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A B S T R A C T

In this document, the dynamics of an interface under the influence of
surface tension is studied numerically for the flow in a Hele-Shaw cell,
where the interface separates an expanding bubble of a low viscosity
fluid from a displaced high viscosity fluid. This flow highlights the
phenomenon of viscous fingering. The flow field is discretized by a
finite differences approximation, and the interface is explicitly repre-
sented by a separate, unstructured grid that moves through the sta-
tionary grid. In addition to keeping the viscosity stratification sharp,
the tracked interface provides a natural way to include surface tension
effects. A level contour reconstruction technique enables to naturally,
automatically and robustly model the merging and breakup of inter-
faces. The effect of a mass inflow composed by a static part and a
superimposed armonic component is investigated in order to find out
effectives techniques for the reduction of the fingering effect.

key words Viscous fingering, Hele-Shaw cell, oil recovery, multiphase
flow, front tracking, topology change, surface tension
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S I N T E S I

Con il termine viscous fingering ci si riferisce alla nascita ed all’evolu-
zione di instabilità all’interfaccia tra due fluidi in un mezzo poroso.
Flussi bifase in mezzi porosi sono caratteristici di numerosi casi di in-
teresse pratico, tra cui quello più importante è certamente il processo
di estrazione del petrolio. Viscous fingering ed

ingegneria
petrolifera

Generalmente il petrolio si trova nel sottosuolo, intrappolato nelle co-
siddette rocce serbatoio (reservoir), ovvero rocce di origine sedimentaria
caratterizzate da alta porosità e permeabilità.
L’estrazione può avvenire in modo naturale se la pressione nel sotto-
suolo è sufficiente a spingere il greggio dal giacimento al pozzo pe-
trolifero in superficie (questa prima fase è denominata ”coltivazione
primaria”). Tuttavia durante il processo di estrazione la pressione nel
serbatoio diminuisce rapidamente, esaurendo il flusso di greggio verso
la superficie.
L’iniezione di un secondo fluido nel sottosuolo (acqua o anidride car-
bonica) allo scopo di ritardare la depressurizzazione, permette l’estra-
zione di ulteriore greggio. Durante queste operazioni (”coltivazione
secondaria”) tuttavia si sviluppa un’instabilità idrodinamica all’inter-
faccia tra il greggio ed il secondo fluido. Questa instabilità nasce quan-
do un fluido poco viscoso (acqua o anidride carbonica) ne spinge uno
più viscoso (petrolio) in un mezzo poroso.
Il risultato di questo meccanismo è che il fluido meno viscoso penetra
nella zona occupata da quello più viscoso formando strutture elongate
a forma di dita, da cui il nome viscous fingering (figura 1).

Lo svilupparsi di queste strutture è dannoso dal punto di vista del-

Figura 1: Viscous fingering dovuto all’iniezione di cherosene in olio minerale
[9]
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Figura 2: Set-up sperimentale: cella di Hele-Shaw

l’efficienza della tecnica di estrazione in quanto le ”dita” raggiungono
rapidamente i punti di estrazione ”cortocircuitando” il flusso di petro-
lio e limitandone quindi la quantità che si riesce ad estrarre.
Nel 1956 Geoffrey Taylor visitò una piccola compagnia petrolifera Te-I primi studi

xana, la ”Humble Oil Company” ed iniziò ad interessarsi al problema.
Egli scrisse, insieme a P. G. Saffman, un primo articolo sull’argomen-
to, in cui considerarono un problema modello: il flusso di Hele-Shaw.
Siccome fare esperimenti su flussi in mezzi porosi è molto difficile in
quanto, non essendo trasparenti, non si possono effettuare visualizza-
zioni, Saffman e Taylor studiarono l’instabilità all’interfaccia tra due
fluidi all’interno di un sistema costituito da due piastre di vetro sepa-
rate da un piccolo spazio di larghezza b, ovvero la cella di Hele-Shaw.
Questo set-up (figura 2) permette di modellare il flusso in un mezzo
poroso in quanto la stessa equazione (Darcy’s law) governa la relazione
tra velocità e pressione: la velocità media del fluido è in entrambi i casi
proporzionale al gradiente di pressione, diviso per la viscosità µ. La
costante di proporzionalità è nel caso del mezzo poroso (meno) la sua
permeabilità e nel caso della cella di Hele-Shaw −b2/12.
Da allora questa instabilità è nota con il nome di instabilità di Saffman-

Taylor. Grazie alla sua semplicità ed alle potenziali applicazioni ha ri-
cevuto grandi attenzioni dalla comunità scientifica come archetipo per
sistemi caratterizzati dalla formazione di patterns.
Esistono due tipi di instabilità di interfaccia in una cella di Hele-Shaw:
nel caso in cui un fluido più pesante stia sopra ad uno più leggero
in presenza di gravità e con interfaccia inizialmente rettilinea (figura
3) e nel caso in cui un fluido meno viscoso sia pompato in un fluido
più viscoso (geometria radiale). Quest’ultimo caso è quello più rap-
presentativo per quanto riguarda l’applicazione petrolifera: l’acqua (o
l’anidride carbonica) è pompata da punti di immissione che sono a tut-
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Figura 3: Instabilità gravitazionale: simulazione numerica di Trevelyan,
Almarcha e de Wit [28]

ti gli effetti sorgenti puntuali e lo spostamento (quantomeno all’inizio)
è quindi in direzione radiale.
Il fenomeno del viscous fingering è stato studiato molto negli ultimi de-
cenni, sia tramite esperimenti che per mezzo di simulazioni numeriche
(consultare le reviews di Homsy [13] e Bensimon et al. [5]). La parte
più consistente della produzione scientifica è basata sulla soluzione di
equazioni integrali di contorno, grazie alle quali si può ridurre la dina-
mica del sistema a quella della sola interfaccia che separa i due fluidi
o le due fasi (consultare Hou, Lowengrub e Shelley [14]).
Sono stati inoltre fatti molti tentativi di quantificare da un punto di Il controllo del

viscous fingeringvista fluidodinamico l’efficacia di varie tecniche di controllo atte a ri-
durre l’effetto del fingering.
Anke et al. [2], nei loro esperimenti, investigarono come va a modificar-
si l’instabilità di Saffman-Taylor quando si utilizzano fluidi complessi,
quali possono essere soluzioni diluite di surfactanti e/o di polimeri. I
surfactanti permettono di modificare la tensione superficiale, mentre i
polimeri influenzano l’azione viscosa. Essi verificarono che l’instabilità
di Saffman-Taylor è modificata drasticamente dalle proprietà di fluidi
complessi e che ciò può essere sfruttato per ottenere un miglior spo-
stamento del greggio nel giacimento, migliorando così l’efficienza del
processo di estrazione.
Li et al. [20], controllando la portata di fluido immessa, cercarono (spe-
rimentalmente e numericamente) di sopprimere l’evoluzione dell’insta-
bilità interfacciale. Essi suggerirono che, se la portata immessa è scalata
con il tempo come t−1/3, può essere possibile ottenere una crescita si-
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milare delle dita, evitando quindi regimi con pattern molto complessi.
Lo scopo di questo lavoro è quello di produrre uno strumento opera-Obiettivo della tesi

tivo efficiente per simulare il viscous fingering in geometria radiale e
per studiare l’efficacia di eventuali tecniche atte al suo controllo. In
particolare si vuole studiare la possibilità di sopprimere selettivamente
alcune strutture instabili in modo da ridurre l’estensione del fingering.
A questo scopo simuliamo la risposta del sistema ad un forzamento
non stazionario (in termini di portata di fluido immessa), composto da
una parte statica e da una componente armonica sovrapposta. La spe-
ranza è quella che, per alcune combinazioni di ampiezza e frequenza
della parte armonica del forzamento, la crescita delle strutture interfac-
ciali sia smorzata e l’estensione del fingering ridotta.
Sotto l’effetto combinato di pompaggio ed aspirazione ci si aspetta che
l’interfaccia possa rompersi, portando al distacco di bolle, e/o alla fu-
sione di strutture distinte.
Di conseguenza il nostro metodo deve essere in grado di gestire cambi
di topologia del contorno tra le due fasi.Cambi di topologia

Quando l’interfaccia è tracciata esplicitamente per mezzo di punti con-
nessi tra loro (Tracking methods, come i metodi a vortici ed i metodi
Contour dynamics1) questi cambi di topologia vanno accompagnati ad
un cambio appropriato nella connettività di questi punti. La comples-
sità di questa operazione è considerata il maggior svantaggio di questi
metodi.
Nei metodi che seguono il contorno tra fasi tramite una appropriata
funzione continua (Capturing methods, come i metodi Volume of fluid
e Level set2) il cambio di topologia avviene automaticamente quando
due interfacce o due parti della stessa interfaccia arrivano ad essere
distanti meno di una o due spaziature di griglia. Questa coalescenza
automatica può essere molto conveniente, specialmente se il cambio di
topologia non deve essere trattato con particolare accuratezza, ma può
essere anche un punto di debolezza del metodo numerico.
Il metodo descritto in questo lavoro è una specializzazione del metodo
derivato da Shin e Juric [26], un ibrido tra una tecnica front capturing
e front tracking. Esso fa uso di una griglia cartesiana stazionaria per il
flusso, mentre l’interfaccia è tracciata per mezzo di una griglia separata
di dimensione inferiore. Tuttavia, al contrario dei metodi Front tracking,
dove ciascuna fase è considerata separatamente, qui tutto il campo di
moto è risolto per mezzo di un singolo set di equazioni di governo.
I cambi di topologia sono modellati in modo molto robusto grazie ad
una tecnica di ricostruzione dell’interfaccia, intesa come una particola-
re linea di livello di una funzione continua. Grazie a questa procedura
gli elementi che costituiscono l’interfaccia sono fisicamente connessi,

1 Vedere rispettivamente Cottet e Komoutsakos [7] e Zabusky, Hughes e Roberts [33]
2 Vedere rispettivamente Hirt e Nichols [12] e Sethian [25]
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ma non logicamente, semplificandone notevolmente il tracking lagran-
giano.
Il documento è strutturato come segue: Struttura del

documento

1. introduzione

2. petrolio, viscous fingering e flusso di hele-shaw Si for-
nisce una breve introduzione all’importanza del viscous fin-
gering come archetipo per sistemi soggeti allo sviluppo di
patterns. Sono spiegate le principali caratteristiche di non li-
nearità, non località e mescolamento. A seguire si trova una
breve digressione riguardante le tecniche utilizzare per mi-
gliorare l’efficienza delle tecniche di estrazione del petrolio
relativamente al fenomeno del viscous fingering. Il modello
fisico del flusso di Hele-Shaw è analizzato in dettaglio, an-
che grazie ad un’analisi linearizzata che permette di capire
il meccanismo di crescita che governa il fenomeno.

3. formulazione matematica Si ricavano le equazioni di gover-
no del flusso di Hele-Shaw a partire dalle equazioni di Navier-
Stokes per flussi incomprimibili multifase. Si ricava anche
una forma adimensionale di queste equazioni mettendo in
evidenza l’effeto dei diversi parametri adimensionali che
governano il fenomeno.

4. metodo numerico Si descrive il metodo numerico, con partico-
lare attenzione al trattamento della tensione superficiale ed
alla procedura di ricostruzione dell’interfaccia in relazione
ai cambi di tipologia. Si introduce la funzione di distribu-
zione di Peskin per il trasferimento delle informazioni dalla
griglia stazionaria all’interfaccia.

5. esperimenti numerici Il codice è validato tramite confronto
con i risultati analitici della teoria linearizzata. Si presen-
tano dei risultati significativi di simulazioni numeriche in
entrambi i casi di forzamento stazionario e non.

