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CHAPTER 2 
 

2.1 DAMAGE INDICES 
 

2.1.1 Introduction 
 
Damage indices are used to estimate the probability of damage within a defined member 
of a structure. While in new construction a possible damage description is not useful, due 
to the use of codes, in retrofitting it becomes essential in order to evaluate the right 
operations to do. 
As can be seen in the next paragraphs there are two main ways to quantify damage: using 
the maximal, usually of deformations, or taking into account the accumulation of damage 
through hysteretic cycles. In this latter case there are many possibilities: it is possible to 
use deformation or energy time-history, a combination of them and the concept of low-
cycle fatigue. 
Usually damage indices are defined locally, that is relatively to each member or plastic 
hinge of a structure. It is then possible to take a weighted average of these measures in 
order to evaluate a global damage index for the entire structure. Since in this thesis only 
local damage is considered, these averages are not described. 
 

2.1.2 Deformation-based indices 
 
These are the simplest indices since they are computed from the maximal values obtained 
from time-history analysis. But this is also their main advantage because they are not able 
to take into account the accumulation of plastic deformations due to high number of 
cycles. 
 
Inter-storey drift 
The inter-storey drift is surely the most used damage index because of both its simple 
computation and the fact that it takes into account also nonstructural damage. 
 
Ductility ratio 
The term ductility refers to the ratio between the maximum deformation experienced by 
the member and its value at yielding. The ductility ratio can be defined in terms of 
rotation, displacement or curvature. The general formulation can be written as: �� � �������	
� 

where x can be rotations, displacements or curvatures.  
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2.1.3 Cumulative deformation-based indices 
 
The description of the accumulation of damage under cyclic loading requires all the time-
history data in order to get the deformation-history of the considered member.  
 
Stephens and Yao (1987) 
This index is an extension of the displacement ductility made in order to take into 
account cyclic loading. If inter-storey drifts time-history is considered, as shown in 
Figure 2.1, this index can be defined as: 

�
� � � ����� �����
 

Where �� is the value of the drift at failure for a monotonic load, it is recommended 

taking it as 10% of the storey height, r is the ratio between the maximum positive and 
negative drift and b is a constant, recommended value 0.77. 

 
Figure 2. 1 

Another way to model the accumulation of damage is through the concept of low-cycle 
fatigue. In case of civil structures usually large plastic deformations occur under seismic 
excitation and this model is suitable to describe such behavior.  
 
Jeong and Iwan (1988) 
Using Coffin-Manson low, the number of cycles �� to reach failure at a given ductility µ 

is given by: �� �� � � 

The values of c and s proposed by the author are respectively 6 and 416. The damage 
index can then be found by the ratio between the number of cycles effectively 
experienced by the member and the number of cycles at failure: ��� � �	���� � �	�� ���  

Based on experiments it was showed that the adoption of the Coffin-Manson law is 
realistic for certain ranges of cycles numbers. 
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2.1.4 Energy-based indices 
 
As cumulative deformation-based, this class of indices try to consider the effect of the 
accumulated damage through the hysteretic energy dissipation experienced during plastic 
behavior. Hereafter the most used of this index is presented.  
 
Cosenza et al. (1993) 
This index consists on the ratio between two quantities relative to the hysteretic energy 
dissipation under a certain seismic excitation and under monotonic load. This quantity is 
a kind of normalized energy with respect to the yielding condition and it is described 
with: �	 � � !� �� " 1 

where !� is the member force at yielding, �� its displacement and �  the dissipated 

energy. The index is formulated in order to attain a zero value in case of elastic behavior, 
and a unity value in case of failure, which means in case the hysteretic energy 
accumulated during the ground motion is equal to the one under monotonic failure. It is 
written: �$ � �	 % 1�	,�'( % 1 

It is to note that cycles in which deformations are small are not taken into account since 
no dissipation of energy is related with them. 
 

2.1.5 Combined indices 
 
An important group of damage indices takes into account both the energy dissipation 
under plastic behavior and the maximal deformation experienced by the member. A list 
with the most used indices is reported. Most of them are also implemented in 
RUAUMOKO. 

 
Park and Ang (1985) 
This probably the best known cumulative index and consists simply in a linear 
combination of deformation and energy indices regulated by factor β: �)* � �	���+ �'( " , � !� �+ �'( 

where !� is the member force at yielding, �+ �'( its displacement under monotonic 

failure and �  the dissipated energy. Recommended values of β are 0.1-0.5, but it is to 
note that regressions based on experimental data are not in agreement in the choice of this 
parameter and therefore there is an undesirable degree of arbitrariness. Firstly adopted for 
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concrete elements, it is possible using this index for steel members as well by changing 
factor β. 

 
Banion and Veneziano (1982) 
Similarly to Cosenza et al, this index is the ratio between the value of one quantity under 
a seismic excitation and in case of monotonic failure. This time the quantity is composed 
by both ductility and energy based indices and is given by: 

�-. � /��	���� % 1�0 " 12325�	 % 167�80
 

The authors recommend taking a=1.1 and b=0.38. 
The global index thus becomes: �-. � �-.�-. �'( 

 
Bracci et al. (1989) 
A further development of the combined approach is defined by the concept of damage 
potential which is the total area between the monotonic load-deformation curve and the 
fatigue failure envelope. This value represents the maximum damage that an element can 
accumulate. With cyclic loading in fact the hysteretic loops experience both strength and 
stiffness degradation, until, at failure, they take a shape similar to the fatigue failure 
envelope. Figure 2. 2 graphically explain the concept. 

 
Figure 2. 2 

Thus the index can be written as: �- � �
'���9':  

Where �
'�� is the damage due to the effective degradation experienced by the member 
while �9': is the maximum potential damage that can be achieved. 
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Despite of the complex definition of this index, experimental observations showed a 
spreading on numerical results higher than in the other combined indices (Williams and 
Sexsmith 1995). 
 

 
2.2 STRUCTURAL MODELING 

 
RUAUMOKO2D has been chosen in order to model the structure and run inelastic 
analysis.  The input is given using a text file containing the list of all the characteristics of 
the structure. The main advantages of such a software is the possibility to obtain a visual 
output and to run it iteratively updating the input file using, like in this work, MATLAB. 
Output is obtained from .RES file using a DYNAPLOT post-processor. In the next 
paragraphs the main concepts on the modeling of structure are briefly described. 
 

