POLITECNICO DI MILANO
V Facolta di Ingegneria

Corso di Laurea Specialistica in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

ONTOLOGY AND INSTANCE MATCHING FOR THE
LINKED OPEN DATA CLOUD

Relatore: Prof. Emanuele Della Valle
Prof. Isabel Cruz (UIC)

Tesi di Laurea di:
Federico CAIMI Matr. 751022

Anno Accademico 2011-2012

TABLE OF CONTENTS

CHAPTER
1 INTRODUCTION e

2 STATE OF THE ART OF LINKED OPEN DATA

2.1 Motivation
2.2 What is Linked Open Data?
2.3 Principles
24 Resource Description Framework (RDF)
2.5 SPARQL e
2.6 Evolution of the Cloud

3 THE PROBLEM OF ONTOLOGY MATCHING

3.1 Ontologies and OWL
3.2 Problem statement o oo
3.3 Evaluation
3.4 Ontology Matching techniques and systems
3.5 AgreementMaker Lo Lo Lo oL
3.5.1 AgreementMaker matchers
3.6 Ontology Matching for LOD

4 AN ONTOLOGY MATCHING SOLUTION FOR LOD

4.1 Introduction
4.2 Similarity-based Mapping Discovery
4.2.1 Equality Mappings Expansion (EME)
4.2.2 Compound Noun Analysis (CNA)
4.3 Mediator-based Mapping Discovery
4.3.1 Distance-based Polysemic Lexical Comparison (DPLC)
4.3.2 Global Matcher (GM)
44 Results
4.4.1 Comparison with other systems
4.4.2 Analysis of Matchers Effectiveness
4.4.3 Discussion of the results.

5 THE PROBLEM OF INSTANCE MATCHING

5.1 Problem Statement L.
5.2 Record Linkage L
5.2.1 Record Linkage Techniques
5.3 Differences between Instance Matching and Record Linkage .

iii

oo Oy Oy Ut Ot

TABLE OF CONTENTS (Continued)

CHAPTER PAGE
5.4 Evaluation 50

5.5 Instance Matching Techniques 50

5.6 Instance Matching Tools 52

6 AN INSTANCE MATCHING SOLUTION FOR LOD 55
6.1 Proposed Architecture, 99
6.1.1 Lookup Phase 55
6.1.2 Disambiguation Phase L. 56
6.1.3 Combination Phase 57

6.2 Matching Techniques. 57
6.2.1 Label Instance Matcher o7
6.2.2 Token-based Instance Matcher 59
6.2.3 Property-Value Comparison 60
6.2.4 Combination Methods 63

6.3 OAEI 2011 Participation 64
6.3.1 Track Description. L o 64
6.3.2 Dataset Processing L. 66
6.3.2.1 Typed and Untyped queries 66
6.3.2.2 Freebase 67
6.3.2.3 DBPedia 68
6.3.2.4 New York Times Data 69
6.3.2.5 GeoNameso 69

6.4 Results 69
6.4.1 Evaluation of String Similarity Metrics 69
6.4.2 Analysis of Matchers Effectiveness 70

6.5 OAEI 2011 Results 72

7 CONCLUSIONS s 75
CITED LITERATURE 78

iv

LIST OF TABLES

TABLE PAGE
1 LINKED OPEN DATA STATISTICS 12
11 ONTOLOGY MATCHING TOOLS 20
111 ONTOLOGIES IN THE EXPERIMENTAL DATASET. 38
v COMPARISON BETWEEN AGREEMENTMAKER AND OTHER

ONTOLOGY MATCHING SYSTEMS.

A% COMPARISON BETWEEN AGREEMENTMAKER AND ITS OL-
DER VERSION

VI EXECUTION TIMES OF THE MATCHING PROCESS

VII INSTANCE MATCHING TOOLS

VIII SET SIMILARITY METRICS.

X STATISTICS ABOUT THE REFERENCE ALIGNMENT

X RESULTS ACHIEVED USING LABEL INSTANCE MATCHER USING
DIFFERENT STRING SIMILARITY ALGORITHMS

XI RESULTS ACHIEVED BY THE SYSTEMS PARTICIPATING IN
THE DATA INTERLINKING TRACK

XII RESULTS OBTAINED BY AGREEMENTMAKER IN THE DATA
INTERLINKING TRACK OF THE OAEI 2011 CHALLENGE. . .

39

40

41

93

62

65

70

72

LIST OF FIGURES

FIGURE PAGE
1 Graph representation of a triple. 9
2 Graph representation of a set of triples. 10
3 The Linked Open Data Cloud, November 2007. 13
4 The Linked Open Data Cloud, July 2009. 14
5 The Linked Open Data Cloud, September 2011. 14
6 Classification of the ontology matching approaches. 18
7 AgreementMaker user interface. oL 21
8 AgreementMaker three layer architecture. 22
9 Classification of compounds (i.e., compound words) in English. 29
10 WordNet synsets for the ontology concepts Actor and Person. 32
11 WordNet synsets for Agent and Group. 33
12 Analysis of the effectiveness of each matcher. 42
13 Classification of the instance matching approaches. 51
14 AgreementMaker OAEI2011 Instance Matching configuration. 56
15 Analysis of the effectiveness of each matcher. 71

vi

ASM

API

CNA

DPLC

EME

GM

LIM

LOD

OMS

OWL

RDF

STIM

TIM

LIST OF ABBREVIATIONS

Advanced Similarity Matcher
Application Programming Interface
Compound Names Analysis
Distance-based Polysemic Lexical Comparison
Equality Mappings Extension
Global Matching

Label Instance Matcher

Linked Open Data

Ontology Matching System

Web Ontology Language

Resource Description Framework
Statements Instance Matcher

Token-based Instance Matcher

vil

SUMMARY

The linked data paradigm envisions a web made by interlinked datasets that are easy to
retrieve, query, and integrate. It has become a reality as more and more people and organiza-
tions publish their data following its principles. The main peculiarity of this technology is the
presence of links between the data sources as well as the machine-processability of the data,
achieved with the use of Semantic Web standards. However, since generating links between tho-
se datasets is costly and time-consuming, the need for automatic methods keeps increasing. For
this reason ontology matching and instance matching, the fields studying how to automatically
or semi-automatically match semantic data sources, are being heavily investigated.

In this work we present an extension of AgreementMaker, a successful state-of-the-art onto-
logy matching system, to effectively align ontologies and datasets available in the Linked Open
Data cloud both at the schema and instance level. To achieve both of the goals, two research
directions have been followed: the former is how to improve a general ontology matching system
when matching LOD ontologies, while the latter is how to extend it to match instances maxi-
mizing the reuse of the components developed for ontology matching. Following these research
questions has led to extend AgreementMaker in two directions, respectively for ontology mat-
ching and instance matching. These two fields of research are considered separately, reflecting
the strong distinction present in the literature.

The proposed extension for ontology matching to the system has been evaluated against
gold standards available in the literature, and proved to be better than other state-of-the-art
tools. A preliminary version of this research has been published in (15) and then presented in
(16). The proposed extension for instance matching has been evaluated competing with other
systems in the challenge organized by the Ontology Aligment Evaluation Initiative (OAEI),
achieving competitive results. Part of this work has been published in (18), where our novel

instance matching infrastructure is described.

viii

SOMMARIO

Il ruolo dei dati nelle nostre vite sta crescendo velocemente. Molte applicazioni usano
consistentemente dati come temperatura, consumi di benzina, prezzi di vari prodotti, feedback
dei clienti e molti altri. Un migliore uso di tutta questa informazione puo aiutare a prendere
decisioni migliori, dalla singola persona fino all’economia globale.

Si immagini un posto nel web in cui tutti questi dati possano essere interrogati come in un
gigante database, e una grande varieta di informazione possa essere integrata per rispondere
alle queries. L’obiettivo di Linked Open Data (LOD) ¢ esattamente questo. Per questo motivo,
¢ stato proposto un paradigma che prende concetti dal Web di oggi e li applica alla gestione
di dati strutturati. I due principali requirements sono 1'utilizzo di formati machine-processable
(e.g., dati con una struttura ben definita, che riduce il problema di ambiguita) e la presenza
di links tra le varie sorgenti dati (e.g., links che permettono di navigare descrizioni eterogenee
della stessa entita in diversi datasets). Il modello dei Linked Data ¢ diventato una realta,
dopo che molte persone e organizzazioni hanno adottato i suoi principi. Lo sviluppo di una
infrastruttura come quella dei Linked Data ¢ associata a molti problemi interessanti quali
scalabilita, correttezza delle informazioni, estrazione di informazione strutturata da sorgenti
non strutturate e la creazione di links tra i vari datasets. In questo lavoro, ci si concentra
sull’ultimo.

La creazione di links tra sorgenti dati eterogenee ¢ un lavoro molto costoso, in quanto
richiede una lunga e accurata ispezione da parte di uno o piu esperti. La quantita di links
richesti per rendere LOD una risorsa veramente utile nel risolvere problemi complessi quali
question answering e migliorare la ricerca sul web, ¢ molto elevata. Inoltre, cresce velocemente
man mano che nuovi datasets vengono aggiunti. Per questo motivo, la disponibilita di metodi
automatici o semi-automatici diventa un fattore cruciale per il successo del paradigma. Ontology
matching e instance matching, le aree di ricerca che studiano come allineare datasets semantici
in maniera automatica o semi-automatica, sono attualmente studiate nella letteratura. I links

possono essere creati a livello di schema (e.g., concetti e classi) o di istanze (membri di concetti

ix

SOMMARIO (Continued)

e classi). A seconda del livello a cui i link sono considerati ci si riferisce al problema con nomi
diversi. Nel primo caso, si parla di schema matching nella comunita dei Databases e di ontology
matching nel Semantic Web, nel secondo, rispettivamente record linkage e instance matching.

Ci sono alcune differenze nel modo in cui i problemi sono stati affrontati nel mondo dei
Databases e del Semantic Web, dovute al diverso modello di dati utilizzato. In entrambi i
modelli, gli schemi forniscono un vocabolario di termini che vengono utilizzati per descrivere
un dominio di interesse. I database relazionali perdo non contengono gli assiomi formali che
invece caratterizzano le ontologie. Alcune caratteristiche/vincoli vengono infatti specificate
nei diagrammi Entita-Relazione, ma non sono incluse negli schemi. Inoltre, la struttura a
grafo delle ontologie e del modello RDF & piu flessibile della struttura tabulare dei database
relazionali. Mentre tutte le tuple in una tabella di un database condividono gli stessi attributi,
nelle ontologie puo accadere che istanze dello stesso tipo siano descritte utilizzando diverse
combinazioni di proprieta. Da questo deriva un nuovo tipo di eterogeneita che deve essere
risolto durante il processo di allineamento.

In questo lavoro si presenta un’estensione di AgreementMaker, un sistema di ontology mat-
ching conosciuto nello stato dell’arte, per allineare le ontologie appartenenti alla Linked Open
Data cloud, sia a livello di schema che a livello di istanze. Questi due tipi di links sono ugual-
mente importanti, e sono la base per l'integrazione dati a diversi livelli. Il primo tipo permette
di interrogare diversi datasets usando un modello comune e condiviso. Per esempio, i mappings
a livello di schema possono essere usati per ottenere tutte le entita di tipo 'Persona’ in diversi
datasets. Puo succedere che il tipo ’Scenziato’ sia definito in alcuni di essi, e le istanze di
questa classe dovrebbero essere incluse nel risultato. Il secondo tipo permette di integrare le
informazioni riguardanti la stessa entita in diversi datasets, che possono coprire aspetti diversi
dello stesso oggetto.

I due problemi sono interlacciati e ¢’ una sovrapposizione nelle tecniche usate, tuttavia ci
sono delle forti differenze. Ontology matching e un’area di ricerca piuttosto consolidata, mentre
instance matching e piu recente. Per il primo, ¢ disponibile un buon numero di bechmarks e

datasets di valutazione, mentre per il secondo meno. Ci sono tecniche quali 'utilizzo di voca-

SOMMARIO (Continued)

bolari che funzionano particolarmente bene a livello di schema ma non sulle istanze. Inoltre, la
scalabilita € un requisito molto importante in instance matching, dove il numero di comparazio-
ni richieste e significativamente piu alto. Per questi motivi e per la forte separazione presente
nella letteratura, si € deciso di dividere la tesi in due parti, una riguardante ontology matching
e ’altra instance matching, che verranno presentate e valutate indipendentemente.

Il contributo di questa tesi all’ontology matching risiede nelle seguenti direzioni di ricerca:
come si pud migliorare un generico sistema di ontology matching quale AgreementMaker nel
contesto delle ontologie LOD? E’ possibile ottenere un buon compromesso tra la qualita degli
allineamenti e la velocita di esecuzione? L’estensione del sistema che si presenta in questa tesi
¢ stata valutata usando dei gold standard nella letteratura, e si € riscontrato un miglioramento
rispetto ad altri tool nello stato dell’arte. Una versione preliminare di questo lavoro e stata
pubblicata in (15) e poi presentata in (16).

Per quanto riguarda instance matching, invece, si sono seguite le seguenti direzioni di ricerca:
come si puo estendere AgreementMaker per operare matching a livello di istanze, massimizzan-
do 'uso di componenti disponibili per 'ontology matching? E’ possibile creare una diversa
infrastruttura del processo di matching che riduca il numero di comparazioni richieste senza
penalizzare troppo la recall? E’ possibile ottenere buone accuratezza ed efficienza nel contesto
LOD? L’estensione del sistema che si presenta in questa tesi ¢ stata valutata nella competizione
organizzata dalla Ontology Alignment Evaluation Initiative (OAEI), dove AgreementMaker ha
ottenuto risultati competitivi. Una parte di questo lavoro e stata pubblicata in (18), dove si
descrive I'infrastruttura di instance matching in AgreementMaker.

In questo documento, ci si concentra sui piu recenti contributi ad AgreementMaker, spiegan-
do tutte le nuove caratteristiche del sistema. Prima di questo, nel Capitolo 2, si fornisce una
breve introduzione riguardo Linked Open Data e i suoi principi. Nel Capitolo 3 si introducono
il concetto di ontologia, i linguaggi del Semantic Web OWL e SPARQL e infine il problema del-
I'ontology matching, includendo una panoramica dei tools disponibili nella letteratura. Essendo
AgreementMaker parte di questi tools, si descrive in particolare la sua struttura e le tecniche

utilizzate. Nel Capitolo 4, si descrivono i contributi all’ontology matching, descrivendo i nuovi

xi

SOMMARIO (Continued)

metodi di matching che includono il concetto di Global Matching (GM) e un nuovo algoritmo
probabilistico chiamato Distance-based Polysemic Lexical Comparison (DPLC), per allineare
gli schemi utilizzando una risorsa lessicale esterna come WordNet. Nel Capitolo 5 si passa al
problema dell’instance matching, fornendo una definizione del problema e una overview dei tool
reperibili nella letteratura, partendo dallo stato dell’arte del record linkage. Mentre il Capitolo
2 ¢ reperibile nella letteratura, nei Capitoli 3 e 5 € stato fatto un lavoro di razionalizzazione,
aggiungendo maggiore analisi e sforzo di sintesi, che ha portato a modificare ed arricchire le
tabelle presenti in molte surveys. Il Capitolo 6 descrive i contributi nel campo dell’instance
matching, che includono un’infrastruttura estendibile basata sulla generazione di candidati e
disambiguazione, e i metodi di matching che includono Label Instance Matcher (LIM), Token-
based Instance Matcher (TIM), and Statements Instance Matcher (STIM). Nell’ultimo Capitolo

(7), si forniscono conclusioni e possibili sviluppi futuri.

xii

CHAPTER 1

INTRODUCTION

The role of data in our lives is growing in importance rapidly. Many applications make
intensive use of data such as the temperature outside, the fuel consumption of our cars, the
prices of different products, the feedback of customers and many others. A better use of all this
information would help in making better decisions, starting from the single person experience
to the global economy.

Imagine a place in the Web where all of these data can be queried as if they were in a giant
database, and all kinds of information would be integrated to answer those queries. This is what
Linked Open Data (LOD) is about. To achieve such a goal, a paradigm that takes ideas from
today’s Web and applies them to structured data has been proposed. Machine-processability
of the data (e.g., use of structured formats) and the presence of links between datasets (e.g.,
specifying that an entity described in a data source is the same real-world object as an entity
in another data source) are two of the main requirements.

There are many challenges to succeed in developing such an infrastructure, such as scalabili-
ty, correctness of the information, automatic generation of datasets from unstructured sources,
and the discovery of links between the data sources. All of these problems are being currently
investigated in the literature. In this work, we will be focusing on the discovery of links between
data sources.

The creation of links between heterogeneous data sources is a tedious work, which is costly
and time-consuming. This is because it requires a detailed analysis to be performed by a domain
expert. The quantity of links required for Linked Open Data to be an effective resource to be
used in advanced tasks (e.g., question answering and improving Web search) is huge, and it
keeps increasing at a fast pace as new datasets are added. For these reasons, the availability
of efficient and reliable automatic or semi-automatic interlinking tools becomes a crucial factor

for the success of the whole LOD paradigm.

The problem of establishing links between datasets in an automatic (or semi-automatic)
fashion has been investigated in the Databases and Semantic Web communities. Links can be
created at the schema level (e.g., concepts and classes) or at the instance level (e.g., individuals
of classes and concepts). Depending on whether the considered links are at the schema or
instance level, the two problems are considered separately in the literature and are referred to
using different names. In the former case, the problem is known as schema matching in the
databases community or ontology matching in the Semantic Web community, while in the latter
respectively as record linkage or instance matching.

There are some differences between the problems tackled by the Databases and Semantic
Web communities, due to the different underlying data models. Both ontologies and database
schemata provide a vocabulary of terms used for describing knowledge in a domain of interest.
Though, relational databases do not provide the explicit and formal semantics, as they are
specified at design-time in Entity-Relationship models but not encoded in the final schema.
Ontologies instead are sets of formal axioms with explicit semantics (e.g., subclass axioms),
which are exploited during the matching process. Moreover, the graph-oriented structure of
the RDF model and ontologies is more flexible than the tabular structure present in relational
databases. While all the rows in a database table share the same attributes, in ontologies it
may happen that different combinations of attributes (properties) are used to specify instances
of the same type. This leads to another type of heterogeneity that has to be solved in the
matching process.

