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Abstract

The optimal management of the limited amount of water available in the reservoirs

(artificial or natural) is a critical issue all around the world. Indeed, while water scarcity

creates economic and social problems in an everyday bigger fraction of the Earth, floods

always result in property damages and loss of life. In order to more efficiently manage the

different amounts of water it is necessary to improve the knowledge of hydrologic cycles

and, between them, to deeply analyze the formation mechanisms of the inflow.

In this thesis the attention is focused on the water optimal management in artificial reser-

voirs. Usually, to solve the problems of optimal management of these reservoirs, we rely

on tools able to optimize the control of complex, stochastic and non-linear systems: one

of the more commonly adopted is the Stochastic Dynamic Programming (SDP). However

the SDP suffers from 2 big limitations, the ”curse of dimensionality” and the ”curse of

modelling”. Due to the latter the SDP can not use the information contained in the exo-

genous variables unless they are dynamically modeled. But the formation and trends of

the inflow are influenced by several exogenous variables, including hydrological, climatic

and meteorological variables. Not consider those variables in the management of a reser-

voir results in an inevitable loss of information.

To overcome this lack of knowledge we propose a new methodology able to exploit the

exogenous information more relevant for the formation of the inflow.

In particular the objective is to identify a procedure through which: assessing the space

for improving reservoir operation with respect to the level of performances reached by

the traditional management systems; screening among different information sources to

identify the most relevant variables and lead time for operational purposes; designing op-

erating policies able to exploiting such information. With this new procedure we want to

switch from the traditional approach of exploiting exogenous information, which includes

the use of an inflow forecasting model (model-based), for a more innovative one where
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the exogenous information is directly used into the management policy (model-free).

Afterwards this new procedure is tested in the creation of an optimal operating policy for

the management of the reservoir Hoabinh, located in the basin of the Red River in Viet-

nam. The proposed approach gives promising results. Thanks to the direct inclusion into

the operating policy of some hydroclimatic variables, selected through the use of an Input

Variable Selection (IVS) algorithm, better management performances have been achieved

compared with those obtained through traditional approaches. In addition, in order to fur-

ther improve the analysis previously made, it is analyzed the possibility of using variables

related to phenomena of global atmospheric circulation, such as indices associated with

the El-Niño phenomenon.

Finally, to verify whether the use of the significant variables selected by the IVS lead to

increased performance, we create an inflow forecasting model for the inflow of the Da

River using those variables. The results obtained in this particular case are not encour-

aging: in fact it is inferred that the exogenous information does not provide an appreciable

contribution in predicting the future inflow.
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Riassunto

La gestione ottimale delle quantità d’acqua disponibili all’interno dei serbatoi (artifi-

ciali o naturali) è una questione di grande importanza in tutto il mondo. Infatti, mentre la

scarsità d’acqua crea problemi economici e sociali in una frazione ogni giorno più grande

della Terra, le piene incontrollate sono da sempre causa di danni alle proprietà e di perdite

di vite umane. Per rendere più efficiente la gestione di questi serbatoi è necessario migli-

orare la conoscenza dei cicli idrologici e approfondire la comprensione della formazione

dell’afflusso.

In questa tesi l’attenzione è focalizzata sulla gestione ottimale dell’acqua all’interno dei

serbatoi artificiali. Solitamente, per risolvere i problemi di gestione ottimale di questi

serbatoi, ci si affida a strumenti in grado di ottimizzare il controllo di sistemi complessi,

stocastici e non-lineari: il più usato è la Stochastic Dynamic Programming (SDP). Tut-

tavia la SDP è affetta da svariate limitazioni tra cui quella di non poter usare l’informazione

contenuta in variabili esogene a meno che esse non siano dinamicamente modellizzate

(maledizione della modellazione). La formazione e l’andamento dell’afflusso sono influ-

enzati da svariate variabili esogene, tra cui variabili idrologiche, climatiche e meteorolo-

giche. Non considerare queste informazioni nella gestione di un serbatoio si traduce in

un’inevitabile perdita di informazione.

Per superare questa perdita di informazione si propone una nuova metodologia in grado di

sfruttare l’informazione esogena, più rilevante rispetto alla formazione dell’afflusso con-

fluente nel serbatoio in questione.

In particolare l’obiettivo è quello di identificare una procedura tramite cui: valutare se

l’acquisizione di variabili esogene possa effettivamente migliorare le prestazioni delle

politiche di gestione già esistenti; selezionare le variabili più rilevanti per spiegare l’afflusso

al serbatoio; definire politiche di gestione ottima sfruttando le variabili selezionate, in-

corporandole direttamente nella politica. Con tale procedura si vuole passare dal trad-
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izionale approccio di sfruttamento dell’ informazione esogena, che prevede l’utilizzo

di un modello di previsione per l’afflusso (model-based), ad uno più innovativo in cui

l’informazione esogena viene direttamente sfruttata all’interno della politica di gestione

(model-free).

In seguito questa nuova pocedura è stata testata nella creazione di una politica ottima

per la gestione del serbatoio Hoabinh, posizionato nel bacino del Fiume Rosso in Viet-

nam. L’approccio proposto ha dato risultati promettenti: grazie all’inclusione diretta di

alcune variabili idroclimatiche, selezionate tramite l’uso di un algoritmo di Input Vari-

able Selection (IVS), nella politica di gestione, si sono ottenute prestazioni gestionali

migliori rispetto a quelle ottenute tramite i metodi tradizionali. Inoltre, per poter migli-

orare ulteriormente l’analisi fatta in precedenza, si è analizzata la possibilità di utilizzare

variabili legate a fenomeni di circolazione atmosferica globale, come gli indici associati

al fenomeno El-Niño.

Infine, per verificare se l’utilizzo delle variabili significative selezionate dall’IVS con-

duca ad un incremento delle prestazioni, si è voluto creare un modello di previsione per

l’afflusso del Fiume Da utilizzando tali variabili. I risultati ottenuti in questo caso partic-

olare non sono incoraggianti: si è infatti dedotto che l’informazione esogena non fornisce

un contributo apprezzabile nella previsione dell’afflusso futuro.
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Introduction

Water is becoming the new gold of our days, the blue-gold, and the availability of

adequate amounts of water is a fundamental requirement for the sustainability of human

and terrestrial life. Nowadays sustainable water resource management is a critically im-

portant priority across the globe. Thus, the importance of implementing the best possible

management for the limited amounts of water is growing everyday, in every place of the

Earth. Nevertheless developing efficient operating policies for the management of every

water resource is always challenging due to the significant impact on performances the

uncertain inflow and the variability of demands have. Inflow is related to fresh water

availability for humans, animals, and plants, and to incidences of natural hazards, such as

flood and drought, that occur abruptly and may result in loss of human and animal life.

The forecast of its future trends has been deeply analyzed by researchers, since it provides

crucial information for adaptive water resources management.

Exogenous information, especially hydroclimatic information, are usually exploited to

build accurate inflow models and, then, model predictions are subsequently used to design

more informed decisions. In this thesis we explore an alternative methodological ap-

proach for the incorporation of hydroclimatic data into the operating policy, without the

intermediation of physical models (model-free). We will try to answer to this question:

Can, the direct inclusion of exogenous hydroclimatic information in a reservoir operating

policy, improves the performance of the reservoir management?

The purpose of this thesis is to establish a procedure for assessing and exploiting hydro-

climatic information in water resource management, specifically in reservoir operation.

We propose methodological guidelines and numerical tools for: assessing the space for

improving reservoir operation respect to the level of performances reached by the tradi-

tional management systems; screening among different information sources to identify

the most relevant variables and lead time for operational purposes; designing operating
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policies able to exploiting such information.

The proposed approach is tested on a case study, in particular: the Hoabinh reservoir in

the Red River Basin located in the Vietnam North-West territories (see Castelletti, 2011).

Finally, the thesis is concluded with a study on inflow forecasting models able to exploit-

ing the most relevant hydroclimatic variables selected by the proposed procedure. The

aim of this last part is to test if the hydroclimatic variables selected for the case study, can

be used also to create good inflow forecasts.

The structure of the thesis is organized as follows:

• Chapter 1: synthetic theoretical introduction about the formulation of a reservoir

management problem and its possible solution methods, followed by a preliminary

description of our new approach of exploiting the value of hydroclimatic informa-

tion.

• Chapter 2: the new approach is fixed in a methodological and numerical procedure

of 4 steps.

• Chapter 3: description and discussion about the application of the procedure, de-

scribed in Chapter 3, to the case study in Vietnam, analysis of the results.

• Chapter 4: creation of an inflow forecasting model, by using an Artificial Neural

Network, exploiting some hydroclimatic variables.
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Chapter 1

Water Resources Management and the
Role of Exogenous Information

The reservoirs, intended as regulated storage facilities, have always been a very power-

ful tool for the reallocation of water resources in time and space. With a proper manage-

ment of them it is possible to meet several goals, even simultaneously, such as avoiding

dangerous flood, accumulating water for dry seasons or exploiting it constantly over time

to produce hydroelectric power. Indeed reservoirs optimization problem is by far one of

the most studied subjects in the water resources research area. The basic mathematic for-

mulation of this kind of problems is discussed following; later on several ways to solve it

are proposed.

1.1 Reservoir Management Problem Formulation

The term reservoir indicates a storage and regulation structure that can be either an

artificial or natural lake which is regulated by an artificial barrier. It is a system always

related to natural catchments feeding it, barriers (dams or diversions), water users(e.g. hy-

dropower plants, irrigation districts), and artificial and natural canals that connect all the

above components. The task of the Reservoir Management Problem formulation consists

in determining the best optimal sequence of release decisions over a defined horizon.

The physical processes that are involved in the system are time-continuous, however the

model structure is always time-discrete as release decisions are taken at discrete instants
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of time. The decision time-step is usually one week or one day and, in any case, not

smaller than few hours, because of the physical constraints in the implementation of the

decision (e.g. dam’s gate operation). The system dynamics is thus given by the state

transition equation:

xt+1 = f(xt ,ut ,εt+1, t) (1.1)

where xt ∈ Rnx and ut ∈ Ut ⊆ Rnu are the state and control vectors at time t; and

εt+1∈ Rnε is the disturbance1 acting in the time interval [t, t + 1). The state vector xt

is composed of the reservoir storages and the state variables of catchments, canals, and

water users. The control vector includes the release decisions at the reservoir outlet and

the distribution decisions at the regulated dams. The disturbance vector ε collects the

random disturbances acting in the system, e.g. climate or hydrological inputs, and error

terms in the model of the system. In this thesis we consider the disturbance as a stochastic

variable modeled by a pdf φt(·), as shown in the following equation:

εt+1 ∼ φt( · |xt ,ut) (1.2)

The system must be operated considering several m issues such as agricultural and

hydropower production, flood control, ecological services. For accounting them in the

structure of the model it is necessary defining them with an appropriate mathematical

function called ”the objective function”, that should be defined to express the cost payed

over the time horizon [0,h]

Ji = E
ε1,...,εh

h−1

∑
t=0

[gi
t(xt ,ut ,εt+1),gi

h(xh)] (1.3)

where gi
t(·), for t = 1, . . . ,h−1 are the step-cost functions created for every m issue,

associated to the transitions from t to t + 1 and gi
h(·) is a penalty function over the final

state. In this work the Laplace formulation has been chosen to filter the disturbance, i.e the

expected value E is the statistic used to filter the disturbance and as aggregation over time

the sum ∑ is used (for more information see Soncini-Sessa, 2007). The control vector is
1According to the notation adopted, the time subscript of a variable indicates the instant when the its

value is deterministically known.
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specified by a time-varying control law (also called operating rule):

ut = mt(xt) (1.4)

and the aim of the control problem is to define the sequence of control laws mt(·) over the

horizon [0,h−1], i.e. the control policy (also called operating policy):

p = [m0(·), . . . ,mh−1(·)] (1.5)

The optimal control problem is formulated as

min
p

[
J1,J2, . . . ,Jm] (1.6)

subject to constraints (1.1), (1.2), (1.4), (1.5), and with x0 given. The control problem

(1.5) is a multi-objective (MO) optimization problem, whose solution is the set P of

Pareto optimal (efficient) policies (see e.g. Miettinen, 1999). Each policy in P can

be computed by solving the following single (aggregate) objective (SO) optimal control

problem:

min
p

J (1.7)

subject to constraints (1.1), (1.2), (1.4), (1.5), and with x0 given, and

J = E
ε1,...,εh

h−1

∑
t=0

[gt(xt ,ut ,εt+1),gh(xh)] (1.8)

where gt(·) and gh(·) are the aggregate step-cost and penalty functions obtained from

gi
t(·) and gi

h(·) (with i = 1, . . . ,m) according to the aggregation method (see, e.g., Soncini-

Sessa, 2007) used to re-conduct the MO problem to a SO problem.