6. conclusioni

7. appendici
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1 I N T R O D U C T I O N

Two-phase flow in porous media occurs in a large number of practical
situations, arguably the most important of which is oil recovery.
Petroleum is generally found in porous rocks; the crude oil can be ex-
tracted from a well because it is pushed out by the high pressure in the
reservoir. However, in the process of recovery the pressure decreases
rapidly and the oil flow stops. Injection of another fluid (water or
carbon dioxide gas injected below or above the oil layer respectively)
allows extracting more oil from the well.
In such water-flooding operations, however, an hydrodynamic instabil-
ity can develop at the interface between the water and the crude oil.
This instability arises when a less viscous fluid (water or gas) pushes
a more viscous one (oil) in a porous medium. As a result of the in-
stability, ”fingers” of the less viscous fluid grow in the more viscous
one. These fingers become narrower as the flow through the reservoir
increases.
This instability limits the output of a well, because if the flux becomes
too high, the fingers may reach the entrance of the well rapidly, and
mainly water or gas instead of oil will be recovered.
In 1956 Sir Geoffrey Taylor visited a small oil company called the
”Humble Oil Company” and became interested in this problem. In a The very first

studiesseminal paper [24], written jointly with P.G. Saffman, they considered
an idealised version of the problem. As experiments in porous media
are not easy, since they are not transparent, Taylor studied the interfa-
cial instability of a two-phase flow in a Hele-Shaw cell: two parallel
glass plates separated by a small gap b. Such a set-up models the flow
in a porous medium: the same equation (Darcy’s law) determines the
relation between velocity and pressure gradient in both porous media
and the Hele-Shaw cell. The average velocity of the fluid is propor-
tional to the pressure gradient over the viscosity µ. The coefficient of
proportionality is (minus) the permeability for the porous medium and
−b2/12 in the Hele-Shaw cell.
Indeed, in the Hele-Shaw cell the formation of ”fingers” of the less vis-
cous fluid into the more viscous fluid was observed. Ever since, this
instability has been known as the Saffman-Taylor (or viscous fingering)
instability. Because of its relative simplicity, and its potential applica-
tions, it has received much attention and has become an archetype of
pattern-forming systems.

3



4 introduction

An interface in a Hele-Shaw cell can be unstable for two reasons. If a
heavier fluid is on top of a lighter one, the interface is gravitationally
unstable. If, owing to pumping, a less viscous fluid is made to displace
a more viscous one, the interface is also unstable.
In practice, when fluids are injected into the ground, they are injected
through a well which, in effect, is a point source. Displacement (ini-
tially at least) is in the radial direction. One would therefore consider
the radial model to be more appropriate to practical situations than the
linear displacement model.
The viscous fingering phenomena has been intesively studied in the
past, both through laboratory experiments and numerical simulations,
to explain the onset and growth of the instabilities (see reviews in
Homsy [13] and Bensimon et al. [5]). Most of the scientific production
on the numerical simulation of the Hele-Shaw flow is based on the ap-
plication of boundary integral methods, thanks to whom the dynamics
of the system can be reduced to the self-contained, nonlocal dynamics
of the interface separating the homogeneous fluids or phases (see a re-
view in Hou, Lowengrub, and Shelley [14]).
A number of attempts have been made to quantify, from a fluid dy-
namic point of view, the effectiveness of various techniques apt to re-
duce the fingering effect.Controlling the

fingering Anke et al. [2], in their experiments, probed the modification of the
Saffman-Taylor instability when so called complex fluids are used, which
are diluite solutions of surfactants and/or polymers. Surfactants allow
one to modify the capillary forces while polymers affect the viscous
forces; these are the two forces governing the instability. They (and
many others) discovered that the Saffman-Taylor instability is drasti-
cally modified by the properties of complex fluids and that this can
lead to a more efficient displacement of the crude oil in the reservoir,
and should thus improve recovery rates.
Li et al. [20] studied numerically and experimentally the dynamics and
control of viscous fingering patterns in a circular Hele-Shaw cell. By
controlling the injection rate of the less viscous fluid thet tried to sup-
press the evolving interfacial instabilities. They suggested that if the
injection rate scales with time like t−1/3 it may be possible to obtain
self-similar growing fingers, thus avoiding the dense-branching mor-
phology regime. Their experiments confirmed the feasibility of the
control strategy.
The aim of this work is to create an effective tool to simulate viscousPurpose of the

current work fingering in a radial geometry and to study the effectiveness of its con-
trol. In particular we want to investigate the possibility of selectively
suppressing some unstable structures in order to reduce the extent of
the fingering.
To this aim we simulate the response of the system to an unsteady
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forcing (mass inflow) composed by a static part and a superimposed
armonic component. A number of simulations in a broad band of fre-
quencies and amplitudes are carried out.
We hope that for certain combinations of frequencies and amplitudes
of the armonic part of the forcing, the growth of the interface perturba-
tions is dumped and the extent of fingering reduced.
Under the alternate effect of suction and pumping we expect the in-
terface to eventually break up, causing the pinching of fingers into
droplets or the merging of different sections of the interface.
Consequently our method must account for topology changes of the Topology changes

phase boundary.
When the interface is explicitly tracked by connected marker points
(Tracking methods, such as Vortex method and Contour dynamics method1),
such changes must be accounted for by changing the connectivity of
the points in the appropriate way. The complexity of this operation is
often cited as the greatest disadvantage of front tracking methods.
In methods that follow the phase boundaries by a marker function
(Capturing methods, such as Volume of fluid method and Level set method2),
topology changes take place whenever two interfaces, or different parts
of the same interface, come closer than about one grid spacing. While
automatic coalescence can be very convenient in some cases, particu-
larly if the topology change does not need to be treated accurately, this
can be also a serious weakness of such methods.
The method described in this work is a specialization of the method de-
rived by Shin and Juric [26]. This method is a hybrid between a front
capturing and a front tracking technique. A stationary regular grid is
used for the fluid flow, but the interface is tracked by a separate grid of
lower dimension. However, unlike front tracking methods where each
phase is treated separately, all phases are treated together by solving a
single set of governing equations for the whole flow field.
The merging and breakup of interfaces are robustly modeled thanks to
a level contour reconstruction technique in which the surface elements
are physically linked but not logically connected, simplifying the La-
grangian tracking.
This document is structured as follows: Structure of this

document
1. introduction

2. oil recovery, viscous fingering and the hele-shaw flow
A brief introduction to the importance of viscous fingering
as an archetype for growing patterns is given. The main fea-
tures of non-linearity, non-locality and mixing are explained.
Afterwards there is a brief digression about the techniques

1 See respectively Cottet and Komoutsakos [7] and Zabusky, Hughes, and Roberts [33]
2 See respectively Hirt and Nichols [12] and Sethian [25]
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used to enable the recovery of oil and the related importance
of viscous fingering phenomena. The physical model of the
Hele-Shaw flow is analysed and a linear stability analysis,
fundamental to understand the mechanism of growth that
govern this flow, is presented.

3. mathematical formulation The governing equations of the
Hele-Shaw flow are obtained starting from the incompress-
ible Navier-Stokes equations for multiphase flows. An adi-
mensional formulation of these equations is also obtained
and the effect of the governing adimensional parameters is
analysed.

4. numerical method The numerical method is described, with
particular attention to the treatement of the surface tension
and to the interface reconstruction procedure with relation
to the topology changes. Peskin’s distribution function for
the transfer of information between the interface and the
fixed grid is introducted.

5. numerical experiments Numerically computed linearized growth
rates are presented and compared to analytical results as a
first check of the numerical implementation. A number of
results of radial fingering simulations are presented in both
the cases of static and unsteady pumping.

6. conclusions

7. appendices
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In a wide variety of situations, formation of patterns results from a
growth process. One of these processes is the viscous fingering. This
phenomenon has been investigated for fundamental reasons but also
because of the needs of industrial research. For instance the petroleum
industry has been consistently trying to find ways of inhibiting viscous
fingering because it limits oil recovery in a porous media.
During the last thirty years the investigation of a hydrodynamic insta-
bility discovered by Saffman and Taylor in 1958 has served as a refer-
ence in the field of pattern formation because it has the advantage of
being experimentally simple.
Saffman-Taylor fingering is thus studied for reasons beyond its pure
hydrodynamic interest, and will be the guiding theme of this chapter.

2.1 introduction

Over the past few decades, the interest in numerical modeling of fluid
displacement processes has been rising rapidly. The emergence of com-
plex enhanced recovery procedures in the field of hydrocarbon extrac-
tion techniques has emphasized the need for mathematical tools capa-
ble of modeling sharply changing fluid interfaces, usually unstable.
For an unstable situation small changes in the initial state may amplify
rapidly to produce completely different details in interfacial structure
at later times. For brevity we shall refer to such behaviour as ’chaotic’.
Indeed only certain average properties of an interface may be repro-
ducible in an experiment.
Again, an interface between two fluids, along which there is essentially

7
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no diffusion, may evolve in such a way that substantial entrainment
and mixing occur. Both these possibilities are common in conventional
turbulent flows, and lead to an efficient macroscopic (as opposed to
molecular) mixing.
The equations describing interfaces are generally nonlinear. Analytical
investigations of the governing nonlinear equations are usually limited
to stability considerations for very regular configurations, such as flat
or circular interfaces, and in the limit of small-amplitude disturbances.
A relatively simple example of the above type, which however still
contains many ingredients of more complicated systems, is the in-
terface between two immiscible fluids in a Hele-Shaw cell , the cele-The Hele-Shaw cell

as a physical model
for Saffman-Taylor

instability

brated Saffman-Taylor instability (Saffman and Taylor [24]), which oc-
curs when a less viscous fluid is forced to penetrate into a more viscous
one. This system is two-dimensional by construction, and it is there-
fore more accessible to numerical calculations.
The initial motivation in the 1950s to study this instability came from
the analogy between Hele-Shaw flow and flow in a two-dimensional
slab of porous medium.
It was observed that if water was used to drive out residual oil from
the porous rock in an oilfield, a considerable amount of oil was left in
the ground when water appeared at the producing wells. This disap-
pointing result is believed to be in part due to a fingering instability of
the oil-water interface.
Because of its great economic importance , oil-water flow in porous me-Viscous fingering is

investigated for
fundamental reasons

and also for
industrial research

dia has been the subject of intensive study in the petroleum-engeneering
literature. These studies have been primarily experimental, and their
main purpose has been to develop engineering correlations for appli-
cation to a real field situation.
The discussion of interfaces in a Hele-Shaw cell is commonly divided
into the two cases of miscible and immiscible fluids. For immiscible
fluids there is a finite surface tension that stabilizes small-scale dis-
turbances. For miscible fluids the interdiffusion of the fluids has a
stabilizing effect. If the velocity of interfacial fingers is much higher
than the characteristic diffusion velocity, diffusion will not affect the
initial shape of the fingers, and they should be similar to those of the
immiscible case. Here we consider only immiscible fluids (since that is
the case we are capable of calculating numerically), but for the reason
just mentioned we believe that some of our conclusions are valid for
miscible fluids as well.
Although the applicability of results for fingering in a Hele-Shaw cell
to flow under actual reservoir conditions, where the flow is three-
dimensional, is not unquestionable, it is to be expected that an inves-
tigation of this problem will be helpful to the understanding of many
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general properties of unsteady interface motion.

2.2 oil recovery

Crude oil is found trapped inside the pore-space of rock formations
sevaral kilometres below ground. Various techniques have been devel-
oped to enable the recovery of oil to the surface, which we now outline.
Viscous fingering is important in both secondary and tertiary (enhanced)
oil recovery.

2.2.1 Primary and secondary oil recovery

The simplest form of oil recovery is primary oil recovery, in which a
well is drilled into the oil reservoir and the oil is pushed up the well
due to the naturally high pressure in the oil reservoir. The high pres-
sure is the result of denser rock and water resting above the level of
the lighter oil; pockets of trapped compressed gas may also contribute
to the higher pressure.
As oil is produced from the well, the natural reservoir pressure drops
and the flow of oil to the surface may become greatly reduced. Some
techniques that are used to maximise the amount of oil recovered dur-
ing this primary phase include the use of pumps to lift oil up the well,
and the use of explosives and high pressure pumps to fracture the rock
formation.
In a typical oil reservoir only around 10 % of the total amount of oil
available can be recovered by primary oil recovery. In many oil reser-
voirs, once primary oil recovery has ceased, more of the oil may still
be recovered by secondary oil recovery.
In secondary oil recovery , water is injected into the oil reservoir through The front is unstable

and fingers of water
rapidly reach the
extraction well and
short circuit the
motion of the oil

one well, displacing the oil so that it can be extracted from a neigh-
bouring well. Since the water is less viscous than the oil and the per-
meability of the rock is often highly heterogeneous, the time before
’breakthrough’, i.e. when the water finds a path between the injection
well and the production well, is often very short.
When a large fraction of water is being extracted from the production
well, the secondary recovery process becomes uneconomical.
The amount of oil that may thus be extracted depends heavily on the
structure of the rock in which the oil is contained and the properties of
the oil to be extracted; however, even under optimal conditions more
than half of the total amount of oil available will usually be left behind
after primary and secondary recovery is complete.