In this work we present an extension of AgreementMaker (12), a state-of-the-art ontology
matching system, to effectively align ontologies and datasets available in the Linked Open Data
cloud, both at the schema and instance level. These two types of links are equally important,
as they are the basis for data integration at different levels. The former allows for querying
different data sources unified under a common model. For instance, the mappings at the schema
level can be used to query for all the entities of type 'Person’ in different datasets. It may happen
in some datasets that the concept of ’Scientist’ is defined, and all of its instances should be

returned as well. The latter allows for integrating the information about the same real world

object from heterogeneous sources. These datasets may cover different aspects of the same
entity, which would be all accessed through a single query.

The two problems are inter-connected and there is an overlapping in the techniques used,
though there are some differences as well. Ontology matching is a consolidated research area,
while instance matching is still at its own beginning. For the former there are a number of
benchmarks and evaluation sets available, while for the latter only a few. There are techniques
such as the use of vocabularies and the discovery of subclass relations that are effective and
useful when matching concepts, but less when dealing with instances. Moreover, scalability is
a crucial factor in instance matching, where the number of comparisons required to match data
sources is significantly higher. For these reasons, and also for the strong separation present in
the literature, we decided to divide the thesis in two parts, one for ontology matching and one
for instance matching, which will be presented and evaluated independently.

Our contributions to ontology matching address the following research questions, reflecting
the improvements needed to align LOD ontologies: How can a system like AgreementMaker be
extended to handle mappings other than equivalence mappings (e.g., subclass mappings)? Can
AgreementMaker achieve a good trade-off between accuracy and efficiency in the LOD domain?
The proposed extension to the system has been evaluated against gold standards available in
the literature, and proved to be better than other state-of-the-art tools. A preliminary version
of this research has been published in (15) and then presented in (16).

In instance matching we address the following questions: how can we extend our system
to match instances maximizing the reuse of the components already implemented for ontology
matching? Can we provide an infrastructure that reduces the number of comparisons needed?
Can AgreementMaker achieve good accuracy and efficiency in the LOD domain? The proposed
extension to the system has been evaluated competing with other systems in the challenge or-
ganized by the Ontology Aligment Evaluation Initiative (OAEI), achieving competitive results.
Part of this work has been published in (18), where our novel instance matching infrastructure
is described.

In this document, we focus on the recent contributions to the system, explaining all the

new matching features introduced in AgreementMaker. Before doing that, we provide a brief
introduction to Linked Open Data and its principles in Chapter 2. In Chapter 3 we introduce
ontologies, OWL, and SPARQL, then we define the ontology matching problem and give an
overview of the techniques and tools available in the literature. As AgreementMaker is part of
these systems, we include also an overview of its infrastructure and matching techniques. In
Chapter 4, we cover our contributions to ontology matching, describing our novel matching me-
thods which include the concept of Global Matching (GM), and a novel probabilistic algorithm
called Distance-based Polysemic Lexical Comparison (DPLC) for discovering mappings using a
mediator ontology such as WordNet. In Chapter 5 we move to the instance matching problem,
providing a problem definition and an overview of the techniques and tools available, starting
from the record linkage state-of-the-art. While the information provided in Chapter 2 can be
easily found in the literature, in Chapter 3 and Chapter 5 detailed analyses and syntheses have
been made to give an overview of the matching tools, also modifying the tables available in
many surveys. The sixth chapter covers our contributions to instance matching, which include
the design of an extensible infrastructure based on candidates retrieval and disambiguation, and
the matching methods including Label Instance Matcher (LIM), Token-based Instance Matcher
(TIM), and Statements Instance Matcher (STIM). Finally, we will end providing conclusions

and future developments in Chapter 7.

CHAPTER 2

STATE OF THE ART OF LINKED OPEN DATA

2.1 Motivation

An increasing number of organizations are sharing their data on the Web: examples are
companies such as Google and Amazon, governmental entities in Europe and in the USA,
scientific organizations, newspapers such as The New York Times. This data is then used by
other users or organizations to offer new services and share aggregate information.

It is extremely important for the re-usability of data that it has a well defined structure.
The more it is structured, the more it becomes reliably usable by third parties. Though, the
web nowadays is prevalently unstructured: the format for publishing web documents, HTML,
is presentation-oriented instead of data-oriented. This is because the initial idea of the web
was a collection of interlinked textual documents. The structured information is hidden into
tags telling the browser how to visualize them. Therefore, to extract data of interest from raw
HTML pages, some further processing is needed. This is usually non-trivial, because there is a
lot of ambiguity in documents without a clear structure.

To address the problem of sharing data in the web that is re-usable by machine without
efforts, mainly two approaches have been introduced. One is using microformats, which means
attaching semantics to alternatively uncategorized text in web pages. With microformats, one
can specify a fragment of text is an entity of a particular type such as person or organization,
and then specify some known and agreed-upon relations about them. This makes the automated
extraction process easier and allows for more complicated use of the data. The main problem
is that using microformats requires a big effort from the publishers and also it is still limited
to a small set of types and relationships. The second is the use of Application Programming
Interfaces (APIs), which allow the access to some websites’ structured data over the HTTP
protocol. This is becoming more and more common and led to the possibility for end users to

develop mashups, small applications aggregating data from several different APIs to create new

5

services, or even new businesses. Even though this is an important step forward for the use of
data in the web, every API is something that requires a big effort to deal with for several reasons:
every API has its own rules, methods and formats to access the data it provides. Moreover, the
data obtained accessing an API is strongly local, in the sense that it shows no links to other
datasets and the identifiers will work only in those data. This opposed to the basic principle
of the web, where the strength is the possibility to navigate related information through links.
In the following sections will be introduced Linked Open Data (LOD), an attempt to overcome
the limitations of the web today as a data source.

2.2 What is Linked Open Data?

The term Linked Data' has been first introduced by Tim Berners-Lee, and it refers to a
set of best practices for publishing and connecting structured data on the Web. Starting from
2006, an increasing number of data providers adopted these practices, leading to the creation
of a global data space containing billions of facts, also known as the Web of Data. The Web
has then been extended with structured data from diverse domains such as people, companies,
publications, books, films, music, television and radio programmes, genes, drugs, scientific data,
reviews and many others. The Web of Data enables new types of applications: browsers which
allow users to navigate along links into related data sources, Linked Data search engines that
crawl the Web of Data by following links between data sources and provide expressive query
capabilities over aggregated data, similar to how a local database is queried today. Unlike
mashups, which work exploiting a fixed set of APIs, Linked Data applications operate over a
global, unlimited data space.

2.3 Principles

Tim Berners-Lee described four basic principles of Linked Data in (5). In one of his presen-
tations at the TED 2009 conference, he stressed out that it’s all about extremely simple rules.

They are enumerated exactly how they appear in (5):

1. Use URIs as names for things

http://www.w3.org/Designlssues/LinkedData.html

2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL)

4. Include links to other URIs. so that they can discover more things.

The first principle consists in using Uniform Resource Identifiers (URIs) to identify things.
URIs are the standard identifiers for resources on the Internet. These resources are usually web
sites and documents available on the web. The principle is asking for a step forward: using the
same name system also for real world objects, classes of concepts, and relationships. The idea
is that everything can be described and identified with a string similar to the address of a web
page. In the context of the Semantic Web, using URIs is something well understood and used
already in many domains.

Using the HTTP protocol it is possible to retrieve the document associated with a cer-
tain URI available on the Internet. This is a universal lookup mechanism well-understood and
agreed-upon by everyone. The second principle advocates the same should be with URIs asso-
ciated with structured documents. Also URIs referring to real-world objects and concepts have
to be dereferenced using the HT'TP protocol.

As HTML has become the standard for publishing documents on the web, the Web of Data
needs an accepted standard for structured documents. This is stated in the third principle, and
the data model proposed is Resource Description Framework (RDF). RDF will be discussed
with more details in the next section.

The fourth and last principle is about interlinking between structured documents. In hy-
pertext web sites the value of the information provided is related to the value of what it links
to. It is difficult to find on a single website all that we might want to know about a certain
thing, but navigating the links to other pages the likelihood of finding satisfactory descriptions
increases. Interlinking has to be extended to structured documents, with the added value of
having typed links: while in hypertext there is just one type of link, RDF allows to interlink
things specifying the relation between the linked objects.

All the above principles can be summarized in applying the fundamental concepts of the
Web to the problems of publishing, sharing and using structured data. URIs, HTTP lookup
and links are features that made possible the development of the web as it is now, a global space
where everybody can publish and access information about everything. Linked Open Data is
an attempt to reuse all the successful characteristics of the web in an even more ambitious
project: the evolution of the web to a global data space (36).

Tim Berners-Lee proposed also a ranking for datasets:

1. Available on the web in any format, but with an open licence

2. Available as machine-readable structured data (e.g. Microsoft Excel instead of image scan
of a table)

3. All the above plus non-proprietary format (e.g. CSV instead of Microsoft Excel)

4. All the above plus using open standards from W3C (RDF and SPARQL) to identify
things, so that people can link them

5. All the above plus the presence of linking other data sources, as to provide context

2.4 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a standard data model proposed by the
World Wide Web Consortium (W3C). Its characteristics make it particularly suitable for data
interchange on the Web, where there is a strong need for merging and evolving different schemas.

RDF can be summarized in three fundamental concepts: resources, properties and state-
ments (1). Resources are objects and concepts in the real world that one may want to describe.
The concept of resource is very generic and it embraces everything that can be thought. Every
resource is identified with a Uniform Resource Identifiers (URI), using the same name system
used on the Internet. Properties are special resources which are used to describe the relation-
ships between other resources. Statements are triples consisting of a resource, a property and
another resource or literal (e.g., standard datatype such as string or integer). They are instan-
tiations of properties relating a subject (resource) to an object (resource or literal). Usually

statements (or triples) are represented using the following notation: (subject, propery,object).

U W N~

Listing 2.1. List of Statements

<http
<http
<http
<http
<http

example
example
example
example
example

.com/Federico_.Caimi, studiesAt, http://www.example.com/UIC>
.com/Federico_.Caimi, plays, ”Guitar’>

.com/Federico_Caimi, type, http://www.example.com/Person>
.com/UIC, type, http://www.example.com/Organization>
.com/UIC, label, ”University of Illinois at Chicago”>

The model expressed by RDF generalizes the linking structure of the Web. Statements can

be seen as the links in web pages with the addition of a type (relation). This model forms a

directed labeled graph, where the nodes are resources and the edges represent the typed link

between them. An example of a triple is (http://www.example.com/Federico-Caimi, studiesAt,

http://www.example.com/UIC), which intuitively expresses the fact that a resource named

Federico Caimi studies at the http://www.example.com/UIC and is represented in the graph

in Figure 1.

http//www.example.com/Federico_Caimi studiesAt http//www.example.com/UIC

Figure 1. Graph representation of a triple.

When multiple statements (triples) about the same resources are available, the graph

becomes more expressive. Consider the following triples:

10

Figure 2 shows the graph representing the above RDF statements. In this example, more
information is expressed about http://www.example.com/Federico_Caimi and
http://www.example.com/UIC. The oval nodes are resources, while the rectangular ones are

literals.

http//www.example.com/Organization

University of Illinois at Chicago

http://www.example.com/Federico_Caimi

http://www.example.com/Person

Figure 2. Graph representation of a set of triples.

RDF documentation is provided and mantained by the W3C. In particular, a description

of the current status! of RDF and a detailed tutorial? can be found on-line.

2.5 SPARQL

RDF is also provided with a query language, the SPARQL Protocol and RDF Query Lan-
guage (SPARQL), which has become the standard query language for RDF. Since the RDF is a
directed graph-based model, SPARQL had to be defined as a graph-matching query language.
Its syntax is similar to SQL because of the use of keywords such as SELECT, FROM, and
WHERE, which are the same as in SQL.

thttp://www.w3.org/standards/techs /rdf#w3c_all

2http:/ /www.w3.org/TR/2004/REC-rdf-primer-20040210/

=W N =

11

Listing 2.2. Example of a SPARQL query

PREFIX ex:<http://www.example.com>
SELECT ?student WHERE {
?student ex:studiesAt ex:UIC
} LIMIT 1000

A simple example of a SPARQL query is reported in Listing 2.2. The keyword PREFIX is
used to allow the use of a short name (prefix) instead of a complete IRI in the rest of the query. In
this case, the prefix ex will stand for the entire corresponding IRI (http://www.example.com).
The keyword SELECT is used to list the variables that have to be returned in the query solution,
in this case only 7student. The keyword WHERE allows to specify the pattern matching part of
the query, in the form of triples, but also optional matching (OPTIONAL keyword), unions of
patterns (UNION keyword), nesting and filtering of values (FILTER keyword) are allowed. The
pattern in the example query asks for all the resources ?student, for which exists a statement
whose property and object are respectively ex:studiesAt and ex:UIC. A natural language
interpretation of this query would be: list all the resources which study at the University of
linois at Chicago (all the UIC students). If the query is run against the simple model presented
in Section 2.4, the resource http://www.example.com/Federico_Caimi will be returned. The
language also supports solution modifiers, which modify the results returned by the pattern
matching part in terms of ordering, number of results and other features. In the example query,
LIMIT 1000 is used, and means that no more than one thousand results will be returned.

Many LOD datasets offer a SPARQL endpoint, which is an on-line service capable of an-
swering to SPARQL queries. Those are extremely important because as the size of the cloud
grows, the integration of different datasets has to be performed using multiple machines, which

may communicate using endpoints. The SPARQL endpoints offered by datasets in the LOD

12

cloud can be found on-line!.

2.6 Evolution of the Cloud

In this section will be reported some statistics about LOD and its evolution. Detailed
information can be found on the State of the LOD cloud ? document. All these information are
based on the LOD data set catalog® that is maintained on CKAN?, a registry for open-licence

datasets available on the Web in any format.

Domain Number of datasets Triples % (Out-)Links %

Media % 1.841,852,061 | 582 % | 50,440,705 | 10.01 %
Geographic 31 6,145,532,484 | 19.43 % | 35,812,328 | 7.11 %
Government 49 13,315,009,400 | 42.09 % | 19,343,519 3.84 %
Publications 87 2,950,720,693 9.33 % 139,925,218 | 27.76 %
Cross-domain 41 4,184,635,715 | 13.23 % | 63,183,065 | 12.54 %
Life sciences 41 3,036,336,004 | 9.60 % | 191,844,090 | 38.06 %
User-generated content 20 134,127,413 0.42 % 3,449,143 0.68 %
All 295 31,634,213,770 100 % 503,998,829 100 %

TABLE 1

LINKED OPEN DATA STATISTICS

Table I shows some statistics about LOD datasets categorized by domain. Most of the
datasets cover a single specific domain (e.g., publications, life sciences, and media), while a
13.3% of them are cross-domain. An example of a cross-domain dataset is DBPedia (8), which

is a structured version of Wikipedia generated by crawling the infoboxes (i.e., tables included in

thttp:/ /www.w3.org/wiki/SparglEndpoints
Zhttp:/ /www.lod-cloud.net /state/
3http://thedatahub.org/group/lodcloud

4http://www.ckan.net

13

some of the Wikipedia pages). The presence of cross-domain dataset is crucial for the successful
interlinking of the cloud, which would be otherwise formed by disconnected subgraphs (also
called data-islands). Other datasets range from media and entertainment (e.g., BBC program),
geography and spatial information (e.g., GeoNames), government (e.g., Data.gov!), science
(e.g., DBLP), and many others. In total, the LOD cloud is composed by 295 datasets containing
more than 31 billions of triples.

Figure 3, Figure 4 and Figure 5 provide an effective graph visualization of the LOD cloud.
The nodes are the dataset in the cloud, while the arcs represent the presence of links between
them. These pictures were made available online? by Richard Cyganiak and Anja Jentzsch.
The three figures show how rapidly the cloud is growing in the number of datasets, and it can

be noted that it roughly doubles its size every two years.

ECS
South-
ampton
sw

~ Conference
Corpus
Magna-
tune .
Jamendo |
U \ Berlin
i
" lingvoj t

flickr
wrappr
i DBLP
Hannover
Project
Guten-

RDF Book
Mashup

[DBLP

berg

Figure 3. The Linked Open Data Cloud, November 2007 (19).

thttp:/ /www.data.gov/semantic

2http://lod-cloud.net/

14

July 2009 (19).

I

Figure 4. The Linked Open Data Cloud

Figure 5. The Linked Open Data Cloud, September 2011 (19).

CHAPTER 3

THE PROBLEM OF ONTOLOGY MATCHING

3.1 Ontologies and OWL

The concept of ontology is defined as an explicit specification of a conceptualization (33).
The term comes from philosophy, where it means the philosophical study of the nature of
existence, entities, and the relations between entities. In computer science, ontologies are
representations of a domain of interest based on the definition of concepts and the relationships
between them. They are used to model some area of interest, enabling the sharing of knowledge
and the development of applications which make use of it.

The main components of an ontology are:

e Classes are sets of real-world entities (e.g., Person, Place, and Organization).

e Instances are members of a particular class (e.g., John is an instance of Person).

o Attributes are characteristics or features describing entities or individuals (e.g. age for

the type Person, for which a possible instanciation is John hasAge 22).

e Properties are relationships (binary predicates) between classes, individuals, or other

properties (e.g. Person worksFor Organization).

Ontologies are characterized by their formality, achieved with the use of semantics expressed
using logic. An example is the subclass relationship. When a class A is declared as subclass of
another class B, all the instances of A are also instances of B. Other semantics can be attached
to user-defined properties, such as declaring a property as the inverse of another property.

Ontologies can either represent a single domain or multiple domains. Examples of the first
category are domain-specific ontology such as the Music Ontology or the Open Biomedical
Ontologies. Multi-domain onotlogies are also very popular as they try to cover any type of
knowledge. Examples are Freebase and DBpedia, which is a Semantic Web version of Wikipedia.
Since the concept of ontology is very general; also taxonomies such as Yahoo Categories, and

vocabularies such as Wordnet, can be considered ontologies.

15

16

After many languages have been developed by separate groups for representing ontologies
in a machine-readable format, these works have been unified under a common standard which
is known as the Web Ontology Language (OWL), which allows to express all the previously
described ontology features. It is compatible with the architecture of the World Wide Web,
since resources are identified using URIs the preferred serialization is based on RDF/XML.