2.2.1 Mass 
 
In order to run a dynamic analysis is necessary to define the mass of the structure taken 
into account. Masses are used to compute the inertial effects of an earthquake and don’t 
have influence, in the most part of the existing software, in the static analysis. For the 
static analysis is necessary to define apart static loads. Mass representation influences the 
number of degrees of freedom and consequently the computational effort for the analysis. 
The most used representation is the lumped one where mass is defined as concentrated in 
one representative node which has three degrees of freedom: two translational and one 
rotational. Usually in two-dimensional analysis only the translational components are 
taken into account. The rotational one is used for taking into account torsion effects in 
three dimensional analysis due to eccentricity between the centre of gravity and the 
center of rigidity of the same floor. For standard linear analysis the vertical dynamic 
degrees of freedom are usually not taken into account, except in case of wide bays, 
horizontal cantilevers or pushing structures. 
In case of more detailed analysis where the vertical characterization of the structure is 
required problems can arise if the considered moment resisting frame is charged also of 
the weight of other frames which are not designed to withstand horizontal loads. In this 
case the mass considered for the vertical ground motion is the one relative to the gravity 
area of influence of the frame, instead for the horizontal loads the pertinent weight 
comprehend the one of the internal frames. For this reason in each nodal point three 
different masses, vertical and horizontal translational and rotational, can be set according 
to the direction in which they act. Finally, if geometrical nonlinearities are considered, 
also the vertical mass relative to the internal frames must be taken into account. This fact 
leads the adoption of an auxiliary gravity column endowed of negligible rigidity, whose 
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lateral displacements are constrained to the ones of the main structure. The following 
figure graphically explain this concept. 

For what concern the 
implementation in RUAUMOKO, 
the mass of the structure is input in 
the form of weights and internally 
converted by the software to mass 
unit by dividing it by the gravity 
acceleration, whose unit of 
measure is specified in the first 
lines of the model file. The mass is 
provided by nodal weights and 
includes both structural and non 
structural elements. For this reason 
material density and member 
weight/unit length are taken as 
zero. Nodal weights will 

contribute only to the diagonal terms of the mass matrix while rotational degrees of 
freedom are taken, in two-dimensional analysis, as zero. Hence a lamped mass matrix is 
used and the variable IPCONM in the first line of the input data takes the value zero. The 
diagonal matrix representation concerns elements endowed of weight and considers the 
contribution of the rotational degrees of freedom equals to the diagonal term of the 
consistent mass matrix of the member. Finally the consistent matrix representation is 
usually used for finite element models. 
 

2.2.2 Geometric nonlinearities 
 
Geometric nonlinear effects, also called P-Delta effects, are caused by gravity loading 
acting on the deformed configuration of the structure. As a consequence supplemental 
internal forces arise and the structure is pushed even further developing a second order 
deflection. Theoretically all structures experience this kind of loading, but practically it 
becomes important in case of slender structures subjected to lateral loads because of the 
higher magnitude of horizontal displacements. 
These large lateral deflections, since they magnify the internal forces demand, cause a 
loss in the effective lateral stiffness bringing also longer natural periods and lower 
effective lateral strength. 
It is possible to distinguish between P-δ effects, associated with the axial deformation of 
individual members, and P-∆ effects, associated with the deformations of the whole 
structure and measured between the ends of each member. This latter effect is more 
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significant in civil structures subjected to seismic excitation and it is usually related with 
inter-story drifts.  
Then, if large displacements are considered, an iterative procedure must be adopted each 
time step in order to calculate the exact response of the structure. The coordinates of 
nodes and the stiffness matrix are updated every time step too and it makes this procedure 
computationally expansive. For this reason it is suggested to run large displacement 
analysis only in case the expected inter-story response of the structure exceeds 
significantly the 1% of the story height or in presence of large axial forces. 
In presence of small lateral displacements however the problem can be linearized and the 
solution does not require iterations if the weight at each column is constant, that is, if the 
ground motion acts only horizontally. In this case P-∆ effects are considered modifying 
the stiffness matrix of the structure which affects both the static and dynamic response. 
As depicted in Figure 2. 3, for two dimensional systems it is possible to write the lateral 
added forces due to the overturning moment in case of the displacement located in a 
considered degree of freedom i as: ; <�<���= � >�?�  @ 1%1A B� � C� B� 
where >�, ?� and B� are respectively the weight, height and displacement of the i-th 
degree of freedom while <� and <��� represent the additional lateral forces in the 
considered floor and in the adjacent one. 
 

 
Figure 2. 3 

If this procedure is followed for all the storey of the structure it is possible to add these 
relationships to the equilibrium equation leading: D E � F   G    D E � F " C E 
The system thus becomes: DH E � F 
where: DH � D % C 
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Although conceptually identical, the derivation of these equations for more general three 
dimensional structures is more difficult since rotational inertia and centroids at each floor 
must be considered.  
In the present thesis this simplified approach is chosen since the final design with the 
added damping system leads to a low level of displacements. 
 
 

2.2.3 Damping 
 
There are two different source of damping in a structure: the inherent damping which is 
always present and it is due to complex internal mechanisms and the damping due to 
particular devices, in this case of study viscous dampers. 
 
2.2.3.1 Inherent damping  
 
The traditional damping model available in most time history program is the Rayleigh 
damping model. This is model gives a classical damping matrix, that is a matrix that 
satisfy the ortogonality property: I � JKL J 
where C is the generalized damping matrix which is diagonal. This fact is very useful in 
case of modal analysis, where this property is requested in order to uncouple the 
equations of motions. In case of step-by- step analysis where this requirement is no more 
necessary, the proportional damping remains a very simple way to get the damping 
matrix, because it makes use of only matrices already computed during the analysis. It 
requires only the computation of the two coefficients α and β. It is left to the designer to 
estimate the two frequencies at which the required amount of damping is specified in 
order to evaluate the two coefficients.. 
Before considering the whole model is better to understand separately the meaning of 
proportionality to mass and stiffness matrices. L � M N           L � , O 
The most intuitive representation is the one proportional to stiffness, since it appeals 
intuitive that energy dissipation arises from story deformations. It is possible to relate the 
modal damping ratio to the coefficient β through the generalized damping of the n-th 
mode: P( � , Q( 
where P( and Q( are respectively the diagonal terms of the generalized damping and 
stiffness matrices of a classical damped system. Besides the matrix eigenvalue problem 
provides: R%S(0 N J( " O J(TU(5V6 � W 
which brings to: 
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O J( � S(0 N J( 
and premultiplying for the n-th modal shape vector: J(KO J( � S(0 J(KN J( Q( � S(0 X( 
Substituting this relationship in the first equation follows that: P( � , S(0 X( 
Since the damping ratio of the n-th mode is related to the damping coefficient of the same 
n-th mode with: Y( � P(2 S( X(  
it is possible to obtain: Y( � ,2  S( 

It could be noticed that the damping ratio increases linearly with the natural frequency. 
The coefficient β can be selected to obtain a specific value of damping ratio Y� in any one 
mode, say the j-th mode: , � 2  Y�  SZ  