In the water resources context, the choice of the time horizon and the penalty function

gh(xh) might be critical since the life time of the system is infinite. Generally, the adoption

of an infinite horizon, which vanquishes the influence of the the penalty, is recommended.

When the model of the system and all the step-cost functions are cyclostationary with

period T , the problem on the infinite horizon is well-posed and the solution is a periodic

control policy. The SO problem over an infinite horizon is formulated as

min
p

lim
h→∞

J (1.9)

subject to (1.1), (1.2), (1.4), given x0, and the control policy over the period T

p = [m0(·), . . . ,mT−1(·)] (1.10)
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instead of (1.5).

In this work we consider a simplified management problem formulation with only

one reservoir to manage and one objective to be optimized (flood control); our task will

be implementing a point-valued control policy that gives a single release decision for

every decision step. For more details about the case of study see Chapter 3.

1.1.1 Traditional Problem Solution: The dynamic programming ap-
proach

The final task of the problem previously described is to define an optimal control

policy (or operating policy). To accomplish this goal there are several approaches that

can be used:

• Functional Approach that determines the optimal policy as a succession of con-

trol laws upon which no conditions are imposed. This approach is used both to

determine off-line policy through Stochastic Dynamic Programming (SDP), with

algorithms based on the numerical resolutions of the Bellman equation (see Yeh,

(1985) for a review of the first applications of SDP to water resources manage-

ment and Soncini-Sessa (2007) for recent improvements), and to determine on-line

policy. The SDP is able to provide the optimal policy under very general assump-

tions. However it suffers from some critical limitations.

• Parametric Approach that fixes a priori the class of functions to which the control

law must belong, so that a particular function, and also a particular policy, is defined

by a finite number of parameters and the policy design will consist in identifying the

values of the parameters that minimize the objectives (Soncini-Sessa, 2007). This

approach is used to determine off-line policy when the algorithms based on SDP

cannot be used due to too high computational requirements (that grow exponentially

with the system dimension).

• Learning Approach that leaves the system to evolve under a suitable algorithm,

which experiments with alternative controls until, by trial-and-error, it identifies the
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optimal policy (Castelletti, 2010b). This approach, based on the ideas developed

in a branch of the Artificial Intelligence which is named Reinforcement Learning,

allows to determine the optimal operating policy considering, in the system model,

also the exogenous inputs.

Stochastic Dynamic Programming (SDP) appears to be the most suitable, and one of

the more commonly adopted, method for solving problem (1.7). One pillar of SDP suc-

cess is its wide applicability. Indeed, the only requirements for its application are: (1)

the inputs in the model can only be controls or random disturbances, which means that

it is not possible to consider (and condition the policy upon) uncontrolled, exogenous,

deterministic variables whose value is known in real time (e.g. rainfall measures), unless

these are described by a dynamic model and so are not exogenous inputs anymore; (2)

the membership-set or the pdf of the disturbance vector must be in the form as in (1.2),

i.e. either the disturbance process is independent in time or, at time t, any dependency on

the past could be completely accounted for by the value of the state at the same time; and

(3) the step-cost functions gt(·) only depends upon variables defined for the same time

interval. The first condition leads to the so-called ”curse of modelling”; this means that

SDP cannot consider exogenous information.

Stochastic Dynamic Programming is an algorithm based on the calculation of the ’optimal

cost-to-go’ for every time instant t. Basically it is based on the resolution of the Bellman

Equation, (Bellman, 1957). The Bellman equation for the SO finite horizon optimal con-

trol problem (1.7) is

Ht(xt) = min
ut

Ψ
εt+1

[Φ [gt(xt ,ut ,εt+1),Ht+1(xt+1) ] ] (1.11)

where Ht(·) is the optimal cost-to-go function for the aggregate objective and only the

following combinations of Φ and Ψ are considered

Φ[v,w] = v+w and Ψ = E

Φ[v,w] = max{v,w} and Ψ = max

The solution of this equation leads to an optimal control policy based on the criteria

of minimizing the total expected cost of all the stages, from the time the choice is made

onwards. Each control, defined by the control policy for each decision step, incurs in an

immediate cost gt(xt ,ut ,εt+1), but also impacts, through the state xt+1 that it contributes
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to produce, the context in which the next control choice will be made and thus the effect

that this latter will produce on all the future stages. The solution is obtained by initializing

Hh(xh) with gh(xh) and recursively computing Ht(xt) with Eq. ( 1.11). Once the optimal

costs-to-go have been computed for all the time instants t = h− 1, . . . ,0, the optimal

operating rule at any time t is derived as:

mt(xt) = argmin
ut

Ψ
εt+1

[Φ [gt(xt ,ut ,εt+1),Ht+1(xt+1) ] ] (1.12)

Thus, the result of the SDP consists in an operating policy from which it is possible

to derive the single release decisions for a specific reservoir or a set of reservoirs. These

decisions are made to maximize current benefits plus the expected benefits from future

operation, which are represented by the recursively calculated cost-to-go function.

As anticipated, SDP is a powerful tool for solving problems such as (1.7), however it

suffers from 2 big limitations. The main limit of SDP is the so called ”curse of dimension-

ality”, i.e. the associated computational complexity grows exponentially with the state,

control and disturbance dimensions. This limits the use of SDP to small water systems

where the number of reservoir is smaller than a few units (2 or 3). Then, we already

anticipated that there is another critical limitation the SDP have to deal with, ”curse of

modelling”: the inability to directly incorporate exogenous information unless these are

properly modelled, thus enlarging the state of the system. This means that it is not possible

to use exogenous information such as hydrologic, climatic and meteorological variables,

directly within the structure of a SDP problem. But this restriction imposes to not consider

every kind of exogenous variables that could be potentially very important in taking every

release decision, such as rainfall data, air moisture or temperature, snow-pack values, soil

moisture, evapotranspiration or even mid to long term climatologic phenomena.

Can the exploitation of these kind of hydroclimatic variables (as the exogenous variables

will be called from now on) actually improve the reservoir management? In this work we

try to answer to this question by overcoming the restriction of the SDP by creating a new

procedure able to exploit the value of exogenous information. We provide methodolo-

gical guidelines for: assessing the actual space for improving system operation; screening

among different information sources to identify the most relevant variables and lead time

for operational purposes; designing operating policies that exploits such information.
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1.2 Assessing the space for improvement: The Ideal Solu-

tion

The control problem (1.5) is a multi-objective (MO) optimization problem and by

solving it with an algorithm like SDP the set of Pareto optimal (efficient) policies is found.

Figure 1.1: Schematic Pareto Frontier obtained by solving a SDP problem.

In the previous figure a schematic Pareto Frontier is shown; it is ideally obtained by

the resolution with SDP of a management control problem related to a reservoir operation

in which 2 generic objectives (J1 and J2) must be optimized (minimized).

Is it possible to improve the performance of this management problem? Is it possible

to create a procedure able to move the frontier of Figure (1.1) towards the origin of the

axes? The first step in our methodology consists in answering to these questions, i.e. in

assessing the potential space for improvement stemming from the incorporation of hy-

droclimatic information in the decision model. This can be obtained as the difference

between the operation performance computed assuming that the maximum possible in-

formation is available to the decision-maker (i.e. perfect knowledge of all present and

future hydrological conditions) and the dual situation, in which decisions are taken only

on the basis of the storage at a given time, with no consideration of additional hydrocli-

matic data. The former operation can be designed by deterministic optimization, the latter

by stochastic optimization. The difference between the objective values produced by the
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two optimizations is the Expected Value of Exogenous Information (EVEI) and gives an

indication about the maximum space of improvement that can exists thanks to the use of

exogenous information.

Figure 1.2: Pareto frontiers obtained by resolution of a DDP problem and of a SDP problem, and in blue is

highlighted the area of ’expected value of exogenous information’.

Deterministic optimization problem and stochastic optimization can be solved with

several methods, in this thesis we always consider the Deterministic Dynamic Program-

ming (DDP) and the Stochastic Dynamic Programming (SDP) as solving algorithms.

In Figure (1.2) it is assumed that the deterministic optimization is actually able to get sig-

nificantly better operating results; this is a realistic assumption because the DDP is based

on the idea that all the information about the system are knew in advance, so the implicit

stochastic nature of the reservoir management problem is completely ignored.

What is expected to do in this thesis is to investigate the EVEI space shown in Figure (1.2);

i.e. the possibility to improve the optimal operating policy obtained by the stochastic ap-

proach of SDP, by directly including some valuable hydroclimatic variables. Hence the

idea implemented is to switch from the formulation of the operating rule (1.4) to the for-

mulation:

ut = m(t,st ,It) (1.13)

where It is the input vector containing the most valuable hydroclimatic variables and

st is the vector containing the storage of the reservoir at the different time instants t; in the
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case of reservoir management the storage of the reservoir itself is generally considered as

the state of the system, thus, from now on, the state variable xt is always replaced by the

variable st .

Then the result will be compared with the optimal release sequence u∗ generated by the

DDP that is conceptually equivalent to a feedback operating rule of the form:

ut ∼= m(st , t, q̄t+1, q̄t+2, ..., q̄h) (1.14)

where q̄t is the measured inflow to the reservoir and h is the lead horizon.

The purpose is to design a nearly equally performing but implementable control and

to accomplish this goal the future sequence of inflow must be replaced by a vector of

hydroclimatic variables selected in such a way to approach as much accurately as possible

the optimal sequence u∗ generated by DDP.

1.3 A new approach

Our goal is to create an optimal operating rule able to exploit the information con-

tained in the hydroclimatic variables and able to performs better than the law defined by

the resolution of a SDP problem. To reach this goal the input vector It must be defined,

and it must contains the most valuable hydroclimatic information available at time t that

better works as a surrogate of the perfect knowledge of future inflow. This surrogate of

the future knowledge can be defined in several ways. One of these is the traditional model

based surrogate, i.e. the inflow prediction. So the control policy assumes this formulation:

ut = m(st , t, q̂t+1, q̂t+2, ..., q̂h) (1.15)

where q̂t is the predicted inflow to the reservoir. In this case the input vector It must

contains the most valuable information in order to make the best possible inflow forecast,

see Figure(1.3).
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Figure 1.3: Scheme of an optimization model with model-based use of exogenous information.

The use of hydroclimatic information in inflow forecasting models has already took a

real advantages in creating efficient operating policies (Makkearson, 2008). However the

use of a forecasting model inevitably creates some new computational errors, so we will

try to investigate the idea of directly use the same raw exogenous information employed

by predictors (see Guariso, 1986). This thesis proposes a new methodology to improve

reservoir operation by smartly enlarging the set of information up on which the operat-

ing policy is conditioned by basing on a new model-free approach and no more on the

traditional model-based one. Indeed to reach our goal we do not follow the conventional

model-based approach described above, where observations are used to identify models

and model predictions are used to inform decisions. Rather we adopt a ”model-free” ap-

proach, see Figure (1.4), where data directly feed the decision model, i.e. an operating

rule that provides the decision as a function of the current system conditions (the state)

and of any other useful hydroclimatic information as suggested by a variable selection

process. The operating rule is then calibrated using simulated system states and historical

time series of hydroclimatic variables.
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Figure 1.4: Scheme of an optimization model with model-free use of exogenous information.

Nevertheless, before implementing this process, there are a few challenges that must

be analyzed. It must be decided what kind of input variables collect and analyze regard-

ing to the system main dynamics and regarding to all the objectives that must be optim-

ized by the operating policy. Indeed there are a lot of aspects that must be considered.

First of all the objectives of the management problem: e.g. if the major objective is the

flood control it may be useful a few-days-ahead information, and so, only variables with

a fast dynamics should be used, instead if the major objective is irrigation, only low fre-

quency variables should be considered because the needed information becomes seasonal.

Second the main physics, geographical and technical aspects of the whole system must

be observed. Third, the data availability need to be considered. After this first analysis

the number of candidate variables can be very high due to the presence of multiple, pos-

sibly redundant information and spatial variability, so an empirical selection is not always

effective. Hence, an instrument to select the most valuable information is necessary. In

this thesis to deal with this task is used an ’Input Variable Selection’ algorithm (IVS), as

described in the next chapter.
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Chapter 2

A procedure for using Exogenous
Information in improving Water
Resources Systems Management

In the traditional approach, the use of selected hydroclimatic variables such as rainfall,

snow cover, temperature, evaporation, soil moisture, etc, is confined to the creation of the

future inflow sequence by the creation of a model-based inflow predictor. In this work, we

explore an alternative model-free approach based on the direct use of hydroclimatic in-

formation to conditioning the release decision derived from the control law. Accordingly

to this model-free philosophy of the approach, the set of candidate variables to serve for

this purpose includes a wide range of information at different locations and for different

time lags. Selection among such variables can be based on expert judgements or rely

on statistical tools like cross-correlation or non-linear input variable selection methods,

assuming the optimal deterministic release schedule as output and the candidate hydrocli-

matic variables as regressors. The aim of this chapter is to show the implementation of a

procedure able to integrate the most valuable hydroclimatic information directly into the

control law. This procedure, as shown in Figure (2.1), have been schematized in 4 step:

1. the deterministic optimization,

2. the candidate variables selection,

3. the use of the ’Input Variable Selection’ algorithm,
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4. the stochastic optimization.

