CHAPTER 2

2.1 DAMAGE INDICES

21.1 | ntroduction

Damage indices are used to estimate the probabilidamage within a defined member
of a structure. While in new construction a possithmage description is not useful, due
to the use of codes, in retrofitting it becomeseatal in order to evaluate the right
operations to do.

As can be seen in the next paragraphs there aremméaoways to quantify damage: using
the maximal, usually of deformations, or takingpiaccount the accumulation of damage
through hysteretic cycles. In this latter casedhsme many possibilities: it is possible to
use deformation or energy time-history, a combaratf them and the concept of low-
cycle fatigue.

Usually damage indices are defined locally, thatelatively to each member or plastic
hinge of a structure. It is then possible to takeegghted average of these measures in
order to evaluate a global damage index for theeestructure. Since in this thesis only
local damage is considered, these averages agesatibed.

2.1.2 Deformation-based indices

These are the simplest indices since they are ctedpgrom the maximal values obtained
from time-history analysis. But this is also th@iain advantage because they are not able
to take into account the accumulation of plastibodeations due to high number of
cycles.

Inter-storey drift
The inter-storey drift is surely the most used dgenandex because of both its simple
computation and the fact that it takes into accalst nonstructural damage.

Ductility ratio
The term ductility refers to the ratio between thaximum deformation experienced by

the member and its value at yielding. The ductilifyio can be defined in terms of
rotation, displacement or curvature. The genenahigation can be written as:

xmax

Uy =
Xyield

where x can be rotations, displacements or curgatur



2.1.3 Cumulative deformation-based indices

The description of the accumulation of damage urgelic loading requires all the time-
history data in order to get the deformation-higtmirthe considered member.

Sephens and Yao (1987)

This index is an extension of the displacement iliiyctmade in order to take into
account cyclic loading. If inter-storey drifts tifhéstory is considered, as shown in
Figure 2.1, this index can be defined as:
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Where §; is the value of the drift at failure for a monatooad, it is recommended
taking it as 10% of the storey height, r is theordtetween the maximum positive and
negative drift and b is a constant, recommendeaev@l77.
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Figure2.1

Another way to model the accumulation of damagiiisugh the concept of low-cycle
fatigue. In case of civil structures usually laplastic deformations occur under seismic
excitation and this model is suitable to describehsbehavior.

Jeong and Iwan (1988)
Using Coffin-Manson low, the number of cyclesto reach failure at a given ductility
is given by:

nep® =c
The values ott ands proposed by the author are respectively 6 and #hé.damage
index can then be found by the ratio between thenbau of cycles effectively
experienced by the member and the number of catl&slure:
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Based on experiments it was showed that the adomtiothe Coffin-Manson law is
realistic for certain ranges of cycles numbers.
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214 Energy-based indices

As cumulative deformation-based, this class ofdeditry to consider the effect of the
accumulated damage through the hysteretic enesgypdiion experienced during plastic
behavior. Hereafter the most used of this indgxésented.

Cosenza et al. (1993)

This index consists on the ratio between two qtiastrelative to the hysteretic energy
dissipation under a certain seismic excitation ander monotonic load. This quantity is
a kind of normalized energy with respect to thddyrey condition and it is described
with:

— EH

Fy 53’
where F, is the member force at yielding,, its displacement and, the dissipated
energy. The index is formulated in order to ateirero value in case of elastic behavior,
and a unity value in case of failure, which meanscase the hysteretic energy
accumulated during the ground motion is equal ®ddhe under monotonic failure. It is
written:

Ue +1

pe — 1
He,mon — 1
It is to note that cycles in which deformations angall are not taken into account since
no dissipation of energy is related with them.

DC:

2.15 Combined indices

An important group of damage indices takes intooant both the energy dissipation
under plastic behavior and the maximal deforma&rperienced by the member. A list
with the most used indices is reported. Most ofnthare also implemented in
RUAUMOKO.

Park and Ang (1985)

This probably the best known cumulative index armhsgsts simply in a linear
combination of deformation and energy indices ratud by factor f:
Ey
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where F, is the member force at yielding,, ., its displacement under monotonic
failure andEy the dissipated energy. Recommended valugsare 0.1-0.5, but it is to
note that regressions based on experimental dataoain agreement in the choice of this
parameter and therefore there is an undesirableded arbitrariness. Firstly adopted for
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concrete elements, it is possible using this inidexsteel members as well by changing
factorp.

Banion and Veneziano (1982)

Similarly to Cosenza et al, this index is the rdtgween the value of one quantity under
a seismic excitation and in case of monotonic failThis time the quantity is composed
by both ductility and energy based indices andviergby:

Spy = \/(i‘;ﬁ - 1)2 + (a(2(e - 1))1’)2

y
The authors recommend taking a=1.1 and b=0.38.
The global index thus becomes:

Bracci et al. (1989)

A further development of the combined approachened by the concept of damage

potential which is the total area between the mamotload-deformation curve and the

fatigue failure envelope. This value representsmtiagimum damage that an element can
accumulate. With cyclic loading in fact the hysteréoops experience both strength and
stiffness degradation, until, at failure, they takeshape similar to the fatigue failure

envelope. Figure 2. 2 graphically explain the cptce
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Thus the index can be written as:
D loss
DB =
D pot

WhereD,,,, is the damage due to the effective degradatioergxpced by the member
while D, is the maximum potential damage that can be aeliev



Despite of the complex definition of this index,peximental observations showed a
spreading on numerical results higher than in therocombined indices (Williams and
Sexsmith 1995).

2.2 STRUCTURAL MODELING

RUAUMOKO2D has been chosen in order to model the structuce ran inelastic
analysis. The input is given using a text fileteaming the list of all the characteristics of
the structure. The main advantages of such a sd@tigahe possibility to obtain a visual
output and to run it iteratively updating the infiile using, like in this workMATLAB.
Output is obtained fromRES file using aDYNAPLOT post-processor. In the next
paragraphs the main concepts on the modeling wétsire are briefly described.

2.2.1 Mass

In order to run a dynamic analysis is necessamefme the mass of the structure taken
into account. Masses are used to compute theaheftects of an earthquake and don’t
have influence, in the most part of the existinfveare, in the static analysis. For the
static analysis is necessary to define apart dtzdids. Mass representation influences the
number of degrees of freedom and consequentlydhmpatational effort for the analysis.
The most used representation is the lumped oneewhass is defined as concentrated in
one representative node which has three degreféeseaafom: two translational and one
rotational. Usually in two-dimensional analysis yoithe translational components are
taken into account. The rotational one is usedtd&ing into account torsion effects in
three dimensional analysis due to eccentricity betwthe centre of gravity and the
center of rigidity of the same floor. For standdircear analysis the vertical dynamic
degrees of freedom are usually not taken into adgoexcept in case of wide bays,
horizontal cantilevers or pushing structures.

