
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

Operating System Support for Adaptive Performance and

Thermal Management

Relatore: Prof. Marco Domenico SANTAMBROGIO

Correlatore: Prof. Filippo SIRONI

Tesi di Laurea di:

Riccardo Cattaneo

Matricola n. 755279

Anno Accademico 2011–2012

To the loving memory of Vincenzo Caglioti

Contents

1 Introduction 1

1.1 Contemporary computing: trends and paradigms 3

1.1.1 Multicore computing 3

1.1.2 Cloud computing . 7

1.1.3 Autonomic computing 9

1.1.4 Power efficient computing 12

1.2 Scheduling . 15

1.2.1 Preliminary definitions 16

1.2.2 Problem statement . 18

1.2.3 Batch, interactive and real-time scheduling 19

1.3 Problem Statement . 21

1.4 Summary . 22

2 State of the art 23

2.1 Overview of major Major Free, Libre or Open Source Soft-

ware (FLOSS) Operating System (OS)s and Kernels 23

2.1.1 Linux . 23

2.1.2 Early Linux Schedulers 24

2.1.3 FreeBSD . 27

2.2 Policies for power and energy efficiency 28

2.3 Dynamic Thermal Management techniques 29

iii

CONTENTS iv

2.3.1 Hardware based Dynamic Thermal Management (DTM) 31

2.3.2 Software based DTM 33

2.3.3 Thermal-aware scheduling (TAS) 35

2.4 Autonomic Operating System (AcOS) 41

2.4.1 Project goals . 42

2.4.2 Heart Rate Monitor . 43

3 Methodology 44

3.1 Motivation . 46

3.2 Control Theoretical thermal and performance aware policy . 48

3.2.1 Derivation of priority update equation 51

3.2.2 Derivation of idle-time injection policy 53

3.3 Heart Rate Monitor . 53

3.3.1 Definitions . 54

3.3.2 Usage . 56

3.4 Autonomic policies . 56

3.4.1 Thermal-aware policy 56

3.4.2 Performance-aware policy 56

3.5 Explicitly trading performance for temperature and vice-versa 56

4 Implementation 57

4.1 4.4BSD scheduler . 59

4.2 Heart Rate Monitor (HRM) 60

4.2.1 libhrm user space API 60

4.2.2 Implementation . 60

4.2.3 Thermal aware policy implementation 63

4.2.4 Performance aware policy implementation 64

4.2.5 Heart Rate Monitor and ADAPTME 64

4.3 Benchmarking in a multicore environment: PARSEC 64

5 Results 65

CONTENTS v

6 Conclusions and future work 68

A Code listings 70

B Control theory introduction 71

Bibliography 80

List of Figures

1.1 Breakdown of total data center hardware and overheads costs

of a representative Google datacenter [1]. 14

1.2 The model for Power Usage Effectiveness (PUE). 14

3.1 Race-to-idle versus thermal aware approach. In the graph it

is easily seen how the execution under ADAPTME with a

thermal constraint of 60°C of our benchmark application re-

sults in a longer total run-time but lower average tempera-

ture. On the other hand, pure 4.4BSD, race-to-idle execution

completes more rapidly but involves a not negligible differ-

ence in running peak temperature (in this experiment more

than 8°C). 47

3.2 The setting of the control problem 52

vi

List of Tables

4.1 libhrm API1,2 . 60

vii

List of Listings

viii

List of Abbreviations

AC Autonomic Computing

AcOS Autonomic Operating System

AS Autonomic System

CFS Completely Fair Scheduler

CHANGE Computing in Heterogeneous, Autonomous ’N’ Goal-oriented

Environments

CMP Chip Multi Processing

CPU Central Processing Unit

CRAC computer room air conditioner

DTM Dynamic Thermal Management

DVFS Dynamic Voltage and Frequency Scaling

FLOSS Free, Libre or Open Source Software

GID Group IDentifier

HRM Heart Rate Monitor

HT Hyper Threading

HVAC Heating, Ventilation and Air Conditioning

ix

LIST OF ABBREVIATIONS x

ILP Instruction Level Parallelism

I/O Input/Output

I-Cache Instruction-Cache

IT Information Technology

MTTF Mean Time-To-Failure

NIST National Institute of Standards and Technology

OS Operating System

PID Process IDentifier

PUE Power Usage Effectiveness

QoS Quality of Service

RCSP Resource Constrained Scheduling Problem

SLA Service Level Agreement

SMP Simultaneous Multi Processor

SMT Simultaneous Multi Threading

TAS Thermal-aware scheduling

TID Thread IDentifier

TLP Thread Level Parallelism

Summary

Da dimetrodon This work focuses on reducing average-case proces-

sor operating temperatures, exploring the trade-offs between application

perfor- mance and long-term thermal behavior through preventive ther-

mal management. Our focus is on thread-level thermal management; once

a thread is executing on a particular core, we want to control its thermal

impact. Multicore-aware strategies, such as core migra- tion [11] as well as

more complex thermal-aware thread schedule placement [9], are orthogo-

nal to the problem we consider here but are potentially complementary to

our goals. We focus solely on reducing temperature but also ensure that

additional energy is not consumed by the CPU as a result. Dimetrodon1

is a software-level thermal management technique designed to assist in

application-level proactive thermal manage- ment. We employ idle cycle

injection, a scheduler-level mechanism to inject idle cycles of variable length

into process execution, pro- viding responsive, fine-grained control, allow-

ing individual threads to absorb substantial portions of the burden of cool-

ing, carefully mitigating performance reductions. Per-thread policy con-

trol al- lows us to target only key heat-producing workloads as opposed

to system-wide policies such as current dynamic voltage and fre- quency

scaling (DVFS) mechanisms, which may unfairly penalize heterogeneous

workloads [12].

xi

Sommario

xii

Chapter 1

Introduction

The way the semiconductor industry is keeping up in the recent years

with the pace of change set by Moore’s law, which states that the amount

of transistors per chip roughly doubles every nearly two years as a conse-

quence of the ever increasing request for improved performance of com-

puting systems [2], has seen a sharp drift from the path that was followed

until the early 2000s. As we reach the physical limitations of silicon-based

transistors miniaturization, the increase of performance of integrated cir-

cuits can no longer be obtained by a mere increase of their clock speed,

partly due to thermal issues, partly due to issues related to the propaga-

tion of the clock signal in the chip’s area [3]. The power density of nowa-

days’ microprocessors . Moreover, the amount of Instruction Level Paral-

lelism (ILP) that can be extracted from code after years of processors evo-

lution and optimization (deeper pipelines, multiple issues, speculative and

out-of-order execution and branch prediction among the others) is dramat-

ically reduced [4].

In addition, for some years now we are experiencing the explosion of

the mobile computing era [3]. With it, we are seeing the exponential in-

crease in the usage of Internet-based and/or social services for the most

desperate means: from mobile search and geolocation services to video

1

CHAPTER 1. INTRODUCTION 2

streaming, from real-time news sharing over social networks to file shar-

ing. The epicenter of our computation is rapidly shifting from the periph-

ery (the terminals which we access the Internet with) to the core of the

network (the datacenters within which the largest amount of our computa-

tion is actually performed and our data stored) [3]. In addition to this trend,

due to the increasing costs of running a datacenter (arisen in recent years

in particular due to a general boost of the cost of electricity) many small

and medium businesses have seen concrete opportunities in sharing both

computing resources and technical personnel among them.

As a result, in the near future we are going to deal with systems whose

complexity appears to be approaching the limits of human capability, yet

the march toward increased interconnectivity and integration rushes ahead

unabated [5, 6]. The need to integrate several heterogeneous environments

into corporate-wide computing systems, and to extend that beyond com-

pany boundaries into the Internet, introduces new levels of complexity. As

systems become more interconnected and diverse, architects are less able

to anticipate and design interactions among components, leaving such is-

sues to be dealt with at runtime. Soon systems will become too massive and

complex for even the most skilled system integrators to install, configure ,

optimize, maintain, and merge [5, 6].

These considerations led to the conclusion that in order to improve the

performance of the computing systems of the future, it was necessary a

radical shift in the way they would be designed, both from the hardware

and software point of view. At the same time, the term “performance” it-

self has acquired a connotation ever more frequently tied to the notion of

performance with respect to its cost and to the energy consumed to obtain

that amount of computation.

This shift marked the beginning of era of the multicore, cloud and auto-

nomic computing (from a hardware and computer systems/software sys-

CHAPTER 1. INTRODUCTION 3

tems point of view, respectively).

1.1 Contemporary computing: trends and paradigms

In order to cope with the challenges posed by nowadays and future

computing systems, new paradigms have been proposed and adopted by

major actors in the Information Technology (IT) field and semiconductor

industry: multicore architectures [4], cloud computing [7]and autonomic

computing [5].

1.1.1 Multicore computing

Up to the early 2000s, the increase in the performance of computing

systems was mainly obtained by reducing the size of Central Processing

Unit (CPU)s transistors and consequently by increasing their clock speed

[4]. This approach pushed the technology to its limits, in that many factors

came into play to limit the possibility to further this approach. The minia-

turization process of silicon-based transistors and the consequent increase

in power density has reached a point after which it is practically difficult, if

not technically impossible, to go further [4, 3]. The main consequences may

be summarized as follows:

• the area a given amount of transistors occupy cannot be further re-

duced,

• a maximum working clock frequency can be identified after which

there is at least a critical path over which the signal cannot propagate

in time for the circuit to work properly. This is due to a phenomenon

known as “clock skew”.

• given the minimum area for that amount of transistors, a maximum

amount of thermal energy can be dissipated by the packaging using

CHAPTER 1. INTRODUCTION 4

reasonable cooling solutions (this aspect is of particular importance

for mobile devices) [3].

Current technological solutions may not drastically overcome these phys-

ical limitations. Proposed solutions to improve the performance of com-

puting devices look at the micro architectural and software levels [3]. As

already stated, architectural means to extract ILP have been implemented

in the previous years [4]. These solutions yielded greater performance im-

provements in the past generations of microprocessors, but extracting the

residual ILP would give lesser beneficial effects nowadays than in the past

[4].

These observations comes at the verge of the explosion of the mobile

computing era, where the largest share of computing devices is going to

be either embedded or at least mobile (like smartphones or laptops) [3].

Energy efficient solutions capable of providing plenty of computational

power are required for the devices of the future, given the gap between

battery advancements and smartphones/mobile devices’ capabilities and

available computational power [3]. Of particular importance will be how

technology will cool the electronics inside these devices, and how to pre-

ventively and actively lower the operating temperature. In this context, a

single, general purpose processor rapidly becomes an inefficient solution

for delivering the required performances of future devices [3].

The most promising solution to do this set of problems has been iden-

tified in the design of multicore systems, CPUs natively capable of run-

ning tasks in parallel. These chips realize true parallel execution (in con-

trast to “perceived” parallel execution typical of traditional single core pro-

cessors) in that they have multiple so-called cores , units capable of inde-

pendently run the fetch-decode-execute loop [4] (and all the more or less

complex stages in the possibly deeply pipelined variations of it). The ar-

chitectural shift has a number of advantages: we can make smaller, cooler,

CHAPTER 1. INTRODUCTION 5

cheaper CPUs that can perform at least as much as older chips, while us-

ing fewer resources, or we can build upon these cores powerful multicore

CPUs that can truly run in parallel the tasks of our system. It is foreseen

that future CPUs will continue to be focused on improving Thread Level

Parallelism (TLP), rather then ILP [4].

Of course, to harness the power offered by these devices, a shift in the

programming paradigm is required, too, along with adequate support by

the operating system. In the first case, the main problem is to rethink se-

rial code in order to decompose it into a set of parallel tasks, called threads

[8]. Performance improvement is obtained by running in parallel the var-

ious application threads. From the point of view of the operating system,

support should be implemented at different levels, but one Operating Sys-

tem (OS) component stands among the others: the scheduler. This compo-

nent, which is responsible for scheduling the execution of tasks, has been

obviously rethought in recent years in the light of CPUs advancements

aimed at concurrent execution of multiple tasks. Modern schedulers must

take into account more factors than those of pre-multicore era OSs: for ex-

ample, in order to keep data and instruction cache warm (thus reducing

the misses), a modern scheduler is supposed to pin (i.e.: to assign to) a

given thread to a given core for as long as possible, so as to reduce the

thread migration effect and favoring data locality (both spatial and tem-

poral) [8]. Simultaneous Multi Threading (SMT) and fine grained multi-

threading technology, by which multiple threads’ execution is interleaved

in the same core [4], accentuates the need for an informed and improved OS

scheduler.

One peculiar weak point of nowadays multicore architectures is the

traffic induced by cache memories. With just a single core accessing cache

memory, it is relatively easy to maintain it up to date with main memory:

write-back and write-through policies are fairly easy to implement in hard-

CHAPTER 1. INTRODUCTION 6

ware, and they scale both with main and cache memory dimensions. A

different problem arises when considering multi core systems: since two

threads of the same application may be accessing shared data, and since

these data may be cached, a synchronization protocol must be in place to

force coherence among the caches of the cores of the processor [4] (unless

adequate support from higher level components is obtained, but this is still

a research issue). Snooping based and directory protocols are in place for

this very reason, but the burden they impose on the architecture is by no

means negligible, as they typically require a communication channel whose

bandwidth grows with the number of cores (in the case of snooping based

protocols) or significantly added logic to maintain the state of cache data

across the distributed memory [4] (in the case of directory-based caches).

This implies scalability issues, in that it is not possible to add any given

number of cores to a processor, since it may not be possible to implement

an efficient communication means among all of them [4]. This problem be-

comes particularly important when one realizes that as applications are go-

ing to be designed from scratch to be multithreaded in order to fully take

advantage of this new kind of architecture, the amount of cache coherence-

related traffic on the processor bus is only expected to grow. Operating

systems support may alleviate this problem (for example: by scheduling

threads belonging to the same application to the same cores between dif-

ferent context switches) but may not cancel completely it.

Summarizing, the shift is at the architectural, operating system and pro-

gramming paradigm level: we can obtain the same throughput with less

performant but increased number of actual processors, or we can speedup

applications by a maximum theoretical limit of the number of truly con-

current threads the processor can run at once. This of course requires the

application to be decomposed in parallel tasks, which requires a supple-

mental effort invested in developing applications. From the point of view

CHAPTER 1. INTRODUCTION 7

of the operating system, we expect it to be capable of efficiently scheduling

threads on different cores to better exploit data locality and reduce latency

of interactive applications.

1.1.2 Cloud computing

The following is the definition of Cloud Computing as suggested by the

U.S. National Institute of Standards and Technology (NIST) [9]:

“Cloud computing is a model for enabling convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., net-

works, servers, storage, applications, and services) that can be rapidly pro-

visioned and released with minimal management effort or service provider

interaction.”

