3 RICCATI
3.1Introduction

The method presented hereafter was first propogd@Glick and Reinhorn 1996) and is
based on optimal control theory used for activetrmbrof structures. In active control
there are force-generating devices which are ablegrbcess information from all
observable sensors and then introduce forces insthecture to reduce unwanted
vibrations. In the case of passive devices theefoinduced in the structure depends on
the displacement and/or velocity at the extremibiethe devices, dictated by the building
motion. This difference results in the presencefttliagonal terms in the control force
equation, which means there is interaction betwmen neighbor stores. Such an
interaction can’t be provided by passive devicdsictv are installed between contiguous
floors. For this reason some methodologies aressacg in order to approximate the
exact solution. A brief comparison of such methodas will be then presented.

3.2Mathematical formulation

3.2.1 Equations of motion

For a structure braced by general devices the iegquat motion can be written as:

mu(t) +cu(t) +ku(t) =ef(t)+dx(t)
where matrices, ¢ andk characterize mass, damping and stiffness of thietste at the
different degrees of freedom while(t) is the vector of control forces located in
accordance to matrid and f(t) is the vector of excitations forces located incadance
to matrixe.
A second degree differential equation can alwaysdmapacted to a named state space
formulation, that is, to a system of first ordeffeliential equations. If the variable
displacement is substituted by:

2(0) = {“(t)}

u(t)
then is possible to write the equation of motiothia following way:
z(t)=Az(t)+ Bx(t) + H f(t)
where:

) I 7 o [ O
A= [—m‘lk —m‘lc] B = [—m‘ld] H= [—m‘le]
Assuming that the control forces are of linear fotinat is:
x(t) = G z(t) = G u(t) + Gyu(t)
the equation of motion reduces to:
z(t) =A.z(t) + H f (1)
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where the matrix of the controlled systdmis:
A=A+ BG
3.2.2 Optimal function

The aim of optimal control is to minimize the dapéments of the system during the
time interval of the earthquake. Being the disphaeet a vector, it is possible to make
the following scalar function:

] = fztzdt
However in general a physical system contains miffetypes of variables with different
units of measure (in this case variables of spame \eelocity). For this reason it is

necessary to introduce a mat€xto bring the same dimension to all of the termshef
State vector:

] = fzt Qzdt
Minimizing this function would bring to & that is over-proportionate, because it is

independent from the control forces, that is fréva work done in order to maintain the
specifics. | tis possible to update the objectfiom in this way:

]=f[thz+xtRx]dt

This approach is named quadratic control becdusea quadratic function of the state
and the control vectosandx. MatricesQ andR are weighting matrices of the factors of
optimization.
The gain matriXG is obtained from the minimization of the objectiuactionJ:
1
G = —ER‘IBTP
WhereP is the solution of the Riccati equation:

ATP + PA-1/2PBR'BTP+2Q =0
3.2.3 Relative values

First it has to be noted th& relates the absolute values of displacements aroed.
Nevertheless the design of the viscous deviceschbs done with respect to the relative
displacement between neighbor floors and forcemgdietween the extremities of the
devices.
The change between relative quantitiés) and absolute oneas(t) is made using the
following simple transformation:

u(t) =T 8(t)
whereT depends on the order of the degrees of freedotrhdsbeen used. Assuming
that the first degree of freedom is the one abthtéeom of the building matriX is written
as:
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1 0 0
T=(1 1 0]
1 1 1
The inverse transformation can be done simply usiegnverse of the matrik:
1 0 O
inv(T) =|-1 1 0]
0 -1 1
Substituting the previous equation in:
x(t) =G z(t)

Results:
Xrel(t) = TGT 6(t)
The new gain matrix which relates relative measigdisen:
G, =T 'GT

3.2.4 Approximation

Moreover, it has to been noted ti@t,; is a full matrix. But since the devices for the
vibration control are going to be installed onlyveeen neighbor floors a diagonal matrix
is needed:

C1 0 0
xrel(t) = [0 C2 0] S(t)
0 O

In order to use passive control the gain matrix trlbesapproximated. This approximation
has to be done in order to give the most similaults, that is, with least squares method:

T
0
]
d T . .92
Ay Jo &

T . T .
0 7 0

The preceding coefficient can be determined usiffgrdnt grades of simplification as
outlined next.

and leads to:

Response spectrum approach

Assume that the velocity can be obtained from aahggectrum approach using the
square root of sum of square (SRSS) superposition:
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8 =

<p iPiSy;) ]

wherei represents the number of the mogehe degree of freedons,,;the spectral
velocity of j-th mode, ®; the mass normalized mode shapes a@hdthe modal
participation factor defined as:
Pi = Z m](P]l
J

The equivalent damping factor becomes:
1
.
X Gkj [Zi((pjipisvi) ]2

[Zi(‘pkiPiSvi)z]%

Cp =

Single Mode approach

The previous formulation takes into account théugrice of all the different modes and
degree of freedom of the system. But in applicaiiovolving building structures in
earthquakes, most often only one mode of vibraisorelevant. If only one mode is
taken the previous equation becomes:
~ 2j 9k Pim
k (pkm

Truncation approach

Finally, if only one gain factor is considered, three that corresponds of the same degree
of freedom, the formulation of the control factsrgiven by:

Ck = Ykk
It has to be noted that with the simplification égoghfrom the modal spectrum approach
the coefficient are no longer dependent on theohisbf the event, but only from the
characteristics of the structure.

The procedure here exposed gives a damper distmibdbr a specific value of the
parametep. Since the total damping depends linearly on plaiameter, the value of the
resulting added damping can be scaled to the \@fluke objective damping, which is
decided by the designer on the basis of what exgthiin chapter 2.4.5.2. The

mathematical formula of the scaling follows
Ck

Ckfin — o — C bi

fin Ek Cr obj

Wherec, andcy f;, are respectively the damper sizes atkttiedegree of freedom while
Copj is the amount of total added damping.
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Hereafter is presented a flowchart that summatizeslesign process.

Bare frame

2

l State space tranformation of ]

coordinates

2

Gain matrix G from resolution of
Riccatti's eqation

A

Approximation of the
solution

2

Scaling of results to the
objective total damping

2

END

3.3Example: 3-story shear frame

Mass, stiffness and damping matrices of the 3-dboiding used by (Guck et al. 1996)
follow:

200mm
2004 0 0 | 1780 xg '
m=| 0 2004 0 |kg T SF s
0 0 1780 s20mm ) P
238,932 —119,466 0 1 2l 2004 kgl
k= [—119,466 238,932 —119,466| N/m N %/JL—A{;%
0 —119,466 119,466 820mm ; v Brace
JlL 200.4 kg Sl
264.99 -78.09 —16.08 T 57 A
c=|-78.09 246.89 -92.15| Ns/m 620mm s Steal ASE
—-16.08 —92.15 162.02 o e
1 B

Matrices of the state space notation follow:
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roo 0 0 1 0 0
| o 0 0 0 10 |
a-| o 0 0 0 0 1
~1192.3 596.14 0  —1322 0390 0.080
59614 —1192.3 59614 0390 —1.232 0.460
0 671.06 —671.16 0090 0518 —0.910
0 0 0
0 0 0 }
0 0 0
B‘D‘|o.005 0 0 |
0 0005 0
L o 0 0.0056)

Riccati matrix for p=6 is:

—160.73 34598 -—170.42 -0.0163 0.0136 0.0371

P = —10.656 —170.42 184.73 0.0081 -0.0184 -—0.0148
0.0132 -0.0163 0.0081 0.3121 0.0247 0.0060

[0.0247 0.0136 —0.0184 0.0247 0.3193 0.0298J
—0.009 0.0371 —0.0148 0.0060 0.0298 0.3018

[357.49 —160.73 —-10.656  0.0132 0.0247 —0.009}

61.66 796.56 74.36
16.88 83.72 847.85

778.79 61.66 14.99
Gu =

[2736.48 1879.15 937.21]
G, =[1881.04 1802.50 922.21

[ 984.45 931.57 847.85.
[2736.48 1879.15 937.21]

G, =|1881.04 1802.50 922.21
[ 984.45 931.57 847.85.

Hereafter the results for the single mode approach:

4933.3 0 0
Cqg = 0 4667.4 0
0 0 4605.8

3.40bservations

The LQR approach is first optimal design procedun@posed for seismic retrofitting of
structures using viscous dampers.

The Linear quadratic regulator (LQR) solution poms a simple way to design the
distribution of dampers. The procedure is analytcal no iterations are needed.
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On the other hand this method has several weakstiiat make modern methods more
adequate.
The main weakness of this methodology is the quiadiam of the objective function:

]=f[thz+xtRx]dt

As can be seen, this is a smeared measure bathdrahd along the floors. The objective
function should take into account the peak valuepesformance indices and not their
integral along the time. The same is for the distibn in the space of this function.
Considering the sum of the drifts at all differsiry leads to the loss of the information
relative to where peak drifts occur. In generalssét engineering requires more
attentions for details and peak measures.

This concentration of damping is necessary in otdezfficiently reduce the structural
response. Since additional damping is required omhere local damage exceeds
allowable values a spread distribution of it resuft a lower dynamic performance.
Moreover in presence of irregular structures thenceatration of damping in
discontinuities zones is essential in order to @néYocal damage mechanism. Hence in
general the amount of damping required in ordeadbieve a certain performance is
higher than other method.

A further factor of simplification is the model s&ismic excitation which is considered
as a white noise process. This representationtithecsource of the smeared distribution
of dampers as demonstrated by (Levy and Lavan 2808) in case of narrow-banded
systems, gives a good approximation.

