (pattern matching) to draw conclusions which ends
in running actions. This matching is done by the RETE algorithm [24]
extended by object oriented concepts.
Knowledge representation, which is a way of providing the rule engine with
data, is based on �rst order logic (FOL)2.
There are two main parts in a rule: condition(s) and action(s). As we can
see in the Listing 2.2, the condition part is introduced by the when tag and
the action by the then tag.� �

when

Customer (age > 17)

then

System.out.println("Customer is full age");� �
Listing 2.2: Drools rule example.

The condition in the Listing 2.2 is true for all those facts, which represents
full age customers and could be similar to a SQL query in the Listing 2.3.� �

SELECT *

2First Order Logic allows to evaluate expressions like "2 + 3 == 5" or "customer.age

> 17".

2.6. Model Driven Development 19

FROM Customers c

WHERE c.age > 17� �
Listing 2.3: SQL Query example similar to Drools rule in Listing 2.2.

The Drools rule engine gives some advantages that could be summarised in
the following list:

• separates the application from conditions which control the �ow: rules
are stored in separate �les, can be modi�ed by di�erent groups of
people, changing rules does not require to recompile or to redeploy the
whole application, putting all rules into one place makes it easier to
control or manage the �ow of the application;

• rules can replace complex if-then statements in an easy way: the rule
language is not very di�cult to learn, rules are easier to read and
understand than code;

• problems are solved via rules, not by using a complicated algorithm:
with declarative programming focuses on WHAT we are solving and
not HOW, sometimes the algorithmic approach may be unusable (too
complex, too time consuming, etc).

Drools is not only a rule engine but also an application for managing rules
(Business Rules Management System). So we can create, modify, delete,
branch and persist rules, assign roles to users (by using a login mechanism
and LDAP integration for security) [35].

2.6 Model Driven Development

Developing complex software systems using code-centric technologies re-
quires a lot of e�ort today. In particular, there is a big gap between the
problem and the implementation domain.
Model Driven Development or Engineering (MDE) is one of the approaches
that tries to decrease this gap. A model is an abstraction of some aspects
of the system and that system may or may not exist when the model is
created. MDE consists of creating abstract models of software systems and
later concretely implement them. One of the main focuses of the MDE re-
search is to produce technologies that separate software developers from the
complexities of the underlying implementation platform.
We can distinguish two main classes of models:

Development models : software models at code abstraction level (require-
ments, architectural, implementation models).

20 Chapter 2. State of the Art

Runtime models : abstractions of some parts of an executing system.

These models could also be used for more than just documentation during
the software development. Technologies that raise the implementation ab-
straction level can improve productivity and quality while respecting the
types of software targeted by the technologies.
The OMG [41] is an organization that develops and maintains standards for
developing complex distributed software systems and launched the Model
Driven Architecture (MDA) as a framework of MDE standards in 2001 [49].
As shown in Figure 2.5, the MDA separates business and application logic

Figure 2.5: Model Driven Architecture (MDA)[41].

from the underlying platform technology but also tries to maintain separated
the following viewpoints in the modeling systems:

Computation independent : focus on the environment in which the sys-
tem will operate and on the required features of the system.

Platform independent : focus on the system features that don't change
from one platform to another.

Platform speci�c : a view of a system in which platform speci�c properties
are integrated with the elements of a platform independent model.

In conclusion, modelers need modeling methods that could provide them with
guidelines to develop quality models. There are di�erent ways to express

2.6. Model Driven Development 21

these guidelines like in the form of patterns, proven rules of thumb and
exemplar models. The main problem is that the modelers usually ask for
feedback from experts only at the end or when it is too late to determine the
quality of their models [26].

22 Chapter 2. State of the Art

Chapter 3

Related Work

During the years many researches were made in order to �nd and propose

the best service oriented architecture for systems managing and adaptation in

companies. In this chapter we will give an overview of all the main proposals.

In particular, in Section 3.1 we describe a service oriented middleware for

context-aware applications. In Section 3.2 we describe another adaptive

solution based on the SOA Solution Stack (S3). In Section 3.3 we describe

a dynamic monitoring framework for the SOA execution environment. In

Section 3.4 we introduce the COMPAS project. In Section 3.5 we intro-

duce the QUA system. In Section 3.6 we introduce the SALMon platform.

In Section 3.7 we introduce the MOSES framework. In Section 3.8 we

introduce the VIDRE business rule engine.

3.1 A Service Oriented Middleware for Context -

Aware Applications

A relevant use of distributed systems is represented by context awareness.
From a point of view the awareness makes the applications able to adapt
their functionality when the contex changes, from another point of view the
awareness raises new several requirements. A solution to manage all these
new requirements could be enabling the applications to specify the major
changes in the system.
Luiz Olavo Bonino da Silva Santos, Remco Poortinga - van Wijnen and
Peter Vink proposed a context-aware middleware as integration of two com-
ponents in a Service Oriented Architecture (SOA): the Context Management
Service (CMS) [46] and the Awareness and Noti�cation Service (ANS) [15].
The CMS has a publish-subscribe facility that enables the context sources to

23

24 Chapter 3. Related Work

publish information about their state in order to be used by context-aware
applications and/or services. The ANS enables the client applications to
de�ne some context-based rules that are executed by a facility running in
this component. It is also able to �nd the right context sources which it has
to subscribe to in order to get all the context information for executing the
context-aware rules.
As shown in Figure 3.1, the CMS has 3 main components: context source
(provides information about a speci�c context and registers to the broker),
context broker (saves and tracks all the context sources), context consumer
(�nds the right sources by asking the broker and uses their context infor-
mation). From the same �gure it is possible to understand the connection
between the CMS and the ANS, as well as the ANS main components: event
monitor (receives context information from the CMS and sends them to the
controller), controller (receives events and evaluates the rules conditions),
noti�er (noti�es the client application in case of rule �ring), knowledge repos-
itory (stores all the rules), rule manager (enables the applications to de�ne
rules and stores them in the knowledge repository) [16].

Figure 3.1: CMS and ANS main components and interaction.

3.2. Adaptive SOA Solution Stack 25

3.2 Adaptive SOA Solution Stack

Figure 3.2: SOA Solution Stack (S3) model.

The aim of this work is to try to solve some issues still present in the
SOA Solution Stack (S3) [2] context proposed by IBM, such as:

• Building a unique adaptive system model that de�nes interfaces, en-
ables the building of an adaptation loop and could be used for any
SOA system.

• Finding the best implementation technology that could better �t over
the whole S3 layers. The implementation should consider also e�ciency
and scalability issues because the adaptation will process lots of data
during the SOA application runtime.

• Because of the SOA systems dynamicity, we need this property also in
the adaptation by providing recon�guration on demand (thus, without
any suspension or restarting of the system).

• The adaptation strategies �red at the same time could be more than
one so we need to adopt statistical/probability theories in order to
execute the best one.

The researchers of the AGH University of Science and Technology integrated
adaptation features to the S3 model shown in Figure 3.2 by developing the
Adaptive S3 (AS3) element. In Figure 3.3 is shown an AS3 element with all
its components working in a single S3 layer. The resource represents anything
that could be monitored and managed, and send information data by sensors.
The sent data is collected by the monitoring component and it decides to
create single events for each data or aggregate them in a complex one. In
this component can run CEP engines (refer to Section 2.4) like ESPER

26 Chapter 3. Related Work

Figure 3.3: AS3 element model.

or DROOLS. The exposition component receives these events. It has an
adaptive manager that selects the action to be performed and, in case of �ring
of some rules, it will send the information about the adaptation strategy to
the management component. The management component will thus execute
the adaptation actions on the resource. As we said, the Figure 3.3 shows
the application of AS3 in a single S3 layer but it is easy to understand
that the information about the resource can be sent in di�erent layers of S3
architecture where di�erent AS3 elements are running [57].

3.3 Dynamic monitoring framework for the SOA

execution environment

Service Oriented Architectures (SOA) are increasingly used in order to face
the constant changes in business requirements at runtime. But we need to
de�ne some requirement for SOA management if we want a service compo-
sition to be dynamically rearranged without shutting down the services.
Daniel �muda, Marek Psiuka and Krzysztof Zielinski propose a framework
that can satisfy these needs. The frameworks uses two main elements of the
Event-driven SOA [52]: event-based system and complex event processing
engine. The adapted interceptor pattern is the design chosen for this frame-
work: interceptors are exposed as services and they can provide on-demand
monitoring data to the monitoring environment. The interceptors that need
to be plug are determined by the monitoring scenario that could also be

3.4. COMPAS 27

dynamically changed. The middleware platform used as Enterprise Service
Bus (ESB) is an OSGi ESB container [58].