Figure 2.1: Summary of the procedure.

2.1 The deterministic optimization

The deterministic optimization problem is

min
u

J(s0,u,q) s.t. (x0,q) given (2.1)

where u = |u0, ...,uh−1| is the sequence of decisions to be taken over the optimization

horizon [0,h− 1], and J is the objective function (cost) whose value also depends on

the initial state s0 (i.e. the reservoir storage) and the trajectory q = |q1, ...,qh| of the

uncontrolled inputs (in this thesis they are always represented by the reservoir inflow

data) over the optimization horizon.

The solution of problem (2.1) consists in the optimal trajectory of release decisions, as

shown in Eq. (2.2):
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u∗ = |u∗0, ...,u∗h−1| (2.2)

However this solution is optimal only under the given trajectory of future inflow. Such

almost exact knowledge of the future inflow is not available, so problem (2.1) can be for-

mulated only over past time horizon where time series of observed inputs are available.

Consequently, its solution has no operational value but it only provides an upper bound

of the system performances that the decision-maker could have obtained on that horizon.

The problem can be solved either by non-linear programming NLP methods (e.g. gradient-

based or direct search methods) or by deterministic dynamic programming DDP. The ap-

plicability and effectiveness of each method depend on the properties of the system and

of the objective function. In this work, DDP was used. When applicable (i.e. when the

objective function J is separable and the number of state and decision variables is limited)

DDP is computationally efficient and provides very accurate solution, the only source of

error being the discretization of the state and decision variables.

First step in our procedure is to solve problem (2.1) to identify the ideal solution, i.e.

Eq. (2.2), in a way to assess what performances the hypothetical single decision maker

could attain if (s)he had perfect knowledge of time pattern of future inflows. Starting from

this ideal solution the results of all the other operational algorithms can be compared with

this ideal reference. This work to identify the ideal solution using the DDP was widely

carried out in the PhD thesis of Quach (2011).

2.2 Candidate Variable Selection

Before implementing an Input Variable Selection algorithm it is necessary to define

the set of candidate hydroclimatic variables. As anticipated in the previous chapter, we

are searching for variables able to give valuable information about the inflow formation

and trend and able to play as surrogate of the future inflow for a specific reservoir. Theor-

etically the inflow is physically influenced by a variety of different variables with which it

can have linear or non-linear relationships; it is possible to summarize these relationships

28



with this generic identity

qt = f (It) (2.3)

where f is a generic set of functions, each one of them describing the relation between

every components of vector It with the inflow formation and trend. Our final task is to

fulfill the vector It . To select appropriately these components of It it is fundamental a

deep study of the main characteristics and dynamics of the reservoir under exam.

To empirically choose what kind of variables can be candidates, different evaluations must

be done about:

• The objectives of the management problem and the related dynamics

• The data availability

First the objectives of the management problem and the related evaluation horizon

must be analyzed; indeed if we need to solve a management problem to optimize a flood

control objective, we will need to consider variables with a rapid dynamics. In this case

variables such as the measure of precipitation at any or multiple steps should be analyzed.

While if the optimization is related to the hydropower production or to the delivery of

water for irrigation, variables able to give information with a seasonal dynamic should be

considered such as snow pack/cover information, climatic variability indices like El-Niño

Southern Oscillation (ENSO), soil moisture or solar activity data should be considered.

Last but not least we have to face with the data availability.

Until now the most studied approach to include hydroclimatic information in reservoir

management was the one of creating an inflow predictor, which, then, will be included

in the optimization model. Recently, for making improved inflow forecasts, a lot of re-

searchers have concentrated their attention in the study of large-scale atmospheric circu-

lation phenomena and towards the different indices related to them. Such indexes are for

example the ENSO indices. Thanks to these study it was stated that there is an effective

improvement in making inflow forecasting by exploiting this kind of exogenous inform-

ation, see e.g. Maity (2008). This proves that these variables are valuable in explaining

inflow formation and trends, and then, that there is a potential to expand the scope of study

by incorporating these more comprehensive sources of hydro-meteorological information

directly in optimization of reservoir operation.
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2.3 Input Variable Selection (IVS)

The optimal release sequence of equation (2.2) generated by deterministic dynamic

programming is conceptually equivalent to a feedback operating rule as shown in Eq.

(1.14).

According to our model-free approach, to design a nearly equally performing but imple-

mentable operation, the future sequence of inflow must be replaced by a vector It of hy-

droclimatic variables selected in such a way to characterize as much accurately as possible

the optimal sequence u∗. Candidate variables to serve as surrogate of future inflows in-

clude past and/or cumulated values of the inflow, precipitation, snow cover, and any other

hydroclimatic information observed in the basin and relevant to the operation objectives.

When the number of candidate variables is higher than few units, the selection process can

considerably benefit from the use of input variable selection algorithms, which generally

outperform expert judgment and cross-correlation analysis in presence of many redundant

inputs and strongly non-linear underlying causal relationships. In this work, we used the

tree-based Iterative Input Selection (IIS) algorithm introduced in the PhD thesis of Galelli

(2010), which is an input selection algorithm that holds three features particularly use-

ful in the problem we are dealing with: flexibility (i.e. the ability of modelling strongly

non-linear functions), computational efficiency (i.e. the ability of processing large data-

sets), and scalability with respect to the input dimensionality (i.e. the ability of handling

several input variables with a different range of variability). This algorithm is based on

a reiterative input selection, i.e. it selects the most valuable input variables basing on a

cross validation procedure. Then the performance index of whole model is calculated as

an average value of n models; where n is a parameter of the algorithm (called n-fold) and

represents the number of section in which we decide to split the data-set. We prefer a re-

iterative input selection instead of a direct input selection approach because in the direct

method the training data-set has to be split in a calibration and a validation set basing only

on the expert’s experiment. So the accuracy resulting from the experiments depends on

the way of division made into the original data-set. To overcome such limit it is possible

to use the reiterative procedure based on a random division of the data-set made by the

algorithm itself and not by a human operator. The considered key performance parameter

is R2, the explained variance (also called coefficient of determination), that is a statistic

providing a measure of how well future outcomes are likely to be predicted by the model
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used, i.e.

R2 = 1− SSerr

SStot
(2.4)

with SSerr as the sum of squares of residuals

SSerr = ∑
i
(Ŷi− Ȳi)

2 (2.5)

and SStot as the total sum of squares

SStot = ∑
i
[Ȳi− (

1
N

N

∑
i
(Ȳi)]

2 (2.6)

where N is the total number of observation. The better the model, the closer the value

of R2 is to one.

In the next section a specific IVS algorithm, used for the experiments taken in this thesis,

will be explained.

2.3.1 Iterative Input Selection Algorithm

To fulfill all the requirements mentioned in the previous section, a model-free, forward-

selection algorithm was chosen, its name is Iterative Input Selection (IIS). This algorithm

was developed within the PhD thesis of Galelli (2010).

Given the output rt and the vector zt of candidate features, the IIS algorithm first globally

ranks the elements of zt accordingly to a statistical measure of significance that accounts

for non-linear dependencies, and then refines the ranking by evaluating the individual con-

tribution of the features ranked in the first p positions. This parameter p must be chosen

’a priori’ and it represents the number of variables with the highest rank related to the

output. Then the most significant feature is selected and employed as regressor for a pre-

defined model. To account for features redundancy, the algorithm proceeds by repeating

these operations on those data that still have to be explained, namely on the residuals of

the model built at the previous iteration. The algorithm iterates these operations until the

selection of new features does not further improve the performance of the model being

built. Thus the IIS algorithm requires to select an effective statistical measure of signific-

ance, which, on its turn, influences the choice of the model class. The only parameters to
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be specified are thus p and a tolerance ε used to terminate the algorithm. The steps of the

IIS algorithm are shown here:

Step 1 Set k = 0 and z̃t as empty vector.

• Rank, in decreasing order, the features in the vector zt according to their statistical

measure of significance in explaining the output rt .

• Select the features z1
t , ...,z

p
t ranked in the first p positions. For i = 1, ..., p identify a

model of the form r̂k,i
t = c(zi

t) and evaluate its performance Ri in explaining rt .

• Denote as zk
t and r̂k

t the feature and the estimate of rt corresponding to the model

with the highest performance Rk. Store zk
t in z̃t .

• Compute the residual ek
t = rt− r̂k

t .

Step 2 Set k = k+1.

• Rank, in decreasing order, the features in the vector zt according to their statistical

measure of significance in explaining the output ek−1
t .

• Select the features z1
t , ...,z

p
t ranked in the first p positions. For i = 1, ..., p, identify a

model of the form ek−1
t = c(zi

t) and evaluate its performance Ri in explaining ek−1
t .

• Denote as zk
t the feature corresponding to the model with the highest performance.

Store zk
t in z̃t .

• Identify a model of the form r̂k,i
t = c(zi

t) and evaluate its performance Rk in explain-

ing rt .

• Compute the residual ek
t = rt− r̂k

t .

Step 3 Termination test

If (Rk−Rk−1) < ε , the algorithm stops. The selected features are stored in z̃t , with di-

mensionality z̃z = k−1. Otherwise, return to Step 1.

As for the model class and the statistical measure of significance, it is employed a

class of tree-based methods, named Extremely Randomized Trees (Guerts, 2006), and an
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Extra-Trees based ranking procedure.

Tree-based methods stand out as a class of non-parametric methods that can provide mod-

elling flexibility, computational efficiency, interpretability and good accuracy in both re-

gression and classification problems. They are all based on the idea of decision tree mod-

els, which are tree-like structures representing a cascade of rules leading to numerical

values. These structures, composed of decision nodes, branches and leaves, are obtained

by first partitioning at the top decision node, with a proper splitting criterion, the set of the

regressors into two sub-sets, thus creating the former two branches. The splitting process

is then repeated in a recursive way on each derived sub-set, until the numerical values

belonging to a sub-set vary just slightly or only few elements remain. When this process

is over, the branches represent the hierarchical structure of the sub-sets partition, while

the leaves are the nest sub-sets associated to the terminal branches.

The Extremely Randomized Trees, or Extra-Trees, are a recent method for classifica-

tion and regression problems proposed by Guerts (2006). Extra-Trees methods build en-

sembles of unpruned regression trees according to a top down approach that starts from

the top decision node and systematically explores the regressors set. Extra-Trees, with

respect to the other randomization methods (e.g. Random Forest (Breiman, 2001), PERT

(Cutler and Guohua, 2001)), exploit the original training data-set and split the nodes by

selecting the cut-point and the regressor totally (or partially) at random. The rationale

behind these two characteristic is that the use of the original training data-set is motivated

to minimize bias, while the randomization of both the cut-point and the regressor selec-

tion can reduce variance more efficiently than other randomization methods (see Guerts,

2006). The Extra-Trees based procedure used here has a few parameters that must be

a priori fixed on the basis of the problem specifics, and by empirical or trail-and-errors

evaluations:

• nmin : is the minimum number of observations needed to split a node. Large values

of nmin lead to small trees (few leaves), with high bias and small variance. Con-

versely, low values of nmin lead to fully-grown trees, which may over-fit the data.

The optimal value of nmin depends not only on the risk aversion to over-fitting, but

also on the level of noise in the output of the training data-set: the noisier is the

output, the higher should be the optimal value of nmin.

• ScoreTh: is another parameter varying between 0and 1 that controls the termination
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criteria. It works together with the parameter nmin and the possible situations that

should be considered are:

1. nmin = 2;ScoreT h∼ 0.98→ the termination criteria is lead by ScoreTh

2. nmin = 100;ScoreT h ∼ 0.98 → the termination criteria is lead by the both

parameters

3. nmin = anynumber;ScoreT h = 0→ the termination criteria is lead by nmin

• M: is the number of trees in the ensemble, influences the strength of the variance

reduction and the behavior of the estimation error, which is a decreasing function

of M (see e.g. Breiman, 2001). High values of M increase the accuracy of estim-

ates, because more trees randomly are built and the final forecast is certainly more

robust. However, the greater of M increases considerably the calculation time, thus

a compromise must be found between high accuracy and computing time.