The distribution of damping resulting from the dgsis the same for every value of the
parametep. Its magnitude, however, changes with the valu@.dflence the solution
obtained with a certain value @f can be scaled to obtain the objective total added
damping. This means that the result concerns #taldition of damping and not the total
amount of it which is decided by the designer. T$#ems to be an advantage of the
method as no iterations are required. Nonethelestgrms of performance, experience
shows that the optimal distribution of damping stly depends on the magnitude of
total damping.

The value of the objective total added damping banevaluated with the methods
explained in chapter 2.4.5.2 or in alternative tinngory analyses can be run using the
real dampers configuration for different valueshs total amount of damping. This latter
option better reproduce the real response of toetste.

Finally, as other algorithms later explained, thi#fress matrix is required in order to
carry out the analysis. The computation of this rinatespecially in case of three
dimensional structures, is not always availableommercial software and its manual
extraction, through the force method for exam@eguite demanding.

Note that the LQR method can only consider linéastec behavior.
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3.5 MATLAB code

% INPUT 3story frame

% Stiffness matrix [KN/m]

k=1000%[238.932 -119.466 0;-119.466 238.932 -119.46

119.466]

% Mass matrix [tons]

m=diag([ 200.4 200.4 178 ])

% Hinerent damping matrix [KNs/m]

c=[264.99 -78.09 -16.08;-78.09 246.89 -92.15;-16.08

% Number of degrees of freedom

gdl=max(size(m));

% Matrix for the transformation in inter-story quan

T=tril(ones(gdl))

% State Space notation

D=eye(gdl);

E=eye(gdl);

invm=inv(m);

A=[zeros(gdl) eye(gdl); -invm*k -invm*c];

B=[zeros(gdl);invm*D];

H=[zeros(gdl);invm*E];

% parameter p for the weight of the optimization fu

p=6;

% Optimization function matrices

Q=eye(2*gdl);

R=10"(-p)*eye(gdl);

% Riccati's solution

[G.P] = LQR(AB,Q.R);

% Gain matrix

G1=G(1:gdl,gdl+1:2*gdl)

% Inter-story gain matrix

G1d=T"*G1*T;

% Modal analysis

[S,w2]=eig(k,m);

S=inv(T)*S;

w=sqrt(w2);

Periodi=2*pi*inv(w);

Tmax=norm(T,inf);

% TRUNCATION APPROACH

dcO=diag(G1d)'

% SINGLE MODE APPROACH

dcl=zeros(1,gdl);

for jj=1:gdl
dcl1(jj)=G1d(jj,:)*S(:,1)/S(jj,1);

end

figure

barh(1:gdl,dcl)

title('Dampers');

xlabel('Damping kNs/m")

ylabel('Floor number’)

6;0 -119.466

-92.15 162.02]

tities

nction
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4 ANALYSIS-REDESIGN METHODS

These kinds of analyses consist of two differerdasals. Firstly the analysis is carried on
and then, based on its results, the initial desgrhanged. This procedure goes on until
all the constrains are satisfied.

Hereafter the algorithm developed by (Levy and ba2805) is first described. This

method is based on time-history analysis and iegaito account both linear and

nonlinear behavior, so that it can be applied &saregular structures.

Than an implementation of the previous method agesdl always by (Lavan Levy 2009)

is explained. This procedure attempts to simplifg time domain analysis replacing
them with Lyapunov equations and good agreemenhenresults is shown for linear

analysis.

TIME HISTORY ANALYSIS-REDESIGN

4.1 1ntroduction

This method is named fully stressed due to an ggyahath classical design of trusses,

whereby the weight is optimized for a given alloveabtress. The optimal solution is

achieved iteratively. In the design of viscous damsppresented hereafter, the size of
these devices will be minimized attending certagrfgrmances. With this method

optimal design is achieved iteratively using a step algorithm in each iteration cycle.

In the first one an analysis is performed for aegiypreliminary design, whereas in the
second step the design is changed using a recerretationship. The process ends when
the analysis shows the achievement of the requestéodrmances.

4.2 Mathematical formulation

4.2.1 Equations of motion

The equations for a two-dimensional linear dynasy&tem are given by:

mi(t) + cu(t) + ku(t) = —m1ii,(t)
where matricesm, ¢ andk characterize mass, damping and stiffness of thetste at the
different degrees of freedom. denotes the horizontal floor displacement vectad a
iiy(t) represents the ground motion which acts at alkcthesidered degrees of freedom
as shown by the unity vect@r The damping matrix is composed of two contributions:
the original structural damping, and the one of the viscous deviegs

c=cyt+cy

The inter-story driftsé(t) are related to the floor displacements with thikowang
relationship:
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u(t) =T &(t)
where, if the first degree of freedom correspoindhé first floor:

1 0 0
T=|1 1 0
1 1 1
The inverse relation depends on the inverse matiixwhich takes the form of:
1 0 0
invM=|-1 1 0
0 -1 1

The response in terms of inter-story drifts canstine computed with the classical
methods of structural dynamic explained in Annex A.

4.2.2 Performance index

Regular structures can be modeled using more conlimesr methods. Despite during a
ground motion the bare frame can achieve inelaatige it can be reasonably assumed
that, for this kind of structures, the vibrationape does not change significantly.
Moreover, once an added damping system is instaiedretrofitted structure does not
undergo large plastic deformations. So if lineanawor is requested and consequently
represents both a constrain of the problem andfitted response of the retrofitted
building, linear analysis tools can be used toqrenfthe time-history response.

In this linear case inter-story drift becomes apomant damage index because it takes
into account not only nonstructural damage but #@lgpves a good description of the
structural one. This can be assumed to be valdse of low plastic behavior.

In conclusion, the maximal inter-story drift is glem as the local performance index for
regular buildings.

4.2.3 Optimization problem formulation

The optimization problem can be formulated as:
minimize: J=cl1

subject to: max; (maxt(|6i(t)|)) < Saui

where §;(t) satisfy the equations of motion: x(t) = T 8(t)

4.2.4 Recurrencerelationship

Experience with rigorous optimization methods sastihe cutting planes method (Lavan
Levy 2005) has shown two interesting aspects. If#itse optimal desigr,; attains zero

value where the local performance index is less tha allowable while in case the local
performance index is equal to the allowable dampeust be placed. In other words
viscous devices are added only where damage ismigewhile where the damage is less
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than the acceptable value there is no need of dampased on this observation, a
recurrence mathematical relationship can be gesbriait order to either increase the
added damping if damage is higher than the constraiue or decrease it in case the
damage is less than the constrain value for theidered floor. This can be done, as
suggested by (Levy and Lavan 2005), multiplying dlaenping coefficient of each floor
by the ratio between the real performance index thedallowable one. As a result
damper size increases in case of high damage awtreases in the opposite case. The
relationship can be written as:

1

k+1 k =

S = (15,61 /8011

(k+1)

wherec,;, “and cé’i‘)are the values of the damping vector atittie degree of freedom

and at thek-th+1 and k-th iteration,q is a convergence parameter dhkﬁk)is thei-th
component of the performance index athkth iteration.

The choice ofg affects the efficiency of the method. In fact farger values of this
constant the method is more stable, that is, ththadeis more likely to converge,
although the convergence is slower. Values of 6rSifiear analysis and 2 for nonlinear
ones are suggested by the authors.

The second interesting aspect shown by rigorousn@ation criteria is the monotonic
convergence to the solution. It means that theigordtion achieved in the present step
is surely better than the previous one if larggahadded damping was chosen. Hence it
is possible to end the iterations whenever thegaiesiwants. This could be useful in case
the software used for the time history analysistdas used iteratively, which is the case
of the most part of the commercial programs. Asaeg in Figure 4-1 the convergence
of the objective function is rather fast and caimgpiin five-ten iterations to reasonably
values.

total damping [kMs/m]

o

L L L L L
1) 20 40 B0 a0 100 120
iteration number

Figure 4-1 Convergence of the objective function

4.2.5 Design methodology

Since time-history analysis is needed to obtainntfa&imum values of the performance
indices the first step on the optimization procedig the choice of the input ground
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motion. Since seismic excitation is a stochasticfiwn while a particular ground motion
is a deterministic one, several accelerograms meistonsidered in order to give to the
resulting configuration a general validity. Heneeesmnsemble of ground motions must be
derived from design spectrum and then analyzed.

On this point it is important to underline that fiveal configuration of added damping is
not given by the superposition of the configurasiaesulting from each time-history
analysis. The final configuration is achieved iastesuperposing at each iteration the
performance indices. In the first case in fact th&eraction of damping on the
performance index at a different floor is neglectedulting in a higher value of final
added damping. In other words, if two specific gmdumotions, with a different
frequency content, bring to two different intersgtodrift configurations and the
performance indices are superposed, at the neatide the dampers added by the first
ground motion influence the response also for #wisd ground motion. Instead if the
superposition is at the end of the iterative prec¢hs reciprocal influence does not exist.
For the most part of software which can't be rematively from an independent platform
it is not possible this kind of direct superpositibecause of the great number of
requested analysis, hence a more intelligent proeethust be followed. It is possible,
for a given ground motion ensemble, to find thecatbed active ground motion, that is
the most important one, by the computation of dispinents of a singular degree of
freedom system having the same period of the exaingtructure for all the different
excitations and choosing the higher value. Thisukhde done for different values of
damping ratio because its change may not have dhe ffect on all the different
responses. In Figure 4-2 the results for the LA 1A%0 years ensemble for the nine-
story building analyzed in chapter 7.1 are shown.