3.4 COMPAS

Researchers involved in the COMPAS (Compliance-driven Models, Languages,
and Architectures for Services) [7] project, developed a service oriented
framework that could manage company compliance. In order to get the
framework running, the COMPAS project also provides a tool de�ne the
compliance governance lifecycle and its output is a BPEL process of the
process model. The COMPAS runtime framework (Figure 3.4) takes as
input this BPEL process and deploys it to the Extended Process Engine
Apache ODE. The process UUDI is published to the Process Engine Out-
put (a Java Message Service Topic) in the Enterprise Service Bus Apache
ActiveMQ. From the other side, there is an Advanced Telecom Service Cus-
tom Controller (ATSCC) subscribed to this topic with the role of selecting
pre-de�ned events. All the events that pass the check are then published in
an other JMS-Topic (Compliance Govern Input) which are subscribed to the
CEP and the Event Log engines. The CEP has the role of �nding complex
event patterns from the incoming events. In this way system-level events
are transformed in business-level events. The results are shown online on
the Compliance Governance Dashboard while the business-level events are
published to the JMS-Topic CEP Engine Output. These events are stored
into the Event Log component, as the system-level events. The Event Log
is accessed by an ETL that extract, transforms and loads the data into the
Data Warehouse that is then extracted and analysed by the Analysis/Busi-
ness Intelligence component. Also the results of this o�ine process are �nally
shown in the Compliance Governance Dashboard.

3.5 QUA

The main approach used to build systems from compositions of inter-organi-
sational services is Service Oriented Architecture (SOA). The fragmentation
of these services is still present because of the di�erent development technolo-
gies, published by di�erent providers, etc. Also the application logic could
be divided in two layers (T. Erl [19]): the service interface layer (services
communicate via open protocols hiding the implementation) and the appli-
cation layer (application logic developed on di�erent technology platforms).
SOA-based system should be able to adapt at the layer(s) in order to adapt

28 Chapter 3. Related Work

Figure 3.4: Runtime compliance governance architecture.

to context changes at runtime so we need an adaptation framework in both
layers, possibly without leading too much re-implementation or re-factoring.
An adaptation framework that could be used on SOA-based systems to per-
form cross-layer adaptation is QUA [27]. Even if QUA is used across di�erent
layers, it could also be applied on the two layers separately. The framework
is composed by a planning framework (responsible for choosing service imple-
mentations and con�gurations) and a platform framework (able to manage
and adapt services).
In Figure 3.5 there is a design view of the cross-layer middleware build by
using the QUA. It is easy to understand that the adaptation mechanisms
used in the two layers are di�erent because of the layers nature. In order
to integrate the two layers, the �rst step to do is mapping the concepts and
artefacts of the two layers into a common QUA meta-model. The planning
framework will then use this information to understand the dependencies
between the service interface layer and the application layer. The second
step is developing a technology speci�c platform that encapsulates runtime
environments and adaptation mechanisms. All the information needed to
instantiate services and adapt them are received by each platforms from the
planning framework [28].

3.6. SALMon 29

Figure 3.5: Design of the cross-layer adaptation middleware.

3.6 SALMon

In order to ful�l the QoS requirements and the SLAs, self-adaptive systems
can enable services to change dynamically. SALMon is a SOA system that
provides QoS information at runtime useful to detect SLA violations. The
platform is composed by the three main services shown in Figure 3.6. The
Monitor service uses the Measure instruments in order to obtain information
about Qos. The Measure instruments communicate with the services and
get monitoring information from them. This information are then rendered
by the Monitoring service and transferred to the Analyzer service. This
component checks SLA violations and when a violation happens, it noti�es
the Decision Maker service running in the service a�ected by the violation.
The Decision Maker service chooses the best operation to do in order to
solve the problem in the service. This solution lacks scalability because each
Decision Maker service runs in one and only one service [43].

3.7 MOSES

In order to react to changes in the operating environment, we need some
tools to enable SOA systems to self-adapt. MOSES (MOdel-based SElf-
adaptation of SOA systems) is a tool developed by people from the Italian
University of Rome and Technical University of Milan that can allow self-

30 Chapter 3. Related Work

Figure 3.6: SALMon Platform Architecture.

adaptation in these SOA systems.
Sometimes it could happen that there is not any combination of services that
can ful�l the QoS requirements but MOSES proposes multiple independent
implementations of the same functionality in order to solve it. Thus, instead
of considering concrete services, it binds abstract services to a set of concrete
services. MOSES enables multiple user de�nition of QoS requirements and it
will try to have a runtime platform that satis�es an average of the duplicated
requirements.
In Figure 3.7 is possible to see the core MOSES framework's elements and
their connection. MOSES takes as input the description of the composite
service in the BPEL [33] work�ow orchestration and a set of services can-
didate to ful�l the requirements. In case that MOSES �nds a model that
satis�es the work�ow, it builds a behavioral model of the composite service
and passes it as input for the adaptation modules. The adaptation derives all
the parameters from the de�ned SLAs. The monitoring activity has the role
to give all the realtime information needed by the adaptation component in
order to satisfy the SLAs even if the context changes at runtime. When an
adaptation is needed, MOSES builds a new work�ow with new parameters
that satisfy the SLAs [9].

3.8. VIDRE 31

Figure 3.7: MOSE Platform Architecture.

3.8 VIDRE

VIDRE [40] is a business rule engine with several new features that can be
summed in the listing below.

• It combines the rule-driven approach with SOA. This features enables
both integration in client applications and the using of Web services
that execute business rules.

• It makes easy the communication between the client and the business
rules by using a plug-in mechanism. This feature makes also trans-
parent the business rule engines exchanging to the client applications.
The rule markup used is RuleML [47] that is supposed to be an easy
language to de�ne business rules as long as it is a standardisation of
the rule markup.

• It can execute distributed business rules (execution of business rules
over several rule engines).

Every business rule engine in VIDRE is contained by a VIDRE service
provider (VSP) and its architecture is based on the Java Rule Engine API
(JSR 94) combined with RuleML. In Figure 3.8, every VSP o�ers a generic
RuleML interface that takes as input only valid RuleML documents sent by
HTTP, JMS or SMTP. Every VSP publishes a WSDL interface in order to

32 Chapter 3. Related Work

access the client runtime and another WSDL interface to access the admin-
istration. There are two ways that the clients can use to access the VSP: by
its Web service interface or by a SOAP-RuleML gateway that o�ers a way
to access the business rules as Web services.

Figure 3.8: VIDRE Platform Architecture.

Chapter 4

Design

The following chapter introduces the INDENICA Management Framework.

In particular, Section 4.1 gives a short description of this thesis work. In

Section 4.2 we show the architectural design of INDENICA Management

Framework.

4.1 Description

INDENICA Management Framework is proposed as a virtual platform tool
for large systems in di�erent areas. This tool will be useful in managing
variability on a system wide level by covering the aspects of vertical and
horizontal integration of di�erent platforms.
The approach used by the IMF is goal-oriented: it addresses the challenges
by describing requirements of the whole system. It will also provide views
to describe the complete system architecture that can be used to generate
connectors between the di�erent platforms covered by the IMF. The Figure
1.1 represents a Virtual Service Platform (VSP): a special kind of service
platform useful to hold the heterogeneity of the underlying service platforms
and provide the right abstract layers to the service-based application devel-
opers. The major features in the �nal framework will be monitoring and
adaptation functionality for the single platforms and the system as a whole.
Usually the functional and non-functional properties of a service platform
and its interface vary with the requirements of a domain so we propose the
IMF as a domain-speci�c service platform. In this way, customers can bene�t
from reusable software elements because software development is complex,
time consuming and expensive.

33

34 Chapter 4. Design

Figure 4.1: Overview of an INDENICA Virtual Service Platform.

4.2 Main System Components

Modularisation has been known as a good method in system engineering
for many years in several scenarios going from IT systems to embedded de-
vices. The IMF needs to support and enable the communication between
these modules located in di�erent layers of the Totally Integrated Automa-
tion (TIA) Pyramid shown in the Figure 4.2, in a range that goes from the
IT systems used in the Enterprise Resource Planning (ERP) down to the
controllers used in the Programmable Logic Controller (PLC) layer. Thus,
we will adopt a modularisation technology for the IMF in order to satisfy the
requirements and we will use the Service-Oriented Computing (SOC) [45] as
a development pattern in the IMF in order to achieve software reusability.
This means that services are used as the fundamental elements for the appli-
cation development. The Service Component Architecture (SCA) is a stan-
dard of the Open SOA Consortium [12] and integrates the service-oriented
paradigm with component-based development (for more details we suggest
reading [10]). As shown in Figure 4.3, SCA components are the building units
of modules and composite applications that communicate with each other
via services. As far as SCA is standardized, supported by several vendors

4.2. Main System Components 35

Figure 4.2: Totally Integrated Automation Pyramid.

and enables a high level of integration, it represents a potential technology
for the IMF.
We can obtain several bene�ts by using SCA such as "rapid development

Figure 4.3: Composing components to modules in SCA.

and increase in productivity, higher organisational agility and �exibility, re-
turn on Investment through reuse" [37]. This architecture is also supported
by many reliable open source platforms such as Apache Tuscany [1] or Fab-
ric3 [51]. The IMF will accommodate domain-speci�c variability in non-
functional requirements of platform and application components and will

36 Chapter 4. Design

also automatically compile domain-speci�c non-functional requirements into
runtime policies (e.g. to be used for dynamic instantiation or migration of
components).
A complete overview of the IMF is shown in Figure 4.4. In this way, the
monitoring and adaptation framework introduced will signi�cantly improve
the lifecycle management of Virtual Service Platforms.
There will be developed all the components placed in the IMF Runtime

Figure 4.4: Overall architecture of INDENICA Management Framework framework.

platform while supporting models and model instances are marked in yellow
color. In the following subsections we will describe better all the functionality
for each component.

