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Abstract 
 

 

 

 

Bioinformatics is playing an increasingly important role in the field of biomedical 

sciences in the interpretation of the data in order to understand the mechanisms at 

the basis of the cellular functioning. In particular, proteomics is gaining more and 

more importance in this context. The main aim of proteomics is the study and the 

analysis of the proteins present inside a biological sample or tissue, to 

characterize it in detail. It is well known that the proteins have, at every levels, a 

key role inside the cell, and they are responsible both for the physiological and for 

the pathological state of the cell. The main technological instrument used in high 

throughtput proteomics to analyze biological tissue from a molecular point of view  

is the mass spectrometer. The mass spectrometer, often coupled with an upstream 

chromatography column, allows us to have, starting from a biological sample, a 

three-dimensional signal similar to a map. The two dimensions of the plane are the 

mass to charge ratio (often labeled as m/z) and the retention time spent by the 

molecules to elute from the chromatography column. The third dimension, that is 

the z-axis, is the intensity of the signal. The localization of the peptides (the 

proteins, before being analyzed, are always digested in smaller parts, the 

peptides, using an enzyme such as the Trypsin) happens mainly due to the 

information related with the m/z and retention time axes. The third axis, instead, 

has the very important information about both the identification and the 

quantification of the peptides present in the sample. One of the most important 

objective of proteomics is the precise quantification of the proteins within a 

biological sample: this is indeed the quantitative proteomics. There are two kind of 

quantitative proteomics: absolute and relative quantitative proteomics. In the first 

case the aim is to quantify the amount of proteins in a sample without any 

reference, but in absolute terms: in this case it is not present any kind of 

comparison. In the relative quantitative proteomics, which is widely used for 

operative and functional reasons, the quantification is performed comparing two or 
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more different samples: in this case the aim is to determine if there is any 

difference between the compared samples, or, in other terms, if a protein is over-

expressed or sub-expressed. It is very important to be able to perform such 

analysis and quantification in order to establish which are the proteins, or the 

networks of proteins, directly related with a determined pathological state. As said 

before, it is possible to perform quantification with more than two samples: for 

example, in the datasets shown in this work - kindly provided by the Biomolecular 

Mass Spectrometry and Proteomics group headed by professor Heck -, there are 

three samples analyzed in the same signal. To get the signals of the same peptide 

not overlapped in the exactly same area of the three-dimensional map, it is 

necessary to label differently the peptides coming from the different samples. In 

particular, there are several kind of labeling, and in this work the datasets have 

been realized using two kind of different labeling: the dimethyl and the SILAC 

labeling. This peptide marking process varies the mass of the differently labeled 

peptides, without varying their chemical properties. In this way it is possible to 

visualize in the final signal the couple (or the triplet) of the peptides, composed by 

the distributions of the same peptide but from different samples. The signals are 

relatively shifted because of the difference in mass due to the labeling. Comparing 

the two signals, one lighter and one heavier, it is possible to get information about 

the relative quantification. Two softwares, in particular, perform this kind of 

analysis, composed by the first step, which is the peptide identification, and then 

by the quantification of the peptides. The first software, freeware and widely used, 

is named MaxQuant, and it has been realized in the Max Planck Institute of Berlin. 

The second program, commercial and under license, is named Proteome 

Discoverer and it is sold by the ThermoScientific company. Both these software 

have been used in this work on the considered datasets, and it is present a 

comparison between their performances, analyzing the differences. In particular, 

Proteome Discoverer seems to be much more effective in the identification 

process, while in the quantification part the program obtain comparable results.  
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Fig.1 Example of triplet in the three-dimensional map. To the right the 

same peptide visualized bi-dimensionally  
 

 

Starting from the identification performed by these programs, our algorithm’s aim is 

to increase significantly the precision and the accuracy of the results obtained 

using MaxQuant or Proteome Discoverer (mostly MaxQuant, widely used). In 

particular, we have focused our efforts on two typical problems related to the 

quantification process in mass spectrometry, which invalidate and worsen the 

results. The first problem is about the overlap between features of the same 

peptide, labeled differently: when the shift along the m/z axis isn’t long enough, the 

signals overlap, altering the final ratio of quantification. The second problem, 

instead, is related to the co-elution of different peptides in approximately the same 

position in the three-dimensional map: the overlap between different signals 

generates obviously artifacts which invalidate the quantification. In particular, this 

problem is not directly tackled by MaxQuant, and this lead to some cases of poor 

quantification.  

The ideas used to solve such problems are shown in the following. Once the area 

of the peptide is identified in the m/z and retention time axis, a scan selection is 

firstly performed. Scan by scan, it is computed the Pearson correlation with the 

theoretical distribution of the peptide and, if the coefficient is higher than a fixed 

threshold, the scan is kept for the final quantification, otherwise it is discarded. In 



8 
 

this way, a first filtering step is performed to discard the corrupted or noisy 

information. The second idea concerns the division of the elution area in several 

sections, both along the retention time and along the m/z axis, in order to get 

different ratios for the same peptide. Once there are several ratios, these are 

compared, and only those ratios whose difference is lower than a fixed threshold 

are kept for the final quantification. If there are two groups of ratios (whose 

difference is lower than the threshold), for the final quantitation is kept the longest 

group, or those with a smaller difference. In this way, it is used only that part of the 

area whose information about the relative quantification is coherent between the 

sections.  

Finally, another original idea introduced in this work, is about the classification of 

the peptides quantified. In particular, each quantified peptide has a score based 

upon three different characteristics of the peptide itself:  

1. The identification score of the peptide (provided directly by MaxQuant or 

Proteome Discoverer); 

2. The result of the Pearson correlation between the peaks along the retention 

time axis; 

3. The number of sections used for the final computation. 

In this way, it is possible to have a score for each peptide, in order to rank the 

reliability of the quantification performed. The three components of the score are 

weighted according to a linear classifier where the quantification has been 

considered successfully if the ratio is in the range of the expected value more or 

less the 50% (which numerically means that the value should be between 0.5 and 

1.5, being the expected value equal to 1).  

Finally, about the overlap between the elution areas of the same peptide differently 

labeled, it has been tested a method proposed by a Korean researcher in the 

2010, it uses the quadratic equations to solve the overlap issue and get the 

expected ratio. To evaluate the effectiveness of such method, it has been used a 

specific dataset with the dimethyl labeling, that shows this kind of trouble.   

The results obtained with our algorithm are very interesting. In the case of overlap 

between areas of the same peptides (dimethyl dataset), our performance is much 

better than that of MaxQuant. In particular we reduced the standard deviation of 
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the results of an order of magnitude, keeping almost the same number of 

quantified peptides. Furthermore, other four datasets have been used, where the 

complexity of the signal was very high, due to the elevated concentration of 

peptides. Even in this situation, our algorithm has performed greatly, reducing the 

standard deviation of the final results (respect MaxQuant performance) in every 

dataset (expect one, where the values are comparable), and keeping the averaged 

value close to the expected one. After the scoring, the accuracy of the results 

further increases, but the number of quantified proteins is significantly reduced.  

 

 
Fig.2 Comparison between our algorithm and MaxQuant results;  

Dataset SILAC02 1:1:1 
 

  

There are even reported some specific cases, where it is shown how our algorithm 

performs much better than MaxQuant in some specific situation. In particular, 

when an external overlap occurs (specifically with an elution area of another 

peptide), MaxQuant quantifies providing a completely wrong value. Our algorithm, 

instead, as shown in the figure, is able to correct such mis-quantifications, 

approaching the expected value, or avoiding the quantification, due to the lack of 

information to get the final ratio. In this way, the results are close to the expected 

value (equal to one in the picture), avoiding outliers far from the expected value 

(as shown in the picture). 
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Sommario 
 
 
 

La bioinformatica, nell’ambito delle scienze biomediche, sta assumendo un ruolo 

sempre più importante nel ottenere e nell’interpretare informazioni utili ai fini di 

comprendere i meccanismi e il funzionamento dei processi cellulari. In particolare, 

la proteomica ha assunto negli ultimi anni un ruolo sempre più importante in 

questo contesto. Il compito principale della proteomica è quello di studiare e 

analizzare la componente proteica presente all’interno di un campione o di un 

tessuto, per poterlo caratterizzare dettagliatamente. E’ noto che le proteine 

svolgono, a tutti i livelli, un ruolo chiave all’interno della cellula, sia per il suo 

normale funzionamento fisiologico sia in caso d’insorgenza di stati patologici. Lo 

strumento principe della proteomica, che ha assunto da anni un ruolo guida nello 

studio di tessuti biologici dal punto di vista molecolare, è lo spettrometro di massa. 

Lo spettrometro è uno strumento che, accoppiato con una cromatografia a monte, 

permette di ottenere, partendo da un campione biologico iniziale, un segnale 

tridimensionale simile ad una mappa. Le due dimensioni del piano sono la massa 

sulla carica (tipicamente indicata come m/z) e il tempo di eluizione delle molecole 

dalla cromatografia a monte dello spettrometro. La terza dimensione, ovvero 

l’asse verticale z, è l’intensità del segnale. I primi due assi sono utilizzati 

principalmente per la localizzazione dei peptidi (le proteine, prima di essere 

analizzate con questa metodologia, vengono quasi sempre digerite in parti più 

piccole, denominate peptidi). Il terzo asse invece contiene informazioni preziose 

sia per quanto riguarda l’identificazione, sia per quanto riguarda la quantificazione 

dei peptidi nel campione analizzato. Uno dei principali obiettivi della proteomica, 

difatti, consiste nel definire precisamente la quantità di componente proteica 

presente all’interno di un campione: in questi casi si parla di proteomica 

quantitativa. Ci sono fondamentalmente due tipologie di proteomica quantitativa: 

assoluta e relativa. Nel primo caso si tenta di stabilire qual è la quantità di proteine 

presenti in un campione in termini assoluti, senza effettuare nessuna sorta di 

comparazione. Nel secondo caso invece, ampiamente più utilizzato sia per 
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questioni di fattibilità operativa sia di tipologia di informazioni ricavate, la 

quantificazione viene eseguita comparando due tessuti o campioni diversi: in 

questo caso si tenta di stabilire se nei due campioni esistono delle differenze 

quantitative, ovvero se una proteina è più sovra-espressa o sotto-espressa in uno 

dei due campioni. Ovviamente, da un punto di vista clinico, è fondamentale essere 

in grado di eseguire questa tipologia di quantificazione per poter stabilire quali 

sono le proteine legate a determinati stati patologici: difatti, frequentemente la 

proteomica quantitativa relativa viene eseguita comparando un campione di 

tessuto fisiologico con un campione dello stesso tessuto patologico. In questo 

modo è possibile individuare le proteine, o la rete di proteine, responsabili 

dell’insorgenza della patologia. Inoltre, oltre che a quantificazioni binarie tra stati 

fisiologici e patologici, questo tipo di quantificazione si presta anche ad altre 

tipologie di analisi, e può essere effettuata anche con più di due campioni: i 

dataset presentati in questo lavoro ad esempio, - gentilmente forniti dall’università 

di Utrecht e in particolare dal gruppo Biomolecular Mass Spectrometry and 

Proteomics guidato dal professor Heck, dove parte di questa tesi è stata svolta- 

presentano una comparazione tra tre campioni diversi. Ma come avviene 

esattamente la comparazione tra campioni diversi? Per poter ottenere dei segnali 

non sovrapposti nella mappa fornita dallo spettrometro, è necessario etichettare 

(dal termine inglese ‘labeling’) i peptidi provenienti dai vari campioni in maniera 

diversa. In particolare, esistono diverse tipologie di labeling, e in questo lavoro si 

sono affrontati dataset realizzati con due diverse tecniche: il labeling dimetile e 

quello SILAC (basato su isotopi). Questo processo di marcatura dei peptidi 

permette di variare la loro massa, senza alterare le proprietà chimiche della 

molecola. In questo modo sarà possibile visualizzare nel segnale finale una coppia 

(o tripletta) di segnali appartenenti al medesimo peptide, non sovrapposte in virtù 

dello spostamento lungo l’asse della massa su carica, e provenienti dai due 

campioni diversi. Comparando i due segnali è possibile ottenere le informazioni 

relative alla quantificazione.  
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Fig.1 Esempio di tripletta nella mappa tridimensionale. A destra lo 

stesso peptide visualizzato bidimensionalmente  
 
 
 

Due software in particolare si occupano di questo tipo di analisi, ovvero 

identificazione e quantificazione relativa di campioni analizzati tramite spettrometri 

di massa. Il primo, ampiamente diffuso in virtù della sua disponibilità freeware, è 

MaxQuant, ed è stato realizzato al Max Planck Institute di Berlino. Il secondo 

software, commerciale e distribuito dalla ThermoScientific, si chiama Proteome 

Discoverer. Entrambi questi programmi sono stati eseguiti sui dataset utilizzati in 

questo elaborato, e un’analisi delle relative performance indica una prestazione 

migliore nettamente di Proteome Discoverer in fase di identificazione, mentre i 

risultati sono comparabili in termini di quantificazione, anche se ancora una volta 

Proteome Discoverer si mostra essere leggermente più accurato.  

A partire dall’identificazione eseguita da questi software, il nostro algoritmo ha 

l’obiettivo di aumentare la precisione e l’accuratezza dei risultati ottenuti 

utilizzando MaxQuant o Proteome Discoverer. In particolare, ci si è focalizzati su 

due problemi tipici che peggiorano sensibilmente il risultato della quantificazione 

(in particolare di MaxQuant, la cui documentazione è disponibile, ed è nota la 

strategia utilizzata per quantificare). Il primo problema riguarda l’overlap tra peptidi 

uguali ma marcati in maniera diversa: quando lo spostamento lungo l’asse della 

massa non è abbastanza consistente i due segnali si sovrappongono, alterando 

così il rapporto di quantificazione cercato. Il secondo problema invece riguarda la 

co-eluizione di peptidi diversi nello stesso punto della mappa proveniente dallo 

spettrometro: la sovrapposizione dei segnali genera ovviamente artefatti che 
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inficiano e falsificano la quantificazione. In particolare quest’ultimo problema non è 

direttamente affrontato da MaxQuant, e ciò comporta alcuni palesi casi di mal 

quantificazione.  

Le idee utilizzate per risolvere questi problemi sono esposte nel seguito. 

Identificata l’area di eluizione del peptide in esame, inizialmente si esegue una 

selezione di ogni scan componente il segnale stesso, utilizzando il coefficiente di 

Pearson per ottenere una correlazione tra il segnale sperimentale e la 

distribuzione teorica nota. Se la correlazione non supera una certa soglia, lo scan 

non viene considerato per la quantificazione. In questo modo si attua una prima 

fase di filtraggio dell’informazione utile per la quantificazione. La seconda idea 

riguarda la divisione dell’area di eluizione in diverse aree, di modo da ottenere per 

lo stesso peptide diversi rapporti. Una volta che sono stati ottenuti diversi rapporti, 

sia lungo l’asse del tempo di eluizione, sia lungo l’asse del rapporto massa su 

carica, questi vengono confrontati tra di loro. Se l’informazione è coerente (ovvero 

la differenza tra i rapporti è minore di una data soglia) allora viene eseguita la 

quantificazione; se invece ci sono gruppi di rapporti molto diversi (in virtù di una 

sovrapposizione o di una qualsiasi tipologia di rumore) viene utilizzato per la 

quantificazione quel sottogruppo di rapporti, se presente, la cui differenza è 

minore della soglia. In questo modo si isola la parte di area il cui rapporto (ovvero 

la sua quantificazione) è diverso rispetto al resto del segnale. 