With , determined, the damping matrix c is known and the damping ratio in any other 
mode is given by: Y( � ,2  S( 

The variations of modal damping ratios with natural frequency is shown in figure 2.4: 

 
Figure 2. 4   Damping ratio variation with mass proportional damping 

A similar procedure can be followed in order to obtain a relationship between the modal 
damping ratio and the coefficient α in the case of mass proportional damping matrix. 
Multiplying twice for the n-th mode shape vector the equation: L � M N 
brings: J(K  L J( � M J[K  N J( P( � M X( 
Knowing that: 
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Y( � P(2 S( X(  
it is possible to obtain the final relationship: Y( � M2 S(  
In this case the dependency from the frequency is inversely proportional as shown in 
figure 2.5: 

 
Figure 2. 5   Damping ratio variation with stiffness proportional damping 

The variations of modal damping ratios with natural frequencies are not consistent with 
experimental data that indicate the same damping ratios for several vibration modes of a 
structure. 
As first step toward constructing a classical damping matrix somewhat consistent with 
experimental data it is possible to combine the two proportionalities: L � M N " , O 
The damping ratio for the n-th mode of such a system is: Y( � M2 S( " ,2  S( 

The coefficients M and , can be determined from specified damping ratios  Y�� and  Y�0 
for the i-th and j-th vibration mode: 

12 \]]
]̂ 1S�  S�1SZ  SZ _̀̀

à  @M,A � ; Y�� Y�0= 
As can be seen from figure 2.6 the double proportionality ensure a more constant trend of 
the values of the damping ratios. 
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Figure 2. 6   Damping ratio variation with proportional damping model 

In applying this procedure to a practical problem the modes i and j should be chosen to 
ensure reasonably constant values for the modal damping ratios contributing significantly 
to the response. Experience suggests specifying Rayleigh damping at the first mode and 
at a mode number equal to, or a little less than, the number of storey of the frame. On this 
topic it is also to note that modern dynamic analysis practice usually associates mass to 
all joints in the frame, including some mass associated with the rotational degrees of 
freedom. The reason is that the mass representation of the frame has a considerable effect 
on the response of the members when inelastic behavior takes place. This fact causes a 
considerable increase of independent dynamic degrees of freedom. With the increase in 
the fractions of critical damping with increasing frequency typical of the Rayleigh 
damping model, this brings that although the lower modes of free-vibration may have the 
order of 5% of critical damping, it is easy to get very large levels of damping in the 
higher modes. Due to the aim of the present work is the comparison between different 
methods of optimal design of dampers and not an over-detailed modeling of a structure, 
as said before, the mass of an entire floor is lumped in a singular joint. In this way a nine 
degrees of freedom system is obtained, making also simpler the computation of the 
relative stiffness matrix. 
In general the sensitivity of the problem to the amount of damping is rather high. It could 
be observed in fact that even small amount of critical damping, i.e. 2-5%, reduces 
significantly the response of the structure.  
This is true especially under plastic behavior, where with the formation of plastic hinges 
the structure looses part of its rigidity and changes its natural frequencies. Work by Crisp 
(Crisp 1980) in fact, showed that high levels of viscous damping in the high modes of 
free vibration of a structure has a marked effect on the inelastic response. This fact could 
be partially compensated using the current tangent stiffness matrix rather than the initial 
one. Although damping is not supposed to decrease as the structure goes inelastic, the 
fraction of critical damping tends to remain more constant as the stiffness of the structure 
reduces. It is to note moreover that, like damping, hysteresis rules and moment-curvature 
relationships supply a form of energy dissipation. However these hysteretic rules don’t 
account properly for the energy removed from the system by small cycle oscillations 
within the structure. And for this reason inherent damping is relevant also for inelastic 
analysis. 
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Alternative ways of modeling damping are available, for example the superposition of 
modal damping matrices and the Caughey damping. This latter representation is 
particularly suitable to match the required amount of damping at a greater number of 
modes. The main problem associated with this model is the large powers of the 
frequencies required to evaluate the coefficients. The algebraic equations in fact are 
numerically ill conditioned because the coefficients S(, S(b, S(c … can differ by orders of 
magnitude. In RUAUMOKO there are three possible implementation of this model: linear, 
constant and trilinear damping according to the variation of the fraction of critical 
damping with frequency (see Figure 2. 7). 
 

 
Figure 2. 7 

Since the aim of this research is not, as already said, a detailed model of the structural 
behavior, but the comparison between different optimization schemes, it is found not 
useful using a too complex damping model.  Different damping models can certainly 
modify the values of the results, but not the general distribution of them. It means that 
changing damping representation may bring to slightly different values of total added 
damping, but the distribution of the devices is supposed to be the same. 
 

2.2.4 Stiffness 
 
Usually seismic design is carried on with elastic analysis. In case of retrofitting with use 
of passive control tools a linear analysis could be accepted if it is designed in such a way 
not to achieve yielding. Although, in order to provide a better understanding of how these 
optimal design methods behave, inelastic analysis will also be executed and then 
compared to the elastic ones.  
When elastic analysis is considered the characterization of the structure requires elastic 
characteristics like the modulus of elasticity of the material, the moment of inertia of 
sections, their areas…  
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As known nonlinear analysis involve significantly more effort to be performed and 
different grades of detailing can be achieved. In general structural member models can be 
differentiated by the way that plasticity is distributed through the member length. There 
are two main ways to model it: using distributed or concentrated plasticity. This latter 
way is the most simple because it concentrates, as the name itself suggests, the inelastic 
behavior at the two ends of the member. Next paragraphs explain the most used available 
models. 
 
2.2.4.1 One component model (Giberson plastic hinge)  
 
In the case of the Giberson hinge model rigid plastic hinges are placed at the two 
extremities where yielding is expected. The part of the member between the two rigid 
plastic springs remains perfectly elastic while all inelastic deformation is assumed to 
occur in these springs.  

 
Figure 2. 8   One component model 

The stiffness of the hinge is such that the rotation of the hinge together with the rotation 
associated with the elastic curvature of the beam over the hinge length is the same as the 
rotation associated with the curvature over the hinge length with the inelastic properties 
in the hinge zone. When the hinge is in the elastic range its stiffness is infinite.  
 

 
Figure 2. 9   Elastic and plastic rotations 

 
A major advantage of the model is that inelastic member-end deformation depends solely 
on the moment acting at that end so that any moment-rotation hysteretic model can be 
assigned to the spring. This fact is also a weakness of the model because the member-end 
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rotation should be dependent on the curvature distribution along the member, hence 
dependent on moments at both member ends.  