4.2.1 Repository

The central element of the �gure is the Repository component. It will be
developed as a service that could o�er all the functionality of static storing
to all the clients connected to the IMF and all the other components having a
role in the platform. It will also store models which de�ne how the platform
variants di�er from each other. Moreover, the Repository o�ers functionality

4.2. Main System Components 37

Figure 4.5: INDENICA Management Framework integration interfaces.

of managing runtime events generated in the IMF by platform's components
or by the clients. Thus, the Repository acts as both the back-end database
(by using a DBMS) and the online caching storage (by using a publish-
subscribe framework).

4.2.2 Monitoring Engine

This component o�ers functionality of monitoring the connected system by
using a CEP engine (Chapter 2.4) that catches proper events or sequences
of events. These monitored events can come either from the monitored sys-
tem or from the running Virtual Service Platform (VSP) instance. Thus, the
purpose of Monitoring Engine is to ful�l the functional and non-functional
requirements by providing feedback to the Adaptation Engine.

4.2.3 Adaptation Engine

This component receives events from the Monitoring Engine and o�ers func-
tionality of adaptation to the monitored system based on previously de�ned
rules and policies in a rule engine (Chapter 2.5). In this way, we will ful�l
all the business rules de�ned.

38 Chapter 4. Design

4.2.4 Interfaces

In order to connect the monitored system to the IMF, we o�er several services
that can receive monitored system information and place adaptation actions
on the monitored system. Figure 4.5 shows how the monitored system is
integrated in the IMF by using these interfaces. In particular, the monitored
system will provide services for a monitoring service to send monitoring
information and an adaptation service to receive adaptation actions.

4.2.5 Con�guration GUI

This component should provide the system con�gurator all the tools to con-
�gure the IMF for the best connection to the monitored system and the
best governance of it. So there will be interfaces for the environment con-
�guration, events de�nition (incoming or outgoing), CEP rules and business
rules.

Chapter 5

Implementation

The following chapter shows the real implementation of the INDENICA Man-

agement Framework components. In Section 5.1 we show the Repository

implementation and the Event Manager (a particular component for events

management) implementation. In Section 5.2 we show the Monitoring

Engine implementation. In Section 5.3 we show the Adaptation Engine

implementation. In Section 5.4 we show the Interfaces implementation.

In Section 5.5 we show the Con�guration GUI implementation.

5.1 Repository

The Repository is a SCA component implemented in Apache Tuscany [1]
for Java. All the components interested in the retrieval of some static
information such as con�guration parameters or storing of some data can
connect to this component by a Tuscany reference or by invoking the ser-
vice. This component has a connection to the real database implemented
using MongoDB[39]. All the IMF Runtime con�guration is in the AdminDB
database in MongoDB and here are the collections (tables):

envConf all the IMF environment parameters.

adaptationPolicies all the adaptation policies in Drools language for the
Adaptation Engine.

eventsIn all the de�nitions for the events incoming to the IMF Runtime.

eventsOut all the de�nitions for the events outgoing from the IMF Run-
time.

39

40 Chapter 5. Implementation

monitoringRules all the monitoring rules in Esper language for the Mon-
itoring Engine.

5.1.1 MongoDB

MongoDB is a document-oriented database so that documents (objects) map
well to programming language data types and embedded documents reduce
need for joins. The low need of joins leads to high performance: fast reads
and writes. It also o�ers easy scalability capabilities like automatic sharding
(auto-partitioning of data across servers) so reads and writes are distributed
over shards. MongoDB data model is based on a set of databases; each
database has a set of collections; each collection has a set of documents;
each document has a set of �elds; each �eld is a key-value pair. It o�ers also
a rich query language represented by JSON-style queries [11]. An example
of these queries by using the command line mongod server program is as
follows:

db.things.find({ x : 3, y : "foo" });

This is like the SQL query

select * from things where x=3 and y="foo"

5.1.2 Events Manager

In order to give all the runtime capabilities to the Repository, we decided
to implement the Events Manager component: a publish-subscribe system
that could manage all the events used for the platform components com-
munication. All the components that want to publish or subscribe for an
event need to know all the information about this system. This information
can be obtained by connecting to the Repository and querying the con-
�guration table. The publish-subscribe system is implemented in a server
running RabbitMQ[55] message broker by using its topic based delivery ca-
pability. The main advantage of using a publish-subscribe system reached in
our platform is that we have more �exibility on the monitoring and adapta-
tion engines instantiation and everything is transparent to the components
that publish some events.

RabbitMQ

RabbitMQ is a message broker so, the main idea is that it accepts and
forwards messages. We can compare this system to a post o�ce and the
RabbitMQ broker is the metaphor of a post box, a post o�ce and a postman.

5.2. Monitoring Engine 41

A program that sends messages is a producer. A queue is the name of the
mailbox and lives in RabbitMQ. A consumer is a program that waits for
messages to be received.
The core idea in the messaging model in RabbitMQ is that the producer
never sends any messages directly to a queue. Quite often the producer
doesn't even know if a message will be delivered to any queue at all but can
only send messages to an exchange. The exchange is like a proxy: receives
messages from producers and pushes them to queue(s). There are di�erent
exchange types but we will focus on the topic one that is what we used
in our publish-subscribe system. Messages sent to a topic exchange have
a list of words, delimited by dots (e.g. "events.mi.#", "*.ae.usageHigh",
"quick.orange.rabbit"). There are some special characters in the words:

* can substitute for exactly one word

can substitute for zero or more words

A full example of Java code in the publisher side is in the Listing 5.1.� �
1 channel.exchangeDeclare("exchange_name", "topic");

2 channel.basicPublish("exchange_name", "myTopic.hello",

null , "Hello");� �
Listing 5.1: RabbitMQ publisher Java code example.

The message will be received by the consumer that runs the Java code in
the Listing 5.2.� �

1 queueName = channel.queueDeclare ().getQueue ();

2 channel.queueBind(queueName , "exchange_name", "

myTopic.hello");

3 QueueingConsumer consumer = new QueueingConsumer(

channel);

4 channel.basicConsume(queueName , true , consumer);

5 QueueingConsumer.Delivery delivery = consumer.

nextDelivery ();

6 String message = new String(delivery.getBody ());� �
Listing 5.2: RabbitMQ consumer Java code example.

5.2 Monitoring Engine

In order to implement the monitoring aspect of the IMF Runtime we de-
veloped a Java component named Monitoring Engine 5.1. It processes the

42 Chapter 5. Implementation

received events from the monitored platform by using the Esper CEP en-
gine. The events are received from the Event Manager which the Monitoring
Engine subscribes to. The Esper processed events are then sent again to the
Event Manager. All the information about which events it should subscribe
to or send and the monitoring rules are retrieved by connecting to the Repos-
itory component. As shown in Figure 5.3, it is possible to instantiate more
than one of these engines in order to have di�erent hierarchy levels of moni-
toring. The Monitoring Engine will be also responsible for self-monitoring of
the IMF Runtime by handling the right events from the Adaptation Engine.
This is possible by subscribing on particular event patterns in the Event
Manager (e.g. events.monitoring.#).
The basic assumption is that the Monitoring Engine should be able to receive
and understand events from any current or future monitored platform. In
order to o�er this capability, we developed a generic and extensible Monitor-
ing Event Model (Event used to convert events generated by the monitored
platforms to internal IMF events. The Event model class can be found in
the attached source code.

Figure 5.1: Monitoring Engine overview.

5.3. Adaptation Engine 43

5.3 Adaptation Engine

The adaptation aspect of the IMF Runtime is implemented in a Java compo-
nent named Adaptation Engine 5.2. It processes the received events from the
Monitoring Engine (generated by Esper) by using the JBoss Drools engine.
The events are received from the Event Manager which the Adaptation En-
gine subscribes to. The adaptation actions received from the Drools engine
are transformed in the IMF events and sent again to the Event Manager. All
the information about which events it should subscribe to or send and the
monitoring rules are retrieved by connecting to the Repository component.
It is possible to instantiate more than one of these engines in order to have
di�erent hierarchy levels of adaptation and each of them implements auto-
nomic MAPE managers. This facilitates separation of concerns allows the
low-level Adaptation Engines to deal with granular changes in system be-
haviour and the high-level Adaptation Engines to focus on the speci�cation
of overall service level goals.

Figure 5.2: Adaptation Engine overview.

5.4 Interfaces

In order to o�er this monitoring and adaptation service to the governed ser-
vices we developed two di�erent interfaces which they have to communicate

44 Chapter 5. Implementation

Figure 5.3: Hierarchy style of Monitoring and Adaptation Engines.

with: Monitoring Interface and Adaptation Interface.