10 oil recovery, viscous fingering and the hele-shaw flow

2.2.2 Enhanced oil recovery

With large amounts of oil remaining unrecovered in mature oil reser-
voirs, the oil recovery industry has developed numerous techniques to
extract this oil, referred to under the catchall phrase ’enhanced oil re-
covery’.
For some applications thermal recovery is appropriate; here the oilSeveral techniques

are used to reduce
the viscosity ratio
and consequently

the fingering

is heated either by the injection of steam or by ’in-situ combustion’,
where a controlled combustion is started underground using the oil
itself as a fuel source. Heating the oil reduces its viscosity thus aiding
recovery. Thermal recovery is particularly suited to the extraction of
extremely viscous heavy oils, for which the amount recovered by pri-
mary and secondary oil recovery is particularly small. When the tem-
perature of heavy oil is increased, its viscosity dramatically decreases,
vastly improving the effectiveness of primary and secondary oil recov-
ery techniques.
During secondary recovery, it is possible to add various chemicals to
the injected water. The chemicals added are chosen to either increase
the viscosity of the water or to be surface active and modify the surface
tension at the interface between oil and water.
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Figure 4: A superposition of successive states of a radial fingering pattern

2.3 viscous fingering

The best way to find out what viscous fingering looks like is to do an
experiment.
Take two circular glass plates , one of them having a central injection The Hele-Shaw

experimental
apparatus

hole. Set the plates horizontally, clamped together but separated by
thin spacers. First fill the cell with a viscous fluid, e.g. silicon oil, then
blow air into the central hole so as to push the oil out radially. An
example of what you see in given in figure 4.

The air does not penetrate the oil regularly to form a circular region
but forms a pattern which becomes increasingly complex. In this in-
stability, the two fluids and their interface move due to the applied
pressure. The two fluids have a Poiseuille flow driven by the applied
pressure. The experimental situation can thus be described by a two-
dimensional model where the spatial distribution of pressure forms a
Laplacian field and the fluids move with a velocity proportional to the Viscous fingering as

am archetype for
growth patterns in a
Laplacian field

gradient of pressure (Couder [8]).
An interface separates two regions of a plane respectively labelled (1)
and (2). There exist a scalar field P(x, y, z) in this plane; in our case
this field P is the pressure. In the simplest case P is constant in region
1 and in region 2 satisfies the Laplacian:

∇2P = 0 (2.1)

At a given time, the determination of the field P depends on the
boundary conditions defined at infinity and at the interface between
regions 1 and 2. We are interested in situations in which this interface
moves in the local gradient of P with a normal velocity

Vn ∝ n̂ · ∇P (2.2)
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Figure 5: Saffman-Taylor instability

where n̂ is the unit vector normal to the interface. The displacement
of the interface, because it changes the location of a boundary, modifies
the field P and thus, in turn, the interface velocity. This process leads
to an instability, the Saffman-Taylor instability, which generates a pat-
tern. The whole process is strongly non-local , due to the long-rangeNon-locality

interactions introduced by Laplace’s law.
We consider a situation where the two fluids are initially separated by
a flat interface and we assume this interface to be disturbed by a small
protrusion of typical size L (figure 5). The curves at constant values
of P will be parallel lines, only distorted in front of the bump. It is
a property of Laplacian fields that the distortion will only affect these
curves to a ‘depth’ of order of L. As a result the gradient of P is locally
larger in front of the protrusion and so is the velocity. The amplitude
of the protrusion will thus grow: the interface is unstable.
Note that if the fluids were moving in the opposite direction, i.e. if the
more viscous fluid was forcing the less-viscous one to retrocede, the
change in velocity would serve to reduce the protrusion and the front
would be stable.
Ideally, in the absence of any other factor, the more pointed the pro-
trusion the larger the gradient and the velocity. In real experiments,
additional effects due to the interfacial capillarity effect are present
which stabilize the interface at small scales.

2.4 the hele-shaw flow

Hele-Shaw flow (named after Henry Selby Hele-Shaw ) is defined adHenry Selby
Hele-Shaw

(1854-1941) was an
English mechanical

and automobile
engineer

Stokes flow between two parallel flat plates separated by an infinitesi-
mally small gap (figure 6).
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The Hele-Shaw problem is a prototypical free-boundary problem that
shares many of the difficulties often encountered in simulations of dy-
namic boundaries in fluids: the incompressibility condition leads to
an elliptic (Laplace) equation for pressure that must be solved in the
time-dependent domain created by the free boundary dynamics; in the
approach followed by many authors (Fast and Shelley [10]) the compu-
tational domain consists of the space occupied by the external fluid,
with boundary conditions imposed at the interface and at the outflow.
This approach is valid in the case in which the internal fluid has a neg-
ligible viscosity with respect to the external one: this can be explained
looking at the governig equations. Since the inertial terms are negligi-
bly smaller than the pressure or the viscous terms, in the limit of zero
Re, we have the basics equation of Stokes flow:

0 = −∇p + µ∇2u (2.3)

Considering a negligible viscosity for the internal flow we obtain that
∇p = 0 and thus the pressure is constant. Moreover, from continuity
we have:

∇ · u = 0 (2.4)

Since the thickness is small, only the velocity components parallel to
the plates are considered. Their dominant variation is in the z-direction
so that 2.3 can be written

∇p = µ
∂2u
∂z2 (2.5)

which can be integrated to give the parabolic velocity field of plane
Poiseuille flow : The flow in a

Hele-Shaw cell is a
locally plane
Poiseuille flowu =

1
2µ

z(z− b)∇p (2.6)

Integrating the flow through the cell thickness, we define an average
velocity 〈u〉 by∫ b

0
udz = 〈u〉b (2.7)

and find that 〈u〉 is governed by the potential law

〈u〉 = − b2

12µ
∇p. (2.8)
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Figure 6: Sketch of the Hele-Shaw cell

This relation between mean velocity and pressure is a particular case
of Darcy’s law, which holds more generally for fluids moving through
porous media such e.g. rocks. It is usually written

〈u〉 = −K
µ
∇p (2.9)

where K is the permeability of the medium.Darcy’s law was
formulated by

Henry Darcy based
on the results of

experiments on the
flow of water

through beds of sand

Finally, in both a Hele-Shaw cell and in a porous medium, since the
fluid is incompressible, ∇ · 〈u〉 = 0 and the pressure is a Laplacian
field,

∇2 p = 0 (2.10)

In the following we will adopt the two-dimensional approximation
where the velocities of the fluid are the average ones satisfying relation
2.8, and we will omit the average symbol.

If we don’t want to neglect the viscosity of the internal fluid, we can
observe that equation 2.8 is valid also for the less viscoud fluid, so that
we can write:

uj = −
b2

12µj
∇pj j = 1, 2 (2.11)

where the subscripts 1 and 2 are used to refer to the inner and outer
fluid respectively. In this case we have to add a source term in the
continuity equation for the internal domain to take into account the
injection of fluid into the cell:

∇u1 = Qδ(x− xs) (2.12)
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2.4.1 Boundary conditions

The boundary conditions must be specified at the interface between
the two fluids and at the outer edge of the cell. The jump conditions
across the interface is

[p]Γ = σκ = σ

(
2
b
+ κ2d

)
(2.13)

where σ is the surface tension and κ is the curvature of the interface, The dimension of the
surface tension is
[Force]/[Length]

composed by two terms: the curvature of the meniscus and that in the
x− y plane; the kinematic condition is

∂u
∂t

(β, t) = u|x(β,t), (2.14)

where β is a Lagrangian parameter.
We consider for simplicity the flow in a circular Hele-Shaw cell with
radius Rout. To determine the outflow boundary condition we assume
that the interface is far away from the outflow boundary, so that the
flow at the boundary agrees with the radial outflow, which would arise
from the source term in a uniform fluid; thus at the outer edge of the
cell (r = Rout), we impose a specified mass flux Q through the outflow
condition

r̂ · u =
Q

2πRout
(2.15)

where r̂ is a unit vector in the radial direction. In terms of the pres-
sure, the outflow boundary condition at r = Rout is

∂p
∂r

= −12µ2

b2
Q

2πRout
. (2.16)

that can be integrated in order to obtain the following Dirichlet
boundary condition:

p(Rout) = p0 −
12µ2

b2
Q
2π

log(Rout) (2.17)

where p0 is some arbitrary constant. This leads to the bubble area
growing at a specified rate.
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Figure 7: A circular interface of radius R with a wavelike perturbation a

2.5 a linear stability analysis

Chuoke, van Meurs, and van der Pol [6] have made studies of the initial
growth of fingers from a linear interface. In particular they have shown
that surface tension prevents fingers from occurring below a certein
wavelenght, where wavelength is defined as peak-to-peak separation.
The problem of the instability of an initially circular interface has been
examined elsewhere (Bataille [3]).
Equation 2.11 in polar coordinates leads to

∂2φj

∂r2 +
1
r

∂φj

∂r
+

1
r2

∂2φj

∂θ2 = 0 j = 1, 2 (2.18)

where φj = b2/(12µj)pj is the velocity potential.
The source has volume flow rate Qb and the circle has radius R, so that,
for unperturbed displacements,

R(t) =
√
(Qt + πR2

0)/π (2.19)

The velocity potential of the steady flow can be derived from 2.18 as

φ
(0)
j = − Q

2π

(
ln

r
R

+
µ2

µj

)
. (2.20)

Equation 2.20 satisfies the continuity of pressure and radial velocity
at the interface r = R(t).
As the interface moves, it experiences perturbations due to inhomogen-
ities. Any perturbation can be expressed as an infinite sum of wavelike
functions. For the purpose of the following linear analysis, it is suffi-
cient to consider a single wavelike perturbation a with amplitude A, as
shown in figure 7, so that
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a(n, t, θ) = A f (n, t)einθ n = 1, 2, 3... (2.21)

where f (n, t) represent the dependence of the amplitude on time.
The required solution of 2.18, with β to be determined, is

φj = φ
(0)
j + (−1)jβ

(
rn

Rn

)(−1)j−1

einθ . (2.22)

The condition of continuity at the perturbed interface (to first order
at r = R(t)) determines β as

β =
A
n

(
Q f

2πR
R

d f
dt

)
. (2.23)

The pressure drop across the interface depends on the surface ten-
sion σ through

p1 − p2 = σ

(
2
b
+

1
R
− a + d2a/dθ2

R2

)
(2.24)

to first order, since r = R + a. Using the equations from 2.20 to 2.24

gives

d f
dt

=
Qn

2πR2

(
K1 − K2

K1 + K2

)
− Q

2πR2 −
σn(n2 − 1)

R3

(
K1K2

K1 + K2

)
f (2.25)

The term

Qn
2πR2

(
K1 − K2

K1 + K2

)
− Q

2πR2 −
σn(n2 − 1)

R3

(
K1K2

K1 + K2

)
(2.26)

is the growth rate of the perturbations. If K1 � K2
1 it becomes: The symbol σn for

the growth rate is
used for agreement
with the literature
and must not be
confused with the
surface tension σ

σn =
n− 1

R2

(
Q
2π
− n(n + 1)σK2

R

)
(2.27)

The condition d f /dt = 0 gives rise to a minimum wavelength λc, for
a perturbation to be mantained. With this condition, equation 2.25 can
be solved for n to give

nc =

√
QR

2πK2σ
+

1
4
− 1

2
. (2.28)

1 For a constant injection rate, we obtain a Mullins-Sekerka type instability; it is in-
volved in the study of the morphological instability of a solid-liquid interface during
solidification. In this situation the classical thermodynamic definition of stability is no
longer applicable in determining the morphology of the growing interface.
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Since n = 2πR/λ, this gives the critical wavelength λc as

λc = 2πR
/(√

QR
2πK2σ

+
1
4
− 1

2

)
(2.29)

Maximum growth occurs when

∂

∂n

(
d f
dt

)
= 0 (2.30)

whic, from 2.25, leads

nm =

√
1
3

(
QR

2πK2σ
+ 1
)

, (2.31)

or substituting n = 2πR/λ leads to a wavelength of maximum
growth rate, λm:

λm = 2
√

3πR
/√

QR
2πK2 + 1

+ 1 (2.32)

Equation 2.25 shows the competition between the destabilizing effect
due to injection and the stabilizing effect due to the surface tension.The key feature is

that the intermediate
length-scales are
unstable and the

small length-scales
are strongly damped

Note that, for high frequency modes, σn is negative, indicating that the
Hele-Shaw flow is stable for these frequencies. For lower frequencies,
depending on the parameters, σn can be positive, indicating unstable
growth. For a zero surface tension σn scales with n, and the system is
linearly ill-posed (the growth rates are unbounded for k → ∞ 2. The
case with n = 0 leads to a zero growth rate, which can be explained
with the fact that it involves only a translation of the initial circular
interface. Paterson [21] investigated these aspects with an experiment;
in his example Q = 9.3 cm2/s, b = 0.15 cm and σ = 63 dyne/cm.
The temperature was 28◦C at which K2 = 3.6 · 10−4 (cm4/dyne)/s. He
showed that the fingers appear to have wavelength λm at their incep-
tion.
In figure 8 we can see the typical trend of the growth-rate as a function
of the wavenumber of the azimutal perturbation for a given value of
R.