In case of more detailed analysis where the vértdbaracterization of the structure is
required problems can arise if the considered momesisting frame is charged also of
the weight of other frames which are not desigmedithstand horizontal loads. In this
case the mass considered for the vertical grourtiomés the one relative to the gravity
area of influence of the frame, instead for theidwottal loads the pertinent weight
comprehend the one of the internal frames. For rtéson in each nodal point three
different masses, vertical and horizontal transtal and rotational, can be set according
to the direction in which they act. Finally, if gaetrical nonlinearities are considered,
also the vertical mass relative to the internainta must be taken into account. This fact
leads the adoption of an auxiliary gravity colunmdewed of negligible rigidity, whose



lateral displacements are constrained to the ohdékeomain structure. The following
figure graphically explain this concept.

Plant For what concern the
implementation in RUAUMOKO,
the mass of the structure is input in
the form of weights and internally
converted by the software to mass
unit by dividing it by the gravity
B acceleration, whose unit of
measure is specified in the first
lines of the model file. The mass is
B A provided by nodal weights and
Elevation A+ includes both structural and non
structural elements. For this reason
material density and member
L weight/unit length are taken as
& e e = w Column X zero. Nodal weights  will
contribute only to the diagonal terms of the massrix while rotational degrees of
freedom are taken, in two-dimensional analysizeas. Hence a lamped mass matrix is
used and the variable IPCONM in the first linetwd tnput data takes the value zero. The
diagonal matrix representation concerns elemendsweed of weight and considers the
contribution of the rotational degrees of freedoquads to the diagonal term of the
consistent mass matrix of the member. Finally thesistent matrix representation is
usually used for finite element models.

Symmetily axis

2.2.2 Geometric nonlinearities

Geometric nonlinear effects, also called P-Delfeat$, are caused by gravity loading
acting on the deformed configuration of the strtetlAs a consequence supplemental
internal forces arise and the structure is pusivet éurther developing a second order
deflection. Theoretically all structures experietiois kind of loading, but practically it
becomes important in case of slender structureesigll to lateral loads because of the
higher magnitude of horizontal displacements.

These large lateral deflections, since they magthiéy internal forces demand, cause a
loss in the effective lateral stiffness bringingallonger natural periods and lower
effective lateral strength.

It is possible to distinguish betweernsReffects, associated with the axial deformation of
individual members, and R-effects, associated with the deformations of tHeoles
structure and measured between the ends of eaclbeneifhis latter effect is more

10



significant in civil structures subjected to seisrakcitation and it is usually related with
inter-story drifts.

Then, if large displacements are considered, aatie procedure must be adopted each
time step in order to calculate the exact respaisthe structure. The coordinates of
nodes and the stiffness matrix are updated evewy step too and it makes this procedure
computationally expansive. For this reason it iggasted to run large displacement
analysis only in case the expected inter-story aese of the structure exceeds
significantly the 1% of the story height or in prase of large axial forces.

In presence of small lateral displacements howthaeproblem can be linearized and the
solution does not require iterations if the weighteach column is constant, that is, if the
ground motion acts only horizontally. In this cd%@ effects are considered modifying
the stiffness matrix of the structure which affelotgh the static and dynamic response.
As depicted in Figure 2. 3, for two dimensionalteyss it is possible to write the lateral
added forces due to the overturning moment in cdsthe displacement located in a
considered degree of freedoras:

P21y = 1w
= =

wherew;, h; andu; are respectively the weight, height and displacegnaoé thei-th
degree of freedom whilg; and f;_; represent the additional lateral forces in the
considered floor and in the adjacent one.
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(@) Displaced position (b ) Additional overturning
of story weights moments or lateral loads
Figure2.3

If this procedure is followed for all the storeytbie structure it is possible to add these
relationships to the equilibrium equation leading:
Ku=F -» Ku=F+Lu
The system thus becomes:
Ku=F
where:
K=K-1L
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Although conceptually identical, the derivationtbése equations for more general three
dimensional structures is more difficult since tioaal inertia and centroids at each floor

must be considered.

In the present thesis this simplified approachhesen since the final design with the

added damping system leads to a low level of digpreents.

2.2.3 Damping
There are two different source of damping in acitne: the inherent damping which is
always present and it is due to complex internathmaisms and the damping due to

particular devices, in this case of study viscoamgers.

2.2.3.1 Inherent damping

The traditional damping model available in mostetitnstory program is the Rayleigh
damping model. This is model gives a classical dagqmatrix, that is a matrix that
satisfy the ortogonality property:

C=d"cd
where C is the generalized damping matrix whictiggonal. This fact is very useful in
case of modal analysis, where this property is estpd in order to uncouple the
equations of motions. In case of step-by- stepyargivhere this requirement is no more
necessary, the proportional damping remains a genple way to get the damping
matrix, because it makes use of only matrices dfremmputed during the analysis. It
requires only the computation of the two coeffitgamandp. It is left to the designer to
estimate the two frequencies at which the requamabunt of damping is specified in
order to evaluate the two coefficients..
Before considering the whole model is better toarsthnd separately the meaning of
proportionality to mass and stiffness matrices.

c=am c=Lk

The most intuitive representation is the one propoal to stiffness, since it appeals
intuitive that energy dissipation arises from stdeformations. It is possible to relate the
modal damping ratio to the coefficiefitthrough the generalized damping of th¢h
mode:

Ch =B Kn
where C,, and K,, are respectively the diagonal terms of the geizedldamping and
stiffness matrices of a classical damped systersidBs the matrix eigenvalue problem
provides:

[~wi m®, + k®,]q,(t) =0

which brings to:
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ko, =w>mad,
and premultiplying for th@-th modal shape vector:
DThkD, = w2 DImd,
K, = wi M,
Substituting this relationship in the first equatiollows that:
Ch=8 wrzl My,
Since the damping ratio of tlneth mode is related to the damping coefficient ofshme
n-th mode with:

Cn
$n =7 w, M,
it is possible to obtain:
B
$n =5 wy

2
It could be noticed that the damping ratio incredagearly with the natural frequency.
The coefficienf3 can be selected to obtain a specific value of dagn@tio,; in any one
mode, say theth mode:

28y

a

With g determined, the damping matiixis known and the damping ratio in any other
mode is given by:

B

$n = z_wn

The variations of modal damping ratios with natdratjuency is shown in figure 2.4:

®
Figure2.4 Damping ratio variation with mass proportional damping

A similar procedure can be followed in order toaibta relationship between the modal
damping ratio and the coefficientin the case of mass proportional damping matrix.
Multiplying twice for then-th mode shape vector the equation:
c=am
brings:
Plcd, =adlmo,

Ch=aM,

Knowing that:
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Cn
%_Zwﬂm
it is possible to obtain the final relationship:

;= a
" 2w,

In this case the dependency from the frequencywsrsely proportional as shown in
figure 2.5:

i

Figure2.5 Dampingratio variation \j\/)ith stiffness proportional damping
The variations of modal damping ratios with natdrafjuencies are not consistent with
experimental data that indicate the same dampitigsréor several vibration modes of a
structure.
As first step toward constructing a classical dargpinatrix somewhat consistent with
experimental data it is possible to combine the pwaportionalities:

c=am+pfk

The damping ratio for the-th mode of such a system is:

o=ty b

= +—wy
2w, 2

The coefficientsx andf can be determined from specified damping ratigs and &,

for the i-th and j-th vibration mode:

1o
1w, ¢
2 wi . 5] - Eiﬂ
(l)] ]J

As can be seen from figure 2.6 the double propoality ensure a more constant trend of
the values of the damping ratios.
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Figure2. 6 Damping ratio variation with proportional damping model

In applying this procedure to a practical probldra modes andj should be chosen to
ensure reasonably constant values for the modapidanmatios contributing significantly
to the response. Experience suggests specifyinteighydamping at the first mode and
at a mode number equal to, or a little less tHanumber of storey of the frame. On this
topic it is also to note that modern dynamic analysactice usually associates mass to
all joints in the frame, including some mass assted with the rotational degrees of
freedom. The reason is that the mass representaitibve frame has a considerable effect
on the response of the members when inelastic bmhtakes place. This fact causes a
considerable increase of independent dynamic degre&eedom. With the increase in
the fractions of critical damping with increasingeduency typical of the Rayleigh
damping model, this brings that although the lomedes of free-vibration may have the
order of 5% of critical damping, it is easy to getry large levels of damping in the
higher modes. Due to the aim of the present wotkeéscomparison between different
methods of optimal design of dampers and not am-detiled modeling of a structure,
as said before, the mass of an entire floor is kanp a singular joint. In this way a nine
degrees of freedom system is obtained, making silspler the computation of the
relative stiffness matrix.

In general the sensitivity of the problem to theoamt of damping is rather high. It could
be observed in fact that even small amount of calitidamping, i.e. 2-5%, reduces
significantly the response of the structure.

This is true especially under plastic behavior, rehsith the formation of plastic hinges
the structure looses part of its rigidity and chesgs natural frequencies. Work by Crisp
(Crisp 1980) in fact, showed that high levels afcaus damping in the high modes of
free vibration of a structure has a marked effecthe inelastic response. This fact could
be partially compensated using the current tanggffitess matrix rather than the initial
one. Although damping is not supposed to decreag@estructure goes inelastic, the
fraction of critical damping tends to remain moomstant as the stiffness of the structure
reduces. It is to note moreover that, like damphgteresis rules and moment-curvature
relationships supply a form of energy dissipatiBlowever these hysteretic rules don’t
account properly for the energy removed from thstesy by small cycle oscillations
within the structure. And for this reason inherdamping is relevant also for inelastic
analysis.
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Alternative ways of modeling damping are availalite, example the superposition of
modal damping matrices and the Caughey dampings Tdiiter representation is
particularly suitable to match the required amoohtiamping at a greater number of
modes. The main problem associated with this maslethe large powers of the
frequencies required to evaluate the coefficiefitse algebraic equations in fact are
numerically ill conditioned because the coefficgmnt, w3, w; ... can differ by orders of
magnitude. IRUAUMOKO there are three possible implementation of thisehduhear,
constant and trilinear damping according to theiatimn of the fraction of critical
damping with frequency (see Figure 2. 7).
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{a) Linear Damping (b) Constant Damping (c) Trilinear Damping
Figure2.7

Since the aim of this research is not, as alreaily, & detailed model of the structural
behavior, but the comparison between differentnoztion schemes, it is found not
useful using a too complex damping model. Differdamping models can certainly
modify the values of the results, but not the gahdistribution of them. It means that
changing damping representation may bring to diigtitfferent values of total added
damping, but the distribution of the devices ispaged to be the same.

224 Stiffness

Usually seismic design is carried on with elastialgsis. In case of retrofitting with use
of passive control tools a linear analysis couldabeepted if it is designed in such a way
not to achieve yielding. Although, in order to pide/a better understanding of how these
optimal design methods behave, inelastic analydls also be executed and then
compared to the elastic ones.

When elastic analysis is considered the charaetaviz of the structure requires elastic
characteristics like the modulus of elasticity bé tmaterial, the moment of inertia of
sections, their areas...
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As known nonlinear analysis involve significantlyora effort to be performed and
different grades of detailing can be achieved.dnegal structural member models can be
differentiated by the way that plasticity is dibtrted through the member length. There
are two main ways to model it: using distributedconcentrated plasticity. This latter
way is the most simple because it concentratejeagame itself suggests, the inelastic
behavior at the two ends of the member. Next pafdgy explain the most used available
models.

2.2.4.1 One component model (Giberson plastic hinge)

In the case of the Giberson hinge model rigid plabinges are placed at the two
extremities where yielding is expected. The parthef member between the two rigid
plastic springs remains perfectly elastic while iaklastic deformation is assumed to

occur in these springs.
Inelastic Rotational Spripgs
& ~o-

Figure2.8 Onecomponent model

The stiffness of the hinge is such that the rotatibthe hinge together with the rotation
associated with the elastic curvature of the beaen the hinge length is the same as the
rotation associated with the curvature over thgdilength with the inelastic properties
in the hinge zone. When the hinge is in the elaatige its stiffness is infinite.

spring hinge
[

\

plastic hinge
of length H

A major advantage of the model is that inelastientner-end deformation depends solely
on the moment acting at that end so that any moeno¢ation hysteretic model can be
assigned to the spring. This fact is also a weakoéthe model because the member-end
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rotation should be dependent on the curvatureiloligion along the member, hence
dependent on moments at both member ends.

Moment Momen it

T

Curvature

M

g

e

Figure2.10 Different moment distribution with relative curvature diagrams

Moreover the stiffness of an inelastic spring issnmally defined by assuming an
asymmetric moment distribution along a member whi# inflection point at midspan.
However, once yielding is developed at one membet the moment at the other end
must, moving the inflection point toward the membentre. At the same time, a large
concentrated rotation starts near the criticaligecFor this reason this Giberson model
is expected to be reasonably good for relatively-itise frame structures, where
inflection point of a column locates reasonablyselto mid-height.