5.4.1 Monitoring Interface

The Monitoring Interface is a SCA component implemented in Apache Tus-
cany for Java. This component is an integration interface for monitoring
which enables various platform providers to communicate with the IMF
Runtime. In particular, it o�ers to the monitored platform an interface
for publishing events to be processed by the IMF Runtime Monitoring En-
gine. As shown in Figure 5.4, this component is divided in a client element
(has to be integrated with the monitored service platform) and a server el-
ement (receives the monitoring events from the governed platform, it's the
real Monitoring Interface). The monitoring client receives events from the
monitored service platform and translates them into the IMF event model.
Each platform provider will be responsible for de�ning a mapping between
the events generated by their platform and the events model of the IMF.
This mapping can be de�ned by using the Con�guration GUI tools. After
that the monitoring server receives these events from the monitoring client,
it sends them to the Monitoring Engine by using the Event Manager.

5.5. IMF Tools 45

Figure 5.4: Monitoring Interface.

5.4.2 Adaptation Interface

The Adaptation Interface is a SCA component implemented in Apache Tus-
cany for Java. It calls the right monitored platform interfaces in order
to place the adaptation actions �red by the Adaptation Engine. Platform
providers specify in the Adaptation Interface the adaptation capabilities of
their monitored platforms and map the IMF Runtime adaptation commands
to platform-speci�c actions. As shown in Figure 5.5, the Adaptation Inter-
face is divided in a component that is a part of the IMF Runtime and an
adaptation commands translator that is located on the target monitored
platform.

5.5 IMF Tools

In order to o�er a guided and structured con�guration framework of the IMF
platform to the system con�gurator, we provide a GUI that can support all
these operations: IMF Tools. In the Appendix A we provide also a user
manual for the IMF Tools. These framework enables the user to con�gure
all the base parameters and the communication between the components in
the IMF Runtime in a easy way and without any big e�ort.

46 Chapter 5. Implementation

Figure 5.5: Adaptation Interface.

5.5.1 Main Selector

The Main Selector is the main GUI that enables the user to launch all the
other tools. Moreover, it enables the user to connect to the Repository
and save all the new con�guration parameters set up by using all the other
GUI tools. It has also a feature to populate the Repository with the initial
parameters and a menu that drives the user to launch the right con�guration
tool.

5.5.2 Environment Con�gurator

The Environment Con�gurator is a tool that helps the user to insert all the
parameters needed for the right working of all the IMF Runtime platform
like de�ning the service platform name, the engines, setting up the tables
where the components can �nd the right con�gurations, rules and the Event
Manager connection parameters.

5.5.3 Incoming Events

The Incoming Events is a tool that helps the user to de�ne all the events
coming in the IMF Runtime platform from the monitored service platform.
In particular the user can de�ne the event type and a set of parameters in
the form key-value where the key is the attribute name and the value is the

5.6. UML Class Diagrams 47

attribute type.

5.5.4 Monitoring Engines

The Monitoring Engines is a tool that helps the user to de�ne the Esper rules
that should be executed in each Monitoring Engine. The information about
the Monitoring Engines IDs are retrieved from the environment con�guration
collection in the Repository.

5.5.5 Outgoing Events

The Outgoing Events is a tool that helps the user to de�ne all the events
coming out from the Adaptation Engine to the Adaptation Interface. In
particular the user can de�ne the event type and a set of parameters in the
form key-value where the key is the attribute name and the value is the
attribute type.

5.5.6 Adaptation Engines

The Adaptation Engines is a tool that helps the user to de�ne the Drools rules
that should be executed in each Adaptation Engine. The information about
the Adaptation Engines IDs are retrieved from the environment con�guration
collection in the Repository.

5.6 UML Class Diagrams

In this section we show the UML class diagrams for the main classes of
the IMF. We talk about Runtime when we refer to the main IMF Runtime
platform components so we separate them from the IMF Tools.

5.6.1 IMF Runtime

The UML class diagram in Figure 5.6 contains all the main core components
of IMF Runtime platform. All the interfaces of these components implement
the WP4Component interface. This is because we want to have some com-
mon features in all the components. All the classes colored in yellow are
the real implementation of the respective interfaces colored in white. We
wanted to do this for two main reasons: the �rst one is because of the OO
programming principles, the second one is because in Apache Tuscany all the
references are interfaces and at runtime it starts the actual implementation
class.

Figure 5.6: UML class diagram IMF Runtime.

48 Chapter 5. Implementation

Figure 5.7: UML class diagram IMF Tools.

5.6. UML Class Diagrams 49

5.6.2 IMF Tools

The UML class diagram in Figure 5.7 contains all the main classes used to
develop the IMF Tools. This framework is a GUI that o�ers di�erent screens
able to help the user to de�ne the IMF Runtime platform properties, the
incoming events, the monitoring rules and engines, the adaptation policies
and engines, and the outgoing events. For explanations about the usage,
please refer to Appendix A.

50 Chapter 5. Implementation

Chapter 6

Evaluation

The following chapter shows a feasible case study in order to evaluate the

INDENICA Management Framework performance. In Section 6.1 we in-

troduce the warehouse case study and its main components. In Section 6.2

we show the evaluations results obtained by running the INDENICA Man-

agement Framework in the warehouse case study.

6.1 Warehouse case study

Realistic requirements are the key to a successful development of research
prototypes. The IMF tries to be a virtual platform for large systems span-
ning di�erent application areas as well as di�erent levels of the automation
pyramid. A Warehouse Management System (WMS) is a well-known exam-
ple from the industry automation area and this is the main scenario used as
a case study to demonstrate the feasibility of the approach.
It is possible to recognise the main external parts of a warehouse by looking
at the Figure 6.1. In particular, there are trucks in the yard waiting for a
loading/unloading job, the staplers carrying the goods, the racks with stor-
age units (bins) that are picked and placed by automated stapler cranes. It
is also possible to recognise conveyers used to carry the storage units from
the loading zone to rack and viceversa. Some other parts of the case study
are not covered in the Figure 6.1 or are too small to be recognisable in it
but they are essential parts of the WMS. For example, we can only see the
loading platform in the yard but it consists of a gateway where the trucks
register when they enter and deregister when they leave it. Inside the ware-
house there are cameras used to monitor the automated retrieval and storage
of the storage units (bins). We need these monitoring capabilities in order to

51

52 Chapter 6. Evaluation

Figure 6.1: Warehouse from an external point of view.

have an overview of the actual warehouse status and to quickly react during
runtime on several failure situations. This capability is very important in
order to avoid down times of the system: a quick reaction to unusual situa-
tions is crucial to the system's availability.
The Figure 6.2 is a schematic representation of the main components in the
warehouse. Thus, we can divide the whole warehouse management in three
major parts: loading bay management, warehouse management system and
yard management.

6.1.1 Main Components

In this section we will describe the details of the three major elements in the
warehouse highlighted before.

loading bay management The loading bay is composed of several load-
ing/unloading docks typically located at di�erent parts of the ware-
house where the trucks can go there and process their job. All the bins
are carried on the belt and go to the warehouse incoming stack (in case
of an incoming job) or come from the outgoing stack, then are placed
on the belt and are carried in the truck (in case of outgoing job).

Warehouse management system If the bins arrive in the incoming stack,

6.1. Warehouse case study 53

Figure 6.2: Warehouse from a schematic point of view.

left side of the warehouse in Figure 6.2, they are carried via automated
stapler cranes to the pre-allocated rack by the warehouse management
system via conveyers. The bins storage result is reported to the Enter-
prise Resource Planning system (ERP) that handles the overall com-
missioning of bins. In case of outgoing jobs, the bins are commissioned
by the ERP system for delivery and the automated stapler crane takes
the bins from the high rack to the outgoing stack. Afterwards, the
bins are automatically placed on the conveyor which carries them to
the loading issue dock.

yard The yard consists of a gateway where the trucks can register when they
enter and deregister when they leave the yard to be scheduled and
coordinated during the load and unload operations. The scheduling
can be planned in advance with the help of shipping noti�cations of
transport providers. Especially for large warehouses a parking place is
needed to be able to handle a large amount of trucks especially during
peak hours where a lot of trucks arrive and leave within a short period
of time. Cameras are used to observe the trucks and the activities on
the yard and the yard personnel are coordinated e�ciently to run all
processes smoothly.

54 Chapter 6. Evaluation

Case Study UML Class Diagrams

The UML class diagram in Figure 6.3 shows the class that implements the
adapter used in the monitored service to communicate with our IMF Runtime
platform. In order to have a graphical view of what is happening in the
warehouse during the execution, we developed a GUI and the other classes
shown in the UML class diagram implement that functionality.
The UML class diagrams in Figure 6.4 and Figure 6.5 show our case study

Figure 6.3: UML class diagram of the Case Study main platform and GUI.

in detail. In the �rst class diagram there are all the main classes used to
implement the warehouse management system prototype. In the second
class diagram there are all the main classes used to implement the yard
management system and the loading bay prototype.