 
Figure 2. 10   Different moment distribution with relative curvature diagrams 

Moreover the stiffness of an inelastic spring is normally defined by assuming an 
asymmetric moment distribution along a member with the inflection point at midspan. 
However, once yielding is developed at one member end, the moment at the other end 
must, moving the inflection point toward the member centre. At the same time, a large 
concentrated rotation starts near the critical section. For this reason this Giberson model 
is expected to be reasonably good for relatively low-rise frame structures, where 
inflection point of a column locates reasonably close to mid-height. 
The formulation however, is numerically simple and efficient. 
 
Other models 
 
Several more complex models have been proposed in order to give a better understanding 
on the response of structures under seismic excitation.  
 
For example using multi-component beams proposed by (Clough et al. 1965), that is a 
member composed by two or more elements in parallel. Each of these elements has a 
different behavior. In the two component model there are an elasto-plastic element, which 
represents yielding, in parallel with a completely elastic one which instead represents 
hardening. The main advantage is that rotations at one end depends on the moments at 
both ends. On the other hand to give a proper value to the stiffness of this multi 
component member is necessary to make some assumptions on the moment distribution 
along the element.  

 
Figure 2. 11  Two component model 

Another example is the distributed flexibility model proposed by (Takizawa 1973). The 
main observation at the base of this model is that where plasticization appears the 
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flexibility increases. Since in under seismic excitation plasticization appears at the ends 
of the elements, a parabolic distribution of elastic flexibility is adopted. This parabolic 
shape has an inflection point in the middle length and interpolates the flexibility values at 
the edges. These latter values depend on a hysteretic model which takes into account the 
stress history. Despite of the parabolic distribution of flexibility this model may not 
represent adequately the concentration of deformation at the ends of the element. 

 
Figure 2. 12   Distributed flexibility model 

In the present thesis the most simple one component member is considered since a more 
detailed description of the structure is not useful. 
 
Hysteretic rules 
 
After the choice of the type of element used to represent the bare frame structure, in this 
case the two plastic-hinges element, it is necessary to define their behavior in terms of 
resistance-deformation relationship, which is the so called hysteretic rule. Theoretically, 
between the several models of existing rules the one which better approximates the real 
behavior of the beam should be chosen. Real behavior means the behavior observed 
during experimental tests and includes many phenomena like stiffness and strength 
degradation, pinching, fracture, local buckling etc. Since for the purposes of this thesis a 
detailed modeling of the structure is not necessary the simplest hysteretic rule was 
chosen: the bi-linear model. Moreover it was shown by (Otani 1981) that the structural 
response for different hysteretic rules is not particularly sensitive to the details of these 
force-deformation relationships as much as to the basic characteristics of loops, like 
primary stiffness and fatness. 
Bi-linear model was derived from the elastic-perfectly plastic one, assigning it a 
secondary stiffness after yielding in order to simulate the strain hardening characteristic 
of steel. Neither stiffness nor strength degradations are taken into account and the 
resulting model is not realistic.  
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Figure 2. 13   Bilinear hysteretic rule 

 
 

2.3 PASSIVE CONTROL DEVICES 
 

2.3.1 Introduction 
 
The so called structural control consists on reducing the vibrations induced by horizontal 
loads without stiffing the structure, or with a limited added stiffness. Vibrations in 
structures represent the source of both structural and nonstructural damage, therefore 
their control represents a way to ensure human safety. The applications of structural 
control concern both new construction and retrofitting. In case of new construction they 
are usually applied only to high performance buildings like hospitals and bridges. For 
new standard constructions the costs would be excessive and in general classical anti-
seismic design based on ductile response. Retrofitting represents a great field of 
application for such devices because in many cases classical strengthening is not feasible 
or too expensive. In order to explain this concept let consider a single degree of freedom 
structure having a defined columns strength <� which is not designed for horizontal loads. 

 
Figure 2. 14   SDOF system and foundations loading 

Let consider now a horizontal ground motion which realistically brings the structure 
under plastic behavior. The maximum force that the foundations will experience is equal 
to the total resistance of the columns: !�'+(� � <� " <0 
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If a strengthening strategy is adopted the force transferred to the foundations will be 
larger and it could be necessary their reinforcement. As known foundations retrofitting is 
an expensive task. 
Generally increasing the resistance of the structure brings also a higher level of rigidity. 
As a result the period of the straightened structure is lower than the original one, and the 
seismic actions due to the same ground motion are stochastically higher. Hence absolute 
accelerations experienced on the modified structure will be higher. At the time of 
Northridge earthquake in 1994 there were several hospitals designed to withstand 
earthquakes mainly without inelastic deformations. In order to ensure elastic behavior a 
rigid and resistant structure is required. Due to the high ground acceleration of this 
particular earthquake these kind of buildings experienced such a high absolute 
acceleration that the nonstructural damage yields to their inoperability, though structural 
damage was not severe. 
Generally the use of structural control avoids, or at least limits, high level of absolute 
accelerations and foundations reinforcement. 
In the last three decades passive control of structures has known a high development and 
a lot of different methodologies are now available. The most famous of them are tuned 
mass dampers, base isolators and different types of mechanical devices.  
All these technologies were firstly used to control only wind induced vibrations but now 
their field of application have widen to seismic control.  
Passive control differs from active or semi-active one due to the absence of induced 
forces. In these latter systems in fact there is a constant monitoring of the behavior of the 
structure and, based on it, forces are applied by an actuating system. As a consequence, 
an active system requires a significant amount of external power in order to supply the 
requested internal forces. In case of seismic calamity this external source of power could 
be unavailable. Moreover these systems are expensive due to the presence of both 
monitoring devices and actuators which have to provide large amount of energy in small 
time lapse, and for this reason their applicability is restricted to special cases. Passive 
control systems are in comparison cheaper and, in general, more reliable. 
 

2.3.2 Types of devices 
 
A possibility to classify passive control devices is by the way they are activated. The 
activation can be by relative displacements or velocity between the edges of the device or 
by the motion induced on the structure by the seismic excitation.  
A brief description of the most important energy dissipation systems  is now presented in 
order to give a slight comparison between the different devices and to present the main 
advantages of viscous dampers which have been chosen in the present research. 
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Tuned mass dampers are not taken into account because represents a particular solution 
for high rise buildings and their interaction with the structure differs a lot from the other 
systems. 
 
2.3.2.1 Hysteretic dampers 
 
The first group of devices is displacement-activated and includes metallic and friction 
dampers. Metallic dampers dissipate energy through their deformations under plastic 
behavior instead friction dampers dissipation occurs with the friction developed at the 
interface of two sliding bodies. Both of them exhibit the same hysteretic behavior and 
therefore are modeled using an elastic-perfectly plastic load-displacement relationship. 
For this reason the verification must be carried out by inelastic analysis while 
approximated linearization method is available for pre-design. 