• n-fold: is the number of calibration and validation sets in which the original data-set

is decided been split. The higher the n-fold parameter, the higher the precision of

the model, but, again, the higher is the computing time.

• p: is the number of variables with the highest rank related to the output modeling

that the human operator want to be shown.

2.4 Optimization

Once the hydroclimatic information vector It has been selected, the next step in our

procedure is the identification of an optimal operating rule conditioned upon this inform-

ation, i.e.

ut = m(xt , t,It) (2.7)

The stochastic nature of the system is now preserved by describing all the uncontrolled

inputs (inflow) as stochastic processes. The resulting stochastic optimization problem is

inherently much more difficult than the deterministic problem (2.1) since it is a search

in the infinite-dimensional space of functions m(·) rather than a search in the space of

vectors u. Stochastic Dynamic Programming is by far the most widely used method to

solve such a problem. However, its application is subject to the limitations imposed by
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the so called curses of modelling and of dimensionality.

There are several other approaches available to compute the operating policy exploiting

the exogenous information of the vector It . Among the parametric approaches there is

the Fixed Class Policy method that assumes the control policy belongs to an a-priori

fixed class of functions, within which a particular policy can be selected by specifying a

vector of parameters. In doing so, the Optimal Control (OC) problem is traced back to

a Mathematical Programming problem. The idea at the base of this method is to assume

some regularity on the shape of the control law, i.e. the control law belongs to a given

class of functions (e.g. piecewise linear, polynomial, non-linear, ecc.). Generally the

solution obtained by a Fixed Class Policy method is suboptimal, since it is decided ’a

priori’ the class of function to which the policy belongs.

Another approach able to exploiting the exogenous information belongs to the Learning

ones. There is a specific algorithm named, Q-Learning, able to exploit the information

included within the vector It ; it was originally developed in the branch of the Artificial

Intelligence (AI) which goes under the name of Reinforcement Learning (RL), but it is

also a relative of SDP. In fact it is solved by the recursive resolution of the Bellman

Equation modified by the introduction of the Q-factor. Hence, the Bellman Equation

belonging to the SDP problems has transformed from this previous formulation:

Ht(st) = min
ut

E
εt+1

[gt(st ,ut ,εt+1)+Ht+1(st+1)] (2.8)

where the Laplace criterion is applied and a finite horizon is considered; to this for-

mulation:

Ht(st) = min
ut

Q∗t (xt ,ut) (2.9)

where

Q∗t (xt ,ut) = E
εt+1

[gt(st ,ut ,εt+1)+H∗t+1(st+1)] (2.10)

The function Q∗t (xt ,ut) is known in the literature as a Q-factor and provides, given xt ,

the optimal cost-to-go at time t assuming that the control ut is applied at the first step and

an optimal policy is adopted in the following steps. Then the optimal policy is obtained

by the solutions of this equation:
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m∗t (st) = argmin
ut

Q∗t+1(st+1,ut+1) (2.11)

Q-Learning allows to include any information It into the controller as far as this in-

formation is observable, even if a model is not available . Conceptually, any additional

information is considered as an augmented state component, like in SDP, however a model

is not required for it.

In this thesis we will use a Fixed Class Policy method, see Section (3.2.4).
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Chapter 3

Case study: The Red River basin and
the Hoabinh Reservoir

In this section the procedure, presented in the previous chapters, is applied to a real

world case study: the Hoabinh reservoir in the Red River basin, Vietnam. This chapter

investigates the use of exogenous information for the design of the optimal operation of

the Hoabinh. Here follows a description of the study area, an analysis of hydrologic and

climatic variables available, and finally the results from the application of the procedure

described in Chapter 2 are analyzed.

Study Area

The Red River basin is the second largest river in Vietnam. It is located between 20o00

N and 25o30 N, and 100o00 E and 107o10 E. The total area of the basin is approximately

169,000 km2, of which 81,240 km2 (48%) in China, 86,600 km2 (51.35%) in Vietnam,

and the rest in Laos. Administratively, the Red River basin covers 26 provinces and cities

in the northern region of Vietnam, with a total population of about 28 million.

The Red River, the main River downstream from Viettri, originates at the confluence

point of three upstream tributaries: Da, Thao and Lo River (Figure 3.1). All these tribu-

taries originate from China. Even though the catchment areas of the Da and Thao River
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(a)

(b)

Figure 3.1: The Red River system. a) Schematic model of all the components of the system and b) Geo-

graphic map of the system.
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basins are almost the same, the Da River contributes 42%, while the Thao River contrib-

utes only 19% of total flow to the Red River. The Lo River basin is the smallest one, but

its contribution is 25.4%.

The whole basin is characterized by two distinguished seasons: rainy season from May

to October and dry season from November to April. Annual rainfall varies from from

1,200 to 4,800 mm/year in Vietnam part, and about 80% of rainfall occurs in the rainy

season. Because of uneven rainfall, flows through the basin are unevenly distributed in

time, causing floods and water-logging in the rainy season and water shortages in the dry

season. Among water sectors, irrigation is the biggest user, accounting for 90% of total

used water. The agricultural land occupies approximately 1,874,100 ha and forestry land

occupies 2,570,775 ha. Potential area for future agriculture and forestry development is

estimated at about 3,919,500 ha, with an associated increasing of potential demand for

the future.

Several reservoirs have been built and operated since 1970s. Thacba reservoir (Figure

3.1) is located on Chay River, a tributary of the Lo, starting its regulation in 1971. The

main objective of this reservoir is hydropower generation. However, it increases the flow

in the dry season from about 100 to 200 m3/s. The Tuyenquang reservoir (Figure 3.1) on

the Gam River (belonged to the Lo) and the SonLa reservoir (Figure 3.1), upstream of

Hoabinh reservoir on the Da River, are under construction. Up to now, Hoabinh reservoir

is the biggest one of Vietnam. So far it has been playing an important role in prevent-

ing and controlling flood, generating hydro electricity, and supplying water to irrigation,

domestic use, industry, and other water users of the Red River Basin. The Hoabinh hy-

dropower plant, at present covers approximately 15% of the electric production in the

country. The hydropower plant has eight turbines with total design capacity of 1920 MW

(maximum of 240 MW per turbine). Maximum release through the eight turbines reaches

2360 m3/s. There are 12 bottom gates, each of size 10x6 m, located at the elevation of

56 m with possible maximum release of about 21,996 m3/s. Six spillways with size of

15x15 m start from elevation of 102 m, allowing a possible maximum release of 14,100

m3/s. Beside hydropower production, the main purposes of the reservoir operation are

flood mitigation and water supply to the Red River Delta.

Due to rapid growth of population, quick development of the economy, and climate

change, the basin has been facing many problems such as severe floods, water shortages,

water pollution, and so on. The following is a brief description of the main problems
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affecting this area.

Floods

In recent years, big floods have frequently plagued Vietnam and, in particular, the Red

River Basin (see Table 3.1).

Table 3.1: Historical flood events at the main stations in the Red River Basin.

Station River Average flood flows Peak flows Date

(m3/s) (m3/s)

Laichau Da 7,242 14,2 Aug-1932

Sontay Red 16,785 37,8 Aug-1971

Yenbai Thao 5,143 10,3 Aug-1971

Chiemhoa Gam 3,188 6,2 Aug-1971

Tuyenquang Lo 5,156 11,7 Aug-1971

Vuquang Lo 5,467 14 Aug-1971

Hamyen Lo 2,897 5,7 Jul-1986

Hoabinh Da 9,618 22,7 Aug-1996

Tabu Da 9,919 22,7 Aug-1996

From Table 3.1 it is possible to see that the most of the big floods occurred in August

and so that they are driven by the monsoon. In fact, the total rainfall in the rainy season

accounts for nearly the 80% of yearly rainfall, especially, rainfall on August accounts for

21,5% of the yearly amount.

In general, the Red River floods are combinations of floods from the three upstream trib-

utaries: Da, Thao and Lo River, and the percentage of simultaneous occurrence is rather

high (72%). Flood of the Da River is the main source causing big floods of the Red River.

On average, it contributes 49% of 8 day flood water (max is 69%) at Sontay. If only the

flood peak is considered, there are 69% of flood peaks of the Da River constituting the

flood peaks of the Red River. The Lo River flood is the second biggest source of Red

River floods. One interesting note is that floods of the Lo and Da Rivers often coincided,
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and there are about 34% of chance to form the big flood of the Red River.

Hydropower

So far hydropower has been the main energy source of Vietnam, in fact it contributes

from 35% to 40% of total consumed energy . Hence it is important to guarantee the right

amount of water for the hydropower production over all the year.

The Hoabinh reservoir is also used as a water supply for the irrigation district loc-

ated downstream. Therefore it is importante that the implemented management ensures a

sufficient amount of water to meet the irrigation demand especially in the dry season. In

the PhD thesis of Quach (2011) it has been demonstrated that the water deficit is negli-

gible for most of the year. So, in this work, it has not been considered as an objective to

optimize.

3.1 Modeling the Hoabinh water system

Usually, the management of a reservoir must meet multiple objectives, often belonging

to different stakeholders with conflicting interests. This is the case even for the Hoabinh.

The operation of the Hoabinh must balance flood control, hydropower production and

water supply for irrigation. As anticipated we will concentrate on the first two objectives

and we won’t consider the water supply.

For implementing an optimal control policy, it is necessary to define the structure of the

optimal control problem and this one is composed by several parameters that must be

specified; they are: the objectives, the evaluation horizon, the decision time step and the

model of the system.

Objectives and indicators

The objectives considered in this study are the minimization of flood events and the

maximization of the hydropower generation. The optimization of only 2 objectives, in-

stead of 3, is considered because our target is not to find an optimal management policy

for this reservoir (for a complete discussion about this topic see Quach, 2011), but to
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demonstrate that the inclusion of exogenous variables in the structure of the final policy

itself improves its performances. The procedure and the results shown here are also ap-

plicable in case of studies more complex and with more than two objectives.

The objectives are modeled through physical indicators that quantify the evaluation cri-

teria the relevant stakeholders adopt in judging and comparing alternative operating policies.

Indicators are expressed as the aggregation, through an appropriate operator, of step in-

dicators (see Soncini-Sessa, 2007).

Flood

The flood mitigation is evaluated through an indicator measuring the water level in Hanoi.

Prolonged periods of high water levels at the Hanoi Station correspond to high risk of

dike break (Vorogushyn and Apel, 2010), and consequently high potential damage. For

the sake of simplicity, a proxy indicator is used in designing policies, that is the positive

difference between the water level and a threshold given value of 9,5 m that is the 1st

alarm flood level (information from Hansson and Ekenberg, 2002). Moreover, due to the

high frequency and magnitude of flood in August (see Table 3.1), in this month a higher

important weight is assigned:

g f lo
t+1 =

0 if hHn
t+1 ≤ h̄

δt(hHn
t+1− h̄)m otherwise

(3.1)

where g f lo is the step cost of flood, hHn is the water level in Hanoi station and h̄ is the

flood threshold. δt is the seasonal coefficient (equals 2 in August and 1 otherwise), and m

is a coefficient reflecting risk aversion, here assumed equal to 2. The objective considered

in the optimization is:

J f =
1
h

h−1

∑
t=0

[max{0,(hHn
t+1− h̄)}]2 (3.2)

where h is the evaluation horizon.

Hydropower

Hydropower generation is a function of the daily energy production, Pt+1, defined as:

Pt+1 = ϕgγη(Ht+1)rt
t+1Ht+1 (3.3)
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where ϕ is a coefficient of dimensional conversion, g is the gravitational acceleration

(equal to 9,81 m/s2), γ is water density (equal to 1000 kg/m3), η is turbine efficiency,

which is a function of the hydraulic head Ht+1, rt
t+1 is release through turbines. The

hydraulic head is the difference between the water level upstream and downstream, i.e.

Ht+1 = hup
t+1−hdo

t+1 (3.4)

Finally, to formulate the immediate cost, the daily energy production (see Equation

3.5) is filtered by a time-varying dimensionless coefficient αt , to taking account for the

seasonal variability, i.e.

ghyd
t+1 =−αtPt+1 (3.5)

where αt is assumed equal to 2 two from April to June and 1 in the other months. The

negative values of the production are considered, in this way the indicator is formulated

as a cost to be minimized. Hence to maximize the hydropower generation the measure of

this step cost must decrease. Then, the objective related to the hydropower energy issue,

used in the optimization stage, is the averages of the previous step indicators over the

whole evaluation horizon:

Jh =−(1
h

h−1

∑
t=0

αtPt+1) (3.6)

Evaluation Horizon

The evaluation horizon considered for the Hoabinh reservoir covers the period 1994-

2005. We start from 1994 because even if the Hoabinh reservoir was completed in 1989,

it is fully operative since 1994.