UML Class Diagram Case Study integration with the IMF Plat-

form

In Figure 6.6 we report an exemplary UML sequence diagram. It shows the
components initialization and an example of processing the receiving of some
events about the state of the warehouse monitored service (UseCase Plat-

form). In particular, the Adaptation Engine detects that the conveyor speed
has to be increased so the Adaptation Interface calls the right method on
the warehouse monitored service adapter to execute that adaptation action.

6.2. Performance 55

Figure 6.4: UML class diagram of the warehouse component.

Figure 6.5: UML class diagram of the yard and loading dock components.

6.2 Performance

This section presents results of performance measurements of our IMF plat-
form. As testbed we have our WMS case study scenario in the following
organisation: the loading bay management, the warehouse management sys-

56 Chapter 6. Evaluation

Figure 6.6: Exemplary UML sequence diagram.

tem and the yard management system are in di�erent places of the whole
warehouse and they have an adapter service running locally in order to com-
municate with our platform. In addition, we have our IMF Runtime platform
running in the Internet. We don't know exactly the place where it is running,
for example, we say that is running in the Cloud.
In order to evaluate the IMF performance, we need to de�ne some policy
rules. These rules are expressed in DROOLS language and are executed by
the Adaptation Engine. These rules are:

• Decrease or increase the warehouse usage priority or set it to default
value.

• Give priority to trucks in the yard to move to the loading docks with

6.2. Performance 57

incoming or outgoing jobs.

• Decrease or increase the conveyor speed.

For details and explanations about these policy rules, please refer to Ap-

pendix C. In order to get all the information needed by these policies, we
de�ned some ESPER rules that are executed by the Monitoring Engine:

• warehouse usage

• outgoing and incoming stack usage

• parking area loading

• trucks with outgoing jobs vs incoming jobs ratio in the parking area

These rules are better explained in Appendix B.
We run our IMF Runtime platform in two main di�erent scenarios in order
to evaluate its performance, to show its �exibility and to �nd the best exe-
cution scenario for this case study. Before introducing the scenarios we will
describe the techniques used to evaluate the performance and which was the
event load for every single event type during the execution.
By analysing the monitoring rules, the generated monitoring events as input
for the adaptation are �ve: Usage, InStack, OutStack, YardFullTracksRatio

and YardLoad. The �rst three are coming from the Warehouse monitoring
service and the last two from the Yard monitoring service. There are no
events coming from the Loading Bay. By having a look on the adaptation
rules, these events are used mostly for global adaptation and not local adap-
tation. This means that in most of the cases, the adaptation engine needs
events from a monitored service and will apply business policies in another
monitored service. Moreover, there are two adaptation rules that use com-
position of events coming from di�erent monitored services. The only locally
used event is the Usage event, all the others will �re adaptation actions on
monitored services di�erent from the one that generated those events. Thus,
only 20% of the monitoring events load could be managed by a local execu-
tion of the IMF Runtime platform and 25% of the business rules has to be
absolutely executed by an IMF Runtime platform in the Cloud. In order to
better analyse all the consequences, we will consider latency and CPU usage
as the major parameters. For the latency formula we will sum the packet
round-trip time and the execution time. We can ignore the round-trip time
for local messages but the round-trip time for messages to the Cloud is rel-
evant. Moreover, if we use a Gateway component, we have to add some
processing time to the round-trip time. The IMF Runtime platform on the

58 Chapter 6. Evaluation

Cloud can obviously execute more rules per second than the local IMF Run-
time platform and a possible CPU usage formula will be �red rules divided
by maximum executable rules per second.

6.2.1 Basic Scenario

Figure 6.7: Case Study Basic Scenario.

As shown in Figure 6.7, the basic scenario is realised by hosting the
IMF Runtime platform in the Cloud. Every single monitored service has an
adapter in order to communicate with the IMF Runtime platform Interfaces.
In this scenario all the monitoring rules and adaptation rules are executed in
the Cloud. By considering our performance indicators, we soon understand
that this is not the best scenario and the results are the proof. In particular,
the latency time for every �red monitoring event from the monitored service
is more then ten seconds and the CPU in the Cloud will be busy in most
of the time. Moreover, this solution doesn't support all the features of our
IMF Runtime platform thus, events like Usage will be sent in the Cloud and
will come back in the same platform.

6.2.2 Advanced Scenario

As shown in Figure 6.8, the advanced scenario is realised by hosting an IMF
Runtime platform locally in every single service platform that we want to
monitor and a global IMF Runtime platform in the Cloud. This scenario
has a new component that enables the catching of local events that need
to be processed by the global IMF Runtime platform in the Cloud: the

6.2. Performance 59

Gateway. We need the Gateway component because the IMF Tools enables
the user to de�ne some policy rules that need to evaluate events coming
from di�erent monitored services. In particular, the Gateway component
will register to the local Event Manager and publish the events in the Event
Manager running in the Cloud. This solution will reduce the CPU usage in
the Cloud because, for example, the Usage event will never be sent out of the
Warehouse management system boundaries. As result, we will have a better
performance in the adaptation of the warehouse, a consequence on which
we have to pay attention because we don't want the warehouse to be full.
Filling the whole warehouse will lead to a deadlock in the whole use case so
we want an autonomic control as much as possible close to the realtime. In
this scenario we show also that our IMF Runtime platform is �exible and we
apply two di�erent hierarchical levels of autonomic management. Another
solution that can be derived from this scenario and that is the best one from
our point of view is running only an adapter component on the Loading Bay
service and this will remove the overhead of the Gateway.

Figure 6.8: Case Study Advanced Scenario.

60 Chapter 6. Evaluation

Conclusions

The target of this thesis work was developing a framework for heteroge-
neous systems self-adaptation. Actual companies scenario is characterised
by several heterogeneous systems and the �rst step is trying to integrate
them together. Moreover, wishing to manage all these systems together is
out of human possibilities. Another important aspect is that these systems
cannot be considered in a closed world but we are in a open environment
characterised by dynamic evolution that the stakeholder often can't predict.
This is why several research studies were done about how could be possible
to automatically manage these heterogeneous systems. These studies result
is that the component-based development is a possible way to communicate
with these heterogeneous systems running in an open-world. The main actor
in the development process will be the Virtual Service Platform.
We developed INDENICA Management Framework, a Virtual Service Plat-
form that is able to manage these systems. We can �nd several solutions
in the market in order to implement service components. Our solution used
to let the monitored system and our IMF Runtime Platform is implement
service component in Apache Tuscany for Java. Another important aspect
to consider about these Virtual Service Platforms is how the internal compo-
nents can communicate without loosing �exibility. We decided to implement
a communication based on the publish-subscribe design with RabbitMQ. We
also developed the IMF tool, a framework that helps to con�gure the IMF
Platform and enable the customers to de�ne their business rules in well know
languages by using the Esper CEP engine for the events processing and the
JBoss Drools engine to de�ne the policies. We also provided and developed
a case study based on a warehouse management. This case study reveals all
the features of our INDENICA Management Framework but also its perfor-
mance. The service-oriented technology seems to be capable of dealing with
the matter, since the solution has been tested in a case study and in the
future we will test it in another real case study.

62 Conclusions

The INDENICA Management Framework is still in a prototype state and
we are thinking about extending some functionality. Currently, the moni-
toring rules are provided manually but in a future version of the IMF tool
it could integrate a view-based modelling approach that will enable to au-
tomatically generate monitoring rules from UML models and build up a
library of reusable monitoring rules. The same development work can af-
fect the adaptation side of the IMF tool. The Monitoring Engine instances
and the Adaptation Engine instances are de�ned in a textual way, a future
work can be that of providing a more visually appealing interface for de�ning
components and their interaction using a drag-and-drop approach. The IMF
Platform is now able to automatically adapt itself by de�ning some higher
level business rules but the automatic scalability by passing rules between
engines is a missing feature. Actually, every Engine has its own rules and
they cannot change at runtime but this is a feature that could be extended
in the future.

Bibliography

[1] Apache. Apache tuscany. http://tuscany.apache.org/.

[2] Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, and
Kishore Channabasavaiah. S3: A service-oriented reference architec-
ture. IT Professional, 9(3):10�17, 2007.

[3] Luciano Baresi, Neil Maiden, and Peter Sawyer. Service-centric sys-
tems and requirements engineering. Requirements Engineering, IEEE

International Conference on, 0:305, 2008.

[4] Thomas Bernhardt and Alexandre Vasseur. Esper: Event stream pro-
cessing and correlation, 2007.

[5] Thomas Bernhardt and Alexandre Vasseur. Complex event processing
made simple using esper, 2008.

[6] Sami Beydeda and Volker Gruhn. Model-Driven Software Development.
Springer-Verlag, 2005.

[7] Aliaksandr Birukou, Vincenzo D'Andrea, Frank Leymann, Jacek Ser-
a�nski, Patrícia Silveira, Steve Strauch, and Marek Tluczek. An inte-
grated solution for runtime compliance governance in SOA. In Proceed-

ings of the 8th International Conference on Service-Oriented Comput-

ing (ICSOC'10), San Francisco, California, USA, December 7-10, 2010,
Artikel in Tagungsband, pages 122�136. Springer, December 7, 2010.