The formulation however, is numerically simple afficient.

Other models

Several more complex models have been proposedi@n to give a better understanding
on the response of structures under seismic exxeitat

For example using multi-component beams propose(Chyugh et al. 1965), that is a
member composed by two or more elements in pardieth of these elements has a
different behavior. In the two component model ¢hare an elasto-plastic element, which
represents yielding, in parallel with a completelgstic one which instead represents
hardening. The main advantage is that rotatiorenatend depends on the moments at
both ends. On the other hand to give a proper v&duéhe stiffness of this multi
component member is necessary to make some assasipin the moment distribution
along the element.

hinge

(1-r)EI (\ tocation
mz
rEl.
M’

Figure2. 11 Two component model

Another example is the distributed flexibility mégeoposed by (Takizawa 1973). The
main observation at the base of this model is thlgre plasticization appears the
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flexibility increases. Since in under seismic extidn plasticization appears at the ends
of the elements, a parabolic distribution of etaiexibility is adopted. This parabolic
shape has an inflection point in the middle leragtd interpolates the flexibility values at
the edges. These latter values depend on a hysteraetiel which takes into account the
stress history. Despite of the parabolic distriutiof flexibility this model may not
represent adequately the concentration of defoamati the ends of the element.

Parabola

[\ =

37
EI

Hinge 1 Hinge 2
L

Figure2.12 Distributed flexibility model

In the present thesis the most simple one companentber is considered since a more
detailed description of the structure is not useful

Hysteretic rules

After the choice of the type of element used taesent the bare frame structure, in this
case the two plastic-hinges element, it is necgdsadefine their behavior in terms of
resistance-deformation relationship, which is tbecalled hysteretic rule. Theoretically,
between the several models of existing rules theewainich better approximates the real
behavior of the beam should be chosen. Real behaveans the behavior observed
during experimental tests and includes many phenanike stiffness and strength
degradation, pinching, fracture, local buckling. @mce for the purposes of this thesis a
detailed modeling of the structure is not necesshey simplest hysteretic rule was
chosen: the bi-linear model. Moreover it was shdwyn(Otani 1981) that the structural
response for different hysteretic rules is notipalarly sensitive to the details of these
force-deformation relationships as much as to thsidbcharacteristics of loops, like
primary stiffness and fatness.

Bi-linear model was derived from the elastic-pettfeplastic one, assigning it a
secondary stiffness after yielding in order to daielthe strain hardening characteristic
of steel. Neither stiffness nor strength degradatiare taken into account and the
resulting model is not realistic.
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Figure2.13 Bilinear hystereticrule

2.3 PASSIVE CONTROL DEVICES

2.3.1 I ntroduction

The so called structural control consists on rattythe vibrations induced by horizontal
loads without stiffing the structure, or with a ited added stiffness. Vibrations in
structures represent the source of both structamdl nonstructural damage, therefore
their control represents a way to ensure humartysafée applications of structural
control concern both new construction and retiafitt In case of new construction they
are usually applied only to high performance buidgi like hospitals and bridges. For
new standard constructions the costs would be sikeesnd in general classical anti-
seismic design based on ductile response. Reingfittepresents a great field of
application for such devices because in many caassical strengthening is not feasible
or too expensive. In order to explain this condeptonsider a single degree of freedom
structure having a defined columns strenfjtWhich is not designed for horizontal loads.
m art)

Ffouﬂd
Figure2.14 SDOF system and foundations|oading

Let consider now a horizontal ground motion whigalistically brings the structure
under plastic behavior. The maximum force thatftuedations will experience is equal
to the total resistance of the columns:

Ffound =fit+f2
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If a strengthening strategy is adopted the foreadierred to the foundations will be
larger and it could be necessary their reinforcam®&s known foundations retrofitting is
an expensive task.

Generally increasing the resistance of the stredings also a higher level of rigidity.
As a result the period of the straightened stractsiiower than the original one, and the
seismic actions due to the same ground motiontaohastically higher. Hence absolute
accelerations experienced on the modified structuite be higher. At the time of
Northridge earthquake in 1994 there were severapitals designed to withstand
earthquakes mainly without inelastic deformatidnsorder to ensure elastic behavior a
rigid and resistant structure is required. Due e high ground acceleration of this
particular earthquake these kind of buildings edgmeed such a high absolute
acceleration that the nonstructural damage yielddeir inoperability, though structural
damage was not severe.

Generally the use of structural control avoidsabteast limits, high level of absolute
accelerations and foundations reinforcement.

In the last three decades passive control of stresthas known a high development and
a lot of different methodologies are now availaflae most famous of them are tuned
mass dampers, base isolators and different typesohanical devices.

All these technologies were firstly used to controly wind induced vibrations but now
their field of application have widen to seismiatrol.

Passive control differs from active or semi-activee due to the absence of induced
forces. In these latter systems in fact thereasrestant monitoring of the behavior of the
structure and, based on it, forces are appliedrbgichuating system. As a consequence,
an active system requires a significant amountxtéreal power in order to supply the
requested internal forces. In case of seismic dafaims external source of power could
be unavailable. Moreover these systems are experdile to the presence of both
monitoring devices and actuators which have to igemilarge amount of energy in small
time lapse, and for this reason their applicabil#yrestricted to special cases. Passive
control systems are in comparison cheaper ancgenergl, more reliable.

232 Types of devices

A possibility to classify passive control deviceshy the way they are activated. The
activation can be by relative displacements oraigldetween the edges of the device or
by the motion induced on the structure by the seigxcitation.

A brief description of the most important energgsipbation systems is now presented in
order to give a slight comparison between the dfie devices and to present the main
advantages of viscous dampers which have beenmrciho$ae present research.
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Tuned mass dampers are not taken into account $ecapresents a particular solution
for high rise buildings and their interaction witie structure differs a lot from the other
systems.

2.3.2.1 Hysteretic dampers

The first group of devices is displacement-actigased includes metallic and friction
dampers. Metallic dampers dissipate energy thraihgir deformations under plastic
behavior instead friction dampers dissipation ogawith the friction developed at the
interface of two sliding bodies. Both of them exhilhe same hysteretic behavior and
therefore are modeled using an elastic-perfecthstid load-displacement relationship.
For this reason the verification must be carried by inelastic analysis while

approximated linearization method is availablepfaa-design.

Force

Displacement

Figure2.15 Model of thehysteretic behavior of hysteretic dampers

The main disadvantage of such passive system ¢ensisthe added rigidity to the
structure which can cause an increasing on thdrigaatcelerations. This effect can be
described showing the spectral response of a singelgree of freedom system subjected
to a specific ground motion. Figure 2. 16 undeditiee increasing of both rigidity and
damping resulting in a lower displacement but mghoer acceleration.

0 0.5 1 1.5 2 2.5 3 35 4

Ts]
Figure2. 16
Moreover a careful design of such passive contystesn is required in order to get a
better behavior of the structure. Analyzing a slaguegree of freedom system excited
by a single wave, it can be shown that the stratt@sponse depends on the size of the
device and in particular on the ratio between theivalent static lateral displacement
and the displacement that activates the hystedatigper:
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For high values of the ratid, that is for low activation displacement and so fo
undersized dampers, the response of the modifredtste is similar to the original one
with a slight reduction due to damping effect. @a bther hand low values of that ratio
make the structure changing its natural frequenog the spectral response shows
another peak. It means that dampers are minimatlyaded and the retrofitted structure
behaves like a braced one.

Hence, in order to avoid low efficiency or, evenrstpadditional stiffness, it is necessary
to design these devices for an optimal value ofttiezation factorl. But this factor, and
consequently the activation of the devices, depemdthe intensity of the excitation. So
if the optimal design of the hysteretic systemnete a required ground motion intensity,
it is possible that for lower excitation the dangpare not activated and the resulting
damage can be higher than the original structure.

In conclusion the design of this kind of passivatoa system requires high level of
precision and accuracy.

2.3.2.2 Viscoelastic dampers

These devices dissipate energy through the shéamusion of a viscoelastic material.
This kind of material exhibits both a viscous amdedastic response; therefore dampers
are both displacement and velocity dependant aed thysteretic behavior can be
modeled using a Kelvin solid with a spring and ahget in parallel. The resulting shear
stress-deformation constitutive relationship isteld in Figure 2. 17.

!

7/

/ Displacement

Figure2.17 Hysteretic behavior of viscoelastic dampers

U

As can be seen the constitutive relationship shtbegpresence of a stiffness component.
As for hysteretic dampers the addition of rigiditythe structure is not a positive effect,
but on the other hand the design of such devices dot present critical points like the
search of an optimal activation ratio.

The representation of the effect of an added visstie system for a singular degree of
freedom system is similar to the one of metallid &mction devices and it is shown in
Figure 2. 18.
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Figure2. 18

Finally the efficiency of viscoelastic dampers feeted by the environmental condition
of exposure and, in case of long ground motions, High temperature decreases their
dissipation capacity. For these reasons viscoelastmpers are not used in common
engineering practice despite of the significaneaesh effort spent on it.

2.3.2.3 Viscous dampers

The energy dissipation occurs with the flow of sorszous fluid through orifices. The
flowing is induced by a piston connected to theitrre and excited by the ground
motion. As better explained in chapter 2.4.3, thisreno stiffness component in the
response and the device is only velocity-activatédure 2. 19 underlines the lack of
stiffness in the force-displacement constitutidatrenship.

_./ Displacemeant

M.

Figure2.19 Force-displacement relationship

Due to this characteristic the natural period & lbiare frame is the same that the one of
the retrofitted building. Therefore viscous dampéffgct only affects the response of the

structure. Figure 2. 20 depicts the change in éispanse for a single degree of freedom
system.

24



Tis]

Figure2. 20

This means that whatever the frequency contentt@fgtound motion, the response will
be deterministically lower than the original oneende risks related with the correct
design of such devices are not so high like fotdrgsic dampers.

Moreover, as better explained in chapter 2.4.3 eesult of the velocity dependency the
forces due to the damping system are out of phatsetiae structural forces due to the
seismic excitation which are, instead, displacerdependant.

For these main advantages viscous dampers are mewfdhe most used passive control
system and for this reason these devices havedmeidered in the present work, rather
than the others explained before.

2.4 VISCOUS DAMPERS
24.1 I ntroduction

Firstly used in civil structures to reduce the tatons due to wind (in the World Trade
Center for example), now viscous dampers are coriynosed also in seismic

applications.

This chapter focuses on the inherent behavior oh glevices and on their interaction
with the structure in which are installed, givingréef description on their manufacture.

24.2 The devices

Among the variety of energy dissipation devicesgdassive control of structures it was
found that viscous dampers have a series of adyesita

Viscous dampers are composed by a stainless cylia@ piston and are filled with
silicon oil. Energy dissipation occurs when silicoit flows through special orifices,
designed in order to provide a specific relatiorcéadisplacement. The force is produced
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by the differential pressure across the piston fezaed by the relative velocity at the
edges of the device.
Figure 2. 21 depicts a typical fluid damper angasts.

Piston Rod\ Cylinder

Seal Retainer

c " A
Silicone Fluid Housing

Chamber 1 Chamber 2 Rod Make-up

Accumulator

High-strength Control Valve

Acetal Resin Seal Flxian Head

with Orifices

Figure2.21 Technical sheme of a viscous damper

Due to the compressibility of silicon oil, a restqy force can arise. Since the absence of
added stiffness is one of the advantages of visdawmspers accumulator are used to
avoid it. This restoring forces prevention is effee under a certain limit of excitation
frequency depending on the geometrical designetidvice.

Like other typologies of devices viscous dampeisab®r is frequency dependent. This
dependency is usually neglected in practical amalipecause it is assumed that the
device during a ground motion experiences an ei@itdbased on the natural frequency
of the structure. Although this assumption is tamdy for narrow banded systems, and
consequently not always realistic for damped stmes, the variation of damping
coefficient with respect to frequencies is rathgh$ and so can be neglected.

Differently from other types of energy dissipatidevices like for example yielding ones,
viscous dampers are able to withstand several aakes without the necessity to be
substituted.

Moreover the required level of maintenance is lowd avolves simple inspection of the
condition of the device. Usually, visual inspectiohthe dampers should occur after
important seismic events. This inspection consistdooking for eventual leakages or
broken parts.

2.4.3 Hysteretic behavior

Fluid viscous dampers operate on the principldwdl filow through orifices. A stainless
steel piston travels through chambers that aredfilith silicone oil. The pressure
difference between the two chambers cause siliodrte flow through an orifice in the
piston head and seismic energy is transformed Imgat, which dissipates into the
atmosphere. The force/velocity relationship fostkind of damper can be characterized
as following:

F =czu”
where F is the output forcé,the relative velocity across the dampegy,is the damping
coefficient anda is a constant exponent. Dampers withl are called linear viscous
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dampers in which the damper force is proportionateiative velocity. Devices with
smaller than 1 are the nonlinear viscous dampeesl dier seismic passive control.
Finally, dampers wittw larger than 1 give for high velocities really higractions. These
devices are used for so called lock-up applicatidos example in bridges, where
temperature deformations developed at very lowoargionust be enabled, while for high
velocity events, rigid behavior must be provided.