The expressive power of the language is enforced by a logic inference that can be performed
to infer new statements from the ones explicitly included in the ontology. There are a number

of available reasoners, which actually perform the previously discussed logic inference.

3.2 Problem statement

Ontology Matching (or Ontology Alignment) is defined as the process of finding correspon-
dences between semantically related entities of different ontologies (29). It can be performed
either automatically or semi-automatically, where in the latter case users take part in the pro-
cess. The correspondences are called mappings, and the algorithms used to discover them are
called matchers. Matchers can be either simple and take into account a single aspect of the
concepts to be matched, or more complex combinations of simple matchers.

The problem can be formally defined as follows: Given a source ontology S and a target
ontology T, a mapping is a triple (cg,cp,r) where cg € S and ¢p € T are concepts of the
ontologies, and r is a semantic relation that holds between cg and cy. The relation that has
been mostly investigated in the literature is the equivalence relation, but there exist also others
such as the subclass relation.

A set of mappings is called an alignment. A reference alignment is an alignment found by
experts, and it is used as a gold standard against which the accuracy of other alignments is

measured in terms of precision and recall.
3.3 Evaluation
The growing interest in ontology matching by the scientific communities led to the deve-

lopment of many matching tools. As in every scientific field, evaluation methods are needed

to help developers in assessing the quality of their systems and end-users to understand which

17

tool fulfills best their needs. The Ontology Alignment Evaluation Initiative ! is an internatio-
nal initiative recognized by the ontology matching community as the standard for evaluation in
this field. OAEI prepares a yearly evaluation event in which the systems are compared against
several ontology matching tasks. Detailed results analysis is then performed by the organizers.

In order to evaluate a system in an ontology matching task, a gold standard has to be
provided. This consists of the set of actual mappings that are usually discovered by a domain
expert, and it is also known as reference alignment. The evaluation is then performed comparing
the alignments generated by the system against the reference alignment. The comparison
metrics selected for the evaluation are precision and recall, whcih originated in the field of
information retrieval. Precision and recall are the ratio of the number of true positives of
the retrieved correspondences and those expected (belonging to the reference alignment |R|)
respectively. Since there is usally a trade-off between precision and recall, the two metrics are
then combined in a final score (F-measure) which takes into account both precision and recall.

Precision. Given a reference alignment R, the precision of the aligment A generated by an

ontology matching system is computed as:

IRN Al

P(A,R) = a

Recall. Given a reference alignment R, the recall of the aligment A generated by an ontology

matching system is computed as: RNA
R(A,R) = | 7] |

F-measure. Given a reference alignment A, the F-measure of the aligment R generated by

an ontology matching system is computed as:

2x P(A,R) x R(A,R)

F(4,R) = P(A,R) + R(A,R)

thttp://oaei.ontologymatching.org/

18

3.4 Ontology Matching techniques and systems

The field of ontology matching is a consolidated research area a number of surveys are avai-
lable (42; 62; 56). Figure 6 shows a taxonomy of the ontology matching techniques, obtained by
slightly modifying the classification proposed in (10). The techniques used in ontology matching

can be split into mainly three categories: similarity-based, reasoning-based, and instance-based.

Ontology matching techniques

P N

Similarity-based Reasoning-based Instance-based
Linguistic Contextual Probabilistic Learning-based
Syntactic Semantic

Figure 6. Classification of the Ontology Matching approaches (10).

Similarity-based. Similarity-based techniques compute the degree of similarity between con-
cepts based on syntactic, linguistic or structural (contextual) features. The syntactic similarity
involves the comparison of strings such as the name of concepts and the name and values
of their properties. This is usually performed using string similarity metrics, automata or bit-

parallelism. The semantic similarity considers also the meaning of the concepts being matched.

19

It is computed using vocabularies such as WordNet, which contain relationships such as syno-
nymy, hypernymy, and hyponymy. Semantic similarity metrics range from simple synonymy
look-up, to the computation of distances between concepts in the graph built on hypernymy /-
hyponymy relationships. The contextual similarity encompasses all the metrics which make use
of the concepts directly related to the concepts being evaluated. The most used techniques are
graph algorithms that propagate the similarity of concepts to their neighbors in the ontology.
Reasoning-based. Reasoning based-techniques consist in modeling ontology matching as a
logic inference problem. Starting from a set of high-quality mappings discovered by a similarity
based matcher or defined by a user, new mappings are inferred using reasoning. Reasoning-based
matchers are usually based on satisfiability or description logics. The alignments generated by
this category of tools are consistent, meaning that they do not generate contradictions, and
important property for the usability of these mappings in tasks such as data integration.
Instance-based. In some cases the information provided in schemata is not sufficient for
determining matches between equivalent concepts. Some of these mappings can instead be
inferred from the instance level, following the assumption that equivalent classes have similar
instances. Instance-based matchers compare instances to derive a similarity between concepts.
These approaches are based on set similarity measures, probability such as Bayesian theory, or
machine learning techniques.

A number of ontology matching tools have been developed using the previously described
techniques. An overview of these tools is reported in Table II, which shows the categories of
the techniques used. Some of these tools implement a specific algorithm (e.g., BLOOMS and S-
match, GLUE), while others provide configurable frameworks covering a wide range of methods
(e.g., AgreementMaker, COMA++). Only a few of them provide a graphical user interface
(GUI) to help users in analyzing the alignments produced (e.g., AgreementMaker, COMA++,
SAMBO).

As can be noted in Table I, the great majority of the existing systems make use of similarity-
based algorithms. The reason is that there are techniques such as string similarity metrics,

token-based metrics, and graph propagating algorithms (e.g., similarity flooding), which proved

20

Techniques Used

Tool Syntactic | Semantic | Contextual | Reasoning-based | Instance-based

AFlood (35) v 4

AgreementMaker (12) v v

AROMA (21)

ANANANAN

ASMOV (40) v

BLOOMS (38)

CODI (55)

COMA++ (3) v

AN
AN

ANANEEA YA YA SA YA

DSSim (48)

GLUE (23) v

ANAN
ANAN

ANAN

TABLE 1T

ONTOLOGY MATCHING TOOLS

to be effective in this context. Reasoning and logics have also been explored by tools such as
DSSim and more recently LogMap. These tools perform particularly well in case of rich and
axiomatized ontologies. Some tools make use of information encoded at the instance to improve
their schema matching (e.g., AFlood, AgreementMaker, COMA-++), while GLUE is entirely
based on instances and uses a probabilistic approach to classify pair of concepts as match or

non-match.

3.5 AgreementMaker

AgreementMaker is an extensible framework to perform, evaluate, and compare ontology
matching algorithms (12). It has been designed for matching real-world schemas and ontologies,
with particular attention on providing high configurability and an intuitive user interface, which
is shown in Figure 7.

The system comprises several matching methods ranging from syntactic and semantic com-

21

#_ am.Main D 3 T 4) = @00 Sats:l2PM Q
800 Agreement Maker
File View Ontology Matching Help
Giobal {Source) Ontology Local (Target) Ontology ;
m
{—o{OWL Classes Hierararchy {—o{OWL Classes Hierararchy
oG)
(oo) =
Fagafnge L.
<)
o{Book)
Moncpragn —(fasenThess)
— [InCollecton
TechReport
=01 OWL Properties Hierararchy
Matchings Control Panel
(—— QT r—— (= - ™
Matcher selection: | (Test) All Zero Similarities %) (viewdetails) (Matcht) Threshold | 50% %] source relations [1 1% Target relations | ANY 18]
Name Show/Hide | Threshold S-Relations T-Relations | Input Matchers Modified | Align Class | Align Prop | Performance(ms) Found | Precision | Recall Color
User Manual Matching M % ANY ANY N/A (] 54 ™ naA 3319% 55.6% =B
Parameric String Matcher ™M sox 1 ANY N/A =] =4 ™ ss 2755.6% 31.9%
Base Similarity 15 50% 1 ANY NJA = ™~ ™ 17 3031.9% 55.6% o
User Manual Matching [1% ANY ANY N/A =]] [T 366.7% 4.3% I
Tasn, on = a on PPN Mk e—

= = <>

(“New) (“Copy) (“Delete) (“ClearAll) (Reference Evaluation) (Quality Evaluation) (“Expon) (Cimport) (Tuning)

Figure 7. Graphical User Interface as implemented in AgreementMaker (12).

parison of concepts, structural matching, and reasoning-based discovery of contradictions. All
of these matching methods can be combined using a specific evaluation module. The quality of
the generated alignment can be evaluated when the reference alignment is provided. The Agree-
mentMaker has been used and tested in practical applications and in the Ontology Alignment
Evaluation Initiative (OAEI) competition.

The matching process in AgreementMaker is organized into three layers. The matchers of
the first layer compare the concepts to be matched based on lexical features, such as string
similarity metrics and TF-IDF vectors. The second layer uses the structure of the ontologies
to refine the mappings discovered by the matchers in the first layer. In the third layer, a
combination matcher aggregates the results generated by the previous matchers to provide a

single final alignment.

22

First Layer
Ontology-based

Matching
!

Input
Ontologies

Second Layer
Iteration

Third Layer

Composition and Evaluation

Evaluation Matcher

Final Alignment

Figure 8. AgreementMaker three layer architecture (12).

3.5.1 AgreementMaker matchers

Lexical matchers. The Base Similarity Matcher (BSM) is a basic string matcher that com-
putes the similarity between concepts by comparing all the strings associated with them. The
Parametric String-based Matcher (PSM) is a more in-depth string matcher, which by default
is set to use a substring measure and an edit distance measure. The Vector-based Multi-Word
Matcher (VMM) compiles a virtual document for every concept of an ontology, transforms the
resulting strings into TF-IDF vectors and then computes their similarity using the cosine si-
milarity measure. The Advanced Similarity Matcher (ASM) compares local names, providing
better similarity evaluation in particular when compound terms are used. ASM outperforms
generic string-based similarity matchers because it is based on a deeper linguistic analysis. All
of these matchers can also use a lexicon, a data structure which keeps track of all the synonyms
and definitions that may be provided in the ontologies, or in a third one called the mediator
ontology.

Structural matchers. Structural matchers include the Descendants Similarity Inheritance

(DSI) matcher. This matcher propagates the similarity of two nodes to their decendants. The

23

Group Finder Matcher (GFM) identifies groups of concepts and properties in the ontologies and
assumes that two concepts (or properties) that belong to two groups that were not mapped by
the input matcher will likely have different meanings and should not be mapped. The Iterative
Instance Structural Matcher (IISM) is an iterative algorithm that compares concepts based on
the properties defined on them and then properties based on the classes which make use of
them till convergence. Also instances are taken into account to compare properties.

Combination matchers. The Linear Weighted Combination (LWC) receives as inputs the
aligments generated by multiple matchers (e.g., the ones previously described) and, using a local
confidence quality measure provided by the evaluation module, automatically assigns weights
to each result computed by the input matchers. After this step, we have a single combined set

of alignments that includes the best alignments from each of the input matchers.

3.6 Ontology Matching for LOD

In what follows we present ontology matching systems whose main focus is on schema-level
mappings applied to the Linked Open Data domain.

The BLOOMS system features a new approach that performs schema-level matching for
LOD. It consists of searching Wikipedia pages related to ontology concepts: the categories
extracted from these pages (using a Web service) are organized into trees and are compared
to support matching between ontology concepts (38). To evaluate ontology matching for LOD,
BLOOMS uses seven matching tasks and defines the gold standard or reference alignment for
those tasks. Their tasks consider pairs of popular datasets (e.g., DBpedia, FOAF, GeoNames).
They compare BLOOMS with well-known ontology matching systems such as RiMoM (46),
S-Match (32), and AROMA (21) that have participated in the Ontology Alignment Evaluation
Initiative (OAEI) (27). They show that BLOOMS easily outperforms those systems in the LOD
domain. However, in the OAEI tasks, when compared with those systems, BLOOMS produces
worse results when discovering equivalence mappings but much better results when discovering
subclass mappings (27).

The ontology matching system BLOOMS+, which is an enhanced version of BLOOMS,
has been used to align a set of LOD ontologies to the upper level ontology PROTON (20);

24

however, the evaluation context is different since PROTON is a well-designed and well-described
large ontology, more similar to the ontologies considered in more traditional ontology matching
scenarios. In addition, there is no evidence that the efficiency of the system has been improved.

The data fusion tool KnowFuss uses schema-level mappings to improve instance co-reference (53).
It does not, however, address the discovery of schema-level mappings. An approach for onto-
logy matching that uses schema-level (as well as instance-level) mappings has been proposed
in the context of geospatial linked datasets (57). This approach infers mappings between onto-
logy classes by analyzing qualitative spatial relations between instances in two datasets. It is
therefore specific to the geospatial domain.

The SCARLET system introduces the idea of looking for clues in background ontologies
available on the Web to discover mappings between two ontologies (61); SCARLET searches
the local names of the concepts on external Web ontologies and uses the subclass relations
defined in the external ontologies to derive new mappings.

Significant efforts have been recently carried out to support ontology matching systems
with more accurate lexical annotation methods; these efforts considered both the interpretation
of compound names (63) and the disambiguation problem (59). A method for interpreting
endocentric compound names has been proposed to include a terminology concept denoted by
a compound name in an existent terminology. Word sense disambiguation techniques have been
proposed to handle polysemic lexical annotations, and in particular, to assign a probability score

to each annotation associated with an ontology concept (59).

CHAPTER 4

AN ONTOLOGY MATCHING SOLUTION FOR LOD

4.1 Introduction

The linked data paradigm identifies a set of best practices to publish and share data on the
web (7). In order to integrate information from different datasets, the capability of establishing
“correct” links among data is crucial. Linked data together with their schemas are usually
represented by web ontologies that are defined using semantic web languages such as RDFS
and OWL (64).

A first problem to solve in order to match a set of input data and several LOD ontologies
is to develop ontology matching systems that achieve a good trade-off between quality of the
mappings and efficiency. As an example, good and efficient ontology matching techniques for
LOD ontologies could improve the capability of tools such as DBpedia Spotlight (47), which
extracts LOD entities from unstructured documents at runtime, to link the extracted data
across several datasets.

Ontology matching in the linked data context faces new challenges for it has been shown
that several ontology matching systems perform poorly when it comes to matching LOD onto-
logies (38). One of the reasons is that LOD ontologies have some peculiarities like poor textual
descriptions, flat structure (e.g., GeoNames), cross-domain coverage, and use of concepts im-
ported from external ontologies. Another reason is that many ontology matching systems are
better tailored to discovering equivalence relations. This is clearly a drawback in matching
LOD ontologies because only few equivalence relations can be found among concepts in diffe-
rent ontologies. Therefore, the capability to discover subclass relations becomes crucial when

the number of links among LOD sources increases.

Acknowledgement: The work in this chapter has been presented elsewhere (16).

25

26

Prior work in matching LOD ontologies has been performed by the BLOOMS system (38).
This work has introduced a new matching approach based on searching Wikipedia pages related
to ontology terms: the categories extracted from these pages are then organized into graphs
and used to match the terms in the ontology. BLOOMS performs better than other systems
that were not designed with the goal of matching LOD ontologies, but were instead designed
to work in “classic” ontology matching settings based on equivalence mappings, such as those
in the Ontology Alignment Evaluation Initiative (OAEI) competition (26; 27; 28).

However, both the accuracy and the efficiency obtained by BLOOMS in LOD settings are
far lower than those obtained by “classic” systems when performing tasks for which they were
designed. BLOOMS is also not a top performer in “classic” ontology matching.

We extend AgreementMaker (12), an ontology matching system for ontologies expressed in a
wide variety of languages (including XML, RDF, and OWL) that has obtained some of the best
results in the OAEI competition (14) (17) (18), with the objective of testing its viability in the
LOD domain. Therefore, in this research we address the following two questions: How can a
system like AgreementMaker be extended to handle mappings other than equivalence mappings?
Can AgreementMaker achieve good accuracy and efficiency in the LOD domain?

To address the first question, we present four ontology matching methods. A first category
of matchers adopts a direct ontology matching approach, where concepts of a source and a
target ontologies are compared: this category includes (i) an Equivalence Mappings Expansion
method, which uses a set of equivalence mappings discovered with high confidence so as to infer
subclass and superclass mappings, and (ii) a Compound Noun Analysis method, which discovers
subclass and superclass mappings by analysing the compound local names that are often used
to identify ontology concepts. A second category of matchers exploit third party ontologies used
as mediators for the matching approach: this category includes (i) a Distance-based Polysemic
Lexical Comparison method, which automatically annotates ontology concepts with possibly
more than one lexical concepts taken from a background terminology, and compares these
lexical annotations in order to discover subclass and superclass mappings, and (ii) a Global

Matching method that infers subclass and superclass mappings by looking at how the concepts

27

have been used in popular ontologies available on the Web. All these methods are new to our
AgreementMaker system and are novel with respect to matching approaches proposed so far.

As for the second question, we show that our approach achieves better results in matching
LOD ontologies than any other ontology matching system in terms of average precision and ave-
rage F-measure (over a set of tasks). In terms of average recall our approach is the second best,
after the BLOOMS system. In addition, our approach is more efficient in terms of execution
time than BLOOMS and has the advantage that it consists of methods that can be integrated
with an existing ontology matching system. To the best of our knowledge, AgreementMaker
is currently the only system that achieves top performance both in the “classic” and LOD
domains.

The chapter is organized as follows. Related work is discussed in Section 3.6. The proposed
methods to improve ontology matching in the LOD domain are described in Sections 4.2 and
4.3. The experimental evaluation of the proposed approach, based on previously proposed

reference alignments (38) is discussed in Section 4.4.

4.2 Similarity-based Mapping Discovery

Equivalence mappings are discovered by evaluating a similarity value in the interval [0,1]
between every pair (cg, cr) of source and target concepts, denoted sim(cg, cr). The similarity
value signifies the confidence with which we believe that the two concepts are semantically equi-
valent. We use the Advanced Similarity Matcher (ASM) to compute the similarity sim(cg, cr)
between two concepts ¢g and c¢p; ASM is a very efficient matcher that evaluates the string-based
similarity between two concepts using their local names and their labels (17). Two concepts
are considered equivalent when their similarity is higher than a threshold th=.