 
Figure 2. 15   Model of the hysteretic behavior of hysteretic dampers 

The main disadvantage of such passive system consists on the added rigidity to the 
structure which can cause an increasing on the loading accelerations. This effect can be 
described showing the spectral response of a singular degree of freedom system subjected 
to a specific ground motion. Figure 2. 16 underlines the increasing of both rigidity and 
damping resulting in a lower displacement but in a higher acceleration. 

 
Figure 2. 16    

Moreover a careful design of such passive control system is required in order to get a 
better behavior of the structure. Analyzing a singular degree of freedom system excited 
by a single wave, it can be shown that the structural response depends on the size of the 
device and in particular on the ratio between the equivalent static lateral displacement 
and the displacement that activates the hysteretic damper: 
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e � B�:�:�fB�f:�g  

For high values of the ratio e, that is for low activation displacement and so for 
undersized dampers, the response of the modified structure is similar to the original one 
with a slight reduction due to damping effect. On the other hand low values of that ratio 
make the structure changing its natural frequency and the spectral response shows 
another peak. It means that dampers are minimally activated and the retrofitted structure 
behaves like a braced one.  
Hence, in order to avoid low efficiency or, even worst, additional stiffness, it is necessary 
to design these devices for an optimal value of the activation factor e. But this factor, and 
consequently the activation of the devices, depends on the intensity of the excitation. So 
if the optimal design of the hysteretic system refers to a required ground motion intensity, 
it is possible that for lower excitation the dampers are not activated and the resulting 
damage can be higher than the original structure. 
In conclusion the design of this kind of passive control system requires high level of 
precision and accuracy. 
 
2.3.2.2 Viscoelastic dampers 
 
These devices dissipate energy through the shear deformation of a viscoelastic material. 
This kind of material exhibits both a viscous and an elastic response; therefore dampers 
are both displacement and velocity dependant and their hysteretic behavior can be 
modeled using a Kelvin solid with a spring and a dashpot in parallel. The resulting shear 
stress-deformation constitutive relationship is plotted in Figure 2. 17. 

 
Figure 2. 17   Hysteretic behavior of viscoelastic dampers 

As can be seen the constitutive relationship shows the presence of a stiffness component. 
As for hysteretic dampers the addition of rigidity to the structure is not a positive effect, 
but on the other hand the design of such devices does not present critical points like the 
search of an optimal activation ratio. 
The representation of the effect of an added viscoelastic system for a singular degree of 
freedom system is similar to the one of metallic and friction devices and it is shown in 
Figure 2. 18. 
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Figure 2. 18 

Finally the efficiency of viscoelastic dampers is affected by the environmental condition 
of exposure and, in case of long ground motions, the high temperature decreases their 
dissipation capacity. For these reasons viscoelastic dampers are not used in common 
engineering practice despite of the significant research effort spent on it. 
 
 
2.3.2.3 Viscous dampers 
 
The energy dissipation occurs with the flow of some viscous fluid through orifices. The 
flowing is induced by a piston connected to the structure and excited by the ground 
motion. As better explained in chapter 2.4.3, there is no stiffness component in the 
response and the device is only velocity-activated. Figure 2. 19 underlines the lack of 
stiffness in the force-displacement constitutive relationship. 

 
Figure 2. 19    Force-displacement relationship 

Due to this characteristic the natural period of the bare frame is the same that the one of 
the retrofitted building. Therefore viscous damping effect only affects the response of the 
structure. Figure 2. 20 depicts the change in the response for a single degree of freedom 
system. 
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Figure 2. 20 

This means that whatever the frequency content of the ground motion, the response will 
be deterministically lower than the original one. Hence risks related with the correct 
design of such devices are not so high like for hysteretic dampers. 
Moreover, as better explained in chapter 2.4.3, as a result of the velocity dependency the 
forces due to the damping system are out of phase with the structural forces due to the 
seismic excitation which are, instead, displacement-dependant. 
For these main advantages viscous dampers are now one of the most used passive control 
system and for this reason these devices have been considered in the present work, rather 
than the others explained before. 
 
 
 
 

2.4 VISCOUS DAMPERS 
 

2.4.1 Introduction 
 
Firstly used in civil structures to reduce the oscillations due to wind (in the World Trade 
Center for example), now viscous dampers are commonly used also in seismic 
applications. 
This chapter focuses on the inherent behavior of such devices and on their interaction 
with the structure in which are installed, giving a brief description on their manufacture. 
 

2.4.2 The devices 
 
Among the variety of energy dissipation devices for passive control of structures it was 
found that viscous dampers have a series of advantages.  
Viscous dampers are composed by a stainless cylinder and piston and are filled with 
silicon oil. Energy dissipation occurs when silicon oil flows through special orifices, 
designed in order to provide a specific relation force-displacement. The force is produced 
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by the differential pressure across the piston head caused by the relative velocity at the 
edges of the device. 
Figure 2. 21 depicts a typical fluid damper and its parts.  

 
Figure 2. 21   Technical sheme of a viscous damper 

Due to the compressibility of silicon oil, a restoring force can arise. Since the absence of 
added stiffness is one of the advantages of viscous dampers accumulator are used to 
avoid it. This restoring forces prevention is effective under a certain limit of excitation 
frequency depending on the geometrical design of the device. 
Like other typologies of devices viscous dampers behavior is frequency dependent. This 
dependency is usually neglected in practical analysis because it is assumed that the 
device during a ground motion experiences an excitation based on the natural frequency 
of the structure. Although this assumption is true only for narrow banded systems, and 
consequently not always realistic for damped structures, the variation of damping 
coefficient with respect to frequencies is rather slight and so can be neglected. 
Differently from other types of energy dissipation devices like for example yielding ones, 
viscous dampers are able to withstand several earthquakes without the necessity to be 
substituted.  
Moreover the required level of maintenance is low and involves simple inspection of the 
condition of the device. Usually, visual inspection of the dampers should occur after 
important seismic events. This inspection consists on looking for eventual leakages or 
broken parts. 
 

2.4.3 Hysteretic behavior 
 
Fluid viscous dampers operate on the principle of fluid flow through orifices. A stainless 
steel piston travels through chambers that are filled with silicone oil. The pressure 
difference between the two chambers cause silicone oil to flow through an orifice in the 
piston head and seismic energy is transformed into heat, which dissipates into the 
atmosphere. The force/velocity relationship for this kind of damper can be characterized 
as following: ! � ��  Bh i 
where F is the output force, Bh  the relative velocity across the damper, �� is the damping 
coefficient and α is a constant exponent. Dampers with α=1 are called linear viscous 
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dampers in which the damper force is proportional to relative velocity. Devices with α 
smaller than 1 are the nonlinear viscous dampers used for seismic passive control. 
Finally, dampers with α larger than 1 give for high velocities really high reactions. These 
devices are used for so called lock-up applications, for example in bridges, where 
temperature deformations developed at very low velocity must be enabled, while for high 
velocity events, rigid behavior must be provided. 
In the next paragraphs the description of the first two types of devices is provided. 
 