In the next paragraphs the description of the fwst types of devices is provided.

2.4.3.1 Linear dampers

In order to better understand the behavior of sievices it is useful, as done in the
frequency domain analysis, to analyze the respander a simple sinusoidal excitation.
Considering the relative displacement at the edfjagpure viscous element in the form:
u(t) = U, sin(wt)
where U, is the maximum displacement amplitude awdis the circular forcing
frequency. The linear damper reaction force is priogpnal to the relative velocity:
F(t) = cq u(t)
Due to:
u(t) = w Uy cos(wt)
one obtains:
F(t) = ¢4 w Uy cos(wt)
It can be observed that for a sinusoidal loadireyrémction of the device is in counter
phase with the displacements. This out of phaggore® is generally valid also for more
complex loading because it can be assumed that wherdisplacement achieve its
maximum value the velocity is equal zero and viegsa. This means that viscous
damping systems generate their maximum forces whenstructural system is at its
minimum displacement, that is, under its minimurtication. Hence the forces in the
columns due to the action of the damping systematancrease and foundations do not
require expensive works of strengthening.

n m
—ig

cy

Figure2.22 Column forcesdueto dampers

If now the following basic trigopnometric formula:
cos(wt) = +4/1 — sin?(wt)
is substituted in the previous relationship, on@&is:

F(t) =t cq wUy+/1— sin?(wt)
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Ft) =+cyo [Uy?—u(t)?

which can be rewritten as:

=4+ [1-(—=
cq w Uy U,

F(t) u(t)>2

Hence a relationship between normalized force asplatement is described and can be
plotted:

Force

s N
k _/ Displacement

Figure2. 23 Force-displacement relationship for viscous dampers

Integrating the hysteresis loop it is possible stineate the energy dissipated by the
devices per cycle:

21/ W 2n/w
E; = j F(t) u(t) dt = cg w? Uy* f cos?(wt) dt = m cy w Uy*
0 0

As can be seen the energy dissipated per cyclenésrly proportional to damping
coefficient and the excitation frequency while st proportional to the square of the
displacement amplitude.

2.4.3.2 Nonlinear dampers

As seen before the relation between force and itgltor a nonlinear damper looks like:
F(t) =c4 sing(u(t)) lu(t)|*

where the function “sign” and the absolute value iatroduced to underline that forces

act in the opposite direction of the velocities.

As can be seen from Figure 2. 24, the importantathge of using nonlinear viscous

dampers is that forces don't increase significaintlgase of high velocities.
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Figure2. 24 Force-velocity relationship for linear and nonlinear
As done before a sinusoidal excitation is considtere
u(t) = U, sin(wt)
Substituting its derivative in the nonlinear redaghip brings:
F(t) = ¢4 sing(cos(wt)) |w U, cos(wt)|*
Also in the present case the out of phase resgmtsavior of the device can be noted.
With the same trigonometric rule:

cos(wt) = +4/1 — sin?(wt)

FO o, (*® ’
ca (@U)*  ~ Uo
Hysteresis loops can be plotted for different valakcoefficienta. It is clear that in case
a=1 linear behavior is obtained. In case0 the forces approach a constant value:

one can obtain:

a
2

F(t
_F®
cq (0 Up)*®
which means that the hysteretic loop becomes angls.
alfa=0
o alfa=1
:
Displacement

Figure2.25 Force-displacement relationship

In order to get a relationship between linear awodlinear dampers it is useful to
calculate the amount of energy dissipated per cydalone before, energy is the integral
of the force-displacement relationship:
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E; = f F(t) u(t) dt = 4cy (w Uy)®+t f cos* Y (wt) dt
0 0
The solution of this integer require the introdantof the gamma functioh.
Hence it can be written:

) L VT T+ a/2)
E, = 4cy (0 Up) 15m

24.4 Dynamic analysis

Dynamic analysis of systems which incorporate wscalampers doesn’'t present
particular complexities. Only for multi degrees fseedom systems there is some
restriction as explained hereafter.
Considering firstly a single degree of freedom eystequipped with an horizontal
viscous damper the equation of motion can be waritse

mii(t) + c u(t) + ku(t) + Fa(t) = —miiy(t)
whereF, is the horizontal force provided by the device.sken before, if the mass and
stiffness of the damper can be neglected, thiefmequal to:

Fa(t) = cqu(t)

Substituting it in the equation of motion brings:

mii(t) + (c + cg) u(t) + ku(t) = —miiy(t)
Classical analysis can be performed in order téuata the response of the system.
A different approach must be taken with multi degoé freedom system.
If the same approach is carried on with multi degréfreedom systems a similar result
is obtained. Considering the equations of motion:

mii(t) + cu(t) + ku(t) + Fa(t) = —miiy(t)
where the force vector is given by:

Fy(t) = cqu(t)

The substitution brings:

mii(t) + (c + cg) u(t) + ku(t) = —miiy(t)
In usual practice damping matrixis computed in such a way that it has the same
ortogonality properties of mass and stiffness roas;i for example in the Rayleigh
model. For this reason classical modal analysisbmmised in the analysis. In case of
added damping system it is not said that the dagnmatrix in modal coordinate C,
obtained from the equivalent damping mafiex+ c,), is diagonal. In this case algorithm
for non-classical damping must be adopted. Fordweensional systems matreg is a
tridiagonal one regardless if the structure is shgae or not. As can be seen from the
figure below and considering the displacement nestfar the bare frame the assumption
that floors are taken as rigid body not only initiane but also transversally brings to a
tridiagonal matrix because a singular unit disphaeet applied at one dynamic degree of
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freedom has influence only on the neighbor degaefeedom. Instead for general
structures, where transverse rotations are penitiee unit displacement produces
reactions at every floor. Since dampers forcesmpa the relative velocity between the
edges of the device the chosen model of buildiresd® affect the form of the matrix.