Decision Time Step

Decision time step, t, is the time between one decision and the next.

Since the historical operation of the Hoabinh reservoir is based on a 1 day decision step,

we decide to use this same step. To justify this decision we analyze the translation time
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of the whole Red River system, i.e. to estimate times of water conveying from the most

upstream points to the downstream points (in this case the downstream point considered

is the city of Hanoi). This can be done by studying the cross-correlogram of the whitened

series in question. Figure (3.2) suggests that the translation time between the upstream

stations to the downstream one is approximately one day, i.e. the output of the next day is

highly dependent upon inputs of previous day.

Figure 3.2: Translation time from upstream stations to downstream station. Stations are located: a)on the

Da river, b)on the Thao river, c)on the Lo river.

Therefore, for the study purpose, the decision step can be assumed as constant and

equal to a day.

Model of the Hoabinh system

The HoaBinh reservoir is an artificial reservoir with a storage capacity of 9.8 bil-

lion m3 and an active storage of 6 billion m3, corresponding to a level operational range

of 37 m. The reservoir dynamics is modeled by daily mass balance equation considering
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inflow from the Da River catchment, evaporation and release:

st+1 = st +qHB
t+1− et+1S (st)− rt+1 (3.7)

where st is the storage on day t, qHB
t+1 is the inflow to the HoaBinh reservoir (i.e. outflow

of the Da catchment); et+1 is the unitary surface evaporation (which follows a yearly

pattern); S(·) is the reservoir surface computed as a function of the storage; and rt+1 is

the release. The actual release rt+1 coincides with the release decision ut only if the

latter is feasible, i.e. included between the minimum and maximum feasible release that

can be obtained when all the gates are completely closed or open, respectively. Such

values are computed by integration of the continuous-time mass balance equation using

the instantaneous minimum and maximum stage-discharge relation (see Castelletti, 2008)

as given by the rating curves of the turbines, bottom gates, and spillways.

3.2 Application of the Procedure to the Hoabinh case study

In this section the application of the procedure 4 steps, presented in the Chapter 2, is

shown.

3.2.1 First Step - Deterministic Optimization

As a first step it is necessary to evaluate if there is an effective space for improvement

from the solutions offered by the traditional stochastic optimal control problem. To assess

if this space actually exists a simulation experiment assuming perfect information system,

that is, full knowledge of all future flows from the upper Da River and the tributaries

Lo and Thao must be run. The associated upper bound of performances can be derived

by solving a deterministic optimal control problem, i.e. finding the trajectory of release

decisions (release scheduling) u∗= |u∗0,u∗1, . . . ,u∗h−1| that minimizes the average aggregate

cost under historical flow pattern of the Da, Thao and Lo River. The (single-objective)

deterministic control problem to be solved, is

min
u

(
λ1

1
h

h−1

∑
t=0

ghyd
t+1 +λ2

1
h

h−1

∑
t=0

gflo
t+1

)
(3.8)

where t = 0 and t = h−1 are the first and last day in the optimization horizon (1st January

1994 - 31st December 2005); ghyd
t+1 and gflo

t+1 are the immediate costs defined in Sect. 3.1,
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Figure 3.3: Pareto Frontiers for the horizon 1994-2005. The blue one is the solutions of a DDP problem;

the black one is the solution of MOGA-ANN problem; the star indicates the historical operating rule.

whose value is computed as a function of the release scheduling u by simulation of the

model described in Sect. 3.1; and λ1,λ2 are the aggregation weights. For a given com-

bination of weights, the associated single-objective problem (Eq. 3.8) can be solved by

Deterministic Dynamic Programming (DDP). By changing the weight values, different

tradeoffs between the objectives are defined and the Pareto-optimal solutions are found,

as shown in Figure (3.3).

Figure (3.3) shows that there is an effective space for improvements from the ideal

frontier to the real optimal one. The latter was formulated by the application of a Multi-

Objective Genetic Algorithm (MOGA) over an Artificial Neural Network (ANN) function

family. This means that an ANN function family was selected for the operating rule (since

it guarantee high flexibility and low complexity) and a MOGA was applied to determine

the function parameters that minimize the average value of the immediate costs shown in

Eq. (3.1) and (3.5). As shown in Figure (3.3) the release decision deriving from the black

frontier is defined as a function of time and storage:

ut = m(t,st) (3.9)

We will concentrate on the possible improvement we can reach on the flood control
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objective. In Figure (3.3) the points referred to an operating rule exclusively based on the

optimization of the flood objective are circled in red. Indeed these points represent the

solution of the DDP problem and of the MOGA-ANN problem respectively, where only

the flood control optimization is considered.

3.2.2 Second Step - Candidate Variable Selection

The second step is to identify all the exogenous hydro-meteorological variables that,

potentially, could improve the operating policy by giving more information about the

physical functioning of the system. As introduced in Chapter 1 we must find the most

valuable information, able to play as a surrogate of the perfect knowledge of the future

inflow to the reservoir, to fulfill the input vector It , belonging to the equation:

ut = m(t,st , It) (3.10)

where the subscript t of It means that the information contained into this vector, are

available at time t when the decision is made. Hence, all the available data for the spe-

cific system must be identified. However before proceeding towards collecting all the

available data for the reservoir under exam, it is important to analyze the final goal of our

management problem; this means to analyze the objectives that must be optimized and

their dynamics. Indeed, as anticipated in Section (2.2), before collecting the variables,

we must discriminate between the high frequency ones and the low frequency ones and

choose regarding to our objectives. Since the objective, that we decided to optimize in

this thesis, is the flood control, we concentrated on the high frequency variables like the

precipitation data.

Before choosing what variables should be used we present a brief description of all the

available data for the case of study.

Along the Da River basin are placed 18 meteorological stations and 4 hydrological sta-

tions (Figure 3.4), along the Thao River basin there are 3 meteorological stations and

1 hydrological stations (Figure 3.5), and, finally, along the Lo River basin there are 3

meteorological stations and 1 hydrological station (Figure 3.5).
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Figure 3.4: Da River Basin and location of available stations.

Figure 3.5: Thao River Basin and location of available stations.

Figure 3.6: Lo River Basin and location of available stations.
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At the Hoabinh reservoir, the daily historical time series were recorded from 1st Janu-

ary, 1989, including instantaneous water levels (hup
t ,hdo

t ) at time t upstream and down-

stream of the dam, and interval releases (rt
t+1,r

b
t+1,r

s
t+1) from t to t +1 through turbines,

bottom gates and spillways, respectively. So the total release of the reservoir rt+1 is the

sum of all the above component releases. Other three related gauging stations are selec-

ted. They are Yenbai station on the Thao River, Vuquang station on the Lo River and

Hanoi station on the Red River. Water levels at these stations are usually measured twice

per day, at 7 o’clock in the morning and 19 o’clock in the afternoon. Here, only the first

measurement is used as the level of the day in question. All these daily time series are

available from 1958.

The collected information is from different sources in Vietnam, but the main source is in

the Hydrological Division - Institute of Water Resources Planning. A serious problem is

the lack of information on China’s catchment area. So the data mentioned in this thesis

are only data in Vietnam’s catchment part.

The data available are shown in Table (3.2).

3.2.3 Third Step - Input Variable Selection

From the previous section it is possible to see that there are a lot of exogenous inform-

ation available for this reservoir, thanks to the application of the Input Variable Selection

(IVS) procedure is now possible to define who are the most valuable variables among all

the previous mentioned.

Generally, in a multi-objective context the final selection of It depends upon the relative

importance of each objective in each ideal optimal policy which can be found by DDP,

i.e. result of IVS are different from one intended policy to the other. Indeed the IVS

chooses the variables that better explain the sequence of ideal release decisions defined

by the resolution of the DDP problem, and each of these sequences, is created by ap-

plying a different combination of weights to the different objectives that the model must

optimize. For instance, an extreme reservoir operating policy which favors hydropower

production tends to keep the reservoir water level as high as possible and vice verse for

a policy which prioritizes upstream flood mitigation. As anticipated, in this thesis to run

the IVS algorithm was used a control policy which favors flood mitigation instead of the
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Table 3.2: Available data in Red River system up to Hanoi

No Stations Time step Elements

1 Hoa binh daily Precipitation 1957 2004 Da river

Discharge 1956 2004 Da river

Temperature 1961 2007 Da river

Water level 1956 2004 Da river

2 Thanh son daily Precipitation 1960 2004 Thao river

3 Mai chau daily Precipitation 1961 2004 Da river

4 Moc chau daily Precipitation 1961 2004 Da river

Evaporation 1982 2002 Da river

Temperature 1961 2006 Da river

5 Yen Chau daily Precipitation 1961 2004 Da river

6 Phu yen daily Precipitation 1961 2004 Da river

Evaporation 1982 2002 Da river

7 Bac yen daily Precipitation 1973 2004 Da river

Evaporation 1982 2002 Da river

8 Co noi daily Precipitation 1964 2004 Da river

Evaporation 1982 2002 Da river

9 Son la daily Precipitation 1961 2004 Da river

Evaporation 1965 2002 Da river

Temperature 1961 2006 Da river

10 Thuan chau daily Precipitation 1960 2004 Da river

11 Mu cang chai daily Precipitation

Evaporation 1982 2002 Da river

Temperature 1961 2006 Da river

12 Quynh nhai daily Precipitation 1960 2004 Da river

13 Tuan giao daily Precipitation 1958 2004 Ma river

Evaporation 1982 2002 Ma river

Temperature 1961 2006 Ma river

14 Than uyen daily Precipitation 1961 2004 Da river

Evaporation 1961 2002 Da river

15 Nam muc daily Precipitation 1964 2004 Da river

Discharge 1960 2004 Da river

16 Lai chau daily Precipitation 1957 2004 Da river

Discharge 1957 2004 Da river

Evaporation 1982 2002 Da river

Temperature 1961 2006 Da river

17 Nam giang daily Precipitation 1974 2004 Da river

Discharge 1965 2004 Da river

18 Sa pa daily Precipitation 1961 2004 Da river

19 Dien bien daily Precipitation 1963 2004 Ma river

20 Sin ho daily Precipitation 1961 2004 Da river

Evaporation 1982 2002 Da river

Temperature 1961 2006 Da river

21 Tam duong daily Precipitation 1970 2004 Da river

Evaporation 1982 2002 Da river

22 Muong te daily Precipitation 1961 2004 Da river

Evaporation 1982 2002 Da river

Temperature 1961 2006 Da river

23 Pha din daily Evaporation 1982 2002 Da river

24 Yen Bai daily Precipitation Thao river

Discharge 1956 2004 Thao river

Water level 1956 2004 Thao river

25 Lao Cai Precipitation Thao river

26 Vu Quang daily Precipitation Lo river

Discharge 1956 2004 Lo river

Water level 1956 2004 Lo river

27 Phu Ho Precipitation 1960 2004 Lo river

28 Tuyen Quang Precipitation 1960 2004 Lo river

29 Ha Giang Precipitation 1957 2004 Lo river

30 Son Tay daily Discharge 1956 2004 Red river

Water level Red river

31 Ha Noi daily Discharge 1956 2004 Red river

Water level Red river

32 Hung Yen daiy Water level 1956 2004 Red river

33 Thuong Cat daily Discharge 1956 2004 Duong river

Observation time Catchment
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hydropower production.

In Section (2.3) the formulation of the IVS algorithm has been explained. Basically given

a vector of output (a sequence of release decisions) associated to an optimal policy res-

ulted from applying DDP, and an in-time corresponding set It of related exogenous vari-

ables, the target of IVS is to find the most relevant inputs that explain the output by using

the Iterative Input Selection (IIS) algorithm.

There are a few parameters that must a priori fixed on the basis of the problem specifics,

and by empirical or trail-and-errors evaluations: nmin, ScoreT h, the number of trees M,

the n f olds number and the maximum number p of the highest rank variables we want to

be shown. We made a few trials to train the IIS algorithm and the best results are showed

hereafter. For every input set we run the algorithm with this set of parameters:

N f olds M p

10 200 5

And with these three different termination criteria:

Termination Criteria

1) nmin = 2 T score = 0,98

2) nmin = 100 T score = 0,98

3) nmin = 75 T score = 0

We use three different Termination Criteria to understand what combination can ac-

tually guarantee the best performances. The results show that the better one is the first:

nmin = 2, T score = 0,98. The graphic in Figure (3.7) demonstrates that the first com-

bination of termination criteria is the one resulting in better performance for every input

set.
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Figure 3.7: Performances of the 3 different combination of termination criteria.