In figure 9 the initial radius dependence of the critical wave length
and of the wave length of maximum growth rate is reported.

2 This is very similar to the linearized behaviour associated with the Kelvin-Helmotz
instability of Eulerian fluid dynamics
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Figure 8: The wave number dependence of the amplification rate predicted by
the linear analysis of viscous fingering. The parameters are those
of Paterson’s experiment.
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In this chapter an innovative mathematical formulation for the prob-
lem under investigation is presented. The method is based on writing
one set of governing equations for the whole computational domain
and treating the different phases as one fluid with variable material
properties. Interfacial terms are accounted for by adding the appropri-
ate sources as δ−functions at the boundary separating the phases.

3.1 conservation equations

The key of this method, as well as to several other methods to simulate
multiphase flow, is the use of a single set of conservation equations for
the whole flow field.
In addition to accounting for differences in the material properties of
the different fluids, we must include interfacial phenomena such as
surface tension by adding the appropriate interface terms to the gov-
erning equations . Since these terms are concentrated at the boundary Interfacial terms are

accounted for as
δ-functions

between the different fluids, they are represented by δ-functions. Since
the material properties and the flow field are, in general, discontinuos
across the interface all variables must be interpreted in terms of gener-
alized functions. This approach is presented in Tryggvason et al. [30]
and Shin and Juric [26].
Before we write down the equations governing multiphase flow it is
useful to discuss a few elementary aspects of the representation of a
discontinuous function by generalized functions. The various fluids
can be identified by a step (Heaviside) function H which is 1 where
one particular fluid is and 0 elsewhere; we call this step function the
indicator function. The interface itself is marked by a non-zero value
of the gradient of the step function. To relate the gradient to the δ-

21
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function marking the interface, it is most convenient to express H in
terms of an integral over the product of one-dimentional δ-functions:

H(x, t) =
∫

A(t)
δ(x− x′)da′ (3.1)

The integral is over an area A(t) boundend by a contour Γ(t). I is
obviously 1 if x is enclosed by Γ and 0 otherwise. To find the gradi-
ent of H we note first that since the gradient is with respect to the
unprimed variables, the gradient operator can be put under the inte-
gral sign. Since the δ-functions are anti-symmetric with respect to the
primed and unprimed variables, the gradient with respect to the un-
primed variables can be replaced by the the gradient with respect to
the primed variables. The resulting area integral can be transformed
into a line integral by a variation of the divergence theorem for gradi-
ents. Symobolically:

∇H =
∫

A(t)
∇δ(x− x′)da′ = −

∫
A(t)
∇′δ(x− x′)da′

= −
∮

Γ(t)
δ(x− x f )n̂ds

(3.2)

where n̂ is the outward unit normal to the interface and x f = x(s, t)
is a parametrization of the interface Γ(t). By considering an inward
unit normal and applying the divergence to equation 3.14 we obtain
the governing Poisson equation for the indicator function H(x, t):

∇2H = ∇ ·
∫

Γ(t)
n̂δ(x− x f )ds (3.3)

The values of the material property fields at every location can then
be given by

b(x, t) = b2 + (b1 − b2)H(x, t) (3.4)

where subscript 1 and 2 refers respectively to the inner and outer
fluid and b stands for density ρ or viscosity µ. For example the gradient
of the viscosity is given by:

∇µ = (µ1 − µ2)∇H(x, t) = (µ1 − µ2)
∫

Γ(t)
δ(x− x f )n̂ds (3.5)

Note that the right-hand side of this Poisson equation is a function
only of the known interface position, a fact we use to advantage in our
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numerical implementation.
The interface is advected in a Lagrangian fashion by integrating

dx f

dt
= u f (3.6)

where u f = u(x f ) is the fluid velocity at the interface. Only the nor-
mal component of the interface motion is determined by the physics.
The tangential motion is not and we may assume that the interface and
fluid at the interface have the same tangential component of velocity
(Shin and Juric [26]).

Mass conservation is given by

∂ρ

∂t
+∇ · ρu = 0 (3.7)

The fluids are taken to be incompressible so that the density of a
fluid particle remains constant:

Dρ

Dt
= 0 (3.8)

This reduces the mass conservation to

∇ · u = 0; (3.9)

we want also a source/sink of mass in the domain to pump/suck
fluid into/from the cell. Hence, the equation of continuity becomes: Continuity equation

∇ · u = Q(t)δ(x− xs). (3.10)

We also take the viscosity in each fluid to be constant:

Dµ

Dt
= 0 (3.11)

The momentum equation is written for the entire flow field and the Momentum
equationforces due to surface tension are inserted at the interface as body forces,

which act only at the interface. In conservative form this equation,
neglecting the inertial and non stationary terms, is

0 = −∇p +∇ · µ(∇u +∇uT) +
∫

Γ(t)
σκn̂δ(x− x f )ds (3.12)

The integral term in 3.12 accounts for surface tension acting on the
interface. (Following the discussion of Tryggvason et al. [30] we ignore
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tangential variations in σ along the interface).
Introducing the same hypothesis introduced in section 2.4 we obtain

0 = −∇p + µ
∂2u
∂z2 +

∫
Γ(t)

σκn̂δ(x− x f )ds (3.13)

where now u = (u, v). Integrating over the gap and averaging we
have

< u >= − b2

12µ

(
∇p−

∫
Γ(t)

σκn̂δ(x− x f )ds
)

. (3.14)

where now the integral is a line integral over the interface. Two di-
mensionality has been enforced by neglecting three dimensional effects
but the consequent loss of realism is usually considered unimportant;
a global effect of the tridimensionality can be included by adding the
curvature meniscus 2/b at the bidimensional curvature, as was done
in equation 2.13.

Applying the divergence to equation 3.14 and using equation 3.10

we obtain this elliptic equation for the pressure:

∇ ·
(
− b2

12µ
∇p
)
= Q(t)δ(x− xs)−∇ ·

(
b2

12µ

∫
Γ(t)

σκn̂δ(x− x f )ds
)

.

(3.15)

The boundary conditions must be specified only at the outflow; in
particular the condition 2.17 must be applied at the external boundary
of the domain.
Defining β = −b2/(12µ) we can write the following system of equa-
tionsThe δ− functions

have the dimension
of 1/[length2] governing equations

∇ · (β∇p) = Q(t)δ(x− xs) +∇ ·
(

β
∫

Γ(t)
σκn̂δ(x− x f )ds

)
,

u = β

(
∇p−

∫
Γ(t)

σκn̂δ(x− x f )ds
)

.

(3.16)

boundary conditions

p(Rout) = p0 +
1

βout

Q
2π

log(Rout)
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This system can be solved by solving the first equation for the pres-
sure separately and then recovering the velocity field from the second
equation.
Since, being a constant term, it doesn’t affect the velocity field (and
thus the development of the fingers) we will neglet the surface tension
term depending on the meniscus curvature.

3.2 adimensional form

In this section the adimensional form of the equations 3.22 will be de-
rived, in order to obtain the adimensional parameters governing the
physic of the problem.
Let us introduce the following reference values for the different physi-
cal quantities:

LR = b; µR = µ2;

pR = σ/b; UR = Q/b.

This allows us to write the following dimensionless variables:

x∗ =
x

LR
=

x
b

; u∗ =
u

UR
=

u
Q/b

;

p∗ =
p

pR
=

p
σ/b

; µ∗ =
µ

µR
=

µ

µ2
;

δ∗ =
δ

1/L2
R
=

δ

1/b2 ; κ∗ =
κ

1/LR
=

κ

1/b
.

Substituting into the mass conservation equation we obtain the fol-
lowing adimensional equation:

∇∗ · u∗ = δ∗(x∗ − x∗s ) (3.17)

With the same substitutions quation 3.14 becomes:

u∗ = − σb
12µ2Q

1
µ∗

(
∇∗p∗ −

∫
κ∗n̂δ∗(x∗ − x∗f )ds∗

)
(3.18)
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Applying a ’nondimensional’ divergence to equation 3.18 we obtain
the following elliptic equation for the adimensional pressure:

∇∗ ·
(
− 1

µ∗
∇∗p∗

)
=

12µ2Q
σb

δ∗(x∗ − x∗s )

+∇∗ ·
(
− 1

µ∗

∫
κ∗n̂δ∗(x∗ − x∗f )ds∗

) (3.19)

The nondimensional form of the Dirichlet boundary condition is the
following:

p∗(R∗out) = −
12µ2Q

σb
1

2π
log(r∗) (3.20)

Concluding we discovered that two adimensional parameters deter-
mine the physics of the problem; these two parameters are the follow-
ing1:

viscosity ratio
µ1

µ2

surface tension parameter

A =
12µ2Q

σb

The viscosity ratio parameters enters in the definition of the variable
µ∗, which has the following expression:

µ∗ = 1 +
(

µ1

µ2
− 1
)

H(x, t) (3.21)

and thus assumes the value 1 outside of the interface and µ1/µ2

within it.
Substituting these definitions we obtain the following system of nondi-
mentional equations:

nondimensional governing equations

∇∗ ·
(
− 1

µ∗
∇∗p∗

)
=Aδ∗(x∗ − x∗s )

+∇∗ ·
(
− 1

µ∗

∫
κ∗n̂δ∗(x∗ − x∗f )ds∗

)

u∗ = − 1
A

1
µ∗

(
∇∗p∗ −

∫
κ∗n̂δ∗(x∗ − x∗f )ds∗

)
(3.22)

1 Unfortunately no universal convenction for this controlling parameters has been
adopted in the literature, and care must be taken in comparing results of different
investigators
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nondimensional boundary conditions

p∗(R∗out) = −A
1

2π
log(r∗)

3.2.1 The nondimensional growth rate equation

Now we can proceed by adimensionalising the equation for the growth
rate of the perturbation in the linear analysis (2.25).
The following reference time is introduced:

TR =
L2

R
Q

=
b2

Q

so that the nondimensional growth rate σ∗n can be defined:

σ∗n =
σn

TR
=

σn

b2/Q

The nondimensional form of equation 2.25 is

σ∗n =
n

2πR∗2
(1− µ1/µ2)

(1 + µ1/µ2)
− 1

2πR∗2 −
1
A

n(n2 − 1)
R∗3(1 + µ1/µ2)

(3.23)

which in the limit µ1/µ2 → 0 becomes:

σ∗n =
n− 1

2πR∗2 −
1
A

n(n2 − 1)
R∗3 (3.24)

Effect of the parameters

The nondimensional growth rate from equation 3.23 is influenced by
three parameters: the initial radius R, the surface tension parameter
A and the viscosity ratio µ1/µ2. The effect of these parameters can be
seen in the figures 10, 11 and 12. We observe from figure 10 that if we
increase the initial radius of the circular interface, the band of unstable
wavenumbers become larger and the intensity of the growth smaller.
The graphic of figure 11 can be explained as follows: an increment of If we increase A we

observe a stronger
growth process

the tension parameter A can be viewed as a reduction of the physical
surface tension σ keeping constant the mass flow rate Q or as an in-
crement of Q keeping constant σ. This results in a more emphasized
instability in terms of maximum unstable wavelength and values of the
growth-rate.
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Figure 10: Effect of the initial radius of the interface on the growth rate of the
perturbations (µ1/µ2 → 0, A = 1.5 · 103)
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Figure 11: Effect of the surface tension parameter on the growth rate of the
perturbations (µ1/µ2 → 0, R = 1)
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Figure 12: Effect of the viscosity ratio on the growth rate of the perturbations
(R = 1, A = 1.5 · 103)

In figure 12 the effect of the viscosity ratio is reported: the width of the
unstable band remains the same, but as we can expect the growth rates
become bigger decreasing the viscosity ratio. In the limit µ1/µ2 → 0
we obtain the same behaviour of equation 3.24.
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The formulation descrived in chapter 3 allows multiphase flows to
be treated along the lines usually used for homogeneous flows. Once
the material boundary as been advected and the surface tension found,
any standard algorithmn based on fixed grids can, in principle be used
to integrate equation 3.22. Figure 13 summarizes the approach: a
fixed grid is used for the conservation equations but a moving grid
of lower dimension marks the boundary between the different phases.
This moving grid is represented by nonstationary, Lagrangian compu-
tational points connected to form a line.