[8] Ron Burback. A distributed architecture de�nition language:
a DADL. http://citeseer.ist.psu.edu/435593.html; http://www-
db.stanford.edu/ burback/dadl/dadl.ps, 1998.

[9] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Francesco Lo
Presti, and Ra�aela Mirandola. Qos-driven runtime adaptation of ser-
vice oriented architectures. In Hans van Vliet and Valérie Issarny, ed-
itors, Proceedings of the 7th joint meeting of the European Software

63

64 BIBLIOGRAPHY

Engineering Conference and the ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, 2009, Amsterdam, The

Netherlands, August 24-28, 2009, pages 131�140. ACM, 2009.

[10] David Chappell. Introducing sca, 2007.

[11] Kristina Chodorow and Michael Dirolf. MongoDB - The De�nitive

Guide: Powerful and Scalable Data Storage. O'Reilly, 2010.

[12] Open SOA Consortium. Service component architecture (sca).
http://www.oasis-opencsa.org/sca.

[13] World Wide Web Consortium. Web services architecture, 2004.
http://www.w3.org/TR/ws-arch/.

[14] Ivica Crnkovic, Stig Larsson, and Michel R. V. Chaudron. Component-
based development process and component lifecycle. CIT, 13(4):321�
327, 2005.

[15] Luiz Olavo Bonino da Silva Santos, Fano Ramparany, Patricia Dock-
horn Costa, Peter Vink, Richard Etter, and Tom Broens. A service
architecture for context awareness and reaction provisioning. In IEEE

SCW, pages 25�32. IEEE Computer Society, 2007.

[16] Luiz Olavo Bonino da Silva Santos, Remco Poortinga van Wijnen, and
Peter Vink. A service-oriented middleware for context-aware appli-
cations. In Sotirios Terzis, Steve Neely, and Nitya Narasimhan, edi-
tors, Proceedings of the 5th International Workshop on Middleware for

Pervasive and Ad-hoc Computing (MPAC 2007), held at the ACM/I-

FIP/USENIX 8th International Middleware Conference, November 26

- November 30, 2007, Newport Beach, California, USA, ACM Interna-
tional Conference Proceeding Series, pages 37�42. ACM, 2007.

[17] Robert Daigneau. Service Design Patterns: Fundamental Design So-

lutions for SOAP/WSDL and RESTful Web Services. Addison-Wesley
Professional, 1 edition, November 2011.

[18] Premkumar Devanbu and Eric Wohlstadter. Evolution in distributed
heterogeneous systems, 2001. Premkumar Devanbu (Dept . Of Com-
puter Science,; University of California; Davis , CA , 95616); Eric
Wohlstadter (Dept . Of Computer Science,; University of California;
Davis , CA , 95616);.

[19] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and

Design. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

BIBLIOGRAPHY 65

[20] EsperTech. EsperTech: Esper, event driven intelligence.
http://esper.codehaus.org/.

[21] Eugster, Felber, Guerraoui, and Kermarrec. The many faces of pub-
lish/subscribe. CSURV: Computing Surveys, 35, 2003.

[22] Ludger Fiege, Felix C. Gärtner, Oliver Kasten, and Andreas Zei-
dler. Supporting mobility in content-based publish/subscribe middle-
ware. In Markus Endler and Douglas C. Schmidt, editors, Middleware

2003, ACM/IFIP/USENIX International Middleware Conference, Rio

de Janeiro, Brazil, June 16-20, 2003, Proceedings, volume 2672 of Lec-
ture Notes in Computer Science, pages 103�122. Springer, 2003.

[23] R. Fielding. Architectural Styles and the Design of Network-based Soft-

ware Architectures. PhD thesis, University of Califormia, Irvine, USA,
2000.

[24] C. L. Forgy. Rete: A fast algorithm for the many pattern / many object
pattern match problem. Arti�cial Intelligence, 19:17�37, 1982.

[25] Apache Software Foundation. Apache licence, version 2.0.
http://www.apache.org/licenses/LICENSE-2.0.

[26] Robert B. France and Bernhard Rumpe. Model-driven development of
complex software: A research roadmap. In Lionel C. Briand and Alexan-
der L. Wolf, editors, International Conference on Software Engineering,

ISCE 2007, Workshop on the Future of Software Engineering, FOSE

2007, May 23-25, 2007, Minneapolis, MN, USA, pages 37�54, 2007.

[27] Eli Gjørven, Frank Eliassen, and Romain Rouvoy. Experiences from
developing a component technology agnostic adaptation framework. In
Michel R. V. Chaudron, Clemens A. Szyperski, and Ralf Reussner, edi-
tors, Component-Based Software Engineering, 11th International Sym-

posium, CBSE 2008, Karlsruhe, Germany, October 14-17, 2008. Pro-

ceedings, volume 5282 of Lecture Notes in Computer Science, pages 230�
245. Springer, 2008.

[28] Eli Gjørven, Romain Rouvoy, and Frank Eliassen. Cross-layer self-
adaptation of service-oriented architectures. In Karl M. Göschka,
Schahram Dustdar, Frank Leymann, and Vladimir Tosic, editors, Pro-
ceedings of the 3rd Workshop on Middleware for Service Oriented Com-

puting, MW4SOC 2008, Leuven, Belgium, December 1-5, 2008, pages
37�42. ACM, 2008.

66 BIBLIOGRAPHY

[29] W3C Hugo Haas. Designing the architecture for web services.
http://www.w3.org/2003/Talks/0521-hh-wsa/.

[30] INDENICA. INDENICA: research project co-founded by the eu-
ropean commission within the 7th framework programme in the
area internet of services, software & virtualisation (ict-2009.1.2).
http://www.indenica.eu/.

[31] JBoss. JBoss Drools: Business logic integration platform.
http://www.jboss.org/drools/.

[32] Je� Johnson John Plummer. Complex event processing, 2008.

[33] Diane Jordan and John Evdemon. Web services business process exe-
cution language version 2.0. OASIS Standard, April 2007.

[34] Je�rey O. Kephart and David M. Chess. The vision of autonomic com-
puting. Computer, 36:41�50, January 2003.

[35] Jaroslaw Kijanowski. Introduction to drools: Rules fall from your eyes.
RED Hat Magazine, 07, 2008.

[36] David C. Luckham. The power of events - an introduction to complex

event processing in distributed enterprise systems. ACM, 2005.

[37] Haleh Mahbod, Raymond Feng, and Simon Laws. What is sca? a quick
view of concepts through and an example walkthrough. Java Developer

Journal, Feb 2007.

[38] Qusay H. Mahmoud. Getting started with the java rule engine api (jsr
94): Toward rule-based applications, 2005.

[39] Mongo. Mongodb: name:mongo type:db. http://www.mongodb.org/.

[40] Christoph Nagl, Florian Rosenberg, and Schahram Dustdar. VIDRE -
A distributed service-oriented business rule engine based on ruleML. In
EDOC, pages 35�44. IEEE Computer Society, 2006.

[41] The Object Management Group (OMG). Omg mda guide. version 1.0.1.
http://www.omg.org/, 2003.

[42] Web Services Interoperability Organisation. Web services interoperabil-
ity organisation. http://www.ws-i.org/deliverables/.

BIBLIOGRAPHY 67

[43] M. Oriol Hilari, J. Marco Gómez, J. Franch Gutiérrez, D. Ameller,
et al. Monitoring adaptable soa systems using salmon. Workshop in

ServiceWave conference, Madrid, 2008.

[44] Mark Palmenr and Michal Dzmuran. An introduction to event process-
ing. PROGRESS software, 2007.

[45] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-
oriented computing: A research roadmap. Intermational Journal of

Cooperative Information Systems, 17(2):223�255, 2008.

[46] F. Ramparany, R. Poortinga, M. Stikic, J. Schmalenströer, and
T. Prante. An open context information management infrastructure
the IST-amigo project. Intelligent Environments, 2007. IE 07. 3rd IET

International Conference on Intelligent Environments, pages 398�403,
September 2007.

[47] RuleML. The rule markup initiative, 2005. http:// www.ruleml.org/,
2005.

[48] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo
Ungerer. Using automated planning for trusted self-organising organic
computing systems. In 5th International Conference on Autonomic and

Trusted Computing (ATC 2008), pages 60�72, 2008.

[49] R. Soley, D. Frankel, J. Mukerji, and E. Castain. Model driven architec-
ture - the architecture of choice for a changing world. Technical report,
OMG, 2001. http://www.omg.org/.

[50] MediaLab Sonera Plaza Ltd. Web services white paper.
http://www.medialab.sonera.�/, 2002.

[51] Metafrom Systems. Fabric3. http://www.fabric3.org/.

[52] Yongzhong Tang and Baotai Liu. Design high reliable monitor and con-
trol system using event-driven soa philosophy. 2009 IEEE International

Symposium on IT in Medicine Education, pages 146�153, 2009.

[53] JBoss Drools Team. Drools expert user guide. JBoss Community Doc-

umentation, 2010.

[54] S. Vinoski. CORBA: Integrating diverse applications within dis-
tributed heterogeneous environments. IEEE Communications Maga-

zine, 35(2):46�55, 1997.