Figure 4-2 Spectral displacements vs damping ratifor the LA 10% in 50 years for T=2.16 s

Once the active ground motion is selected its agtidamper configuration is found.
Then the remaining records are applied to the ntrdesign. If one of the responses
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overpasses the allowable limit then the supermositif the performance indices of the
two considered excitations at each iteration mesadopted.
It has been seen that with large initial valueaaded damping the convergence is faster.
For this reason an initial values of the dampintipprdue to viscous dampers will be
chosen. The simplest way to do it is adopting &owum distributed damping ratio related
to the first mode. In a multi degree of freedomtesys damping ratio and coefficients of
the damping matrix are linked with the well knovatidwing relationship:

that is:

Ci=2w; M;§
where M;and C;are the terms of generalized mass
and damping matrice® and C which can be
obtained from:

Ci = Pue P
M; = ®(ym d;
Where @ ;) is thei-th mode shape. Substituting
these last relationships and considering only the
first mode we obtain:
dPTMdD,
T,
After the choice of the loading and the initial
values of damping the analysis/redesign procedure
can be carried on. The process will end when the
constrain error takes value Ilower than a
predetermined tolerance:
max;(Pl;) — 1 < tollerance
that is, when the drift is smaller than the alloleab
value.

1
Cé):25d1w1

The solution algorithm is summarized in the
following flowchart.

Initial damping
distribution

Time history analysis

a

Evaluation of intersorey
drifts

a

Calculation of performace
indices at each floor

-

Dampers updating with
recurrent relationship

6i,max<6all

i

4
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4.3Example: 3-story shear frame

Mass, stiffness and damping matrices of the 3-dboilding used by (Guck et al. 1996)

follow:
2004 0 0 o %00mm |
m= 0 200.4 0 kg 178.0 kg
0 0 178.0 T 5F —Ar
820mm o
238,932 —119,466 0 /’&
k:[—119,466 238,932 —119,466| N/m + e = .
0 —119,466 119,466 «—E-—ﬁrr
820mm Brace
]
26499 —78.09 —16.08 4 dlu 2004 ko ul
=|-78.09 246.89 —92.15| Ns/m S D .
—16.08 —92.15 162.02 820mm ﬂ" Steel A36
o TYP
1 e

LAO2 ground motion is taken in account.
Due to the linearity of the problem a convergerazdrg=2 is chosen.

The value of the initial damping, using a dampiaga of £;,=15%, is equal to 633.6
Ns/m and the initial added damping matrix is:

1267.1 —633.6 0
cqg=|—-633.6 1267.1 —633.6| Ns/m
0 —633.6 633.6
The first three iterations are here considered:
0.0732 989.8
W = [0.0571| m (") = |873.9| Ns/m
0.0295 627.8
0.0693 1504.2
82 =(0.0540| m =11172.2| Ns/m
0.0279 605.4
[0.0644] 22041
8@ =0.0502| m ¢ =[1516.5| Ns/m
10.0260] 563.5
The final values obtained after one hundred iteretiare resumed:
. [0.0300] 9765.7
80m™ = 100300 m U™ = (27777 Ns/m
10.0161 0.0
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4.4 Observations

Based on the results obtained from formal optinoraprocedures (Lavan and Levy
2005 and 2006), this method represents a simgiibicasuitable for engineering practice.
In fact the solution is achieved iteratively ussigple time-history analyses.
Furthermore, a value for the total added dampinthéostructure is not needed because
the solution converges to the exact amount of dagypiecessary to satisfy the
constraints of the problem.

This fact makes this algorithm suitable for thecatled performance based design, which
is a design that concerns not only life safety, &lgb a prescribed level of damage
throughout the structure. This level of damage bancomputed quantitatively, as
explained in chapter 2.1, by damage indices whaets itan be used, once the allowable
value is decided, to mathematically describe tieamrence relationship.

With respect to the other methods presented inttigsis although, this methodology
requires time-history analyses which are computatiy expensive, especially if used
iteratively. On the other hand these analyses earub with commercial software and
consequently there is no need to derive the stffmaatrix, which represents one of the
points of more concern for other methods. Furtheemmmmercial software packages
usually allow inelastic analysis and consequenthstic behavior of structures can be
taken into account for example in presence of ul@gbuilding. This represents another
limit for most of the optimization methods heregeeted.

One point to note regarding the fully stressed giess the use of several input ground
motion due to the fact that seismic excitationnighe form of accelerograms which is a
deterministic description of a stochastic event.tfia point it is interesting to see how
two ground motions with different frequency conteah bring to really different design.
In Figure 4-3 the results obtained for the nineystmilding for LA10 and LAO7 ground
accelerations are shown. As can be seen, althdwgghalue of total added damping is
rather similar, its distribution along the floossreally different.

Damper distribution LA1D Damper distribution LAD7

=

I I
1} 05 1 15 1} 05 1 15 2 25 3
damper coefficient damper coefiicient

Figure 4-3 Damping distribution for LA10 and LAQ7

floor

- m W s oM @~ @
floor

- m W s oM @ @
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Form the spectral pseudo-acceleration depictedgar€ 4-4 it can be argued that LAO7
affects more the second mode (period of 0.812 SlewtA10 the third one (period of
0.47 s).

Pseudo-acceleration spectrurn

—LA10
— LA

Pseudo-acceleration [%g]
o o .
o @ - i

|

=1
)

o

. . . . . . .
0 05 1 15 2 25 3 35 4
Tls|

Figure 4-4 Spectral pseudo-acceleration for LA18&nd LAO7

Also if it has been observed that for high levelsdamping results trend to achieve
similar distributions, it is evident how the choigeseismic inputs affects the results.

In order to avoid these effects an ensemble of gtamotions must be considered, as
explained in paragraph 4.2.5. As a result a seict¥e accelerograms must be analyzed
at the same time in order to superpose at eacitiagerthe values of the performance
indices. If more than two active ground motions énéw be run the procedure becomes
computationally difficult if commercial software igsed. In this case however it is
possible to adopt a superposition at the levekstilts instead of at each step, knowing
that the final configuration is not the optimalwadn but a safety sure approximation of
it.

The objective function to minimize in the optimimat problem is the sum of the sizes of
the viscous dampers, then the minimization of thelper of devices, which has great
influence on costs in case of retrofitting, is doectly taken into account.

Although if in the final configuration smaller vas of damping coefficients are obtained
for some particular location, then it can be assuithat they have low influence on the
response. Hence a second analysis-redesign cararbiedcon without considering
dampers at those locations, resulting in a lowenler of devices to install. Finally the
costs of the two or more solutions must be compared

4.5 MATLAB code

% INPUT 3story frame

% Stiffness matrix [KN/m]

k=1000%[238.932 -119.466 0;-119.466 238.932 -119.46 6;0 -119.466
119.466]

% Mass matrix [tons]

m=diag([ 200.4 200.4 178 ])

% Hinerent damping matrix [KNs/m]

c0=[264.99 -78.09 -16.08;-78.09 246.89 -92.15;-16.0 8-92.15 162.02]
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% Initial conditions
IC=zeros(3);
% Number of degrees of freedom
gdl=max(size(m));
% Allowable inter-story drift
DriftsAllow=[0.03 0.03 0.03];
% Ground motion
nomefile="LA2.txt";
Dt=0.02;
fact=1/9.806;
% Modal Analysis
[S,w2]=eig(k,m);
w=sqrt(w2);
% Matrix for the transformation in inter-story quan
T=eye(gdl)-diag(ones(1,gdl-1),-1)
% Initial dampers values
csil=0.15;
cdi=2*csil*w(1,1)*(S(:,1)*m*S(:,1))/(S(:,1)*S(:,1
cdi=cdi*ones(1,gdl);
cd=T"*diag(cdi)*T% cd=matrice(cdi*ones(1,gdl)")
% Pramiters for the iterations control
g=2; % convergence parameter
toll=0.0001; % tollerance
maxRapporto=1000;
while maxRapporto-1>toll
c=cO+cd;
[u]l=Newmark(Dt,nomefile,fact,m,c,k,IC);
% Maximum inter-story drifts
d=T*u;
dmax=max(abs(d");
% Changing of dampers coefficients
for jj=1:qgdI
cdi(jj)=cdi(jj)*(dmax(jj)/DriftsAllow(jj))*
end
cd=T"*diag(cdi)*T;
% Maximal value to control the end of the cycle
for jjj=1:gdl
rapporto(jjj)=dmax(jjj)/DriftsAllow(jjj);
end
maxRapporto=max(rapporto);
end
figure
barh(1:gdl,cdi)
titte('Dampers");
xlabel('Damping kNs/m")
ylabel('"Floor number)

tities

)

(/a);
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LYAPUNOV'S SOLUTION ANALYSIS-REDESIGN

4.6 ntroduction

The present methodology, proposed by (Lavan LewWy9P0consists on a Lyapunov-
based analysis/redesign approach similar to thaused in (Levy Lavan 2005). The main
difference is the use of control theory tools, Lgapunov equations, instead of classical
time history analysis. The optimal solution minieszthe total added damping while the
mean squared drifts are constrained to allowallgegaunder a white noise excitation.
Like in general all problems belonging to classittdly stressed design approach, the
solution is achieved iteratively using a two-stégodathm for each iteration. In the first
step an analysis is performed while in the secomel the design is changed using a
recurrence relationship, which dictates filéy stressedness.