This form of computing service realizes the vision of computing as a

utility [10, 11]. The novelty of this computing model is the possibility for

anyone to consider computing power as like as any other form of public

utility, like electricity, gas and water, available on demand, quickly enough

to follow load surges and thereby eliminating the need to plan far ahead

the provisioning of computing resources, thus paying just for the resources

that are really needed for realizing a certain service [12, 13, 14, 15]. This

removes the need for the typically relevant initial commitment in building

the computing infrastructure able to serve the peak workload (which is the

infrastructure typically commissioned when building a datacenter [1]) and

allows a pay-as-you-go business model. Cloud computing is based on com-

puting facilities called clouds, which are defined as “large pools of easily us-

able and accessible virtualized resources” (such as hardware, development

platforms and/or services) [12, 10]. In particular, cloud computing services

are realized by making a computing cloud accessible from the Internet and

offering to the public a service of utility computing which promises reli-

able services delivered through next-generation data centers that are built

CHAPTER 1. INTRODUCTION 8

on compute and storage virtualization technologies [12, 11, 15] . A cloud

computing provider can realize the illusion of unlimited computing and

storage resources available on-demand, while cloud computing customers

must pay only for the resources they are requesting, which can be adapted

on a short-term basis and with no long-term commitment [12]. Another ap-

pealing feature of cloud computing is that consumers are assured that the

cloud infrastructure is very robust and will always be available at any time

[11], a characteristic that only comes with heavy investments in security

and reliability of the whole infrastructure.

From a more technical point of view, considering as examples the cloud

computing offers of Google, Amazon and Microsoft, very different in their

peculiarities, but fundamentally the same under a more cursory view, we

see that “clouds are clearly next-generation data centers with nodes virtu-

alized through hypervisor technologies such as VMs, dynamically provi-

sioned on demand as a personalized resource collection to meet a specific

service-level agreement, which is established through a negotiation and ac-

cessible as a composable service via Web 2.0 technologies.” [11].

The description of these datacenter underlines two important aspects

of cloud computing:

• these are state-of-art, shared computing infrastructures. The efficiency

of such data centers is way higher than any single datacenter that may

be owned by the average cloud computing user, since they would

typically need to over-provision it to keep-up with the rarely occur-

ring peak-load events and the costs for installing a state-of-art infras-

tructure may probably be out of budget [15]. In other words, less com-

puting resources need to be installed and maintained to allow for the

same Quality of Service (QoS) for the same services, which is a main

driving factor for the success of this paradigm. Data centers of these

dimensions, shared by a large number of users, justify increased in-

CHAPTER 1. INTRODUCTION 9

vestments in energy efficiency, which is one major goals of the Green

Computing initiative [15].

• such a big, distributed, complex and dynamic infrastructure benefits

from improved automation of infrastructure and computing resources

management. To materialize such idea, cloud computing services must

be able to autonomously scale up and down, adapting the involved

resources to the current workload and requested QoS and Service

Level Agreement (SLA)s. In this framework, IBM research on Auto-

nomic Computing [6, 16] is a valid means for increasing the efficiency

and utility of such systems.

1.1.3 Autonomic computing

With the term Autonomic Computing, IBM describes in [6] those sys-

tems “[...] capable of running themselves, adjusting to varying circumstances,

and preparing their resources to handle most efficiently the workloads we

put upon them. These autonomic systems must anticipate needs and allow

users to concentrate on what they want to accomplish rather than figuring

how to rig the computing systems to get them there. [...]”.

In [6, 16] the authors root the motivations behind Autonomic Comput-

ing (AC) stating that “[...] The term autonomic computing is emblematic

of a vast and somewhat tangled hierarchy of natural self-governing sys-

tems, many of which consist of myriad interacting, self-governing com-

ponents that in turn comprise large numbers of interacting, autonomous,

self-governing components at the next level down. The enormous range in

scale, starting with molecular machines within cells and extending to hu-

man markets, societies, and the entire world socioeconomy, mirrors that

of computing systems, which run from individual devices to the entire In-

ternet. Thus, we believe it will be profitable to seek inspiration in the self-

governance of social and economic systems as well as purely biological

CHAPTER 1. INTRODUCTION 10

ones [...]”

In IBM projections for the near future, pervasive computing will drive

an exponential growth of the complexity of overall computing systems in-

frastructure [6, 16]. Their claim is that only if computer-based systems be-

come more “autonomic” - that is, to a large extent self-managing given

high-level objectives from administrators - we shall be able to deal with

this growing complexity. In [5] the authors identifies a number of sources

of complexity in todays systems, and underline the value of AC as a means

for putting this complexity under administrator’s control.

Cloud computing, as a representative computing paradigm involving

highly complex systems, relies on many features of autonomic computing,

including many autonomic components. Cloud computing incorporates el-

ements of autonomic computing, since cloud providers would utilize mul-

tiple computers and a self-regulating system. Without such measures in

place, cloud providers could not keep up with the maintenance costs and

demands of the features they provide.

Properties of an Autonomic System (AS)

In IBM’s vision of AC, the system must be endowed with a number of

characteristics to be called “Autonomic” [5, 6, 16, 6].

“Knowing” itself the system must have detailed knowledge of its compo-

nents, status, capacity, connections and available resources, either in

an exclusive or shared way.

Self-(re)configuration an AC system must be capable of automatically set-

ting itself up, given high level administrator policies

Continuous optimization that is, the system is continuously looking for

way to exploit its resources in the most efficient possible way, moni-

CHAPTER 1. INTRODUCTION 11

toring its constituent parts and fine-tune workflow to achieve prede-

termined system goals

Self-healing the system must be able to discover problems or potential

problems, then find an alternate way of using resources or reconfig-

uring the system to keep functioning smoothly

Self-protection It must detect, identify and protect itself against various

types of attacks to maintain overall system security and integrity.

Environment knowledge An AS will find and generate rules for how best

to interact with neighboring systems. It will tap available resources,

even negotiate the use by other systems of its underutilized elements,

changing both itself and its environment in the process

Open world While independent in its ability to manage itself, an auto-

nomic computing system must function in a heterogeneous world

and implement open standards

Predict required resources This is the ultimate goal of autonomic comput-

ing: the marshaling of I/T resources to shrink the gap between the

business or personal goals of our customers, and the I/T implemen-

tation necessary to achieve those goals without involving the user in

that implementation.

Summarizing, AC is an emerging field of IT aimed at increasing the

degree of automation and autonomy of tomorrows computing systems, el-

ements of which are already implemented in nowadays data centers. The

claimed capability of self-governance and self-optimization, in particular,

are interesting in the light of exponentially increasing complexity of tomor-

rows computing systems.

CHAPTER 1. INTRODUCTION 12

1.1.4 Power efficient computing

Power and energy are increasingly becoming prominent factor when

designing the full spectrum of computing solutions, from supercomput-

ers and data centers to handheld phones and other mobile or embedded

computers [3]. Research is currently focused on managing power and im-

proving energy efficiency of today and tomorrow computing devices. In

fact, power density has become one of the major constraints on attainable

processor performance.

With respect to mobile and embedded devices, this translates directly

into how long the battery lasts under typical usage [3]. The battery is often

the largest and heaviest component of the system, so improved battery life

implies smaller and lighter devices [3] or added functionalities available in

the device.

Power and energy considerations are at least as important for devices

connected to a power supply. The electricity consumption of computing

equipment in a typical U.S. household runs to several hundred dollars per

year [3]. This cost is vastly multiplied in business enterprises: an analysis

made by IT analysis firm IDC estimates the worldwide spending on power

management for enterprises was likely in the order of magnitude of 40 bil-

lion $ in 2009 [3].

Being efficient at consuming power has a three main advantages. The

most obvious one is that reduced power consumption directly implies re-

duced running costs. Second, reduced power consumption leads to a less

complex designs of power supplies, power distribution grids and backup

units, that reduces the costs to the whole infrastructure. Last, since reduced

power consumption implies reduced heat generation, those costs associ-

ated to heat management are reduced [3].

Thermal management, in particular, is becoming increasingly impor-

tant due to the level of miniaturization of modern electronics and the in-

CHAPTER 1. INTRODUCTION 13

creased blades density typical of modern data centers. Increased compaction

(such as in future predicted blade servers) will increase power densities

by an order of magnitude within the next decade, and the increased den-

sities will start hitting the physical limits of practical air-cooled solutions

[3, 7]. Studies, most notably concerning servers and hard-disk failures, have

shown that operating electronics at temperatures that exceed their opera-

tional range can lead to significant degradation of reliability, i.e. they ex-

perience exponentially reduced Mean Time-To-Failure (MTTF) values [17].

The Uptime Institute, an industry organization that tracks data-center trends,

has identified a 50% increased chance of server failure per each 10°C in-

crease over the 20°C range [3, 18, 19]; similar statistics have also been shown

over hard-disk lifetimes [17, 20, 21, 19]. Temperature directly affects also

power consumption, clock latency and since processor leakage power in-

creases exponentially with temperature, also CPU power consumption [22,

23]. At 90-nm-process nodes, leakage accounts for 25 to 40% of total power

consumed [22]. At 65-nm-processes, leakage accounts for 50 to 70% of to-

tal power absorbed [22]. Moreover, a 15°C increase in temperature might

causes delay of approximately 10 to 15% [22]. Processor cooling is also a

significant problem for mobile devices as thermal conditions can affect user

experience through both heat dissipation and potentially intrusive cooling

[24].

For large computing systems like supercomputers and data centers, the

costs for running Heating, Ventilation and Air Conditioning (HVAC) sys-

tems for temperature management can be estimated as more or less an ad-

ditional dollar spent for every dollar spent on electricity [3, 7]. Up to 80%

of data center construction cost is attributable to power and cooling infras-

tructure [1, 7], and chiller power, a historically dominant data center energy

overhead, scales quadratically with the amount of heat extracted [7]. Re-

search is ongoing in alternate cooling technologies (such as efficient liquid

CHAPTER 1. INTRODUCTION 14

10 THE DATACENTER AS A COMPUTER

A key challenge for architects of WSCs is to smooth out these discrepancies in a cost-
efficient manner. Conversely, a key challenge for software architects is to build cluster infrastructure
and services that hide most of this complexity from application developers.

1.6.5 Power Usage
Energy and power usage are also important concerns in the design of WSCs because, as discussed
in more detail in Chapter 5, energy-related costs have become an important component of the total
cost of ownership of this class of systems. Figure 1.4 provides some insight into how energy is used
in modern IT equipment by breaking down the peak power usage of one generation of WSCs de-
ployed at Google in 2007 categorized by main component group.

Although this breakdown can vary significantly depending on how systems are configured
for a given workload domain, the graph indicates that CPUs can no longer be the sole focus of en-
ergy efficiency improvements because no one subsystem dominates the overall energy usage profile.
Chapter 5 also discusses how overheads in power delivery and cooling can significantly increase the
actual energy usage in WSCs.

Networking
5%

Other (server)
22%

Disks
10%

DRAM
30%

CPUs
33%

FIGURE 1.4: Approximate distribution of peak power usage by hardware subsystem in one of Google’s
datacenters (circa 2007).

ENERGY AND POWER EFFICIENCY 49

load (mostly in fans), followed by the UPS system, consuming 7–12% of critical power through
AC–DC–AC conversion losses (relative losses are higher when the UPS is only lightly loaded).
Other facility elements [humidifiers, power distribution units (PDUs), lighting] further contribute
to higher PUE levels. Much of this poor efficiency is caused by a historical lack of attention to effi-
ciency not by inherent limitations imposed by physics. It is commonly accepted that a well-designed
and well-operated datacenter should have a PUE of less than 2, and the 2007 EPA report on data-
center power consumption states that in a “state-of-the-art” scenario a PUE of 1.4 is achievable by
2011 [26]. The most obvious improvements opportunities are the use of evaporative cooling towers,
more efficient air movement, and the elimination of unnecessary power conversion losses.

5.1.1 Sources of Efficiency Losses in Datacenters
For illustration, let us walk through the sources of efficiency losses in a typical datacenter [41]. The
transformers stepping down the incoming high-voltage power from 115 kV to the medium-voltage
distribution lines (typically at 13.2 kV in the United States) are fairly efficient, and so are the trans-
formers stepping it down further to 480 V. In both cases, transformation losses typically are below
half a percentage. The uninterruptible power supply (UPS) is the source of most conversion losses,
typically running at an efficiency of 88–94% in the best case (less, if they are lightly loaded). Rotary

FIGURE 5.2: Breakdown of datacenter energy overheads (ASHRAE).

Figure 1.1: Breakdown of total data center hardware and overheads costs of a representative

Google datacenter [1].

Figure 1.2: The model for PUE.

cooling), but it will still be important to be efficient about generating heat

in the first place [3].

In order to capture these overheads in a metric, the Green Grid, a non-

profit IT organization that addresses power and cooling requirements for

datacenters and the entire information service delivery ecosystem, defined

the Power Usage Effectiveness (PUE) [25]. PUE is defined as the total fa-

cility power/IT equipment power, effectively measuring a form of overall

data-center infrastructure efficiency; please refer to Figure 1.2.

Power management issues are only expected to be more and more pre-

CHAPTER 1. INTRODUCTION 15

dominant in the foreseeable future [3]. On the mobile devices side, the gap

between advances in battery capacity and reliability and the ever grow-

ing increases in mobile-devices functionalities will become a major limit-

ing factor for the development of the entire mobile/embedded industry [3].

New battery technologies (such as fuel cells or graphene-based capacitors)

might mitigate it, but designing more power-efficient systems will still be

the main driver for full battery capacity exploitation. Tethered devices are

affected, too: data from the U.S. Environment Protection Agency points to

steadily increasing costs for electricity [26]. For data centers, recent reports

highlight a growing concern with computer-energy consumption and show

how current trends could make energy a dominant factor in the total cost

of ownership [27] up to the point at which power and cooling cost might

overtake hardware costs [28, 27, 29].

In Section 2 we explore the techniques that have been developed in re-

cent years in order to deal with the problems just exposed, both at low- (mi-

cro architectural/electronics) and high-level (operating systems, schedul-

ing algorithms, datacenters management techniques).

1.2 Scheduling

In modern, multiprogrammed computing environments, as well as larger

computing systems like data centers, it is frequent to have multiple running

processes or threads competing for CPU time. This situation occurs when-

ever two or more processes or threads (tasks) are in ready state [8]. Depend-

ing on the number of available processing elements (which is variable from

one in a legacy unicore machine to 4 in modern commodity desktops to

tens of thousands on contemporary data centers), the scheduling process

must occur so as to decide what task to run, where. The part of the OS that

takes care of managing this process is called scheduler [8].

CHAPTER 1. INTRODUCTION 16

1.2.1 Preliminary definitions

In order to better understand the following section, we shall give here

some preliminary definitions of interest for the scheduling problem [8].

The process is a basic concept for multiprogramming operating sys-

tems, as it defines the basic structure for managing code in execution. A

process is fundamentally a container that holds all the information needed

to run a program [8]. Processes are one of the oldest and most important ab-

stractions that operating systems provide. They support the ability to have

(pseudo) concurrent operation even when there is only one CPU available

[8].

Process. A process is an instance of a computer program that is being executed.

It contains the program code and its current activity. Depending on the operat-

ing system (OS), a process may be made up of multiple threads of execution that

execute instructions concurrently.

Multiprogramming. The OS characteristic to have several programs in memory

at once, each in its own memory partition, and the rapid switching back and forth

between them.

The switching between a program and the other is one important fea-

ture of the scheduling algorithm. There are mainly two ways by which pro-

cesses are scheduled and de-scheduled on CPUs:

cooperative A nonpreemptive (cooperative) scheduling algorithm picks a

process to run and then just lets it run until it blocks (either on I/O or

waiting for another process) or until it voluntarily releases the CPU

preemptive preemptive scheduling algorithm picks a process and lets it

run for a maximum of some fixed time. If it is still running at the end

of the time interval, it is suspended and the scheduler picks another

CHAPTER 1. INTRODUCTION 17

process to run (if one is available). Doing preemptive scheduling re-

quires having a clock interrupt occur at the end of the time interval to

give control of the CPU back to the scheduler [8].