Figure 13: Stationary finite difference mesh and moving Lagrangian mesh

31
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4.1 transfer of information between the in-
terface and the fixed grid

At each time step information must be passed between the moving
Lagrangian interface and the stationary Eulerian grid. Since the La-
grangian interface points xp do not coincide with the Eulerian grid
points xij, this is done using Peskin’s immersed boundary method
(Peskin [22]). With this technique, the infinitely thin interface is ap-
proximated by a smooth distribution function that is used to distribute
sources at the interface over several grid points near the interface (since
the front represent a δ−function, the transfer corresponds to the con-
struction of an approximation to this δ−function on the fixed grid). In
similar manner, this function is used to interpolate field variables (ve-
locities) from the stationary grid to the interface.
In this way the front is given a finite thickness on the order of the mesh
size to provide stability and smoothness. There is also no numerical
diffusion since the thickness remains constant for all time.
It is always necessary to ensure that the quantity transferred is con-
served. The interface quantity, φ, is usually expressed in units per
length, but the grid value, Φ, should be given in terms of units per
area.
To ensure that the total value is conserved in the smoothing, we ust
therefore require that:

∫
∆s

φ(s)ds =
∫

∆a
Φ(x)da (4.1)

This is accomplished by writing

Φij = ∑
p

φpDij(xp)
∆sp

∆x∆y
(4.2)

Here φp is a discrete approximation to the front value φ(s) and Φij
is an approximation to the grid value Φ(x). ∆sp is the length of the
element p. Dij(xp) is the weight of grid point ij with respect to element
p. The weights must satisfy:

∑
ij

Dij = 1 (4.3)

Since the weight have a finite support, there is a relatively small
number of front elements that contribute to the value at each fixed
grid point. In the actual implementation of the transfer of quantities
from the front to the grid, we loop over the interface elements and add
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Figure 14: Distribution function

the quantity to the grid points that are near the front.
The weighting functions are usually written as a product of one-dimensional
functions:

Dij(xp) = δ

(
xp − xi

∆x

)
δ

(
yp − yj

∆y

)
(4.4)

We use the distribution function (figure 14) suggested by Peskin and
McQueen [23], so that

δ(r) =


δ1(r), |r| ≤ 1

1/2− δ1(2− |r|), 1 < |r| < 2

0, |r| ≥ 2

and

δ1(r) =
3− 2|r|+

√
1 + 4|r| − 4r2

8

With the same function we can transfer information from the grid
to the interface; at each time step the velocity field is calculated on
the fixed grid but we need the velocity of the interface points in order
to start the advection routine. The interpolation is achieved with the
following expression:

up = ∑
ij

uijDij(xp) (4.5)
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Figure 15: Surface integral calculation for the indicator function. The normal
and area provided to the integral are readily defined

4.2 updating the material properties

The fluid properties, and particularly the viscosity, are not advected
directly. Instead the boundary between the different fluids is moved.
It is therefore necessary to reset the properties at every time step.
To do that, we first find the indicator function (we assume that the
interface location is known) using a fast Poisson solver for 3.3

∇2
hH = ∇h ·N. (4.6)

The subscript h denotes the finite difference approximation to the
operator. Here N is the approximation to the surface integral in 3.3 :In the discretized

form of the equations
the superscript ∗ for

nondimensional
variables will be

omitted
Ni,j = ∑

p
n̂p

Dij(xmid p)

∆x∆y
∆sp ∼

∫
n̂δ∗(x− x f )ds∗ (4.7)

Note that the sources are located at the centroid of each element and
then distributed by the immersed boundary method as described pre-
viously. n̂p is computed by considering that the interface element is a
segment connecting the two end-points (figure 15).

The indicator function calculated in this way is constant within each
material region but has a finite thickness transition zone around the
interface. In this transition zone the indicator function and thus the
material properties change smoothly from the value on one side of the
interface to the value on the other side (figure 16).
The thickness of the transition zone is only a function of the mesh
size and is constant during the calculation (no numerical diffusion is
introduced).
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Figure 16: Thickness of the transition zone

The discretized form of equation 3.3 is:

Hi+1,j − 2Hi,j + Hi−1,j

∆x2 +
Hi,j+1 − 2Hi,j + Hi,j−1

∆y2 =

(Nx)i+ 1
2 ,j − (Nx)i− 1

2 ,j

∆x
+

(
Ny
)

i,j+ 1
2
−
(

Ny
)

i,j− 1
2

∆y

(4.8)

where me make use of the following definitions:

xi± 1
2
=

xi + xi± 1
2

2
; yj± 1

2
=

yj + yj± 1
2

2

The subroutine hvscrt from the Fortran package FISHPACK (Swarz-
trauber and Sweet [27]) has been used to solve the equation 3.3; the
solver uses the cyclic reduction algorithmn.
Cyclic Reduction has proved to be an algorithm which is very power-
ful for solving structured matrix problems. In particular for matrices
which are (block) Toeplitz and (block) tri-diagonal, the method is espe-
cially useful. The basic idea is to eliminate half the unknowns, regroup
the equations and again eliminate half the unknowns. The process is
continued ad libitum. This simple idea is useful in solving the finite
difference approximation to Poisson’s equation in a rectangle.
Once the Poisson equation for the indicator function is solved we can
update the fluid properties:

µij = 1 +
(

µ1

µ2
− 1
)

Hij (4.9)
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4.3 hele-shaw equations solution

4.3.1 Right-end side definition

The right-end side of the adimensional Poisson equation for the pres-
sure is composed by two terms:

right-end side

Aδ∗(x∗ − x∗s ) +∇∗ ·
(
− 1

µ∗

∫
κ∗n̂δ∗(x∗ − x∗f )ds∗

)
• The injection of the inner fluid

• The divergence of the surface tension forces acting on the inter-
face

Souce term (injection)

In our test we set

δ∗(x∗ − x∗s ) ∼
{

δ0(1 + cos(|x∗ − x∗s |π/r∗0)) |x∗ − x∗s | ≤ r∗0
0 |x∗ − x∗s | > r∗0

(4.10)

where δ0 is a normalization constant. The total injection rate is

A
∫ ∫

δ∗(x∗ − x∗s )dx∗ = Aδ0

(
π − 4

π

)
r∗0

2 (4.11)

Since we want the total injection rate to be equal to A we set δ0 =

(πr∗0
2 − 4r∗0

2/π)−1

Surface tension treatement

The accurate computation of the surface tension is perhaps one of the
most critical elements of any method designed to follow the motion of
the boundary between immiscible fluids for a long time.
Here the source term in the momentum equation is treated with the
conservative approach described by Tryggvason et al. [30]. The front is
explicitly represented by discrete points and elements; since we explic-
itly track the interface using surface elements the calculation of surface
tension can be performed directly on the interface.
The ’adimensional force’ on a short segment of the front is given by:

δF∗σ =
∫

∆s∗
κ∗n̂ds∗. (4.12)
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Figure 17: Conservative surface tension

Using Frenet relation, κ∗n̂ = dt̂/ds∗, we can write this as

δF∗σ =
∫

∆s∗

∂t̂
∂s∗

ds∗ = tB − tA (4.13)

Therefore, instead of having to find the curvature, which involves
higher order derivatives and whose calculation is in general not very
accurate, we only need to supply the tangents of the elements end-
points.
In addition to simplifying the computation, this ensures that the total
force on any closed surface is zero since the forces on the two ends of
every element cancel exactly. This conservation property is particularly
important for long time computation where even a small error in the
surface tension computation can lead to an unphysical net force on an
interface that can accumulate over time.
The tangents are computed simply by considering the interface as
made by segments connecting the interface points. Once we know
the tangent for each element we simply apply the force at each ele-
ment’s endpoints as illustrated in figure 17. The resultant force at each
endpoint is the difference of the elements’ tangents.

This force must now be spread out to the grid and we have to take
the divergence of the resulting force field acting on the grid. In figures
18 and 19 we have an example of the surface tension forces acting on
the interface and on the grid.
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Figure 18: Surface tension forces acting on the interface
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Figure 19: Surface tension forces acting on the grid
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4.3.2 Pressure equation solver

Given the location of the interface at time tn and the right-end side,
we wish to to solve the Poisson equation for the pressure. We solve a
difference equation of the form

1
∆x2

[
βi+ 1

2 ,j(pi+1,j − pi,j)− βi− 1
2 ,j(pi,j − pi−1,j)

]
+

1
∆y2

[
βi,j+ 1

2
(pi,j+1 − pi,j)− βi,j− 1

2
(pi,j − pi,j−1)

]
= RHSij

(4.14)

on the Cartesian grid, where the coefficient β is given by

β(x∗, y∗) = − 1
µ∗(x∗, y∗)

; (4.15)

To obtain the required values βi± 1
2 ,j and βi,j± 1

2
we use a double resolu-

tion for the indicator function solver ((XI , YJ), represented with white
dots in figure 20) . xi = X2i−1

yj = Y2j−1Numerical simulation showed a marked grid effect with the use of the
classical expressions βi± 1

2 ,j = (βi+ 1
2 ,j + βi− 1

2 ,j)/2 and βi,j± 1
2
= (βi,j+ 1

2
+

βi,j− 1
2
)/2. This technique does not leat to a large increase of computa-

tional cost, thanks to the efficiency of the Fast Poisson solver for the
indicator function; for this reason it has been preferred to the use of
high-order interpolation formulas.
It should be noted that the resolution has been effectively doubled but
this doesn’t mean that the transition zone has an halved thickness: the
shape of the indicator function has been kept the same of the case with
the lower resolution (for consistency); this as been done using a slightly
modified δ− function:

DI J(xp) = δ/2

(
xp − XI

∆x

)
δ/2

(
yp −YJ

∆y

)
(4.16)

where δ/2(r) = δ(r)/2.

The discretized right-end side has the following expression:

RHSij =Aδi,j+

1
∆x

[
βi+ 1

2 ,j (STx)i+ 1
2 ,j − βi− 1

2 ,j (STx)i− 1
2 ,j

]
+

1
∆y

[
βi,j+ 1

2

(
STy

)
i,j+ 1

2
− βi,j− 1

2

(
STy

)
i,j− 1

2

] (4.17)
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Figure 20: The double resolution grid for the indicator function

where

δij ∼
{

δ0(1 + cos(|xij − xs|π/r0)) |xij − xs| ≤ r0

0 |xij − xs| > r0
(4.18)

and

STij = ∑
p

Fσ p
Dij(xp)

∆x∆y
∼
∫

κ∗n̂δ∗(x∗ − x∗f )ds∗ (4.19)

The numerical solution of the resulting non-symmetric system of
linear equations is the major computational task in this numerical
method.
The system is solved by means of a BiCG-stab algorithmn; the bicon-
jugate gradient stabilized method is an iterative method (Krylov sub-
space method) developed by H. A. van der Vorst ([32]) for the numeri-
cal solution of nonsymmetric linear systems.
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4.3.3 Velocity recovery

Once the pressure is known we can recovery the velocity field through:


ui± 1

2 ,j = βi± 1
2 ,j

[
(±pi±1,j ∓ pi,j)

∆x
− (STx)i± 1

2 ,j

]

vi± 1
2 ,j = βi,j± 1

2

[
(±pi,j±1 ∓ pi,j)

∆y
−
(
STy

)
i,j± 1

2

] (4.20)

and


ui,j =

ui+ 1
2 ,j + ui− 1

2 ,j

2

vi,j =
vi,j+ 1

2
+ vi,j− 1

2

2

(4.21)

Now that the velocity field is known we can compute the velocities
of the interface points with the Peskin’s interpolation functions with
equation 4.5.