4.7 Mathematical formulation

4.7.1 Equations of motion

The equations of motion for an N-storey buildingd®bwith added viscous dampers can
be formulated as:

mi(t) + cu(t) + ku(t) = —m Lii, (o)
wherem andk are the mass and stiffness matrix respectivelyuaghehotes the horizontal
floor displacement vector. The damping matriss composed of two contributions: the
original structural damping, and the one of the viscous deviegs

c=cytcy
The inter-story driftsé(t) are related to the floor displacements with thikowang
relationship:
u(t) =T 6(t)

where, if the first degree of freedom correspoindhe first floor:
1 0 O
1 1 0

1 1 1
The inverse relation will depends on the inversé&imaf T which takes the form of:

1 0 0
T1=|-1 1 0

0 -1 1

T =

The second order differential equation system @relwritten, as explained in annex A,
in the form of a first order of equations:
z(t) = Az(t) + Hiiy(t)
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where:

0 I 0
A= [—m‘lk —m‘lc] H = [—1]

and the new variable(t) id defined as:

o= [
Inter-story drifts can be evaluated using:

6(t) =D z(t)
where:

D=[T1 o]

4.7.2 Lyapunov equations

The mean square response of a linear system, dairee@in annex A, can be derived
using the solution of Lyapunov’s equation:

ATQ+ QA+ BWBT =0
This latter relationship is named Lyapunov’s equatnd its solution gives the response
variance of the systef, = E(z - z7). In order to evaluate the response in terms efint
story driftsQs = E(8 - 87) the following transformation can be applied:

Qs = DQ,D"

The values on the diagonal of mat@g represent the mean squared of the inter-story
drifts. These values are taken as control valuegedhey control both the achievement of
the objective function and the updating of the dmmmatrix, through the performance
index described hereafter.

4.7.3 Performance index

The performance index at theh degree of freedom is taken as the ratio between th
mean squares value of inter-story drift at the gmégeration and the allowable one:

Pl; = max;(Qsi/ Qs aur,i)
The allowable value is chosen taking into accotnet inelastic characteristics of the
building and the performances that must be achieved

4.7.4 Optimization problem formulation

The optimization problem is thus formulated as:
Minimize:J = cf 1
Subiject to:

max;(Qsi/ Qs aui) <1
where(Qssatisfy the Lyapunov equation:
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AQ + QAT + HWHT =0
Qs = DQ,D"

4.7.5 Recurrence relationship

The updating of the damping matrix is carried dmbtigh a recurrent relationship similar
to the one used in time-history analysis-redesign:

(kt1) _ (0 (p ng))%
L

Cai ~ = Cgi
(k+1) (k)

wherec,; “andc,;”are the values of the damping vector atittie degree of freedom

and at thek-th+1 and k-th iteration,q is a convergence parameter dhl(ﬁk)is thei-th
component of the performance index athktth iteration.

4.7.6 Solution algorithm

This method consist on an iterative process whiakes use of Lyapunov formulation to
find control values, instead of standard dynamialysis as in (Levy Lavan 2005). The
control values are represented by the mean sqohtes inter-story drift.
As usually the most part of analysis/redesign algars it needs starting values for
unknown added damping. In order to do that an wmifalistribution of damping is
selected. The value of the single damper is obtiado@sidering the first mode shape and
a feasible damping ratio, using modal analysisstool
DT MP

Cz(il) = 2841 Wy ;T()ll
The iterative process contemplates a first stoahasialysis using provisional values of
viscous damping and following Lyapunov formulatitonobtain the mean squared values
of drifts. Secondly, using these values, the upgatf added damping is carried out
making use of the recurrent relationship explaibefbre.
As seen infully stressed design, the damping is added on the locations in which the
control quantity exceeds the allowable value fat floor. This process goes on until the
maximum value along the structure of the contr@rgity becomes less or at least equal
to the allowable one, chosen by the designer.
The solution algorithm is summarized in the follogiflowchart.
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Initial damping
distribution

Lyapunov equations
Resolution

-

Evaluation of mean sqared
values of intersorey drifts

\ J

-

Calculation of performace
indices at each floor

-

Dampers updating with
recurrent relationship

END ]

G’@

4.8 Example: 3-story shear frame

Mass, stiffness and damping matrices of the 3-dboilding used by (Guck et al. 1996)

follow: 800mm
S
2004 0 0 178.0 ug
m=| 0 200.4 0 | kg T S5F A
0 0 1780 $20mm &
238,932 —119,466 0 §odkese oy
k = [—119,466 238932 —119,466| N/m ™ %/—-“'—-—v%s
0 ~119,466 119,466 e20mm .
1 22004 ke Nuile
264.99 —78.09 -—16.08 T A
c=1-78.09 246.89 —92.15| Ns/m 620mm é Steal A3e
~16.08 —92.15 162.02 L r

The value of the initial damping, using a dampiagor of £;,=15%, is equal to 633.6
Ns/m and the initial added damping matrix is:
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1267.1 —633.6 0
cq =|—-633.6 1267.1 —-633.6| Ns/m
0 —633.6 633.6
An allowable mean square value of inter-story diffQs 4;;; = 0.0125892 is chosen in

order to get similar results to the example oftthne history design.
Matrices of the state space notation follow:

0 0 0 1 0 0
[ 0 0 0 0 1 0 ]
A-| o 0 0 0 0 1
~11923  596.14 0  —3758 1423  0.080
596.14 —1192.3 59614 1423 —19.06 0.445
0 67106 —671.16 0.090  5.007 —5.399
[9]
‘ : ‘
H=|"
-1
|_1]
|1l
The first three iterations are here considered:
) 1.1258 L [4500.4
diag(Q5”) = 1073{0.6951 ¢ = [2778.9| Ns/m
0.2002 | 800.4 |
0.2963 8413.9]
diag(Q$) = 1073 0.1887 ¢?) = [3308.1| Ns/m
0.0594 | 300.0
; 0.1783 9464.4
diag(QS) = 107 |0.1413 ¢?) = [2949.9| Ns/m
0.0514 97.4

The final values obtained after eighty iterations r@esumed:
] 0.1585 ) 10240.0
diag(Qfom)):10"3 0.1585| /™ =|2296.0 | Ns/m

0.0583 0.0
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4.9 Observations

The main advantage of this method is the low coatprtal cost due to the use of
efficient control design tools in alternative topexisive dynamic time-history analyses.
The optimization process itself is really simplecerthe stiffness matrix is computed.
This latter passage represents probably the mastecoing point in usual engineers
practice because of the difficulties related to teenputation of the dynamic stiffness
matrix. Commercial software packages do not offex possibility to extract it and
applying the forces or displacements methods foh dkbor is not feasible for a high
number of degrees of freedom.

On the other hand it is no more necessary to aaaygreat number of ground motions,
because the excitation is modeled as white noiseegs. The method could also make
use of filtered white noise input if use is madeaaf appropriate filter. Moreover as a
consequence of the adoption of a stochastic déseripf the seismic input, the response
is no more dependent on the choice of the setafrgt motions and hence engineers are
not required to choose and scale ground motionsepsesent the seismic hazard.
Choosing and scaling ground motions requires sotperése most practicing engineers
do not have.

Also if the white noise model can be substitutethvé more realistic one, it does not
have many influence on the final results. Usualcddtires in fact have a narrow banded
frequency response which means that the most gignifpart of their transfer function is
concentrated near to the first natural frequensyaAesult the values of the seismic input
that have more influence are the values in cormadpace to this first natural period
which is usually located in the low range of thedpum. Since in this range seismic
excitations are characterized by a broad band psottee approximation of white noise
model gives good results. Nonetheless, the metbalticonsider a filtered white noise,
if desired.

Although the main disadvantage of this method &s itk of a realistic performance
index. In fact the values of the mean square digphents obtained from the
mathematical solution of Lyapunov’s equations ace im agreement with the real
structural response also if they provide a meaningkerformance index. Hence a
performance based design is not possible and tlve v total added damping must be
decided a priori. An alternative procedure consi$tsvaluating the maximal response of
the bare frame structure excited by a set of gromotions and, on the base of these
results, decide of what percentage the responsé meuseduced. Then this percentage
reduction is adopted for the performance indiceshefLyapunov-based algorithm and
the obtained configuration is verified with the saemsemble of records.

Finally as other methods also this Lyapunov-baseyais-redesign does not consider
inelastic behavior and for this reason it can’ubed in case of irregular buildings.
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4.10 MATLAB code

% INPUT 3story frame
% Stiffness matrix [KN/m]
k=1000%[238.932 -119.466 0;-119.466 238.932 -119.46
119.466];
% Mass matrix [tons]
m=diag([ 200.4 200.4 178 ]);
% Hinerent damping matrix [kKNs/m]
c0=[264.99 -78.09 -16.08;-78.09 246.89 -92.15;-16.0
% Initial conditions
IC=zeros(3);
% Number of degrees of freedom
gdl=max(size(m));
% Allowable values of mean square drift
dallow=0.012589*ones(1,3);
Pallow=dallow."2;
% Modal analysis
[S,w2]=eig(k,m);
w=sqrt(w2);
% State space notation
invm=diag(1./diag(m));
H=[zeros(gdl,1); -ones(gdl,1)];
T=eye(gdl)-diag(ones(1,gdl-1),-1);
D=[T zeros(gdl)];
% Initial dampers values
csi1=0.15;
cdi=2*csil*w(1,1)*(S(:,1)*m*S(:,1))/(S(:,1)*S(:,1
cdi=cdi*ones(1,gdl);
cd=T"*diag(cdi)*T;
maxRapporto=1000;
while maxRapporto-1>0
c=cO+cd;
% State space notation matrices
A=[zeros(gdl) eye(gdl); -invm*k -invm*c];
Q=lyap(A,H*H");
P=D*Q*D";
% Mean squared inter-story drifts
Pi=diag(P)’;
% Updating of dampers
for jj=1:qgdI
cdi(jj)=cdi(ij)*(PiGi)/Pallow(jj));
end
cd=T"*diag(cdi)*T;
% Maximum value of performance index
for jjj=1:gdl
rapporto(jjj)=Pi(jjj)/Pallow(jjj);
end
maxRapporto=max(rapporto);
end
sum(cdi’)

6;0 -119.466

8-92.15 162.02];

B
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S5 SEQUENTIAL SEARCH ALGORITHMS

The termsequential search underlines how the procedures exposed hereafiee\acthe
final design adding sequentially certain amountsistous damping in the locations that
are supposed to be optimal.