The time that is assigned a process for running is called “quantum”. On

most systems this is a fixed amount of time (typically forced at compile-

time) but in others is a run-time variable (typically to improve the interac-

tivity of the system).

Moreover, depending on the progress of the execution and on the cur-

rent requested being serviced, processes can be in one of a number of states.

Even if different operating systems have different states for representing

(maybe slightly) different processes’ situations, here we report the three

most commonly found ones:

running the process in this state is currently running on one processing

element

ready this state signals that the process is ready to be assigned to a CPU

blocked the process is waiting for some condition to happen before be-

coming runnable

Depending on the finite state automaton that describes the states and tran-

sitions of the scheduling algorithm, we may have a more fine-grained con-

trol over the states of a process.

In traditional operating systems, each process has an address space and

a single thread of control (that is almost the definition of a process). Never-

theless, there are frequently situations in which it is desirable to have mul-

tiple threads of control in the same address space running in quasi-parallel,

as though they were (almost) separate processes (except for die shared

address space). This ability is essential for certain applications, which is

why having multiple processes (with their separate address spaces) will

CHAPTER 1. INTRODUCTION 18

not work. Moreover, as creating and destroying threads is much faster than

is for processes, applications that creates and destroys a large number of

threads during their execution will gain considerable performance [8, 30].

Most importantly, threads are useful in systems with multiple CPUs, so as

to achieve true parallelism.

Depending on the threading model we may have different definitions

of threads. In particular, there are systems (such as Linux) that blur the line

between processes and threads, and others that don’t. This definition ap-

plies to the traditional threading model where threads are different entities

than processes.

Thread. A thread of execution (or, simply, thread) is a sub-entity within a pro-

cess; it is a specific part of the executing program in charge of doing some kind of

elaboration. A process contains several threads which share the address space, open

files and, in general, the resources assigned to the process.

Multithreading. The OS characteristic to have several threads running really in

parallel. This of course requires hardware support.

1.2.2 Problem statement

As we already exposed in 1.2, scheduling is the activity of choosing

which process is going to be run in the next quantum of CPU time. We re-

call here one possible, and very general, definition of Resource Constrained

Scheduling Problem (RCSP), given in [31, 32]. This definition refers to a

generic problem in which a set of activities must be completed by using a

limited set of available resources in order to optimize one or more objective

function(s).

RCSP. Let J be a set of partially ordered activities and let j0, jn+1 ∈ J be a unique

dummy beginning activity and a unique dummy terminating activity, respectively

(so that always J 6= ∅). Let T be a set of temporal steps. Let G(J, A) be an acyclic

CHAPTER 1. INTRODUCTION 19

directed precedence graph representing precedence relations among the activities;

i.e. (j, j ′) ∈ A if and only if the activity j needs to be performed before the activity

j ′. Let R denote a set of resources and let cjr be the processing time of the activity

j over the resource r. Each activity j is to be assigned to exactly one resource r

for being processed and that resource cannot process another activity j ′ 6= j until

j has been processed (i.e. after cjr temporal steps). Let also γ(J) be the objective

function of the POSET J. Under the above setup, the RCSP consists in minimizing

or maximizing the objective function γ(J).

In the context of computing task scheduling, we may identify as re-

sources, for example, CPUs, Input/Output (I/O) devices and buses, activi-

ties as processes and threads of processes and, as possible objective function,

the minimization of the total execution time of the activities.

1.2.3 Batch, interactive and real-time scheduling

With respect to the objective function that has to be minimized in the

RCSP, a brief introduction on the characterization of the typologies of work-

loads is necessary. Depending on the kind of workload of the system, dif-

ferent scheduling policies may be implemented in order to reach different

goals [8, 30].

Traditionally, a suggested classification of the possible workloads envi-

ronments is the following [8, 30]

Batch In batch systems, there are no users waiting for a quick response to a

short request. Consequently, nonpreemptive algorithms, or preemp-

tive algorithms with long time periods for each process, are often ac-

ceptable. This approach reduces process switches and thus improves

throughput, which is a major goal of these systems.

Interactive these activities have a certain degree of interactivity with users.

This is the typical case of applications running in desktop computers.

CHAPTER 1. INTRODUCTION 20

Preemption is essential to keep one process from hogging the CPU

and denying service to the others. Even if no process intentionally

ran forever, one process might shut out all the others indefinitely due

to a program bug. Preemption is needed to prevent this behavior.

Real-time These workloads are characterized by having to respect a spe-

cific deadline for doing their job. In systems with real-time constraints,

preemption is sometimes not needed because the processes know that

they may not run for long periods of time and usually do their work

and block quickly. This category is traditionally further divided up

into:

Soft Real-time the deadlines of these loads are not strict, which means

that the system can tolerate that some tasks do not complete in

time; the system is said to be working in a best-effort manner.

Hard Real-time the deadlines for these activities are strict, which means

that in case the scheduler cannot guarantee their execution by

the expressed deadline, the system should return an error.

Another classification useful for this context is that of scheduling goals,

that depend on the system’s workload and are obtained by appropriate

policies [31, 8, 30].

fairness by fairness we mean the attitude of a scheduler to assign an equal

amount of resources to all the processes

balance a balanced system is one that exploits at its best the resources

available; it tries to keep all the resources as busy as possible

throughput maximization the scheduler tries to complete the maximum

number of tasks per unit of time

turnaround time minimization by turnaround time we mean the total dif-

ference of time between the beginning of the job and its end; a sched-

CHAPTER 1. INTRODUCTION 21

uler may try to minimize the average turnaround time for the set of

scheduled jobs

response time minimization a scheduler may try to reduce the time be-

tween a user request and its service

proportionality differing from fairness because the system tries to assign

a fair share to each user, instead of each activity

deadlines meeting the scheduler enforces the meeting of the deadlines

predictability/deterministic behavior the scheduler must say in advance

if the deadlines expressed may be met or not.

A recent development in the context of scheduling algorithms is the

introduction of knowledge about the status of the system’s temperature in

the scheduler algorithm, in order to try to find jobs schedules and system

settings compatible with dynamic thermal constraints[33, 34, 35, 36]. This

allows for a new goal to be introduced, namely

thermally constrained by which we indicate the property by which the

scheduler computes a schedule of jobs that keeps temperature under

a given set point.

Those schedulers that aim at achieving this goal belong to the Thermal-

aware scheduling (TAS) category.

1.3 Problem Statement

As it was exposed throughout Chapter 1, thermal constraints in high

performance computing environments are becoming a major issue for sys-

tems’ designers which is tackled with different techniques that we will de-

scribe in much greater detail in Chapter 2.

CHAPTER 1. INTRODUCTION 22

In this work we propose an advancement in the context of operating

system-based, local Dynamic Thermal Management (DTM) technique we

called ADAPTME, a simultaneously performance and thermal aware sched-

uler aimed at server environments with general purpose (both batch and

interactive) workloads. In order to validate our approach, we take as a ref-

erence the work of [24] and implement our system as a suitable patch for

the same operating system the authors used.

1.4 Summary

We have introduced a number of concepts and motivations that are

relevant to this thesis. A more thorough and comprehensive overview of

DTM techniques will be given in Chapter 2, along with the status of art of

scheduling in mainstream Free, Libre or Open Source Software (FLOSS) op-

erating systems. In Chapter 3 we shall introduce the basic techniques and

the general ideas that underly the work. In Chpater 4, the system that has

been designed and implemented will be dedescribed in great detail, and its

experimental evaluation reported in 5.

Chapter 2

State of the art

2.1 Overview of major Major Free, Libre or Open Source

Software (FLOSS) Operating System (OS)s and Ker-

nels

To date, there are many available FLOSS operating systems for the most

disparate usages. Keeping in mind the difference between the OS and its

kernel (the latter is a part of the former but there are parts of the OS that

are not part of the kernel), in this section we focus on the two most relevant

works in this context, GNU/Linux and FreeBSD.

2.1.1 Linux

Linux is a Unix-like monolithic kernel developed by the open source

movement since 1991[37]. It is the kernel most widely installed in open

source operating systems [37]. Nearly all major GNU distributions employ

Linux as kernel. At the moment, the guide of the development of Linux is

directed by his first developer, Linus Torvalds, and the Linux Foundation.

23

CHAPTER 2. STATE OF THE ART 24

2.1.2 Early Linux Schedulers

The scheduler portions of the kernel has undergone a lot of develop-

ment since its inception, in 1991. Early Linux schedulers used minimal de-

signs, not yet focused on massive architectures with many processors or

even Simultaneous Multi Threading (SMT) capabilties [38]. The 1.2 Linux

scheduler used a simple and fast circular queue for runnable task manage-

ment that operated with a round-robin scheduling policy [38].

Linux version 2.2 introduced the idea of scheduling classes which is

now a common feature of general purpose scheduling infrastructures, per-

mitting differing scheduling policies for real-time tasks, non-preemptible

tasks, and non-real-time tasks. The 2.2 scheduler also included support for

Simultaneous Multi Processor (SMP) [38].

The 2.4 kernel included a relatively simple scheduler that operated in

O(N) time (as it iterated over every task during a scheduling event). The

2.4 scheduler divided time into epochs, and within each epoch, every task

was allowed to execute up to its time slice. If a task did not use all of its

time slice, then half of the remaining time slice was added to the new time

slice to allow it to execute longer in the next epoch. The scheduler would

simply iterate over the tasks, applying a goodness function (metric) to de-

termine which task to execute next. The weak points of this approach are

the relatively inefficiency, limited scalability, and overall weakness for real-

time systems. It also lacked features to exploit new hardware architectures

such as multi-core processors [38].

The O(1) scheduler

To overcome the limitations of the 2.4 scheduler, O(1) was designed and

introduced in 2.6. The scheduler was not required to iterate the entire task

list to identify the next task to schedule (resulting in its name, O(1), which

means that the scheduling decision takes constant time, however the num-

CHAPTER 2. STATE OF THE ART 25

ber of tasks to iterate over). The O(1) scheduler kept track of runnable tasks

in a run queue (actually, two run queues for each priority level-one for ac-

tive and one for expired tasks), which meant that to identify the task to

execute next, the scheduler simply needed to dequeue the next task off the

specific active per-priority run queue. The O(1) scheduler was much more

scalable and incorporated interactivity metrics with numerous heuristics to

determine whether tasks were I/O-bound or processor-bound [38].

On fundamental problem with O(1) scheduler became the large mass

of code needed to calculate heuristics, which was difficult to manage and

lacked algorithmic substance. the change came in the way of a kernel patch

from Con Kolivas, with his Rotating Staircase Deadline Scheduler (RSDL),

which included his earlier work on the staircase scheduler. The result of

this work was a simply designed scheduler that incorporated fairness with

bounded latency. Kolivas’ scheduler impressed many (with calls to incor-

porate it into the current 2.6.21 mainline kernel), so it was clear that a sched-

uler change was on the way [38].

The CFS scheduler

The main idea behind the Completely Fair Scheduler (CFS) is to main-

tain balance (fairness) in providing processor time to tasks [38]. This means

processes should be given a fair amount of the processor. When the time for

tasks is out of balance (meaning that one or more tasks are not given a fair

amount of time relative to others), then those out-of-balance tasks should

be given time to execute.

To determine the balance, the CFS maintains the amount of time pro-

vided to a given task in what’s called the virtual runtime. When the virtual

runtime is “low” (relatively low) it means that the amount of time a task

has been permitted access to the processor has been “low”, and viceversa.

The CFS also includes the concept of sleeper fairness to ensure that tasks

CHAPTER 2. STATE OF THE ART 26

that are not currently runnable (for example, waiting for I/O) receive a

comparable share of the processor when they eventually need it [38].

Rather than maintaining tasks in a run queue, CFS maintains a time-

ordered red-black tree. A red-black tree is a tree with two important proper-

ties. First, it’s self-balancing, so no path in the tree will ever be more than

twice as long as any other [38]. Second, operations on the tree occur in O(log

n) time in the number of nodes in the tree. Insertion and deletion are quick

and efficient [38].

With tasks stored in the time-ordered red-black tree, tasks with the low-

est virtual runtime are stored toward the left side of the tree, and tasks with

the highest virtual runtimes are stored toward the right side of the tree.

The scheduler then, in order to achieve fairness, picks the left-most node of

the red-black tree to schedule next. The task accounts for its time with the

Central Processing Unit (CPU) by adding its execution time to the virtual

runtime and is then inserted back into the tree if runnable. In this way, tasks

on the left side of the tree are given time to execute, and the contents of the

tree migrate from the right to the left to maintain fairness. Therefore, each

runnable task chases the other to maintain a balance of execution across the

set of runnable tasks [38].

CFS doesn’t use priorities directly but instead uses them as a decay fac-

tor for the time a task is permitted to execute. Lower-priority tasks have

higher factors of decay, where higher-priority tasks have lower factors of

delay. The decay factor states how fast the virtual runtime changes in time,

allowing for more o less cpu time to be accorded to tasks. That’s an elegant

solution to avoid maintaining run queues per priority [38].

Another interesting aspect of CFS is the concept of group scheduling,

another way to bring fairness to scheduling, in particular in the face of

tasks that spawn many other tasks. Also introduced with CFS is the idea

of scheduling classes, by which task belongs to a scheduling class, which

CHAPTER 2. STATE OF THE ART 27

determines how a task will be scheduled. A scheduling class defines a com-

mon set of functions that define the behavior of the scheduler [38].

To date, CFS remains the default Linux scheduler.

2.1.3 FreeBSD

FreeBSD [39, 40] is another one of the major FLOSS kernel available.

The 4.4BSD scheduler

FreeBSD inherited the traditional BSD scheduler when it branched off

from 4.3BSD. 4.4BSD is the default scheduler available in FreeBSD up to

version 5.1, included [39]. FreeBSD extended the original scheduler’s func-

tionality, adding scheduling classes and basic SMP support, without twist-

ing its fundamental foundation. Two new classes, real-time and idle, were

added early on in FreeBSD. . It was initially designed for uniprocessor sys-

tems, but with the advent of multicore architectures, it was adapted to sup-

port SMP and SMT technology (like Intel Hyper Threading (HT)) [39].

The FreeBSD time-share-scheduling algorithm is based on multilevel feed-

back queues. The system adjusts the priority of a thread dynamically to re-

flect resource requirements (e.g., being blocked awaiting an event) and the

amount of CPU time consumed by the thread. Threads are moved between

run queues based on changes in their scheduling priority (hence the word

“feedback” in the name “multilevel feedback queue”). Whenever a thread

other than the currently running one attains a higher priority, the system

switches to that thread immediately if the current thread is in user mode.

Otherwise, the system switches to the higher-priority thread as soon as the

current one exits the kernel citedesignfreebsd. The system tailors this short-

term scheduling algorithm to favor interactive jobs by raising the scheduling

priority of threads that are blocked waiting for I/O for one or more sec-

onds and by lowering the priority of threads that accumulate significant

CHAPTER 2. STATE OF THE ART 28

amounts of CPU time. Short-term thread scheduling is broken into two

parts

Idle priority threads are only run when there are no time sharing or

real-time threads to run. Real-time threads are allowed to run until they

block or until a higher priority tasks is placed onto the multilevel feedback

queues.