68 BIBLIOGRAPHY

[55] VMware. Rabbitmq: messaging that just works.
http://www.rabbitmq.com/.

[56] WebServices.org. WebServices.org: serving the soa community since
2001. http://www.webservices.org/.

[57] Krzysztof Zielinnski, Tomasz Szydlo, Robert Szymacha, Jacek Kosinski,
Joanna Kosinska, and Marcin Jarzab. Adaptive soa solution stack. IEEE
Transactions on Services Computing, 99(PrePrints), 2011.

[58] Daniel Zmuda, Marek Psiuk, and Krzysztof Zielinski. Dynamic mon-
itoring framework for the SOA execution environment. Procedia CS,
1(1):125�133, 2010.

Appendix A

INDENICA Management

Platform User Manual

A step-by-step guide to creating a basic INDENICAManagement Framework
Runtime instance using the Repository and the provided tools.

A.1 Usage Guide

In this section we provide a step-by-step guide for creating a basic instance
of the IMF Runtime infrastructure using the IMF Tools.
In order to create a new instance of the IMF Runtime infrastructure, run-
ning instances of RabbitMQ and MongoDB are required. To guide the user
through the steps necessary to create a runtime infrastructure instance, a
simple launch dialog can be invoked using:

sh launchConfiguration.sh

In Figure A.1 is shown the main con�guration launch dialog.
Next, a connection to the repository database must be established by in-

voking "File Õ Connect to DB" (Figure A.2).
The data entered in the connection dialog must point to a running Mon-

goDB instance in order to complete correctly (Figure A.3).
After successfully establishing a connection to the database, an environment
con�guration for a new infrastructure instance can be created by selecting
"Environment Con�gurator" in the dropdown list and clicking "Launch"
(Figure A.4).
To create a new environment con�guration, select "File Õ New Con�gura-
tion" (Figure A.5).
Must be provided a name for the infrastructure instance as shown in the

70 Appendix A. INDENICA Management Platform User Manual

Figure A.1: Con�guration Launch Dialog.

Figure A.2: Connect to Repository Database.

Figure A.3: Establish Database Connection.

A.1. Usage Guide 71

Figure A.4: Environment Con�guration Dialog.

Figure A.5: Create new Environment Con�guration.

72 Appendix A. INDENICA Management Platform User Manual

dialog of Figure A.6 (in our case, "SampleInstance").
After con�rming the creation of the new instance con�guration, the environ-

Figure A.6: New Environment Con�guration Dialog.

ment con�guration is pre-populated with relevant con�guration properties
that need to be provided by the user. Where appropriate, the values are set
to factory default settings, or contain usage information (Figure A.7).
Figure A.8 shows an exemplary con�guration for an infrastructure instance.

Figure A.7: Environment Con�guration Defaults and Usage Hints.

This con�guration creates one Monitoring Engine (ME) instance, as well as
one Adaptation Engine (AE) instance and de�nes events that these compo-
nents receive.
The con�guration can then be saved by using the "Save" button on the

lower right and the "Environment Con�guration" dialog can be closed.
The next step in setting up an infrastructure instance involves de�ning con-

A.1. Usage Guide 73

Figure A.8: Sample Infrastructure Instance Environment Con�guration.

crete events that the monitoring interfaces emit for consumption by the
previously de�ned monitoring engine.
In the launcher dialog, select "Events Incoming" in the dropdown box and
click "Launch" as shown in Figure A.9.
The previously created environment con�guration must be loaded in the

Figure A.9: Launch Incoming Events Dialog.

incoming events dialog (Figure A.10).

74 Appendix A. INDENICA Management Platform User Manual

Figure A.10: Load previously created Con�guration.

To load an environment con�guration, select "File Õ Load Con�guration"
click "Explore" and select "SimpleInstance" (Figure A.11).
Now, events originating from the monitoring interface can be created. Fig-
ure A.12 shows an exemplary event type, 'ServiceInvocationEvent', and ac-
cording properties.
Event types and their settings are saved using the "Add Event" button

on the bottom of the dialog. For the sample instance, we will add a second
event type, 'ServiceInvocationFailureEvent' as depicted in Figure A.13.
The next step involves specifying adaptation events sent to the adaptation
interface in order to in�uence integrated service platforms. Selecting "Events
Outgoing" in the launch dialog opens the according dialog (Figure A.14).
Again, the environment con�guration must be loaded by invoking "File Õ

Load Con�guration", clicking "Explore" and selecting "SampleInstance".
Events sent to the adaptation interface can be created similar to the incoming
events. For our sample instance, we will create two events representing a noti-
�cation about a healthy or unhealthy system state ("adaptation.SystemOK"
and "adaptation.SystemKO"), as shown in the two Figures A.15 and A.16.
After saving the outgoing adaptation interface events, we can now con�g-
ure the monitoring engine by selecting the according option in the dropdown
menu in the launch dialog (Figure A.17).
After loading the environment con�guration by invoking "File Õ Load Con-
�guration", clicking "Explore" and selecting "SimpleInstance", the speci�ed
Monitoring Engines can be con�gured.
To con�gure Monitoring Engine 0, we select it in the "Engine ID" dropdown
and choose "Load". Now, monitoring rules can be added, using the rules
speci�ed in the "Events Incoming" dialog. The current implementation sup-
ports rules in the Esper Query Language (EQL).
Figure A.18 shows an exemplary monitoring rule evaluating the availability
ratio of a monitored service by analysing successful and failed invocations
over a period of one day.

A.1. Usage Guide 75

Figure A.11: Incoming Events Dialog.

76 Appendix A. INDENICA Management Platform User Manual

Figure A.12: An exemplary Monitoring Event Type.

A.1. Usage Guide 77

Figure A.13: ServiceInvocationFailure Event Type.

Figure A.14: Launch the outgoing Adaptation Events Dialog.

78 Appendix A. INDENICA Management Platform User Manual

Figure A.15: Exemplary Adaptation Interface Event.

A.1. Usage Guide 79

Figure A.16: Exemplary Adaptation Interface Event.

Figure A.17: Launch Monitoring Engine Con�guration.

80 Appendix A. INDENICA Management Platform User Manual

After saving the monitoring rule (using "Add Rule" on the lower right), we

Figure A.18: Exemplary Monitoring Rule.

can con�gure actions the AE should take in response to certain monitoring
events by invoking the "Adaptation Engines" con�guration in the launch
dialog (Figure A.19).
After loading the environment con�guration by invoking "File Õ Load Con-
�guration", clicking "Explore" and selecting "SimpleInstance", the speci�ed
AEs can be con�gured.
To con�gure Adaptation Engine 0, we select it in the "Engine ID" dropdown
and choose "Load". Now, adaptation rules can be added, using the event
speci�ed in the ME con�guration dialog. The current prototype implemen-
tation supports adaptation rules in the Drools rule language.
For the sample instance, we will create two simple adaptation rules, as shown
in Figure A.20 and Figure A.21.
The adaptation rules complete the environment con�guration. A platform
integrator is now required to create the appropriate Monitoring Interface
(MI) and Adaptation Interface (AI) for the integrated platforms to inter-
act with the IMF Runtime platform. In the current implementation the
infrastructure library is represented by java packages 'indenica.[monitoring |

A.1. Usage Guide 81

Figure A.19: Launch Adaptation Engine Con�guration.

Figure A.20: Exemplary Adaptation Rule.

82 Appendix A. INDENICA Management Platform User Manual

Figure A.21: Exemplary Adaptation Rule.

adaptation].component'.
To invoke the created platform, a Tuscany con�guration composite �le is
needed. In the current implementation, this �le has to be supplied manually.

� �
<composite xmlns="http://www.osoa.org/xmlns/sca /1.0"

targetNamespace="http:// indenica.eu/repository"

xmlns:hw=" http:// indenica.eu/repository" name="

IndenicaRuntime">

<component name="ComponentInitializerComponent">

<implementation.java class="indenica.deployment.

component.ComponentInitializerImpl" />

<reference name="adaptationInterface" target="

AdaptationInterfaceComponent" />

<reference name="repository" target="

RepositoryComponent" />

<reference name="platform" target="

SimplePlatformComponent" />

</component >

A.1. Usage Guide 83

<component name="MonitoringInterfaceComponent">

<implementation.java class="indenica.monitoring.

component.SimpleMonitoringInterfaceImpl" />

</component >

<component name="AdaptationInterfaceComponent">

<implementation.java class="indenica.adaptation.

component.SimpleAdaptationInterfaceImpl" />

<reference name="platform" target="

SimplePlatformComponent" />

<reference name="repository" target="

RepositoryComponent" />

</component >

<component name="RepositoryComponent">

<implementation.java class="indenica.repository.

component.RepositoryImpl" />

<property name="dbAddress">192.168.56.101 </

property >

<property name="dbPort">27017</property >

<property name="platform">SimplePlatform </

property >

<property name="adminDB">adminDB </property >

</component >

<component name="SimplePlatformComponent">

<implementation.java class="indenica.sample.