The first method, developed by (Zhang and Soon@)19%ovides a frequency domain
analysis with a stochastic description of the irgmud of the response.

The second method was developed by (Garcia 2004)itars known assimplified
sequential search algorithm because it provides a more ordinary time domaatyars.

Original Sequential Search Algorithm

5.11ntroduction

The present method, developed by (Zhang Soong 1#92jased on the concept that
additional damping is added only where a presafledtenage index is maximized. For
this reason this procedure is namsafjuential search algorithm. Between several
existing damage indices, inter-storey drift hasnbel®osen, because of its simplicity and
the fact that it takes in account also nonstruttlaaage. Due to the stochastic nature of
earthquakes a non deterministic analysis is caoigdThe values that are obtained don't
represent therefore the deterministic value oftglribut are measure of the mean squared
response of the structure. In order to obtain syentities is necessary to carry out a
frequency domain analysis, where the seismic impuhore properly described from a
statistical viewpoint than in time history accelgrams.

Despite these non deterministic measures allowra mper description of the problem,
they don’t offer a practical mean to stop the tigemprocess and to understand if the
level of damping achieved is or not enough. Theeeibis presented a deterministic way
to calculate the target value of added damping whepresents the end of the iterative
procedure.

5.2Mathematical formulation

5.2.1 Equations of motion

Consider an N-storey building model with added eisc dampers. The system can be
described by the following differential equation:

miu(t) + cu(t) + ku(t) = —m Liiy(t)
wherem, ¢ andk are the mass damping and stiffness matrix resgdgtiu denotes the
horizontal floor displacement vectai,(t) represents the ground motion and the unit
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vector indicates that all dynamic degrees of freedoe excited. The damping matoxs
composed of two contributions: the original struatidampingc, and the one of the
viscous devicesy
c=cCo+cy

The basic concepts of frequency domain analysisnawe briefly summarized. For a
more detailed description see Annex A.3.
Let U(w) and Ug(w) denote the Fourier transformswft) andii,(t) respectively, and
o the generic circular frequency of a sinusoidalitexion. The equations of motion in the
frequency domain become:

(—w'm+iwc +k)U(w)=-mlU;(w)
The transfer function matrix of steady-state hanmoesponsd/(w), is given by the
ratio between response displacement and seismateaation:
U(w)
Ug(w)
However the choice of the location of dampers igdlenaonsidering inter-story drift

instead of displacements. The relation betweenetitws quantities can be written in
matrix formulation:

H(w) = =(—w'm+iwc +k)(-m)

§(w) =T 1U(w)
If first story is assumed to be at the bottom, ttieninverse transform matrc?! is:
1 0 O
T 1= [—1 1 o]
0o -1 1
Consequently the transfer function matrix relativénter-story drifts is given by:
Hs(w) = T"'H(w)
If the external excitation is modeled as a statipmandom process characterized by its
power spectral density (PSD), then the PSD of &spanse of the structural system is
given by:
Su(w) = [H(w)|*Sy, ()
where SUg(a)) is the power spectral density of the ground aca&t ii,(t). The

squared absolute value of the transfer functiatefsed by:
|H(w)|? = H(—iw) H(iw)

and takes the form:

|H(w)|? = (k- w*m)* + w? ¢?)1(-m?)
It is to point out that the squared absolute valuthe transfer function doesn’'t depend no
more from complex quantities.
The power spectral density of the earthquake granotion has been modeled here with
a Kanai-Tajimi formulation given by:
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1+ 4¢2 (wﬂ)

i, (W) = — g ~S*
w w
[1 - (&) ] +a3(5)

where $? is a measure of the intensity of the ground motiow ¢, and w, are
parameters that depend on the local geologicakctexistics of the site. This spectrum
is obtained by passing a white noise proc§ss, through a second order linear single
degree of freedom system whose parameters depeagpoximations of real ground
motions.
Using this characterization, we can now find theamaquare response of inter-story
drifts 6 of the structure at every floot

e
ot = [ IHa@)P50,(0) do

This last value is taken as optimal placement lonaindex since dampers are placed
between neighbor floors.

5.2.2 Design methodol ogy

Before starting the design an objective dampingedélave to be estimated in order to be
able to stop the procedure once the aim is achiedgaxplained in chapter 2.4.5.2 the
estimation of this value is done considering a siagdegree of freedom system with the
period equal to the first one of the examined $tmgc Damping ratio is increased until
the maximum displacement resulted from time-histmnglysis takes the desired value.
Hence a set of ground motions must be consideriedlly the objective damping ratio
can be related to the viscous added damping with:

s = $onj T 2iKi

m f

whereé,,; is the objective dumping ratid,is the first period of the building;; K; is the
sum of the lateral rigidity of all floors arfdis the factor which considers geometrical
amplification.
As seen before the stochastic input is modeled witKanai-Tajimi power spectral
density. This function can be obtained by fittihg tFourier transforms of design ground
motions. For the detailed explanation see Annex6A.4
The design methodology is an iterative process hvicignsists of two different steps.
Firstly a frequency domain analysis is requireaiider to find the mean squared values
of inter-story drifts, as seen before. These valaestaken as indices of the optimal
location of dampers. Then in the second phaseaarnrent of damping is provided at the
floor that shows the highest index. This procedsnepeated until the required value of
damping is achieved.
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The solution algorithm is summarized in the follagiflowchart.

Assign initial
damping value

U

Decide the number of steps

U

Frequency analysis

O

(" Evaluation of the maximum
mean squared response of

intersorey drifts

U

Damper updating
Ci=Ci+ AC

5.3Example: 3-story shear frame

Mass, stiffness and damping matrices of the 3-dbaikding used by (Guck et al. 1996)

follow:
200.4 0
m= [ 0 200.4
0 0
238,932 —119,466
k= [—119,466 238,932
0 —-119,466
264.99 —78.09
c= [—78.09 246.89
—-16.08 —92.15

0
0 | kg
178.0
0

—119,466
119,466

—16.08
—-92.15
162.02

N/m

Ns/m

820mm

820mm

} 800mm |
178.0 kg
c
- Palls
Jle 2004 kg JlL
[ ——
-, ' Dnm$ur
( Brace
~ | v
JdlL 2004 kg “ullL
CcC—————
- Al
o Structural
ﬁ' Stesl A38
L TYP
e’ ale
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The process starts without any initial viscous damp@he value of the total added
damping is 1251XN s/m while 20 steps are considered, bringing to aneiment of
damping of 625.&Ns/m each iteration.

The first three steps are here considered:

[0.0098] [625.65]

a2 = 0.0061 <= 00 | Ns/m
00018 [ 0.0

o [0:0054 L [12513]

0*'” =10.0033 ¢ =| 00 | Ns/m
0.0010. [ 0.0

5 [0:0037) . [18769]

a2 =10.0023 =] 00 |Ns/m
0.0007. | 0.0

The final values obtained after eighty iteratiorns @sumed:
(final) 0.5765 ] 10636
o> =107310.5694| ¢y, =|1877 | Ns/m
0.1855 0.0

5.4 Observations

Using frequency domain analysis this method attenptavoid the dependency on the
input ground motions providing a more general resul

Although, the amount of total added damping to teadong the structure is evaluated
from a set of time-history analyses as describeghapter 2.4.5.2.

Hence also if the final distribution of dampersrgjothe structure is not affected by
particularities of the ground motion responses,ttii@ value of this distribution is based
on a deterministic approach.

As in other methods the evaluation of the dampm@dd to the structure is the main
weakness because the value of the target damping isaestimated considering a
proportional damping system time-history responared the equivalent damping is
computed assuming an approximated shape of defimmétee chapter 2.4.5.2). This
drawback can be partially avoided taking advantafjghe sequential nature of the
algorithm. Since the solution is achieved increnmgntdamper sizes at the optimal
location each step, the performance of the straatan be evaluated when certain levels
of added damping are reached. Despite there is anylependency on deterministic
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excitations, this approach enables to consider etfiects of the real distribution of
damping and not the distribution relative to theylR@gh model, resulting in a more
efficient estimation of the required total damping.

The modeling of the seismic excitation by powercsa density aims to a stochastic
description of the seismic input. Although, it wiasind the parameters of this function
does not influence the dampers placement. In factebing the power spectral density as
a constant white noise, the results change slighitlg comparison between a white noise
excitation and the Kanai-Tajimi results for theedharstory building examined in the
example is given below:

Floor | White noisi | Kana-Tajimi
1 1001( 1063¢
2 250: 1871
3 0.C 0.C

Damping coefficients [kNs/m] at different floors

In case of the nine-story building taken in exanchiapter 7.1 the difference is even less
significant. This fact is due to the similar shapehe different components of the square
transfer vector, which is composed by the sum efrthws of the transfer matrix. The
peaks in fact are all located at the same nattegLiency of the system and the first peak
relative to the first mode of vibration is the dowunt. Whatever input power spectral
density is chosen it has only a scaling effect twa integral to find mean square inter-
story drifts.