The ULE scheduler

2.2 Policies for power and energy efficiency

There is a wide spectrum of techniques that allow for power efficient

computing to take place [24]. In this section we are going to focus on lo-

cal techniques only, i.e. those that can improve power efficiency of a single

machine, in contrast to global techniques, which are aimed at cluster, data

centers and, in general, groups of cooperating machines. The latter differ

from the formers because they typically take into account the spatial dis-

position of the machines (like the “hot aisle/cold aisle” displacement [18]),

the way Heating, Ventilation and Air Conditioning (HVAC) and computer

room air conditioner (CRAC)s installed and job scheduling techniques that

span across the entire data-center. Local techniques are particularly inter-

esting for the autonomic computing community, since decentralized opti-

mization and control is one of the fundamental tenets of the Autonomic

Computing Manifesto [6].

Local techniques fall in two different and complementary categories:

those that are implemented at the microarchitectural level [23] and those

implemented at software level (either operating system level or program-

ming language/paradigm level) [41]. They belong to the first category tech-

niques such as DVFS, fetch throttling, and clock gating [42], which are stan-

dard features of modern microprocessors [24]. These techniques are par-

CHAPTER 2. STATE OF THE ART 29

ticularly suitable for reactively reducing cores temperature, and reduce the

burden of worst-case temperature management [43, 44, 45]. They don’t try

to proactively contrast the rise of the temperature. Software-level scheduling

schemes [33, 46, 47], instead, proactively take into account thermal man-

agement and the temperature/performance trade-offs, and belong to the

second class. Hybrids techniques between the two categories, such as Hyb-

DTM [48], and programming paradigms/models such as GREENSOFT [49],

complete the overview of currently available techniques. In the next sec-

tion, we shall focus on software-level techniques, being of primary interest

for this work.

2.3 Dynamic Thermal Management techniques

In recent years, as technology for microprocessors is entering the na-

nometer regime, the power densities of microprocessors have doubled ev-

ery nearly two years [50, 51]. This increase in power densities has led to

two major problems. Firstly, high energy consumption is a limitation for

mobile, battery operated devices. Secondly, higher temperatures directly

affect reliability and cooling costs, both for battery-operated and tethered

devices. Unfortunately, cooling techniques for these devices must be de-

signed to cope with the maximum possible power dissipation of the mi-

croprocessor, even if it rarely occurs, in typical applications, that critical

temperatures (due to continuous maximum power usage) are reached. On

one hand, worst-case dynamic thermal management avoids performance

degradation while failing to provide a proper control over temperature;

on the other hand, preventive dynamic thermal management introduces

performance degradation while providing a proper control. In addition to

this, failures may happen to CRAC unit, or CPU fans upsetting the ther-

mal environment in a matter of minutes or even seconds. Rapid response

CHAPTER 2. STATE OF THE ART 30

strategies, often faster than what is possible at a facilities level, are required

to cope with these (infrequent, yet not impossible) situations [47]. On av-

erage, cooling techniques are an overkill solution, yet they are necessary to

cope with critical temperature spikes. This situation is only expected to be

more and more of an issue, given current and expected levels of transistors

miniaturization and thermal packing availability.

A lot of effort is being put into finding finding ways lo limit the negative

side effects that overheating has on computing devices. The main motiva-

tions behind this are the growing power densities of current and foreseen

computing systems, the ever growing electricity costs (which impact on the

air conditioning costs of the computing environment) the consequently in-

creasing direct costs of HVACs and CRACs in modern data centers along

with indirect costs occurring due to reduced lifetime and reliability of com-

puting electronics. For high-performance Chip Multi Processing (CMP)s,

thermal control has become an important issue due to their high heat dissi-

pation [33]. Thermal packaging, fans, CRACs and HVACs are the primary

solution, but suffer from high cost and complexity, apart from their being

designed for worst case thermal conditions. Therefore, Dynamic Thermal

Management (DTM) techniques have been getting more popular for their

low cost, flexibility [33] and stated goal of allowing designers to focus on

average case rather than worst-case thermal conditions [43].

For these reasons, as already discussed, it is increasingly important to

manage, if not limit, energy consumption and temperature in current and

future computing systems. Dynamic thermal management techniques have

undergone a lot of development in the recent years due to the need of limit-

ing the ever growing operating temperature of modern multicores proces-

sors.

Scientific research has been focused in the recent years on developing

two main lines of work: the first one studies DTM techniques aimed at mi-

CHAPTER 2. STATE OF THE ART 31

cro architectures and low-level electronics, while the second focuses on the

operating system and in particular on thermal-aware scheduling policies,

both for multicore/multiprocessor machines and whole data centers.

In the next section we shall review some major DTM techniques that are

studied (and some are readily available in nowadays chips) in the context

of hardware based DTM. In section 2.3.2, instead, we will focus on solutions

that rely on OS support for thermal control.

2.3.1 Hardware based DTM

Under this category fall all those techniques that apply any form of ther-

mal/energy or power control at the architectural/electronics level.

The first DTM techniques that were put into play used to be simple

mechanisms aimed at guaranteeing that a thermally overloaded system

would not break down due to insufficient cooling; they were simple hard-

ware solutions to solely limit peak temperatures. In recent years, these tech-

niques evolved into energy and power saving, thermal control mechanisms

commonly found in readily available CPUs. These schemes do typically

throttle performance to lower power consumption when a preset tempera-

ture threshold is reached [33].

Microarchitecture-related DTM relevant researches are [43, 52, 53, 54,

55, 56, 23, 57, 58, 59].

Dynamic Voltage and Frequency Scaling (DVFS)

One of the most common DTM technologies implemented in nowadays

microprocessors is DVFS. As the name suggests, this mircoarchitectural-

level DTM technique dynamically varies the voltage and the operating fre-

quency of the microprocessor so as to find a point in the configuration space

that allows the system to reach a suitable thermal and power saving condi-

tion [47].

CHAPTER 2. STATE OF THE ART 32

DVFS dynamically chooses the best tradeoff between power consump-

tion and performance selecting a stable voltage supply/working frequency

pair configuration [43, 60, 61, 59]. Of course, since dynamic power dissi-

pation is quadratically linked to switching frequency and linearly linked

to voltage, lowering one or the other or both directly reduces power con-

sumption and heating [62, 52].

Research has traditionally focused on single core architectures [56, 23,

57], even though in recent years we are assisting to a shift of interest to-

wards multicore ones. One major limiting factor is that in nowadays archi-

tectures in not always available a per-core possibility to select the set point

[63].

Notably, in [64], this technique has been employed in combination with

a thermal-aware operating system, resulting in a hybrid solution between

hardware and software DTM where the resulting system can (thanks to

a thermal model of the cpu and power profiles of programs) maximize

processor usage under varying conditions, while implementing an optimal

policy for DVFS usage. DVFS has the major drawback of impacting in a

non-discriminatory way on all the applications running in the system [43].

Clock gating

This technique allows a processor in low power mode to disable some

clock propagation paths in large portions of the circuit. Switching off the

clock eliminates the dynamic power leaving only static power. During this

time the core or chip (depending on the number of voltage domains) is

slowing down the total processing time increases, but in return the temper-

ature is dropping [65, 59, 43].

CHAPTER 2. STATE OF THE ART 33

Speculative execution throttling

Speculative execution is a mechanism by which microprocessors try to

keep the pipeline as full as possible by issuing and executing instructions

belonging to parts of code that may execute in case the branches these in-

structions belong to are effectively taken [4]. This implies that unless a per-

fect branch predictor is in effect (which is of course an ideal, and not real,

device) some instructions will have to be issued and executed, but will not

commit. All in all, this Instruction Level Parallelism (ILP) mechanism in-

creases the overall performance of the system, but at the price of a waste of

power that may not be negligible [53, 43].

Speculative execution throttling turns off this microprocessor’s feature

so as to limit to the strictly necessary the number of instructions that are go-

ing to be executed (and committed), at the price of performance reduction

[60].

Instruction-Cache (I-Cache) throttling

I-Cache throttling allows the processor’s fetch bandwidth to be reduced

when the CPU reaches a temperature limit [43]. Again, this kind of tech-

nique reduces the number of instructions executed per second, limiting

the number of instructions that may be issued, on average, every clock cy-

cle,with obvious impacts on performance.

2.3.2 Software based DTM

In this category fall all those DTM techniques that are implemented at

a higher level than the micro architectural/electronics one.

The main motivation for the existence of a different class of mecha-

nisms, is that the main limit of hardware DTM is that is only suited to reac-

tive responses, that is, typical of emergency situations like those related to

CHAPTER 2. STATE OF THE ART 34

failure of cooling systems and analogous situations where thermal loads,

due to peak activity of overloaded systems, are not effectively disposed of.

Moreover, since at such low level there is very limited if not at all knowl-

edge about OS tasks, these techniques affect in a non discriminatory way

those tasks that are effectively heating the system as well as those that are

not. Finally, since the typical hardware response is throttling, a severe per-

formance degradation for a class of applications that demand high perfor-

mance is likely [33].

Software based techniques plays a fundamental roles in both these as-

pects. First of all, they tend to be proactive, in that they try to prevent heating,

in the first place, to be generated in excess of the disposal capacity of the

system. Moreover, they can finely discriminate which tasks are effectively

heating the systems and which tasks are not. This allows for a sensible in-

crease in average performance with respect to the employment of purely

hardware solutions

In this way, they successfully achieve an average reduction of tempera-

ture for the entire runtime of the system at a reduced cost.

Idle cycle injection

Due to the dependence between leakage power and temperature, dif-

ferent distributions of idle time will lead to different temperature distri-

butions and, consequentially, energy consumption. Idle cycle injection has

been recently implemented by [66, 24] as a means to lowering CPU tem-

peratures. In [67], the authors address the problem of distributing idle time

among different tasks at different voltage and frequency levels for energy

minimization. In their work, the authors assume a processor model hav-

ing two basic operational modes: active and idle. Idling the processor low-

ers the temperature, while keeping it active increases it. Since executing a

nop equivalent instruction results in putting the processor in idle mode,

CHAPTER 2. STATE OF THE ART 35

injecting a varying number of these instructions in the processor results in

an overall lowering of the temperature (which can be adjusted according

to a given goal). Injecting idle instructions, obviously, involves a tradeoff

between application performance (intended as execution time) and maxi-

mum temperature reached. Apart from this tradeoff, another major draw-

back is a low selectivity of the slowed down processes. In [67], the authors

address the problem of distributing idle time among different tasks at dif-

ferent voltage and frequency levels for energy minimization.

Core migration

Core migration [46], is a multicore-aware strategy by which “hot” and

“cool” threads, as defined before, are run on different cores in a round robin

fashion in order not to incur in penalties due to idling while at the same

time distributing heat in a more homogeneous way on CPU’s die. As al-

ready pointed out in section 1.1.1, one of the major challenges for operat-

ing systems schedulers aimed at multicore architectures is to find a way

to achieve maximum parallelism while preserving data locality in caches

as much as possible; obviously, running threads in a round-robin fashion

is the worst way for obtaining locality, thus this technique is potentially

associated with a low cache hit rate side effect.

2.3.3 Thermal-aware scheduling (TAS)

The main idea behind this kind of scheduling, which is operated at OS-

level, is to execute jobs with different CPU usage profiles in order to induce

variations in CPU temperature [43]. TAS realizes a kind of scheduling that

has the explicit goal of keeping system’s temperature below a given thresh-

old [47, 35]. By means of an intelligent schedule, overall system tempera-

ture can be put under control.

This typically involves classifying running tasks as “hot” or “cold” , de-

CHAPTER 2. STATE OF THE ART 36

pending on their relative degree of CPU-boundedness and Input/Output

(I/O)-boundedness [68]. This classification allows the scheduler to choose

when and where (i.e.: on which core or socket, depending on the architec-

ture) to physically execute that task. This decision can be based on a pow-

er/thermal prediction model [47, 64, 34, 53, 68, 35], TAS-specific heuristics

[47, 68], optimal policies possibly obtained by means of approximate so-

lutions [69, 34, 64, 70], task-related performance counters [71, 68], physi-

cal location of the machine [72] or CPU [73]. Moreover, depending on the

field of application, TAS may come as an online or offline scheduler. In the

first case, research is typically focused on everyday computing or data cen-

ters which are subject to substantially varying, unpredictable workloads

[73, 72, 24], and the scheduling problem is analyzed in the light of soft-

real time scheduling problem. Offline TAS schedulers, instead, are typically

targeted at hard-real time platforms [74, 75], as they typically employ tasks

schedules which are known in advance of execution.

Since our work continues this direction of research, in the following

paragraphs we shall better describe these decision factors so as to better

compare our work to the state of art.

Power profiles of applications and thermal prediction models

Power is dissipated inside a processor in many different ways. From

pure code execution to memory access to static power leakage, energy may

be employed for a number of different usages. In recent years, due to in-

creasing interest around the problem of characterization of workload, many

different techniques and tools have been developed to model power pro-

files of applications. Applications’ power profiling becomes an appealing

feature to systems designers interested in developing DTM techniques, and

in particular TAS, when this knowledge is coupled with that of the CPU mi-

cro architecture, since this allows for the development of thermal predictive

CHAPTER 2. STATE OF THE ART 37

models based on task execution.

Authors in [68] use a simple thermal model for characterizing the ap-

plication, based on the work by [76] where each task is assumed to reach a

steady state temperature and maintain it until its ending. This simplifica-

tion allows for a simple representation of thermal contribution and simpli-

fies the TAS.

In [47], authors consider a simplified thermal model for a single core

processor (stating that this is easily scalable to chip multiprocessors) based

on [77] called “dynamic compact thermal model”. Even though they admit

some oversimplification, they claim to be able to predict a temperature vi-

olation for the entire die in a timely fashion. At the same time, they find

a good tradeoff between accuracy and computational burden (in terms of

memory and time) for their online task power estimator, which they claim

relies only on the last available reading of task power usage for prediction

purposes. Accuracy for such an estimator is in the order of 10%, which is

comparable to other online power profilers found in the literature.

Authors in [34] restrict their focus on the set of batch, lowly-interacting

workloads in the context of soft real-time. They rely on readily available

tools such as Wattch [78] and SimpleScalar [79] for power profiling ap-

plications. After profiling a set of batch jobs, they conclude that since the

variance of the job’s temperature between different assigned quanta is low,

three main phases can be identified (start, steady state and shut down) and

the central one (the steady state) is representative of the thermal behavior

of the application, i.e. the thermal effect that a core is going to experience

when the task is run. The current thermal profile is given as input to the

scheduler along with the set of runnable tasks, and their expected power

consumption/thermal behavior. A look up on pre-computed look up tables

stored inside kernel memory allows the scheduler to efficiently take a de-

cision in order not to violate the thermal constraint. If the deadline of the

CHAPTER 2. STATE OF THE ART 38

task is missed, the task is discarded.

In practically all works that are based upon a thermal model of the CPU,

the authors have used either ATMI [80] or HotSpot [81] as a thermal mod-

eling framework.

Heuristic, formal and approximate solution approach to scheduling

Since multiprogrammed/multitasking operating systems continuously

switch between processes in order to give the illusion of parallelism, schedul-

ing decision must be taken in a timely fashion by the operating system. For

example, the [40] operating system takes a scheduling decision every 10

ms. It is clear how much import it is to have an efficient scheduling algo-

rithm, since it will be very frequently called during the execution of the

system.

As authors in [82] claim, under their definition of TAS, the policy to find

an optimal temperature-aware schedule has a NP-Hard complexity. For

this reason, optimal TAS schedules may not be computed in those contexts

where the arrival of the tasks is not known in advance, since rescheduling

of these tasks .

Research has been focused on two different approaches. The first is

the study of optimal scheduling algorithms for hard real-time workloads,

where it is supposed that tasks are recurrent and known in advance, along

with their strict deadlines. The most relevant work in this line of research

is reported in [82] and in [64], where authors first define what an optimal

thermal-aware policy does and then derive the complexity for the algo-

rithms required for that policy to be optimal. After concluding that the com-

plexity of the policy is NP-Hard, they propose two different approaches to

TAS. The first is to implement an offline scheduler which recurrently solves

a complex dynamic programming problem that finds the best schedule for

a set of hard real-time workloads given their deadlines, their recurring ar-

CHAPTER 2. STATE OF THE ART 39

rival order and the thermal model of the CPU. The second is to implement

a heuristic used to approximately solve the scheduling problem, assuming

that the arrival order is not known in advance. Even if it is not optimal, a

posteriori simulations demonstrate that this heuristic provides good results

anyway.

The second line of research is based on less formal approaches, based

upon the knowledge about the thermal model of the CPU and the power

profiles of the applications, and is more frequently found in the literature.

One such heuristic is Powre Based Thread Migration [83], where the

cores are sorted by their current temperatures (increasing) and tasks are

sorted by their power dissipation numbers (decreasing). At the beginning

of every migration interval, task i is mapped to core i according to their

respective lists, i.e. the highest power dissipating task is assigned to the

coldest core and the least power dissipating task to the hottest core [64].

In another work, [47], the authors rely on power profiles of applications

to determine an ordering between tasks that is considered as an effective

way to keep temperature low. The heuristic that they use to order tasks is

based upon the observation that if we call x and y two tasks, and x is hot-

ter than y, then if we schedule y before x the final resulting temperature

will be lower than if we scheduled y and then x. This heuristic, which they

called ThresHot [47], performs better than MinTemp [36], another heuris-

tic that schedules tasks in such a way that the coolest and the hottest tasks

are scheduled whenever temperature falls outside of the specified thresh-

olds (on a per-CPU basis). The claim is that both performs better, i.e. better

mitigate temperature, than a simpler heuristic which simply lowers that

priority of those processes that are causing more heating.

CHAPTER 2. STATE OF THE ART 40

Dimetrodon and the idle cycle injection technique

(rivedere articolo da cui questa frase è presa!) Traditional dynamic ther-

mal management (DTM) techniques fo- cus on reducing worst-case ther-

mal emergencies but do not con- tribute to lowering overall temperatures

These techniques have many benefits such as increased reliability [25] and

decreased chip pack- aging requirements [26] but are not designed to op-

erate under nor- mal thermal conditions. In practice, these DTM mecha-

nisms are only activated under extreme thermal conditions likely caused

by catastrophic failures (e.g., cooling system problems). This work focuses

on reducing average-case processor operating temperatures, exploring the

trade-offs between application perfor- mance and long-term thermal be-

havior through preventive thermal management. Our focus is on thread-

level thermal management; once a thread is executing on a particular core,

we want to control its thermal impact. Multicore-aware strategies, such as

core migra- tion [11] as well as more complex thermal-aware thread sched-

ule placement [9], are orthogonal to the problem we consider here but are

potentially complementary to our goals. We focus solely on reducing tem-

perature but also ensure that additional energy is not consumed by the CPU

as a result. Dimetrodon1 is a software-level thermal management technique

designed to assist in application-level proactive thermal manage- ment. We

employ idle cycle injection, a scheduler-level mechanism to inject idle cy-

cles of variable length into process execution, pro- viding responsive, fine-

grained control, allowing individual threads to absorb substantial portions

of the burden of cooling, carefully mitigating performance reductions. Per-

thread policy control al- lows us to target only key heat-producing work-

loads as opposed to system-wide policies such as current dynamic voltage

and fre- quency scaling (DVFS) mechanisms, which may unfairly penalize

heterogeneous workloads [12].

[quelli di dimetrodon fanno questo cliam rispetto a dvfs, noi non l’abbiamo

CHAPTER 2. STATE OF THE ART 41

verificato del 30 per cento di riduzione rispetto a dvfs su temp]

2.4 Autonomic Operating System (AcOS)

riferirsi a change quali sono gli obbiettivi di caos autonomic etc etc fi-

nora prestazioni adesso anche temperatura SANTA questa sezione è com-

pletamente copiata da dbb X(la riscrivo stando sulla stessa linea? la levo?

la restringo? This thesis has been developed within the Computing in Het-

erogeneous, Autonomous ’N’ Goal-oriented Environments (CHANGE) re-

search group, at the Dipartimento di Elettronica e Informazione (DEI) of

the Politecnico di Milano. CHANGE group is dedicated to the creation of

a self-aware computing system by mainly operating on any kind of mod-

ern computing device: from mobile devices and desktops to servers, main-

frames and huge computing facilities. The aim of the project is to demon-

strate that any of these computing systems can be enhanced by augmenting

them with an autonomic layer able to continuously ensure optimal perfor-

mance and simplified management of the system. Within this context, the

notion of performance is extended beyond the mere idea that the faster, the

better, but it comes to include objectives such as the minimization of power

consumption and thermal efficiency together with the goal of ensuring to

the users an experience as close as possible to their needs.

To be able to realize this vision, the CHANGE group proposes a model

for autonomic computing systems that is based on the ODA control loop

(see Subsection 1.2.2), which should be present at multiple levels within the

system. At a lower level, the single system components can benefit from

autonomic management via internal ODA loops and, at a higher level, a

broader control loop, aware of the system status as a whole, should be

in charge of orchestrating the different subsystems towards the maximum

performance (in the broad sense explained above). The rest of this Section

CHAPTER 2. STATE OF THE ART 42

contains a presentation of the goals of the CHANGE group and a proposal

of an approach for realizing them.

2.4.1 Project goals

The long term goal of the CHANGE group is the realization of the auto-

nomic revolution introduced in Chapter 1 by creating methodologies and

designs for computing systems able to adapt their behavior according to

their internal and environmental status and to optimize the running appli-

cations in order to ensure a consistent user experience on many different

architectures and in different environments. To do so, the group works on

various aspects of computing systems, from architectures to operating sys-

tems and development tools. The aim is to allow application developers to

concentrate on what their applications must do, leaving all the architecture-

dependent details to be managed by the autonomic features of the systems

where they will be deployed. To come to this scenario, all of the compo-

nents of a computing system could be modified in order to create an auto-

nomic behavior in the system as a whole. Within this context, the first and

most important system layer to be reworked in an autonomic direction is

the operating system; this is true for at least three reasons:

• The OS is the system layer which exposes the system resources to-

wards the applications; so, it has a direct link with the applications,

which are the entities that the autonomic system must serve accord-

ing to their performance requirements.

• The operating system has, on the other side, direct access to the hard-

ware resources and it is in charge of managing them.

• Since the OS is a software system, it is possible to work at this level in

an agile way, without the need of requiring hardware modifications

to the architectures or to the components. This could be a further step

CHAPTER 2. STATE OF THE ART 43

to improve the autonomic features once the autonomic base system

in the OS layer will be ready.

Thus, the OS is the glue between the hardware and the applications and

it is possible to work with relative ease at this level; therefore, the operat-

ing system layer is the one chosen for embedding the main control loop in

charge of marshaling all the (autonomic and non autonomic) system com-

ponents in an adaptive and intelligent way. For this reason, the current goal

of the CHANGE group is to work at the OS level in order to build a solid

platform on which the development of a complete autonomic framework

can be made possible. To realize this goal, the CHANGE group is creating

a research operating system called Autonomic OS (AcOS), which gains its

first partial implementation with the work proposed in this thesis.

2.4.2 Heart Rate Monitor

copia spudoratamente ad dac e da icac SANTA cito Metronome e spiego

un pò cosa e,̀ perchè serve, il legame con l’Autonomic Computing (AC),

come funziona (libreria userspace+codice kernel space) e a grandi linee

come è implementato. Quindi spiego perchè serve per il lavoro di FreeBSD

Chapter 3

Methodology

[occhio a confronto con soft-real time] As we have seen in Chapter 2,

Thermal-aware scheduling (TAS) is an interesting solution to the increasing

problem of heat control in modern computing environments. After having

explored a number of local TAS techniques we decided to further the de-

velopment of the state of art, implementing an advanced TAS performance-

aware policy in Computing in Heterogeneous, Autonomous ’N’ Goal-oriented

Environments (CHANGE)’s Autonomic Operating System (AcOS). By TAS

performance-aware policy we mean the property by which the scheduler

guarantees that the temperature will stay under a given set point under

any workload, selectively penalizing the performance of those tasks that are

exceeding their heart rate (see 2.4.2) or those that have not expressed any

goal. In case it is not possible to satisfy the goals of all the Heart Rate Mon-

itor (HRM)-enalbled tasks without violation of the thermal constraint, the

scheduler will inject idle time prevalently during the quanta of non HRM-

enabled processes but also during the quanta of the others. This allows to

selectively give more Central Processing Unit (CPU) time (and the conse-

quent possibility to generate heat) to those applications that are of interest

to the system administrator, while allowing him/her to satisfy the temper-

ature constraint.

44

CHAPTER 3. METHODOLOGY 45

We see this feature as an autonomic feature, in that the administrator

has to give only high level indications to the system about the expected

performance and maximum temperature allowed, and the the system em-

ploys a form of self-regulation that realizes the expressed goals.

Among the different techniques that are employed at software level (an

in particular at scheduling level), we decided to focus on idle cycle injection.

Different reasons led us to take this decision:

• this technique is practically agnostic to the underlying architecture,

since nop or hlt instructions are commonly implemented in nowa-

days processors

• this technique assumes no particular thermal model of the CPU, nor

power profiles of the applications; our scheduler can consequently re-

compute priorities based upon a relatively compact calculation. This

is to keep up with a possibly large amount of scheduling decisions,

making it an ideal choice for overloaded systems. Obtained results

make us feel confident about the quality of the performed control,

since temperature is effectively kept under control and performance

objectives met.

• most recent TAS works (such as [24]) implemented with success this

technique on commodity operating systems, making them a good

benchmark for comparing our solution to the state-of-art.

In the following sections we shall describe in grater detail the theoreti-

cal aspects of this work. In section 3.2, a brief recall of Control Theory and

its application to this work is given to understand the claim of the stability

of the system. HRM is then presented in section 3.3 as a means for the au-

tonomic system to “know itself” . The two concurring policies composing

our TAS algorithm is presented in 3.4. A brief recall on the practical aspects

of this work is then given in 3.5.

CHAPTER 3. METHODOLOGY 46

3.1 Motivation

Typical scheduling infrastructures in commodity operating systems fol-

low to the race-to-idle principle: applications are run to completion in or-

der to idle the system as soon as possible, thus increasing applications’

throughput and decreasing their latency. This is true for both interactive

and batch workloads. While this behavior has been traditionally consid-

ered optimal, nowadays computing environments may benefit from added

considerations regarding thermal constraints. Our approach is based on the

fact that, if applications can afford a decrease in their throughput or in-

crease in their latency, the scheduling infrastructure may exploit policies to

produce less heating and thus, on average, to lower the average running

temperature. As already pointed out in section 1.1.4, lowering the average

temperature greatly reduces spending on cooling infrastructure (e.g., fans,

air-conditioners) and greatly improves the mean average life of electronic

devices. Figure 3.1 shows the difference between the race-to-idle approach

and the thermal-aware one.

Various state-of-the-art approaches presented in Chapter 2 slow indis-

criminately down processes in order to obtain temperature reduction, and

whenever they don’t, they do not have an explicit mechanism by which

applications can signal what their minimum acceptable Quality of Service

(QoS) level is. Even though this allows to cool down the system, not all the

applications can afford a throughput decrease or latency increase. In soft

real-time systems, applications provide deadlines and quality of service to

notify their goals and constraints; we believe that a similar solution can be

applied to desktop and server systems, allowing users to provide applica-

tions performance goals and applications to signal execution progresses or

latencies.

We implement two different polices, one thermal-aware and one performance-

aware, the combination of which results in ADAPTME, a novel thermal

CHAPTER 3. METHODOLOGY 47

4.4BSD execution completion

ADAPTME execution completion

te
mp
er
at
ur
e
[°
 C
]

30

40

50

60

70

80

time [seconds]
50 100 150 200 250 300

4.4BSD
ADAPTME 60° C

Figure 3.1: Race-to-idle versus thermal aware approach. In the graph it is easily seen how

the execution under ADAPTME with a thermal constraint of 60°C of our benchmark appli-

cation results in a longer total run-time but lower average temperature. On the other hand,

pure 4.4BSD, race-to-idle execution completes more rapidly but involves a not negligible

difference in running peak temperature (in this experiment more than 8°C).

and performance aware scheduling infrastructure based on a popular gen-

eral purpose scheduler, 4.4BSD, implemented in the FreeBSD Operating Sy-

sem. Although we tried not to introduce significant changes in the schedul-

ing infrastructure, we observed that the performance-aware policy would

have possible caused system instability (for example: task starvation): for

this reason, we implemented the policy based on notions of Control Theory

so as to tackle this problem from a stability point of view. We outline the

reasoning in the next section while a more thorough understanding of the

stability problem is given in appendix B.

CHAPTER 3. METHODOLOGY 48

3.2 Control Theoretical thermal and performance aware

policy

We now introduce a thermal-aware and a performance-aware policy

extending the scheduling infrastructure of a commodity operating system,

FreeBSD 7.2.

These two policies activates during different times of the scheduler ac-

tivity and have different priorities. In fact, the thermal-aware policy is acti-

vated at each context switch, while the the effects of the performance-aware

policy do so only during priority recomputation (which instead occurs, by

default, only after 10 context switches). Moreover, the effects of the ther-

mal policy are enforced, meaning that the temperature mitigation goal will

be reached, no matter what, while the performance policy is a “best effort”

one, meaning that the scheduler will do its best to achieve the performance

goal but it will not guarantee to do so. The thermal-aware policy monitors

the temperature of each processing core and exploits idle cycles injections

to slow down tasks whenever a target temperature is surpassed or near

to do so, thus allowing the processing cores to activate low-power modes

and producing less heat which in turn allows for the cooling system to stay

turned off, which is one of the goals of this work.

This work is inspired by the thermal-unaware scheduler by [24]. Con-

versely to that work, we adopted a thermal-aware control-theoretical mech-

anism in place of a thermal-unaware probabilistic mechanism to achieve

temperature control at scheduling level.

Here follows a formal definition of the activity of the scheduler. Defined

the temperature of the i-th processing core measured at time k as Ti(k), the

target of the controller is to act so as the temperature of the processing core

does not exceeds the value Tt; the model of the system is assumed to be the

CHAPTER 3. METHODOLOGY 49

one reported in Equation 3.1.

Ti(k+ 1) = Ti(k) + µi · idlei(k) (3.1)

idlei(k) is the percentage of idle time injected in the i-th core in the time

interval between the k-th and k+1-th sampling instant and spans in the in-

terval between 0% and 100%, and µi is an unknown parameter. The control-

theoretical system, designed as an adaptive deadbeat controller [84], com-

putes idlei(k) per core at each sampling instant. A deadbeat controller is a

controller synthesized so as the closed-loop transfer function equals a pure

delay (z−1), which means that after one step of the controller execution, the

set point T is transferred to the output temperature via the controller and

the system transfer functions. It is possible to analytically demonstrate that,

if µi is known, then the set point signal will be attained and the temperature

will be kept below the reference level [84] [ma quest e’ hero a prescindere

dal system S di riferimento?]. The intuitive behavior of this controller is

that idle cycles will be injected if and only if the temperature risks to be too

high, while the control strategy will output 0 whenever there is no possi-

bility of exceeding the reference value. Whenever the µi value cannot be

given a priori, however, it needs to be estimated based on the current ex-

ecution on the machine, therefore the deadbeat controller is coupled with

an adaptive component that updates the value of the estimation of µi per

core, based on the last measurements, in an autoregressive modeling fash-

ion. This is of course our situation, since a fixed value for µi would imply

knowledge about the dynamics of the workloads, and is not an acceptable

solution.

[qualcosa sulla stima di µi? quali condizioni deve soddisfare affinche’

si possa dimostrare la stabilita’ del sistema? qualcosa sul modello in se, per

esempio sulla sua relativa semplicita’?] [dire esplicitamente che r e’ da hrm]

The performance-aware policy makes use of applications performance

goals (i.e., user-specified throughput metrics) to adapt threads priorities

CHAPTER 3. METHODOLOGY 50

increasing or decreasing the amount of processing cores time threads are

assigned to. These performance goals are expressed by means of a flexible

performance goals infrastructure implemented at Operating System (OS)-

level called HRM. We will more thoroughly describe the main features of

this component in section 3.3.

The performance-aware policy features another control-theoretical mech-

anism to drive applications priority; the policy requires user-specified ap-

plications to signal performance goals and applications progresses. We dis-

tinguish between legacy and non-legacy applications according to whether

they do or do not allow specifying performance goals and progresses by

means of HRM. Denoting the performance of the i-th application measured

at time k as ri(k), this time, the target of the controller is to take action so

as the performance of every application does not decrease under the per-

formance goal r0; as already stated, this is a “best-effort” policy, since there

is no guarantee about the outcome of the control. This is due to the fact

that our model recomputes priorities on a per-task basis, and does not take

into account all running tasks at once. Since this scheduler fits into the soft

real-time category of scheduling infrastructures, this is not regarded as an

issue.

The model of the system is assumed to be the one reported in Equation

3.2.

ri(k+ 1) = ri(k) + ηi,j∆priorityi,j(k)(2) (3.2)

∆priorityi,j(k) is the priority of the j-th thread of the i-th application and

spans the interval between -50 and 50 while ηi,j is an unknown parameter.

This bound on the control action allows for a more fine grained control over

tasks’ priority, as we will see in the description of the original 4.4BSD sched-

uler, in section 4.1 .The control-theoretical system calculates∆priorityi,j(k)

per thread per application at each sampling instant. Also in this case, the

closed-loop system is designed to be a pure delay, which means that after

CHAPTER 3. METHODOLOGY 51

one step of the controller execution, the set point r0 should be transferred

to the output rate. The same analysis holds in this case and, if ηi is known,

the set point signal will be attained and the temperature will be kept be-

low the reference level [84]. The priority will be increased if and only if the

performance risks to be too high, while it will be lowered whenever the

performance is lower than the performance goal. The ηi,j value cannot be

given a priori due to its dependence on the workload of the machine, there-

fore the regulator is coupled with an adaptive estimator that updates the

value of the expected ηi,j per thread per application.

3.2.1 Derivation of priority update equation

Here we derive the equation of the deadbeat controller governing the

task’s priority update.

The derivation assumes the presence of two components namely the

system under control and its performance controller. This is the same the-

oretical framework of 4.4BSD scheduler, where the system is the operating

system with all the running tasks and the scheduler is the priority update

controller.

Here we derive the equations that yield the transfer function of an adap-

tive deadbeat controller; i.e. a controller whose property is to enforce the

closed-loop transfer function to equal to a pure delay,meaning that after

one step of the controller execution, the set point P0 is transferred to the

output performance Pi.

First of all, let’s assume a model as in Figure 3.2.

We decided to keep our model simple enough for the scheduler to keep

up with a large number of scheduling decisions per each decision phase,

so a naïve representation of the priority of task P at step i, Pi, given target

heart rate r0 and current heart rateri will be

S : r(k+ 1) = r(k) + µ∆p(k) (3.3)

CHAPTER 3. METHODOLOGY 52

r(k)- SCr0
𝜺(k) Δp(k)

Figure 3.2: The setting of the control problem

Now we explicit the delay operator and factor out

z · r(k) = r(k) + µ∆p(k) (3.4)

(z− 1) · r(z) = µ∆p(k) (3.5)

S :
r(z)

∆p(k)
=

µ

z− 1
(3.6)

Then, we extract the basic equation for the loop transfer function and

constrain it to be the unitary delay operator:

loop :
C · S

1 + C · S
=

1
z

(3.7)

C · µz−1

1 + C · µz−1
=

1
z

(3.8)

C · µ =
z− 1 + C · µ

z
(3.9)

C · µ · z− C · µ = z− 1 (3.10)

C · µ ·����(z− 1) = ���z− 1 (3.11)

C · µ = 1 (3.12)

C =
1
µ

(3.13)

Finally, we derive the equation for ∆p(k) from the previous steps:

∆p : ∆p(k) = C · ε(k) (3.14)

ε(k) = r0 − r(k) (3.15)

∆p(k) =
1
µ
· (r0 − r(k)) (3.16)

CHAPTER 3. METHODOLOGY 53

In this way, the transfer function from r0 to r(k) becomes:

∆r(k+ 1) = r(k) + µ · δp(k) (3.17)

∆r(k+ 1) = r(k) +
�

�
�

µ · 1
µ
· (r0 − r(k)) (3.18)

∆r(k+ 1) = �
��r(k) + r0 −�

��r(k) (3.19)

∆r(k+ 1) = r0 (3.20)

Which is exactly the definition of deadbeat controller.

3.2.2 Derivation of idle-time injection policy

3.3 Heart Rate Monitor

In the context of Autonomic Computing (AC), many systems have been

implemented in order to realize the notion of “knowledge of self”. CHANGE

research team has developed HRM a flexible and efficient monitoring in-

frastructure. The ideas behind Heart Rate Monitor (HRM) resemble those

at the base of Application Heartbeats and exploit the well-known idea of

heartbeat, already used in the past for measuring performance and signaling

both progresses and availability [85]. Application Heartbeats was born as

a simple, usable, and portable user-space active monitor. However, when

it comes down to functionality, the great portability of Application Heart-

beats becomes a weak spot. The fact that Application Heartbeats is a portable

user-space active monitor prevents a portion of commodity operating sys-

tems (i.e., the kernel) to easily share the information it provides, making the

development of kernel-space adaptation policies troublesome. Moreover,

Application Heartbeats only supports multi-threaded applications forget-

ting about multi-processed applications and makes use of synchronization

even for signaling progresses. HRM is an active monitor, integrated with

Linux and FreeBSD 7.2, supporting applications with multiple threads, mul-

tiple processes, and any feasible mix of threads and processes, which avoids

CHAPTER 3. METHODOLOGY 54

synchronization to reduce its overhead as much as possible. HRM exposes

a compact API, allowing applications and system developers to instru-

ment applications and build both user- and kernel-space adaptation poli-

cies. This interaction model between applications and adaptation policies,

mediated by the API, can be seen as a producer/consumer model in which

applications work as producers and adaptation policies work as consumers.

3.3.1 Definitions

In this section we provide a set of general and specific definitions to

better understand the remainder of the section. The focus will be on the

FreeBSD porting of HRM, although the majority of the definitions still ap-

plies to both FreeBSD and Linux.

A running instance of a program, including both the code and the data,

is called a process. In FreeBSD, a unique Process IDentifier (PID) identifies a

process. A thread conceptually exists within a process and shares both the

code and the data with the other threads of a given process. In FreeBSD,

a unique Thread IDentifier (TID) identifies a thread. A task is any unit of

execution, being it either a process or a thread. Given these definitions, an

application can be defined as a set of tasks pursuing a set of objectives (e.g.,

encoding an audio/video stream). Being a set of tasks, an application can

be either single-threaded, multi-threaded, multi-processed, or any feasible

combination of them; HRM accounts for any feasible composition of these

entities.

A heartbeat is a signal emitted by any of the application’s tasks at a cer-

tain point in the code and is a metaphor for some kind of progress. For

example, it has been used as a measure of throughput [cita dbb], as a mea-

sure of latency and a measure of contention [cita teo]. When heartbeats

are employed for throughput means, we define a hotspot as a performance-

relevant portion of code executed by any of the applications tasks; a hotspot

CHAPTER 3. METHODOLOGY 55

usually abstracts the most time consuming portion of a program.

Since an application is a set of tasks pursuing a set of objectives, any

of the tasks working towards one of such objectives can emit heartbeats.

For this reason, it is useful to define the concept of group; a group is a

subset of applications tasks pursuing a common objective (e.g., encoding

a video stream in audio/video encoder). Groups are non-intersecting sub-

sets; hence, a task belongs to only one group at a time. It is important to no-

tice how such a definition does not neglect the existence of multi-grouped

applications (e.g., a group encoding the audio stream and a group encoding

the video stream in an audio/video encoder), a case Application Heart-

beats completely neglects. The concept of group allows HRM to support

multi-programmed applications adopting multiple threads, multiple pro-

cesses, or a mix of both processes and threads: it is enough to attach each of

the applications tasks to the relevant group. Within HRM, a unique Group

IDentifier (GID) identifies a group.

Given the definitions of hotspot and group, it comes natural to define

a relation n to 1 between such entities. Each of the tasks belonging to a

group executes the same hotspot, which is characterized by its heartbeats

count, performance measures, and performance goal. The heartbeats count

is linked to the number of times each task executed the hotspot. Perfor-

mance measures are expressed in heartbeats per second and capture the

concept of heart rate, which is the frequency at which tasks emit heartbeats.

The performance goal is expressed as a desired heart rate range, delimited

by a minimum heart rate and a maximum heart rate.

CHAPTER 3. METHODOLOGY 56

3.3.2 Usage

3.4 Autonomic policies

3.4.1 Thermal-aware policy

lettura temperatura, scheduling dell’idle e time wrt performance

3.4.2 Performance-aware policy

hrm per tirare fuori il QoS dell’applicazione

3.5 Explicitly trading performance for temperature and

vice-versa

The thermal-aware policy and the performance-aware policy are then

coupled together, with the latter providing more information to the former;

the performance-aware policy marks those applications whose throughput

can be further decreased and those applications whose throughput must be

increased. Thanks to this distinction the thermal-aware policy injects idle

cycles only when processes are not in critical conditions. [pararemtro tra 0

e 1 per variare sistema di controllo e prestazione]

Chapter 4

Implementation

. . .

We implemented ADAPTME in the FreeBSD 7.2 kernel, modifying the

operations of the 4.4BSD scheduler1 to make a fair comparison with Dimetrodon,

which was implemented on the same release of the operating systems.

The 4.4BSD scheduler is augmented with the thermal-aware policy and the

performance-aware policy. The thermal-aware policy consists of a set of

high-priority kernel threads to regularly monitor the temperature of each

core and a high-priority kernel thread implementing the control-theoretical

system described in Section 3.1. Just like the thermal-aware policy, the performance-

aware policy is made up of a set of high- priority kernel threads to compute

applications performance and implement the control-theoretical system de-

scribed in Section 3.1. 4.1 Performance-Aware Policy Within the 4.4BSD

scheduler, all threads that are runnable are assigned a scheduling prior-

ity that determines in which run queue they are placed. In selecting the

new thread to run, the scheduling infrastructure scans the run queues from

the highest to the lowest priority and chooses the first thread on the first

nonempty run queue. Multiple threads on the same run queue are man-

aged in a round robin fashion and are assigned a static quantum of time

[12]. The 4.4BSD scheduler is based on a multilevel feedback queues infras-

57

CHAPTER 4. IMPLEMENTATION 58

tructure; threads migrate among run queues according to their changing

scheduling priority. Higher priority threads preempt lower priority threads

whenever they are added to a run queue. Since we were extending an

existing scheduling infrastructure we put a lot of effort into preserving

all the desirable properties coming with the 4.4BSD scheduler (e.g., non-

starvation, priority decay). 1FreeBSD 5.1 kernel was the first release sup-

porting two dif- ferent schedulers, namely 4.4BSD [12] and ULE [15]. Even

tough the ULE scheduler is the default choice since FreeBSD 7.1 kernel, we

modified the 4.4BSD scheduler to compare ADAPTME with Dimetrodon.

The performance-aware policy is an extension of the sched- uling in-

frastructure acting in a decoupled fashion. Threads priorities, which are

updated at a constant rate, are adjusted using an additive term priorityi,j

for each thread j of application i, where the application is a non-legacy one.

This operation migrates threads from the current run queue to an- other

one, advantaging or disadvantaging threads according to their measured

performance and performance goals. In the 4.4BSD scheduler, the prior-

ity of a thread indi- cates which scheduling class it belongs to. There exist

five scheduling classes: one for the bottom-half kernel threads, one for the

top-half kernel threads, one for the real-time user threads, one for the time

sharing user threads, and the last one for the idle threads. Since the be-

havior of the scheduling infrastructure varies with respect to the schedu-

ling class the running thread belongs to, it is necessary to avoid scheduling

class changes. Such changes can happen whenever the performance-aware

policy, which is designed to work on time sharing user threads, adjusts pri-

orities. In our solution, proper controls on the priority values avoid class

variations. Each thread is further marked with force idle if it is over per-

forming or prevent idle if it is under performing in accordance with the

output of the control-theoretical system, allowing for a stricter control over

performance to take place. 4.2 Thermal-Aware Policy Conversely to the

CHAPTER 4. IMPLEMENTATION 59

performance-aware policy, the thermal- aware policy acts in coordination

with the 4.4BSD sched- uler. When the scheduler chooses the next thread to

run, it decides whether to run it or to run the idle thread pre- empting the

selected thread. The idle thread is scheduled if the output of the control-

theoretical system says to idle and the thread that is going to be preempted

is not system critical nor it is marked with prevent idle. The idle thread is

also scheduled if the thread that is going to be preempted is marked with

force idle. A thread is considered system critical if it is a bottom-half ker-

nel thread (e.g., interrupts) or a top-half kernel threads; moreover, system

critical kernel threads cannot be marked with neither force idle nor prevent

idle. Given this operation mode, the thermal-aware scheduler is subsumed

by the performance-aware scheduler; hence, per- formance goals take the

lead with respect to thermal con- straints. To drive the natural trade-off

between the thermal- aware policy and the performance-aware policy we

further extended the process of choosing the next thread to run with a prob-

abilistic method. The probabilistic choice is involved whenever the outputs

of the control-theoretical systems con- flict.

4.1 4.4BSD scheduler

multilevel feedback queue termine di paragone porting di hrm (strut-

ter base, attach e detach con syscall, no procfs, scambio dati con memory

mapping

[starvation problem:decay cresce in maniera monotona noi incidano sul

termine per cui diamo piu tempo]

le modifiche dove sono state fatte? perche’ non avete lavorato sul quanto

dinamico? problema di variare la semantica del quanto di tempo, riportare

l’equazione di aggiornamento della priorita e grafo di chiamate di update_priority

come da documentazione

CHAPTER 4. IMPLEMENTATION 60

Table 4.1: libhrm API1,2

Function Description

hrm_attach(int gid, bool_t consumer) Attach the current task to the group identified by gid as either a producer or consumer

hrm_detach() Detach the current task

hrm_set_min_heart_rate(uint32_t min_heart_rate)3 Set the minimum heart rate in the user–defined performance goal

hrm_set_max_heart_rate(uint32_t max_heart_rate)3 Set the maximum heart rate in the user–defined performance goal

hrm_set_window_size(size_t window_size)3 Set the window size in the user–defined performance goal

hrm_get_min_heart_rate(uint32_t *min_heart_rate) Get the minimum heart rate from the user–defined performance goal

hrm_get_max_heart_rate(uint32_t *max_heart_rate) Get the maximum heart rate from the user–defined performance goal

hrm_get_window_size(size_t *window_size) Get the window size from the user–defined performance goal

hrm_get_global_heart_rate(uint32_t *global_heart_rate) Get the global heart rate from the performance measure

hrm_get_window_heart_rate(uint32_t *window_heart_rate) Get the window heart rate from the performance measure

int heartbeat(uint64_t n)3 Emit n heartbeats

1Every function receive an additional parameter of type hrm_t * pointing to the underlying data structure
2Every function return a value of type int containing either 0 or an error number
3Every task attached as a consumer is not allowed to call this function

4.2 Heart Rate Monitor (HRM)

4.2.1 libhrm user space API

libhrm, instrumentaione delle applicazioni di parsec, problema della

definizione del significato dell’HR che è una metafora

lettura temperatura - cita manuali intel pezzi di codice rilevanti

4.2.2 Implementation

The implementation of HRM consists of two partitions, the user-space

partition and the kernel-space partition. The former comprises a library,

namely libhrm apps, exposing the API for both applications and systems

developers; the API’s basics are reported in Table 4.1. While the APIs func-

tions for applications developers grant the ability to instrument applica-

tions, providing a way to specify performance goals and signal progresses,

the APIs functions for systems developers are meant to retrieve applica-

tions performance measures and performance goals.

The API exposes two functions, hrm attach and hrm detach, to attach

the current task to the group identified by a GID as ei- ther a producer/-

consumer (i.e., application) or a consumer (i.e., adaptation policy) and to

CHAPTER 4. IMPLEMENTATION 61

detach the current task. Two functions, hrm set active and hrm set inactive,

are implemented to ei- ther set active or inactive the current task: a task is

said to be ac- tive if it is executing the hotspot, inactive otherwise. These

two states prove to be useful to maintain performance measures3 in pro-

grams using spawn kill parallelization (e.g., x264 in the PARSEC 2.1 bench-

mark suite), in which there is no guarantee that at least one active task is

always alive. Different applications may be concerned with either long- or

short-term trends. There- fore, the API exposes both hrm get global rate,

to catch long- term trends through the average heart rate over the whole

execu- tion time, and hrm get window heart rate, to catch short-term trends

(i.e., variable-length trends) through the heart rate measured over a time

window. The window size, which is expressed in timer periods, is used to

control the amount of past measures to ac- count for; the timer period con-

trols how often performance mea- sures are updated. The window size and

the timer period can be set through hrm set window size and hrm set timer

period respectively. Two additional functions, hrm set min heart rate and

hrm set max heart rate, are exposed to adjust performance goals, which

are defined as a desired heart rate range. Other func- tions are available

to retrieve performance goals and performance goals related parameters.

The most important APIs functions are heartbeat and heart- beatN. Calls

to these functions are inserted within the hotspot of a program to signal

progresses by incrementing the summation of heartbeats either by 1 or by

a generic integer value. The kernel-space partition of HRM consists of an

API that mimics a subset of the functions described above, and the core of

the active monitor. The implementation of HRM extends Linux in few key

places: it introduces include/linux/hrm.h and kernel/hrm.c, which con-

stitute the core of the active monitor, and modifies in- clude/linux/sched.h

and fs/proc/base.c, which respectively expose HRM to the kernel-space

and the user-space. Figure 2(a) shows the globally accessible list of groups

CHAPTER 4. IMPLEMENTATION 62

at the very base of the imple- mentation of HRM. The list of groups can be

read in parallel and written serially by hrm attach and hrm detach func-

tion calls; to guarantee correctness, the list of groups is protected by a read-

/write lock. Each group is provided with a set of memory pages devoted to

heartbeats count and a memory page dedicated to performance measures

and performance goal. The amount of memory pages to store heartbeats

is a compile time tunable parameter. Memory pages are shared between

the kernel-space and the user-space to reduce the overhead in accessing

the information as much as possible. More specifically, the content of mem-

ory pages devoted to heartbeats count is the most critical to HRM since it

can be concurrently accessed at a high rate by both kernel-space tasks and

user-space tasks. A way to avoid overheads and concurrency issues con-

sists in splitting the heartbeats count in a set of per-task heartbeats counts;

hence, function calls to both heartbeat and heartbeatN reduce to an atomic

variable increment. The amount of heartbeats counts stockpiled in mem-

ory pages is architecture dependent since they are cache line aligned. The

implementation of HRM instantiates standard-sized memory pages of 4

Kbytes and x86 and x86-64 microprocessors feature cache lines of 64 bytes:

this implies that each memory page can contain up to 64 heartbeats counts.

Figure 2(b) shows the organization of the memory pages devoted to heart-

beats count focusing on tasks accessing dedicated cache line aligned heart-

beats counts. Different applications and adaptation policies may be con-

cerned with either long- or short-term trends. Therefore, the 64 bytes of the

memory page dedicated to performance measures and performance goal

contain both a global heart rate, which accounts for the whole execution of

a group and catches long-term trends, and a window heart rate, which ac-

counts for the execution of a group over a time window and catches short-

term trends. The global heart rate and the window heart rate are respec-

tively computed according to Equation 1 and Equation 2. In the Equations,

CHAPTER 4. IMPLEMENTATION 63

g indicates the group, t indicates the current time, t0 indicates the time at

which the group was created, and tw indicates the time at which the win-

dow started. The performance measures are asynchronously updated in

kernel- space in the context of a High-Resolution (HR) timer.

?The second chunk of 64 bytes of the memory page dedicated to per-

formance measures and performance goals contain a minimum heart rate

and a maximum heart rate to define a performance goal through a heart

rate range. Other available parameters are the win- dow size and the timer

period; the latter sets the frequency at which performance measures are

updated, while the former sets the win- dow size expressed in timer pe-

riods. Figure 2(c) shows the organi- zation of the memory page dedicated

to performance measures and performance goal; each task accessing these

information maps the whole memory page. The implementation of HRM

integrates with the Linux kernel configuration system, allowing compile

time customizations. The number of memory pages HRM uses for heart-

beats counts is a compile time tunable parameter (default, 1 memory page,

up to 16 memory pages). Such a limit is completely arbitrary, it is indeed

possible to further increment this number by modifying a single value. The

timer period at which the performance measures are updated is a compile

time tunable parameter too and it ranges from 1 ms to 1 s (default 100 ms);

moreover, this is also per group runtime tunable parameter.

4.2.3 Thermal aware policy implementation

tu non stia andando a bloccare un kthread e non ci siano settate le

flag bloccami e non bloccami parametro che dice preferisci le performance

preferisci la temperatura

CHAPTER 4. IMPLEMENTATION 64

4.2.4 Performance aware policy implementation

la parte di performance oltre a fissare il delta prio ok noi andiamo ad

are consigli sulla parte e termal e’ meglio che non blocchi e’ meglio che lo

blocchi

4.2.5 Heart Rate Monitor and ADAPTME

4.3 Benchmarking in a multicore environment: PAR-

SEC

Chapter 5

Results

. . . We evaluated ADAPTME in a commodity operating sys- tem, namely

FreeBSD [19] 7.2, with real-world parallel work- loads from the PARSEC

2.1 Benchmark Suite [3]2. 5.1 Thermal-Aware Policy Evaluation We tested

the thermal-aware policy of ADAPTME on an entry-level mid-tower server

equipped with a single Intel

Core i7-990X six-core processor running at 3.46 GHz with a nominal

maximum Thermal Design Power (TDP) of 130 W, 6 GB of DDR3-1066 non-

ECC RAM, and a 500 GB 7200 RPM SATA2 hard disk. Advanced features

such as Intel Hyper-Threading Technology and Intel Turbo Boost Technol-

ogy were disabled while Enhanced Intel SpeedStep Technology was en-

abled to allow the processor to enter and exit low-power modes. The same

setup was used to per- form tests with Dimetrodon, which was patched to

work on x86 64. ADAPTME was configured to run high-priority ker- nel

threads to measure temperatures every 100 ms while the threads imple-

menting the control-theoretical systems were run every 500 ms. We eval-

uated the thermal-aware policy of ADAPTME un- der a subset of the ap-

plications of the PARSEC 2.1 Bench- mark Suite, each run consisting of ten

consecutive execu- tions of the same application registering the machine

ther- mal profile. The same experiments were repeated with the 4.4BSD

65

CHAPTER 5. RESULTS 66

scheduler, Dimetrodon, and the thermal-aware pol- icy of ADAPTME. Dimetrodon

parameters (i.e., the prob- ability to inject idle cycles and idle time) were

tuned for each different application to obtain a reasonable temper- ature

reduction with respect to the one obtained with the 4.4BSD scheduler. The

thermal-aware policy of ADAPTME was configured with a target temper-

ature close to the aver- age temperature measured when Dimetrodon was

executed. Figure 2 shows that the proposed thermal-aware policy was able

to achieve at least the same temperature reduction measured with Dimetrodon,

with the advantage of greatly reducing the runtime. From a wider point of

view, tempera- ture awareness allows some optimizations in the schedul-

ing behavior and in the decision of where and when to introduce idle cy-

cles, improving the overall effectiveness. Notice, for example in Figure 2b,

that ADAPTME allows to cap the temperature threshold faster; the policy

recognizes that, at the beginning, the temperature is not critical and there-

fore it does not insert as many idle cycles as Dimetrodon. Table 1 reports

the average temperatures with the standard devia- tions achieved with

both Dimetrodon and the thermal-aware policy alongside with the runtime

overhead with respect to the execution time observed under the 4.4BSD

scheduler. During our extensive experimentation, which was neces- sary to

tune Dimetrodon parameters and to execute PAR- SEC 2.1 Benchmark Suite

applications with reasonable per- formance, we were not able to verify the

runtime model pro- posed by Bailis et al. [1]. We argue that this is due to

the multithreaded applications we employed, that are not di- rectly com-

parable to the multiprogrammed workloads made up of singlethreaded

applications from the SPEC CPU2006 Benchmark Suite [18] used to verify

the model. 5.2 Adaptive Performance and Thermal Man- agement Evalua-

tion We tested the full system combining the thermal-aware policy and the

performance-aware policy of ADAPTME on a different entry-level mid-

tower server equipped with a single Intel Core i7-870 quad-core proces-

CHAPTER 5. RESULTS 67

sor running at 2.93 GHz with a nominal maximum Thermal Design Power

(TDP) of 130 W, 4 GB of DDR3-1066 non-ECC RAM, and a 500 GB 7200 RPM

SATA2 hard disk. Advanced features such as Intel Hyper-Threading Tech-

nology and Intel Turbo Boost Technology were disabled while Enhanced

Intel SpeedStep

Technology was enabled to allow the processor to enter and exit low-

power modes. We evaluated ADAPTME with a workload combining four

instances of the swaptions benchmark, each one composed of four threads.

Three instances of swaptions were run freely while the fourth instance was

run with a user-specified per- formance goal, expressed as the number of

Monte Carlo sim- ulations per second. As shown in Figure 3, the non-legacy

instance of swaptions performance stays mostly within the user-specified

performance window while the average tem- perature is very close to the

system-specified target. This is the result of the combined efforts of the

performance-aware policy, which adjusts the priorities of the four threads

of the non-legacy instance, and of the thermal-aware policy, that forces and

prevents idling these threads whenever they are over-performing or under-

performing. Hence, the thermal- aware policy acts on the remaining time

sharing user threads to reach the system-specified temperature target.

tabellina delta picco picco durante l’esecuzione

Chapter 6

Conclusions and future work

. . . We have presented ADAPTME, a self-adaptive system able to tune

performance according to user-specified perfor- mance goals and to prop-

erly control processing cores tem- peratures in compliance with a system-

specified target. Our experimental results, collected using a fully working

exten- sion of the FreeBSD 7.2 kernel running on contemporary hardware,

show a proper control of both processing cores temperatures and non-

legacy applications performance. More- over, experimental results contain

an extensive comparison between ADAPTME and Dimetrodon, a state-

of-the-art ex- tension of the same operating system designed and imple-

mented to preventively reduce average-case processing cores temperatures.

The comparison highlights the advantages of ADAPTME, that results more

flexible and outperforms Di- metrodon both in terms of average tempera-

ture and average throughput.

is similar to... is complementary to...

Aggiungere nova politica a thermal e performance che e’ esplicitiamente

energy/power aware e che leveragi -> To know which job will be hot or

cool for the hotspot, we develop a highly efficient online temperature es-

timator, leveraging the performance counter-based power estimation [Isci

and Martonosi 2003; Joseph and Martonosi 2001; Kumar et al. 2006], com-

68

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 69

pact thermal modeling [Skadron et al. 2003], and a fast tempera- ture solver

[Han et al. 2006]. We implemented the estimator for a Pentium 4 processor,

although our general methodology is applicable to other processors, such

as CMPs.

“complicare” il modello del controllore

[il confronto fra noi e dimetrodon e inarticolate il particolare che il trade-

off 30 percento temperatura poi dvfs si sposta e si caratterizza in bvase al

workload legacy o non legacy]

Appendix A

Code listings

. . .

70

Appendix B

Control theory introduction

. . .

71

Bibliography

[1] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduc-

tion to the Design of Warehouse-Scale Machines. Synthesis Lectures on Computer

Architecture. Morgan and Claypool Publishers, 2009.

[2] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics, pages 114–117, April 1965.

[3] Parthasarathy Ranganathan. Recipe for efficiency: Principles of power-aware

computing, April 2010.

[4] J.L. Hennessy, D.A. Patterson, and D. Goldberg. Computer architecture: a quan-

titative approach. The Morgan Kaufmann Series in Computer Architecture and

Design. Morgan Kaufmann Publishers, 2003.

[5] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era,

2003.

[6] Paul Horn. Autonomic computing: Ibm’s perspective on the state of infor-

mation technology, Oct 2001. [Online] Available: http://www.research.

ibm.com/autonomic/manifesto/autonomic_computing.pdf.

[7] Kiril Schröder, Daniel Schlitt, Marko Hoyer, and Wolfgang Nebel. Power and

cost aware distributed load management. In Proceedings of the 1st International

Conference on Energy-Efficient Computing and Networking, e-Energy ’10, pages

123–126, New York, NY, USA, 2010. ACM.

[8] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2nd edition, 2001.

[9] Timothy Grance Peter Mell. The nist definition of cloud computing. Web

article, September 2011.

72

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

BIBLIOGRAPHY 73

[10] M. Armbrust et al. Above the clouds: A berkeley view of cloud comput-

ing. Technical Report 28, UC Berkeley Reliable Adaptive Distributed Systems

Laboratory, February 2009.

[11] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented

cloud computing: Vision, hype, and reality for delivering it services as com-

puting utilities. CoRR, abs/0808.3558, 2008.

[12] Davide Basilio Bartolini, Matteo Carminati, Riccardo Cattaneo, Giuseppe

Chindemi, and Santo Lombardo. Cloud computing and self-adaptation. Pro-

ceedings of Advanced Topics of Sooftware Engineering Class, Politecnico di Milano,

2011.

[13] Robert L. Grossman and Yunhong Gu. On the varieties of clouds for data

intensive computing., 2009.

[14] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-

ica, and Matei Zahari. A view of cloud computing, 2010.

[15] Rajkumar Buyya, Anton Beloglazov, and Jemal H. Abawajy. Energy-efficient

management of data center resources for cloud computing: A vision, archi-

tectural elements, and open challenges. CoRR, abs/1006.0308, 2010.

[16] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

Computer, 36:41–50, January 2003.

[17] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. The case

for lifetime reliability-aware microprocessors. Computer Architecture, Interna-

tional Symposium on, 0:276, 2004.

[18] Robert F. Sullivan. Alternating cold and hot aisles provides more reliable

cooling for server farms.

[19] Sriram Sankar, Mark Shaw, and Kushagra Vaid. Impact of temperature on

hard disk drive reliability in large datacenters. In DSN, pages 530–537. IEEE,

2011.

[20] Dave Anderson, Jim Dykes, and Erik Riedel. More than an interface—scsi vs.

ata. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies,

FAST ’03, pages 245–257, Berkeley, CA, USA, 2003. USENIX Association.

BIBLIOGRAPHY 74

[21] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are

disks the dominant contributor for storage failures? a comprehensive study

of storage subsystem failure characteristics. In Proceedings of the 6th USENIX

Conference on File and Storage Technologies, FAST’08, pages 8:1–8:15, Berkeley,

CA, USA, 2008. USENIX Association.

[22] M. Santarini. Thermal integrity: A must for low-power ic digital design, Sept.

2005.

[23] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik

Sankaranarayanan, and David Tarjan. Temperature-aware microarchitecture.

In Proceedings of the 30th annual international symposium on Computer architec-

ture, ISCA ’03, pages 2–13, New York, NY, USA, 2003. ACM.

[24] Peter Bailis, Vijay Janapa Reddi, Sanjay Gandhi, David Brooks, and Margo

Seltzer. Dimetrodon: processor-level preventive thermal management via

idle cycle injection. In Proceedings of the 48th Design Automation Conference,

DAC ’11, pages 89–94, New York, NY, USA, 2011. ACM.

[25] Christian Belady. The green grid data center power efficiency metrics: Pue

and dcie. Technical report, teh green grid, October 2007.

[26] US Environmental Protection Agency (EPA). Report to congress on server

and data center energy efficiency: Public law 109- 431.

[27] Luiz André Barroso and Urs Hölzle. The case for energy-proportional com-

puting, 2007.

[28] Stephen Shankland. Power could cost more than servers, google warns. Web,

zdnet.com, December 2005.

[29] C. Belady. In the data center, power and cooling costs more than the it equip-

ment it supports. Electronics Cooling, February 2007.

[30] Harvey M. Deitel. An introduction to operating systems (2. ed.). Addison-Wesley,

1990.

[31] Davide B. Bartolini. Adaptive process scheduling through applications per-

formance monitoring. Master’s thesis, UIC - University of Illinois at Chicago,

2011.

BIBLIOGRAPHY 75

[32] Marco Domenico Santambrogio. A scheduling problem with conditional jobs

solved by cutting planes and integer linear programming, 2007.

[33] Jeonghwan Choi, Chen-Yong Cher, Hubertus Franke, Hendrik F. Hamann,

Alan J. Weger, and Pradip Bose. Thermal-aware task scheduling at the system

software level. In Diana Marculescu, Anand Raghunathan, Ali Keshavarzi,

and Vijaykrishnan Narayanan, editors, ISLPED, pages 213–218. ACM, 2007.

[34] Jin Cui and Douglas L. Maskell. Dynamic thermal-aware scheduling on chip

multiprocessor for soft real-time system. In Fabrizio Lombardi, Sanjukta

Bhanja, Yehia Massoud, and R. Iris Bahar, editors, ACM Great Lakes Sympo-

sium on VLSI, pages 393–396. ACM, 2009.

[35] Wei-Lun Hung, Yuan Xie, Narayanan Vijaykrishnan, Mahmut T. Kandemir,

and Mary Jane Irwin. Thermal-aware task allocation and scheduling for em-

bedded systems. CoRR, abs/0710.4660, 2007.

[36] Eren Kursun, Chen yong Cher, Alper Buyuktosunoglu, and Pradip Bose. In-

vestigating the effects of task scheduling on thermal behavior. In In Third

Workshop on Temperature-Aware Computer Systems (TACS’06, 2006.

[37] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd

edition, 2010.

[38] M. Tim Jones. Inside the linux 2.6 completely fair scheduler. Technical report,

2009.

[39] Marshall Kirk McKusick and George V. Neville-Neil. The Design and Imple-

mentation of the FreeBSD Operating System. Addison Wesley, August 2004.

[40] The FreeBSD Project. Freebsd, 04 2012.

[41] Erven Rohou and Michael D. Smith. Dynamically managing processor tem-

perature and power. In IN 2ND WORKSHOP ON FEEDBACK-DIRECTED

OPTIMIZATION, 1999.

[42] Jürgen Becker Michael Hübner. Multiprocessor System-on-Chip: Hardware De-

sign and Tool Integration. Springer-Verlag Gmbh, 1 edition, November 2010.

BIBLIOGRAPHY 76

[43] David Brooks and Margaret Martonosi. Dynamic thermal management for

high-performance microprocessors. In Proceedings of the 7th International Sym-

posium on High-Performance Computer Architecture, HPCA ’01, pages 171–,

Washington, DC, USA, 2001. IEEE Computer Society.

[44] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and evalua-

tion of dynamic voltage scaling algorithms. In ISLPED ’98: Proceedings of the

1998 international symposium on Low power electronics and design, pages 76–81,

New York, NY, USA, 1998. ACM.

[45] Thomas D. Burd, Student Member, Trevor A. Pering, Anthony J. Stratakos,

and Robert W. Brodersen. A dynamic voltage scaled microprocessor system.

IEEE Journal of Solid-State Circuits, 35:1571–1580, 2000.

[46] Mohamed Gomaa, Michael D. Powell, and T. N. Vijaykumar. Heat-and-run:

leveraging smt and cmp to manage power density through the operating sys-

tem. In Shubu Mukherjee and Kathryn S. McKinley, editors, ASPLOS, pages

260–270. ACM, 2004.

[47] Jun Yang 0002, Xiuyi Zhou, Marek Chrobak, Youtao Zhang, and Lingling Jin.

Dynamic thermal management through task scheduling. In ISPASS, pages

191–201. IEEE, 2008.

[48] Amit Kumar, Li Shang, Li-Shiuan Peh, and Niraj K. Jha. Hybdtm: a coor-

dinated hardware-software approach for dynamic thermal management. In

Proceedings of the 43rd annual Design Automation Conference, DAC ’06, pages

548–553, New York, NY, USA, 2006. ACM.

[49] Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. The greensoft

model: A reference model for green and sustainable software and its engi-

neering. Sustainable Computing: Informatics and Systems, 1(4):294 – 304, 2011.

[50] Shekhar Borkar. Design challenges for technology scaling, 1999.

[51] R Mahajan. Thermal management of cpus: A perspective on trends, needs

and opportunities. Keynote at 8th Int’l Workshop on Thermal Investigations

of ICs and Systems, 2002.

[52] Gunther et al. Managing the impact of increasing microprocessor power con-

sumption., 2001.

BIBLIOGRAPHY 77

[53] Heo S., Barr K., and K. Asanovic. Reducing power density through activ-

ity migration. In In Proceedings of the International Symposium on Low-Power

Electronics and Design., pages 217–222, New York, NY, USA, 2003. ACM.

[54] Yingmin Li, David Brooks, Zhigang Hu, and Kevin Skadron. Performance,

energy, and thermal considerations for smt and cmp architectures. In HPCA,

pages 71–82. IEEE Computer Society, 2005.

[55] Pedro Chaparro, Grigorios Magklis, José González, and Antonio González.

Distributing the frontend for temperature reduction. In HPCA, pages 61–70.

IEEE Computer Society, 2005.

[56] Kevin Skadron, Tarek F. Abdelzaher, and Mircea R. Stan. Control-theoretic

techniques and thermal-rc modeling for accurate and localized dynamic ther-

mal management. In HPCA, pages 17–28. IEEE Computer Society, 2002.

[57] Jayanth Srinivasan and Sarita V. Adve. Predictive dynamic thermal man-

agement for multimedia applications. In Utpal Banerjee, Kyle Gallivan, and

Antonio González, editors, ICS, pages 109–120. ACM, 2003.

[58] Joachim Gerhard Clabes et al. Performance throttling for temperature reduc-

tion in a microprocessor. Patent, May 2006.

[59] James Donald and Margaret Martonosi. Techniques for multicore thermal

management: Classification and new exploration. In ISCA, pages 78–88, 2006.

[60] Massoud Pedram and Shahin Nazarian. Thermal modeling, analysis, and

management in vlsi circuits: principles and methods. In Proceedings of the

IEEE, 2006.

[61] Thidapat Chantem, X. Sharon Hu, and Robert P. Dick. Online work max-

imization under a peak temperature constraint. In Proceedings of the 14th

ACM/IEEE international symposium on Low power electronics and design, ISLPED

’09, pages 105–110, New York, NY, USA, 2009. ACM.

[62] D Liu and C Svensson. Trading speed for low power by choice of supply and

threshold voltages. IEEE Journal of Solid State Circuits, 28(1):10–17, 1993.

[63] P. Bellasi, W. Fornaciari, and D. Siorpaes. Predictive models for multimedia

applications power consumption based on use-case and os level analysis. In

BIBLIOGRAPHY 78

Design, Automation Test in Europe Conference Exhibition, 2009. DATE ’09., pages

1446 –1451, april 2009.

[64] Vinay Hanumaiah, Sarma Vrudhula, and Karam S. Chatha. Performance op-

timal online dvfs and task migration techniques for thermally constrained

multi-core processors. IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(11):1677–1690,

November 2011.

[65] Karin M. Abdalla and Robert J. Hasslen. Functional block level clock-gating

within a graphics processor. U.S. Patent, Dec 2006.

[66] Pratyush Kumar and Lothar Thiele. Cool shapers: shaping real-time tasks for

improved thermal guarantees. In Leon Stok, Nikil D. Dutt, and Soha Has-

soun, editors, DAC, pages 468–473. ACM, 2011.

[67] Min Bao, Alexandru Andrei, Petru Eles, and Zebo Peng. Temperature-aware

idle time distribution for energy optimization with dynamic voltage scaling.

In DATE, pages 21–26. IEEE, 2010.

[68] Inchoon Yeo and Eun Jung Kim. Temperature-aware scheduler based on ther-

mal behavior grouping in multicore systems. In Proceedings of the Conference

on Design, Automation and Test in Europe, DATE ’09, pages 946–951, 3001 Leu-

ven, Belgium, Belgium, 2009. European Design and Automation Association.

[69] Sushu Zhang and Karam S. Chatha. Approximation algorithm for the

temperature-aware scheduling problem. In Georges G. E. Gielen, editor, IC-

CAD, pages 281–288. IEEE, 2007.

[70] Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen P.

Boyd, and Giovanni De Micheli. Temperature-aware processor frequency as-

signment for mpsocs using convex optimization. In Soonhoi Ha, Kiyoung

Choi, Nikil D. Dutt, and Jürgen Teich, editors, CODES+ISSS, pages 111–116.

ACM, 2007.

[71] Frank Bellosa. Os-directed throttling of processor activity for dynamic power

management. Technical report, 1999.

[72] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling cool:

Temperature-aware workload placement in data centers. In Proceedings of the

BIBLIOGRAPHY 79

annual conference on USENIX Annual Technical Conference, pages 5–5. USENIX

Association, 2005.

[73] Raid Zuhair Ayoub, Krishnam Raju Indukuri, and Tajana Simunic Ros-

ing. Temperature aware dynamic workload scheduling in multisocket cpu

servers. IEEE Trans. on CAD of Integrated Circuits and Systems, 30(9):1359–1372,

2011.

[74] Nikhil Gupta and Rabi N. Mahapatra. Temperature aware energy manage-

ment for real-time scheduling. In ISQED, pages 91–96. IEEE, 2011.

[75] Thidapat Chantem, Xiaobo Sharon Hu, and Robert P. Dick. Temperature-

aware scheduling and assignment for hard real-time applications on mpsocs.

IEEE Trans. VLSI Syst., 19(10):1884–1897, 2011.

[76] Shengquan Wang and Riccardo Bettati. Reactive speed control in

temperature-constrained real-time systems. Real-Time Systems, 39(1-3):73–95,

2008.

[77] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multi-

threading: Maximizing on-chip parallelism. In ISCA, pages 392–403, 1995.

[78] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework

for architectural-level power analysis and optimizations. In In Proceedings of

the 27th Annual International Symposium on Computer Architecture, pages 83–94,

2000.

[79] Toshihiro Hanawa, Toshiya Minai, Yasuki Tanabe, and Hideharu Amano. Im-

plementation of isis-simplescalar. In Hamid R. Arabnia, editor, PDPTA, pages

117–123. CSREA Press, 2005.

[80] Pierre Michaud. Atmi 2.0 manual, 2009.

[81] Tom English, Ka Lok Man, Emanuel M. Popovici, and Michel P. Schellekens.

Hotspot: Visualizing dynamic power consumption in rtl designs. In EWDTS,

pages 45–48. IEEE, 2008.

[82] Marek Chrobak, Christoph Dürr, Mathilde Hurand, and Julien Robert. Al-

gorithms for temperature-aware task scheduling in microprocessor systems.

Sustainable Computing: Informatics and Systems, 1:241–247, 2011.

BIBLIOGRAPHY 80

[83] Pedro Chaparro, Jose Gonzalez, Grigorios Magklis, Qiong Cai, and Anto-

nio Gonzalez. Understanding the thermal implications of multicore archi-

tectures.

[84] W. S. Levine. The Control Handbook. CRC Press, 2nd edition, December 2010.

[85] Wei Chen, S. Toueg, and M.K. Aguilera. On the Quality of Service of Failure

Detectors. IEEE Transactions on Computers, 51(1), 2002.

March 28, 2012

Document typeset with LATEX

	Introduction
	Contemporary computing: trends and paradigms
	Multicore computing
	Cloud computing
	Autonomic computing
	Power efficient computing

	Scheduling
	Preliminary definitions
	Problem statement
	Batch, interactive and real-time scheduling

	Problem Statement
	Summary

	State of the art
	Overview of major Major FLOSS OSs and Kernels
	Linux
	Early Linux Schedulers
	FreeBSD

	Policies for power and energy efficiency
	Dynamic Thermal Management techniques
	Hardware based DTM
	Software based DTM
	TAS

	AcOS
	Project goals
	Heart Rate Monitor

	Methodology
	Motivation
	Control Theoretical thermal and performance aware policy
	Derivation of priority update equation
	Derivation of idle-time injection policy

	Heart Rate Monitor
	Definitions
	Usage

	Autonomic policies
	Thermal-aware policy
	Performance-aware policy

	Explicitly trading performance for temperature and vice-versa

	Implementation
	4.4BSD scheduler
	HRM
	libhrm user space API
	Implementation
	Thermal aware policy implementation
	Performance aware policy implementation
	Heart Rate Monitor and ADAPTME

	Benchmarking in a multicore environment: PARSEC

	Results
	Conclusions and future work
	Code listings
	Control theory introduction
	Bibliography