4.4 lagrangian advection

Once the velocity field has been found, the new position of the interface
points can be found by integration. Note that the time evolution of the
flow is governed entirely by the time dependence of the fluid proper-
ties and of the surface tension. These quantities are determined by the
interface location. Once the interface location is known at a given in-
stant in time, then the system is elliptic and the solution is determined
independently of the past history of the flow. This is a reflection of the
fact that there is no inertia in the system; i.e., the convective and time-
derivative acceleration terms have been dropped from the momentum
equations.
Equation 3.6 is advected using a Runge-Kutta method of fourth order
(RK4). The coupled system of equations that must be integrated is the
following:



dxp

dt
= up = ∑

ij
uijDij(xp, yp)

dyp

dt
= vp = ∑

ij
vijDij(xp, yp)

(4.22)
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The integration scheme is the following:

x0 = x

y0 = y

u1 = grid2int(x0,y0,u)

v1 = grid2int(x0,y0,v)

x1 = x0 + dt/2.0d0 * u1

y1 = y0 + dt/2.0d0 * v1

u2 = grid2int(x1,y1,u)

v2 = grid2int(x1,y1,v)

x2 = x0 + dt/2.0d0 * u2

y2 = y0 + dt/2.0d0 * v2

u3 = grid2int(x2,y2,u)

v3 = grid2int(x2,y2,v)

x3 = x0 + dt * u3

y3 = y0 + dt * v3

u4 = grid2int(x3,y3,u)

v4 = grid2int(x3,y3,v)

x = x0 + dt/6.0d0 * (u1 + 2.0d0*u2 + 2.0d0*u3 + u4)

y = y0 + dt/6.0d0 * (v1 + 2.0d0*v2 + 2.0d0*v3 + v4)

4.4.1 Stiffness

As previously stated, surface tension is modelled by positioning a pres-
sure jump at the interface that is proportional to the local curvature
(Laplace-Joung condition). This introduces new terms into the equa-
tions of motion of the interface. Such terms have a large number of
spatial derivatives. If explicit time integration is used, as is the case,
here these terms may induce strong stability constraint on the time
step. The presence of such constraints is referred to as stiffness.
Numerical experiments revealed a stability constraint on the maximum
allowed time step size, which however is not dramatic.
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4.5 interface reconstruction by levels con-
tour

Since the interface stretches and deforms greatly in our simulations, it
is necessary to add and delete interface elements during the course of
the calculation.
Topology change is an inherent feature of the Hele-Shaw flow, because
of the pinching of fingers into droplets and also for the merging of dif-
ferent sections of the interface. This is crucial if we want the Hele-Shaw
cell to be a good approximation of oil recovery process, wherein a frac-
tion of the oil is left out in the form of droplets in water. Thus these
droplets must be numerically reproduced, both in size and in number,
to have a measure of the effectiveness of the control being studied.
In our simulations interfaces must be allowed to reconnect when either
parts of the same interface or parts of two separate interfaces come
close together.
The method proposed by S. Shin and D. Juric ([26]) replaces all of these
(element addition/deletion and topology change) with an interface re-
construction procedure.

We take advantage of the fact that we truly have two separate repre-
sentations of the interface position:

• the explicitly tracked interface elements;

• the indicator function whose 0.5 contour level also represents the
interface.

Thus beginning with a given indicator function field we can deposit
a collection of interface elements on the 0.5 contour or, conversely, be-
ginning with interface elements we can solve the Poisson equation for
the indicator function.
Let us suppone that at the end of a time step we have used the tracked
interface elements in the solution of equation 3.3 to obtain the indicator
function H at each grid point. We now completely discard the interface
elements and contruct new elements.
We do this by first drawing a contour level (approximated by a line)
across each grid cell at the value H = 0.5 using linear interpolation (a
trivial slope calculation).

As shown in figure 21, the two endpoints of this contour line form
the endpoints of one new interface element. Because we use linear in-
terpolation, neighboring elements from neighboring cells will always
have the same endpoint location. Since interface points that coexist at
the same spatial location will move with the same velocity, the elements
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Figure 21: Level contour reconstruction. Interfaces are reconstructed by lin-
ear approximation of the H = 0.5 contour in each grid cell. The
two endpoints of this contour line form the endpoints of one new
interface elements

can never separate. Thus, although adjacent elements are not logically
connected, their endpoints are automatically physically linked. In this
way the adjacent interface elements are implicitly connected and the
need for explicit bookkeeping of neighbor element connectivity is ob-
viated.
For now the interface elements are arbitrarily oriented. A simple pro-
cedure is used to orient the elements so that all the elements normals
point toward the inside of the volume enclosed by the surface. As
shown in figure 21, the elements are oriented cell by cell such that the
maximum cell indicator function value lies to the right of elements tan-
gent drawn from point start to point end.
We now have newly constructed and properly oriented interface ele-
ments that lie on the 0.5 indicator function contour level and those
endpoints are physically connected. The reconstruction step has re-
placed the need to add or delete single elements individually.
Most importantly, the reconstruction of interface elements from level
contours of the indicator function field ensures that neighbouring in-
terfaces reconnect when they get closer than about one or two grid cell:
close interfaces can interact in a natural way since contribution to N
in equation 4.6, calculated from the grid distribution 4.7 simply cancel.
This natural interaction of close interfaces is particularly advantageous
because topology changes will occur smoothly. Interface elements will
be constructed with the same topological properties as the indicator
function.

example We consider two circumferences with the same radius, exter-
nally tangent. We apply the following procedure:
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Figure 22: Merge of two interface fronts

1. Interface setup

2. Solution of equation 3.3 for the indicator function

3. Reconstruction procedure

We obtain the result reported in figure 22: we observe that a
topology change occurred, as was previously explained.

For the drop pinch off case we can draw similar conclusions.
During a simulation, there is no need to carry out reconstruction at
every time step; the frequency of reconstruction can be prescribed.

4.5.1 A stretching test: single vortex flow

To test our scheme on resolving thin filaments as they occur in stretch-
ing, we consider the single vortex flow. The initial interface, a circle
placed at (0.5, 0.75) with radius 0.15 is shown in figure 23 together
with the velocity field:

u(x) = 2
{ −sin2(πx)sin(πy)cos(πy)

sin2(πy)sin(πx)cos(πx)

}
(4.23)

The velocity field stretches the circle into a long filamentary struc-
ture which wraps itself around the center of the unit domain.
As the interface deforms, some parts of it are depleted of computa-
tional points, and other parts become crowded with points. To keep
an adequate resolution, we must add computational elements as the
interface stretches. In figure 24 the reconstruction procedure has been
suppressed: the initial interface is composed by 500 poins but because
of the stretching of the front this number becomes quickly inadequate.
In this benchmark problem the flow field is frozen and this is the only
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Figure 23: Single vortex flow: initial interface with velocity field

reason that allowed the computation to continue with such a marked
underresolution.

In figure 39 we report a comparison between the interface at time
t = 3 resulted from our computation with a resolution 800× 800 and
the one from the paper of S.E. Hieber and P. Koumoutsakos ([11]). The
two fronts are indistinguishable.

A comparison between computations with different resolutions is
shown in figure 26: this comparison shows that the mesh size must
be chosen in order to resolve the smallest structures of interest. For
example in figure 26 we observe that with the lower resolution (200×
200) the scheme is not able to recover the thin filament very well.

In order to quantify the error of the method the velocity field is
reversed by multiplying its value by cos(πt/T), where T is the time of
one period. For T = 8 the maximal stretched interface is similar to the
one in figure 39. The final interface at t = 8 should match with the
initial state. Figure 27 shows three final interfaces of this problem for
three different resolutions and figure 28 shows the errors of the method
in reconstructing the area as compared to the analytical solution. The
errors indicate a second order convergence.
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Figure 24: Interface ot the single vortex problem at t = 3, without reconstruc-
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Figure 25: Comparison between the author’s computation using the front
tracking method by Shin and Juric [26] with a resolution 800× 800
and the one performed by Hieber and Koumoutsakos [11] using a
Lagrangian particle level set method
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5.1 validation of the implementation

5.1.1 Linear stability analysis

We consider the linear stability of a circular bubble perturbed azimuthally For the sake of
notational simplicity
in this section we
omit the star apex
for nondimensional
variables

as it expands into a more viscous fluid in an unbounded Hele-Shaw
cell. The circular interface is an exact solution of the governing equa-
tions, with velocity field given by

u(r, t) =
1

2πr
r̂, (5.1)

where r̂ is the radial unit vector. The radius R(t) for unperturbed
displacements is the solution of the ordinary differential equation

dR
dt

=
1

2πR
, (5.2)

that is

R(t) =

√
S0 + t

π
(5.3)

The theoretical linearized growth rates of perturbations are com-
pared to growth rates extracted from simulations.
Assume Γ is given by

R(θ, t) = (R(t) + εR0η(θ, t))r̂ (5.4)

51
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where ε� 1 is a small parameter and η(θ, t) is a perturbation.
Since η(θ, t) can be written as a Fourier series in the azimutal angle θ,
and the linearized equations are separable, we consider without loss of
generality a perturbation of the form

η(θ, t) = f (n, t)cos(nθ) (5.5)

where n is a wave number. In section 29 it is shown that to leading
order in ε

f (n, t) = eσnt (5.6)

where the instantaneous growth rate σn is given by

σn =
n

2πR2
(1− µ1/µ2)

(1 + µ1/µ2)
− 1

2πR2 −
1
A

n(n2 − 1)
R3(1 + µ1/µ2)

(5.7)

We use the results of linear stability analysis as a first check of our
numerical implementation. In our simulation we consider perturba-
tions of the form in Eqs. 5.4 and 5.5 with a perturbation amplitude
ε = 0.01 and modes n = 1, ..., 18. For each perturbation mode n, the
full equations of motion are solved for a few time steps.
For each time step we compute the location of the interface point char-
acterized by θ = 0:

x(t) = R(t) + a(n, t, θ = 0) = R(t) + εR0 f (n, t)cos(0). (5.8)

We obtain:

f (n, t) =
x(t)− R(t)

εR0
(5.9)

Applying the logarithm to Eq. 5.6 we have log[ f (n, t)] = σnt, so that
we can compute the growth rate with the formula

σn =
log[ f (n, t)]

t
=

1
t

log
[

x(t)− R(t)
εR0

]
(5.10)
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Figure 30: Comparison of the analytic result to linear growth rates from the
front tracking code with A = 2 · 103, µ1/µ2 = 0.1 and R0 = 1
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Figure 31: Comparison of the analytic result to f (n, t) from the front tracking
code with A = 2 · 103, n = 7, µ1/µ2 = 0.1 and R0 = 1

Comparison

In figure 30 we compare the analytic linear growth rates from equation
5.7 with growth rates obtained with the code for a case with A = 2 · 103,
µ1/µ2 = 0.1 and R0 = 1. The resolution adopted is 500× 500 and the
domain is 5× 5. We used a time step ∆t = 0.001.