As other methods the design of the damped configuraequires the computation of the
dynamic stiffness matrix, which is a complicatedgadure.

Finally inelastic behavior is not taken into accbufhis is not significant in case of
regular building while could represent a limit irepence of irregular ones.

5.5 MATLAB code

MAIN PROGRAM

% INPUT 3story

% Structure

% Mass matrix

m=diag([ 200.4 200.4 178 ])
% Stiffness matrix

k=1000%[238.932 -119.466 0;-119.466 238.932 -119.46 6;0 -119.466
119.466]

% Inherent damping matrix

c0=[264.99 -78.09 -16.08;-78.09 246.89 -92.15;-16.0 8-92.15 162.02]

% Pramiters of Kanai-Tajimi function

Kanaj=[1.4, 11, 61.46];

% Number of degree of freedom

gdl=max(size(m));

% Matrix for the transformation in inter-story quan tities
T=eye(gdl)-diag(ones(1,gdl-1),-1);
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% Damping values

nd=20; % Number of damping increment

W=12513; % Total added damping

ci=W/nd; % single increment of damping

% Initializing dampers

cdi=zeros(gdl,1);

cd=T"*diag(cdi)*T;

c=c0+cd,;

for I=1:nd
% Frequency analyisi
[sigmaout]=MeanSquareValues(m,k,c,Kanaj);
% Maximal value of mean square drift
[Max,colonna]=max(sigmaout);
% Updating damping matrix
cdi(colonna)=cdi(colonna)+ci;
cd=T"*diag(cdi)*T;
c=c0+cd;

end

% Plot of dampers configuration

figure

barh(1:gdl,cdi)

title(['Dampers number: ',num2str(nd)])

%

SUBRUTINE MeanSquareValues
function [sigma]=MeanSquareValues(m,k,c,Kanaj)

% Function MeanSquareValues estimates the mean squa
story

% drifts of a given structure and for a given Kanai

% Input variables:

% m,k,c are the mass, stiffness and damping matrice

% Kanaj is a matrix containing the Kanai-Tajimi par

% Internal variables:

% H2 frequency transfer matrix

% Sin Kanai-Tajimi power spectral density

% Sout response power spectral density

% Number of degrees of freedom
gdl=max(size(m));

% Modal Analysis

[S,w2]=eig(k,m);

w=sqrt(w2);

% Pramiters of Kanai-Tajimi function
csig=Kanaj(1);

omegag=Kanaj(2);

Swhite=Kanaj(3);

% Matrix for the transformation in inter-story quan
T=eye(gdl)-diag(ones(1,gdl-1),-1);

% State space notation
invm=eye(gdl)*diag(1./diag(m));
A=[zeros(gdl) eye(gdl); -invm*k -invm*c];
B=[zeros(gdl,1);-ones(gdl,1)];
C=[eye(gdl) zeros(gdD];
lI=eye(2*gdl|,2*gdl);

re values of inter-
-Tajimi spectrum

S
ameters

tities
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% Highest frequency
mmm=round(norm(w,inf));
% Initializing matrices
H2=zeros(gdl,100*mmm);
Sin=zeros(1,100*mmm);
Sout=zeros(gdl,100*mmm);
% For cycle on the frequency range
for indice=1:mmm*100
omega=0.01*indice;
% Frequency transfer matrix
HH=C*inv(li*omega*Il-A)*B;
HH=T*HH,;
Hconiu=conj(HH);
H2(:,indice)=HH.*Hconiu;
% Kanai-Tajimi function
Sin(indice)=(1+4*csig"2*(omega/omegag)"2)/((1-
(omega/omegag)"2)"2+4*csig"2*(omega/omegag)”2)*Swhi te;
% Output power spectral density
Sout(;,indice)=H2(:,indice)*Sin(indice);
end

% Integral of the power spectral density

for n=1:gdI
sigma(n)=trapz(0.01:0.01:mmm,Sout(n,:));

end

end

Simplified Sequential Search Algorithm
5.6Introduction

A simplification of the sequential search algoritpresented in (Zhang and Soong 1992)
has been developed by (Garcia 2001) and is nowtekexam. The original sequential
search algorithm requires frequency domain analydesh are not appropriate for usual
engineers practice. For this reason the previouthadehas been modified, loosing,
although, some of his advantages, such as the aipesf the solution. The essential
idea behind the SSA is that dampers are placedeséglly where their effect is
maximized, that is where the mean squared valuatef-story drift is maximized. The
simplified approach changes the optimal locatiateinfrom this latter statistical quantity
to values which derive from usual time history gee such as inter-story drifts or
velocities.

The analysis can be carried on deciding an objectalue of the total added damping
and running the iterative process until this vaisieachieved, as made in (Zhang and
Soong 1992) and (Takewaki 2010). The author althodecided, in order to offer a
further simplification, to divide the total amouaf damping in a defined number of
dampers. In this way the damper sizes, usuallefit at every storey of the building,
are equal or multiple of the standard one, decloethe designer. Although interesting
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from a practical point of view, in order to carrg @ comparison between other methods,
this last possibility will not be considered.

5.7 Mathematical formulation

5.7.1 Equations of motion

The equations for a linear dynamic viscously danmgedem are given by:

mii(t) + cu(t) + ku(t) = —m Lii, (t)
where matrices, ¢ andk characterize mass, damping and stiffness of thetste at the
different degrees of freedom. denotes the horizontal floor displacement vecidre
damping matrixc is composed of two contributions: the originalistural dampinge,
and the one of the viscous deviegs

c=cyt+cy

The inter-story driftsé(t) are related to the floor displacements with thikowang
relationship:

u(t) =T &(t)
where, if the first degree of freedom correspoindhe first floor:
1 0 O
T=|1 1 0
1 1 1
The inverse relation will depends on the inversé&rimaf T which takes the form of:
1 0 o
inv(T)=|-1 1 0]
0 -1 1

5.7.2 Performance index

The basic idea of this simplified sequential sealgorithm is to place added damping
where their effects are maximized. The effect takés account by the author of the

paper although is not the inter-story drift, as madthe majority of other researches, but
the dissipation of energy. Due to viscous dampergn dissipation depends on the
velocity at the extremity of the device, damperes glaced where the inter-story velocity

is maximized. Thus this value becomes the perfoomamdex:

Pl = max; (maxt(|8i(t)|))
wherei refers to the different floors ardrepresents the duration of the time history
analysis.
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5.7.3 Solution algorithm

Before starting the design an objective dampinge/d&lave to be estimated in order to be
able to stop the procedure once the aim is achiedeexplained in chapter 2.4.5.2 the
estimation of this value is done considering a siagdegree of freedom system with the
period equal to the first one of the examined $tmgc Damping ratio is increased until
the maximum displacement resulted from time-histnglysis takes the desired value.
Hence a set of ground motions must be consideriedlly-the objective damping ratio
can be related to the viscous added damping with:
Sonj T XiKi

m f
whereé,; is the objective dumping ratid,is the first period of the building;; K; is the
sum of the lateral rigidity of all floors arfdis the factor which considers geometrical

amplification.
Assign initial
damping value

Ctot =

The authors suggested to divide the value of thed to
added damping in a discrete numbey of equal
dampers in order to obtain a more realistic final

configuration. Hence at each iteration one damger o
sizecy = c¢yo1 /My IS placed.

The simplified sequential search algorithm is based
time-history analysis, hence a set of ground mation
must be chosen for example deriving it from design
spectrum.

Then for each accelerogram the optimal configumatio
is achieved. As already seen in the previous method
the single iteration is divided in two steps. le fiirst

one an analysis is carried on to obtain the vadfi¢se
optimal location indices. In the second part dagpmn
added where the index takes the maximum value. The
procedure is repeated until the objective value of
added damping is achieved. The final configuratson
the envelope of the distribution evaluated for each
ground motion.

Hereafter a flowchart of the solution algorithm is
presented.

5.8 Example: 3-story shear frame

Mass, stiffness and damping matrices of the 3-dbaikding used by (Guck et al. 1996)

follow:

Decide the number of
steps/dampers

a

Time history analysis

-

Evaluation of intersorey
velocities

a

Calculation of optimal
location index

a

Damper updating
Ci=Ci+ AC
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LAO2 ground motion is taken into account, no initaded damping and a total of ten

steps are considered.

The first three iterations are here considered:

_ 1.0871
8MW =10.8437| m/s
0.5112

' 0.7290
8@ =[0.7058| m/s
0.4541

' 0.6239
8® =10.6274| m/s
0.4164

The final values obtained are resumed:

o 0.3146
8U™ =10.3104| m/s
0.2855

5.90bservations

L _ 0 '

Cyi = Ns/m

c® = 0

Cyi Ns/m

=11253.9
0

2507.9
2) Ns/m

(fin) _

V! 5015.8

0.0

7523.6
Ns/m

The proposed method represents a simple and effiaieernative to other more complex
solutions. Its implementation is intuitive and d@ncarried out with common commercial
software if a discrete number of dampers is choserfact it is only necessary the

computation of the peak values of inter-story vitieg to place each damper and if their
number is not high the procedure can be contraliadually.
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This algorithm is based on time-history analysisalwthighly simplifies the frequency
domain analysis used in the first version. On tteeiohand a set of ground motions must
be chosen in order to obtain results endowed oémgevalidity. As seen in the case of
analysis-redesign time-history the results fored#ht records can be really different as
shown in Figure 5-1 for the case of LAO6 and LAQS.