2.4.3.1 Linear dampers 
 
In order to better understand the behavior of such devices it is useful, as done in the 
frequency domain analysis, to analyze the response under a simple sinusoidal excitation. 
Considering the relative displacement at the edges of a pure viscous element in the form: B5V6 � jk lm�5SV6 
where jk is the maximum displacement amplitude and S is the circular forcing 
frequency. The linear damper reaction force is proportional to the relative velocity: !5V6 � �� Bh 5V6 
Due to: Bh 5V6 � S jk �nl5SV6 
one obtains: !5V6 � �� S jk �nl5SV6 
It can be observed that for a sinusoidal loading the reaction of the device is in counter 
phase with the displacements. This out of phase response is generally valid also for more 
complex loading because it can be assumed that when the displacement achieve its 
maximum value the velocity is equal zero and vice versa. This means that viscous 
damping systems generate their maximum forces when the structural system is at its 
minimum displacement, that is, under its minimum solicitation. Hence the forces in the 
columns due to the action of the damping system do not increase and foundations do not 
require expensive works of strengthening. 

 
Figure 2. 22   Column forces due to dampers 

If now the following basic trigonometric formula: �nl5SV6 � op1 % lm�05SV6 
is substituted in the previous relationship, one obtains: !5V6 � o ��  S jk p1 % lm�05SV6 
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!5V6 � o �� S  qjk0 % B5V60 

which can be rewritten as: !5V6�� S jk � o /1 % �B5V6jk �0
 

Hence a relationship between normalized force and displacement is described and can be 
plotted: 

 
Figure 2. 23   Force-displacement relationship for viscous dampers 

Integrating the hysteresis loop it is possible to estimate the energy dissipated by the 
devices per cycle: 

�� � r !5V6 Bh 5V60s t⁄
k vV � �� S0 jk0 r �nl05SV60s t⁄

k vV � w �� S jk0 

As can be seen the energy dissipated per cycle is linearly proportional to damping 
coefficient and the excitation frequency while it is proportional to the square of the 
displacement amplitude. 
 
 
2.4.3.2 Nonlinear dampers 
 
As seen before the relation between force and velocity for a nonlinear damper looks like: !5V6 � �� lm�x3Bh 5V67 |Bh 5V6|i 

where the function “sign” and the absolute value are introduced to underline that forces 
act in the opposite direction of the velocities. 
As can be seen from Figure 2. 24, the important advantage of using nonlinear viscous 
dampers is that forces don’t increase significantly in case of high velocities. 
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Figure 2. 24   Force-velocity relationship for linear and nonlinear 

As done before a sinusoidal excitation is considered: B5V6 � jk lm�5SV6 
Substituting its derivative in the nonlinear relationship brings: !5V6 � �� lm�x5�nl5SV66 |S jk �nl5SV6|i 
Also in the present case the out of phase response behavior of the device can be noted. 
With the same trigonometric rule: �nl5SV6 � op1 % lm�05SV6 
one can obtain: !5V6�� 5S jk6i � o z1 % �B5V6jk �0{i0

 

Hysteresis loops can be plotted for different values of coefficient M. It is clear that in case M=1 linear behavior is obtained. In case M=0 the forces approach a constant value: !5V6�� 5S jk6i � o 1 

which means that the hysteretic loop becomes a rectangle. 

 
Figure 2. 25    Force-displacement relationship 

In order to get a relationship between linear and nonlinear dampers it is useful to 
calculate the amount of energy dissipated per cycle. As done before, energy is the integral 
of the force-displacement relationship: 
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�� � r !5V6 Bh 5V60s t⁄
k vV � 4�� 5S jk6i�� r �nli��5SV60s t⁄

k vV 

The solution of this integer require the introduction of the gamma function Г.  
Hence it can be written: 

�� � 4�� 5S jk6i�� √w2S Г51 " α 2⁄ 6Г53 2⁄ " α 2⁄ 6 

 

2.4.4 Dynamic analysis 
 
Dynamic analysis of systems which incorporate viscous dampers doesn’t present 
particular complexities. Only for multi degrees of freedom systems there is some 
restriction as explained hereafter.  
Considering firstly a single degree of freedom system equipped with an horizontal 
viscous damper the equation of motion can be written as: � B� 5V6 " � Bh 5V6 " � B5V6 " !�5V6 � %� B��5V6 

where !� is the horizontal force provided by the device. As seen before, if the mass and 
stiffness of the damper can be neglected, this force is equal to: !�5V6 � ��  Bh 5V6 
Substituting it in the equation of motion brings: � B� 5V6 " 5� " ��6 Bh 5V6 " � B5V6 � %� B��5V6 

Classical analysis can be performed in order to evaluate the response of the system. 
A different approach must be taken with multi degree of freedom system. 
If the same approach is carried on with multi degree of freedom systems a similar result 
is obtained. Considering the equations of motion: N E� 5V6 " L Eh 5V6 " O E5V6 " F�5V6 � %N B��5V6 

where the force vector is given by: F�5V6 � L� Eh 5V6 
The substitution brings: N E� 5V6 " 5L " L�6 Eh 5V6 " O E5V6 � %N B��5V6 

In usual practice damping matrix c is computed in such a way that it has the same 
ortogonality properties of mass and stiffness matrices, for example in the Rayleigh 
model. For this reason classical modal analysis can be used in the analysis. In case of 
added damping system it is not said that the damping matrix in modal coordinate C, 
obtained from the equivalent damping matrix 5L " L�6, is diagonal. In this case algorithm 
for non-classical damping must be adopted. For two-dimensional systems matrix L� is a 
tridiagonal one regardless if the structure is shear type or not. As can be seen from the 
figure below and considering the displacement method, for the bare frame the assumption 
that floors are taken as rigid body not only in their plane but also transversally brings to a 
tridiagonal matrix because a singular unit displacement applied at one dynamic degree of 
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freedom has influence only on the neighbor degrees of freedom. Instead for general 
structures, where transverse rotations are permitted, the unit displacement produces 
reactions at every floor. Since dampers forces depend on the relative velocity between the 
edges of the device the chosen model of building doesn’t affect the form of the matrix. 
 