We slightly modified ASM with the addition of detecting different spellings of the same
word, e.g., (Organization,Organisation) and (Theater,Theatre). These apparently small
differences are not always captured by string similarity algorithms, and very simple linguistic

rules lead to a significant improvement of the capability to discover equivalence mappings.

28

4.2.1 Equality Mappings Expansion (EME)

The Equivalence Mappings Extension matcher computes the similarity values between all
the possible pairs of concepts and stores the results in a similarity matrix.

For each pair of concepts and a threshold th=, such that sim(cg,cr) > th=, the mapping
(cs,cr, =) is included in the set of equivalence mappings EM E=

Starting from EME=, we build EME% and EM E= by considering subclasses and super-
classes of the concepts cg and cr that appear in the mappings (cg, cr,=) € EME=. We add to
the set EMEE (respectively, EM E=) all the triples (zg, cr, C) (respectively, (cg, z7, 3)) such
that zg is a subclass of cg (respectively, cr is a subclass of z7).

The selection of the equivalence mappings must be even more accurate in the LOD domain
than what is required in traditional ontology matching scenarios (28); this is a consequence of
the importance of subclass and superclass mappings. When equivalence mappings are used for
inferring subclass mappings, a wrong equivalence mapping can propagate an error to all the
derived mappings. For this reason, in the LOD domain we set a very high threshold, e.g., 0.95,
while in several other domains thresholds in the range [0.6, 0.8] are usually adopted (17).
4.2.2 Compound Noun Analysis (CNA)

When the names of the concepts in the ontologies are compound (i.e., formed by multiple
words), matchers such as ASM, which is highly specialized on the equivalence relation, are not
able to capture other relations that are implicitly specified in the compound. For example,
SportsEvent denotes a narrower concept than Event, thus a subclass relation should be directly
inferred from their names (under the assumption that the two concepts are sharing the same
meaning of the term Fuvent).

An exhaustive classification of compounds in English has been proposed and is shown in
Figure 9 (58). The majority of the compounds shows a modifier-head structure, where the
head, the most important unit, usually determines the gender, part-of-speech, and the general
meaning. This general meaning is then modified by the other terms, restricting the meaning
of the compound to a more specific concept. In the previous example, Fvent is the head and

Sports is a modifier.

29

English compounds

Copulative

Appositional

Possessive Coordinative

Figure 9. Classification of compounds (i.e., compound words) in English.

When the head appears inside the compound, these compounds are referred to as endocen-
tric. SportsEvent is clearly an example of this category. In case the head is outside (i.e., it
doesn’t occur in the terms forming the compound) they are called exocentric. Examples of this
category are the possessive compounds, which denote entities characterized by the properties
expressed in the compound (e.g., greybeard and loud-mouth are instances of person, instead of
respectively beard and mouth). Another category is called copulative, whose compounds do not
have a head as the terms equally contribute to the meaning. In case they specify entities that
are instances of multiple classes (e.g., poet-translator), they are called appositional compounds,
while if they specify relations between the terms involved (e.g., doctor-patient gap), they are
called coordinative.

When the names of the concepts to be matched are compound, we use a best effort ap-
proach that produces good results in practice. We consider only endocentric compounds, since
they are the vast majority in English and cover up to 78% of the compounds used in schema
and ontology concept names according to a recent study (63). For these compounds, we are
interested in detecting the head, as it provides meaningful information for inferring subclass
relations. For this purpose, we use a very simple rule which works well in English: the head of

a compound always occurs on the right-hand side (67). We use this knowledge to extract the

30

heads and then attempt to find correspondences between these main nouns and the names of
the concepts using ASM; based on these correspondences we extrapolate subclass and super-
class mappings. In particular, let head(c) be the head of a compound denoting the concept c.
If sim(head(cg),cr)) > th=, then
(cs,er, E) € CNAE; if sim(cg, head(er)) > th=, then {(cg, cr,) € CN A=,

The method used in our CNA algorithm is inspired by the method used in (63); however, (63)
establish semantic relations between the terminology concepts, while we use the interpretation

of compound names in order to directly infer subclass relations between the ontology concepts.

4.3 Mediator-based Mapping Discovery

We consider two different types of mediators, namely background terminologies and Web
ontologies. Web ontologies are ontologies represented in a semantic Web language (e.g., RDFS
or OWL (64)) and available on the Web.

A background terminology is any knowledge structure organized in a concept hierarchy; a
background terminology can be represented by a triple O7 = (C, T, <), where C is a set of
terminology concepts, T is a set of terms (also called labels) and < is a hyponymy relation
defined by a partial order over C; given two terminology concepts wi and we, the relation
w1 =X wg means that wy is more specific than we; in this case we can say that wy is a hyponym
of wo, and, conversely ws is a hypernym of wy. Each concept is associated with a set of terms,
which are synonyms of the concept (synonyms). Conversely, a term can be associated with one
or more concepts (polysemy).

Background terminologies encompass knowledge structures such as lexicons and other ta-
xonomies where multiple labels are associated with a concept. We use WordNet as background
terminology, whose concepts are called synsets, each one usually associated with more than one
term.

Although background terminologies and Web ontologies share a similar hierarchical struc-
ture, the semantics of the relations on which their respective hierarchies are based is different:
while in a Web ontology ¢; C ¢y means that ¢; is subclass of co, i.e., every instance of c; is

also an instance of ¢o, in a terminology the hyponym relation can not be assumed to have such

31

formal semantics; in other words, it can be the case that w; < we and wy £ wo. Furthermore,
although concepts in Web ontologies are often associated with labels, Web ontologies do not
handle polysemy and synonymy. The consideration of these important differences leads to the
design of different matching methods depending on the type of mediator.
4.3.1 Distance-based Polysemic Lexical Comparison (DPLC)

We compare every concept of the source ontology with every concept in the target ontology:
the key idea of our algorithm is that given a source concept cg lexically annotated with a
terminology concept wg and a target concept crp lexically annotated with wr we can add
a subclass mapping (cg,cr,C) when wg =< wp holds in the terminology (or, conversely, a
superclass mapping when wp =< wg holds in the terminology).

However the simple idea sketched above encounters two problems:

1. It can be very difficult to annotate an ontology concept with exactly one terminology
concept for at least two reasons: the information needed to automatically disambiguate
among several candidate annotations can be inadequate, e.g., in Figure 10 there are three
sets of synonyms associated with the concept Person (highlighted in blue), and there
is no empirical evidence of one being more appropriate than the others, therefore they
are all considered in the following steps; the terminology can provide several concepts
having similar meaning, which can all be considered correct annotations for the ontology
concept (59). In Figure 10, the two sets of synonyms associated with the concept Actor
(highlighted in red) are very similar and can both be considered correct annotations for
the ontology concept. In other words, the matching algorithm has to handle the case in
which concepts are associated with multiple lexical annotations;

2. In general, the semantics of the relation < is different from the semantics of the subclass
relation C; therefore, the more distant two terminology concepts are in the terminology
hierarchy, the higher the probability that they can not be considered one subclass of the
other, and also the higher the probability that the inferred mapping among the ontology
concepts is wrong. The length of the path (distance) on the terminology hierarchy between

two lexical annotations can be used to give a confidence score to the inferred mapping.

32

ical category used in

a
. " the classification of pronouns, p: determil
a human being a human bﬁ?eyé‘uofﬁlar:ly) including and verb forms according to whether
9 they indicate the speaker, the addressee,

or a third party

person, individual, someone, somebody, mortal, soul
actor, doer, worker

person who acts and

gets things done entertainer

performer, performing artist

< actor, histrion, player, thespian, role player > a theatrical performer
—_ac%on, hisrion, prayer, Thespran, fole player

Figure 10. WordNet synsets for the ontology concepts Actor (source) and Person (target).
Each ellipse represents a WordNet synset with its set of terms. The synsets associated with
the source and target concepts are highlighted respectively in red and blue. The arrows
represent the hyponym relation.

We addressed the above mentioned problems with an algorithm consisting of three steps.

Step 1. Polysemic Lexical Annotation with Word Sense Disambiguation: Each con-
cept in the source (respectively, target) gets associated with a set of concepts in the background
terminology. This association is made through the concept labels: every time a label matches
exactly a concept in the source (respectively, target) ontology, then that terminology concept
becomes associated with the source (respectively, target) concept. Given a concept ¢, the set of
the terminology concepts associated with it is denoted BST. (for Background Synonym Termi-
nology). In Figure 10 and Figure 11, two graphs involving the terminology concepts are shown,
where the elements of BST., (respectively Actor and Agent) are highlighted in red and the
BST., concepts (respectively Person and Group), are highlighted in blue.

However, to improve the accuracy of lexical annotation, we apply word sense disambiguation
techniques (59). Some concepts in the ontologies have a textual description (usually included
in rdfs:comment), while in WordNet all the sets of synonyms are described in a definition.
We create a virtual document associated with every concept/set of synonyms, which are then
compared using a vector space model approach based on the cosine similarity measure, after

we performed stop-words removal and stemming. These techniques were already implemented

33

in one of our matchers called Vector-based Multi-word Matcher (VMM), extensively used in
the OAEI competition. In addition to comments and definitions, we also included in the
documents also the first level of the concepts’ superclasses, since they proved to be particularly
useful for disambiguation. After the similarity values are computed, the actual disambiguation
is performed. If the degree of similarity between a concept and a related sets of synonyms is
significantly high (higher than a threshold), only those will be kept for further processing, thus
narrowing the set BST. into a subset BST.. The threshold has been experimentally set to
0.3, a high value for cosine similarity. This leads to an improvement in precision, while not

penalizing the recall.

any number of entities (members)
considered as a unit

Gollection, aggregation, accumulation, assemblage

physical entity

object, physical object
causal agent, cause, causal agency

an active and efficient cause;
capable of producing a certain effe

living thing, animate thing

t a substance that exerts some
agen force or effect

the semantic role of the

- animate entity that instigates or causes
‘agentive role, agent
<\, e the happening denoted by the verb person, individual, someone, somebody, mortal, soul

a set that is closed,
group, mathematical group associative, has an identity element and
every element has an inverse
(chemistry) two or more atoms
group, radical, chemical group bound together as a single unit
and forming part of a molecule

businessperson, bourgeois skilled worker, trained worker, skilled workman

a businessman who buys or

agent, factor, bmkD sells for another in exchange for.
2gen, Tacten brex a commission

negotiator, negotiant, treater

Jont. foderal agent ™ 2N agent or representative of " a representative who acts on
agent, Tederal agen afederal agency or bureau agent) pehalf of other persons or organizations

offcial, functionary

Figure 11. WordNet synsets for Agent and Group.

34

Step 2. Background Hypernym Terminology Construction: Each concept in the source
(respectively, target) gets associated with a set of hypernyms from the background terminology.
This association is made through the previously built sets of synonyms. Given a concept ¢, we
consider each concept in BST. and extract its hypernyms in the background terminology.
Finally, we union all such sets, thus obtaining a set for each concept ¢ denoted BHT. (for
Background Hypernym Terminology).
Step 3. Mapping Inference: We use the sets obtained in the previous two steps to build
the sets of subclass and superclass mappings denoted respectively by DPLCE= and DPLC=.
Our mediator-based approach relies on the possibility to convert hypernym relations into
subclass relations, the latter ones interpreted according to their well-known OWL semantics.
We start by defining a hyponym-to-subclass conversion factor (hsc) as the probability that a
source concept cg is subclass of a target concept cr, given that there exist two terminology
concepts wg and wr that are correct annotations respectively for cg and ¢, such that wg is a

direct hyponym of wp. This can be expressed by the following formula:
hsc = P(cs C cr|wg <! wr) (4.1)

where <! denotes the direct hyponymy relation. We note that the hsc factor can change
depending on the terminology. We empirically estimated hsc = 0.9 in WordNet on the basis of
a number of samples.

Now we can define a metric to assess the confidence degree under which two lexical anno-
tations provide evidence for the existence of a subclass mapping between a source and a target
concept; we call this confidence degree the single-annotation subclass evidence score. The me-
tric is based on the propagation of the hsc factor when there exists a hyponym relation between
two terminology concepts with a distance greater than one between them.

Let dist(wg, wr) be the length of the path on the hyponym hierarchy connecting two termi-
nology concepts wg and wr. The single-annotation subclass evidence score saScore(cg®, cp’)

of two concepts ¢g and cr given two terminology concepts wg and wr, respectively associated

35

with c¢g and cp, is defined as the probability that cg C cp given wg = wp according to the

following formula:

P(cs C erlwg 2wr) if wg 2wr
saScore(cg®, cp’) = (4.2)

0 if wg A wr
where P(cs C eplwg = wr) can be resolved according to the following equation:

dist(wg,wr)—1
P(cs Cerlws 2wr) = H P(ci C cip1|w; < wigr) (4.3)

i=1

hscdist(ws W)

Finally we have to consider that according to the polysemic lexical annotation strategy
adopted, every ontology concept is annotated with possibly more than one terminology con-
cept. We therefore define a polysemic subclass evidence score that assesses the confidence
degree at which a source concept can be considered subclass of a target concept by aggregating
the evidences provided by all the lexical annotations. The polysemic subclass evidence score

polyScore(cg, cr) is defined as follows:

i Wi
Ewieﬁcs ,wjEBHTe, saScore(cg', cy’)
log(|BHT)

polyScore(cg, cr) = (4.4)

The aggregation function sums all the single-annotation subclass evidence scores and adopts
a normalization factor in the denominator based on the size of the Background Hypernym
Terminology BHT.,, associated to the target concepts. In fact, the bigger this set is, the higher
the probability of finding matchings between sets of synonyms and hypernyms. The size of
these sets grows rapidly when the depths of the synonyms increase. We therefore smoothen the
size using a logarithmic function.

In Figure 10, there are two paths connecting the source and target terminology concepts.

The first (length one) gets associated with an saScore of 0.9, while the second one (length

36

three) with a value of 0.729. These values are then summed and normalized applying the
natural logarithm to the size of BHT,, which in this case is 10 (the hypernyms of the matched
person are not shown for simplicity). The overall score (0.707) is above the threshold we
experimentally set, and therefore will be included in DPLCE.

In Figure 11, there is only one path connecting the source and target terminology concepts,
even though the graph is significantly bigger than in the previous example. This path (length
five) gets associated with an saScore of 0.59. After normalization the overall score obtained
(0.186) is below the threshold, and therefore it will not be included in DPLCE.

The polysemic subclass evidence score can be adopted to infer both subclass and super-
class relations. In fact, given a subclass score threshold thE the set of subclass mappings and

superclass mappings returned by this matcher can be defined as follows:

DPLCE = {{cs, e, C)|polyScore(cs, cr) > thE and (4.5)

DPLC? = {{cs, cr, C)|polyScore(cr, cg) > th= and

Y

()

polyScore(cs, cr) > polyScore(cr,cs)}
()
()

polyScore(cr, cs) > polyScore(cs, cr)}

4.3.2 Global Matcher (GM)

LOD ontologies often use several concepts (e.g., foaf:Person in the Semantic Web Conference
ontology) imported from other ontologies that need to be considered in the matching process.
This does not usually happen in more traditional ontology matching scenarios where ontologies
are not much interlinked. The Global Matching (GM) technique is introduced to improve
matching over external concepts, in order to consider this peculiarity of LOD ontologies.

The GM technique is based on the consideration that several external concepts used in
LOD ontologies, such as wgs84_pos:SpatialThing in the GeoNames ontology, are used across
different ontologies, which could provide useful information in discovering additional mappings

such as between dbpedia:Person and wgs84_pos:SpatialThing. One could arrive to this mapping

37

by knowing that foaf:Person has been defined as subclass of wgs84_pos:SpatialThing elsewhere.

Our GM technique is defined as follows. For each concept c¢g in S that has been imported
from an external ontology F, we search across several LOD ontologies for all concepts that
are defined as subclasses of cg and we match these concepts with the concepts of the target
ontology using ASM. We perform the same for each concept ¢y in T'. In particular, if there
is in some external ontology E a concept xg, such that xr has been defined as subclass of cg
(respectively, c¢r) and for some concept cp (respectively, cg) we have that sim(zg,cr) > th=
(respectively, sim(cg,rg) > th=) then (cg, cr, 2) € GM= (respectively, (cs,cr, C) € GME).

The external ontologies that we use to search for external concepts are listed in a registry.
We included in the registry ontologies available on the Web that either have been defined by
a recognized institution such as the W3C consortium (e.g., Event Ontology, ! WGS84 Geo
Positioning, 2 and Media Ontology 3) or are well known and used by a wide community of users
(e.g., DBPedia,* FOAF, ® and Freebase®). These ontologies, which often import third party
ontologies to reuse their most important concepts, provide good background knowledge for the
GM technique.

Our mediator-based matching algorithms present some similarities to the SCARLET ap-
proach, although there are significant differences. Our DPLC algorithm uses polysemic lexical
annotations and a probabilistic scoring function to determine whether a mapping has to be
established between two concepts while SCARLET uses only logic-based rules. Our GM tech-
nique looks for useful information about the concepts on the Web, which is at the core of the

SCARLET approach; our approach is very different though: by looking for the concepts’ URIs,

thttp:/ /motools.sourceforge.net /event /event.html
Zhttp://www.w3.org/2003/01/geo/wgs84_pos
3http://www.w3.org/TR/mediaont-10/
“4http://dbpedia.org/ontology/
Shttp://xmlns.com/foaf/spec/

Shttp://rdf.freebase.com /rdf/base.fbontology

38

we consider only the external use of the concepts that have to be matched (instead of other
concepts with similar names), and we look into a pool of trusted Web ontologies in order to
achieve high precision. Finally, SCARLET has not been evaluated in the LOD domain, which

presents several new challenges to ontology matching systems.

4.4 Results

Table III lists the ontologies that we have used for our experiments, which are the same that
were considered by the BLOOMS system! (38), as no benchmark has been otherwise set for
the LOD domain. The table shows the number of concepts in the ontologies and the number
of external ontologies that they import. The evaluation settings consist of seven matching
tasks, involving different types of comparisons. For example, the Music Ontology and the BBC
Program ontology are both related to entertainment, whereas some other comparisons involve

general purpose ontologies, such as DBpedia.