Dampers Dampers

—

- m w s o m 9 m @
- m W = . ®m 9 m @

L L L L L L L L L L L
[1} 2000 4000 6000 8000 10000 12000 14000 [1} 2000 4000 6000 8000 10000 12000

Figure 5-1 Dampers configuration for LA06 and LAG

As a result of the adoption of a set of accelenmgrahe computational effort due to the
number of analyses to carry out can easily increas® the manual control of the
procedure is no more feasible.

A point of great concern of this method is the waysuperpose the effects of the
different records. The simplest way is to superpibgefinal configuration achieved in
each one of the analyzed cases. Although in thinerathe effects of each damper at the
other floors is neglected and the obtained solut®mo more optimal. In fact the
envelope of the different distributions charactedizy the same amount of damping
results in configuration with a higher level ofabadded damping

The other way, as seen in analysis-redesign, isufierpose the performance indices
obtained from all the different records. In thisseathe time-history analyses are
performed for all ground motions and then the maxmvalue of the performance index
is chosen.

As seen before the criteria to identify the optiteghtion of dampers consists on finding
the place where the viscous device is able to éxpgocapabilities, that is the dissipation
of energy, in the best way. As a result the parameken into account is the inter-story
velocity (viscous dampers are velocity-dependenticés). This concept of optimal
placement is quite singular between all the prooesihere proposed. It is more common
in fact the criteria based on the effects thatdbeice produces on the response of the
structure. Hence damping is added in correspondentke place where the structure
suffers more damage that usually is where the -sttay drift is maximized. The
difference on the results between these two citeyievident in case of low level of
damping, that is for seismic excitations that extitgher modes, as shown in Figure 5-2
for the case of the LAO7 record.

75



Darnpers Darnpers

- m W = o @ N m @

L L L L L L L L L L L
0 2000 4000 5000 5000 10000 12000 14000 0 0s 1 15 2 25 3

Figure 5-2 Configurations for LAO7 using a) orighal velocity criteria b) drift criteria

For the ground motions that influence mainly thestfimode of vibration, and
consequently require a higher level of damping,difierences trends to expire because
inter-story velocities achieve larger values inrespondence of significant inter-story
drifts. Considering for example LAO3 accelerograntptal amount of damping equals to
four times the one requested for the LAO7 recosdlte from design by analysis-redesign
time-history. The final distributions in case instory velocities or drifts are taken into
account are quite similar as can be seen in Figie

Darnpers Darnpers

wigt

Figure 5-3 Configurations for LAO3 using a) orighal velocity criteria b) drift criteria

As explained in chapter 7.4 the results obtainedgumter-story drift criteria are very
similar to the one obtained using time-history ge@tredesign optimization method, due
to the similar performance index used in the twaesa

This similarity in the final configuration is obtegd if the total added damping is divided
in a number of parts enough high to be comparabtedontinuous analysis. In fact a low
number of devices, characterized thus by a large, sloes not fit well the optimal
solution. Depicted in Figure 5-4 for the case of thine-story structure analyzed in
chapter 7.1, the results of the method for differdiisions of the total added damping
under the excitations of LA7 and LA3. The objectd@mping is divided in different
parts and a time-history analysis is carried outgushe final configuration of dampers.
In figure 5.4 the maximum and the mean value d@rhstory drift are shown.
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Figure 5-4 Influence of number of dampers for a) A07 b) LA03

As can be seen the influence of the number of sgegsferent for the two cases. In case
of low intensity ground motion and consequently I@vel of damping, such as LA7
record, the influence expires after about twentynplrs. Instead for high levels of
excitation the influence is lower. Moreover theusimin achieved in the continuous case
is not the optimal one as can be observed by timgmaim in correspondence to the five

number of dampers.

5.10 MATLAB code

% INPUT 3story frame

% Stiffness matrix [KN/m]

k=1000%[238.932 -119.466 0;-119.466 238.932 -119.46
119.466]

% Mass matrix [tons]

m=diag([ 200.4 200.4 178 ])

% Hinerent damping matrix [KNs/m]

c0=[264.99 -78.09 -16.08;-78.09 246.89 -92.15;-16.0
% Initial conditions

IC=zeros(3);

% Number of degrees of freedom
gdl=max(size(m));

% Allowable inter-story drift

DriftsAllow=[0.03 0.03 0.03];

% Ground motion

nomefile="LA2.txt";

Dt=0.02;

fact=1/9.806;

% Modal Analysis

[S,w2]=eig(k,m);

w=sqrt(w2);

Periodo=2*pi/w(1,1)

% Matrix for the transformation in inter-story quan
T=eye(gdl)-diag(ones(1,gdl-1),-1)

% Initial dampers values

cdi=zeros(1,gdl);

cd=zeros(gdl);

c=c0;

6;0 -119.466

8-92.15 162.02]

tities
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% Total added Damping Value

TotalDamping=12539.4;

nd=10; % Increments number

ci=TotalDamping/nd; % Single increment

for I=1:nd
% Time-history analysis
[u,ul]=Newmark(Dt,nomefile,fact,m,c,k,IC);
% Inter-story maximal velocities
d=T*ul,
Max=max(abs(d"))
for jjj=1:gdl

rapporto(jjj)=Max(jjj)/DriftsAllow(jjj);

end
[Max,Place2]=max(Max);%max(rapporto);
colonna=Place2;
% Updating of damping matrix ¢
cdi(colonna)=cdi(colonna)+ci
cd=T"*diag(cdi)*T;
c=cd+c0;

end

figure

barh(1:gdl,cdi)

title('Dampers');

xlabel('Damping kNs/m")

ylabel(‘Floor number’)
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6 MINIMUM TRANSFER FUNCTION
6.11ntroduction

The present methodology, developed by (Takewaki &aoto and Fujita 2010), takes
into account the inter-story drifts transfer funatievaluated at the undamped natural
frequency of the structural system. The first vasiof this method considered as
objective function the sum along the height of bisdding of amplitudes of the transfer
function (Takewaki 1997). A similar approach do¢sdéscribe properly structural
damage that, especially in irregular buildings, dsn concentrated. An appropriate
measure to describe structural safety is the maximalue of inter-story drifts and it was
adopted in the last version of this method. Thietasersion is now presented.

6.2 Mathematical formulation

6.2.1 Equations of motion

Consider a N-storey building model with added viscdampers. The equation of motion
is:
mi(t) + cu(t) + ku(t) = —m Lii,(t)
wherem andk are the mass and stiffness matrix respectivelyuadenote the horizontal
floor displacement vector. The damping matrils composed of two contributions: the
original structural damping, and the one of the viscous deviegs
c=cytcy
Let U(w) and Ug(w) denote the Fourier transforms»ft) andii,(t) respectively, and
o the generic circular frequency of a sinusoidalitexion. The equation of motion in the
frequency domain becomes:
(—’m+iwc +k)U(w) =-m1lU,(w)
That can be modified to:
Alw)U(w) =B Ug(a))
where
Alw) =—-w'm+iwc +k
B=-ml
The inter-story driftsé(w) are related to the floor displacements with thko¥zang
relationship:
Ulw) =T é(w)
where, if the first degree of freedom correspoidhe first floor:
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1 0 0
T=|1 1 0
1 1 1
The inverse relation will depends on the inversé&imaf T which takes the form of:
1 0 0
inv(T)=|-1 1 0]
0o -1 1

The inter-story drifts transfer function can nowdwedfined by the ratio of the drift vector
to the ground acceleration:

8(w) = 8(w)/Ug(w)

Hs(w) = 8(w)/Ug(w)
which, with the previous equations, takes the form:

8(w)=TA Y (w)B
The amplitude of this transfer function is meanuigfince the mean squares of the
response can be evaluated by multiplying the posparctral density function of the
ground acceleration on the squared transfer fumatigelf and integrating that in the
frequency domain. The shape of this function feedain degree of freedom is normally
composed by the peaks of each mode of vibratioe. Aigher peak is the first, which
corresponds to the first mode. In this lower rawgerequency usually also ground
motions show their highest values. It means thatlost significant contribution of the
response is due to the first mode, in which eadkgs principal frequency range is
resonant to the fundamental natural frequency @fsthucture. For this reason the values
of the inter-story drift transfer function at thataral frequency will be considered as
representative quantities of the response of thidibg:

8(w;))=TA Y (w,) B

6.2.2 Optimality criteria

The problem of optimal dampers placement considtrmting the optimal distribution of
a given value of viscous damping capadityso as to minimize the magnitude of inter-
story-drift transfer function at the natural frequg of the system. The problem can be
stated as:
Minimize J= maxi,w1|3i(w1)|
Subjectto  Yicqi =W
The Lagrangiah for the optimal design problem can be defined as:

L(cg ) =] + 2 (Zl-cd-i _ vT/)

where/ is the Lagrange multiplier. The optimality crieecan be derived from stationary
conditions ofL with respect td andc,:
fitA=0 fori=1,2...N
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ZCd_i—VT/=0
i

The symbol() ; denotes the partial differentiation with respeat t;.