 
Figure 2. 26   Added damping matrix for shear type and usual buildings 

Always considering two-dimensional systems with only translational dynamic degrees of 
freedom, L� can be easily derived from the vector containing dampers coefficients with 
the inverse of the same matrix T used to compute relative measures from absolute ones. 
Taking the first degree of freedom as the first floor the inverse of matrix T can be written 
as: 

��� � � 1 0 0%1 1 00 %1 1� 
Since the product of this matrix for its transpose gives the same distribution needed for 
the tridiagonal damping matrix: 

3���7�3���7 � � 2 %1 0%1 2 %10 %1 1 � 
it is possible to allocate the elements of the dampers vector R�� � �� 0 �� 0TK in the 
following way: 

3���7� ����5R�� � �� 0 �� 0TK63���7  � �1 %1 00 1 %10 0 1 � ��� � 0 00 �� 0 00 0 �� b� � 1 0 0%1 1 00 %1 1�
� ��� � " �� 0 %�� 0 0%�� 0 �� 0 " �� b %�� b0 %�� b �� b � 
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The same procedure can be applied to tri-dimensional systems but the computation of the 
inverse of matrix T is more complex due to the presence of rotational degrees of freedom. 
Consider one single floor of a 3D structure with dampers allocated in the peripheral 
frame as in Figure 2. 27. Matrix for plane transformation ��� can be seen as the 

composition of the vectors whose components �Z5�6 are defined as the relative velocity 

activating damper number k caused by a unit velocity at the j-th degree of freedom. In the 
case of the structure shown below these vectors are: 

�9
5�6 � �012�       �9
506 � � 01%2�      �9
5b6 � � 10%��     �9
5�6 � �10�� 

 
Figure 2. 27   Single story frame 

The composition of these vectors gives the transformation matrix for plane systems: 

�9
 � �0 0 1 11 1 0 02 %2 %� �� 
If now a more general three-dimensional system is considered, the matrix for the 
transformation from displacements to inter-story drifts is given by the superposition of 
the two different transformations explained before. Firstly displacements are transformed 
to inter-story drifts using matrix ���, then with �9
 the inter-story drift relative to each 

damper in the same floor is computed. In order to do that all the devices must be 
numbered from the first to the last floor. The general transformation to obtain the 
dampers matrix is:  3����9
7�����5R�� � �� 0 �� b �� �TK6 3����9
7 � 

 

�
�
������ 0 00 ��� 00 0 ���� \]]

]̂�9
5�6
�9
5�6
�9
5�6 _̀̀

à
�
��

K
��� � 0 0    00 �� 0 0    000 00 �� b 00 �� �

� ���� 0 00 ��� 00 0 ���� \]]
]̂�9
5�6
�9
5�6
�9
5�6 _̀̀

à
 

where �9
5�6 represents the plane transformation matrix for the i-th floor. 
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2.4.4.1 Linearization of nonlinear viscous dampers 
 
For design purposes it is useful to find an approximated relationship which allows to treat 
nonlinear viscous damping as linear ones. It is possible to relate the two different 
damping coefficients comparing their energy dissipation per cycle: �� ��� � w �� ��� S jk0 
 

�� ���� � 4�� ���� 5S jk6i�� √w2S Г51 " α 2⁄ 6Г53 2⁄ " α 2⁄ 6 

Equating the two energy formulation brings: �� ������ ��� � 5S jk6��i  √w2  Г51 " α 2⁄ 6Г53 2⁄ " α 2⁄ 6 

Typical range of values for M is [0.2;1]. For these values the ratio of the gamma functions 
is close to unit and the relationship can be rewritten as: �� ������ ��� � 5S jk6��i  √w2   
Hence results obtained from design using linear dampers can be adapted to use nonlinear 
ones. The excitation frequency S can be chosen, for narrow banded systems, as the 
natural frequency of the structure and jk can be taken as the displacement in the dampers 
corresponding to a desired performance drift level. 
 
 

2.4.5 Classical design of damping systems 
 
In the present paragraph the traditional pre-design method of viscous dampers, called 
stiffness proportional, is explained in order to get a comparison  between old practice and 
new optimization methods. 
 
2.4.5.1 Modal damping ratio for damped systems 
 
Although damped multi degrees of freedom systems are generally characterized by non-
classical damping, in order to get a measure of the damping ratio achieved with 
retrofitting, it is useful to neglect off diagonal terms of modal damping matrix and apply 
modal analysis rules. In this case the damping ratio for each mode can be evaluated 
knowing that: P� � J5�6K L J5�6 X� � J5�6K N J5�6 
and substituting it into: 
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Y� � P�2 S�  X� 
one obtains: 

Y� � J5�6K L J5�62 S�J5�6K N J5�6 
This is a quite important relationship because it estimates a reference value for a given 
amount of added damping. Usually the first vibration mode is taken as representative of 
the structure. 
 
2.4.5.2 Required modal damping ratio and total added damping 
 
In most of the methods used to design viscous damping systems the value of objective 
damping needs to be specified. This fact is a limitation in case of optimal design, because 
it means that the amount of added damping could be more than the necessary and only its 
distribution is optimally designed.  
The first step is the evaluation of the required damping ratio. The simplest way to get a 
reasonable value for this parameter consists on running time history analysis on the 
considered structure, increasing the value of the damping ratio used to compose the 
damping matrix, until the value of some displacements achieves the desired one. In 
practice a maximum damping ratio of about 40% of critical can be achieved 
economically with currently available devices. More than one ground motion must be 
selected in order to obtain credible values. If the design refers to a determined code, 
ground motions can be derived from the design spectrum relative to the structure. Since 
damping matrix is commonly composed using proportional models, like Raleigh or 
Caughey ones, the value of the required damping ratio obtained by this way is realistic if 
dampers are placed proportionally to stiffness. In this case in fact the damping matrix 
obtained from the superposition of the inherent damping and of the devices damping is 
similar to the one obtained from the proportionality models. As dampers are distributed in 
different ways, typically in case of optimal design, the response of the two systems can 
be slightly different. However, since the optimally designed system gives the better 
response, the use of this method to find the requested amount of damping is safety favor.  
Once the required damping ratio is found, it is possible to estimate its relative value of 
damping using energy consumption concepts. Consider firstly a singular degree of 
freedom system endowed of a viscous damper. The energy dissipated by the damper in 
one cycle of harmonic excitation is given by: 
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�� � r !5V6 Bh 5V60s t⁄
k vV � r 3�� Bh 5V67 Bh 5V60s t⁄

k vV � �� r Bh 05V60s t⁄
k vV �

� �� r 3jk S cos 5SV % £6700s t⁄
k vV � �� w jk0 S � 2w Y SS( � jk0 

where: B5V6 � jk lm� 5SV % £6 
The input energy due to seismic action for one cycle is the integral: 

��(9+: � r � B��5V60s t⁄
k vB 

It can be demonstrated that for steady-state vibrations this latter integral is equal to the 
dissipated damping energy. In other words the input energy is dissipated by damping. 
Hence it can be written: ��(9+: � 2w Y SS( � jk0 