The agreement between theory and simulations is good, though for
large wavenumbers, the growth rates from linear theory have slightly
smaller absolute amplitudes than the growth rates from the simula-
tions. However, the large wavenumber behaviour is strongly dissipa-
tive in the problems considered here and has little effect on the simula-
tions as long as the wavenumbers with positive growth are resolved. It
is well known that finite differences schemes do not capture high fre-
quency phenomena accurately, so it is important to resolve the length
scales of interest as has been done here.
In figure 31 we can observe a comparison between f (n, t) = eσnt with
σn obtained from equation 5.7 and f (n, t) calculated from equation 5.9.
The results, for the case with n = 7, are plotted with logarithmic scale
for the y-axis so that we can see two overlapping straight lines.

remark It is standard practice in boundary integral simulations of in-
terfacial instabilities to present numerically computed linearized
growth rates and compare those to analytical results as has been
done in this section (Hou, Lowengrub, and Shelley [14]). How-
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ever, in simulations of interfacial instabilities using finite differ-
ences and finite elements methods, it is unfortunately uncom-
mon to present such results. Since the linear instabilities are at
the heart of many interfacial instabilities, it is important to dis-
cuss the fidelity of the numerical scheme in capturing this key
feature of the physical problem.

5.2 simulations of the saffman-taylor in-
stability

We have carried out a number of numerical experiments with different
initial interfaces, viscosities and surface tensions.
All results seems to agree with the theoretical analysis and numerical
results available in the literature.
Since the Hele-Shaw flow is unstable for long time computations, the
results do not converge to a unique solution due to the roundoff and
the discretization errors. This is consistent with experiments in which
different shapes are observed after some time. However, this should
not invalidate our simulations because we still can predict roughly the
shape and location of the interface as time evolves. Moreover, for a
short time period, the solution does converge and the computational
result is independent of the grid.
The crucial parameter which affects the stability is the surface tension
parameter A = 12µ2Q/(σb). The larger the parameter A, the more
unstable the Hele-Shaw flow.
The basic elements of a pattern formation for a bubble expanding in a
radial Hele-Shaw cell are well understood from experiments (Paterson
[21], Lajeunesse and Couder [17]) and careful numerical simulations
(Hou, Lowengrub, and Shelley [15], Hou et al. [16], Li, Lowengrub,
and Leo [19]).
Very roughly, a perturbation of the bubble interface grows outwardly
into an expanding petal. When this petal’s radius of curvature exceeds
the wavelength of an unstable mode, it tipsplits into two nascent petals,
which themselves broaden and split. This repeated process yields an
interface described by a population of branches and fjords, and whose
evolution is characterized by strong competition among the branches,
with some branches being shielded and retracting, and others advanc-
ing further into the fluid. We consider the evolution of the interface at
different values of the surface tension parameter A; as initial data we
take

(x0(θ), y0(θ)) = r(θ)(cos(θ), sin(θ)), (5.11)
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Figure 32: An expanding Hele-Shaw bubble with initial interface r(θ) = 1 +
0.1(cos(3θ) + sin(2θ)) and A = 12.8 · 103

where

r(θ) = 1 + 0.1(cos(3θ) + sin(2θ))

as in Hou, Lowengrub, and Shelley [15], so that no particular symme-
try on the ensuing motion is imposed. In all cases the initial data are
unstable to Saffman-Taylor instability.
Figure 32 shows the expansion of the bubble from t = 0 up to t = 28.8,
at equally spaced intervals of time. The value of the surface tension
parameter is A = 12.8 · 103 and the viscosity ratio µ1/µ2 = 0.02 . A
500 × 500 grid has been used and the time increment is ∆t = 0.01.
This simulation displays much of the behaviour that has stimulated in-
terest in pattern formation in Hele-Shaw flows. At early times, three
main fjords form in the interface; these fjords separate three expanding
fronts. The number of fjords arises from the n = 3 component in the
initial data. The expanding fronts rapidly develop oscillations which
themselves form fingers and petals.
The petals expand outwards and eventually tipsplit into two petals.
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Figure 33: Pressure field at t = tend for the case with A = 12.8 · 103

There is also abundant evidence of competition between these vari-
ous structures. Of the approximately 20 protuberances that develop at
early times, only about 15 of them are still actively growing outwards
as t = 28.8. The remainder have either stopped growing outwards, or
have receded and been absorbed back towards the main bulk of the
bubble.
In figure 33 we can see the pressure field at t = tend. We observe that
the pressure is approximately constant in the zone of lower viscosity,
as follows from equation 2.3 if we neglet viscosity (µ1/µ2 = 0.02).
Figure 34 shows the isolines of the velocity field modulus: there are
regions of high velocity in the necks which connect the longest fingers
to the ’mother’ fluid because the fluid is forced to pass into a narrow
corridor. We observe that the isolines thicken in proximity of the fjords:
in fact the velocity at the fjords is very low, and this implies that there
must be a zone of high velocity gradients where the velocity passes
from his characteristic value to a value close to zero. Similar conclu-
sion can be drawn for the tips of the fingers, where we have a velocity
surplus which allows the fingers to grow.
Figure 35 shows the streamlines of the velocity field: the fjords behave
approximately like stagnation points, and the inner fluid is forced to
pass through the fingers, which consequently have to grow.

Figure 36 shows the bubble area S(t) versus the radius of gyration
G(t) on a log-log scale. G(t) is defined as the maximum distance of
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Figure 34: Isolines of the velocity field modulus at t = tend for the case with
A = 12.8 · 103
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Figure 35: Stream lines at t = tend for the case with A = 12.8 · 103

a point on the interface from the injection point. The radius of gyra-
tion has been used as a measurement of complexity, as the slope of
logG versus logS gives roughly a dimension d, where d is the dimen-
sion of the bubble (i.e. S ∼ Gd). For example the slope is two for a
circular bubble. This slope is, of course, not smooth, as the point of
maximum radius jumps between different sites during the evolution.
The jumps themselves are associated typically with tip-splitting events,
as the splitting allows a newly formed finger to move outwards more
quickly. The slope of logG versus logS as a function of time is plot-
ted in figure 37: the dashed lines have the values 1.71 and 1.66 (see
and respectively), which are estimates for the fractal dimension of a
branched object grown via diffusion limited aggregation (DLA), a pro-
totypic model for the growth of branched structures (Zhang, Luo, and
Liu [34]). There is a period (14 < t < 25) of good agreement with these
values, but the behaviour of the slope is mostly characterized by large
deviations from these values. The noise is due to numerical errors that
emerge while differentiating and expecially to the interface reconstruc-
tion procedure.

The area is computed using the very simple shoelace formula, which
applies perfectly to the method we used, in which adjacent interface
elements are not logically connected:
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Figure 36: The bubble area S(t) vs the radius of gyration G(t) on a log-log
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Figure 38: Analytic and computed bubble area vs time

p_area = 0.0d0

do i = 1,np

p_area = p_area + (xend(i) + xstart(i))*(yend(i) - ystart(i))

enddo

p_area = abs(p_area)/2.0d0

Figure 38 shows the comparison between the analytic bubble area as
a function of time and the one computed during the simulation; we can
observe a satisfactory agreement between the two, so that we consid-
ered not necessary to implement a technique that improves the mass
conservation during the reconstruction procedure (Shin and Juric [26]).
The expanding fronts develop more fingers and petals depending on

the ratio between surface tension and mass inflow. For large values
of this ratio, only a few low frequencies are unstable for each fjord.
As we decrease the ratio, more Fourier modes become unstable and
we see more fingers and petals, see figure 39. For a short time, the
shape of the interface varies little for different values of the surface ten-
sion parameter. The bigger the surface tension parameter, the quicker
the secondary structure develops. As we decrease the physical surface
tension further, the numerical dissipation becomes more apparent, in-
dicating the limitation on the real surface tension that we can resolve.
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Figure 39: Bubble expansion comparison between the cases with A = 3.2 · 103

and A = 6.4 · 103
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Figure 40: An expanding Hele-Shaw bubble with initial interface r(θ) = 1 +
0.1(cos(3θ) + sin(2θ)) and A = 25.6 · 103

5.2.1 A case with topology change

In order to investigate the effect on the evolution of the interface of
larger viscosity ratios a run was performed with A = 25 · 103. The re-
sult is shown in figure 40: at later times the longest fingers produce a
bubble at the end connected to the mother fluid by a long and narrow
neck. These structures are similar to those reported in Tryggvason and
Aref [29], see figure 41.

If we take some steps forward in the simulation we find out that
these bubbles detach and propagate into the more viscous one. Fig-
ure 42 shows the evolution of one of these bubbles. When the neck
becomes very thin, the two parts of the interface approach closer than
about one or two grid cells and contributions to G in equation 4.6
simply cancel; since the level contour reconstruction technique uses
contours of indicator function to create interface elements, these latter
are constructed with the same topological properties as the indicator
function and consequently at a certain time the bubble detaches.
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Figure 41: Density driven viscous fingering, computation by Tryggvason and
Aref [29]

This run gives an effective example of the competition between the fin-
gers: the neck becomes thinner and thinner because of the expansion
of the neighbouring structures; when the interface breaks, the structure
below is drawn into the detached bubble (figure 42, (d)) and when it
gets too close the two interface parts merge to form a unique structure
(figure 42, (e)).



5.2 simulations of the saffman-taylor instability 65

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5

−2

−1.5

−1

−0.5

0

0.5

x

y

t = 33

(a)

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5

−2

−1.5

−1

−0.5

0

0.5

x

y

t = 36

(b)

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5

−2

−1.5

−1

−0.5

0

0.5

x

y

t = 39

(c)

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5

−2

−1.5

−1

−0.5

0

0.5

x

y

t = 42

(d)

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5

−2

−1.5

−1

−0.5

0

0.5

x

y

t = 45

(e)

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5

−2

−1.5

−1

−0.5

0

0.5

x

y

t = 48

(f )

Figure 42: The process of bubble detachment and reattachment
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5.3 unsteady pumping

As was previously explained the ultimate goal of this work is to verifiy
the possibility of selectively suppress some unstable wavenumbers in
order to hinder the development of the fingering pattern.
To do that we simulate the response of the system to an unsteady forc-
ing (mass inflow) composed by a static part and a superimposed ar-
monic component. We run a number of cases in a broad band of fre-
quencies and amplitudes.
We hope that for certain combinations of frequencies and amplitudes
of the armonic part of the forcing, the growth of the interface perturba-
tions is dumped and the extent of fingering reduced.
We have to pay some attention during the adimensionalization of the
equations because it can lead to errors. Continuity equation for an
unsteady pumping is the following:

∇ · u = Q(t)δ(x− xs) (5.12)

where we write Q(t) as

Q(t) = Q0q(t) = Q0
[
C1 + C2cos(2π fpumpt)

]
. (5.13)

The adimensional inflow q(t∗) is plotted in figure 43.
We define the adimensional velocity using a typical value of Q(t),

that is Q0:

u∗ =
u

UR
=

u
Q0/b
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The adimensional mass conservation equation is:

∇∗ · u∗ = q(t∗)δ∗(x∗ − xs) (5.14)

For p, x, µ, δ and κ we use the same adimensionalization introduced
in 3.2. We obtain

u∗ = − 1
A

1
µ∗

(
∇∗p∗ −

∫
κ∗nδ∗(x∗ − x∗f )ds∗

)
(5.15)

where the adimensional parameter A is now

A =
12µ2Q0

σb
.

Applying the divergence to equation 5.15 and using equation 5.14

we obtain

∇∗ ·
(
− 1

µ∗
∇∗p∗

)
=Aq(t∗)δ∗(x∗ − x∗s )

+∇∗ ·
(
− 1

µ∗

∫
κ∗nδ∗(x∗ − x∗f )ds∗

) (5.16)

The adimensional boundary condition for the case with unsteady
pumping is

p∗(R∗out) = −A
q(t∗)
2π

log(r∗) (5.17)

5.3.1 A first attempt at fingering control

We have seen previously that the competition between fingers can lead
to a break-up of the interface in multiple points. We have also high-
lighted the characteristic behaviour associated with a bubble detach-
ment: the neighbouring fingers are drawn into the detached bubble
and they merge to form a unique structure.
Bubble detachment can be positive from the point of view of the control
because it causes the rupture of the coherence of the fingering pattern.
In this perpective the reattachment must be avoided because it would
allow the structure to continue her growth.
Figure 44 shows the pinchoff of a bubble when, starting from a devel-
oped fingering, we force the system with an armonic mass inflow q(t)
with C2 = 10 and fpump = 1/3.
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Figure 44: Pinchoff of a bubble due to an armonic forcing
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A number of simulations in a broad band of frequencies and ampli-
tudes have been carried out. Particularly we tested the response of the
system to an unsteady forcing composed by a static part (C1 = 1) and
a superimposed armonic component, starting from the initial interface
defined by equation 5.11. The frequencies range from 1/T to 100/T
and the amplitudes C2 range from 0.02 to 2. The final time is T = 30,
as in the examples presented previously. We obtained 15% reduc-
tion (maximum) of the fingering extent (measured as the maxiumum
distance from the injection point) for the combination fpump = 3/T,
C2 = 0.2.