Ontology Id # Classes | # Imported ontologies
AKT Portal AKT 169 1
BBC Program BBC 100 2
DBpedia DBp 257 0
FOAF FOAF 16 0
GeoNames GN 10 0
Music Ontology MO 123 8
Semantic Web Conference | SWC 172 0
SIOC SIOC 15 0
TABLE III

ONTOLOGIES IN THE EXPERIMENTAL DATASET.

We first compare the results obtained by our system to the results obtained by other systems;

Thttp://wiki.knoesis.org/index.php/BLOOMS.

39

S-Match AROMA BLOOMS AgreementMaker
Matching Task | Prec Rec F-m | Prec Rec F-m | Prec Rec F-m | Prec Rec F-m
FOAF-DBp 0.11 040 0.17 | 0.33 0.04 0.07 | 0.67 073 0.70 | 0.80 0.90 0.85
GN-DBp 0.23 1.00 0.37 | 0.00 0.00 0.00| 0.00 0.00 0.00 | 0.32 0.73 0.44
MO-BBC 0.04 0.28 0.07 | 0.00 0.00 0.00 | 0.63 0.78 0.70 | 0.56 0.27 0.36
MO-DBp 0.08 030 0.13 | 045 0.01 0.02| 039 0.62 048 | 0.87 0.46 0.60
SWC-AKT 0.06 0.40 0.10 | 0.38 0.03 0.06 | 0.42 0.59 0.49 | 0.52 0.41 0.46
SWC-DBp 0.15 0.50 0.23 | 0.27r 0.01 0.02| 070 0.40 0.51 | 0.71 0.39 0.50
SIOC-FOAF 052 0.11 0.18 | 0.30 0.20 0.24 | 0.55 0.64 0.59 | 0.71 045 0.55
Average 0.17 043 0.24 | 0.25 0.04 0.07 | 048 0.54 051 | 0.64 0.52 0.57
TABLE IV

COMPARISON BETWEEN AGREEMENTMAKER AND OTHER ONTOLOGY
MATCHING SYSTEMS.

then, we provide an in-depth analysis of each matcher used in our system; we finally discuss
some significant issues concerning the alignment of LOD ontologies that we believe of general

interest for future research in this domain.

4.4.1 Comparison with other systems

Table IV shows the comparison between the results obtained by AgreementMaker and the
results previously obtained for the S-Match, AROMA, and BLOOMS ontology matching sy-
stems. We are omitting the baseline results (Alignment API) and the results of other systems
(OMViaUO, and RiMoM) because their results are not competitive (38).

As can be seen in Table IV, our system achieves the best average precision (with or without
the modification), while being the second best in average recall after BLOOMS. We comment

next on the results obtained for each task.

Task 1. For the FOAF-DBpedia matching task, our system is the best one, both in precision
and recall. In particular, non-trivial mappings are discovered by our global matching technique
described in Section 4.2, which allows us to find mappings using external ontologies and to

propagate them through the subclasses of the involved concepts.

Task 2. For the GeoNames-DBpedia matching task, BLOOMS is not able to find mappings.

40

AgreementMaker (2010) AgreementMaker
Matching Task | Prec Rec F-m Prec Rec F-m
FOAF-DBp 0.72 0.80 0.76 0.80 0.90 0.85
GN-DBp 0.26 0.68 0.38 0.32 0.73 0.44
MO-BBC 0.48 0.16 0.24 0.56 0.27 0.36
MO-DBp 0.62 0.40 0.49 0.87 0.46 0.60
SWC-AKT 0.48 0.43 0.45 0.52 0.41 0.46
SWC-DBp 0.58 0.35 0.44 0.71 0.39 0.50
SIOC-FOAF 0.56 0.41 0.47 0.71 0.45 0.55
Average 0.53 0.46 0.49 0.64 0.52 0.57
TABLE V

COMPARISON BETWEEN AGREEMENTMAKER AND ITS OLDER VERSION

This is because the GeoNames ontology has very little information in the ontology proper, as
the actual categories are encoded in properties at the instance level. However, S-Match has a
perfect recall (100%), though precision is low (20%). The use of our global matching technique

is the main reason why AgreementMaker outperforms all the other systems.

Task 3. For the Music Ontology—BBC program task, BLOOMS obtains the best results, with
AgreementMaker second. BLOOMS uses Wikipedia while we use WordNet, a generic background
ontology. Wikipedia is very well suited for this kind of ontologies, because it covers the specific

vocabulary of the ontologies being matched.

Task 4. For the Music Ontology—DBpedia matching task, and in contrast with the previous
task, our results are better than those of BLOOMS in terms of F-measure. While BLOOMS
achieves slightly higher recall, the precision achieved by AgreementMaker is significantly higher.
Our system presents only mappings on which it is very confident, thus favoring precision, while
BLOOMS clearly favors recall. The next best system, S-Match, obtains a reasonable recall

(30%), albeit at the cost of very low precision (6%).

Task 5 For the Semantic Web Conference~AKT Portal matching task in the scientific pu-
blications domain, we notice again that BLOOMS favors recall while AgreementMaker favors

precision. S-Match again favors recall at the cost of very low precision, while Aroma favors

41

Matching Task Load | SB | MB | Total
FOAF-DBpedia 6.9 3.1 | 1.7 | 11.7
GeoNames-DBpedia 6.6 1.5] 16 9.8
Music Ontology—BBC Program 16.0 3.7 | 47 | 244
Music Ontology—DBpedia 26.3 18.2 | 7.5 | 52.1
Semantic Web Conference-AKT Portal 3.5 2.1 | 28 8.3
Semantic Web Conference-DBpedia 7.9 8.1 1|24 | 185
SIOC-FOAF 0.1 0.2 | 1.7 2.0
TABLE VI

EXECUTION TIMES (IN SECONDS) OF THE MATCHING PROCESS (LOADING,
SIMILARITY-BASED, MEDIATOR-BASED, AND TOTAL).

precision at the cost of very low recall.

Task 6. For the Semantic Web Conference-DBpedia matching task, BLOOMS and AgreementMaker
achieve very similar good results. The conference domain is the same used in the OAEI com-
petition, on which both the systems perform well. S-Match has an interesting recall (50%) but
low precision (15%).

Task 7. For the SIOC-FOAF matching task, both general linguistic understanding and specific
domain vocabulary are needed, because SIOC is an ontology related to online communities.
AgreementMaker leads in precision followed by BLOOMS and S-Match (respectively, 71% ,
52%, and 56%), while BLOOMS significantly leads in recall because it is based on Wikipedia.

Table VI shows the total execution times of the AgreementMaker matching process in the
seven tasks as well as the times for the different subtasks, namely, loading, mapping discovery
using the similarity-based (SB) method and using the mediator-based (MB) method. We note
that the total time never exceeds one minute, even when large ontologies like the Music Ontology
and DBpedia are being matched.

A complete comparison of all the systems in terms of execution time was not possible.
However, we compared the performance of the Semantic Web Conference-AKT Portal matching

task in BLOOMS and in AgreementMaker. While BLOOMS took 2 hours and 3 minutes,

42

AgreementMaker performed the same task in only 8.3 seconds. We ran our experiments using

an Intel Core2 Duo T7500 2.20GHz with 2GB RAM and Linux kernel 2.6.32-30 32 bits.

4.4.2 Analysis of Matchers Effectiveness

Figure 12 shows the results achieved by our system. The Global Matching (GM) technique
we introduced leads to the best single matcher results, because external concepts usually have
a high number of subclasses. In some of the evaluation tasks, most of the mappings involve

external concepts.

100 T

Precision I
90 Recall mmmmm |
80 F-Measure I

70

60
50

40

30

20

10

< G C <o -,

Figure 12. Analysis of the effectiveness of each matcher.

The Equivalence Mappings Expansion (EME) is the second best in recall because even from a
small set of equality mappings a significant number of subclass relationships can be inferred. Our

Distance-based Polysemic Lexical Comparison (DPLC) is the third best performing matcher.

43

This is a matcher that helps in improving the overall recall, while it provides lower precision
than the other methods. Only 48% of the concepts in the ontologies can be found in WordNet,
and some of the mappings in the reference alignment are between concepts whose names are
compound and do not appear in the WordNet ontology. For these reasons, in order to provide
a significant recall, we have to sacrifice some precision. However, we note that most of the
mappings discovered by this matcher are not found by other matchers, which makes this matcher
an important contributor to the overall results. The Compound Noun Analysis (CNA) is a
precise method that allows us to slightly improve the recall, while not penalizing precision.
Most of the compounds are endocentric, but the heads extracted from the source compounds
can not be frequently matched with target concepts in order to infer the subclass mappings,
which keeps the recall of this matcher quite low.

The combination of all our approaches (shown as All) is the best overall. Our matchers are
“orthogonal” in the sense that they compare different features of the ontologies, and therefore
the union of the generated correspondences is better than the sets of mappings generated by
the individual matchers. This is apparent in Figure 12, where the precision achieved by the
overall system is close to the maximum precision of the single matchers, while the system recall
is significantly higher than the recall of the individual matchers.

This phenomenon is aligned to what happens in traditional ontology matching, where the
results of several matchers, which compare different ontology features (e.g., syntactic, lexi-
cal, structural), are combined by a combination matcher that significantly improves the final

alignment (14).

4.4.3 Discussion of the results.

Matching LOD ontologies is different from matching ontologies in more traditional scenarios,
such as the ones addressed in the OAEI competition. The ontologies are more subject to
real-world characteristics such as heterogeneity and presence of noise. Therefore, part of the
information that is required by traditional ontology matching tools is often not available.

Mappings involving the subclass relation become extremely important in order to integrate

the datasets associated with these ontologies, since only few equivalence mappings can be

44

established. Subclass mappings are more subjective than equivalence mappings, and this makes
the creation of an agreed-upon gold standard more complicated. Moreover, the subclass relation
is intrinsically many-to-many, and therefore imposes fewer constraints on the characteristics of
the final alignment with respect to equivalence relation; such additional constraints are often
helpful to improve the results because the selection of mappings in a one-to-one setting can be
solved as an optimization problem (13).

The adoption of external lexical resources such as WordNet and Wikipedia is crucial. The
use of such ontologies, and of other mediator ontologies as in the case of our system, is the
reason why BLOOMS and AgreementMaker achieve better results than the other tools. It is
hard to find resources covering a substantial part of the concepts and also containing hierarchies
whose semantics is compliant with the subclass relation. The results show that WordNet has
less coverage, but its hypernym relation is suitable for this task, while Wikipedia offers more
coverage, but the semantics of the subcategory relation is less appropriate for deriving the

semantics of the subclass relation, leading to lower precision.

CHAPTER 5

THE PROBLEM OF INSTANCE MATCHING

5.1 Problem Statement

Instance Matching is the problem of deciding whether instances belonging to different data
sources are referring to the same entity. It is closely related to the record linkage problem in
the Databases community. However, instance matching brings new problems and requires a
specific treatment.

Instances, also called individuals, are members of classes in an ontology. Sometimes the
schema is not available, in which case instances can be thought in general as RDF resources.
Since the RDF model is based on statements (triples) as the atomic structure for expressing
knowledge, all the instances are described in a set of statements in which they appear as
subject. An instance i is characterized by a URI (its unique identifier), and a set of statements
Si = [(p1,v1), (P2, v2) - - (Pn, vn)]-

The instance matching problem can be defined as: given two instances i and i;, belonging
respectively to the ontologies S and T different ontologies, we want to learn a function f(is, ;) —
[0,1] where 1 means that the two instances are referred to the same real-world object and 0
means they are two different entities.

While ontology matching refers to the problem of finding correspondences between onto-
logical concepts, the instance matching problem determines whether two descriptions refer to
the same real-world entity in a given domain. In other words, it consists in finding whether
two URIs refer to the same real-world objects. An example may be finding in DBpedia a
description of the same entity as http://rdf.freebase.com/ns/en.barack_obama (Freeba-
se description of Barack Obama). DBpedia contains such entity and the associated URI is
http://dbpedia.org/resource/Barack_0Obama. The automatic discovery of such links allows
for the integration of information from different data sources on the Web.

In ontology matching one of the most used approach is to compare every concept in the

45

46

source with every concept in the target, building the so called similarity matrix. This approach
requires n * m comparisons, where n and m are the sizes of the source and target concept lists.
Schemas are usually hundreds or thousands of concepts at most, and modern computers can
handle the matching process. Instances are usually much more, as they can be thousands for
every class. It is no longer possible to compare every source instance with every target instance,
but some way of reducing the comparisons has to be introduced.

For instance, Freebase contains 20 million entities and DBPedia more than 14 million. In the
case of DBpedia, the total number of triples (subject, predicate, object statements) exceeds 1
billion. Therefore, every instance in the source dataset cannot be compared with every instance
in the target dataset. This is unlike traditional ontology matching, where an n x m similarity
matrix is built, containing the results of comparing n concepts in the source ontology and m
concepts in the target ontologies. That is, while schemas may contain hundreds or thousands of
concepts at most, instances are usually much more numerous, therefore it is no longer feasible
to perform compare every source instance with every target instance. Therefore it is crucial to

devise a way to reduce the number of comparisons.

5.2 Record Linkage

The term record linkage has been introduced in the healthcare domain, when records about
patients were merged together using names, addresses, birthdates, and other information. Since
the 1960s, many researchers have focused on this problem, and many techniques have been de-
veloped, incorporating ideas from fields such as statistics, operations research, data mining, and
machine learning. Record linkage has been surveyed in (50; 25; 68), and is also called duplicate
record detection or entity resolution in the data integration field (4; 6).

The first ideas for record linkage were introduced by Howard Newcombe in (51), who in-
troduced decision rules based on odds-ratios of frequencies. Newcombe understood that the
frequencies of some string values in the database fields could be estimated among matches and
non-matches, and this information should be used to compute a matching score. Also, the

scores computed over different fields should be aggregated to obtain an overall score.

47

Newcombe’s intuitions were then formalized in (30), where the first rigorous definition of
record linkage was introduced. When matching two files A and B, the idea is to classify
pairs in a product space A x B into M, the set of matches, and U, the set of non-matches.
Fellegi and Sunter, following Newcombe’s intuition considered ratios of probabilities of the form:
R=P(ye'|M)/P(y € I'|U), where is an agreement pattern (e.g., sharing a particular string
value in the 'name’ field) in the comparison space I'. The ratio R is known as the matching
weight or score. The score is used to divide the space A X B into three disjoint sets using a

decision rule:

e If R > UPPER, then the pair is a match.

o If LOWER < R < UPPER, then the pair is a possible match and needs to be reviewed
by an expert.

e If R > UPPER, then the pair is a non-match.

where LOWER and UPPER are thresholds estimated using some known examples of matches

and non-matches.

5.2.1 Record Linkage Techniques

Record linkage has been thoroughly treated in the past and many techniques and metho-
dologies have been devised to address this problem.
Data Preparation. The first step in Record Linkage is data preparation, which affects signifi-
cantly the quality of the overall matching process. An overview of data preparation techniques
can be found in (43; 69). A very important preprocessing technique in record linkage is the
standardization of strings such as names and addresses. It consists of replacing different spel-
lings of words using a unified convention (e.g., the occurrences of ’Co’, 'Co.’, and ’Company’
are unified into ’Co’). The standardization is performed using lookup tables, against which the
words are compared and eventually substituted. This improves significantly the effectiveness of
string matching algorithms.
String similarity metrics. An character-by-character comparison of strings is often unsati-

sfactory because of many reasons (i.e., typographical errors, slightly different naming conven-

48

tions, different spellings). For these reasons, approximate string matching has been a major
research topic in computer science. The research in this field led to the development of ma-
ny string similarity metrics. These are functions that given two strings s; and sg, return a
score in the interval [0,1]. A detailed overview of string metrics is provided in (49). One of
the most successful string comparators is known as edit distance, which is the minimal cost of
operations that have to be performed to one of the two objects in order to obtain the other.
The Levenshtein edit distance (60) takes into account the number of insertions, deletions, and
substitutions of characters required to transform one string into the other. There are many
variations of these algorithms, and their effectiveness depends on the type of “errors” to be
considered. Other examples are (39) and (66). Other approaches and token-based similarity
metrics, which use cosine similarity and TF-IDF derived metrics (11). A survey on different
techniques and measures that deal with this topic is (25).

Forcing 1-1 Matching. In a number of situations, the overall matching quality can be
improved by making the assumption that a record in the source file can be matched with at
most a record in the target file and viceversa. After the scores for every possible matching pair
are computed, the problem can be formulated as a well-known optimization problem called
the Assignment Problem, which consists of finding a maximum weight matching in a weighted
bipartite graph.

Blocking. To address the problem of reducing the number of comparisons performed, in
the record linkage literature a technique called blocking has been introduced. It consists in
partitioning the datasets into disjoint subsets, and the actual comparisons are performed only
between elements belonging to the same partition (24).

In record linkage there are many challenges, as deciding if records match is often computa-
tionally expensive and application specific (4). The former is because a combination of string
similarity algorithms have to be used, the latter because it is difficult to provide a general
solution which works well with heterogeneous datasets. For instance, the techniques used in

matching scientific datasets will be different from the ones used for matching customers.

49

5.3 Differences between Instance Matching and Record Linkage

An instance in an ontology, is the analogous of a record in a database. For this reason, the
problems of instance matching and record linkage (or duplicate detection) are closely related.
Many techniques implemented in state-of-the-art instance matching tools are actually taken
from the record linkage literature. Though, there are some differences between records and
instances, which generate the need for specific algorithms for instance matching.

First of all, the structure of relational databases and ontologies are quite different. The first
are based on tables, while the second are based on graphs. Records belonging to the same table
share the same structure with few possible variations. Instances instead can be very different.
For example, it may happen that two instances of the same class in the same ontology have
different properties defined on them, and it is difficult to choose which properties have to be
used when matching with another ontology. In many record linkage applications, the fields to
be compared are chosen manually, and then the research focus is on the value comparators and
performance. In instance matching one of the main challenges is how to automatically select
the properties whose values have to be compared.

A general characteristic of data modeling is that there are many ways of describing the
same concepts or entities. Therefore, there are a number of structurally-different but semanti-
cally equivalent representations. This happens already in relational databases, where a typical
example is the possibility of using a foreign key linking to another record or embedding the
additional fields directly. The additional expressiveness provided by ontology languages such
as OWL increases drastically the number of possible representations. For example, a concept
such as red can be a subclass of the concept color or an instance of the same class. This is
something that should be taken into account by instance matchers.