Infine, un’ulteriore e originale idea implementata nell’algoritmo presentato, 

riguarda la classificazione della quantificazione eseguita. In particolare, per ogni 

peptide quantificato, viene assegnato un punteggio sulla base di tre caratteristiche 

del peptide stesso: 

1. Il suo punteggio di identificazione (direttamente fornito da MaxQuant o 

Proteome Discoverer) 

2. Il risultato della correlazione di Pearson ottenuta tra i picchi lungo l’asse del 

tempo di eluizione (si ricordi che la selezione degli scan viene effettuata 

utilizzando il coefficiente di Pearson lungo l’asse massa/carica) 

3. Il numero di sotto-aree utilizzate per il calcolo del rapporto finale 

In questo modo, è possibile per ogni peptide avere un punteggio che stabilisca 

qual è l’affidabilità (ovvero la probabilità) che il risultato di quantificazione fornito 
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sia corretto. Il passo successivo è ovviamente quello di pesare appropriatamente i 

diversi contributi, e ottenere un punteggio in grado di stabilire se il peptide è stato 

ben quantificato oppure no. Attraverso un classificatore lineare è stata realizzata 

una classificazione supervisionata, nella quale la quantificazione viene 

considerata avvenuta con successo se il valore ottenuto è compreso in un dato 

intervallo, pari al valore del rapporto atteso più/meno il 50% (che si traduce 

numericamente nell’intervallo 0.5 < rapporto < 1.5, essendo il rapporto atteso 

uguale a 1 per il dataset usato come training set). In questo modo si ottiene una 

quantificazione dai risultati estremamente accurati, con l’ovvio compromesso di 

escludere alcune proteine dalla quantificazione finale. Per quanto riguarda infine la 

sovrapposizione tra le aree dello stesso peptide marcate differentemente, è stato 

utilizzato un metodo presentato da un ricercatore coreano nel 2010, che sfrutta la 

risoluzione di equazioni quadratiche per ottenere il rapporto corretto. Per valutare 

l’efficacia di questo metodo è stato utilizzato un dataset in cui il labeling utilizzato 

(dimetile) presentava questa tipologia di problema. 

I risultati ottenuti sono molto interessanti. Nel caso della sovrapposizione tra aree 

dello stesso peptide differentemente marcate, la nostra quantificazione si è 

rivelata essere di gran lunga migliore rispetto quella di MaxQuant, riducendo la 

standard deviation dei risultati ottenuti (circa 1500 peptidi che presentavano la 

sovrapposizione) di un ordine di grandezza, e mantenendo comunque un buon 

numero di peptidi quantificati.  

 

 
Fig.2 Paragone risultati nostro algoritmo vs. MaxQuant; Dataset SILAC02 

1:1:1 
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Sono stati inoltre utilizzati altri quattro dataset, nei quali era presente una rilevante 

complessità dovuta elevato numero di peptidi presenti nel segnale. Anche in 

questo caso, i risultati della quantificazione  ottenuti con il nostro algoritmo hanno 

ridotto significativamente la standard deviation dei risultati in tutti i dataset (eccetto 

uno, dove i risultati sono comparabili), ottenendo così dei risultati migliori rispetto 

quelli ottenuti da MaxQuant. Nella tesi, inoltre, sono riportati dei casi specifici nei 

quali MaxQuant, in presenza di una sovrapposizione esterna, quantifica in 

maniera completamente erronea, introducendo nei risultati dei valori chiaramente 

‘outlier’. Il nostro algoritmo invece, come mostrato nella figura, è in grado di 

correggere queste quantificazioni, o riportando il valore corretto, o non 

quantificando affatto, per via della sovrapposizione che non permette il calcolo del 

rapporto in maniera esatta. In questo modo, i risultati sono centrati attorno al 

valore atteso (pari a uno nella figura) e senza alcun valore palesemente sbagliato. 
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Introduction 
 
 
 

Nowadays Proteomics has reached a pivot role in Biology and Medicine: proteins 

are actually the structure, the engine and the operative components of the cells.. 

In clinical biology, quantitative proteomics is performed to properly understand 

which proteins are involved in different physiological or pathological states. In this 

context, where the research plays a primary role in the medical framework, it is 

often performed the relative quantification between two opposite states, such as 

health/diseased or sample/control. To perform this kind of relative quantification 

process, usually, the proteins of the first sample are labeled with a light label, while 

the proteins from the second sample are labeled with an heavier label, in order to 

have the same peptide differently marked. In this way, it is possible to compare the 

signals coming from the two samples, which are separated due to the mass shift, 

using for example a chromatography coupled with a mass spectrometer (LC-MS). 

In the mass spectrometry, the mass of the peptide has an important role: indeed, 

in LC-MS, peptides are represented in a three-dimensional space, where the axes 

are the mass to charge ratio and the elution time (usually named retention time), 

which is the time spent by the peptide to elute out from the chromatography 

column. The last axis is the intensity of the signal (whose information is that one 

used to perform the quantification). Nowadays mass spectrometers provides data 

with a very high resolution, and allow the identification and the relative 

quantification of a very high number of proteins in a sample. For these reasons, 

the actual state of art of the research in proteomics can’t disregard the contribute 

provided by the mass spectrometry. The data obtained with the mass 

spectrometers are actually very rich, and the relevant biological information may 

be sometime easily inferred, sometime it requires elaborated processing to give 

precious biological notions (such as, once again, the quantification of the amount 

of proteins in a sample). One of the bioinformatics’ roles in proteomics is 

essentially to extrapolate, as much as possible, the desired information from the 

data, in a trustable and reliable way.  
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This work is about a post processing algorithm, whose aim is to provide 

information about the relative quantification of labeled peptides of a sample, 

coming from a mass spectrometry experiment. Generally, a software used for 

mass spectrometry-based experiment can be basically divided in two steps: the 

identification of the peptides, and their quantification. Our algorithm quantify the 

peptides with an innovative approach, starting from the identification performed by 

two different programs, which are the actual state of the art in the identification and 

quantification processes (MaxQuant – freeware and widely used, and Proteome 

Discoverer - under license). The main idea at the basis of the algorithm is to 

combine two different strategies to achieve better results in the quantification, 

compared with the results obtained by the software used for the identification 

process. The first one is to exploit the information related to the identification 

process: each scan is compared with the theoretical distribution of the peptide 

through the Pearson’s coefficient and, if the result is over a predetermined 

threshold, the experimental distribution is kept for the quantitation; otherwise the 

scan is discarded. In this way, scans selected for quantification are those, in 

principle, properly shaped and well identified, whose information about the 

quantification of the peptide is reliable. The second idea implemented in this 

algorithm is to divide the bi-dimensional area of the peptide (mass to charge and 

retention time dimensions) in several sections, after have performed the scan 

selection. In this way it is possible to compute different quantitation ratios for the 

same peptide and, matching them, it is possible to leave out those -if present- 

which differ from the others. Thereby it is possible to avoid those sections which 

are affected by overlap with the elution area of other peptides, or those areas 

which are corrupted by noise. This idea has been mainly thought to solve the 

problem of the overlap between signals from different peptides: this problem is 

relevant due to the high concentration of proteins in a biological sample. The big 

number of proteins (and, obviously, of peptides in the final signal) in the sample 

increases the complexity of the data itself, and misleads the quantification 

process, because of such overlaps between signals of different peptides. The 

second idea aims to provide a solution to this relevant problem. Another issue 

related to the overlap between peptides, and that has been tackled in this work, is 
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about the overlap between features of the same peptide. Some kind of labeling 

may lead to an overlap between the Light area and the Heavy area, introducing a 

bias in the quantification. This may happen because the label introduces a mass 

shift which is pretty short, and the first peak of the heavy peptide overlaps with the 

other peaks of the light peptide (as we will see, the isotopic distribution of a 

peptide is composed by several peaks). In this work two versions of the same 

algorithm are shown, these are slightly different because optimized for the kind of 

labeling used in each datasets. In the first dataset it has been implemented a 

method ad hoc to solve the overlap problem between the Heavy and the Light 

distribution, while in the other datasets, where the problem of the co-eluting 

peptides is very present, it has been increase the number of sections in which the 

elution area has been divided, and the quantification strategy has been slightly 

modified to better solve that specific problem.  

Finally, a scoring process has been introduced, in order to rank the quantification 

process of each peptide. In particular, the score is given using three characteristics 

of the peptide and of the quantitation process.  

In conclusion, the aim of this work is the implementation of a workflow able to 

improve the quantitation results obtained with the best state of the art algorithm, 

such as MaxQuant. In particular, we aim to improve the quantification of those 

peptides whose complexity, due to different kinds of overlap with other 

distributions, would lead to a significantly poor quantification.  

Every dataset used in this work have been kindly provided by the Bio Molecular 

Mass Spectrometry and Proteomics laboratory of Utrecht,  headed by Professor 

Heck, where part of this thesis has been developed.  
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Overview 
 
 
 

It was 2008, when Nature Biotechnology published an editorial named: ‘Prepare 

for the deluge’ [1], where the author correctly forecast the burst of available data in 

the field of biology. Actually, that paper was about genomics data, but it’s easily 

extendable to the proteomics field, and to the all newborns ‘–omics’ fields that are 

going to live a new renaissance in biology and biotechnology. In order to properly 

understand and integrate this huge amount of data in an automatic and 

comprehensive way, a new discipline is moving its first steps: bioinformatics. The 

aim of bioinformatics, as already stated, is the analysis of the data provided by the 

new technologies (such as microarrays or mass spectrometers as well), and the 

extrapolation from such data of new information useful to understand the 

mechanism of the living cell. This thesis could find its location in such field: 

elaborate and analyze raw data provided by a mass spectrometer, from a sample 

realized on purpose, in order to be able to extract a very specific kind of 

information; to be more specific, the information is about the relative quantitation of 

proteins, at a peptide level. To understand the context in which this thesis is 

developed it is important first to glance at the proteomics field in general, and then 

deepen in detail the quantitative proteomics and the instrumentation used for this 

task. Let’s then start this chapter with an overview about proteomics in general. 

  

Proteomics 

Proteomics may be defined, at first, as the study of a subset of proteins present in 

a specific part of the organism, and how these proteins change during time and 

varying conditions. We can summarize the huge field of proteomics in four main 

cornerstones, which enclose all the different subfield of such discipline: 

1. Protein Identification: it is the determination of which proteins are present in 

a sample, separating and identifying uniquely each protein. To do so, it is 
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important to know either the sequence, or so many physical characteristics 

that it is statistical unlikely that the protein could be another one; 

2. Protein Characterization: it’s the determination of the biochemical and 

biophysical characterization of the protein, although the protein itself may 

not have been identified yet; 

3. Protein Quantification: it is the determination of the amount of proteins 

present in the sample. It may be two different kinds of quantification: 

absolute and relative. The first one is much more difficult to be reached, 

and it may be reduced to the relative quantitation between the sample and 

some internal standard. The second one, as we will see in the following of 

this chapter, is somehow easier to be achieved (but far from being trivial). 

In this work, we are going to focus on the relative quantification between 

three different samples; 

4. Sample Comparison: it’s somehow the unification of all the other three 

points, and it determines the similarities and the difference in the protein 

composition of two different samples. Some aspects may be the relative 

occurrence of the proteins, the relative abundance or the presence of some 

differential modification. 

 

Quantitative Proteomics and the Experimental Workflow 

In the proteomics field, the quantitative task is very important in order to get the 

expression of a protein in two different samples, related by a Boolean state such 

as healthy/diseased, or young/aged: in this way, for example, it is possible to 

understand which are the proteins related to the studied disease, because over-

expressed or sub-expressed, and therefore understand the network of interactions 

at the basis of the disease. As it is possible to see in the figure 3, the general 

workflow is divided in about five parts: protein isolation from the sample, protein 

separation, protein digestion, peptide fractionation, mass spectra analysis and 

finally data analysis. Once the proteins have been separated through gel 

techniques, it is possible to perform the protein digestion, in order to get the 

peptides from the proteins. The enzymes that performs the digestion are called 
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proteases and these are chosen in order to cleave the peptides in a very 

predictable and consistent way. It is important that the obtained peptides are not 

very long or too short, because often the mass spectrometers have a limited mass 

range, beyond which is useless to have any sample.  

 
Fig.3: Quantitative Proteomics workflow 

 

Furthermore, it’s important not to cleave the peptides in short parts, because the 
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higher is the number of the peptides, the higher is the complexity of the signal and 

the worse is the identification and the quantification. It is therefore important to find 

out the right trade-off. This compromise is reached by the protease known as 

trypsin, which offers some advantages, such as: 

 High specificity, which means very low rate of miss cleavage, and virtually 

no cleaves at unexpected position; 

 The arginine and lysine appears in the proteins approximately every 11 

residues: the peptides produced are of suitable length for mass 

spectrometry analysis; 

 The trypsin is easily obtained and purified. 

  Once the proteins have been cleaved in peptides, it is performed the Liquid 

Chromatography step, where the eluate run in a column with predetermined 

chemical features, which retains differently the running peptides. Therefore the 

chromatography is a way to get a further division in the sample, based on the 

retention time: as the eluate comes out from the column, it is analyzed by the 

mass spectrometer. Normally, an experimental run in chromatography, coupled 

with a mass spectrometer, is performed with a order of magnitude of hours. In the 

mass spectrometer, the sample is analyzed at different levels: in the first one it is 

possible to get the signal of the whole peptide, in the further levels the peptide is 

fragmented and analyzed in order to get spectra useful for the identification 

purpose. In the next paragraph will be given more details about the mass 

spectrometer and the dataset provided. The next question about quantitative 

proteomics comes directly from the figure 3 that shows the workflow: how exactly 

works the quantitation process and what is the labeling? 

There may be two different kind of strategy: the first one is the label-free 

quantification, while the second one is the label-based quantitation. The label free 

method is based on the comparison of different subsamples, coming from the 

samples that are going to be analyzed. Once the sample has been digested and 

has run in the chromatography column, it is possible to get the mass spectra, with 

the intensities for each peptide. At this point it is performed the comparison of the 

signals from the mass spectrometer: it is necessary to find out the 

correspondences of the spectra matching the signals obtained. This is the most 
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difficult part of the experiment, from a computational point of view. 

On the other side, there is the label-based quantitation, which is the one used in 

the realization of the dataset used in this work. The label based method can be 

divided in two parts: the first one is performed by the MS based quantitation, the 

second one required the second level of analysis that is the MS/MS based 

quantitation. The main idea is that the peptide molecules are labeled differently for 

each sample: with a Light molecule, a Medium and an Heavy one; since we know 

exactly the mass of the label used, and where the label is performed in the 

sequence, we are able to find for each peptide the whole triplet (Light – Medium – 

Heavy). Comparing the intensities of the peaks of each feature, we should be able 

to quantify the differently labeled peptides. In the figure 4, it is shown an example 

of triplet, composed by the isotopic distribution of the Light labeled peptide, the 

Medium and the Heavy one. 

 

  
Fig.4: MS Signal: a well defined Triplet 

 

Finally, the last type of quantitation, developed in the proteomics field, is the 

absolute quantitation. Absolute quantitation is often expressed as the molar 

concentration of a protein in a sample. One example where the absolute 

concentration of a given peptide can be of interest is when looking for biomarkers, 

where the absolute concentration of a peptide biomarker will provide useful 

information about the suitability of different assays to detect this peptide in a 
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subsequent diagnostic procedure. Often, this kind of quantitation is a relative 

quantitation, where the corresponding peptide is an internal standard used as a 

meter for the quantitation process (so, in this sense is not totally correct to speak 

about absolute quantitation).  

 

Mass Spectrometry: instrumentation and data provided 

The Mass Spectrometer (MS, fig.5)  is the main instrument used in proteomics, 

and particularly in quantitative proteomics. Before understanding how it works, we 

briefly see how it evolved from the first steps of its life till our days. The first 

documented application of mass spectrometry to a proteomics experiment dates 

back to 1958 [4], thanks to the efforts of the pioneer Carl-Ove Andersson, who 

worked with the fragments ions of the methyl esters. At the beginning of the 

century, precisely in the 1918 and 1919, Arthur Jeffrey Dempster and F.W. Aston 

worked on the implementation of some modern techniques used in mass 

spectrometry. Many decades later, in 1989, Hans Dehmelt and Wolfgang Paul 

were awarded of the Nobel Prize in Physics for the development of the ion trap 

technique (a work carried out in the 1950s and 1960s). Then, in the 2002, John 

Bennett Fenn and Koichi Tanaka won the Nobel Prize in Chemistry for the 

development of the electro-spray ionization (ESI) and the development of the soft 

laser desorption (SLD) and, obviously, their applications in proteomics. Finally, the 

Orbitrap, a type of Mass Spectrometer with the highest resolution, has been 

invented by Alexander Makarov, who received for his efforts the American Society 

for Mass Spectrometry Distinguished Contribution in Mass Spectrometry award in 

the 2008 [5]. The history of the mass spectrometer is quite short, being this 

instrument recent: but how does it work? 
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Fig.5: Two example of commercial Mass Spectrometers 

 

Every Mass Spectrometer can be divided ideally in three parts: the ionization 

source, the mass analyzer and the detector (fig.6). The first component, the 

ionization source, is required because to handle the components of the sample 

(peptides, e.g.),  these have to be ionized: the mass spectrometer uses electric or 

electromagnetic forces to move and to measure the components of the sample. 

Usually, the ionization is achieved by adding protons to the molecules, and there 

are several ways to obtain this addition. We are going to see a couple of them (the 

most used). Once the samples are charged, they are transferred to the mass 

analyzer through the acceleration region, and separated according both to the 

charge and the mass. After the separation, finally, the charged samples hit the 

detector, and a mass spectrum may be constructed thanks to a computer 

connected with the mass spectrometer.  

Let’s see in detail two kind of ionization source, the MALDI and the ESI. First of all, 

it is important to stand out the desired features required from a ionization source in 

proteomics.  

 The sample should be ionized in a detectable amount, and the ionized  

amount should be proportional to the sample components amount.  

 There should not be fragmentation of the components when not required, 

that means that the components shouldn’t break into smaller parts which 

may not be ionized.  

 There should be no unwanted adduct ions. 
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 There should not be ions from other molecules (contaminants). 

 

 
Fig.6: A scheme of a Mass Spectrometer 

 

Furthermore, the sources may be divided in two groups: soft ionization sources 

and hard ionization sources. The first one causes only limited fragmentation, while 

the other typically fragment upon ionization. Soft ionization sources are used for 

peptides and proteins, and if fragmentation is desired afterwards (as in MS/MS) 

other methods are used to achieve fragmentation. One common ionization source 

is the MALDI (Matrix assisted Laser Desorption Ionization). The matrix is 

composed by organic molecules which absorb light in the UV area, and are 

dissolved in an organic solvent in acidic conditions, then are mixed with the 

sample. The next step is the evaporation of the solvent, letting the matrix form 

small crystals, with the sample components incorporated into these crystals (the 

crystallization process). A pulsing laser (very short pulses of few nanoseconds) is 

absorbed by the matrix (the wavelength of the laser is the same absorbed by the 

organic molecules) and therefore by the sample. The matrix has a double role: 

capture the laser light ionizing the sample, and protect the analyzed molecules 

from the disruptive energy of the laser. Then, the peptides are able to receive 

protons from the ionized matrix molecules, and they become ionized in the gas 
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phase. Most of the ionized peptides carry only one proton. Then, under the 

influence of an electric field, the ions are transported to the mass analyzer. The 

environment for this treatment is often under vacuum, or at very low pressure. 

Otherwise, the ESI is primarily used in the MS/MS analysis. The peptides are 

brought into the ionization source by a liquid flow. Often, as previously seen, the 

liquid is the eluate from an HPLC instrument. The liquid is then sprayed into a 

strong electromagnetic field, and the solvent evaporates, increasing the electric 

field on the surface of the droplet of the sample (composed by several peptides). 

When the electric field becomes strong enough, charged peptides desorb from the 

surfaces of the droplets. Often, the ionized peptides carry more than one proton, 

and under these conditions are transported to the mass analyzer.  

The next step in the ions travel is the mass analyzer. As known, the ions are 

accelerated by an electric field, and then they enter into a tube. The velocity that 

the ions have achieved during the acceleration is dependent on the mass and the 

charge of the ion, and the pass through the drift tube is dependent on the velocity. 

When the ions hit the detector at the end of the drift tube, the time of flight (TOF) is 

registered, and the m/z value can be calculated. In this way, it is possible to 

evaluate indirectly the mass of the peptides analyzed, obtaining the desired 

spectra, so much useful for our quantification task. The Orbitrap mass 

spectrometer instead, works quite differently. To compute the mass of the peptides 

it doesn’t consider the Time Of Flight of the molecules; but, as shown in the figure 

7, the charged peptides spin around the axis of a central electrode, instead of 

running through the mass analyzer (they are trapped because the electrostatic 

attraction of the electrode is balanced by the centrifugal force). It is possible to 

compute the mass of the molecule starting from the frequencies of the oscillations, 

which are inversely proportional to the square root of the mass to charge ratio. In 

the commercial version, a linear ion trap can be used as a front end for the 

orbitrap. The accuracy, the resolution and the dynamic range of such instrument, 

are better than any other instrument nowadays, except for the Q-TOF. The Q-TOF 

is based on an idea which is similar to the one of the Orbitrap. The ions (the 

charged peptides) are no more trapped in a spinning cycle movement, but they are 

led through a quadrupole, fig.8, where the electric field forced by the four 
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electrodes imposed an oscillatory movement to the ions. 

 

 

 
Fig.7: Schematic representation of the Orbitrap principle  

 

 

 
Fig.8: Schematic representation of the Q-TOF principle  

 

Therefore, only the stables ions are able to reach the detector, while all the other 

ions will have an unstable trajectory and they will collide with the rods. This kind of 

quadrupole is then a very selective and high specific detector. Obviously, tuning 
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the voltage of the rods, it is possible to scan a wide range of m/z-values. 

Raw data obtained from the mass spectrometer may be converted to a more 

convenient formats, such as .mzXML. This kind of conversion is performed by 

many workbenches (such as OpenMS – see next chapter) or some specific tool 

(such as Proteome Wizard). The mzXML data are easily accessible with any 

computing language, such as Matlab. The file is composed by three parts:  

1. Index, composed by name and offset of each scan; 

2. mzXML, with some technical data such as ‘SchemaLocation’ and ‘MsRun’ 

3. scan, where there are the real data coming from the sample. 

In the third part it is possible to get every scan, both from the first and from the 

second level. Moreover it is possible, for each fragmented ion of the second level, 

to get the precursor ion, the m/z value, the retention time and the charge. 

Basically, it is possible to get every information about the fragmented ions, their 

position and their intensity.  

Each peptide has its own elution area, which is spread in the retention time and, 

because of the isotopic distribution, in the m/z domain. It is possible to see in the 

figure 9 some examples of this area for some peptides. The dimension of the area 

is related to the intensity of the signal and then to the amount of the peptide in the 

sample. The elution profile in the retention time axis should be Gaussian-like, but 

with a long tail on the second half of the curve. The mathematical functions used is 

the Boltzmann distribution or the Exponentially Modified Gaussian (EMG). The 

number of peaks in the m/z axis depends on the intensity of the signal and the 

level of the noise, which covers the lowest peaks.  
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Fig.9: Examples of signals from the Mass Spectrometer with 

some Peptides.  

 

 
 

 



31 
 

State of the Art 
 
 
 

In this chapter a brief overview will be provided in order to understand how the 

problem of proteins relative quantification (using Liquid Chromatography coupled 

with Mass Spectrometry) has been tackled by the bioinformatics community 

throughout the world, realizing tools and software whose purpose is the 

automation of the whole process. In the first part of this section some tools, from 

2001 to 2007, are briefly described; in the second part of the chapter both the 

software MaxQuant and Proteome Discoverer have been analyzed in detail; these 

software are those used in the operative part of this work.  

Before starting with the overview of the different methods and tools, it is important 

to highlight, from an experimental point of view, which are the advantages brought 

by a Liquid Chromatography - Mass Spectrometry approach in the relative 

quantification field, and why this approach is worldwide spread in the proteomics 

field, replacing the previous approach based on gel electrophoresis technique. 

These are the main strengths of the LC-MS method:    

 The sample to be compared (e.g. healthy vs. diseased) are in the same 

Liquid Chromatography column, therefore there are not problems about 

different elution time, increasing the reproducibility of the experiment; 

 The presence of more dimensions, such as multiple charges for a single 

peptide, allows a much more precise mass determination, and even better 

quantification. 

 Finally the isotopic labeling doesn’t alter the fragmentation process during 

the first Mass Spectrometry steps.  

Starting from these achievements, as previously stated, it would be possible for 

the scientific community to perform differential analysis in the proteomics 

expression between cells in opposite state, such as healthy or diseased, in order 

to understand the mechanism at the basis of the functioning of the cell.  
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Max Quant 

Max Quant (MQ) is a program providing a complete pipeline to analyze data in a 

quantitative proteomics workflow. In this section, we will refer to the version 

1.1.1.36 (fig.1), for the main ideas of the algorithm. Furthermore, this is the version 

described in detail in the paper of the year 2008 [15]. It is important to remember 

that this program, though basically the same, has been improved and it has reach 

the 1.2.2.5 version [16], which is the version used in the operative part of this 

work. It is possible to divide the workflow in four different parts, which are going to 

be analyzed in the following: 

1. Feature detection and peptide quantification; 

2. MS/MS ion search; 

3. Identification and validation; 

4. Visualization. 

In the first part, MQ has to handle the raw data, to get all the necessary 

information in order to create the isotopic pattern. First of all it is important to 

locate the peaks: this is done with a local maxima research. As stated in the 

supplementary notes of the paper [15], “This straightforward approach of peak 

detection without any deconvolution, smoothing or de-noising is sufficient for MS 

data generated by modern high precision mass spectrometer [..]” In this way it is 

possible to get the 2D-Gaussian shape for each peak, and, connecting properly in 

time the centroids of the 2D peaks, we finally have the 3D peak (where the three 

dimensions obviously are m/z, retention time and intensity of the signal). 

Once all peaks in the data have been taken, it is possible to check out which ones 

stand in an isotope cluster. In order to gather the peaks in a cluster, it is necessary 

to satisfy three conditions: 

1. The difference between the peaks on m/z should be less or equal to a 

formula containing the bootstrap standard deviations and the maximal shift 

that the incorporation of a sulphur atom can cause.  
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2. The intensity profiles should have a sufficient overlap in retention time; to 

do so it’s necessary to compute the cosine correlation (which should be 

greater than 0.6); 

3. The charge of each pattern should be consistent. 

 
Fig.1: A MQ screenshot about identification and quantification parameters  

 

Now, after all the isotopic patterns have been detected, it is possible to couple 

them, trying to locate the labeled peptide for each unlabeled one, and vice versa. 

To create the pair (and, of course, the triplet too) some conditions must be 

checked: there is a correlation test of the intensity profiles over the retention time, 

the charge must be the same and, furthermore, the two clusters have to be close 

enough in mass (clearly the mass shift is label-dependent). Finally the two 
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measured isotope pattern are convoluted with the theoretical pattern of the 

missing atoms to obtain the same atomic composition, and therefore the resulting 

isotope patterns should be exactly identical to less than a factor: that factor is the 

sought ratio which quantify the abundance of the labeled and the unlabeled 

peptide. Once the ratios are found, they are normalized so that the median of 

logarithmized ratios is zero. It’s very important for the purposes of this work to 

point up the strategy adopted by MQ in order to face the overlapping problem.  In 

particular, to avoid erroneous results for overlapping isotope patterns, the ratio 

calculation is restricted to the first three peaks of an isotope pattern; moreover, if 

the peptide mass is above 2800 Da, the monoisotopic peak (namely the first one) 

is excluded for the quantification. For the non-linear recalibration of the mass, it is 

important to detect the charge pairs, that is those peptides that have been 

measured in multiple charge states.  

The second part of the MQ workflow is where it is used the database engine in 

order to identify the peptides. In the version of the quoted paper the database 

engine was Mascot, widely used in the Proteomics context. On the contrary, in the 

latest versions of MQ, it has been developed a new engine named Andromeda, 

still used. Before submitting the MS/MS spectra for database search, they are 

prepared through a filtering phase, and even after the Mascot results are filtered 

by individual peptide mass errors. This means that those candidates suggested by 

Andromeda which exceed the mass tolerance (after recalibration) are discarded.  

The third part is about identification and validation. After filtering Mascot results 

and after a linear mass recalibration, two parameters are computed. The first one 

is named PEP (Posterior Error Probability) and it is the probability of a false hit, 

given starting from the peptide identification score and the length of the peptide; it 

is calculated with a Bayesian formulation. The task of the PEP is to determine the 

second parameter, the FDR, that is the False Discovery Rate. To obtain it, the 

peptide identifications are sorted from the forward and reverse database by their 

PEP, and those peptides with 1% of accumulated reverse/forward hits are 

accepted. Moreover there is another step of re-quantitation, that considers those 

patterns that have not been assembled into pairs, but that have been identified by 

the database engine. Since we know the state of the cluster (labeled or not 
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labeled) it is possible to calculate at which masses the potential partner is 

expected. If at least three peaks are found where they are supposed to be, the 

ratio are calculated. It has been noticed, during this work, that this option widely 

increases the chance to get some outliers (on the other side it increases the 

number of quantified peptides). Afterward, it is necessary to assemble peptide hits 

into protein hits, and this is not a trivial step. To work out this step, it has been 

introduced the idea of protein group: each peptides may belong to more than one 

protein.  

 

 
Fig.2: A screenshot from the viewer tool of MaxQuant 

 

To obtain the final quantification it is possible to consider the unique peptides 

(those which belong only to one protein group) or all the peptides. The protein 

ratios are then calculated as the median of all the peptide ratios, minimizing the 

effect of the outliers. Finally are computed two values, called significance A and B, 
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which are two outlier significance scores, useful for some statistics analysis of the 

obtained results.   

The last part of the workflow is only about the visualization of the achievements. In 

particular, the viewer tool allows to visualize the data both visually and with some 

tables.  

As shown in the figure 2, the visualization of some part of the bi-dimensional map 

is displayed on the left corner, where it is possible to point up the multiplets and 

the isotope clusters with a color-code. It is furthermore allowed to visualize single 

MS spectra, picked up from the menu to the right of the screen. Moreover, it is 

possible to view some data on the opposite part of the screen: more specifically 

the menu at the top allow the user  to check out all the MaxQuant results: from the 

peptides found to the proteins, from the MS visualization to the summary of the 

parameters used during the quantification process. It is even possible to load more 

than one raw data, to let the user a matching analysis with different kind of data. 
 

 

Proteome Discoverer 

Proteome Discoverer is a commercial, comprehensive and expandable software 

platform realized by the Thermo Scientific group. The program is similar to 

MaxQuant, because it is able to perform both the identification process and the 

quantitation process. In particular, the multiple database search provides the 

possibility to combine different algorithms (Sequest, Mascot..) and then maximize 

and cross-validate the results obtained. Such as MaxQuant, it supports different 

kind of dissociation techniques and different kind of tagging, like TMT,SILAC and 

iTRAQ; it even provides False Discovery Rate for the determination of the proteins 

and the automated annotation of identified proteins with GO classifications and 

Post Transcriptional Modifications. In the figures 3 and 4 are shown two 

screenshots of the program (fig. 3 and fig.4). 
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Fig.3: Proteins found by Proteome Discoverer in a sample  

 

 

 
Fig.4: Proteome Discoverer Menu with peptides and a Scan Viewer  
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Since Proteome Discoverer is a commercial tool, there isn’t any documentation 

about the algorithm used to perform its task, and therefore it is not possible to 

compare its method with those of MaxQuant. In a paper (which has just been 

submitted for Nature by M. Altelaar, C. Frese et al. from Utrecht University [17]) 

about the benchmarking between different kind of labeling, it has been performed 

a comparison between MaxQuant and Proteome Discoverer, showing a little 

difference between them in terms of results in the quantification process. In the 

next paragraphs, we will compare our results both with MaxQuant and with 

Proteome Discoverer, highlighting the differences between them in terms of 

average and standard deviation of the results obtained at a peptide level.   
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Methods 
 
 
 
 

In this chapter the operative part of the work will be introduced. In particular the 

main ideas at the basis of the algorithm will be shown, and how it has been 

implemented in two different versions, in order to tackle different problems 

revealed in the datasets used. In particular, the methods proposed aim to fix the 

problem related to the overlap issue. The overlap happens when two features (a 

feature is the elution areas of the peptide, spread both in the retention time and in 

the m/z axes) occupy the same area: the final result is a signal given by the 

summon of the overlapped distributions. This important trouble may happen in two 

different situations, with the same effects: the final ratio of the peptide is 

irremediably poorly quantified. In one case, the overlap happens between two 

features of the same peptide: in particular, when the shift due to the labeling isn’t 

long enough, then the last peaks of the first distribution (i.e. the Light) are 

overlapped with the first ones of the second distribution (i.e. Medium). This 

obviously causes a modification of the final quantification ratio, because the 

intensity of one feature is enhanced by the contribution of the other one. Another 

case of overlap happens when two different peptides co-elute in the same area, 

partially or totally. This situation may happen when the biological sample is very 

crowded, and there are several peptides with approximately the same retention 

time and mass-to-charge ratio. To solve this problem, the peaks have been split 

into several parts along the retention time and the m/z axes, in order to compute 

different ratios: by comparing them it was possible to exclude those portions which 

are overlapped. Another idea to increase the accuracy and the precision of the 

computed ratio, is to use the Pearson Coefficient both in the retention time and in 

the m/z domain, in order to evaluate those peaks which are properly shaped. In 

particular, the Pearson coefficient has been used along the m/z axis to discard the 

noisy isotopic distributions, as we are going to see in the remainder of this chapter, 

while the correlation along the retention time axis is used to score the quality of the 
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quantification performed.  

Hence, in the next paragraphs we are going to descrive in details these ideas and 

how they have been implemented in the Matlab framework. The first part is 

dedicated to the main ideas used in the algorithm, in order to understand how they 

work. In the second part of the chapter, instead, it is described in detail the 

workflow of each algorithm, and how the ideas previously described are used. 

 

Quantifying algorithm: the concepts 

To properly understand the workflows and the ideas on which the algorithm is 

based, it is important to recall the basic concept that each peptide feature has a 

complex three-dimensional morphology, generated by the simultaneous elution of 

all its isotopic components in the LC-MS map (fig.1). 

 

 
Fig.1 Example of features in the Retention Time – m/z domain 

 

The length of the isotopic distribution in the m/z axis is related to the number of 

peaks whose intensity is higher than the noise, (typically three or four peaks), 

while in the retention time domain the length of the elution profile is intensity-

dependent: this means that the higher is the signal, the longer will be the profile. 
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The shape of the profile along the retention time is also related to the 

chromatography process upstream (see the introduction chapter): usually, an 

Exponentially Modified Gaussian is used  as a model, because often the last tail of 

the Gaussian is longer than the first one (due to the interaction with the 

chromatography column – fig.2). Therefore, it is possible to operate on the signal 

both in the m/z and in the retention time domain: in particular, we have applied the 

Pearson coefficient in both directions, to check the similarity of the elution profile 

between the different isotopic peaks of the same peptide and to evaluate the 

matching of its isotopic distribution to the theoretical one; in this way it is possible 

to use only the uncorrupted information to properly quantify, as shown in the next 

paragraph. 

 
Fig.2 An example of Extracted Ion Chromatogram: the elution 

profile of a peptide 

 

Pearson Coefficient along the Retention Time axis 

For every peptide identified, we can consider at least three peaks for the isotopic 

distribution labeled as ‘Light’, three peaks for the one labeled as ‘Medium’, and 

other three peaks for the ‘Heavy’ one. When we use the term ‘peak’, we refer to 

the three-dimensional Gaussian located at a specific m/z value, and with an 

elution profile in the retention time.  Therefore, for each feature we have at least 
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nine peaks available to compute the quantitation ratio. It is possible to compare 

such peaks, in order to understand if some of them is different in the elution 

shape: the difference in the retention time shape is a clue of a possible overlap 

with another peptide.  

The coefficient is obtained as a ratio between the covariance of the distributions 

and the product of their standard deviations: 

 

휌 , = 푐표푟푟(푥, 푦) =
푐표푣	(푥, 푦)
휎 휎

=
퐸[(푋 − 휇 ) 푌 − 휇 ]

휎 휎
	 

The meaning of such coefficient is the linear correlation between the two profiles. 

The value ranges from the perfect and positive correlation equal to 1, to the 

perfect negative correlation equals to -1. If the value is equal to 0, then the 

distributions are linearly not dependent. For our purposes, the linearity matter is 

not a limitation, because theoretically the elution profile for each peak should be 

very close with the others in terms of trend, because all of them belong to the 

same peptide and there should be only variations in terms of intensity. As already 

said, it may happen, that isobaric peptides with the exactly the same mass-to-

charge (m/z) ratio elutes almost at the same retention time, and therefore it 

partially overlaps with the peak under investigation,  as shown in the figure 3 (the 

co-eluting peptide problem). When it happens, the Pearson correlation between 

the three peaks of the same isotopic distribution points out a difference in the 

shape of the elution profile, and then it is possible to tackle this overlap in different 

ways.  

The first idea should be the elimination of the whole peak from the quantitation 

process, but it may be a problem because we would lose a big amount of 

information useful for our purposes. It would be useful to deconvolute the 

overlapped peaks, in order to separate the contributions of the overlapped peaks, 

but doing it analytically may be not feasible due to the noise, then we have 

approached this problem splitting every peak in different parts, and comparing 

them (see next paragraph).  
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Fig.3 Two features partially overlapped 

 

The main reason to compute the Pearson coefficient along the retention time 

domain is to use it during the scoring process, in order to be able to select only the 

best rated results.  

 

Pearson Coefficient along the m/z axis  

As for the retention time, it is possible to compute the Pearson coefficient also in 

the m/z axis. The main difference is that we are going to calculate the Pearson 

value only on a three-long signal, which is the isotopic distribution composed by its 

three first peaks (those which are relevant for the quantitation intent). Another 

important difference between the application of the Pearson coefficient in the m/z 

domain, rather than in the retention time domain, is that we are going to compare 

the isotopic distribution of the real signal with the theoretical model of the 

distribution, while in the retention time domain we compare the peaks between 

themselves. This difference is mainly due to the possibility to have the exact (not 

really exact as we will see, but close enough for our purposes to the real one) 

isotopic distribution, starting from the mass value of the peptide. To get such 

distribution, we have exploited a model realized in the 2008 by Valkenborg et al. 

[19]. This model, which is based on a polynomial model, required as input only the 

mass of the peptide, which is easily inferred from the m/z value and the charge, 

and the intensity of the first peak, which is equal to one being normalized. As it is 
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possible to see from the table 1, the difference between such model and that one 

from IPC [20] (Isotope Pattern Calculator, which is used as reference and it 

exploits the exact sequence of amino acids of the peptide to get the distribution) is 

very close, anyway close enough for our comparing purposes. In the table the 

averages and the standard deviations of the values obtained as difference 

between the peaks of the IPC distribution and those of the Valkenborg model, out 

of 64447 simulated isotopic distribution, are shown. Since the distribution were 

normalized, the first peak were equal to one in both of them. As it is possible to 

see, the average difference is quite small. 
 

 Peak 2 Peak 3 Peak 4 
Mean Error 0.0242 0.0353 0.0527 
Std Error 0.0316 0.1092 0.0951 

 Tab.1 Valkenborg model evaluation 

 

If the Pearson coefficient computed along the retention time axis was used only for 

scoring purposes, the Pearson coefficient computed along the m/z axis is useful 

also for the quantitation process. Indeed, each scan across the elution area of 

each peptide’s feature is used to compute the correlation with the theoretical 

distribution: if the value isn’t higher than a fixed threshold, then the scan is 

discarded and not used for the final quantitation.  

    

Taking Advantage of Several Ratios 

As already stated before, the main idea is to split the elution area of the peptide in 

different parts, three or five, as shown in the figure 4. Each part is composed by 

several isotopic distributions. We can then select the scan that pass the Pearson 

selection along the m/z axis, and average their isotopic distributions, obtaining the 

isotopic distribution of the first tail, that one of the body of the Gaussian and finally 

the distribution of the last tail.  
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Fig.4 Division of the elution area in three parts and  
their averaged isotopic distributions 

 

In this way, it is possible to have three different distributions for the same elution 

area. Since we have two elution areas for each feature (the one of the Light and 

that one of the Medium - or Heavy), we can compute three different ratios, 

matching coherently the distribution of the first part of the Light with the first part of 

the Medium (Heavy), the central part of the Light with that one of the Medium 

(Heavy) and finally the last tail of the Light with that of the Medium (Heavy). It’s 

very important to point out that, in this way, it is possible to compute the ratios with 

the same parts of the Gaussian, without mixing different areas. Let’s now see what 

happen in case of an external overlap, as shown in the figure 5.   

 
Fig.5 Co-eluting Peptides overlap 
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It is possible to see that the computation of the final ratio would be affected by the 

partial overlap of another peptide with approximately the same retention time and 

m/z value. If we computed three different ratios, instead, it is possible to notice that 

the co-eluting area would affect only one ratio out of three (if we consider our 

peptide as the red one, the only part affected by the overlap would be the orange 

one). Therefore, comparing the three ratios, one of them (the overlapped one) 

would be different compared to the others, and therefore not considered for the 

computation of the final ratio. The exclusion of the ‘affected’ area will increase the 

accuracy of the quantitation. In the first dataset used, where the label was the 

Dimethyl, the partition of the area has been made with three different sections. In 

the other datasets, with the SILAC labeling, the area has been divided in five 

different parts, because we knew that those datasets were very crowded (therefore 

the co-eluting problem would be very relevant), and increasing the number of sub-

areas the accuracy of the results should increase. To choose which areas using to 

compute the final ratio, we computed the differences between the ratios of each 

area, and then they are clustered together in groups, as explained in the 

paragraph about the workflow. Once we get the clusters (there may be one, or two 

clusters at most), we compute the final ratio with the longest cluster, or with that 

one which have the closest ratios. In the vast majority of the cases, there is only 

one group of ratios, composed by more than the half of the sections.  

 

Multi charged peptides 

Finally, the last idea implemented in our algorithm is the exploitation of the multi 

charged peptides. In particular, it is possible and probable that a peptide, during 

the ionization step in the mass spectrometer workflow (see the introduction 

chapter for details) is ionized in more than on charge state. Therefore, it is possible 

to find the same peptide, and theoretically the same information about the 

quantitation of that peptide, in two different positions of the bi-dimensional map; it 

is important to recall that the x-axis of the signal is the mass/charge ratio, and 

therefore varying the charge of the peptide will vary even the position along the 
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m/z axis, but not the position in the retention time, which should be the same. 

Having the same information in two different places, it is possible to exploit such 

advantage. In particular, when this situation happens, we perform the quantitation 

process for both of them, but we get as a final ratio for that peptide, only the one 

which has higher score. Therefore, if one peptide presents an overlap, and its 

score is low (as the Pearson coefficient detects such issue) we will get the 

quantitation information from the same peptide with different charge, which 

probably doesn’t have an overlap problem. In this way, it is possible to increase 

the accuracy and the performance of the quantitation process of each peptide. 

So far we have seen the main ideas at the basis of the algorithm. Let’s now see in 

detail how it works. 

   

 

Implementation and Workflow  

In this second part of the chapter, the workflow is described in detail. Moreover, 

the different ways to quantify are shown, such as the method proposed by Yoon to 

solve the overlap issue between the labeled features of the same peptide, and the 

partitioning of the elution area in several sections. 

 

The overlapping issue  

This algorithm may be ideally divided in five parts, as shown in figure 6. The only 

inputs required, such as the first algorithm, are the mzXML file (readable in the 

Matlab environment), and the output file (read in Matlab as an excel file) provided 

from the software used for the identification of the peptides (MaxQuant or 

Proteome Discoverer). To get the mzXML files for each dataset from the raw file 

coming directly from the mass spectrometer, we have used a function named 

‘msconvert’ provided by the ‘ProteoWizard’ library, freely available on the web. As 

already said, the identification of the peptides is performed upstream by the 

software used for the identification process, either MaxQuant or Proteome 
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Discoverer. Starting from the given retention time, we have to find out the begin 

and the end of the peptide along the retention time axis. MaxQuant provides at 

least the length of the peptide in the retention time (but not when it starts or 

finishes, just its length); but Proteome Discoverer doesn’t. Therefore we have 

implemented two different approaches for each program used, in order to localize 

the peptide’s elution area. Once the elution area has been localized, it is possible 

to proceed with the quantification process.      

 

 
Fig.6: the workflow of the algorithm 
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The algorithm can be ideally divided in two workflows, really close each other but 

substantially different in the quantitation strategy. The first one is optimize to solve 

the overlap between the features of the same peptide, and it is based on the 

implementation of the Yoon’s method (see next paragraph for details); the second 

one is basically the same, but the features are not overlapped, and the 

quantitation may be done easily. Moreover, in the second algorithm the idea of 

scoring the quantification process has been introduced, and to solve the problem 

related to the co-eluting problem, the elution area is split in five sections rather 

than three. 
The overlap between features of the same peptide happens because in the 

peptide sequence there is no Lysine amino acid, that is the binding site for the 

labeling. As already stated in the overview, the digestion of the proteins is usually 

performed enzymatically, by the Trypsin, which cuts the sequence where there is a 

Lysine (notated as ‘K’) or an Arginine (notated as ‘R’). When there is no Lysine in 

the sequence of the peptide, the label is attached only in the N-terminal part of the 

peptide, causing a shift of only four Dalton (this is the length of the shift caused by 

a Dimethyl labeling; for the other dataset used, where the labeling is a SILAC, 

there isn’t any relevant overlap between the features). This means that the fifth 

peak of the Light distribution is overlapped with the first peak of the Medium 

distribution, and obviously the fifth peak of the Medium is overlapped with the first 

of the Heavy. As said, this causes an alteration in the final ratio. For this reason, it 

is necessary to compute separately the ratios of the overlapped peptides and the 

ratios of the not overlapped peptides. In the next figures (fig.7 and fig.8) the two 

versions of the algorithm are shown: the first one is specifically designed to tackle 

those peptides with an overlap problem. It is possible to see from the pictures that 

the workflow is very similar in the two cases. The main difference is related to the 

quantification method, which is explained in the next paragraph. Once that the 

elution area has been identified (1), it is possible to divide such area in three parts 

(2). In this way, at the end of the process we will have three ratios to compare, in 

order to get the final ratios, as explained previously (several ratios). Before 

computing the final isotopic distribution for each area, calculated as an average of 



50 
 

the distributions from each scan, it is performed a selection based on the Pearson 

coefficient (3). 

 

 
Fig.7 Workflow of the algorithm for overlapped peptides 

 
Fig.8 Workflow of the algorithm for not overlapped peptides 
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It is important to notice that the Pearson correlation is performed only along the 

m/z axis, using the Valkenborg model to get the theoretical distribution. Therefore, 

only those scan whose correlation coefficient is higher than a threshold are used in 

order to compute the averaged isotopic distribution for that area. At the end, three 

different ratios are obtained (4,5). How these ratios are calculated is described in 

the next paragraph. It is important to recall that these ratios are compared, and if 

the difference between them is smaller than a threshold, they are used to get the 

real final ratio. To do so, the ratios are sorted, and it is checked the difference 

between the first ratio and the second, and between the second and the third. For 

the final computation are kept only those ratios whose difference was below the 

threshold. Before explaining how it is performed the quantitation, it is interesting to 

point out that the algorithm is basically based on two tunable threshold: the first 

one is about the Pearson correlation in the m/z domain, the second threshold is 

about the difference between the ratios. In the results, we are going to see how 

tuning such parameters, the results will vary.   

 

Yoon’s method and the linear coefficient 

As already said, in the algorithm it is possible to quantify in two different ways, on 

the basis of the presence or absence of the Lysine amino acid. In the case of 

absence of the Lysine, we have to tackle the overlap problem between features of 

the same peptide. To do it, we have used a method implemented by a Korean 

researcher in 2010. [18] 

The algorithm proposed, as stated in the paper, can be even easily applied in the 

Trans Proteomic Pipeline (TPP, it is a widely-used freely available  proteomics 

pipeline), during the peptide quantification, because of its simplicity, and it uses the 

bi-quadratic equations to properly solve the overlap. Before understanding how 

these equations may be useful, it is necessary to figure out the model of the two 

clusters overlapping; for this reason, figure 9 may be helpful. 
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L1 L2  L3 L4 L5 L6     

    H1 H2 H3 H4 H5 H6 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

Fig.9: the Yoon model of the overlap 

 

The first pattern (labeled as light – ‘L’) is composed by six peaks - to simplify the 

discussion without losing generality- but it may be even longer; the same is for the 

second cluster (labeled as Heavy – ‘H’). The available data from the raw file are 

named ‘I’, and they are obviously the sum of the two distributions. It’s quite easy to 

agree to this mathematical formulation, which formalizes the model: 

Ik = Lk     if k<=4 
Ik = Lk + Hk-4   if 4<k<=n 
Ik = Hk-4    if k>n 
 
At this point, Yoon states that the sought ratio is:  

α = Hk / Lk 

Then, he deduces a quadratic equation 

I1 α2 – I5α + I9 = 0 

starting from two different equations: 

αL5 = I9 

I5 = L5 + αL1 

Using the quadratic formula it is possible to obtain two values for α : 

α =
−I5 ± √I5 − 4 ∗ I1 ∗ I9

2 ∗ I1  

The sign ‘plus’ is chosen if the solution is greater than L5/ L1, otherwise it is 

chosen the sign ‘minus’. As seen, this quite easy solution allows to find out the 

ratio with some simple algebraic steps, which are very fast from a computational 

point of view. Thanks to the simplicity and elegance of this rigorously mathematical 

approach, we are able to obtain the quantitation of a peptide, even if there is a 

troublesome overlap between the labeled and unlabeled pattern.  

Fortunately, if there is at least one Lysine (the site where the label is bound) in the 

peptide sequence, then the overlap doesn’t happen at all. In that case, the Yoon’s 



53 
 

approach obviously is not necessary. To quantify these not overlapping peptides 

we compute the linear coefficient of the straight line obtained by interpolating the 

points, which have as abscissa the peak intensities of the Light and as ordinate 

the peak intensities of the Medium (this is a standard procedure used, for 

example, by MaxQuant).  

 

The division in several parts  

In the dataset where the overlap between features of the same peptide doesn’t 

occur, due to the SILAC labeling, then, the workflow is slightly different. In 

particular, it is given much more importance to the co-eluting overlap. Thus, once 

the peptide is localized, it is possible to accomplish the quantification process. The 

workflow is schematically shown in the next figure (fig.10).  

 

 
Fig.10: Schematic representation of the workflow  
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It is possible to see that we have globally six peaks: three peaks come from the 

Light distribution, and three peaks come from the Medium distribution (or Heavy, it 

depends which ratio we want to compute at the end of the algorithm). The next 

step requires the elution profile of each peak to be divided in several parts (it has 

been set to five); these parts are supposed to be equally long. Hence, we can 

consider each part and compute the isotopic distributions for every scan: for all of 

them, we select only those whose Pearson correlation with the theoretical model is 

higher than a fixed threshold. Finally, it is possible to reconstruct the isotopic 

distribution along the m/z domain, averaging all the distributions which have 

passed the Pearson selection: we have then five isotopic distributions for each 

feature. At the end, it is possible to calculate the desired ratio.  

To compute the final ratio, at first, we calculate three ratios for each couple of 

distributions (which come from the same part of the original peak – in the picture 

they have the same color), one ratio for each couple of peaks. Once we have 

these three ratios, we compare them, and we compute the ratio for that 

distribution, averaging only those values which are close enough (whose 

difference is lower than a threshold). In the picture, this is named as First 

Selection. Doing this procedure for every couple of distributions, we computed the 

five ratios (one for each couple). Ideally, the five ratios should be very close to 

each other, because the feature of the Light and that of the Medium should be 

proportional in each part considered. Unfortunately, this doesn’t happen ever, and 

we have to choose which ratios considered for the calculation of the final ratio 

(Second Selection). First of all, we cluster the five ratios in at most two groups, 

based on the difference between the ratios. We can even have no cluster at all, if 

the ratios are far away from each other, but this doesn’t happen very often. 

Usually, there is only one cluster or, at most, two clusters (two ratios per group, or 

two and three ratios). If we have only one cluster, the final ratio is the average 

value from that cluster. If we have two clusters, we considered the biggest cluster 

or, if they have the same length, we choose that cluster whose ratios are closer in 

percentage. In this way it is possible to compute the final ratio for that peptide.  

It is interesting to highlight the roles of the two selections, as shown in the next 

figure (fig.11). In the upper part of the figure, we can see the effect of the first 
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selection: if there is an overlap on the third peak, the ratio coming from the third 

peak will be discarded, compared during the first selection with the ratios coming 

from the first and second peak. In the lower part of the figure, instead, we can 

appreciate the effect of the second selection: if there is an overlap on an area of 

the peaks, let’s say the fourth and the fifth part, the ratio coming from that area will 

be discarded during the second selection, because the first three parts will have 

different ratios (the corrected ones). 
 

 
Fig.11: Schematic representation of the overlap  

 

To summarize, it is important to highlight that this first ‘selection’ has worked 

considering the peaks from the isotopic distribution: in other words we have 
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operated a selection along the m/z axis; the second selection, instead, allow us to 

perform a screening along the retention time axis, covering in this way all the 

domain of the bi-dimensional signal. 
 

Scoring the quantification process 

The scoring process is realized in order to give a rank about the quality of the 

quantitation for every peptide. As a matter of fact, it is important to be able to 

measure the probability that the ratio obtained is corrected, and be able to grade 

the whole quantitation process. Generally, the evaluation of the quantitation is 

done at a protein level, not for every peptide. In the march 2011 Reiter et al. 

proposed an algorithm with a peptide ranking method, mainly based on the quality 

of the peaks used for the quantitation [21]. In our algorithm, there are at least three 

elements which contribute to the final evaluation of the quantitation algorithm. 

Such elements are: 

 
1. The Pearson Coefficient obtained along the Retention Time axis 

2. The score obtained in the identification process (provided by MaxQuant or 

Proteome Discoverer) 

3. The numbers of sections of the elution area used for the final quantitation 

The Pearson coefficient along the retention time axis has been discussed 

previously. It’s interesting to highlight that such value is really important to figure 

out if the peptide being quantifying is properly shaped, and if there is no overlap 

with other peptides. The score obtained in the identification process is mainly 

related with the intensity of the signal from that peptide: if the peptide has an high 

intensity, it will be properly identified, and it will be easier to exactly quantify. 

Finally, the numbers of sections used  gives us the idea about how many ratios 

have been considered to compute the final ratio: higher is the number, better is the 

quantification. Considering all these values, we set up a linear combination of such 

parameters, properly weighted in order to give an higher score to that peptide 

which is closer to the expected value.  The final formula about the score is:  
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푠푐표푟푒	 =
푝푒푎푟푠표푛푅푇	 ∗ 	푊1	 + 푠푐표푟푒퐼푑	 ∗ 	푊2	 + 	푛푢푚푏푒푟푠푂푓푅푎푡푖표푠	 ∗ 	푊3

푊1 + 	푊2 + 	푊3  

 

The values of the weights may be changed, in order to point out only those 

peptides with some specific feature, such as a proper shape in retention time, or 

an high value in the identification process. In the figure 12 it is shown how the 

peptides are quantified (ratios on the abscissa) in function of their score (on the 

ordinate), when the values of the weights are all set equal to one. 

 

 

Fig.12: Scoring versus Ratio 

 

To get the best combination of weights, it has been implemented a simple linear 

classifier, used to select only those peptides that have been quantified properly. 

After the selection of such peptides, it is possible to see that the quantification is 

significantly improved. In the next chapter -about the results- this idea is described 

in detail.  
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Results 
 
 
 
 

In this last chapter we are going to show the results obtained with the algorithm 

described in the previous chapter. This last part can be divided in two parts, since 

our algorithms have been tested on two different kinds of data: one dataset has 

been realized using the dimethyl labeling, where the overlap between the feature  

of the same peptide may occur; instead, the other datasets have been realized 

using the SILAC (SILAC is the acronym for Stable Isotope Labeling by Amino 

acids in Cell culture) labeling, where the shift is higher and there is no overlap 

between the feature of the same peptide. In particular we have tested our 

algorithm on five datasets.  

In the first part of the chapter, along the results obtained with the first type of 

dataset, the importance and the incidence of the problem of the overlap between 

features of the same peptide will be discussed: we have realized a statistical 

analysis on 64447 simulated isotopic distributions to assess how the overlap alters 

the final ratio. In the second part, instead, a comparison will be shown between the 

results obtained with MaxQuant and those obtained with Proteome Discoverer, on 

the same raw files. As we will see, Proteome Discoverer (it is important to highlight 

that this program is commercial, while MaxQuant is not) has higher rate of 

identification of the peptides, and even better results in the quantification process, 

in terms of standard deviation of the final results. Our algorithm, finally, increases 

significantly the accuracy of the quantitation compared with the MaxQuant results, 

keeping approximately the same number of peptides identified. After a selection 

based on the score, as shown in the last paragraph, it is possible to further 

enhance the accuracy of the results, obviously losing some of the peptides 

quantified.  
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Dimethyl Dataset   
The first dataset used to test our algorithm is the Dimethyl Dataset, realized, as 

the others, in the Laboratory of the Professor Heck in Utrecht, and it’s a fraction of 

a bigger experiment. In particular, the realization of the mix of proteins has been 

realized on purpose, knowing exactly that the ratio between the Medium and the 

Light is equal to 0.5, while the ratio between the Heavy and the Light is equal to 

0.1. Unfortunately, this last one value is critical in general for the quantitation task, 

because it is too low: very often the feature of the Heavy is covered by noise and it 

is not possible to properly quantify it. Even MaxQuant, the only software used for 

this dataset, get very noisy results, with a very high standard deviation and not 

even centered on the expected value. For this reason, we have tested our 

algorithm only on the first ratio Medium / Light, whose expected value is 0.5. 

Another important problem, related to the Dimethyl labeling, is due to a shift in the 

retention time of the features, due to the presence of deuterated heavy labeled 

peptides, which are known to elute prior to their corresponding light one: it may 

happen that the Medium isn’t exactly aligned with the elution time of the Light, as 

shown in the figure 1: the Light, which have an m/z value equal to 446, has a 

retention time higher than the Medium, which is located at a m/z value of 450 

Dalton. Another important parameters of the dataset is the enzyme used for the 

digestion. As usual, in this dataset it has been realized the trypsin digestion, which 

is the most used due to its several advantages (see the introduction for details). As 

known, the Trypsin cuts the protein sequence immediately after the amino acids 

Lysine and Arginine. If the cutting amino acid is the Arginine, it is very likely that 

there is no Lysine in the sequence, and the peptide is surely affected by overlap 

between Light and Medium. It may happen that the Trypsin misses some Arginine 

or Lysine, and therefore the label is doubly attached to the peptide, which will have 

a longer shift between the features. 
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Figure 1: dimethyl retention time shift between feature of the same 

peptide 

 

The maximum number of missed cleavages generally considered are two for each 

peptide. Moreover, not only the Lysine is the site for the labeling, but even the N-

terminal part of the protein, which is obviously always present. Therefore, the 

smallest shift between feature is equal to 4 Dalton (as known, the Dimethyl causes 

a shift of 4 Dalton for each label attached to the peptide).  

This Dataset is composed by 31167 scan, both from the first level and from the 

second level (the scan from the second level are about the fragmentation of the 

highest peaks of the first level, and they are used for the identification process). In 

particular, there are 6386 scan from the first level, and 24781 scan from the 

second level. The range in retention time goes from 20 minutes to 180 minutes, 

while the m/z range is from 380 up to 1400 Dalton.  

Let’s now see how MaxQuant is able to perform the identification and the 

quantitation process, and how it handles the information provides by all these 

scans.  
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MaxQuant Results 

MaxQuant, during the identification process, has been able to find out 6127 

peptides, located in 9743 evidences. The term ‘evidence’, used in the MaxQuant 

framework, means:  

1. A single identified feature of the triplet, standing alone (MaxQuant has 

been able to identify, for example, the Light distribution of the peptide, but 

can’t find the others components of the triplet);  

2. The whole triplet of the peptide, composed by a Light, Medium and Heavy 

distributions, properly identified by MaxQuant.  

The evidences may be divided (fig.2)  based on the presence of the Lysine in the 

sequence, but even if the triplet of the evidence is complete (it is named MULTI) or 

if there is only one distribution identified (it is named ISO). 

 

 
Figure 2: division of the Evidences of MaxQuant 

For our purposes the presence or absence of the Lysine is very important, and we 

will split the results on such basis (even because the quantification strategy, as 
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seen in the previous chapter, is different: if there is an overlap we will use the 

specific Yoon’s method). Let’s see then how many peptides don’t have the Lysine 

in their sequence, looking at the figure 3. 

 

 
Figure 3: Peptide without Lysine (K=0) and those with at least one Lysine 

(K>=1) 

 

It’s easy to see that the percentage of such peptides isn’t so high, but it is 

considerably significant, and as we will see in the following, the quantification is a 

little bit worse than the peptides with at least one Lysine.  

The other important division within the evidence file, is between the MULTI and the 

ISO peptides. It is interesting to notice that such division, as well as that one 

based on the presence of the Lysine, is not balanced: there are much more ISO 

distributions than completed triplet (fig.4). There is even another tiny group, named 

MsMs, which is composed by those peaks which don’t belong to any recognized 

distribution; fortunately, being useless for the identification and the quantitation 

process, they are very few. 
 

 

 
 

K=0 16.17% 
K>=1 83.83% 
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Figure 4: division of the Evidences of MaxQuant 

 

Let’s now see how does MaxQuant perform the quantification, in particular we will 

focus on the differences between the results obtained with the peptides without 

Lysine, and those with at least one Lysine: as we will see, the issue of the overlap 

affects the quantification decreasing accuracy and precision (and therefore 

increasing the overall standard deviation). In the next table it is shown the 

MaxQuant results about those peptides which have no Lysine at all (tab.1). In the 

Reference column there are shown the expected values: as known the Medium / 

Light ratio should be equal to 0.5, and MaxQuant gets a result which is pretty close 

to the expected value.  

 

K=0 MaxQuant Results Reference 

Average  0.5503  0.5000  
Standard Deviation  1.4493  0  

Numbers of Peptides  1530  1576  

Tab.1: MaxQuant results: peptides without Lysine 

MULTI 25.57% 
ISO 70.87% 
MsMs 3.56% 
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Obviously the standard deviation should be as close as possible to zero. Finally, 

the last row, named numbers of peptides, shows the number of quantified peptides 

(MQ column) out of the identified peptides (Reference column). 

In the next table, similar to the first one, there are shown the results obtained for 

those peptides with at least one Lysine. 

 

K>=1 MaxQuant Results Reference 

Average  0.5357  0.5000  
Standard Deviation  1.2063  0  

Numbers of Peptides  7869  8166  

Table 2: MaxQuant results: peptides without Lysine 

 

 It is possible to see that, even if the number of peptides in this second table is 

much more bigger than the first table (7869 versus 1530) the standard deviation 

and the average value is better in this second table. The average value is closer to 

the expected value, and the standard deviation is even smaller, (even if the 

number of quantified peptide is five times bigger!). This, without any doubt, 

suggests that the overlap issue is a problem that affects the quantitation process. 

In the next paragraph we are going to see how much does the overlap affect the 

computation of the ratio: in particular the case studied to evaluate the incidence of 

the problem shows an overlap between the first peak of the Heavy distribution and 

the seventh peak of the Light. 

A general consideration about the results obtained by MaxQuant is that the 

quantification process is well performed. It quantified about the 96% of the 

peptides identified, and the average value is close to the expected one. In general, 

the only spot where our algorithm can make the difference, is in the standard 

deviation value, trying to decrease it. As we will see, it will be done. Moreover, it 

would be interesting to show an increase in the accuracy of the results for the 

peptide without the Lysine, a limited subgroup of peptides where, as just seen, 

MaxQuant doesn’t perform any kind of correction for the overlap issue. 



65 
 

Incidence of the Overlap Problem 

To perform this kind of analysis, three steps are necessary (fig. 5). The first part, 

as explained in the overview of this work, is the digestion of the whole proteome of 

an organism,. The organism used for our simulation is mouse (Mus, Musculus).  

 
Fig.5: The operative workflow of the analysis of the incidence of the 

overlap 

 

As known, the digestion is performed using the trypsin as cutting enzyme. The tool 

used for this simulation is named ‘Protein Digestion Simulator’ [22], whose 

screenshot is shown in the figure 6. 

Once the proteome has been digested, it is necessary to collect a relevant number 

of peptides, and then compute their isotopic distributions on the basis of their 

mass. The numbers of peptide considered is 64,447, and the tool used for the 

isotopic distribution is IPC (Isotopic Pattern Calculator), already mentioned  in the 

previous chapters. To compute the incidence of the overlap issue, two simple 

approaches have been realized: 

1. the first one is based on three different analysis, which are simple and fairly 

similar. They consider the incidence of the overlap in terms of isotopic 

distributions, measuring the entity of the overlap;  

2. the second one is based on the analysis of the 7th peak, which is involved in 

the overlap: in particular, it has been considered the plot of the mass versus 

the relative intensity, and then it has been computed the number of 

peptides whose intensity is higher than some thresholds (higher is the 

mass, higher is the intensity of the peak). 
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Fig. 6: a screenshot from Protein Digestion Simulator 

 

First of all, it is important to understand how often the overlap due to the shift 

occurs in our set of peptides. In another way, we are trying to determine how many 

peptides have a seven Dalton long distribution. In that case, indeed, the problem 

of the overlap doesn’t occur at all, because the distribution of the peptides isn’t 

long enough to be superimposed. In the collection of 64447 peptides, 10451 are 

short enough to avoid the problem. This means that the percentage of non- 

overlapped peptides is: 
10451/64447 = 16.22% 
 
This percentage is quite low, and it allows us to glimpse that the overlap problem 

has an important impact on the computation of the Heavy to Light ratio. 

The remaining 83.78% of the peptides, therefore, have an overlap problem. It is 

important to try to understand  how it happens, to what extent and as widely. To do 

so, let’s check out the three methods implemented. It is important to highlight that 
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the overlap considered in this part, is obtained with two distributions with the same 

intensity: we consider the Heavy to Light ratio equal to 1:1. This shrewdness allow 

us to check the incidence quite easily, as shown in the first method. Furthermore, 

the percentage reported are computed not on the total number of peptides (that is 

64447), but only on those that overlaps (53996 peptides). 

The first idea simply imposes a ratio between the maximum value of the 

distribution not overlapped (usually the first peak), and the maximum value of the 

overlapped distribution. It is easy to figure out that, if the value of the ratio is equal 

to one, it means that the two maximums are the same, and therefore there is no 

overlap at all.  

 
Fig.7: The first idea shown in a plot 

 

Using this simple method it is possible to get some interesting data, that we can 

summarize in the next table. In particular, the ratios obtained have been split in 

four subgroups, according to their values. The first group has a value between 

0.75 and 0.85, the second 0.85 – 0.95, the third one 0.95 – 0.97 and the last one 

0.97 – 1.00. The percentage obtained are shown in the table:   
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0.75 < Ratio < 0.85   0,41% 

0.85 < Ratio < 0.95   10,17%   

0.95 < Ratio < 0.97   7,05% 

0.97 < Ratio < 1.00 82,37% 

Tab 3: the results of the first analysis 
 
 
 

From this table it is possible to see that the most of the peptides have a ratio quite 

close to one, meaning that the overlap should not be so considerable.  

The second method focuses particularly on the number of the peaks of the 

distribution which overlaps, regardless of their intensities. Therefore, we are trying 

to understand how many peaks interact each other independently from their 

heights. The results are summarized in the table: 

1 < R < 3 48,74% 

4 < R < 6 28,27% 

7 < R < 9 13,89% 

10 < R < 12 6,51% 

13 < R < 15 2,49% 

16 < R < 18 0,01% 
Tab 4: the results of the second analysis 

     
 

From this table emerges clearly that, in spite of what is emerged from the first 

method, the overlap is present and it involves many peptides. Indeed, almost half 

of the peptides have an overlap between one and three peaks, and more than the 

half have a number of overlapped peaks higher than three. It means that, even if 

the overlap is not very intensive, it is however quite widespread, introducing a 

considerable bias. 
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Finally, let’s consider the last idea used to quantify the incidence of the overlap. 

This final analysis is quite similar to the first one, but instead relating the heights of 

the peaks, it relates the areas: in particular it has been computed the ratio 

between the area where the overlap occurs, and the area of the overall 

distribution. (fig.8) 
            

 
Fig.8: The areas from the third analysis  

 

We may expect that if a little overlap occurs the final ratio is quite small, while if 

the overlap is considerable, the ratio is going to be bigger. In this third method the 

aim was to fuse the aspects of the two previous method: the intensity of the 

overlap highlighted in the first method and the numbers of peaks involved, as 

shown in the second method. Let’s see the table of the results of the third idea: 
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0.00 < R < 0.20 19,00% 

0.20 < R < 0.40 37,32% 

0.40 < R < 0.60 38,55% 

0.60 < R < 0.80 05,13% 

0.80 < R < 1.00 00,00% 

Tab 5: the results of the third analysis 
 

In this table we can see that the mode is in the middle of the distribution of ratios: 

the 38.55% of the peptides have a ratio between 0.4 and 0.6. This method shows 

pretty well the final idea of the incidence of the overlap: the overlap imposes his 

presence quite widely in the distribution of the peptides, and may affect 

considerably the computation of the final ratio, even if the height of the peaks 

which overlaps isn’t, on average, so intense.  

To point up the intensity of the first peak of the overlap, the second part of the 

statistical analysis has been focused on the 7th peak, which is the one that is 

overlapped with the 1st peak of the labeled distribution. In this analysis, the aim 

was to understand how intensive is, on average, the 7th peak, in order to 

understand how this affect the overall distribution: indeed, the trend of the intensity 

of this peak is a very interesting index about the problem of the overlap. Somehow 

this analysis tries to retrace the results obtained with the first method (about the 

ratio of the maximum of the distributions) but using some plotting function to 

visualize the role of the mass of the peptide in the value of the intensity of the 7th 

peak. As it can be seen, higher is the mass of the peptide, higher is the intensity of 

the 7th peak, therefore the problem of the overlap is more remarkable when the 

considered peptide has a big mass: it is possible to see again the importance of 

the digestion step, in order to get the right size in the sequence length. In the 

upper part of the figure 9, there is the approximation obtained with a 5th grade 

equation, which best approximates the data; in the lower part there is the cluster of 

the real data: the range of the mass sweeps from about 400 Dalton up to 10000 

Dalton. It is clearly visible that the trend increases with the mass with a function 

that seems to be like a sigmoid function. In the next table, tab. 5, there are some 



71 
 

numerical values which are extracted from this function, which show the numbers 

of peptides above the four stated threshold. These threshold are the 5%, 10%, 

20% and 30% of the maximum value of the relative intensity.   

 

 Fig.9: The trend of the 7th peak  

 

If we consider a very small threshold, such as 5% of the maximum value, we get 

that almost 34% of the peptides exceed such threshold. Increasing the value of the 

threshold, obviously the number of peptides decrease, up to 16.50% of peptides 

for a threshold of the 30%.  In the table 5 are shown the numerical values. 
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% Relative 
Intensity 

Relative 
Intensity 

Mass threshold 
7° peak 

# Peptides above 
threshold for 7° 

peak 

% Peptides 
above threshold 

for 7° peak 
0.0500 % 0.0075 2599.4 21562 39.93% 
0.1000 % 0.0150 3143.8 16696 30.92% 
0.2000 % 0.0299 3895.1 11700 21.67% 
0.3000 % 0.0449 4487.2 8912 16.50% 

 Tab 6: the results of the 7th peak analysis 
 

Finally, out of curiosity, it is reported an overview about the trend of all the peaks 

up to nine, simply to match the seventh peak with all the others (fig.10). We can 

easily see that there isn’t a uniform trend between the peaks. Instead we can point 

out that the first peak of the isotopic distribution becomes lower with the mass, 

while the others increase. The last three peaks (included the seventh), instead, 

show an increasing trend, while the middle peaks (two to six) have an increasing 

trend up to a certain value, than a decreasing trend.  

 

 

Fig.10: The trend of all the peaks up to 9 
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Results obtained through the proposed algorithm on the dimethyl datasets 

In this paragraph the results obtained with our algorithm are shown, using the 

Dimethyl dataset. This section can be divided in four parts:  

1. the analysis of the results from the peptides with at least one Lysine;  

2. the analysis from those peptides without any Lysine;  

3. a paragraph about the effect of tuning the parameters of the algorithm 

(threshold for the Pearson correlation and the threshold for the difference of 

the ratios); Finally, it is important to keep in mind that the expected value for 

this dataset is 0.5. 

4. the results of the scoring on the dimethyl dataset. 

 

Peptides with at least one Lysine 

Let’s see first how our first algorithm works with those peptides which have at least 

one Lysine in their sequence, and therefore don’t have any issue due to the 

overlap problem. As already said before, the algorithm works taking as input the 

file ‘evidence’ from the MaxQuant output, and it considers for the quantitation 

process only the desired peptides (those with at least one Lysine). The total 

number of peptides identified with at least one Lysine is equal to 8166.  

The results obtained are shown in the table, together with the results obtained with 

MaxQuant (MQ column).  

The first raw shows the value of the selected threshold for the difference between 

the three ratios. It is possible to see that when the difference is equal to one, the 

results are better in term of precision and recovered peptides. 

 

Difference:  MQ 0.5 1 2 5 None 
Average 0.5357 0.4678 0.5145 0.5594 0.6221 1.7416 

Std 1.2063 0.3564 0.3941 0.4445 0.5791 31.9524 

Quant 7869 4066 4744 4996 5129 6731  

Tab.7: Results for those peptides with at least one Lysine 
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The threshold used for the Pearson correlation along the m/z axis is fixed and it is 

equal to 0.8 and, as we will see in the next paragraph (‘tuning the parameters: the 

best solution’), this is the best value to get excellent results, both in the accuracy 

and in the numbers of quantified peptides. The second parameter, instead, is the 

threshold of the difference of the three ratios obtained from each part of the elution 

area (see the previous chapter for details). This parameter varies, as shown in the 

head of each column. Obviously, the smaller is the threshold, the better are the 

results obtained in terms of standard deviation, but smaller is even the number of 

quantified peptides. It is important to find out the right trade-off, tuning the 

parameter, in order to favor the quality of the quantification or the number of 

quantified peptides. 

It is possible to see that, for the couple of parameters 0.8 (Pearson correlation) 

and 1 (difference of ratios), the standard deviation is highly reduced, but the 

number of peptides is significantly decreased. Therefore, we may state that the 

quality of the quantitation process is highly increased, at the expense of the 

number of quantified peptides. Let’s see which are the results for the peptides with 

any Lysine amino acid.  
 

Peptides without Lysine  

For this category of peptides, the total number of triplet is equal to 1576. In the 

table, which is similar to the previous one, there are shown the results obtained.  

 

Difference MQ 0.5 1 2 5 None 
Average 0.5503 0.4860 0.5339 0.5889 0.6580 1.0958 

Std 1.4493 0.2059 0.2476 0.3326 0.4928 8.7881 

Quant 1530 808 933 1002 1043 1488  

Tab.8: Results for those peptides with any Lysine 

 

As the previous one, the results are much better in terms of standard deviation, 

decreasing the value almost of an order of magnitude. As before, the price is in the 
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number of peptide quantified: from 97% to about 70%. We can say that this 

algorithm allows a great enhancement in the quality of the quantitation process,  

but it will lose a portion of peptides. Finally, it is possible to see that the Yoon’s 

method works well, having a good precision (little standard deviation) and high 

accuracy (average value close to 0.5). 

Let’s see in the next paragraph how does the result change varying the values of 

the two key thresholds present in the algorithm. 

  

Tuning the parameters: looking for the best solution 
In this algorithm there are two thresholds, whose values are important to 

determine the accuracy of the quantitation process, and to determine the number 

of quantified peptides. As seen in the results, the accuracy and the number of 

quantified peptides are somehow in an opposite position: to have a good precision 

and a low standard deviation, some peptides have to be lost. In this paragraph it is 

shown how the number of the peptides recovered and the accuracy are affected 

by these two thresholds.  

In the next two figures, there are shown two three-dimensional  surfaces (sparsely 

sampled) where the axes of the plane are the thresholds of the algorithm: one for 

the Pearson correlation and one for the difference between the three sections of 

the elution area. The first one is the trend of the averaged ratio (therefore we are 

basing our discussion on the accuracy of the quantitation: how close to the 

expected value is the averaged value). It is already visible that the difference 

threshold (that one about the difference of the three ratios) is much more important 

to determine the precision of the result, while the Pearson correlation doesn’t 

affect so much the precision of the quantitation process: therefore, if our aim is to 

achieve a precise quantification, we should tune the difference threshold, trying to 

reduce it as much as possible. 
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Fig.11: Averaged Ratio in the threshold domain  

 

 

Tab.12: Numbers of peptides in the threshold domain 
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In the other figure (fig.12), it is possible to see the trend of the number of 

quantified peptides, varying the values of the thresholds. In this case, both the 

Pearson threshold and the Difference Threshold contribute at the final result: but 

the Pearson threshold has a much more important role in the number of quantified 

peptides. Hence, to increase the number of identified peptide, it is important to 

keep a low value of the Pearson threshold.  

In the next two figures, the same concepts are shown in a bi-dimensional case, 

splitting each value of the difference threshold, and plotting on the x-axis the 

Pearson threshold. 

 

Fig.13: Average Ratio for each couple of threshold 

 

It is possible to see that the precision and the accuracy of the quantification aren’t 

related so much with the Pearson threshold, and the values obtained in each 

subplot of the first figure are quite constant. The precision is consistently 

dependent on the difference threshold rather than the Pearson threshold. Vice 

versa, the number of quantified peptides is related much more with the Pearson 
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coefficient, whose enhancement causes a sharp decrease after 0.9 values. On the 

other side, the difference threshold doesn’t affect so much the number of 

quantified peptides, but it is anyway notable. 

 

 
Fig.14: Numbers of quantified Peptides for each 

couple of threshold 

 

Finally, the best strategy for a generic quantitation process, with a good accuracy 

and a consistent number of recovered peptides, is composed by such couple of 

values: 

Pearson threshold = 0.8 

Difference threshold = 1 

 

An example: peptide ‘AAASVMCHIEPDDGDDFVR’ 

In this part it is shown an example taken from a peptide of the Dimethyl dataset.  
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Sequence ‘AAASVMCHIEPDDGDDFVR’ 
m/z Light 711.65 

m/z Medium 712.98 
charge 3 

Distance between peaks 0.33 
Retention Time 103.76 

Tab.9: Peptide’s characteristics 

In the table 9, the main characteristics of the peptides are shown, such as the 

sequence (notice that there isn’t any Lysine, therefore the quantitation is 

performed using the Yoon’s method), the m/z position of the Light and of the 

Medium, the charge of the peptide, the distance between the peaks and finally the 

retention time. After the table, in the next figures, there are shown the 3D 

representation of the signal (fig.15): it is possible to see the elution area of the 

peptide: the fifth peak of the Light is clearly overlapped with the first peak of the 

Medium, at 712.98 Dalton. The same information is easily available from the bi-

dimensional plot of the signal (fig.16), where the same peptide is looked along the 

m/z axis. Again, the overlap is clearly visible. 
 

The ratio computed by the algorithm is very close to the expected value, which is 

0.5. In particular, the three ratios are: 
Ratio1 =     0.4876; 

Ratio2 =     0.5145;  

Ratio3 =     0.5233; 

 

And the final ratio, computed as average of these three previous ratios, is: 
FinalRatio = 0.5085 

 

The threshold used for the Pearson selection of each scan is equal to 0.8, while 

the threshold used for the difference of the ratios is equal to 1. It’s interesting that 

the ratio computed for this peptide is really very close to the expected value, which 

is 0.5. As stated, due to the overlap, it has been used the Yoon’s method. 
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Fig.15: Three-dimensional representation of the signal 

 

 

Fig.16: Bi-dimensional representation of the signal 
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Silac Dataset 

Moreover, the algorithm has been tested on four different datasets, realized as 

well in the laboratory headed by the Professor Heck in Utrecht. Once again, the 

realization of such datasets has been realized on purpose, knowing the ratios 

within the triplet: two datasets have a proportion equal to 1:1:1, while the other two 

dataset have a 10:5:1 proportion. For these last datasets, the results have been 

obtained only for the first ratio Medium over Light, because of the trouble in 

obtaining the lower ratio 0.1. The enzyme used is again the Trypsin, cutting the 

sequence in presence of Lysine and Arginine. Unlike the dimethyl labeling, the 

Silac labeling has a different shift for the Lysine and the Arginine: the Lysine is 

shifted of 4 Dalton at each feature (as the previous dataset), while the shift of the 

Arginine is equal to 6 Dalton between the Light and the Medium, and 10 Dalton 

between the Light and the Heavy (therefore the Medium-Heavy difference is equal 

to 4 Dalton). In the next picture, it is shown a triplet with one Arginine in the 

sequence, and no Lysine. It is clearly visible the shift (keep in mind that the shift is 

always divided by the charge, that was in this case equal to 2). Another important 

issue that helps our algorithm, is about the absence of the retention time shift of 

the features, which is present in the Dimethyl labeling. Being well aligned, the 

elution area of the peptides are easily identifiable and quantifiable.  The four 

datasets come from the same experiment: in particular two of them are the second 

fraction of this experiment, while the other two are the third fraction. The difference 

between dataset of the same fraction is in the ratios: as already said, the 

proportion are 1:1:1 and 10:5:1. The next table summarize the datasets. 

 

DATASET  SILAC 02 SILAC 02 SILAC 03 SILAC 03 

RATIOS 1 : 1 : 1 10 : 5 : 1 1 : 1 : 1 10 : 5 : 1 

Tab.10: The datasets used for the second algorithm 

 

Let’s now see which is the performance of MaxQuant and Proteome Discoverer on 

these datasets.   



82 
 

 

Fig.17: A triplet with an Arginine labeled 

 

Comparing MaxQuant and Proteome Discoverer Results 

The first difference between these two software is mainly based on the fact that 

MaxQuant is freeware, and realized at the Max Planck Institute of Berlin, while 

Proteome Discoverer is a software under license, realized by the ThermoScientific 

company. The comparison has been done under the same conditions: both use 

only one library for the identification process (MaxQuant uses Andromeda, while 

Proteome Discoverer, although might use a combination of several libraries, has 

been set to use only Mascot). In the next table there are shown all the results for 

both the software.  

Dataset: silac02 1:1:1 MaxQuant Proteome 
Discoverer 

Ratio: ML HL ML HL 
Average: 0.746 0.847 0.8159 0.9945 

Std: 0.711 0.630 0.9457 1.6714 

Peptides Identified: 664 664 6903 6903 

Peptides Quantified: 594 593 1074 1075 

Tab.11: The dataset 1 results MQ vs. PD 
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Dataset: silac03 1:1:1 MaxQuant Proteome 

Discoverer 

Ratio: ML HL ML HL 

Average: 0.725 0.836 0.7494 0.8541 

Std: 0.437 0.518 0.2123 0.3392 

Peptides Identified: 8055 8055 27395 27395 

Peptides Quantified: 7667 7666 15140 15518 

Tab.12: The dataset 2 results MQ vs. PD 

 

Dataset: silac02 10:5:1 MaxQuant Proteome 
Discoverer 

Ratio: ML ML 
Average: 0.362 0.3482 

Std: 0.157 0.0923 
Peptides Identified: 646 4734 
Peptides Quantified: 596 394 

Tab.13: The dataset 3 results MQ vs. PD 

 

Dataset: silac03 10:5:1 MaxQuant Proteome 
Discoverer 

Ratio: ML ML 
Average: 0.408 0.3475 

Std: 1.11 0.1498 
Peptides Identified: 10494 23341 
Peptides Quantified: 9943 7422 

Tab.14: The dataset 4 results MQ vs. PD 

 

The first important difference between MaxQuant and Proteome Discoverer is not 

about the quantification of the peptides, but it is about the identification process. 

The numbers of the peptides identified by Proteome Discoverer is much more 

bigger than the number of the peptides identified by MaxQuant. This difference in 

the identification process was already detected by Altelaar et al. [6]  even at the 

level of the proteins. Aside from this identification issue, even the difference in the 

quantification are relevant. It is possible to divide the dataset on the basis of their 

fraction. In particular, in the fraction 2 (first and third tables) Proteome Discoverer 
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detected tenfold the numbers of peptides identified by MaxQuant, but the 

quantitation is very poor. In the first table, only the 15% of the identified peptides is 

quantified, and the results show a discrete standard deviation both for the Medium 

to Light ratio and for the Heavy to Light ratio. In the same fraction 2, with 

proportion 10:5:1, the quantification is even worse, because although identifying 

much more peptides than MaxQuant, the number of the quantified is incredibly 

smaller. Completely different is the fraction 3, in both cases. In the 1:1:1 case, the 

identified and quantified peptides are much more for Proteome Discoverer, and 

even the accuracy and the precision of the quantification is in favor of the 

commercial software, even if MaxQuant is able to perform fairly. The 10:5:1 

dataset shows less peptides quantified, but an accuracy very high respect to 

MaxQuant, with a good precision for both of them. 

In conclusion, Proteome Discoverer seems to be much better than MaxQuant, 

surely regarding the identification process; even for the quantitation process, 

generally Proteome Discoverer shows a better accuracy and a better precision 

than MaxQuant.  

Let’s see now if our algorithm is able to recover some peptide, or get a better 

standard deviation.  

 

Results obtained through the proposed algorithm on the SILAC datasets 

Our second algorithm has been tested on these four datasets. As for MaxQuant 

and Proteome Discoverer, in the dataset  with a 1:1:1 ratios between the Light, 

Medium and Heavy labeling, we have computed the ratios Medium/Light and 

Heavy/Light, while for the 10:5:1 dataset, the only computed ratio is Medium/Light, 

because the feature of the Heavy distribution is close to the threshold of the noise. 

The results have been computed starting from the identification performed by the 

output file of MaxQuant (or Proteome Discoverer as well): in particular, MaxQuant 

provides also a number related with the Protein Group of that peptide, which 

means that we are able to compute the percentage of recovered proteins starting 

from the peptides.  

The results are shown in the tables in the following pages. In particular, for each 
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table there are two columns: the first one shows the results obtained by 

MaxQuant, while the second one shows the results obtained using our algorithm. 

Let’s finally see the table with the results obtained for the first dataset: the SILAC 

02 1:1:1.  

Tab.15: The dataset SILAC02 1:1:1 results  

 

In the last row there are some interesting percentages. The first one shows the 

number of quantified protein up to the total number of identified proteins. It is 

possible to see that a relevant number of proteins are quantified. The second 

percentage shows the number of protein that our algorithm quantified, respect 

those quantified by MaxQuant. In this dataset it is interesting to see that the 

accuracy of the quantitation is better for our algorithm (both with and without the 

selection). In particular, the standard deviation is halved, and in the case without 

any selection the number of proteins lost compared to MaxQuant is only equal to 

4%. In the next figure, it is shown the difference between MaxQuant and our 

algorithm, in a plot of the ratios versus the mass of the peptides. It is possible to 

see that our algorithm basically hasn’t any outlier in its distribution of values, and 

all the ratios are close to the expected value. Even MaxQuant has a distribution 

close to the expected value (even more than our algorithm), but some peptides are 

clearly poorly quantified, leading to some outliers.  

Dataset: silac02 1:1:1 
MaxQuant Our Algorithm 

 

Ratio: ML HL ML HL 
Average: 0.746 0.847 0.752 0.817 

Std: 0.711 0.630 0.328 0.430 

Peptides Identified: 664 664 664 664 

Peptides Quantified: 594 593 618 619 

Protein Identified: 648 648 648 648 

Protein Quantified: 587 

90% 

587 564 

87% 

96% 

568 
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Fig.18: Comparison between MaxQuant and our algorithm 

 

In the next tables are shown the results obtained with the other datasets: the 

SILAC 03 1:1:1, the SILAC 02 10:5:1 and the SILAC 03 10:5:1. 

 

Tab.16: The dataset SILAC03 1:1:1 results  

 

 

Dataset: silac03 1:1:1 
MaxQuant Our Algorithm 

 

Ratio: ML HL ML HL 
Average: 0.725 0.836 0.782 0.804 

Std: 0.437 0.518 0.416 0.523 

Peptides Identified: 8055 8055 8055 8055 

Peptides Quantified: 7667 7666 7521 7189 

Protein Identified: 2796 2796 2796 2796 

Protein Quantified: 2334 
83% 

2338 2233 
79% 
95% 

2166 
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Tab.17: The dataset SILAC02 10:5:1 results  

 

Tab.18: The dataset SILAC03 10:5:1  results  

 

From these tables, it is possible to see that, except for the dataset SILAC 02 

10:5:1, the standard deviation is always much better than that one of MaxQuant. 

After the selection of the peptides, the values of the standard deviation are always 

smaller than 0.3. Even the average value is close to the expected one (it has been 

seen that the real experimental ratios aren’t equal to 1 and 0.5 but a little bit 

smaller: about 0.7 and 0.42). 

Dataset: silac02 10:5:1 
MaxQuant Our Algorithm 

 

Ratio: ML ML 
Average: 0.362 0.472 

Std: 0.157 0.346 

Peptides Identified: 646 646 

Peptides Quantified: 596 574 

Protein Identified: 622 622 

Protein Quantified: 580 
93% 

532 
85% 
91% 

Dataset: silac03 10:5:1 
MaxQuant Our Algorithm 

 

Ratio: ML ML 
Average: 0.408 0.531 

Std: 1.11 0.471 

Peptides Identified: 10494 10494 

Peptides Quantified: 9943 9306 

Protein Identified: 3613 3613 

Protein Quantified: 2862 
79% 

2683 
74% 
93% 



88 
 

Furthermore, as seen in the previous paragraph, the quantitation is much more 

reliable (smaller standard deviation) than MaxQuant, therefore our algorithm 

hardly can introduce any improvements. In the following tables the results 

obtained for the four datasets are reported.  

Tab.19: The dataset SILAC02 1:1:1  results 

Tab.20: The dataset SILAC02 1:1:1  results  

Tab.21: The dataset SILAC02 10:5:1  results  

 

Dataset: silac02 1:1:1 
Proteome 

Discoverer 
Our Algorithm 

 

Ratio: ML HL ML HL 
Average: 0.8159 0.9945 0.6623 0.6790 

Std: 0.9457 1.6714 0.4822 0.4943 

Peptides Identified: 6903 6903 6903 6903 

Peptides Quantified: 1074 1075 2764 2548 

Dataset: silac03 1:1:1 
Proteome 

Discoverer 
Our Algorithm 

 

Ratio: ML HL ML HL 
Average: 0.7494 0.8541 0.7178 0.7438 

Std: 0.2123 0.3392 0.3813 0.4918 

Peptides Identified: 27395 27395 27395 27395 

Peptides Quantified: 15140 15518 14411 13641 

Dataset: silac02 10:5:1 
Proteome 

Discoverer 
Our Algorithm 

 

Ratio: ML ML 
Average: 0.3482 0.3462 

Std: 0.0923 0.2770 

Peptides Identified: 4734 4734 

Peptides Quantified: 394 1356 
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Tab.22: The dataset SILAC03 10:5:1  results  

 

Proteome Discoverer has an excellence standard deviation, and our algorithm is 

able to perform better only in the first dataset. But the number of peptides 

quantified by our algorithm is significantly bigger in the first and in the third 

dataset, with comparable averaged values.  

 

Some example: Peptide 'AAAAAAGEAR' 

Let’s now see an example of the whole quantitation algorithm for a well-quantified 

peptide, coming from one of the SILAC dataset, and whose sequence is 

‘AAAAAAGEAR’. In the next table are reported the data of the peptide: the m/z 

value of the Light, of the Medium and of the Heavy distribution, the charge and 

finally the distance between the peaks of the same isotopic distribution.  

 

Sequence 'AAAAAAGEAR' 
m/z Light 450.7303 

m/z Medium 453.7303 
m/z Heavy 455.7303 

charge 2 
Distance between 

peaks 
0.5 

Retention Time 37.5610 

Tab.23: Peptide’s characteristics 

 

Dataset: silac03 10:5:1 
Proteome 

Discoverer 
Our Algorithm 

 

Ratio: ML ML 
Average: 0.3475 0.3873 

Std: 0.1498 0.2629 

Peptides Identified: 23341 23341 

Peptides Quantified: 7422 9847 
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Being only one amino acid Arginine ‘R’ and no Lysine ‘K’, the shift between Light 

and Medium is equal to six Dalton divided by the charge, and the distance 

between the Light and the Heavy is equal to ten Dalton divided by the charge. 

Therefore the first peak of the Medium should be overlapped with the seventh of 

the Light (which, basically, doesn’t exist) and the first peak of the Heavy with the 

eleventh of the Light and the fifth of the Medium. The last information reported in 

the table is about the retention time of the fragmented ion (when the peptide has 

been identified). 

In the figure 19 it is possible to see the whole triplet of the real signal. As it is 

possible to see, the signal-to-noise ratio (SNR) is very high, and there isn’t any 

kind of overlap with any other peptide. Furthermore, the theoretical distribution of 

the peptide has the fourth and the fifth peaks with a very low intensity, therefore 

there shouldn’t be any noisy overlap between the Light feature and the Medium, or 

between the Medium and the Heavy.  

In the next figure (fig. 20), it is shown a combined plot composed by four different 

pictures, which are about the first peak of the Light distribution. In the first one 

there is the real signal, named ‘All the peak’. Under the real signal there is the 

figure of the filtered signal: the real Gaussian is filtered with a low pass in order to 

be able to find the best fit with the Exponentially Modified Gaussian, which is 

shown in the picture to the upper right corner. Finally, in the fourth subplot, it is 

shown the signal used for the quantitation, obtained as described previously from 

the EMG and the filtered signal.   
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Fig.19: The whole 3D triplet 

 

Fig.20: The subplot about the retention length problem 
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In the next three pictures (21, 22 and 23) are shown all the three peaks of the 

Light, Medium and Heavy, and their final division in five parts, differently colored.  

 

Fig.21: The Light peaks 

 

Fig.22: The Medium peaks 
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Fig.23: The Heavy peaks 

 

Finally, there are reported the five values obtained from each part: both from the 

Medium / Light ratios and from the Heavy / Light ratios.  

ML:  0.6437    0.6526    0.7362    0.7833    0.7931 

HL:  0.7071    0.8113    0.8219    0.8375    0.9092 

It is possible to see that such ratios are very close to each other, and therefore 

they belong to the same cluster. The final ratios is then obtained as average of the 

whole vector, and then we have as result: 
ratioMLfinal =     0.7218; 

ratioHLfinal =     0.8174; 

Finally, we get the two scores obtained as combinations of the different 

contributions:  the score Id, the length of the final vector, and the Pearson 

correlation in the m/z domain and in the Retention Time domain. The scoring 

values are: 
scoreML =    0.8591; 

scoreHL =     0.8589. 
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Some example: Peptide ‘AAAVSSVVR’ 

The following examples are very important to prove the effectiveness of our 

algorithm, because they show the good results of our quantitation process, where 

MaxQuant fails. The first examples comes from the SILAC dataset, e its sequence 

is AAAVSSVVR. In the table are shown the most important characteristics  

 

 

 

 

 

  

Tab.24: Peptide’s characteristics 

 

 

The peptide may be hardly quantified due to the presence of other peptides, 

whose elution area is partially overlapped with that one of our peptide, especially 

in the heavy feature, as it is possible to see in the figure 24. For this reason, 

MaxQuant is not able to properly quantify the peptide, and the result of its 

quantification is null (expressed in the Matlab workspace with the notation NaN – 

which means Not A Number).  

Our algorithm, dividing the area in five parts, is able to compute the final 

computation, obtaining a result very close to the expected one. The five ratios and 

the final one, both for the Medium to Light ratio and for the Heavy to Light ratio, 

are: 
Ratio MaxQuant ML = NaN    
Ratio Our Algorithm ML = 1.1451   
(score 0.7807) ratios = [0.9218    0.9970    1.0494    1.1361    1.6213] 
 
Ratio MaxQuant HL = NaN 
Ratio Our Algorithm HL = 1.1997   
(score 0.7172) ratios = [0.9578    1.1984    1.2054    1.2884    1.3487] 
 

Finally, in the next figures, it is shown the division of the three peaks of the Light, 

Medium and Heavy distribution in five parts. 

SEQUENCE AAAVSSVVR 
m/z Light 451.2587 

m/z Medium 454. 2587 
m/z Heavy 456. 2587 

Retention Time 82.2390 
Charge 2 
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Fig.24: A crowed area all around our peptide 

 

 

Fig.25: The division of the Light Peaks 
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Fig.26: The division of the Medium Peaks 

 

 

 

Fig.27: The division of the Heavy Peaks 
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Some example: Peptide ‘MISGERK’ 

Another peptide example, picked up from the SILAC dataset. In the table its 

characteristics. 

 

 

 

 

 

 

 
Tab.25: Peptide’s 

characteristics 
 

In this case, the peptide MISGERK is localized in a very crowed region, and 

MaxQuant is not able to properly quantify it. Our algorithm, on the contrary, doesn’t 

fail. 

 

Fig.28: Crowed signal with our peptide 

SEQUENCE MISGERK 

m/z Light 431.7262 

m/z Medium 436. 7262 

m/z Heavy 440. 7262 

Retention Time 64.5400 

Charge 2 
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Let’s see how MaxQuant quantify, and how our algorithm perform. It is possible to 

see that our algorithm provides the best ratio even for this crowed peptide. 
Ratio MaxQuant ML = 0.0465    
Ratio OurAlgorithm ML = 0.7605   
(score 0.6519) ratios = [0.3900    0.6253    0.8451    0.8720    1.0702] 
 
Ratio MaxQuant HL = 0.1379 
Ratio OurAlgorithm HL = 1.5600   
(score 0.4790) ratios = [0.2655    0.5061    0.5936    0.6048    0.8301] 
 

MaxQuant underestimate significantly the final ratio. Our algorithm, instead, is able 

to get a value really close to the expected one.  

 

Some example: Peptide ‘SIFDIFR’ 

This examples, picked from the SILAC dataset, shows an important characteristic 

of our algorithm, and its reliability in the quantification process. The data of the 

peptide are shown in the following table. 

 

 

 

 

 

 
Tab.26: Peptide’s characteristics 

In this case, the peptide SIFDIFR has an important overlap at 473.25, the spot of 

the medium feature, as shown in the picture of the signal, and this obviously 

affected the ratio computation. 

SEQUENCE SIFDIFR 
m/z Light 470.2504 

m/z Medium 473. 2504 
m/z Heavy 475. 2504 

Retention Time 156.590 
Charge 2 
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Fig.29: Overlapped feature at 473 Dalton 

 

Such overlap is a problem, because it alters significantly the ratio Medium to Light, 

overestimating the value. As shown in the following, MaxQuant reports a value 

which is almost equal to three, while the expected value should be close to one.   
Ratio MaxQuant ML = 2.9439    
Ratio OurAlgorithm ML = NaN   
(score 0.4493) ratios = [0         0    6.1870    7.2187    8.4383] 
 
Ratio MaxQuant HL = 0.8601 
Ratio OurAlgorithm HL = 1.0080   
(score 0.7237) ratios = [0    0.5875    0.9843    1.0438    1.4165] 
 

Our algorithm detects the problem, because the difference between the ratios is 

too high, and therefore there should be a mistake in the computation. The strategy 

adopted in such case is not to quantify, not being able to provide a reliable value. 

For the other ratio, Heavy to Light, there aren’t any problems, because the overlap 

is spread only over the medium elution area.  
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Scoring the quantification 

The peptides of the first dataset (SILAC 03, 1:1:1) have been plotted in the three 

dimensional space composed by the Pearson coefficient of the peptides, the 

Identification Score and by the number of ratios used for the final quantification; 

these are the three elements which are used to compute the score of each peptide 

(see the previous chapter for details). They have been classified in two groups:  

1. the first group is composed by those peptides whose ratios is in the range 

0.5 – 1.5. The second group of peptides is composed by all the other 

peptides, whose ratio obviously isn’t in that range. 

Once the peptides have been classified (fig.30), we have performed a linear 

classification to separate the two different groups, through two linear discriminant 

analysis, weights for the three parameters were determined.  

 

 
Fig.30: The three dimensional space and the classified 

peptides: the blues have a ratios between 0.5 and 1.5.  

 

The result of the separation is shown in the next figure (fig. 31). 

It is possible to see that the linear separation privileges those peptides whose 
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position is in an upper corner of the space. It means that those peptides with high 

values of the components show a good ratio (where good means a ratio within the 

specified range). This is basically what we expected. Exploiting this information, a 

peptide may be provided with a score relative to quantification, analogously to 

what happens for identification. In this way, we have assigned a score to each 

peptide of the datasets. 

 

 
Fig.31: The linear separation  

 

As it is possible to see from the next pictures (fig 32 to 34), as the threshold of the 

score increases, as the standard deviation of the results of the quantification 

decreases. Similarly, the number of quantified peptide decreases. Therefore, it is  

possible to select peptides according the quality of quantification.  
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Fig.32 Classification and thresholding of the Medium/Light ratio in the 

Dataset SILAC02 10:5:1 

 

 
Fig.33 Classification and thresholding of the Medium/Light ratio in the 

Dataset SILAC02 1:1:1 
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Fig.34 Classification and thresholding of the Medium/Light ratio in the 

Dataset SILAC03 1:1:1 

 

 
Fig.35 Classification and thresholding of the Medium/Light ratio in the 

Dataset SILAC02 10:5:1 
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Conclusions 
 
 
 

We started this work with the aim of increasing the accuracy and the precision of 

the quantitation process of the state of art software (in particular the widely used 

MaxQuant). Specifically, we aim to solve the overlap problem, both in the co-

eluting and in the overlapping case due to the kind of labeling (Light/Heavy 

overlap). As stated in the introduction: “the aim of this work is the implementation 

of an algorithm able to improve the quantitation results obtained with the best state 

of the art algorithm, such as MaxQuant. In particular, we aim to improve the 

quantification of those peptides whose complexity, due to different kinds of overlap 

with other distributions, would lead to a significant poor quantification.”  

The algorithm has been realized on the basis of two main ideas.  

The selection of the scans from the elution area, using the theoretical distribution 

of the peptides to discard those scans whose shape is different or corrupted by 

noise (or overlap), is the first strategy used. As we have seen in the methods, such 

strategy allows us to use only that part of the signal which is not corrupted by 

noise. In this way, we have introduced a first filter in the information used to get the 

final ratio. 

The second idea is to split the elution area of the peptide in several parts, both 

along the retention time axis and along the m/z axis, in order to compare different 

ratios and use only those which are supposed to be not overlapped with other 

peptides. Again, another important filter in order to choose only those parts of the 

area which are not corrupted.  

Moreover, we have implemented an original idea based on the scoring of the 

quantification process at a peptide level. With this idea it has been possible to rank 

the peptides and to classify them on the basis of some important features that 

characterize the quality of the signal used for the quantitation. Such features, as 

seen, are the identification score, the number of sections used to get the final ratio, 

and the Pearson correlation between the shape of the peaks along the retention 

time axis. The final scoring of all the peptides of each dataset has been realized 
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using a single linear classifier, allowing a selection of peptides according to the 

quality of quantification. Such selection has the obvious drawback  of a loss in 

terms of quantified proteins, which is the price to be paid to have an extremely 

accurate quantification.   

In detail, compared with MaxQuant, the most used software in the proteomics field 

(due mainly to its free availability), our algorithm has obtained excellent results. 

For every dataset tested the precision of the quantification has been enhanced, 

and the number of the recovered proteins has been always comparable with that 

of MaxQuant. 

Finally, the overlap issue about features of the same peptide (such as Light and 

Medium in the Dimethyl Dataset, the first one used and shown in the chapter 

about the results) has been successfully solved implementing the method 

published by Yoon et al [18]. Such method provides precise and accurate values. 

The results of the peptides quantified with such method show a significant 

enhancement in the precision, with smaller standard deviation of the results. 

Related with this overlap issue between features of the same peptide, we have 

also quantified the incidence of this problem in the whole proteome of the mouse. 

In conclusion, at the end of this work, it is possible to say that our algorithm has 

successfully accomplished the task of improving  the quantitation process of 

labeled peptides in a mass spectrometry experiment, both in the accuracy of the 

quantification results, and in the precision of the quantification, compared with the 

results obtained using MaxQuant; even the implementation of the solution 

proposed by Yoon for the overlap problem between elution area of different 

peptides, has given satisfying results, much better than those obtained with 

MaxQuant. The troublesome peptides badly quantified by MaxQuant, due to the 

overlap with some other elution areas, have been finally solved, as shown in the 

examples.  

Finally, some future developments may include the possibility of using such 

algorithm even with other kind of labeling, trying to extend its usability with every 

kind of experimental protocol.  
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