TR TR TR I

_ c, c, c, C, c, C,
Ci1TCq2 Cq 2 0 0 0 d 11 d 21 d 31 d 41 d 51 d 61

0
—Cq4 2 CiatCaa —Cq3 0 0 0 Cd12 Cd22 Cd3z Cd4z Cdsz Cdez
0 —Cq3 [ —Cq 4 0 0 Ci1z Cd2z Cd3z Ca4z Cas3z Cdes
0 0 —Ca4 CiatCas —C4 5 0 Cd1a Cd24 Cd3as Cdas Cdse Cdea
0 0 0 —C45 Cis+Cae —Cas Ci1s Cdes Cdss €d4s Ciss Cdes
0 0 0 0 —ca 6 Cie Ci16 Cdz26 Cd3s Cdas Case Cdos

Figure2.26 Added damping matrix for shear type and usual buildings

Always considering two-dimensional systems withyandnslational dynamic degrees of
freedom,c; can be easily derived from the vector containiaghders coefficients with
the inverse of the same matiixused to compute relative measures from absoluts.on
Taking the first degree of freedom as the firsbflthe inverse of matriX can be written
as:

1 0 O
0 -1 1

Since the product of this matrix for its transpgsees the same distribution needed for
the tridiagonal damping matrix:

r 2 -1 0
)= |1 2
0 -1 1
it is possible to allocate the elements of the damwprector[c,; ¢z, cq2]" in the
following way:

r 1 -1 07[ca1 O 0 1 0 o
(Trr) diag([cqqcaz ca2])(Tr) = [0 1 —1” 0 cq2 O ”—1 1 0]
0 O 1 0 0 c43lLl0 -1 1
Ca1tCaz —Cq2 0
=| —Caz Caz t Caz3 —Cq 3]
0 —Ca3 Cas
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The same procedure can be applied to tri-dimenkgyséems but the computation of the
inverse of matrixT is more complex due to the presence of rotatidagtees of freedom.

Consider one single floor of a 3D structure withmgers allocated in the peripheral
frame as in Figure 2. 27. Matrix for plane transfation T,; can be seen as the

composition of the vectors whose compond’ﬂ@ are defined as the relative velocity

activating damper numbé&rcaused by a unit velocity at tiuh degree of freedom. In the
case of the structure shown below these vectors are

0 0
v _ ) _ 3) _ (4)
T, = |1 Tpl—[l T, = [ T, H
a —a
T
b Ca,
ICM Cas I
b
Crht
I

Figure2.27 Singlestory frame

The composition of these vectors gives the transition matrix for plane systems:

0 O 1 1
T, =1 1 0 0
a —a —-b b

If now a more general three-dimensional system assidered, the matrix for the
transformation from displacements to inter-storiftslis given by the superposition of
the two different transformations explained befdtiestly displacements are transformed
to inter-story drifts using matrif,., then withT,, the inter-story drift relative to each

damper in the same floor is computed. In order d¢otltat all the devices must be
numbered from the first to the last floor. The gahdransformation to obtain the
dampers matrix is:

(Tferl)Tdiag([Cd 1¢azCasCaal”) (TrTp) =

€Y
/Tfr 0 0 erl 1\‘ Cd1 0 erl]

Tpr
=[lo T, O |T<1)| Cdz 0 Tr 0 ||TW]|
f f l
0 0 Ty [ (1)J 0 Cd3 0 Ty, l ?DJ
Tpl 0 Cdg Tpl

WhereTgl) represents the plane transformation matrix foritiefloor.
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2.4.4.1 Linearization of nonlinear viscous dampers

For design purposes it is useful to find an apprated relationship which allows to treat
nonlinear viscous damping as linear ones. It issipts to relate the two different
damping coefficients comparing their energy dissgueper cycle:

_ 2
Equn =mcqgpn w Uy

wa VT T(1+a/2)
Eqnont = 4¢q nont (@ Up) 20TG/Z+0/2)
Equating the two energy formulation brings:

CaNONL _ (@ Ug)'= ﬁ 1+ a/2)
C4 LIN 2 T(3/2+ a/2)
Typical range of values far is [0.2;1]. For these values the ratio of the ganumctions

is close to unit and the relationship can be reenias:

Ca LIN 2
Hence results obtained from design using linearpamcan be adapted to use nonlinear

ones. The excitation frequeney can be chosen, for narrow banded systems, as the
natural frequency of the structure difglcan be taken as the displacement in the dampers
corresponding to a desired performance drift level.

2.4.5 Classical design of damping systems
In the present paragraph the traditional pre-desigthod of viscous dampers, called
stiffness proportional, is explained in order té @&omparison between old practice and

new optimization methods.

2.4.5.1 Modal damping ratio for damped systems

Although damped multi degrees of freedom systeragganerally characterized by non-
classical damping, in order to get a measure of dhmping ratio achieved with
retrofitting, it is useful to neglect off diagon@rms of modal damping matrix and apply
modal analysis rules. In this case the damping riti each mode can be evaluated
knowing that:

Ci = (DE)C (D(l)
and substituting it into:
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one obtains:
£ = Piy¢ Py

' 20@),md
This is a quite important relationship becausesiineates a reference value for a given
amount of added damping. Usually the first vibnatraode is taken as representative of
the structure.

2.4.5.2 Required modal damping ratio and total added damping

In most of the methods used to design viscous dagngystems the value of objective
damping needs to be specified. This fact is a &tidh in case of optimal design, because
it means that the amount of added damping coulahdxe than the necessary and only its
distribution is optimally designed.

The first step is the evaluation of the requirechgimg ratio. The simplest way to get a
reasonable value for this parameter consists onimgntime history analysis on the
considered structure, increasing the value of tAmping ratio used to compose the
damping matrix, until the value of some displacetmesmchieves the desired one. In
practice a maximum damping ratio of about 40% oitical can be achieved
economically with currently available devices. Mdhan one ground motion must be
selected in order to obtain credible values. If tesign refers to a determined code,
ground motions can be derived from the design spectelative to the structure. Since
damping matrix is commonly composed using propodiomodels, like Raleigh or
Caughey ones, the value of the required damping oatained by this way is realistic if
dampers are placed proportionally to stiffnessthis case in fact the damping matrix
obtained from the superposition of the inherent giag and of the devices damping is
similar to the one obtained from the proportioyatitodels. As dampers are distributed in
different ways, typically in case of optimal desigihe response of the two systems can
be slightly different. However, since the optimalifesigned system gives the better
response, the use of this method to find the regdesmount of damping is safety favor.
Once the required damping ratio is found, it isgilde to estimate its relative value of
damping using energy consumption concepts. Condidgty a singular degree of
freedom system endowed of a viscous damper. Theyemkssipated by the damper in
one cycle of harmonic excitation is given by:
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21/ W 21/ W 21/ w

Ed=f F(t)u(t)dt=f (cdu(t))u(t)dt=cdf W2(6) dt =
0

0 0

21/ w

w
=cy4 f (an)cos(wt—@))zdt:cdnUga)=27IE—kUg

n
0

where:
u(t) = U, sin (wt — @)
The input energy due to seismic action for oneeigthe integral:
21T/ W