Knowing that the general form of strain energy is: �� � r � B vB � 12 � jk0 

Equating the input energy to the dissipated damping energy brings to an equivalent 
damping ratio: 4w Y	¤  SS( �� � �� 

The equivalent damping ratio is then:  Y	¤  � 14w 1SS(
����  

Due to response of narrow-banded systems is characterized by the predominant 
frequency, the ratio S S(⁄  can be neglected. In this way the resulting damping ratio is no 
more rate dependant as experimental observations show. Y	¤   � 14w ����  

 
Figure 2. 28   Graphical definition of the energy loss Ed and the strain energy for a cycle of harmonic vibration 
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As seen in paragraph 2.4.3, the energy dissipated by a single viscous damper is:  �� � w �� S jk0 
Considering now a multi degree of freedom system endowed of equal viscous dampers, 
the total energy dissipated is the sum of the amounts dissipated by each device: �� :': � � �� � � w �� S � �� �  ��0  
Note that inter-story drifts are used instead of displacement because dampers response 
depends on the velocities relative to their edges. Moreover with geometrical amplification 
a suitable magnification factor must be introduced. A simpler form for this latter equation 
can be found if displacements are approximated as a straight line, which can be 
reasonable if the first mode of vibration is the dominant one. In this case in fact the inter-
story drift can be described as: �� � 1� 

where n is the number of story of the building. 
Then the simplified relationship becomes: �� :': � �� w S 1�0  � �� � 
where �� is the number of devices. 
On the other side the strain energy for a multi degree of freedom system is given by: �� � � 12 ��  �+0� � 12 �0  �  ���  

Substituting these relationships in the equation of the equivalent damping ratio brings: Y	¤ � 14w ���� � �� S2 ∑ �� �∑  ���  

which provides the approximated relationship between the total added damping ∑ �� � and 
the requested damping ratio Y�	¤. Formally: � �� � � 2 Y	¤�� S �  ���  

 
2.4.5.3 General consideration on the optimal location of dampers 
 
As for the general seismic design, also the location of damping devices within a structure 
must follow the criteria of regularity. Their installation in fact causes the presence of 
additional forces and if their placement is not symmetrical, torsion effects can arise. For 
this reason dampers must be located in general symmetrically. Furthermore, in order to 
reduce torsion effects due to accidental eccentricity is better to choose the external 
frames. 
The effects of added damping in irregular structures were studied by many researchers. 
(Goel 2001) suggested for a single story asymmetric building a disposition of dampers 
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such that the resulting center of added damping has an equal but symmetrical eccentricity 
as the rigidity-center with respect to the mass-center. In fact the inertial forces due to the 
seismic excitation act on the mass-center while, in presence of irregularities, the 
structural reactions act on the rigidity-center. This difference on the acting lines generates 
torsion effects. If a damping system must be introduced, it is better to install it in such a 
way that its reaction forces balance the existing eccentricity. 
 
 
 
2.4.5.4 Stiffness proportional method 
 
This method is based on the assumption that since dampers are inserted using bracing 
systems in between neighbor floors, the damping matrix relative to the added damping is 
proportional to the stiffness matrix of the structure.  
Hence it can be written: L� � 2 O 
where a is the proportionality constant. 
Using modal analysis the modal damping coefficient in the i-th mode of vibration can be 
computed as: P� � � J5�6K L� J5�6 � J5�6K  2 O J5�6 � 2 Q� 
On the other hand the same modal damping coefficient can be estimate as: P� � � 2 S�  Y�J5�6K N J5�6 � 2 S�  Y�  X� 
Knowing that Q� � S�0X� and combining the two equations brings: 2 � 2Y�S�  

Hence the present design process is simple. Once a desired viscous damping ratio is 
chosen the proportionality constant is computed and so the damping matrix. In case of 
complex structural systems an approximation of the stiffness matrix, composed only by 
the lateral stiffness of each floor, can be used. 
The idea that the distribution of dampers should be proportional to the lateral stiffness of 
the structure presents some limit. In case of weak floors at the base of the building for 
example, the viscous damping added to this floor results less than the one added to the 
upper levels because of its lower lateral stiffness. Instead it is obvious that weak floors 
need a higher amount of damping. 
In conclusion this method can be used for pre-design in presence of regular structures, 
but more accurate dynamic analysis must be carried on in order to evaluate eventual 
deficiencies of the system. 
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2.4.6 Geometrical amplification 
 
The geometrical disposition of viscous dampers between two neighbor floors influences 
their own efficiency. Consider firstly the two most common ways to install these devices: 
the diagonal and chevron brace configurations showed in Figure 2. 29. 

 
Figure 2. 29   Diagonal and chevron braced configurations 

It is possible to note that the horizontal system experiences a displacement between its 
two edges higher than the diagonal configuration. In fact if the horizontal displacement is 
denoted as u, then the diagonal one, B�, can be described using a magnification factor f 
which depend on the angle of installation of the brace. The relationship can be written as: B� � < B 
where: < � cos 5¦6 
Moreover the derivative with respect to the time suggests: Bh � � < Bh  
On the other hand the force exerted by the inclined damper on the frame is equal to: ! � < !� 
As seen in paragraph 2.4.3 for linear viscous dampers it can be written: !�5V6 � �� Bh �5V6 
Considering now the geometrical disposition, the force due to the device exerted on the 
neighbor level of the structure is: !5V6 � <0�� Bh 5V6 
In conclusion a different geometric configuration results in a different values of force and 
displacement experienced by the damper. In the case of diagonal dampers there is a 
reduction of these quantities and for this reason there are no advantages. But with other 
types of disposition is possible to amplify the damper displacement increasing, 
consequently, the efficiency of the added damping. 
The most known configuration is the so called toggle bar which is conceptually similar to 
the diagonal brace but divided into two parts. The damper is connected with these bracing 
elements and with the corner of the bay as shown in Figure 2. 30. 
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Figure 2. 30   Toggle bar configuration 

Another interesting application derived from automobile industry is the so called scissor-
jack, shown in Figure 2. 31. 

 
Figure 2. 31    Scissor-jack configuration 

For each of these configurations magnification factors can be computed from geometrical 
characteristics. Geometrical amplification is useful in case of high level of required 
damping within a storey. In this case however the damper, in front of a higher efficiency 
proportional to factor <, is going to experience a force increased of  <0 times. The force 
that the device has to withstand has a large influence on its price. For this reason before 
deciding the damping configuration is useful to carry on an analysis of the prices, taking 
into account also the number of installed devices. Especially in retrofitting in fact, the 
number of dampers to put on a structure has too a large influence due to the installation 
costs. 
 
 
 
 