All the data sets processed by the IIS algorithm, are generically composed in a matrix

of the form:

F = {< st , t, Ĩt ,ut >, t = 0, ...,h} (3.11)

where the variable ut is the sequence of optimal release decisions obtained through

the DDP and here represents the output that must be modeled, and Ĩt represents the set

of all the collected variables we want to analyze. To this data-set we applied a random

shuffle function in a way to mix randomly all the rows of that matrix. After applying this

function the performances of the algorithm (measured by the coefficient R2) improved

significantly. Indeed by randomly mixing the matrix F , we eliminate the temporal correl-

ation, and so the process can be assumed as a Marcov process, i.e. each row is assumed

independent from the previous and from the subsequent row. After running the IIS, the set

of the variables that better explains the optimal sequence of release decisions, is obtained,

as shown schematically in Figure (3.8).

Figure 3.8: Generic scheme of the IIS algorithm functioning.

The value of the vector It of Eq. (3.10) has been proved in several trials, with different

initial sets of the available variables. Every set differs from the other in terms of dimen-
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sion, of included variables and of the step-time index in which they were considered. In

these input vectors Ĩt we tried to use different associations of hydrologic (punctual or

areal rainfall data, soil evapotranspiration and flow from different stations in the basin)

and meteorological (temperature) information.

Between all the trial input sets tested, only the one with the highest coefficient of determ-

ination, R2, is presented. This input set contains 30 variables, as shown in Table (3.3),

and it is composed by storage values, time values, 3 inflows values and 25 rainfall data.

The rainfall data are the daily, punctual measurement in all the stations on the Da, Thao

and Lo rivers considered at the time instant t− 1, t− 2 (or in the time interval [t− 1; t),

[t−2; t−1)).

Table 3.3: Variables contained into the Input vector.

N. and Name

0 Time 15 pTU
t−2

1 Storage 16 pSH
t−2

2 qHB
t 17 pSL

t−2

3 qY B
t 18 pLH

t−2

4 qV Q
t 19 pPY

t−2

5 pMT
t−1 20 pTC

t−2

6 pSH
t−1 21 pYC

t−2

7 pTU
t−1 22 pHG

t−1

8 pSL
t−1 23 pL2

t−1

9 pLC
t−1 24 pT 1

t−1

10 pPY
t−1 25 pLC

t−1

11 pMO
t−1 26 pHG

t−2

12 pTC
t−1 27 pL2

t−2

13 pYC
t−1 28 pT 1

t−2

14 pMT
t−2 29 pLC

t−2
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For a complete explanation about the abbreviations, see Appendix 1.

The result of running the IIS algorithm on this data set are resumed in Table (3.5) and in

Figure (3.9).

Table 3.4: Result of the IIS algorithm on the candidate input vector.

Variable R2 Increase R2

Storage 0,3154 31,5%

qHB
t 0,3935 7,8%

Time 0,4666 7,3%

pLC
t−2 0,4964 2,9%

Figure 3.9: The variables selected by running the IIS algorithm on the candidate input data-set with the

associated relative contribution to the overall performance of the underlying tree-based model.

The IIS algorithm on this data set reaches an explained variance of almost R2 = 0,5.

Unsurprisingly, most of the release signal is explained by the storage. However, the cu-

mulative effect of the other three variables contributes for another 18% to the underlying

model performance.

Considering the results shown in the previous Table, the input vector will be:

It = (qHB
t ,pLC

t−2) (3.12)

With this value of It we can now proceed towards the fourth step of our procedure,

the optimization, to create an operating policy able to exploit the value of this selected
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hydroclimatic information.

3.2.4 Fourth Step - Optimization

Once the hydroclimatic information vector It has been selected, see Eq. (3.12), the

next step in our procedure is the identification of an optimal operating rule conditioned

upon this information, i.e.

ut = m(t,st ,qHB
t ,pLC

t−2) (3.13)

To identify the operating rule in the infinite-dimensional space of functions m(·) a

stochastic optimization problem must be solved. Stochastic Dynamic Programming is by

far the most widely used method to solve such a problem. However we already described

that its application is subject to the limitations imposed by the so called curse of model-

ling and curse of dimensionality (see Section (1.1.1)). To overcome this problem in this

work we used a parametrization-simulation-optimization approach. First, a prescribed

function family m̂(·) is selected for the operating rule of Eq. (3.13) and then, the optimal

parametrization θ ∗ is identified. In other terms, the stochastic optimization problem is

traced back to the following non-linear programming problem:

min
θ

J(x0,θ ,q) s.t. (x0,q) given and ut = m̂(xt , t,It ;θ) (3.14)

In this study, we use an ANN as family function and we solve problem (3.14) by the

use of a Multi-Objective Genetic Algorithm (MOGA), (for more information see Cas-

telletti, 2008). The optimization aim is to find an appropriate set of parameters θ ∗ that

minimize the average value of the immediate costs of Eq. (3.1) and Eq. (3.5). A set of

these parameters constitute an ”individual” in the MOGA. MOGA starts from a randomly

selected population of N ”individuals”. The “fitness” (average value of the immediate

costs) of each individual is tested by simulation of the system under historical flows of

the upper Da, Thao and Lo River and the operating policy defined by the parametrization

under exam. Then, a new population is generated by selection, crossover and mutation,

and the process is repeated for a prescribed number of iterations. In this study, selection,

crossover and mutation are performed according to the Non-dominated Sorting Genetic

Algorithm NSGA II (see Deb, 2002).
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To make a fair comparison with historical operation, in the optimization process the sys-

tem simulation uses historical data over the period 1961-1978 (optimization horizon) and

the final population is then re-simulated over the period 1994-2005 (evaluation horizon).

The results obtained by the simulation of the operating rule of Eq. (3.13) to the Hoabinh

reservoir over the horizon 1994-2005, are shown in the following graphic:

Figure 3.10: Pareto Frontiers for the horizon 1994-2005. The distance measurement between the different

Frontiers performance is based on the points circled in red, they are the points representing the optimization

of only the flood objective.

From Figure (3.10) it is possible to see that there is an actual improvement of about

20% in including the selected hydroclimatic information contained in Eq. (3.12). This

means that the exploiting of some relevant hydroclimatic variables can improve the man-

agement of this reservoir. To analyze deeply the obtained result we studied the sequence

of water level measured in the Hoabinh reservoir, simulated with the different operating

policy, and the peak-flow event of August 1996, shown respectively in Figure (3.11) and

(3.12).
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Figure 3.11: The Hoabinh water level produced by the operating policy exploiting the hydroclimatic in-

formation over the evaluation horizon 1994-2005. The red one is the operating policy exploiting the It

vector.

Figure 3.12: Details of the peak-flow event occurred in August 1996, water level measured in the Hanoi

station.The red one is the operating policy exploiting the It vector, the blue one is the operating policy

obtained with DDP, the black one is the historical operation and the green one is the operating policy

exploiting only one variables of the It vector, qHB
t

From Figure (3.12) it is clear that there is an improvement in the reservoir manage-

ment by using the operating policy with the hydroclimatic information. Indeed it is shown
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that the operating policy with the It vector (the red one), is able to reduce the peak-flow

water level measured in Hanoi, during the flood of August 1996.

3.3 Further improvement: Large-Scale Atmospheric Cir-

culation Phenomena

Recently, a lot of studies have been based on the analysis of some climatologic indic-

ators able to explain the inter-annual variability in some areas of the world and able to

improve the future forecasts of the hydro-climatologic conditions (see e.g. Makkearson

(2008) and Maity, (2006)). Indeed, nowadays, it is well recognized that the time series

of hydrologic variables, such as rainfall and inflow are significantly influenced by vari-

ous large-scale atmospheric circulation patterns measured with these climatologic indices.

Furthermore, in literature, is everyday more studied the possibility to improve basin-scale

inflow forecast using the information of large-scale atmospheric circulation phenomena

such as the ENSO indices. For these reason, to further improve our analysis, we decide to

test if the inclusion of these atmospheric circulation phenomena will improve the results

we obtained.

Large-scale Atmospheric Circulation Phenomena

Almost all of these climatologic indicators are related to the phenomenon known as

El-Niño Southern Oscillation (ENSO). This phenomenon is a large-scale, coupled ocean-

atmospheric, process and it is currently considered as one of the most significative factors

influencing the hydro-climatic global variability (for more information see Kahya and

Dracup (1993) or Allan (2000)). The so called El-Niño is a large-scale anomalous warm-

ing of sea surface temperature (SST) over the central and eastern Pacific Ocean with asso-

ciated change in pressure field. In normal years, SST of the western part of the equatorial

Pacific Ocean remains warmer than that of the eastern part, and, pressure at the eastern

part of the Pacific Ocean is higher than that of the western part. During anomalous years,

SST of the eastern part of the equatorial Pacific Ocean becomes warmer-than-normal and

the pressure field is reversed, i.e. the anomalous pressure in the eastern part of the Pacific
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becomes lower than that in the western part. Instead, anomalous cooling of the SST over

the eastern part of the Pacific is known as La-Niña. Whereas the anomalous sea-saw vari-

ation of the pressure field, between the eastern and the western parts of this Ocean, is the

so called Southern Oscillation as discussed by Maity (2006). The El-Niño is an almost

periodic phenomenon; i.e. it is repeating over time, following an irregular period of 4 to

5 years.

There is an increasing number of studies investigating the relationship between inflow

and ENSO. In literature, indeed, it is every day more solid the hypotheses that the re-

lation between the ENSO phenomenon and inflow is stronger than the relation between

ENSO and the precipitation data, since the variability of rainfall is reflected within the

hydrologic runoff process and, moreover, inflow integrates spatial in addition to temporal

information; for more information see Chiew (1998).

To quantify and to analyze the ENSO phenomenon a few different indicators can be used:

• The Southern Oscillation Index (SOI)

• The Sea Surface Temperature (SST)

• The Multivariate ENSO index (MEI)

The SOI index measures the strenght of the Southern Oscillation and it is the most

used indicator to study the ENSO phenomenon. The SOI is computed from fluctuations

in the surface air pressure difference between Tahiti and Darwin, Australia. El-Niño epis-

odes are associated with negative values of the SOI, meaning that the pressure difference

between Tahiti and Darwin is relatively small.

There are a few different methods of how to calculate the SOI. The method used by the

Australian Bureau of Meteorology is the Troup SOI (Troup, 1965) which is the stand-

ardised anomaly of the Mean Sea Level Pressure (MSLP) difference between Tahiti and

Darwin. It is calculated as follows:

SOI = 10
[Pdi f f −Pdi f f av]

SD(Pdi f f )
(3.15)

where

Pdi f f = (average Tahiti MSLP for the month) - (average Darwin MSLP for the

month),
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Pdi f f av = long term average of Pdi f f for the month in question, and

SD(Pdi f f ) = long term standard deviation of Pdi f f for the month in question.

The multiplication by 10 is a convention. The SOI is usually computed on a monthly

basis. Daily or weekly values of the SOI do not convey much in the way of useful inform-

ation about the current state of the climate, and accordingly the Bureau of Meteorology

does not issue them. All this information and the SOI monthly data from 1876 until now,

are available on the Australian Bureau of meteorology.

The MEI index is the latest indicator created to analyze the ENSO phenomenon. It is com-

puted from surface marine data filtered through spatial cluster analysis and based on six

different observational fields: sea level pressure, zonal and meridional wind component,

sea surface temperatures, near-surface air temperatures, and total cloudiness as described

by Wolter and Timlin (1993). It is more complex than the other indices, but it is also more

complete; in fact it is based on multiple different variables related to both ocean and atmo-

spheric systems. It is able to capture more information about ENSO since it is a coupled

ocean-atmospheric phenomenon. Moreover the MEI index has less vulnerability to errors

in single variable fields because it combine information from many different fields. In

Figure (3.13) the monthly standardize MEI data are shown; the positive value are related

to the presence of El-Niño episodes, while the negative ones represent La-Niña episodes.

Figure 3.13: Standardized monthly data of MEI index from 1950 until nowdays. The positive values

represent El-Niño episodes, while the negative represent La-Niña episodes .

Instead the SST index have been a primary expression of global climate anomalies for

several decades. In fact, El-Niño Southern Oscillation produces a sea surface oscillation

in the Pacific Ocean. Precisely, it is measured as a mean, of the superficial layer of the

Ocean, on four specific regions of the Pacific, see Figure (3.14). The ”superficial layer”

definition changes between the different measurement technologies (it varies from a few
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millimeters up to 20 meters under the sea level). The four different regions, above which,

the SST index is calculated, are all disposed in the Pacific Ocean, as shown in Figure

(3.14):

Figure 3.14: The 4 different regions of SST measurement.

All the information and the data about SST, SOI and MEI index are available on the

National Oceanic and Atmospheric Administration (NOAA) website.