Another important difference between the ontologies and relational databases is that the
former may contain implicit knowledge. For example, the instances of a class C are also
instances of the classes that are superclasses of C'. It has to be decided whether or not this fact
should be considered in the matching process. In general, it is possible to run a reasoner before

the matching process, so that all the implicit knowledge will be made explicit.

50

5.4 Evaluation

As in ontology matching, the growing interest in instance matching and the consecutive
development of many matching tools have raised the need for standard benchmarks and eva-
luation methods. OAEI has been focusing on ontology matching for many years but starting
from 2009 it started providing tracks for instance matching. The evaluation procedure and
metrics are the same as the ones used for ontology matching, and they are incorporated in the
ontology matching yearly evaluation event.

Since ontology matching has become a consolidated research area, we believe that the ma-
jority of the efforts will shift towards the instance level, and many more tracks and benchmarks
will be addressed to the instance matching problem in the near future.

5.5 Instance Matching Techniques

In this section will be introduced the instance matching techniques used by the state-of-the-
art systems. Because of the similarity between instance matching and record linkage previously
explained, many techniques are taken from record linkage (e.g., string similarity metrics). The
core of the matching process is the comparison between values of similar properties (attributes)
using the so called value-oriented techniques. During this phase, a score is computed using string
similarity functions, token-based similarity functions, conversion functions (e.g., transform real
values into integers), statistical analysis (e.g., compute frequency of values and give more weight
to the rare ones). Once all the scores are computed, these have to be combined in one single
value representing the overall similarity between the two instances. This is done by a decision
system, which takes as input the scores at a single value granularity, and returns the final
matching score. Decision systems range from simple linear combinations to complex machine
learning techniques. A taxonomy of the texhniques used in instance matching is shown in
Figure 13.

Learning-based Techniques. Learning-based techniques consist in training a classifier to
decide whether two instances refer to the same real-world entity or not. The classifier is usually
trained with some example instance pairs together with their actual classification. In this case,

we are talking about supervised-classification. The quality of the classifier is highly influenced

o1

Instance matching techniques

/N T

Similarity-based Learning-based Rule-based Context-based

Figure 13. Classification of the instance matching approaches.

by the training set, which have to be carefully selected by a human. The training set has to be
representative and balanced, meaning that it has to possess the same distribution as the overall
data, and contain both positive and negative examples. These are strong requirements, and for
this reason alternative learning methods have been proposed. An interesting example is active
learning, in which the most ambiguous entities are presented to a domain expert who classifies
them, and the system then learns from this feedback. Alternatively, when no training set is
built, it is possible to use unsupervised-learning techniques. These methods exploit clustering
techniques to group similar instances, then it is assumed that instances within the same cluster
share the same class (matching or non-matches). The last approach used in the literature is the
semi-supervised learning approach, which encompasses the combination of different learning
techniques.

Similarity-based Techniques. When no training set is available, a similarity value is com-
puted for each instance pair. Then, the final decision (match or non-match) is performed using
a threshold: all the pairs whose similarity is over the threshold are designated as matches, and
the others as non-matches. The scores provided in the value comparisons can be aggregated in

different ways. The simplest method is to compute the average of the single scores, which means

52

giving the same weight to every property/value. In many cases, though, some of the properties
are more important than the others and this should be taken into account. Therefore, a more
effective solution is to weigh every value based on some heuristics or input knowledge given ma-
nually by a domain expert. An effective heuristic which does not require human intervention is
the use of statistical information. The weights can be set based on frequencies. For example, a
match between a very common last name such as Smith should weigh less than a less common
one. Similarity-based techniques have been used extensively both in the ontology matching and
instance matching literature. The only drawback with such techniques is the identification of
the correct threshold, which requires some human intervention.

Rule-based Techniques. Rule-based techniques make use of specific matching rules, which
classify pairs as match or non-match based on the values scores previously computed. The idea
is that even if the analogous of a primary key is not available, a set of uniquely indentifying
properties can be found and encoded in rules. These rules are usually determined by domain
experts, therefore manual intervention is required. Rule-based approaches are usually very
precise, but at the cost of being domain dependent.

Context-based Techniques. Context-based techniques compare not only the values contai-
ned in the pair of instances to be matched, but also the values included in related instances.
This is extremely important in the context of Semantic Web and ontologies, because very often
a the value of a property points to another resource, which has other properties defined, in a

recursive fashion.

5.6 Instance Matching Tools

A number of instance matching tools have been developed using the previously described
techniques. An overview of these tools is reported in Table VII, which shows the techniques
used by each system. Some of these tools were first developed as ontology matching systems,
and then extended to match instances (e.g., AFlood, CODI, COMA++, DSSim, RiMOM),
while others are specific for instance matching (e.g., SERIMI, LIMES, FBEM). Only a few of
them provide a GUI to help users in setting up the parameters and analyzing the alignments

produced (e.g., LIMES, COMA++).

53

Techniques Used

Tool Similarity-based | Context-based | Rule-based | Learning-based
AFlood (35)
ASMOV (40)
CODI (55)
COMA++ (3)
DSSim (48)
FBEM (65)
HMatch2.0 (9)
LIMES (52) v
ObjectCoref (37) v
RiMOM (45)
SERIMI (2)
Zhishi.links (54)

ANANANAN

ANANANANANANAN

AN

ANAN

ANANAN

TABLE VII

INSTANCE MATCHING TOOLS

As can be noted in Table IT and similarly to the ontology matching state-of-the-art, most of
the systems make use of similarity-based and context-based algorithms. String similarity me-
trics are used to compare the values of the properties, while context-based methods evaluate the
structural similarity between instances. The values comparison can be significantly improved
by using ad-hoc similarity functions (e.g., Zhishi.links), though they are domain-specific. To
evaluate the structural similarity, the properties and values have to be considered together by a
similarity function. For this reason, tools such as FBEM and RiMOM aggregate the properties
and values into a flat structure, which makes the comparisons easier and faster.

One of the toughest challenges in instance matching is how to decide which properties of the
instances have to be compared. RIMOM uses schema matching and then manual refinement to
determine the property alignment. Rule-based systems (e.g., LIMES and Silk) allow domain
experts to specify linkage rules. This process requires a manual effort, but is the most precise

and reliable. Another approach is to define a generic similarity function between RDF resources,

54

when property mappings are not defined a priori. This was attempted by SERIMI, and is the
current research direction in automatic instance matching. The only learning-based tool is
ObjectCoref, which uses a semi-supervised learning approach to coreference instances. The use
of both labeled and unlabeled data in the learning process allows the system to learn from a

small set of labeled data.

CHAPTER 6

AN INSTANCE MATCHING SOLUTION FOR LOD

In this chapter will be discussed the extension of AgreementMaker to match instances, while
the system was previously working only at the schema level. This extension has been deve-
loped and tested focusing particularly on Linked Open Data, and participated in the OAEI
2011 competition. In that occasion, the system has been compared with other state-of-the-art
matching tools with encouraging results, which will be shown at the end of the chapter.

6.1 Proposed Architecture

The proposed architecture for our instance matching system is shown in Figure 14. A three
tier architecture has been developed, separating the key parts of the matching process into
modules. The three phases are respectively Lookup, Disambiguation and Combination.

6.1.1 Lookup Phase

The Lookup phase consists in querying retrieval services to obtain some candidate instan-
ces. As introduced in Chapter 5, reducing the number of comparisons needed to provide an
alignment is one of the main challenges in instance matching. The solution implemented in
AgreementMaker consists in performing a look-up using the label of the instance and its type
(when provided) to query against an index, which will return a reasonable number of candidate
target instances. Many of the central LOD data sets offer a SPARQL endpoint, which is online
querying service that accepts queries in the SPARQL language and operates over the HT'TP
protocol. In some other cases, the data can be accessed using an Application Programming
Interface (API) available online. This choice is appropriate for several reasons:

e many SPARQL endpoints and APIs implement indexes, allowing for fast answers to

keyword look-ups;

e the on-line version of these knowledge bases is always richer and more up to date than

the versions that can be downloaded;

e multiple Knowledge Bases can be queried at the same time in a parallel fashion.

55

56

Lookup Phase Candidates
Retrieval

Source Target
Dataset Datasets

Disambiguation
Phase

Matcher

Matchings Working Set

Combination Phase

O

Matcher

Final Alignment

Figure 14. AgreementMaker OAEI2011 Instance Matching configuration.

Then in the Disambiguation phase a similarity value between the source instance and the
candidate instances is computed. This is achieved using different matchers that compare several
features of the instances, and then their outputs are combined (Combination phase) in order
to give a unique similarity value. These values are used to rank the candidates and eventually

select the best one.

6.1.2 Disambiguation Phase

After the candidates have been retrieved in the lookup phase, in the disambiguation phase
the system computes the similarities between the source instance and the candidate instances.
In this step several different features may be taken into account and many different similarity
measures may be exploited. The actual techniques implemented and used are described in
detail in Section 6.2.

Following the AgreementMaker’s extensibility and configurability principles, the matching

o7

techniques are separated into different classes, all extending the matcher module, implemented
as an abstract Java class. In the disambiguation step all the instance matchers in AgreementMaker

are run, producing similarity values for each pair of possible matching pair of instances.

6.1.3 Combination Phase

In this phase, the values returned by the matchers are used to rank the candidates and
eventually select the best one. We use different matchers (forming the so called matchers
stack) that compare several features about the instances to be matched, and then combine
their outputs in order to give a final alignment. This process is needed because a unique
decision (match/non-match) has to be taken for every pair of instances.

6.2 Matching Techniques

This section introduces the matching techniques that have been recently incorporated in
AgreementMaker for matching instances. Some of them are readaptations of already availa-
ble algorithms (e.g., string similarity), while others are specific for instance matching (e.g.,
property-value comparison). The main features we use for the comparisons are:

e Labels using a substring similarity.

e Comments and other literals using a Vector Space Model approach.

e RDF Statements considering property-value pairs.

e The score values returned by the lookup services (e.g. Freebase API, Apache Lucene

score).

6.2.1 Label Instance Matcher

The first and most intuitive matcher implemented for AgreementMaker’s instance matching
module is the Label Instance Matcher (LIM). This matcher compares the labels of the instances,
returning a score based on a string similarity metric. The label of an instance is a short string
(e.g., from a few to several characters) representing the instance. The use of the term label has
become a standard because there is a label property in RDFS, rdfs:label, which is widely used
in ontologies and RDF data. The definition of this property is reported below.

The domain of this property (i.e., the class to which this property applies) is Resource,

the most general class, since everything is a resource. The range (i.e., the datatype or class

N O Ut W N

o8

Listing 6.1. rdfs:label property definiton in RDF'S

<rdf:Property rdf:about="http://www.w3.0rg/2000/01/rdf-schema#label">
<rdfs:isDefinedBy rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#" />
<rdfs:label>label</rdfs:label>
<rdfs:comment>A human—readable name for the subject.</rdfs:comment>
<rdfs:domain rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Resource" />
<rdfs:range rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Literal" />
</rdf:Property>

to which this property refers to) is Literal, the classes containing textual descriptions with no
constraints. Even in case rdfs:label is not available, there always is an analogous property with
the same functionality. Examples are foaf:name and skos:prefLabel, respectively the defined in
FOAF ! and SKOS 2. In some of the datasets the label can be an ad-hoc defined property, but
the use of popular and agreed-upon properties is a preferred approach which is also encouraged
by the W3C.

The matching process performed by the LIM is divided into three phases: Label Detection,

Label Preprocessing, and Similarity Computation.

Label Detection

In this phase the matcher attempts to find the property used as label in the source and
target instances. This is done using a lookup table in which the most common label properties
are enumerated (e.g., rdfs:label, foaf:name, skos:prefLabel). If no such property is found, the

matcher searches for a property with a name similar to the strings label or name.

Label Preprocessing

In case a label is found both for the source and target instance, the similarity between those

two is computed. Before the actual similarity computation a sort of pre-processing is needed.

thttp:/ /xmlns.com/foaf/spec/

Zhttp://www.w3.org/2009/08 /skos-reference /skos.html

99

In this phase we perform standardization and normalization of strings. The former, as in record
linkage, consists of unifying different spellings of words under a unified convention (e.g., the
occurrences of *Jr’, "Jr.”, and *Junior’ are unified into ’Jr.”), while the latter encompasses removal
of punctuation and diacritics.

Similarity Computation

After the labels have been detected and preprocessed, the actual similarity value is computed
and returned. This is done by using the string similarity metrics previously discussed. In
AgreementMaker many string similarity metrics were already implemented and have been tested
extensively in the field of ontology matching (e.g., Edit-distance, Jaro-Winkler). All of these
metrics are exposed by LIM as parameters, and can be used in the matching process. A
comparison between the results obtained using different string similarity metrics will be reported
in the Results section.

6.2.2 Token-based Instance Matcher

The string similarity metrics work well on the labels and in general on short textual descrip-
tions such as names, but longer text requires a different processing such as using frequencies
of words. For this reason, we have implemented a matcher integrating Token-based techniques
for comparing textual descriptions, called Token-based Instance Matcher (TIM).

The typical example of property that is successfully compared using token-based similarity
metrics is rdfs:comment. Similarly to rdfs:label, it is a property that applies to every resource
and its value is always a generic string. The comment usually contains a description of the
instance longer than the one provided by a label, and since the overlapping between comments
is in many cases a good similarity indicator between instances, it is used for matching. There
are many other properties that can be used exploiting a token-based approach, such as the
dbpedia:abstract, which is the abstract taken from Wikipedia, the types (sometimes there are
many types associated with an instance), and the comment taken from other ontologies such
as skos:description.

In the literature there are many Token-based similarity measures (34). There always is a

sort, of preprocessing in which the strings are turned into sets of tokens (also known as vectors).

60

Stopword removal and stemming may also be performed. After this step, the sets are compared
using a set similarity. The most common and used set similarities are reported in Table VIII.
The similarity is maximized (i.e., equal to 1) only if the two sets share all the tokens, and is
minimized (i.e., equal to 0) only if the two sets have no elements in common. Which function
works better depends heavily on application and data characteristics (34).

The pseudo-code for the comparisons performed by the Token-based Instance Matcher is
shown in 1. At the beginning of the process, some relevant properties such as comments,
abstracts, and types are detected in every instance and the values are aggregated in a single
string called wvirtual document. These are then processed using tokenization and stopword
removal. After that, the actual comparisons are performed. In this phase, every token in the
source virtual document is tested against every token in the target. We designed three types
of comparisons: string equality, synonymy check, and equality after stemming. The weights
of the three matching conditions are parameters to the matching process, respectively called
equalityReward, synonymsReward, and stemmingReward. Our experiments led us to set the
values 1, 0.5, 0.5. All the matching scores are summed and in the end normalized using one
of the set similarity measures in Table VIII. The one used by default by TIM is the Dice
Similarity.

An even more accurate similarity comparison could be performed weighting the vectors using
frequencies of terms such as in the TF-IDF measure. This could slightly improve the accuracy
of the TIM, but requires full access to the data to compute the statistics. The datasets we used
are very large and using the endpoints makes them non-iterable. In fact, there is no way of
computing those statistics unless the datasets are stored in memory or on disk. Alternatively,

sampling could be performed, but will be left as a future development.

6.2.3 Property-Value Comparison

The first two matchers describe a comparison based on relations whose semantics at least
partially known a priori. As an example, the label is a property with the specific semantic of
“a short textual description representing the instance”. These matchers work because there

is a shared way of using some properties, which is exactly one of the main goals of Linked

61

Algorithm 1 Pseudo-code for Token Instance Matcher

1: function INSTANCESIMILARITY (source, candidate)

2: S« buildVirtual Document(source) > Returns a list of the property values
3 T + buildVirtual Document(target)

4 S < preProcess(S) > Tokenization, stopword removal, and normalization
5: T < preProcess(T)

6: stm <0

7 for s € S do

8 fort €T do

9 if s =1 then

10: stm < sim + equality Reward

11: else if areSynonyms(s,t) then

12: stm < sim + synonymsReward

13: else if s.stem() = t.stem() then

14: stm < sim + stemmingReward

15: end if

16: end for

17: end for

18: norm < (S.length + T.length)/2

19: sim < sim/norm

20: return sim

21: end function

62

Metric Function | Equation
Normalized Weighted Intersection | N(s,t) %
Jaccard Similarity J(s,t) zgi
Dice Similarity D(s,t) ﬁ:||‘| -ﬂﬁl\
Cosine Similarity C(s,1) |I88|m \:h
TABLE VIII

SET SIMILARITY METRICS.

Open Data and the Semantic Web. In a real-world situation, datasets can use any kind of
property without following these principles, and our instance matching tool should provide
relevant results also in this case. For this reason, there is a need for matching methods that
work with unknown properties. Such methods are included in our matcher called Statements
Instance Matcher (STIM), which provides techniques for comparing in general the statements
belonging to two instances, namely the source and the target. The comparison is between the
property-value pairs encoded in the statements.

Our implemented matcher first searches for comparable properties, which are the ones sha-
ring the same URI or that possess similar names. As an example, many datasets contain
geo-coordinates expressed using the standard geo:long and geo:lat properties, which can be
easily detected and compared. Alternatively, matching properties can be discovered by our
ontology matching algorithms or provided by a user. In the latter case, our approach would be
similar to the rule-based approaches which involve a domain expert.

Once the properties to be compared are selected, the values are compared using string

similarity metrics or mathemathical fuctions in case the values are real numbers. The property-

63

value pairs to be compared are given a matching score which takes into account both the

property similairity and the value similarity, as follows:

sim((pi, vi), (pj, v;)) = sim(pi, p;) X sim (v, v;) (6.1)

The property-value scores are then normalized over the number of comparisons that have
been performed so as to provide a unique overall score representing the similarity between

the statements of the two instances.

6.2.4 Combination Methods

The scores computed by the previously described matchers have to be aggregated to provide
a single score for each possible matching pair. This process is called combination and may be
based on different heuristics. A first and simple method is to compute the average of the
matchers, which means considering all the matchers at the same level. However, some matchers
may be more effective than others, and should be given more importance when combining their
results. For this reason, our combination module supports a linear weighted combination, where
the weights are specified by a user. The user should understand which matchers may produce
better results than the others and set the weights consequently. An improvement that was
made to the linear weighted combination is the introduction of the possibility for a matcher
not be included in the combination only in particular cases. It may happen that two instances
have no comparable statements or one of them has no label to be compared with the other. In
such cases, the matcher has to be excluded by the average or linear weighted combination. In

the latter case, the weights have to be redistributed between the other matchers.