In order to define the present objective functibrsinecessary to proceed in two steps.
First it is to find the degree of freedom assoddtethe maximum absolute value of the
inter-story drift of the transfer function. Them correspondence of this story, the
maximum value of first-order sensitivities shoulel dearched, or, in other words, it is to
find where the placement of a damping device hasenmluence on that inter-story
drift.
The derivation of these quantities is now discusBefferentiation of frequency domain
form of equation of motion with respectdg; provides:

AU+AU;=0
A; can be expressed, depending on if the derivationade respectively the last floor or
one of the others, as:

1 -1 0 1 0 O
Aiznga=|-1 1 0| Ai-ygaa=|[0 0 0
0 0 0 0 0 O
The first-order sensitivities of displacements barderived as:
ij,i = —A_lAiﬁ

Due toé = TU, it is possible to obtain also the first-order wif
8§, =-TA*A,T '8
Because of the frequency domain analysis, driftsdisplacements are complex numbers
composed by a real and an imaginary part:
8; = Re[d;] + i Im[§;]
The absolute value of drifts is defined by:

8 = | Re[8.])” + (m[5])°
The first order sensitivities of absolute valuesiofts can be expressed as:

B, = 57 (RelBdrela]) + i) m[5]) )

where(Re|[8;]) jand(lm[&-])j are calculated from previous equation.

6.2.3 Solution algorithm

The procedure aims to arrange in the optimal wgiyen amount of damping capacity.
As explained in chapter 2.4.5.2 the estimatiorhdf value is done considering a singular
degree of freedom system with the period equaieditst one of the examined structure.
Damping ratio is increased until the maximum disptaent resulted from time-history
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analysis takes the desired value. Hence a setafngr motions must be considered.
Finally the objective damping ratio can be reldtethe viscous added damping with:
$onj T 2iK;

m f
whereé,; is the objective dumping ratid,is the first period of the building;; K; is the
sum of the lateral rigidity of all floors arfdis the factor which considers geometrical
amplification.
Naturally a change in the disposition of dampingngl the structure modifies the values
of displacements and drifts. For this reason amtitee procedure must be adopted and
the total damper capacity W is increased graduBléfined N as the number of steps in
which the final value of damper capacity is achéevhe increment of damping in each
steps is:

Ctot =

w

N
The algorithm starts finding the natural frequentyhe structure in order to calculate the

peak values of inter-story drift. Then it is ne@ggo identify the storey which exhibits

the maximum amplitude of those peak values. The
Assign initial
damping value

location of the added damping corresponds to the
Decide the number of steps

Ac

one in which the first-order sensitivity of drift the
predetermined floor is maximized. As damping
increase the performance indices assume similar
values and for this reason added damping must be'
spread between them. The authors proposed a,

-

formal way which requires the computation of the
second order sensitivities.

divided in equal parts and distributed in the for
that show similar first order sensitivities. It ie
underline that this procedure is not possible & th
first version of the algorithm (Takewaki 1997)
because in that case an initial amount of damping
was modified in order to bring the optimal
configuration. Hence damping in a specific location
could be added or removed. In this last version
instead the initial damping equals zero, and the
optimal configuration is achieved adding damping
where the performance indices are maximized.

After the placement of the damper increment the
damping matrix is updated and the procedure is
repeated until the achievement of the prescribed

In order to avoid this ‘
expansive calculation the added damping is simply .

Frequency analysis

-

Evaluation of the floor with
maximum intersorey drift

-

Evaluation of the maximum
sensitivity on that floor

.

Damper updating
Ci=Ci+ AC

|




amount of damper capacity

6.3Example: 3-story shear frame

Mass, stiffness and damping matrices of the 3-dboiikding used by (Guck et al. 1996)

follow: 800mm
2004 0 0 *‘—';o—""*
m=| 0 200.4 0 | kg T 57 =7
0 0 178.0 e20mm &

238,932 —119,466 0 + Jle""200.4 kg Sl 2004 kg I )
k [—119,4—66 238,932 —119,466 N/m 0 F(L;'ﬁg;;
— 820mm race

0 119,466 119,466 e s

JlL 200.4 wg ull
[264.99 —-78.09 —16.08 S e
—78.09 246.89 —92.15[ Ns/m 820mm Stesl A3S
—16.08 —92.15 162.02 ﬂ T
i dlc

There is no initial added damping.

A total added damping d¥V = 12512.9 kNs/m and a steps number &f = 100 are
considered.

The derivatives of matriR follow:

11.21¢ 0 O 11.21¢ —-11.21i O
A= 0 0 0| A,=|-11.21i 11.21i 0]
0 0 0 0 0 0
0 0 0
A; =0 11.21i -—-11.21 i]
0 —-11.21:¢ 11.21i

The first three steps are here considered:
W _ 0.1110 @ _ 0.0954 3 _ 0.0836
|5;] 0.0876| |&;] 0.0753]| |8 0.0660
0.0457 0.0393 0.0345

For each maximum absolute value of inter-storytdhie first order sensitivities are
given:

o 0.1453] 0.1073] ., 0.0824
|6, " =107 [0.0903| [&] " =107|0.0667| |8, " =107 [0.0513
' 0.0246 ‘ 0.0182 ' 0.0139
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Then the updated dampers vectors are:

125.1 250.3 375.4
¢ =] 00 |Ngm ¢ =] 00 [Ngm ¢ =] 0.0 |Ngm
0.0 0.0 0.0
The final values obtained are resumed:
. 0.0068 . 0.5899 ' 9509.8
13,9 = [0.0068] |6i|,-(fm) =106 [0.4086‘ I = [3003.1 NS/m
0.0037 ' 0.1073 0.0

6.4 Observations

Since the analysis is carried out in the frequethmyain, it avoids the dependency from
the particularities of seismic excitation, presigstead in all the methods that use time
domain time history and, consequently, particuleougd motions. This independency
gives to the obtained results a more general wglatjainst phenomena like earthquakes
characterized by a wide variability. On the othandh, as the specific conditions at the
site are not considered, the efficiency of the dag@ttained is lesser. Moreover, the
input considered by the methodology is actuallyaartonic excitation with a frequency
equal to the fundamental frequency of the structure

Note also that it is not immediate to determiner@ppr value for the total amount of
dampingW. As seen in the descriptions of the other methisdsvaluation is possible a
priori, as suggested in chapter 2.4.5.2, or duttiregcourse of the optimization process. In
this latter case damping is added until the peréoroe of the building is acceptable.
Finally, as other methods the design of the dampedfiguration requires the
computation of the dynamic stiffness matrix andncaraccount for nonlinear response.

6.5 MATLAB code

% INPUT 3story frame

% Stiffness matrix [KN/m]

k=1000%[238.932 -119.466 0;-119.466 238.932 -119.46 6;0 -119.466
119.466]

% Mass matrix [tons]

m=diag([ 200.4 200.4 178 ])

% Hinerent damping matrix [KNs/m]

c0=[264.99 -78.09 -16.08;-78.09 246.89 -92.15;-16.0 8-92.15 162.02]
% Initial conditions

IC=zeros(3);

% Number of degrees of freedom

gdl=max(size(m));

% Matrix for the transformation in inter-story quan tities
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T=eye(gdl)-diag(ones(1,gdl-1),-1)
invT=tril(ones(gdl,gdl));
% Total added damping
W=12512.9;
N=100; % number of increments
Dc=W/N; % single increment of damping
% Initial dampers values
cdi=zeros(gdl,1);
cd=T"*diag(cdi)*T;
c=cd+cO0;
% Modal Analysis
[S,w2]=eig(k,m);
w=sqrt(w2);
omegal=w(1,1)
periodol=2*pi/omegal
% Main cycle on the step number N
for g=1:N
% Transfer matrix
A=k+1li*omegal*c-omegal”2*m;
invA=inv(A);
% Derivative of the transfer matrix
for nn=1:gdI
if nn==1
Aderivata(nn,nn,nn)=1;
else
Aderivata(nn,nn,nn)=1;
Aderivata(nn-1,nn-1,nn)=Aderivata(nn,nn
Aderivata(nn,nn-1,nn)=-1;
Aderivata(nn-1,nn,nn)=Aderivata(nn,nn-1
end
end
Aderivata=Aderivata*omegal*i;
% Inter-story drifts
delta=-T*invA*m*ones(gdl,1)
deltaABS=abs(delta);
% First order sensitivity of inter-story drifts
for nn=1:gdI
deltalderivato(:,nn)=-T*invA*Aderivata(:,:,
end
% First order sensitivity of absolute values of
for nn=1:gdI
for nnn=1:gdl

deltaABS1(nn,nnn)=(real(delta(nn))*real(deltalderiv

imag(delta(nn))*imag(deltalderivato(nn,

end
end
deltaABS1=abs(deltaABS1);
% Maximum inter-story absolute value
[mass1,piano]=max(deltaABS");
% Maximum first order sensibility absolute valu
[mass2,dove]=max(deltaABS1(piano,:));

% Counting how many values are similar(2% of di

posizioni=[];
cont=1,
for bb=1:gdl
if (mass2-deltaABS1(piano,bb))/mass2<0.02

nn)*invT*delta;

inter-story drifts

ato(nn,nnn))+...
nnn)))/deltaABS(nn);

e

fference)
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posizioni(cont)=bb;
cont=cont+1
end
end
% Number of maximum values
fine=size(posizioni,2)
% Updating damping matrix
if fine>1
for tt=1:fine
colonna=posizioni(tt);
cdi(colonna)=cdi(colonna)+Dc/fine;
end
else
colonna=dove;
cdi(colonna)=cdi(colonna)+Dc;
end
cd=T"*diag(cdi)*T;
c=c0+cd;
end
figure
barh(1:gdl,cdi)
titte('Dampers");
xlabel('Damping kNs/m")
ylabel('"Floor number)

86