6 C O N C L U S I O N S A N D F U R T H E R
S T U D I E S

A robust method for the numerical simulation of viscous multiphase
flows in two dimension has been implemented.
We have addressed our attention to the study of radial viscous fin-
gering in a Hele-Shaw cell, for which interface merging/breakup is a
predominant feature.
The heart of the method is a simple technique for reconstructing the
phase interface from a level contour of the indicator function. All of
the accuracy and advantages of explicit Lagrangian interface tracking
are retained, while the complexity of mantaining logical connectivity
of the interface mesh is eliminated.
The reconstruction method accomplishes the operations of interface el-
ement addition, deletion and reconnection simultaneously in one step.
Interface merging/breakup is performed naturally and automatically
since the newly constructed surface elements take on the same topo-
logical properties as the indicator function.
We have conducted numerous validation tests, finding good agreement
with the linear stability analysis theory and with non linear results
from previous computations.
Our simulations highlight competition between fingers, which can cause
a particular behaviour of the interface with consecutive detachments
and reattachments of interface pieces.
The robustness of this method is very attractive because it allows to
simulate flows in realistic configurations for petroleum engineering;
for example configurations with multiple injection points and/or with
the addition of extraction points can be considered.
A very first attempt at fingering control has been done, testing the re-
sponse of the system to an armonic pumping, which allows bubbles to
detach, avoiding the consequent reattachment. This result is interest-
ing because it can cause the rupture of the coherence of the fingering
pattern, suppressing the growth of some of its parts. A 15% reduction
of the fingering extent has been observed, superimposing an armonic
pumping to a static one, for a certain combination of frequencies and
amplitudes.
The simulations presented here use relatively high resolution grids of
5002 up to at most 70021. Computations with a steady pumping can

1 Remark: for the indicator function double resolution grids are used, i.e. grids of 10002

up to 14002.

71



72 conclusions and further studies

be done within 4− 5 hours on a Intel R©CoreTMi7 CPU @ 2.00 GHz. Cal-
culations with unsteady pumping are more computationally expensive
and the cost depends on the variability of the forcing. We have as of
yet not fully optimized the code or tested the code on more advanced
or parallel architectures.
We believe that the actractiveness out this simulation tool lies in its
combination of accuracy and robustness.



A T H E C O D E

The code is implemented in Fortran 90. In this appendix a short ex-
plaination of its structure will be given.
The program receives some input parameters which are divided into
two categories:

• Static input parameters (e.g. resolution, dimensions of the do-
main, frequency of output production/interface reconstruction),
tmax, etc... ; these input parameters are contained in the file
data.dat (tab. 1)

• Dynamic input parameters: frequency and amplitude of the ar-
monic component of the forcing, which are dynamically gener-
ated from a test matrix. These input parameters are contained in
the file input.dat

The standard output is represented by the locations of the interface
segments at a certain time, which are written into files named for exam-
ple interface_loc_17.dat, where the number indicates a progressive
counter. Files with velocity, pressure or viscosity fields can also be pro-
duced.

The code is divided into the following parts, each of which is pack-
aged into a module:

Table 1: Input file

M,N Resolution (x and y)
xmax, ymax Domain dimensions
r0 Radius of the initial interface
µ1/µ2 Viscosity ratio
A Surface tension parameter
C1 Stationary component of q(t) (usually 0 or 1)
∆t Time increment
frec, fplot Frequency of reconstruction/data writing
nsin, ncos Wavenumbers of the azimuthal perturbations of the initial interface
Asin, Acos Amplitudes of the azimuthal perturbations of the initial interface
rlim Threshold of the residual (BiCG-stab)
flag New/old computation
tmax Maximum time
path Name of the folder where to write data
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main program The main program is contained into the file driver.f90.
It contains calls to subprograms and the DO loop in time.

variables declaration Global variables are declared in the file var.f90.
Every subroutine make use of these global variables thanks to
the statement USE var. Some arrays must be dynamic in nature;
these are handled in Fortran 90 using the allocatable modifer
during declaration.

input file reading and parameters definition These operations
are managed by the module def_par.f90. This module contains
the subroutines read_input_file() and define_parameters().

initialization The module init.f90 contains all the initialization
routines:

• Grid generation, performed by the subroutine grid_gen(),
which generates the two grids of figure 20

• Interface setup: this operation is managed by the subroutine
interface_setup() if the input variable flag is equal to 0

or by the subroutine resume_data() if flag = 1. In the first
case the desired initial interface is generated by defining the
arrays xstart, ystart, xend and yend; in the second case a
stopped computation is restarted by reading the last output
file interface_loc_XX.dat produced

fast poisson solver All the subroutines from the package FISH-
PACK necessary for the solution of equation 4.6 are contained in
the module fps.f90

interface tracking The module intrack.f90 contains all the sub-
routine which concern the interface tracking method and partic-
ularly the subroutine rhsH(rhs) which define the right-end side
of equation 4.6, the subroutine PoissonH(ff) which calls hwscrt

from the FISHPACK package and defines all its inputs and lastly
the subroutine DetermineIntFace(), which carries out the inter-
face reconstruction procedure described in 4.5.

hele-shaw equations solver The subroutines necessary for solv-
ing the Hele-Shaw equations can be found in the module HS.f90.
These subroutines are:

• surface_tension(STx_poh,STx_moh,STy_poh,STy_moh), which
computes the surface tension as described in 4.3.1.
STx_poh, STx_moh, STy_poh, STy_moh represent respectively
(STx)i+ 1

2 ,j, (STx)i− 1
2 ,j,

(
STy

)
i,j+ 1

2
and

(
STy

)
i,j− 1

2
from equa-

tion 4.17;
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• rhs(), which calls surface_tension(STx_poh, STx_moh, STy_poh,

STy_moh) and build the right-end side of the equation for the
pressure, as described in 4.3.1;

• rhs_boundary(), which applies the changes to the right-end
side due to the Dirichlet boundary conditions; it is called by
rhs();

• dirichlet_BC(), which defines the value of the pressure on
the boundary, as specified in equation 3.2

• press_solver(), which calls rhs() and solves the linear sys-
tem defined by 4.14 with the BiCG-stab algorithmn;

• compute_grid_vel(), which computes the velocity of the in-
terface points from the values of the pressure, as explained
in 4.3.3

update of the flow properties Once the indicator function Hij is
known, the flow properties (in terms of viscosity) are updated
using the definition 4.9 and the coefficient β, defined by equation
4.15, is built by the subroutines mu_setup() and coeff(), which
are contained in the module upd.f90.

interface advection Once the velocity field has been computed one
can advect the interface points thanks to the subroutine int_advection(),
which calls grid2int() for the interpolation from the grid to the
interface, as explained in the section 4.4.

writing on file At last, every fplot times, some output files can be
produced, containing the location of the interface points at a fixed
time and eventually the pressure/velocity/viscosity fields.





B H E L E -S H A W C E L L F O R F LO W
V I S U A L I Z AT I O N

It is by now a standard textbook fact (Batchelor [4], Acheson [1]) that
Hele-Shaw cells can be used as an apparatus for visualizing the stream-
line pattern of two-dimensional Euler flows of an ideal fluid past an
obstacle (figure 45).

Indeed, such a visualization constitutes the very first photograpf in
van Dyke’s Albun of fluid motion[31] and it is annotated with the com-
ment that ’It is at first sight paradoxical that the best way of producing the
unseparated pattern of plane potential flow past a bluff object which would be
spoiled by separation in a real fluid of even the slightest viscosity, is to go to
the opposite extreme of creeping flow in a narrow gap, which is dominated by
viscous forces’.
These unexpected similarities between two very different physical prob-
lems do not seem quite so unexpected when one writes down the math-
ematical problem statement in each case. Indeed, after the various ap-
proximations and assumptions, in the bulk fluid both Euler flow and
Hele-Shaw flow reduce to a Laplacian field equation for a velocity po-
tential φ with the fluid velocity given as u = ∇φ, i.e. the problems are
kinematically equivalent.
The essential difference between the problems is dynamical in nature:
in the Hele-Shaw problem, the pressure p(x, y) in the fluid is linearly
related to the potential function via

p(x, y) = −12µ

b2 φ (B.1)

while for steady potential flows, integration of the Euler equations
yields Bernoulli’s theorem which states that the fluid pressure p(x, y) is
given as a nonlinear function of the velocity potential via the condition
that

p +
|u|2

2
= p +

φ2
x + φ2

y

2
(B.2)

is constant on streamlines.
For this reason, as soon as one starts to consider free-surface problems
in which the fluid pressure usually enters the boundary conditions ex-
plicitly, one no longer anticipates any kind of connection, either physi-
cal or mathematical, between Euler and Hele-Shaw flows.
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78 hele-shaw cell for flow visualization

Figure 45: Visualization of the flow around a cilinder with an Hele-Shaw ap-
paratus

One must notice however that the boundary condition on the wall is
necessary different between the Euler and the Hele-Shaw flow: ’no-
flow’ condition in the first case and ’no slip’ condition in the second
case. This means that the streamlines of the two flows, even if hardly
discernible, are only apparently similar.



C G R AV I T Y D R I V E N H E L E -S H A W
C E L L

Here we present the equations for the motions of bubbles through
an immiscible liquid under the effect of gravity(see also LeVeque and
Zhilin [18]). The physical setup is the same presented in chapter 3,
except for the fact that the Hele-Shaw cell is now vertical and gravity
must be taken into account. A version of the code which deals with the
effect of gravity has been written with few modifications compared to
the standard version.

c.1 bubbles rising

c.1.1 Governing equations

If we add gravity to equation 3.14 we have:

u = − b2

12µ

(
∇p−

∫
Γ(t)

σκn̂δ(x− x f )ds + ρg
)

. (C.1)

Using continuity equation ∇ · u = 0 we obtain:

∇ ·
(
− b2

12µ
∇p
)
= ∇ ·

(
− b2

12µ

∫
Γ(t)

σκn̂δ(x− x f )ds + ρg
)

. (C.2)

Let us introduce the following reference values for the physical vari-
ables:

LR = b; µR = µ2;

pR = σ/b; UR = σ/(12µ2);

ρR = ρ2

If we follow the same adimensionalization procedure followed in 3.2
we obtain this system of non dimensional governing equations
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nondimensional governing equations

∇∗ ·
(
− 1

µ∗
∇∗p∗

)
=− B∇∗ ·

(
− 1

µ∗
ρ∗j
)

+∇∗ ·
(
− 1

µ∗

∫
κ∗nδ∗(x∗ − x∗f )ds∗

)

u∗ = − 1
µ∗

(
∇∗p∗ −

∫
κ∗nδ∗(x∗ − x∗f )ds∗ + Bρ∗j

)
(C.3)

where B is defined as:

surface tension/gravity parameter

B =
b2ρ2g

σ

c.1.2 Boundary condition

Even if ρ1 = ρ2, the addition of gravity will introduce a hydrostatic
pressure gradient that is linear in y. If we are computing on the rectan-
gle Ω = [xmin, xmax]× [ymin, ymax] and we set

ρ0 =
1

LxLy

∫ ∫
ρ(x, y)dxdy,

where Lx = xmax − xmin and Ly = ymax − ymin, then we can write p
as

p(x, y, t) = gρ0(ymax − y) + p̃(x, y, t)

where p̃ is the deviation from the linear profile obtained from the
average density ρ0. If the boundaries are well away from the interface,
then we expect p̃ to be roughly zero along the entire boundary ∂Ω.
The adimensional form of the boundary conditions is

nondimensional boundary conditions

p∗(y∗) = B
(

ρ0

ρ2

)
(y∗max − y∗)

where

ρ0

ρ2
=

1
L∗xL∗y

∫ ∫
ρ∗(x, y)dx∗dy∗
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Figure 46: Velocity field, bubble rising
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