64

6.3 OAEI 2011 Participation

6.3.1 Track Description

The Data Interlinking track of the OAEI 2011 competition consists in recreating the links
from the New York Times Data ! to Freebase 2, DBPedia 3, and GeoNames %. These datasets
involved are available on the Linked Open Data cloud, and are interlinked with other RDF
datasets.

This track is particularly interesting and challenging, since it is a real-worlds application of

instance matching and entails the following problems:

1. Datasets are very large and not easy to wholly retrieve and work with.

2. The source datasets (New York Times) have a very poor schema associated with them.

Therefore, we cannot rely on traditional ontology matching to create schema level map-

pings.

Data Interlinking is composed by seven tasks. The source dataset is always the New York
Times Data, while there are three different targets: Freebase, GeoNames, and DBPedia. Ta-
ble IX reports the sizes of the reference alignments, divided by matching task and entity type.

Three types of entities are considered: People, Locations, and Organizations.
New York Times Data
The New York Times Data reflects the effort made by the popular newspaper New York

Times ® to semantically annotate a part of their huge collection of articles. The schema is very

simple as it contains only three types of instances (i.e., People, Organizations and Locations),

thttp://data.nytimes.com/

2http:/ /www.freebase.com/
3http://dbpedia.org/About
“http://www.geonames.org/

Shttp://www.nytimes.com/

65

Statistics People | Organizations | Locations
Nr of NYT resources 9958 6088 3840
Total nr of sameAs links | 14884 8003 87861
Links to Freebase 4979 3044 1920
Links to DBPedia 4977 1949 1920
Links to NYT 4979 3044 1920
Links to Geonames 0 0 1789

TABLE IX

STATISTICS ABOUT THE REFERENCE ALIGNMENT

and there are no properties inter-relating them. Instances are provided with a label, a descrip-
tion page, eventually a comment, and a list of articles in which they are mentioned. In the

article pages are included some keywords that can be used in the matching process.

DBPedia

DBpedia is the Semantic Web version of Wikipedia. It has become the center of the Linked
Open Data cloud, the dataset to which most of the other datasets are linked to. Wikipedia is an
excellent resource for multi-domain knowledge, since it contains a large number of heterogeneous

entities.

Freebase

Freebase is a collaborative knowledge base whose data are introduced and mantained by
a community of users. The dataset is totally multi-domain as it covers any kind of topic. It
has a powerful search tool accessible to an API. In 2010, Freebase was acquired by Google,

confirming the interest that the company has in Semantic Web technologies.
GeoNames
GeoNames is a geographical database accessible through an API. It contains a wide variety

of places together with their geospatial coordinates. GeoNames has become a standard so that

many other datasets use its conventions for encoding geo-coordinates.

66

6.3.2 Dataset Processing

As explained in 6.1, our choice for the Data Interlinking track was to use retrieval service in
order to get candidate instances. The datasets involved can be queried online using SPARQL,
when they provide an endpoint, or using APIs. Alternatively, dumps (i.e., the whole datasets
in a downloadable format) may also be available. The two approaches may lead to different
results depending on the datasets and the services exposed by who provides the data.

When dealing with large multi-domain knowledge bases like DBPedia and Freebase, memory
is a bottleneck. These datasets occupy several gigabytes when they are compressed. In order
to be queried, they need to be decompressed and also an index on disk is required to execute
queries in reasonable times. For this reason, we decided to use the services available on the
internet and to implement a caching mechanism to avoid the repetition of the same queries.

SPARQL endpoints are able to return RDF descriptions as answers, while JSON has become
the standard for APIs. In the latter case, it is often possible to get the URIs from the JSON
returned by the service and then access the whole descriptions with a URI lookup. Usually,
APIs provide faster answers to queries, while SPARQL is slower but more flexible. What is
missing in plain SPARQL is a fast approximated search. This because it has been thought
from the beginning as an exact query language, in a context where URIs are the unambiguous
identifiers. In the web as it is today, it frequently happens to search for the same concept
in different ways, for this a keyword lookup is needed. There are some projects integrating
indexing and fast keyword query answering in SPARQL engines, and they are also used in some

2 an open source project

endpoints. An example is LARQ !, an integration of Apache Lucene
implementing many information retrieval techniques, in a SPARQL engine.

6.3.2.1 Typed and Untyped queries

We noticed that our queries can be divided in mainly two categories, namely typed and

untyped. The former, as suggested by its name, asks for candidates belonging to a specific

thttp://jena.sourceforge.net/ ARQ/lucene-arq.html

2http://lucene.apache.org/java/docs/index.html

67

type, which is usually mapped to the type of the source instance. The latter, instead, relies
on the label without asking for a specific type. The former leads to more precise candidates
penalizing the recall, while the second improves the recall penalizing the precision.

Which one is better for a specific matching task depends on many factors. When the to
data sources share a type which is perfectly equivalent, a typed query performs better, because
it would exclude the possibility of getting candidates that belong to a totally different type. In
many real-world cases, though, it happens that some subsets of the classes are considered as
different or even disjoint classes in one of the data sources. For example, a musical band may
be considered as an organization in a data source and a distinct class in another data source.
In such cases, recall can be highly penalized when using typed queries.

This situation represents the usual trade off between precision and recall. When there is
more interest in precision is better to use a typed query, while when high recall is preferred,
an untyped query would be the best choice. For example, in the matching task New York
Times/Freebase Organizations, a typed query would lead to an upperbound in recall (e.g.,
obtained by perfect disambiguating candidates) of 77.8%, while an untyped query would make
possible an 88.3% recall result. In our experiments, we preferred to use untyped queries so as to
avoid the recall drop-off, while the precision can still be improved with better disambiguation
algorithms. Next, we will discuss how we accessed and processed the four data sources involved

in the Data Interlinking track.

6.3.2.2 Freebase

Freebase provides an API which allows a keyword search. The query is passed through the
HTTP protocol, using the parameters query (the actual keyword search terms), type (the type
to be queried, in case the query is typed), and threshold (a parameter to limit the number
of possible candidates). The results are returned in JSON, which can be easily parsed and
converted to a list of instances in AgreementMaker. In Listing 6.2 is reported a Freebase typed

query for the Person “Barack Obama”.

68

Listing 6.2. Example of a Freebase query

=W N =

http://www. freebase .com/api/service/search?
query=barack+4obama&
type=/people/person&
threshold=40

Listing 6.3. Example of a DBpedia query

O © 00 3O Ui Wi

—_

PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX rdf:<http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>
construct { ?p ?prop ?obj }
WHERE {
?p rdf:type <http://dbpedia.org/ontology/Place> .
?7p rdfs:label 7name .
?7p ?prop 7obj
?name bif:contains ’"Monza"’
FILTER (lang(?o0bj) = "" || lang(?obj) = "en")
} LIMIT 1000

6.3.2.3 DBPedia

DBPedia offers a sparql endpoint located at http://dbpedia.org/sparql. SPARQL en-
dopoints are particularly interesting because many LOD datasets provide them. Listing 6.3
reported a typed query searching for the Italian town “Monza”.

The keyword construct instructs the server to return the results as an RDF model made
of statements as opposed to a classic tabular result. The subject is an instance of a particular
type (http://dbpedia.org/ontology/Place), for which the label must contain a particular
search term (in this case Monza). The object has either a non specified language or is written

in English. We limit the number of statements to 1000 for performance and memory issues.

=W N =

69

Listing 6.4. Example of a GeoNames query

http://api.geonames.org/search?
g=Monza
type=rdf&
maxRows=10

6.3.2.4 New York Times Data

The New York Times datasets are available on the website as RDF files separated by instance
types. The information found in the downloadable datasets can be augmented by querying the
API at the web address http://data.nytimes.com/elements/search_api_query. The RDF
datasets contain already some queries which lead to data about the articles in which the queried

entities are mentioned.

6.3.2.5 GeoNames

GeoNames provides an API which allows a keyword search. The query is passed through
the HTTP protocol, using the parameters ¢ (the actual keyword search terms), type (the format
in which the results have to be returned), and mazRows (a parameter to limit the number of
possible candidates). In this case, the results are returned in RDF, which can be easily loaded
into a list of instances in AgreementMaker. In Listing 6.4 is reported a GeoNames typed query

for the location “Monza”.

6.4 Results

In this section will be explained the experiments that have been performed to test the
AgreementMaker’s instance matching module against the datasets involved in the OAEI 2011.
All the tables and figures in this section will include the precision, recall, and F-measure in
several matching tasks.

6.4.1 Evaluation of String Similarity Metrics

We compared the effectiveness of the Label Instance Matcher using several string similarity

metrics, and we report the most significant results in Table X. The metrics compared are Jaro-

70

Jaro-Winkler Edit-Distance AM-Substring Q-Grams

Matching Task Prec Rec F-m Prec Rec F-m Prec Rec F-m Prec Rec F-m

NYT-DBpedia-Loc | 0.882 0.642 0.743 | 0.745 0.667 0.704 | 0.742 0.658 0.697 | 0.748 0.668 0.706
NYT-DBpedia-Org | 0.801 0.721 0.759 | 0.769 0.790 0.780 | 0.787 0.797 0.792 | 0.784 0.784 0.784
NYT-DBpedia-Peo | 0.964 0.912 0.937 | 0.960 0.933 0.946 | 0.959 0.931 0.945 | 0.957 0.925 0.941
NYT-Freebase-Loc | 0.871 0.842 0.856 | 0.863 0.840 0.851 | 0.865 0.841 0.853 | 0.865 0.841 0.853
NYT-Freebase-Org | 0.885 0.854 0.869 | 0.854 0.827 0.840 | 0.867 0.839 0.853 | 0.869 0.843 0.856
NYT-Freebase-Peo | 0.950 0.939 0.944 | 0.946 0.937 0.942 | 0.946 0.936 0.941 | 0.947 0.938 0.942
NYT-GeoNames 0.803 0.409 0.542 | 0.783 0.417 0.544 | 0.780 0.415 0.542 | 0.784 0.417 0.545
Average 0.879 0.760 0.807 | 0.846 0.773 0.801 | 0.849 0.774 0.803 | 0.851 0.774 0.804

TABLE X

RESULTS ACHIEVED USING LABEL INSTANCE MATCHER USING DIFFERENT
STRING SIMILARITY ALGORITHMS

Winkler, Edit-Distance, and Q-Grams, and AM-Substring. While the first three are popular
algorithms in the literature, AM-Substring is a version of the substring similarity algorithm
that had been already introduced in AgreementMaker in the context of ontology matching.
The experiments show that all the four tested metrics perform similarly. The best one is
Jaro-Winkler performs slightly better than the others, and for this reason will be used in the
remaining experiments. The average difference between the best metric (Jaro-Winkler) and the
worst (Edit-Distance) is less than one percent. This means that in this context all the popular
string similarity metrics are able to capture similar differences in spelling or typographical
errors, and the key to improve the results is not on the Label Instance Matcher but in other

methods such as the ones implemented in the other matchers.

6.4.2 Analysis of Matchers Effectiveness

Figure 15 reports the evaluation for each matcher separately. This allows us to see the
impact of our techniques on the overall results. Our tests have a baseline, which consists in
creating an alignment only when the list of candidates is composed by only one instance. It is
a very simple approach that in this case leads to a very high precision, with low recall. This is

because most of the instances that appear in the source datasets are present also in the target

71

datasets. The recall instead is low, due to the problem of ambiguity. In fact, it is not so frequent

to find only one instance in the candidates list.

100

|
Precision
Recall
90 F-Measure mEEEE |

F-measure

Baseline LIM STIM TIM All

Figure 15. Analysis of the effectiveness of each matcher.

The Label Instance Matcher (LIM) improves significantly the recall, while the precision is
slightly worse. The F-measure it provides is 30% higher than the baseline, which is a significant
improvement. The Statements Instance Matcher (STIM) is very precise but finds less mappings
than LIM. The Token-based Instance Matcher is the worst performing matcher of the three,
but it still gives a 6% improvement with respect to the baseline.

The combination of the three matchers (ALL) is the overall best. As it happens in ontology
matching, a combinational approach is able to get the best of different matchers, providing the

best results. The overall improvement with respect to the baseline is 36%, which we consider

72

AgreementMaker SERIMI Zhishi.links
Matching Task Prec Rec F-m Prec Rec F-m Prec Rec F-m
NYT-DBpedia-Loc | 0.79 0.61 0.69 0.69 0.67 0.68 0.92 0.91 0.92
NYT-DBpedia-Org | 0.84 0.67 0.74 0.89 0.87 0.88 0.9 0.93 0.91
NYT-DBpedia-Peo | 0.98 0.8 0.88 0.94 0.94 0.94 0.97 0.97 0.97
NYT-Freebase-Loc | 0.88 0.81 0.85 0.92 0.9 0.91 0.9 0.86 0.88
NYT-Freebase-Org | 0.87 0.74 0.8 0.92 0.89 0.91 0.89 0.85 0.87
NYT-Freebase-Peo | 0.97 0.95 0.96 | 0.93 0.91 0.92 0.93 0.92 0.93
NYT-GeoNames 0.9 0.8 0.85 0.79 0.81 0.8 0.94 0.88 0.91
Average 0.890 0.769 0.824 | 0.869 0.856 0.863 | 0.921 0.903 0.913

TABLE XI

RESULTS ACHIEVED BY THE SYSTEMS PARTICIPATING IN THE DATA
INTERLINKING TRACK

an excellent achievement.

6.5 OAEI 2011 Results

This section reports the official results achieved by the systems competing in the Data
Interlinking track of the OAEI 2011 challenge. AgreementMaker has participated in the OAEI
challenge starting from 2006, where it has always been one of the best ontology matching tools.
In the 2011 edition of the challenge, we entered for the first time the instance matching track.

Although many instance matching tools have been presented in the past years (e.g., see
Section 5.6) and competed in the previous editions of the OAEIL in the 2011 edition only
three tools presented their alignments for the instance matching track. This is in our opinion
because despite the efforts in building generic tools, instance matching still requires some time-
consuming preprocessing of the input data.

In Table XI are summarized the results achieved by all the systems in each of the Data
Interlinking tasks. The results of AgreementMaker have been subject to further improvement
after the competition, since its first version was developed in a short time. The most recent
results are reported in Table XII, showing a comparison with the version participating in the

competition.

73

All of the three tools are able to provide very good alignments, as the average over 80%.
This is a very good result, showing that the interlinking problem in Linked Open Data can be
in many cases solved in an automatic fashion. We consider this very relevant to the research in
the field, given the high growth rate of LOD and the consequent need of matching tools.

Zhishi.links has the best results, obtained by encoding specific rules and dictionaries to
solve the matching task. It uses direct access to the datasets as opposed to AgreementMaker
and SERIMI, which queried the retrieval services. Zhishi.links focused on how to manage
the matching process involving large datasets, and implemented a distributed algorithm which
was run on a cluster of machines using MapReduce (22). AgreementMaker and SERIMI instead
preferred to implement more general techniques such as property comparison instead of encoding
specific linkage rules. Moreover, Zhishi.links was developed specifically for the competition,
while SERIMI was used to match other datasets, and AgreementMaker has been used for several
years in ontology matching.

All the systems perform best in the tasks involving entities of type Person. This is because it
is the category of entities for which the ambiguity is minimal. Furthermore, the heterogeneity of
the naming conventions are limited. It is different in Organizations and even more in Locations,
where the ambiguity problem is substantial. For instance, there are many cities in different
states sharing the same name and also many other types of entities can have similar ones.

Both AgreementMaker and SERIMI perform better in Freebase tasks than in DBPedia,
because the lookup service of the former returns less and more precise candidates. Therefore,
the disambiguation task is easier when working with Freebase data. In fact, DBpedia keyword
search does not allow mistakes and spelling differences, leading to a loss in recall, while Freebase
search is more flexible. All the systems provide good results in the GeoNames test, because
there are some shared properties between the datasets which help in the matching process.

Further improvement has been made after the competition, especially in the infrastructure
and in the access to the retrieval services. The system possesses now all the capabilities de-
scribed in the previous sections. Our developments led to an improvement in all of the tracks

except for two, where the results are slightly worse than before. Our alignments are now better

AgreementMaker

AgreementMaker (Last)

Matching Task

Precision Recall F-Measure

Precision Recall F-Measure

NYT-DBpedia-Loc
NYT-DBpedia-Org
NYT-DBpedia-Peo
NYT-Freebase-Loc
NYT-Freebase-Org
NYT-Freebase-Peo
NYT-GeoNames-Loc

0.790 0.612 0.690
0.840 0.667 0.744
0.977 0.801 0.881
0.884 0.811 0.846
0.873 0.735 0.798
0.966 0.950 0.958
0.902 0.797 0.846

0.909 0.739 0.815
0.846 0.845 0.846
0.962 0.934 0.948
0.874 0.846 0.860
0.917 0.897 0.907
0.948 0.940 0.944
0.839 0.792 0.815

Average

0.890 0.769 0.824

0.899 0.856 0.876

TABLE XII

74

RESULTS OBTAINED BY AgreementMaker IN THE DATA INTERLINKING TRACK OF
THE OAEI 2011 CHALLENGE.

in average than SERIMI, while still a bit lower than Zhishi.links.

CHAPTER 7

CONCLUSIONS

We have extended AgreementMaker, one of the state-of-the-art ontology matching systems

in the Semantic Web literature, following these directions:

1. Design and implementation of new ontology matching algorithms.
2. Design of a novel infrastructure for instance matching.

3. Design and implementation of instance matching algorithms.

We have designed and tested new ontology matching algorithms for discovering subclass
relations, which are particularly useful when matching LOD ontologies. In particular, we ha-
ve introduced the concept of Global Matching (GM), which uses subclass axioms present in
several LOD ontologies to infer mappings between the two ontologies to be matched. This
technique is particularly interesting because it is able to capture the patterns in the usage of
shared concepts between the LOD ontologies. These patterns reflect the idea of reusability,
one of the key concepts in knowledge engineering and ontologies. Then, we implemented and
a novel probabilistic algorithm (DPLC) for discovering links using a mediator ontology such
as WordNet. The strength of this algorithm is that it first applies word sense disambiguation
techniques to filter the irrelevant concepts and then it takes into account the distance between
concepts in the mediator ontology.