SimplePlatformImpl" />

<reference name="monitoringInterface" target="

MonitoringInterfaceComponent" />

</component >

</composite >� �
After saving the composite �le in the 'src/main/resources' directory, the
completed infrastructure instance can now be started using:

java -jar indenicaInfrastructure.jar indenica.

deployment.Launcher <composite file name >

84 Appendix A. INDENICA Management Platform User Manual

Appendix B

Case Study ESPER Monitoring

Rules

In this Appendix we will introduce and describe all the ESPER monitoring
rules used in the Warehouse case study.

B.1 Warehouse

In the following listings we will describe all the monitoring rules used to
monitor the Warehouse component.
The following listing receives events about the current load in the stack for
incoming items in the warehouse. The ESPER engine will collect 10 events
of type warehouse.queues.in and send an average of the load value as a new
event named InStack.

� �
select avg(cast(ev.`getValue `('load'), double)) as

InStack

from indenica.`events `.Event(eventType='warehouse.

queues.in').win:length_batch (10) as ev

where ev.`getValue `('itemAddedSuccessfully ') = true� �
The following listing receives events about the current load in the stack for
outgoing items in the warehouse. The ESPER engine will collect 10 events
of type warehouse.queues.out and send an average of the load value as a new
event named OutStack.

86 Appendix B. Case Study ESPER Monitoring Rules

� �
select avg(cast(ev.`getValue `('load'), double)) as

OutStack

from indenica.`events `.Event(eventType='warehouse.

queues.out').win:length_batch (10) as ev

where ev.`getValue `('itemAddedSuccessfully ') = true� �
The following listing receives events about the current load in the warehouse.
The ESPER engine will collect 10 events of type warehouse.status and send
an average of the usage value as a new event named Usage.

� �
select avg(cast(ev.`getValue `('usage'), double)) as

Usage

from indenica.`events `.Event(eventType='warehouse.

status ').win:length_batch (10) as ev� �
B.2 Yard

In the following listings we will describe all the monitoring rules used to
monitor the Yard component.
The following listing receives events about the current load in the yard park-
ing zone. The ESPER engine will collect 10 events of type yard.status and
send an average of the load value as a new event named YardLoad.

� �
select avg(ev.`getDoubleValue `('load')) as YardLoad

from indenica.`events `.Event(eventType='yard.status ')

.win:length_batch (10) as ev� �
The following listing receives events about the current ratio of truck with
loading job vs trucks with unloading job in the yard parking zone. The ES-
PER engine will collect 10 events of type yard.status and send an average of
the fullTracksRatio value as a new event named YardFullTrucksRatio.

� �
select avg(ev.`getDoubleValue `('fullTrucksRatio ')) as

YardFullTrucksRatio

from indenica.`events `.Event(eventType='yard.status ')

.win:length_batch (10) as ev� �

Appendix C

Case Study DROOLS

Adaptation Rules

In this Appendix we will introduce and describe all the DROOLS adaptation
rules used in the Warehouse case study.

C.1 Warehouse

In the following listings we will describe all the adaptation rules used to place
some adaptation actions on the Warehouse component.
The following listing receives events of type Usage about the current load
in the warehouse and, in case this value is equal or greater than 0.9, the
Adaptation Engine will notify the Adaptation Interface in order to decrease
the storage priority.

� �
import indenica.events.Event;

global indenica.adaptation.component.

AdaptationEngineImpl ae;

rule

"Warehouse_Usage_Priority_Decrease"

when

$event : indenica.events.Event (((Double)get('Usage'

)) >= 0.9)

then

Event eventOut = new Event();

eventOut.setEventType("adaptation.warehouse.

decreaseStoragePriority");

88 Appendix C. Case Study DROOLS Adaptation Rules

ae.notifyInterface(eventOut);

end� �
The following listing receives events of type Usage about the current load in
the warehouse and, in case this value is less or equal than 0.1, the Adaptation
Engine will notify the Adaptation Interface in order to increase the storage
priority.

� �
import indenica.events.Event;

global indenica.adaptation.component.

AdaptationEngineImpl ae;

rule

"Warehouse_Usage_Priority_Increase"

when

$event : indenica.events.Event (((Double)get('Usage'

)) <= 0.1)

then

Event eventOut = new Event();

eventOut.setEventType("adaptation.warehouse.

increaseStoragePriority");

ae.notifyInterface(eventOut);

end� �
The following listing receives events of type InStack about the current in-
coming bu�er load in the warehouse and, in case this value is greater than
0.8, the Adaptation Engine will notify the Adaptation Interface in order to
decrease the conveyor speed.

� �
import indenica.events.Event;

global indenica.adaptation.component.

AdaptationEngineImpl ae;

rule

"Conveyor_Decrease_Speed"

when

$event : indenica.events.Event (((Double)get('

InStack ')) > 0.8)

C.2. Yard 89

then

Event eventOut = new Event();

eventOut.setEventType("adaptation.conveyor.

decreaseSpeed");

ae.notifyInterface(eventOut);

end� �
The following listing receives events of type OutStack about the current out-
going bu�er load in the warehouse and, in case this value is greater than
0.8, the Adaptation Engine will notify the Adaptation Interface in order to
increase the conveyor speed.

� �
import indenica.events.Event;

global indenica.adaptation.component.

AdaptationEngineImpl ae;

rule

"Conveyor_Increase_Speed"

when

$event : indenica.events.Event (((Double)get('

OutStack ')) > 0.8)

then

Event eventOut = new Event();

eventOut.setEventType("adaptation.conveyor.

increaseSpeed");

ae.notifyInterface(eventOut);

end� �
C.2 Yard

In the following listings we will describe all the adaptation rules used to place
some adaptation actions on the Yard component.
The following listing receives events of type OutStack about the current out-
going bu�er load in the warehouse and, in case this value is greater than
0.7, the Adaptation Engine will notify the Adaptation Interface in order to
decrease the storage priority and the yard will prefer sending trucks with
outgoing jobs.

90 Appendix C. Case Study DROOLS Adaptation Rules

� �
import indenica.events.Event;

global indenica.adaptation.component.

AdaptationEngineImpl ae;

rule

"Yard_Decrease_Storage_Priority"

when

$event : indenica.events.Event (((Double)get('

OutStack ')) > 0.7)

then

Event eventOut = new Event();

eventOut.setEventType("adaptation.yard.

decreaseStoragePriority");

ae.notifyInterface(eventOut);

end� �
The following listing receives events of type InStack about the current in-
coming bu�er load in the warehouse and, in case this value is greater than
0.7, the Adaptation Engine will notify the Adaptation Interface in order to
increase the storage priority and the yard will prefer sending trucks with
incoming jobs.

� �
import indenica.events.Event;

global indenica.adaptation.component.

AdaptationEngineImpl ae;

rule

"Yard_Increase_Storage_Priority"

when

$event : indenica.events.Event (((Double)get('

InStack ')) > 0.7)

then

Event eventOut = new Event();

eventOut.setEventType("adaptation.yard.

increaseStoragePriority");

ae.notifyInterface(eventOut);

end� �

C.3. Loading Bay 91

C.3 Loading Bay

In the following listings we will describe all the adaptation rules used to place
some adaptation actions on the Loading Bay component.
The following listing receives events of type YardLoad about the current load
in the yard parking area and of type YardFullTrucksRatio about the current
ratio of trucks with outgoing job vs trucks with incoming job in the yard
parking area. In case the YardLoad value is greater than 0.5 and the Yard-
FullTrucksRatio value is less than 0.3, the Adaptation Engine will notify the
Adaptation Interface in order to decrease the storage priority and the load-
ing bay will prefer trucks with outgoing jobs.

� �
import indenica.events.Event;

global indenica.adaptation.component.

AdaptationEngineImpl ae;

rule

"Yard_Loading_Priority_Out"

when

$event : indenica.events.Event (((Double)get('

YardLoad ')) > 0.5) and $event2 : indenica.events

.Event (((Double)get('YardFullTrucksRatio ')) <

0.3)

then

Event eventOut = new Event();

eventOut.setEventType("adaptation.yard.

decreaseStoragePriority");

ae.notifyInterface(eventOut);

end� �
The following listing receives events of type YardLoad about the current load
in the yard parking area and of type YardFullTrucksRatio about the current
ratio of trucks with outgoing job vs trucks with incoming job in the yard
parking area. In case the YardLoad value is greater than 0.5 and the Yard-
FullTrucksRatio value is greater than 0.7, the Adaptation Engine will notify
the Adaptation Interface in order to increase the storage priority and the
loading bay will prefer trucks with incoming jobs.

92 Appendix C. Case Study DROOLS Adaptation Rules

� �
import indenica.events.Event;

global indenica.adaptation.component.

AdaptationEngineImpl ae;

rule

"Yard_Loading_Priority_In"

when

$event : indenica.events.Event (((Double)get('

YardLoad ')) > 0.5) and $event2 : indenica.events

.Event (((Double)get('YardFullTrucksRatio ')) >

0.7)

then

Event eventOut = new Event();

eventOut.setEventType("adaptation.yard.

increaseStoragePriority");

ae.notifyInterface(eventOut);

end� �

