ANNEX A: ANALYSISMETHODOLOGIES

Al I ntroduction

Before discussing supplemental damping devices, &hnex provides a brief review of
the seismic analysis methods used in the optinozasilgorithms considered in this

thesis.

First, time domain analyses are described in walato different possible structural

systems. Particular attention is given to Newmartitee-step method which was

implemented in order to carry out linear analysspiired in two optimization methods.

Then frequency domain analysis is described, exiplginow the transfer function can be
used to obtain the structural response. Finallyriaf presentation on the stochastic
response of linear structures is presented in ddretter understand the meaning of
power spectral density and the way to get thessizdi response used in one of the
analyzed methods.

A.2 Time domain

The dynamic response of a system in time domainbeadetermined in different ways.
In a linear system with classical damping it isgiole to apply classical modal analysis.
Natural frequencies and mode shapes are computethanequations of motion, when
transformed to modal coordinates, become uncoupléuls the response of each
vibration mode can be computed independently floenathers, and the modal responses
can be superposed, in different ways, to deterrtiveetotal response. Time-stepping
methods can solve the single degree of freedomtiegseof each dynamic coordinate in
case that the excitation is in the form of realked®ograms.

This classical modal analysis can’'t be applieduchssystems containing very different
levels of damping and also in presence of viscamping devices. In this latter case in
fact the matrix relative to the added damping faraple for two-dimensional systems is
a tridiagonal one which is not always diagonakdnsformed in modal coordinates. For
such non-classically damped systems modal anaiysi®t possible because classical
vibration modes do not exist and the equations ation can’t be uncoupled. There are
two possible ways to find the dynamic responses Ipossible to apply a complex
analysis, that is transforming the equations ofiomoto eigenvectors of the complex
eigenvalue problem which includes also damping imaffhe second possibility consists
on solving the coupled system of differential egureg. In this case numerical methods
are required even in the case of simple dynamigaions because solutions in closed-
form are not possible. For usual practice thisetatvay is mostly used, also because
numerical methods are required to solve the inelgstoblem which is of primary
interest in earthquake engineering.
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In the present research, for the optimization mashehich require time history analysis,
this latter approach has been chosen using Newisankthod. In the next paragraph the
mathematical description of the algorithm is prexdd

Newmark's method

Developed by N. M. Newmark in 1959 this method usey the most used in time
history analysis because of its stability (undertate conditions) and accuracy. It is
based on a finite different approximation whichesikhe form:
(A.2.2) Uipr = W + [(1 —y)At]id; + (At y)iizy,
(A.2.2) Uppq = w; + At i + [(0.5 — B)(AL)?]it; + [B(A)? ity

The factory provide a weighting between the influence of thigal (i) and the final (i+1)
acceleration on the change of velocity. The faftanstead provides a weighting of the
initial and final accelerations to the displacement
The different studies that have been carried o fivimulation showed that the factor
influences the amount of artificial damping indudsdthe numerical method, so that it is
recommended to take this value equal to 0.5.
Moreover, choosing a fact@r1/4 the formulation becomes:

Uiy — Uy

At

It is possible to see that the acceleration comedp to the average value of the
acceleration at the two time steps considered.ttiierreason Newmark’s method with
B=1/4 is also referred to as constant average aatiele method.
On the other hand, considerifgl/6 and substituting it in the Newmark’s formudeti
results in the same equations as if a linear aat@e over the time was chosen. Thus
the Newmarl3=1/6 method is also known as the linear acceleratiethod.

1
=3 (41 + ;)

Agoelerstion

i Constsni ¥ | ¥

Yisplace meni Displacemom
g

FigureA-1 Variationswith timein case of average and linear acceleration assumption
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An important characteristic to know about numeritathods is the stability, that is the
capacity to lead to bounded solutions without diugy. If it happens only for a limited
range of time-increment these methods ameditionally stableif, instead, there are no
restrictions on the choice of the length of th@stiney are callednconditionally stable
Linear acceleration method belongs to this lastgaty and is stable ift/T, < 0.55
whereT,, is the natural period. This stability criterianet restrictive for singular degree
of freedom system because values of the time-inen¢@re sensibly less than the natural
period. It becomes influent in case of multi degre&eedom system so that the adoption
of unconditionally stable methods is necessary.
It is to note that Newmark’s formulation requirésrations in order to be implemented,
because the unknowid;,; appears also in the second member of the equatibis
possible to avoid this iterative process usingentental quantities:
Aty = Ujpq — Uy Aty = Uipq — U Dwy = Ujyg — Uy
Ap; = Di+1 — i
Moreover the original formulation can be rewrittes
Au; = (At)il; + (y At)Aiy
2
Au; = Atu; + (ATt) ii; + B(AL)? Ail;
Solving the second of these equations brings:
1 . 1.
" p@o M T At T 2p
Substituting this equation derived from the second in the first one gives:
Aty = ﬁAui - %ui +a¢(1 —%) i
It is now possible to substitute the two obtaingdations in the incremental equation of
motion:

Ail;

mAul +CA1:LL' +kAui :Apl
The substitution brings:

EAUL' :ApAl'
Where:
~ 14 1
k =k+ﬁAtC+ﬁ(At)2m
And
R 1 Y ). 1 4 "
Ap; = Ap; + (mm +Ec)ui + [ﬁm + At (ﬁ_ 1) C] i

With k andAp; known from the system properties ¢, andk algorithm parametersand
B, and theu; andii; at the beginning of the time step, the incremedisphlacement is
computed from:

A

>

i
Aui =

~|
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OnceAu; is known,An; andAii; can be computed from the previous equations. deror
to obtain the value of the acceleration to stagtdhalysis the equation of motion can be
used:

_ Div1 T CUyq — kuiq
L m

Hereafter the implementation of Newmark’s method MATLAB is shown. This

numerical algorithm has been used for solving tmseries in the optimization problem

which require it. Note that average acceleratiorthoe has been adopted since multi

degree of freedom systems must be analyzed.

MATLAB code

function [u,ul,u2]= Newmark(Dt,nomefile,fact,M,C,K, IC);

% Input

parameters

% Dt time step

% nomefile name of the file containing the accel erogram
% 1/fact  scale factor for the accelerogram

% M mass matrix

% C damping matrix

% K stiffness matrix

% IC matrix containing the initial conditi ons of the system
% i.e. velocities and displacements

% Output

parameters

% u displacement time-history

% ul velocity time-history

% u2 acceleration time-history

% Number of degree of freedom
gdl=max(size(M));

% Modal Analysis

[S,w2]=eig(K,M);

w=sqrt(w2);

Periodi=2*pi*inv(w);

% Ground motion

leggo=fopen(nomefile,'r");
accelerazione=fscanf(leggo, %g',[1 inf]);
tmax=Dt*max(size(accelerazione));
acc=accelerazione/fact;

fclose(leggo);

p=-M*diag(ones(gdl))*acc;

% Newmark parameters

beta=1/4; %mean acceleration: beta=1/4
gamma=0.5; %linear acceleration: beta=1/6;
% Parameters for the Newmark's method
KK=K+gamma/(beta*Dt)*C+1/(beta*Dt"2)*M;
a=1/(beta*Dt)*M+gamma/beta*C;
b=1/(2*beta)*M+Dt*(gamma/(2*beta)-1)*C;
% Initializing matices
u=zeros(gdl,max(size(p)));
ul=zeros(gdl,max(size(p)));
u2=zeros(gdl,max(size(p)));
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dul=zeros(gdl,max(size(p)));
du2=zeros(gdl,max(size(p)));
% Initial conditions
u(:,1)=(C(:,1));
ul(:;,1)=(1C(:,2));
u2(:,1)=inv(M)*(p(:,1)-C*ul(:,1)-K*u(:,1));
% Newmark method
passi=max(size(p));
for i=1:(passi-1)
DP=p(:,i+1)-p(.,i);
DPP=DP+a*ul(:,i)+b*u2(:,i);
du(;,i)=inv(KK)*DPP;
u(;,i+1)=u(:,iy+du(,i);
dul(:,i)=gammal/(beta*Dt)*du(:,i)-gamma/beta*ul( Lh);
ul(,i+1)=ul(:,i)+dul(:,i;
du2(:,i)=1/(beta*Dt"2)*du(:,i)-1/(beta*Dt)*ul(: J0)-
1/(2*beta)*u2(:,i);
u2(:,i+1)=u2(:,i)+du2(:,i);
end
end

A.3 Freguency domain

The main limit of time history analysis is the degdency of the results from the ground
motion considered. In fact not only the acceleratanplitude or the duration of an

earthquake has to be taken into account, but sdceguency content, that is the Fourier
transform of the accelerogram. An earthquake caadhexcites a structure in different

ranges of frequency which could match the natuegjfencies of the system. Analyses in
frequency domain allow a better understanding efrésponse of the structure without
any dependency on input ground motions.

A..3.10scillator with sinusoidal excitation

The simplest case to analyze to better understaedréquency domain analysis is a
single degree of freedom system subjected to &aidal excitation having an amplitude
iiy and a circular frequenay:.
ity (t) = iiy sin (wt)
The equation of motion is the well known:
mu(t) + cu(t) + ku(t) = —miiy(t) = —mii, sin (wt)
which can be written also as:
uw(t) + 2 ¢ w,y ut) + w,® u(t) = — i, sin (wt)
As in all differential equations afecond ordea particular and a general solution can be
found. The general solution is related with theiahiconditions of the oscillator. With
damped systems it is possible to demonstrate thatpart of the response reduces
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quickly also if low damping ratios are present.this case it is possible to neglect this
transient response derived from the general solutiod focalize the attention on the
steady state part of it.

Figure A- 2 shows the different parts of the soluti

Steady-state response

Figure A-2 Combination of steady-state and transient responses

Due to the presence of damping, in the formulatbnhe particular solution, a cosine
wave must be added (or a phase angle) becausedpense is generally not in phase
with the excitation. the particular solution takles form:
Upgre = Asin(wt) + B cos(wt)

Substituting the derivatives of the particular $iolo in the equation of motion leads to:

sin(wt) [—EZA — 28w, 0 B+ wiA+u,|+

+cos(@t) [~w’B — 2§ w,w A+ w2B] =0
In order to satisfy this equation for all valuestpft is necessary that each of the two

square bracket quantities equal zero; thus, orerabt
mu

A1 —-B?)—B2EB = kg
B(1-B)+A2&L=0
where;:
w
b=

Solving these two equations simultaneously yields:

A:mug[ 1-—p? l
k [(1-B%5)*+(2EP)?
_muy —2¢&p0 ]
kLA -BB2+ (28 )2

Introducing these expressions in the steady stéiéien brings:
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i’ . |1~ 52 sinG@t) — 2. peos @0)
k L(1=B*2+ (25 p)?
This formulation of the response can be more easitierstood if rewritten in the form of
a unique sinusoidal wave with a phase angle:
u = 1 sin(wt — @)
It can be demonstrated that the amplitude takefotine
4 mu, 1 ]
ko lJ@-pH2+(2¢p)>

while the phase angle is:

b = arctan(

2€ﬁ>
1— 2
It is interesting at this point plotting the soledldynamic magnification factd, that is

the ratio between the dynamic response to the abpnt static Ioae’l% for different
values of damping:
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FigureA-3 Magnification responsefactor spectrum for different values of damping

This frequency response curve shows that sinusgidaind accelerations with different
circular frequency have a different impact on tlseiltation of the singular degree of
freedom system. The same discussion is valid féerént type of ground motions acting
on a structure. Of course real earthquakes havera nomplex frequency content than
that of a sinusoidal wave, but their response @fobind with a simple superposition of

the responses at all the different frequencieshef ¢arthquake. This procedure is
explained hereatfter.

A..3.2Freqguency domain superposition

This procedure consist on expressing the applieatlihg in terms of harmonic
components, evaluating the response of the steidmreach component, and then
superposing the harmonic responses to obtaingttadtural response.
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In order to do that it is necessary to introduceairles transforms which allow the
transformation from time dependent variables tguency dependent. In doing so, the
Fourier series representation is in exponentialiategdjral form:

17 -~
p(t) =5 fp(imn)elw“t dwy,

P(iw,) = fp(t) e~ lOntdt
The first expression is the inverse Fourier tramafostead the second is the direct one.
With this latter equation the frequency contenthaf ground motion can be computed.
If ground motion is expressed, using the direchdfarm, in terms of individual
harmonics then-th harmonic steady state response of a singular degfefreedom
system will be:

u, = H, P(iw,) e'®nt

Using the exponential form for Fourier transfornsodahe frequency response coefficient
H, must be exponential. This is easily obtained esging an unitary wave excitation
and the steady state response in exponential fordhtlaen substituting them in the
equations of motions:
iy = U, et

u=He“" q{=iwHe% {ii=—p>He®

Substituting them in the equation of motion:
mii(t) + cu(t) + ku(t) = —miiy(t)

brings:

H(i®) = m

mw?—iwc—k
Having the response for an individual harmonisihow possible to use the principle of
superposition to evaluate the total response o$itigular degree of freedom system:

1 [ _
u(t) = 5 f H(i®)P(iB,)e't da,

A..3.3Frequency domain analysis for multi degree of frerdystems

All that explained since now for a single degredreédom system can be expanded to
multi degree of freedom systems. The concepts lfegesame, the formulation will be
matricial. The equations of motion for such systemes

mii(t) + cu(t) + ku(t) = —m 1iiy(t)
where e is a vector made of zeros and ones that pot where the dynamic excitation is
applied.
As done before it is now possible to define theadyestate response and the dynamic
load in the exponential form:
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i, = U, et

u=He'®" u=iwHe® ii=—-w’He®"t
Substituting in the equations of motion the matixthe frequency response transfer
functionH is derived:

H(i®) =invimo?>—iwc—km
Each component of this matrik; give the effect in théth degree of freedom due to a
unit load applied in coordinaje
The response of the structure can be obtained ssipgethe load in frequency content
using the direct Fourier transform and then, usihg indirect transform and the
frequency response transfer function:

P(iw,) = f — 1 i, (t)e ntdt

— 00

1 ¢ _
u® = 5= f H(i@) P(i@,) ei®nt d@,

The concepts here developed are usually not uselt&in the response of structures but
are useful for the analysis of the stochastic respaas will be explained in the next
paragraphs.

A4 Stochastic response of linear structures

This paragraph develops input-output relationsiigodinear systems and characterizes
the output stochastic response in terms of stoichagtut and their transfer function.
Firstly a brief review of the main probability furen is reported in order to better
understand the concept of power spectral denstyeldped in the second part.

A..4.1Averages
Averages most commonly used in nondeterministityaisaare defined hereafter:

mean value
T

1
Uy = Th_r)rgof i u(t)dt

mean square value
1 T
2 — Tiem — 2
(U _Th—E?oT_L u“(t)dt

variance
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Properties of random data are mainly describechbget different types of function: the
probability density function, the autocorrelatiamé€tion and the spectral power density.

standard deviation

A..4.2Probability density function

Probability density function is defined as the ditgnp(u) which represents the
probability that the variabla(t) equals a value on the range betwaesndu+4u. It is
described with the following relation:
_ prob(u <u(t) <u+ Au)

p() = lim, A
In terms of probability density function the meauey, and the mean square valjig
are related with the following relationships:

Hy = f up(u)du

(o]

2 =j u? p(u) du

The most commonly used probability density functidra single random variable is the
so called normal, or gaussian, distribution whldefined by the symmetric relation:

1 _(u_lhé)z
(W) = ——=—¢ 2
P V2mo,

A..4.3Autocorrelation function

Autocorrelation function defines the dependencyrd value of the random process at a
defined time to the value of the same random pmegdthe others time instants. For a
given time history u(t) the autocorrelation betwésrvalues at time t and t+s:

1 T
Ry(®) = Jim - f u(®) ult +7) dt
0

Clearly this function has a maximum1nr0, that is at the instant to which all values are
referred to. Moreover it is a symmetrical function.
The relationships with the mean vajugand the mean square valjg follow:

ty =+ Ry ()
Wi = Ry(0)
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In order to better understand the meaning of thigtion it is useful to consider it with
respect with two different signals: a sinusoida¢ onixed with a low random disturb and
a casual narrow banded signal as shown in Figureaid Figure A- 5.
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FigureA- 4 Sinusoidal signal with disturb

u(t)
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FigureA-5 Narrow-banded signal

The relative autocorrelation functions follow.

R, (T)
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Figure A- 6 Autocorrelation function for sinusoidal signal with disturb

R, (T)

FigureA-7 Autocorrelation function for narrow-banded signal

It can be noticed that a sinusoidal wave, like athyer deterministic function, has an
autocorrelation function which doesn’t vanish witie time like happens for random
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data. The autocorrelation is useful to understémaists a deterministic component in a
signal.

A..4.4Power spectral density function

The power spectral density function of random digscribes the frequency content of
the mean square value of this data. In the nextgoaph the mathematical derivation and
the properties of this function are reported.

It is known that any accelerogram can be separatéid frequency components using
standard Fourier analysis. The duration of the mgounotion the Fourier integral
representation can be used:

1 [ _
() = — f U(i@)e'® da
27
U(iw) = ju(t) e~ @tdt
Usually the quantity of most interest in analyzistgtionary random processes is the
mean square value of u(t) over the interval s, titan be obtained by substituting the

first of Fourier equations into the relation:
s/2

1
2 = 5 f u(t)? dt
-s/2
to obtain:

P2 = f U(i@)? d@w

Using the second of the Fourier equations it become

(o]

vi= |

—00

© 2 0

f u(t) e-@tdt| da = f 5.(&) dis

—00 — 00

where the function:

[e9) 2
f u(t) e@tqt
is defined as power spectral density function fog tandom data u(t). This function
yields the mean squared value of u(t) when integraver the frequencies.

Su () =

The power spectral density and the autocorreldtiontions are related with the Fourier
transforms as shows:
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1 [ -
Ru(‘[) :ﬁ JSu(G) et%tda

S, (@) = fRu(T) e totdr

— 00

Relationships can be found also with the mean vahatthe mean squared value:
0+
Hy = f Su(@) dw

0~

[oe]

Yy = f 5u(@) d&
0
In relation with the previous plotted signals, tt@respondent power spectral density

functions are presented hereatfter:

S ()

(0]

Figure A- 8 Power spectral density function of a sinusoidal signal with disturb

(0]

Figure A-9 Power spectral density function for a narrow-banded signal

A..4.5Stochastic response for sinqular degree of freeggstems

It is now possible, knowing all the functions abfgaexplained, to describe how to obtain
stochastic output measures using the power spensity of the chosen ground motion.
In order to give a mathematical explanation on réslationship between the input and
output statistic quantities autocorrelation functamd convolution integral must be used.
The convolution integral is a way to obtain resgotisough time domain superposing all
the consecutive responses of a pure impulse itipistalso called Duhamel integral and
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it is suitable only for linear analysis due to gwperposition of effects. It can be written
in the form:

[ee]

u(t) = f h(t) p(t — 1) dt

where h(t) is known as the unit impulse response functionabse it expresses the
response of the SDOF system to a pure impulseibmagnitude applied at tinte .

The response obtained with this time domain approzan be related with the one
obtained from the frequency domain approach exethipreviously using Fourier
transforms. The frequency transfer functié(iw) in fact is the Fourier direct transform
of the unit impulse response functibft) as shown:

H(®) = Jh(r) e totdr

Consider now two different instantandt+ 7 , it is possible to determine their responses
with the convolution integral in the following way:

(o]

u(t) = f he) p(t — €) de

— 00

u+ o) = [ B0 p(Ce+ )~ ) dy
Their autocorrelation function;':,o are_ 0g:;iven by:
W@ u(e+0) = [ hE© RGPt~ ) p((e +7) = ) de du
that is: —°°OO
Ru® = [ () R4 Ry(x + € = ) de dy

which relates the inpwt, and outpuR,, autocorrelation functions.
Fourier transform can be applied to each of thections that appear in the previous
equation:

S(@) = jR(T)e'i‘T’th

H(®) = Jh(r) e totdr
to obtain:
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Su(@) = |H({iw)|? S, (@)
This is the important relationship which relatgsunhand output power spectral density.

A..4.6Input power spectral density functions

In usual practice there are three main types ofgpospectral density functions: the
Gaussian white noise, the Kanai-Tajimi and Clough#fn models.

Gaussian white noise is the most simple in thaisgumes that power spectral density
function is constant over frequency. Although in@ realistic this model is suitable for
narrow banded systems, that is for systems hawagonably low damping<0.1). In
this case in fact the area of the response povwestrsth density is concentrated near the
natural frequencies of the system as shown in Eigur10. The most part of existing
structural systems can be classified as narrowdsand

amplitude

8
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4 5 3 7 8 9 10
Frequency [Hz)

Figure A- 10 Frequency transfer for narrow-banded systems

Kanai-Tajimi model is obtained by passing a Gaussihite noise process through a
single degree of freedom filter. In this way higleduencies contribution is partially
removed yielding to a more realistic shape. The@uupower spectral density takes the

form:
2

2 (&
1+4¢ (wn)
— 2\ 2 —
w w
(1 - (@) ) +ag2 (5o)
whereSZ is a measure of the intensity of the ground motibile w, and¢ influence the
position of the peak of the power spectral derfsitiction with respect to frequencies.

As can be seen from Figure A- 11, Kanai-Tajimi fiume has nonzero value in the origin
of the axis, which is not realistic.

Skr(@) = |H(i®)|? Sp(@) =
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Figure A- 11 Kanai-Tajimi function

In order to avoid this problem Clough-Penzien madast two different filters, always
derived from singular degree of freedom systemstenfunction. One of this filter
removes the low frequency content of the Gaussiaitewnoise so that the final function
has zero values at the origin. Based on the al@leeigh-Penzien spectrum function can

be written as:
2

1+ 482 (m%)

(&) @[]

where wg, and¢, represents the natural frequency and the criieahping ratio of the
second filter respectively. The plot of this functis shown in Figure A- 12.

Scp (@) =
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Figure A- 12 Clough-Penzien function

The parameters of these models can be computedting fthe Fourier transform of
design accelerogram. In order to obtain a sigmficstochastic representation of the
phenomena several ground motions must be consid&rprhctical way to do it is using
the fast Fourier transform. This function is congulfor each accelerogram and then its
mean value is considered. The fitting is basech@rhean value.

A..4.7Stochastic response for multi degree of freedorness
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The same procedure seen for singular degree addmneesystems can be carried on for
multi degrees of freedom systems bringing at thmes&ind of results, but in matricial
formulation. Hence the output power spectral dgresn be written as:
Su(@) = [H(i®)|? 1 5,(®)

whereS, (@) is a vector which represents the power spectsgarse at each degree of
freedom,H (i) is the frequency transfer function matrix ahd) is the ground motion
power spectral density. In this case a ones veatkootes that excitation works at all
degrees of freedom.
Sur(@)]  rHu (@) Hy(i@) - Hp(o))|* 11
[suz_(w)} _ || H2G@) - = Hup (1) % 5,(@)

5., @] Hp (@) Hpn(i@) - HpG@)]l 1
Once the output power spectral densities for eagre® of freedom are known it is
possible to find the mean square response of thetgte by integrating each of them
over the frequencies:

[ee]

vi= [ su@ do
0
Moreover if one is interested in finding power dpalcdensity of other quantities, like

interstorey drifts or velocities, related with tsteuctural response by the relationship:
z=Tu
the spectral density for vectniis given by:
S, (@) =TIH(®)|*1S,(@) T"

A..4.8State space notation

In order to use optimization tools for linear sysgethe formulation of the equations of
motion has to be modified in the so callsthte spacenotation, i.e. in first order
differential equation. This reformulation is dong ibtroducing an additional unknown
vector z(t):

o= [
It is now possible to write in matrix formulatiohet system composed by the equations of
motion and the velocity identity:

u(t) = u(t)

u(t) = —m~cut) - mku(t) — 1ii, (t)
bringing to the compact form:
z(t) = Az(t) + Hiiy(t)

where:
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A= [—n?‘lk —n{‘lc] H= [—01]

All the quantities related with the response, sashacceleration and forces, can be
derived byz(t) using proper matrices. In the case of inter-stinifts for example the
following relationship is used:

6(t) =D z(t)
where:
1 0 O
D=[r1 ¢gland T 1= [—1 1 0]
0 -1 1

A..4.9Lyapunov equations

In case of a first order differential equation systwritten as:

z(t) = Az(t) + Hiiy(t)
the response(t) is given by:

z(t) = Bet

The stochastic response for a random load is desthy the covariance mat@(t) and
the mean value responag). Since the mean value of input ground motion can b
considered equal zero also the mean value of thetstal response can be neglected.
The covariance matrix is defined as:

0(t) = f () z(t)dt = f et BT B oAt gy
0 0

It can be demonstrated (see Robust and Optimalr@dmng Kemin Zhou et al.) that for
white noise input the covariance respoi@g) = E(z-z') becomes constant and its
values can be derived from Lyapunov’s equation.

ATQ+ QA+ BWBT =0
In order to evaluate the response in terms of -stiry drifts Qs = E(8 - 67) the
following transformation can be applied:

Qs = DQ,D"

The values on the diagonal of mat@g represent the mean squared of the inter-story
drifts. These values are taken as control valuesedhey control both the achievement of
the objective function and the updating of the dmgpnatrix, through the performance
index described hereafter.
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