We have evaluated our novel approaches using the standard metrics used in the field against a
set of reference alignments that have been used by the best state-of-the-art systems in matching
LOD ontologies. We showed that a combinational approach which aggregates heterogeneous
matchers works very well also when the mappings analyzed are mostly of type subclass. Our
results are the overall best, especially in precision, while the use of multi-domain background

knowledge such as Wikipedia still leads to a better recall.

75

76

The overall results show that mediator-based approaches are very promising, and therefore
should be explored more. In particular, the adoption of external lexical resources such as
WordNet and Wikipedia is crucial in the matching process. The use of such resources is the
reason why AgreementMaker and BLOOMS achieve better results than the other tools. Future
research will include experimenting other knowledge bases such as Wikipedia, DBpedia or
Freebase to be used in our system as mediator ontology.

We have extended AgreementMaker with a novel instance matching infrastructure, as well as
with several matching algorithms. In particular, we have defined a three-layer architecture for
instance matching composed by a lookup phase, a disambiguation phase where many matchers
compare the source instance with a set of candidates, and a combination phase in which the
scores provided by different matchers are unified into a single output score. This architecture
allows us to drastically reduce the number of comparisons made to match two datasets, which
would otherwise make the matching process too computationally expensive to be performed in
reasonable times by a modern computer.

In the lookup phase, we have shown how to access the data provided by different services
and endpoints using the label of the instance to be matched, and how minor modifications on
the queries may change significantly the quality of the candidate instances returned (e.g., typed
and untyped queries). Future work would be investigate more query expansion techniques,
which would improve the overall quality of the candidates and make the disambiguation task
easier.

For the disambiguation part, we implemented three matchers: LIM, TIM, and STIM. The
first two are based on the semantics of some particular relations (e.g., labels and comments),
while the third one works with any type of properties without a priori knowledge. In the com-
bination phase, we put together these methods using a linear weighted combination, with the
addition of the possibility to redistribute the weights in case any of the matchers does not find
comparable properties. We have evaluated our infrastructure using some central LOD datasets
and proved the effectiveness of our algorithms. Our systems provides competitive results when

compared with other state-of-the-art systems. As future research, we will investigate the ex-

77

tension of our methods to take into account statistics of the datasets involved, using sampling
methods in case of non-iterable datasets. Since our infrastructure is highly extensible, other
matchers will be integrated in the process as well. We will also explore new combination tech-
niques which will adaptively set the weight in the combination based on some heuristics such

as instrinsic quality measures.

10.

11.

78

CITED LITERATURE

. Antoniou, G. and van Harmelen, F.: A Semantic Web Primer. MIT Press, 2004.

. Araijo, S., Hidders, J., Schwabe, D., and de Vries, A. P.: SERIMI-Resource Description

Similarity, RDF Instance Matching and Interlinking. CoRR, abs/1107.1104, 2011.

. Aumueller, D., Do, H. H., Massmann, S., and Rahm, E.: Schema and Ontology Matching

with COMA++. In SIGMOD Conference, pages 906-908, 2005.

. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S., and Widom, J.:

Swoosh: A Generic Approach to Entity Resolution. The VLDB Journal, 18(1):255-
276, 2009.

. Berners-Lee, T.: Linked Data-The Story So Far. International Journal on Semantic Web

and Information Systems, 5(3):1-22, 2009.

. Bhattacharya, I. and Getoor, L.: Collective Entity Resolution in Relational Data. ACM

Transactions on Knowledge Discovery from Data (TKDD), 1(1):5, 2007.

Bizer, C., Heath, T., and Berners-Lee, T.: Linked Data—The Story So Far. International
Journal on Semantic Web and Information Systems (IJSWIS), 5(3):1-22, 2009.

. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hellmann, S.:

DBpedia - A Crystallization Point for the Web of Data. Journal of Web Semantics,
7(3):154-165, 2009.

. Castano, S., Ferrara, A., Lorusso, D., and Montanelli, S.: The HMatch 2.0 Suite for Onto-

logy Matchmaking. In SWAP, eds, G. Semeraro, E. D. Sciascio, C. Morbidoni, and
H. Stoermer, volume 314 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

Castano, S., Ferrara, A., Montanelli, S., and Varese, G.: Ontology and Instance Matching.
In Knowledge-Driven Multimedia Information Extraction and Ontology Evolution,
pages 167-195, 2011.

Cohen, W. W.: Integration of Heterogeneous Databases Without Common Domains Using
Queries Based on Textual Similarity. In ACM SIGMOD International Conference
on Management of Data, pages 201-212, 1998.

12.

13.

14.

15.

16.

17.

18.

19.

20.

79

Cruz, I. F., Palandri Antonelli, F., and Stroe, C.: AgreementMaker: Efficient Matching for
Large Real-World Schemas and Ontologies. PVLDB, 2(2):1586-1589, 2009.

Cruz, I. F., Palandri Antonelli, F., and Stroe, C.: Efficient Selection of Map-
pings and Automatic Quality-driven Combination of Matching Methods. In
ISWC International Workshop on Ontology Matching (OM), volume 551 of CEUR
Workshop Proceedings, pages 49-60, 2009.

Cruz, I. F., Palandri Antonelli, F., Stroe, C., Keles, U., and Maduko, A.: Using Agree-
mentMaker to Align Ontologies for OAEI 2009: Overview, Results, and Outlook. In
ISWC International Workshop on Ontology Matching (OM), volume 551 of CEUR
Workshop Proceedings, 2009.

Cruz, L. F., Palmonari, M., Caimi, F., and Stroe, C.: Towards “On the Go” Matching of
Linked Open Data Ontologies. In IJCAI Workshop Discovering Meaning On the
Go in Large & Heterogeneous Data (LHD), pages 37-42, 2011.

Cruz, I., Palmonari, M., Caimi, F., and Stroe, C.: Building Linked Ontologies with Hi-
gh Precision Using Subclass Mapping Discovery. In Artificial Intelligence Review,
2012. Manuscript submitted for publication.

Cruz, I. F., Stroe, C., Caci, M., Caimi, F., Palmonari, M., Palandri Antonelli, F., and
Keles, U. C.: Using AgreementMaker to Align Ontologies for OAEI 2010. In
ISWC International Workshop on Ontology Matching (OM), volume 689 of CEUR
Workshop Proceedings, pages 118-125, 2010.

Cruz, 1. F., Stroe, C., Caimi, F., Fabiani, A., Pesquita, C., Couto, F. M., and Pal-
monari, M.: Using AgreementMaker to Align Ontologies for OAEI 2011. In
ISWC International Workshop on Ontology Matching (OM), volume 814 of CEUR
Workshop Proceedings, pages 114-121, 2011.

Cyganiak, R. and Jentzsch, A.: Linking Open Data Cloud Diagram. http://lod-cloud.net/.

Damova, M., Kiryakov, A., Simov, K. 1., and Petrov, S.: Mapping the Central LOD
Ontologies to PROTON Upper-level Ontology. In ISWC International Workshop
on Ontology Matching (OM), volume 689 of CEUR Workshop Proceedings, pages
61-72, 2010.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

80

David, J., Guillet, F., and Briand, H.: Matching Directories and OWL Ontolo-
gies with AROMA. In International Conference on Information and Knowledge
Management (CIKM), pages 830-831, 2006.

Dean, J. and Ghemawat, S.: MapReduce: a Flexible Data Processing Tool.
Communications of the ACM, 53(1):72-77, 2010.
Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and Halevy, A. Y.: Learning to

Match Ontologies on the Semantic Web. VLDB Journal, 12(4):303-319, 2003.

Draisbach, U. and Naumann, F.: A Generalization of Blocking and Windowing Algori-
thms for Duplicate Detection. In International Conference on Data and Knowledge
Engineering (ICDKE), pages 18-24, 2011.

Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S.: Duplicate Record Detection: A
Survey. 19(1):1-16, 2007.

Euzenat, J., Ferrara, A., Hollink, L., Isaac, A., Joslyn, C., Malaisé, V., Meilicke, C., Ni-
kolov, A., Pane, J., Sabou, M., Scharffe, F., Shvaiko, P., Spiliopoulos, V., Stuc-
kenschmidt, H., Svab-Zamazal, O., Svatek, V., dos Santos, C. T., Vouros, G. A.,
and Wang, S.: Results of the Ontology Alignment Evaluation Initiative 2009. In
ISWC International Workshop on Ontology Matching (OM), volume 551 of CEUR
Workshop Proceedings, pages 73-126, 2009.

Euzenat, J., Ferrara, A., Meilicke, C., Pane, J., Scharffe, F., Shvaiko, P., Stuckensch-
midt, H., Svdb-Zamazal, O., Svatek, V., and dos Santos, C. T.: Results of the
Ontology Alignment Evaluation Initiative 2010. In ISWC International Workshop
on Ontology Matching (OM), volume 689 of CEUR Workshop Proceedings, pages
85—-117, 2010.

Euzenat, J., Ferrara, A., van Hage, W. R., Hollink, L., Meilicke, C., Nikolov, A., Ri-
tze, D., Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Svdb-Zamazal, O., and dos
Santos, C. T.: Results of the Ontology Alignment Evaluation Initiative 2011. In
ISWC International Workshop on Ontology Matching (OM), volume 814 of CEUR
Workshop Proceedings, pages 85-113, 2011.

Euzenat, J. and Shvaiko, P.: Ontology Matching. Heidelberg (DE), Springer-Verlag, 2007.

Fellegi, I. and Sunter, A.: A Theory for Record Linkage. Journal of the American
Statistical Association, pages 1183-1210, 1969.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

81

Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: S-Match: an Algorithm and an Implemen-
tation of Semantic Matching. In The Semantic Web: Research and Applications,
First European Semantic Web Symposium, pages 61-75, 2004.

Giunchiglia, F., Yatskevich, M., and Shvaiko, P.: Semantic Matching: Algorithms and
Implementation. In Journal on Data Semantics IX, volume 4601 of Lecture Notes
in Computer Science, pages 1-38. Springer, 2007.

Gruber, T. R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2):199-220, June 1993.

Hadjieleftheriou, M. and Srivastava, D.: Weighted Set-Based String Similarity. IEEE Data
Engineering Bulletin, 33(1):25-36, 2010.

Hanif, M. S. and Aono, M.: Anchor-Flood: Results for OAEI 2009. In ISWC International
Workshop on Ontology Matching (OM), 2009.

Heath, T. and Bizer, C.: Linked Data: Evolving the Web into a Global Data Spa-
ce. Synthesis Lectures on the Semantic Web: Theory and Technology, 1(1):1-136,
2011.

Hu, W., Chen, J., Cheng, G., and Qu, Y.: ObjectCoref & Falcon-AO: results for OAEI
2010. In ISWC International Workshop on Ontology Matching (OM), 2010.

Jain, P., Hitzler, P., Sheth, A., Verma, K., and Yeh, P. Z.: Ontology Alignment for Linked
Open Data. In International Semantic Web Conference (ISWC), volume 6496 of
Lecture Notes in Computer Science, pages 402-417. Springer, 2010.

Jaro, M. A.: UNIMATCH: A Record Linkage System: User’s Manual. Technical report,
US Bureau of the Census, Washington, DC, 1976.

Jean-Mary, Y. R., Shironoshita, E. P., and Kabuka, M. R.: ASMOV: Results for OAEI
2010. In ISWC International Workshop on Ontology Matching (OM), 2010.

Jiménez-Ruiz, E. and Grau, B. C.: LogMap: Logic-Based and Scalable Ontology Matching.
In International Semantic Web Conference (ISWC), pages 273-288, 2011.

Kalfoglou, Y. and Schorlemmer, M.: Ontology Mapping: the State of the Art. The
Knowledge Engineering Review, 18(1):1-31, 2003.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

82

Kimball, R. and Caserta, J.: The Data Warehouse Toolkit: Practical Techniques for
Extracting, Cleaning, Conforming, and Delivering Data. John Wiley & Sons, 2004.

Lambrix, P. and Tan, H.: SAMBO - A System for Aligning and Merging Biomedical
Ontologies. J. Web Sem., 4(3):196-206, 2006.

Li, J., Tang, J., Li, Y., and Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology
Alignment Framework. IEEE Trans. Knowl. Data Eng., 21(8):1218-1232, 2009.

Li, J., Tang, J., Li, Y., and Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology
Alignment Framework. IEEE Transactions on Data and Knowledge Engineering,
21(8):1218-1232, 20009.

Mendes, P. N., Jakob, M., Garcia-Silva, A., and Bizer, C.: DBpedia Spotlight: Shedding
Light on the Web of Documents. In International Conference on Semantic Systems
(I-Semantics), 2011.

Nagy, M., Vargas-Vera, M., and Stolarski, P.: DSSim Results for OAEI 2009. In ISWC
International Workshop on Ontology Matching (OM), 2009.

Navarro, G.: A Guided Tour to Approximate String Matching. ACM Computing Surveys
(CSUR), 33(1):31-88, 2001.

Newcombe, H. B.: Handbook of Record Linkage: Methods for Health and Statistical
Studies, Administration, and Business. Oxford University Press, Inc., 1988.

Newcombe, H., Kennedy, J., Axford, S., and James, A.: Automatic Linkage of Vital
Records. 1959.

Ngomo, A.-C. N. and Auer, S.: LIMES A Time-Efficient Approach for Large-Scale
Link Discovery on the Web of Data. In IJCAI, ed. T. Walsh, pages 2312-2317.
IJCAI/AAALI 2011.

Nikolov, A., Uren, V., Motta, E., and Roeck, A.: Overcoming Schema Heterogeneity
between Linked Semantic Repositories to Improve Coreference Resolution. In Asian
Semantic Web Conference (ASWC), volume 5926 of Lecture Notes in Computer
Science, pages 332-346. Springer, 2009.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

83

Niu, X., Rong, S., Zhang, Y., and Wang, H.: Zhishi.links Results for OAEI 2011. In
ISWC International Workshop on Ontology Matching (OM), volume 814 of CEUR
Workshop Proceedings, pages 220-227, 2011.

Noessner, J. and Niepert, M.: Codi: Combinatorial optimization for data integration: re-
sults for oaei 2010. In ISWC International Workshop on Ontology Matching (OM),
2010.

Noy, N. F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD
Record, 33(4):65-70, 2004.

Parundekar, R., Knoblock, C., and Ambite, J. L.: Aligning Geospatial Ontologies on the
Linked Data Web. In Workshop On Linked Spatiotemporal Data in conjunction
with the International Conference on Geographic Information Science, 2010.

Plag, I.: Word-formation in English. Cambridge University Press, 2003.

Po, L. and Sorrentino, S.: Automatic Generation of Probabilistic Relationships for
Improving Schema Matching. Information Systems, 36(2):192-208, 2011.

Ristad, E. S. and Yianilos, P. N.: Learning String-Edit Distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(5):522-532, 1998.

Sabou, M., d’Aquin, M., and Motta, E.: Exploring the Semantic Web as Background
Knowledge for Ontology Matching. In Journal on Data Semantics XI, volume 5383
of Lecture Notes in Computer Science, pages 156—190. Springer, 2008.

Shvaiko, P. and Euzenat, J.: A Survey of Schema-Based Matching Approaches. In Journal
on Data Semantics IV, volume 3730 of Lecture Notes in Computer Science, pages
146-171. Springer, 2005.

Sorrentino, S., Bergamaschi, S., Gawinecki, M., and Po, L.: Schema Label Normalization for
Improving Schema Matching. Data & Knowledge Engineering, 69(12):1254-1273,
2010.

eds, S. Staab and R. Studer Handbook on Ontologies. International Handbooks on
Information Systems. Springer, 2004.

65.

66.

67.

68.

69.

84

Stoermer, H. and Rassadko, N.: Results of OKKAM Feature based Entity Matching
Algorithm for Instance Matching Contest of OAEI 2009. In ISWC International
Workshop on Ontology Matching (OM), 2009.

Ullmann, J. R.: A Binary N-gram Technique for Automatic Correction of Substitu-
tion, Deletion, Insertion and Reversal Errors in Words. The Computer Journal,
20(2):141-147, 1977.

Williams, E.: On the Notions “Lexically Related” and “Head of a Word. Linguistic Inquiry,
12(2):245-274, 1981.

Winkler, W.: Overview of Record Linkage and Current Research Directions. Current,
(2006-2), 2006.

Zhang, S., Zhang, C., and Yang, Q.: Data Preparation for Data Mining. Applied Artificial
Intelligence, 17(5-6):375-381, 2003.

ACKNOWLEDGMENTS

Un particolare ringraziamento alla Professoressa Isabel Cruz, che ha creduto fin da subito
nelle mie capacita e possibilita, e al Professor Della Valle per i preziosi consigli e il supporto
che hanno influenzato in maniera consistente la struttura e I’organizzazione di questa tesi.

Un enorme ringraziamento a tutta la mia famiglia. A mio papa, che mi ha insegnato a
pensare in modo razionale e scientifico, e a stare con i piedi per terra. A mia mamma, a cui
devo la creativita, I'interesse per la musica e la curiosita. A mia sorella Gaia, allo zio Massimo
e alla nonna Libera, un grazie per tutto il sostegno e ’affetto che mi avete dato in questi anni.

A Federica, con cui ho condiviso momenti importanti nella mia crescita personale e con la
quale mi aspetto di condividere ancora tanto. Un sincero grazie ad Antonio Faraldo, Alberto
Gnemmi e Francesco Costa, che sono stati come una famiglia qui a Chicago.

A tutti i miei amici dell’ADVIS laboratory. In particolare Alessio Fabiani e Cosmin Stroe,
che hanno condiviso con me tutta la ricerca che ha portato a questa tesi e hanno reso migliore
questa esperienza.

A tutti gli amici del Politecnico e della UIC. Un particolare grazie a Francesco De Liva, che
non mi ha mai fatto mancare i suoi consigli e la sua amicizia.

Infine, mi scuso con tutti coloro che non ho citato ma che comunque hanno contribuito al

raggiungimento di questo traguardo.

85