3.3.1 Iterative Input Selection with the ENSO indices

We tried to include the previously described ENSO indices, SST1·2, SST3, SST4,

SST3·4, MEI, SOI, into the input vector described in Section (3.2.3). We ran the IIS al-

gorithm on this new data-set to see if the overall performance might improve.

We discovered that the IIS performance improves with the inclusion of these climatic in-

dices. The final coefficient of determination gets to a value of R2 = 0,68 and, moreover,

the selected final variables includes one of these indices, specifically the SST12, as shown

in Figure (3.15) and in Table (3.5).
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Table 3.5: Result of the IIS procedure with the candidate input vector containing ENSO indices.

Variable R2 Increase R2

Time 0,3601 36%

Storage 0,6119 26%

qV Q
t 0,6438 2,4%

SST 12 0,6742 3%

qY B
t 0,6893 1,5%

Figure 3.15: The variables selected by running the IIS algorithm on the candidate input data-set with the

associated relative contribution to the overall performance of the underlying tree-based model.

From Table (3.5) it is possible to see that there is an improvement in the coefficient of

determination of the 3% thanks to the SST12 variables. This indicates that actually exists

a relationship between the climatologic index and the inflow to the Hoabinh.
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Chapter 4

An Inflow Forecasting Model: Artificial
Neural Network

The traditional way of exploiting hydroclimatic information in the reservoirs manage-

ment has been, so far, represented by the construction of inflow forecasting models. In the

previous chapters we presented an innovative procedure to use these information based

on the selection of the most relevant hydroclimatic variables between all the available

ones. In this Chapter we want to analyze if those most significant selected variables, can

actually improve also the performance of a classic inflow forecasting model. We decide

to use an Artificial Neural Network to implement this inflow forecasting model, because

it is an excellent tool, able to capture the non-linear relationship between two time series,

if any, and does not depend on the distributional form of the data set.

4.1 Architecture and training of the ANN

An artificial neural network is a mathematical structure designed to mimic the inform-

ation processing functions of a network of neurons in the brain (Hinton, 1992; Jensen,

1994). ANNs are highly parallel systems that process information through many in-

terconnected units that respond to inputs through modifiable weights, thresholds, and

mathematical transfer functions. Each unit processes the pattern of activity it receives

from other units, then broadcasts its response to still other units. ANNs are particularly
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well suited for problems in which large data-sets contain complicated nonlinear relations

among many different inputs. ANNs are able to find and identify complex patterns in

data-sets that may not be well described by a set of known processes or simple mathem-

atical formulae. Unlike a process-based model, it is not necessary to know exactly how

those variables interact, the nature of the physical processes that cause those patterns, or

any mathematical representation of those processes before applying an ANN. Hence, the

ANN is an information processing systems trying to simulate, within an informatics sys-

tem, the functioning of a biological nervous structure that are composed by a big quantity

of nervous cells (or neurons) connected in a complex network. Some of these units re-

ceive information from the external environment, others emit results again to the external

environment, while others (if there are) communicate only with the other units inside the

network: they are respectively defined as input units, output units and hidden units, as

shown in Figure (4.1):

Figure 4.1: A representation of a simple 3-layer feed-forward artificial neural network with 4 inputs, 5

hidden nodes, and 1 output.

The input-output relation, i.e the transfer function of the network, does not need to be

programmed but it is inferred by a learning process based on a training data set including

some examples of input with its corresponding output: in this way the network can learn

that relation. In fact, in the context of prediction, the network training consists of provid-

ing input-output examples to the network, and minimizing an error function with respect

to the network weights. The network is trained with an appropriate method (typically

the back-propagation), that uses these data for the purpose of modifying the weight and

other parameters of the network itself in the way to minimize the prediction error function
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related to the training set. If this training is successful, the network learn the unknown

input-output relation and so it is able to make forecast even where the output is unknown.

For this reason it is used for making inflow forecast trying to exploit the possible relation

between the inflow formation upon a specific basin and the global circulation phenomena

or the soil moisture levels.

The training algorithm uses a mean-squared error objective function, which tries to min-

imize the average squared error between the network’s output, and the target value over

all the training data pairs. This research of the minimum of the objective function is com-

monly pursued by using a gradient descent algorithm.

One important aspect of the ANN methodology is the design of the network architecture.

In most of the studies, the network architecture is decided in an heuristic way (trials and

errors). So we did in our case. This architecture is based on some parameters that must

be initialized, specifically they are:

• Layers number

Neural networks can be divided in two categories: Single-layer perceptron and

Multi-layer perceptron. The first one is the simplest and the earliest kind of feed-

forward network and it consists in a structure with a single layer of output nodes

fed directly by the input data via a series of weights. While in the Multi-layer per-

ceptron structure between the input and the output layer there is the presence of one

or more hidden layers, whose nodes are called hidden neurons; each neuron in one

layer has direct connections to the neurons of the subsequent layer.

• Hidden neurons number

These are neither in the input layer nor the output layer. These neurons are essen-

tially hidden from view, and their number and organization can typically be treated

as a black box to people who are interfacing with the system. As a rule the number

of hidden neurons must be greater than or equal to the number of input variables.

• Type of hidden neurons

The hidden neurons are differentiated on the basis of the activation function. This

function describes the output behavior of a neuron, it ’connects’ weighted sums of

the units in one layer to the values of the units in the next layer; it must be differenti-

able and monotonically increasing. There are several genres of activation functions
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such as the sigmoid function, the hyperbolic tangent function or piecewise-linear

function.

In this thesis a multi-layer network with one single hidden layer is used, i.e. the struc-

ture showed in Figure (4.1). The Levenberg-Marquardt back- propagation algorithm is

applied (LMBP) (Hagan and Menhaj, 1994), and the activation function chosen for the

hidden neurons is an hyperbolic tangent.

The parameters described previously are the theoretical base for the construction of an

ANN, afterwards there are several other more technical parameters that need to be fixed.

First of all the data set available to train the network must be divided in Calibration ho-

rizon and Validation horizon, where the former is the data set over which the network is

trained and the latter is the set for testing it. Another parameter to be fixed is the ’Number

of total iteration’ i.e. the times the training process is repeated, each time starting from

a different initialization; after all these different running the best network is selected. Fi-

nally there is one more parameter, the ’Number of epochs’ that represents the maximum

number of trials the gradient descent algorithm can do in the research of the minimum

value of the gradient.

We made a few trials to train the ANN for this study and the best results are showed in

hereafter.

4.2 Inflow forecasting on the Da River using rainfall data

Here the most typical example of hydrological ANN is applied: the rainfall-runoff

model.

Downstream of the Dá River is located the Hoabinh reservoir. Therefore a good forecast

of the future inflows along this river is essential for a smart management of the reservoir.

In the studies previously made on the Hoabinh management was carried out that to be

able to empty the reservoir without creating any damage to the capital city Hanoi, it is

necessary to know the approaching of a peak inflow with, at least, 5 days of warning (see

Quach, 2011). For this reason it was imposed to the ANN an aggregated inflow on a 5

days step as output. In this way it was implicitly required to the ANN to forecast the

cumulated inflow of the 5 next coming days from the time instant t.
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We tried to use several different input configurations, by referring to the results ob-

tained in the previous Chapter (see Sections (3.2.2) and (3.2.3)). We analyzed the cross-

correlation of every of those variables with the output we want to forecast. Only a few

of them resulted having a weak correlation with the output; we ran the forecasting model

only using the more correlated ones. Hence the input configurations tested are:

1. qt ,pt

2. qt ,PWR
5

3. qt ,qt−1,pt

4. qt ,qt−1,PWR
5

5. qt ,pt ,pt−1

6. qt ,qt−1

where:

qt and qt−1 represent the inflow to the Hoabinh reservoir at the present time instant t and

at the previous one respectively; pt is the rainfall data of the farthest hydrological station

situated on the Da River from the Hoabinh reservoir, the Muongte station (see Figure 3.4);

while PWR
5 indicates the weighted areal rainfall (aggregated with the Thiessen Polygons

method) cumulated over the interval [t-5,t).

All the previous input configurations have been analyzed both using all available data

sequence on the entire evaluation horizon, and considering only the data included in the

rainy season between June 1st and until September 30th of each year in question.

We studied the cross-correlation between the proposed variables, the results are shown in

the graphics of Figure (4.2) and (4.3).
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Figure 4.2: Cross-correlograms between the cumulated inflow of the 5 next coming days (the output that we

want to forecast), the inflow itself qt and the rainfall pt registered at the Muongte Station: a) represents the

cross-correlation of qt with the output over the whole evaluation period; b)represents the cross-correlation

of qt with the output over the rainy season; c) represents the cross-correlation of pt with the output over the

whole period; d) represents the cross-correlation of pt with the output over the rainy season.

Figure 4.3: Cross-correlograms between the cumulated inflow of the 5 next coming days (the output that

we want to forecast) and the areal rainfall PWR
5 over the Da River basin: e) represents the cross-correlation

of the output with over the whole evaluation period; f)represents the cross-correlation of qt with the areal

rainfall over the rainy season.

From this first analysis it can be observed that the output has a very high correlation
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with the inflow itself, this suggests that the system is highly auto-correlated (graphic

a). Second we can see that for every variable the correlation during the rainy season

is weaker than the one over the whole period (graphic b, d, e). Moreover it appears that

the correlation between the output we want to forecast and the rainfall data pt is very low

(graphic c).

For all these different input configuration an ANN with a common structure was used; the

technical parameters of the network have been fixed as shown in Table (4.1):

Table 4.1: Technical parameters of the network architecture

Calibration Horizon: 1961-1978

Validation Horizon: 1994-2004

Number of hidden neurons: 4

Number of total iteration: 120

Number of epochs: 1000

All the resulting models were compared between each others, using different graphical

and mathematical tools. The highest explained variance R2 was searched as discriminant

between models. The models based only on data over the rainy season performs signific-

antly worse than the models over the whole period; this confirms the observations made

on the cross-correlation graphics. For this reason all the following analysis are made only

on the result of the models based on the entire evaluation horizon.

We decide to shows later some graphics of the models with the highest R2, i.e. the models

based on the data sets 3 and 6 over the whole evaluation horizon. These models reached

respectively a R2 = 0.9057 and R2 = 0.9076. From these results it is possible to see that

there is a weak improvement in using also the rainfall information instead of using only

the inflow data, this probably means that the system is highly autocorrelated and so the

importance of the autoregressive part of this model is much higher with respect to the

exogenous part represented here by the rainfall data. This result confirms the conclusions

drawn from the previous analysis of the cross-correlation graphic. To deeply analyze this

question, models based only on data over the rainy season were tested, to better under-

stand if, at least in that period, the relative weight of the exogenous part was higher for
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the purpose of prediction. But, as said before, the weak results obtained confirm that the

system is highly autocorrelated.

The performances of these models were compared with those of a simple linear model,

to understand if there is an effective improvement in the forecasting performances using

a complex model, like the ANN, instead of a simpler one. In the case of the input config-

uration number 3 the linear model reached an explained variance of R2 = 0.8966, while

in the case of the configuration number 6 its explained variance is R2 = 0.8978. Hence,

from a preliminary analysis the ANN reaches better performances than the linear models.

We used the input configurations number 3 and 6 to create the hydrographs showed in

Figure (4.4) and in Figure (4.5) respectively. They display, both, two forecasted qt , over

the first year of the validation horizon (i.e. 1994), the red one obtained with the ANN

model and the green one obtained with a simple linear model, while with the blue line is

displayed the measured inflow for that year. For both is shown the detail of a peak flow

event during the wettest months (July, August, September) in Figure (4.6) and Figure

(4.7).

Figure 4.4: Hydrograph obtained with the input configuration number 3 with historic inflow to the Hoabinh

for the year 1994(blue), forecasted inflow by ANN(red), forecasted inflow by a linear model(green).
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Figure 4.5: Hydrograph obtained with the input configuration number 6 with historic inflow to the Hoabinh

for the year 1994(blue), forecasted inflow by ANN(red), forecasted inflow by a linear model(green).

Figure 4.6: Detail of a peak flow for the input configuration 3.
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Figure 4.7: Detail of a peak flow for the input configuration 6.

From the previous hydrographs it is possible to see that the ANN and the linear model

are very good in the reproduction of the low-flow events, while they are not so precise in

the reproduction of the peak flows. Moreover it appears a delay between 1 and 3 days in

the reproduction of the peak flow events in both models.

The hydrographs are very similar to each other, this suggests that the introduction of the

rainfall data does not significantly improve the forecasting performance; the linear model

are comparable to the ANN ones, as shown also by the scatter plots in Figure (4.8) and in

Figure (4.9) .
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Figure 4.8: Scatter plot of the inflow predicted by the linear model(blue),and the inflow predicted by the

ANN(red) obtained with the input configuration number 3.

Figure 4.9: Scatter plot of the inflow predicted by the linear model(blue),and the inflow predicted by the

ANN(red) obtained with the input configuration number 6.

These scatter plots show that, with both the considered input configurations, the linear

model and the ANN model is strong in the reproduction of low flows (the dots are con-

centrated on the bisector) while showing weak performance in the peak flow reproduction
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(the dots are more dispersed). Again the scatter plots of the 2 configurations are really

similar and this confirms the idea that the system is highly based on the autoregressive

part.

Since all the previous models appear to have very similar performances another mathem-

atical analysis have been made, in this way it is tried to addition information for better

understanding the trend of every models. Some more indices, in addition to the R2, have

been taken into consideration.

Table 4.2: Summary of performance metrics measured on the validation horizon

Model Input Configuration R2 RMSE PDIFF PEP MAE AME

Linear qt ,pt 0,8258 850,1 -1212,8 -7,7 431,4 7389,1

ANN qt ,pt 0,8437 798,8 6280,1 40,1 418,7 8293,5

Linear qt ,PWR
55 0,8381 819,6 383,4 2,4 442,7 7217,8

ANN qt ,PWR
55 0,8475 789,4 5978,4 38,1 424,2 8047,1

Linear qt ,qt−1,pt 0,8966 654,2 -2836,9 -18,1 329,1 5901,7

ANN qt ,qt−1,pt 0,9057 621,1 3917,1 24,9 319,2 6411,3

Linear qt ,qt−1,PWR
5 0,9044 630,1 -2479,8 -15,8 312,6 5697,6

ANN qt ,qt−1,PWR
5 0,1139 1900,3 1246,6 79,5 1369,4 1246,6

Linear qt , pt , pt−1 0,8276 845,3 -1045,9 -6,6 431,3 7486,9

ANN qt , pt , pt−1 0,8450 795,7 5454,4 34,7 418,5 8038,1

Linear qt ,qt−1 0,8978 651,7 -3324,2 -21,2 317,1 5638,4

ANN qt ,qt−1 0,9076 614,5 4245,6 27,1 314,7 6290,4

Where:

RMSE is the acronym of Root of Mean Squared Error and it is calculated with the fol-

lowing formula:

RMSE =

√
1
N

N

∑
i=1

(q̄− q̂)2 (4.1)

PDIFF is the acronym of Peak Difference and it is calculated with the following formula:
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PDIFF = max q̄−max q̂ (4.2)

PEP is the acronym of Percent Error in Peak and it is calculated with the following for-

mula:

PEP =
(max q̄−max q̂)

max q̄∗100
(4.3)

MAE is the acronym of Mean Absolute Error and it is calculated with the following for-

mula:

MAE =
1
N

N

∑
i=1

(|q̄− q̂|) (4.4)

AME is the acronym of Absolute Maximum Error and it is calculated with the following

formula:

AME = max |q̄− q̂| (4.5)

From the previous Table several observations can be made. First it is possible to notice

that the linear models perform actually worse than the ANN, even if, they show a bet-

ter prediction capacity of the peak flow events. This is possible to be deduced from the

PDIFF and PEP indicators, whose values (absolute values) are always smaller than the

ones associated with the ANN. Moreover another note can be done: the linear model

of the configuration qt ,PWR
5 presents a PDIFF value of 2.4, this means that it is able to

reproduce the peak flow events much better than any other models we tried. We have

confirmation of this increased precision even if we look at the hydrograph produced from

the corresponding model, see Figure (4.10). This could mean that the areal rainfall con-

tains information more useful for the future inflow prediction. In fact, the areal weighted

rainfall over the basin and accumulated on the previous 5 days, could represent a more

complete and efficient information in creating a more accurate prediction of future in-

flows.
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Figure 4.10: Detail of a peak flow for the inflow configuration qt ,PWR
5 with historic inflow to the Hoabinh

for the year 1994(blue), forecasted inflow by ANN(red), forecasted inflow by a linear model(green).

However, even if this graphic shows better performance in the reproduction of the

peak-flow respect to graphics of Figure (4.6) and (4.7), it shows that there is a bigger

delay in the peak reproduction, i.e. there is 4 to 5 days of delay.

4.3 Inflow forecasting on the Da River using an ENSO

index

In this trial the objective is to investigate the influence of large-scale atmospheric

circulation phenomena on the basin-scale inflow variation and possible improvement of

inflow prediction by incorporating the information of such large-scale atmospheric circu-

lations. Also in this case an ANN approach is used to model the complex relationship

between inflow and large-scale atmospheric circulations.

The ENSO index used in this study is the Sea Surface Temperature from El-Niño 1-2 re-

gion. We use this index because it is the only one selected by the IIS among all the other

ENSO indices (see Section (3.3.1)).

The input configurations used are:
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1. qt ,qt−1,SSTt

2. qt ,PWR
t ,SSTt

where:

qt , qt−1 are the inflow to the Hoabinh, PWR
t is the areal rainfall aggregated with the

Thiessen Polygons method and SSTt is Sea Surface Temperature from Niño 1-2 region.

Even this time as a first analysis we studied the cross-correlation between the SST Index

and the output that we want to forecast, the results are shown in the graphics of Figure

(4.11).

Figure 4.11: Cross-correlograms between the cumulated inflow of the 5 next coming days (the output that

we want to forecast) and the SST Index values: a) represents the cross-correlation of the output with the

SST over the whole evaluation period; b)represents the cross-correlation of the output with the SST over

the rainy season.

From these graphics we can observe that the correlation over the rainy season is lower

than the one over the whole period.

The technical structure of the ANN is the same of the previous case, see Table (4.1).

With this trial we obtained an overall R2 similar to the previous trials: R2 = 0.9072 for the

first configuration and R2 = 0.8603 for the second. If we analyze the hydrograph of the

first configuration, showed in the Figure (4.12), we can see that the ANN is performing

well on the low-flow events but again, not so well on the peak flows. As for the previous

case a linear model is used to compare the performance of the ANN.
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Figure 4.12: Hydrograph of the inflow configuration 1 with historic inflow to the Hoabinh for the year

1994(blue), forecasted inflow by ANN(red), forecasted inflow by a linear model(green).

From this hydrograph we can note that there is a delay in the reproduction of the peak

flows of about 1 to 3 days.

Even this time, the scatter plot, shown in Figure (4.13)is very similar to the previous cases.

It shows that the ANN and the linear model perform in a very similar way on the low-flow,

but on the peak-flow the linear model has a better forecasting capacity.

Figure 4.13: Scatter plot of the input configuration 1 with the inflow predicted by the linear model(blue),and

the inflow predicted by the ANN(red).
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As the previous case all the input configuration have been tested both over the whole

evaluation period and then only over the rainy season (beginning of July - end of Septem-

ber) for each year. Even this time the models tested on the rainy season, perform signific-

antly worse with respect to the models over the entire period, thus again, all the following

analysis have been made only on the model based on the entire evaluation horizon.

Since the 2 input configurations performs very similarly some more performance metrics

measured on the validation horizon have been analyzed, see Table (4.3):

Table 4.3: Summary of performance metrics measured on the validation horizon

Model Input Configuration R2 RMSE PDIFF PEP MAE AME

Linear qt ,qt−1,SSTt 0,899 642,5 -2927,7 -18,6 342,4 5818,9

ANN qt ,qt−1,SSTt 0,9067 618,3 4180,9 26,6 317,2 6388,1

Linear qt ,PWR
t ,SSTt 0,8486 789,5 -3280,7 -20,9 413,1 6969,2

ANN qt ,PWR
t ,SSTt 0,8603 758,7 4721,1 30,1 408,1 7015,1

As a conclusion it is possible to say that there is no remarkable improvement in using

the SST12 index to construct an inflow forecasting model.

In conclusion, we can compare the results shows in Table (4.3) and (4.2); all input

configurations have, both in the case of the ANN and in the case of the linear, an ex-

plained variance very similar that changes in a very small percentage from the configur-

ation qt ,qt−1. This suggests again that there is no improvement in including exogenous

information like pt or SSTt in the input set because the system seams to be really auto-

correlated. We can conclude that the ”black-box” approach of the ANN probably is not

suitable to deal with the hydroclimatic variables selected for the Da river system.
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Chapter 5

Conclusions and further research

In the introduction of this thesis we posed a question: Can, the direct inclusion of

exogenous information in a reservoir operating policy, improves the performance of a

reservoir management?

After all the analysis made along this work we can answer affirmatively. Indeed the aim

of this thesis was to propose a new approach for exploiting exogenous information (in

our case we always referred to hydroclimatic information) for improving reservoir man-

agement. The idea we developed, was to collect some relevant hydroclimatic variables

able to give information about, and so to play as a surrogate of, the future inflow to the

reservoir. In a way to implement an operating policy by directly including them into it,

and so, without passing through a traditional inflow forecasting model. We tried to move

from the model-based approach of exploiting exogenous information to a model-free one.

This study was applied to a real world management problem, i.e. the operation of the

Hoabinh reservoir in Vietnam.

With regard to the management of the Hoabinh reservoir we assessed that the pro-

cedure implemented, selecting the most relevant hydroclimatic information and including

them directly into the operating policy, is actually performing well. The obtained results

show that the information selected as the most informative allows to improve the policy

performance of about 20%, on the flood control objective, with respect to an equivalent

policy not conditioned upon any hydroclimatic data.

Moreover we applied our procedure (but this time without the optimization step) to an ini-

tial input set containing some ENSO indices. The Iterative Input Selection (IIS) algorithm
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applied to this new data set, performs better than in the previous case, and it selects among

the most valuable variables an ENSO index, i.e. the SST12. This demonstrates that the

inclusion of these atmospheric circulation indices might be helpful in the inflow under-

standing and that they might improve the reservoir management.

Finally, in the last chapter of the thesis, we try to test if the most relevant hydrocli-

matic variables, selected with the application of the IIS algorithm, can actually improve

also the performance of a classic inflow forecasting model. We use an Artificial Neural

Networn (ANN) model and a linear model. The results obtained deny our hypothesis, i.e.

both the ANN model and the linear model, ran on the Da river basin, show that there is

no improvement in the inflow forecasting by using some relevant hydroclimatic variables.

Probably this is due to the inadequacy of the ”black box” approach to deal with these

variables and, probably, a physically based model is more suitable.

In conclusion, the proposed approach gave promising results, both in analyzing the

most informative variables among a wide set and in creating operating policy with higher

performances with respect to traditional methods.

Although the results of this thesis seem to represent a good improvement over the typical

approaches in the reservoir management, many aspects of the proposed approach require

further investigations. Future directions of investigation might be the following:

• To extend the procedure created to multi-objective management problem, since in

this thesis we concentrate on the optimization of only one objective.

• To deeply analyze the possible role of the ENSO indices, to study the relationship

between them and the inflow formation and trends in the Vietnam geographical

area.

• To improve the mathematical and statistical tools of the Iterative Input Selection

algorithm.

• To deeply analyze the use of the hydroclimatic information, selected by the IIS

algorithm, in inflow forecasting models.
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Appendix A

Abbreviations

The following there is a legend of all the abbreviations used in this work.

Abbreviations

The very first letter of the input variable labels q, p, T and E denotes respectively

inflow, precipitation temperature and evapotranspiration; the superscript stands for the

name of stations (see Table(A.1)); the subscript denotes the values of data in time: e.g.

t, t−1, t−2, t−3, etc, (or in the interval [t−1; t), [t−2; t−1), [t−3; t−2), [t−4; t−3),

etc) respectively. The capital letter P indicates the cumulated sum of rainfall; for example

pMT
2 means the cumulated rainfall at the station MT, that is equals to the cumulated rainfall

in the interval [t− 2; t); the PMT
3 means the cumulated rainfall at the station MT, that is

equals to the cumulated rainfall in the interval [t−3; t) and so on.

For geographical references see Figure (A.1).
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Table A.1: Stations.

Abbreviation Name River

MT Muongte Da

TU Phadin Da

SH Phuyen Da

SL Sinho Da

LH Lai Chau Da

PY Tamduong Da

MO Thanuyen Da

TC Tuangiao Da

YC Yenhau Da

HG Ha Giamg Lo

L2 T Quang Lo

T1 Thanh Son Thao

LC Lao Cai Thao

Table A.2: Other abbreviations.

Abbreviation Meaning

WR Weighted rainfall with the Thiessen Polygon procedure over the Da river

WD Water Demand at Sontay station

SST12 Sea Surface Temperature over the Ocean Pacific region 1·2
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Figure A.1: Main stations on the Red River Basin.
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