Einput = f m iy (t) du
0

It can be demonstrated that for steady-state wdmsitthis latter integral is equal to the
dissipated damping energy. In other words the irgmérgy is dissipated by damping.
Hence it can be written:
Einput =2 ik Ug
(‘)n
Knowing that the general form of strain energy is:

1
Es=fkudu=5kU§

Equating the input energy to the dissipated dam@ngrgy brings to an equivalent
damping ratio:
w
A7 &pq w_ES =E;

n

The equivalent damping ratio is then:
1 1 Ey
$eq = O,
n
Due to response of narrow-banded systems is clesizad by the predominant
frequency, the rati@/w,, can be neglected. In this way the resulting dampétio is no
more rate dependant as experimental observatiave sh

B, Resisting force

Deformation

Figure2.28 Graphical definition of the energy loss Ed and the strain energy for a cycle of harmonic vibration
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As seen in paragraph 2.4.3, the energy dissipatedsingle viscous damper is:
Ej=mcyw UO2

Considering now a multi degree of freedom systedoed of equal viscous dampers,

the total energy dissipated is the sum of the ansodissipated by each device:

_ _ 2
Eq tot —ZEdi _ﬂcdwzcdi5i

Note that inter-story drifts are used instead ajptlicement because dampers response
depends on the velocities relative to their edyeseover with geometrical amplification

a suitable magnification factor must be introduc®dimpler form for this latter equation
can be found if displacements are approximated asdraght line, which can be
reasonable if the first mode of vibration is thergdeant one. In this case in fact the inter-
story drift can be described as:

wheren is the number of story of the building.
Then the simplified relationship becomes:

1
Eqtor =Ngmw 0z chi
wheren, is the number of devices.
On the other side the strain energy for a multrde@f freedom system is given by:

1, 1
Eo=) g k=g )k
i i

Substituting these relationships in the equatiothefequivalent damping ratio brings:
1E; ngwlcy;
Eeq = - =
4n ES 2 Zi ki
which provides the approximated relationship betwibe total added dampiyc,; and
the requested damping ratip,,. Formally:

2¢,
zcdi anizz: k;
L

2.4.5.3 General consideration on the optimal location of dampers

As for the general seismic design, also the looatiodamping devices within a structure
must follow the criteria of regularity. Their infiedgion in fact causes the presence of
additional forces and if their placement is not sytrical, torsion effects can arise. For
this reason dampers must be located in general symaadly. Furthermore, in order to
reduce torsion effects due to accidental eccetyrisi better to choose the external
frames.

The effects of added damping in irregular strucgusere studied by many researchers.
(Goel 2001) suggested for a single story asymmeuitding a disposition of dampers
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such that the resulting center of added dampinghasgual but symmetrical eccentricity

as the rigidity-center with respect to the masdearenn fact the inertial forces due to the

seismic excitation act on the mass-center while,piasence of irregularities, the

structural reactions act on the rigidity-centerisTdifference on the acting lines generates
torsion effects. If a damping system must be inioadi, it is better to install it in such a

way that its reaction forces balance the existoagatricity.

2.4.5.4 Siffness proportional method

This method is based on the assumption that sincgpdrs are inserted using bracing
systems in between neighbor floors, the dampingixeglative to the added damping is
proportional to the stiffness matrix of the struetu
Hence it can be written:

ca=ak
wherea is the proportionality constant.
Using modal analysis the modal damping coefficiarthe i-th mode of vibration can be
computed as:

Cai = P1yCq Py = Py a k Py = aK;
On the other hand the same modal damping coefficeambe estimate as:
Cai =2 w; EPHyM Py =2 w; & M;

Knowing thatk; = w;2M; and combining the two equations brings:
2§
o
Hence the present design process is simple. Orbesiaed viscous damping ratio is
chosen the proportionality constant is computed smdhe damping matrix. In case of
complex structural systems an approximation ofdtifness matrix, composed only by
the lateral stiffness of each floor, can be used.
The idea that the distribution of dampers shoulgtaportional to the lateral stiffness of
the structure presents some limit. In case of wkaks at the base of the building for
example, the viscous damping added to this flosulte less than the one added to the
upper levels because of its lower lateral stiffnésstead it is obvious that weak floors
need a higher amount of damping.
In conclusion this method can be used for pre-aesigpresence of regular structures,
but more accurate dynamic analysis must be caoredn order to evaluate eventual
deficiencies of the system.

a
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2.4.6 Geometrical amplification

The geometrical disposition of viscous dampers betwtwo neighbor floors influences
their own efficiency. Consider firstly the two mastmmon ways to install these devices:
the diagonal and chevron brace configurations sbdow&igure 2. 29.

u (Drift)

(Drift)

u
fr—a—

. fip

f=cos8

Figure2.29 Diagonal and chevron braced configurations

It is possible to note that the horizontal systetpegiences a displacement between its
two edges higher than the diagonal configuratinrfatt if the horizontal displacement is
denoted asl, then the diagonal one,, can be described using a magnification fa€tor
which depend on the angle of installation of theckr The relationship can be written as:

ug=fu
where:
f = cos (0)
Moreover the derivative with respect to the timggasts:
Ug=f1u
On the other hand the force exerted by the inclof@dper on the frame is equal to:
F=fF,

As seen in paragraph 2.4.3 for linear viscous dasnpean be written:

Fa(t) = cq ug(t)
Considering now the geometrical disposition, theedodue to the device exerted on the
neighbor level of the structure is:

F(t) = f2cqu(t)
In conclusion a different geometric configurati@sults in a different values of force and
displacement experienced by the damper. In the ohskagonal dampers there is a
reduction of these quantities and for this reasamnet are no advantages. But with other
types of disposition is possible to amplify the ¢em displacement increasing,
consequently, the efficiency of the added damping.
The most known configuration is the so called tedmr which is conceptually similar to
the diagonal brace but divided into two parts. @amper is connected with these bracing
elements and with the corner of the bay as shoviigare 2. 30.

38



- R

G =2 Fip

Co

77 7 7

Figure2.30 Togglebar configuration

Another interesting application derived from autdm®industry is the so called scissor-
jack, shown in Figure 2. 31.

Figure2. 31 Scissor-jack configuration

For each of these configurations magnificationdestan be computed from geometrical
characteristics. Geometrical amplification is useafu case of high level of required
damping within a storey. In this case however tamer, in front of a higher efficiency
proportional to factor, is going to experience a force increasedféftimes. The force
that the device has to withstand has a large inflaeon its price. For this reason before
deciding the damping configuration is useful torgan an analysis of the prices, taking
into account also the number of installed deviéespecially in retrofitting in fact, the
number of dampers to put on a structure has t@vge linfluence due to the installation
Ccosts.
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