
POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di Laurea in
Ingegneria Aeronautica

Algebraic models for aerodynamic coe�cients
calculation during the atmospheric re-entry

Relatore: Prof. Alberto GUARDONE

Co-relatore: Ing. Francesco CASTELLINI

Co-relatore: Ing. Dominic DIRKX

Tesi di Laurea di:

Francesco VILLA: Matr. 725451

Anno Accademico 2010/2011



Abstract

The present thesis work introduces an algorithm for the approximate solution
of hypersonic viscous �ows, under the hypothesis of thin shock layer. This
hypothesis has been used widely in hypersonic calculations, since it poses the
bases to a wide range of approximate methods for calculating inviscid pressure
distribution over bodies of arbitrary shape. These approximate solutions pro-
vide accurate results with a very low calculation e�ort, if compared to CFD
hypersonic solutors, hence providing a quick aerodynamic tool for solving atti-
tude problems and design optimization analyses. The aim of the present work
is to extend this solving approach with a viscous characterization of the vehicle
moving in an hypersonic �ow�eld. Approximate viscous methods and corre-
lations developed in hypersonic literature are investigated, and their coupling
with the inviscid approximate solution is discussed.

After discussing the validity of theoretical basis for this kind of approach,
an algorithm for the approximate calculation of inviscid and viscous �ow�eld
properties is proposed: local surface inclination methods are used to solve the
inviscid �ow, while shear stress and heat �ow are calculated using approxi-
mate reference enthalpy relations. An estimated velocity �eld is proposed and
integrated, to obtain reference streamlines on which approximate viscous rela-
tions are applied. In order to calculate wall temperature, thermal equilibrium
between the convective heat �ow and the heat �ow emitted by the vehicle
is imposed, under adiabatic wall and non-radiative gas hypotheses. Thermal
analysis is conducted together with viscous calculations, for the strong depen-
dance existing between shear stress and heat �ow distribution, exempli�ed by
the Reynolds analogy. Particular care is used for the accurate modelling of
the gas mixture through the imposition of thermochemical equilibrium, since
in hypersonic �ow, as we will demonstrate, high temperature e�ects cannot be
neglected.

The algorithm is applicable to an arbitrary vehicle shape, under the LaWGS
format, calculating thermodynamic properties, shear stress and heat �ow on
the vehicle surface, given the freestream �ow. At the current state of the work,
the algorithm is implemented partially in C++ and partially in Matlab. The
algorithm is developed with the aim to extend the Re-entry Aerodynamic Mod-
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ule (RAM) of the Space Trajectory Analysis software, an open-source space
mission analysis environment developed by the European Space Agency, in or-
der to make it capable of viscous and thermal preliminary design calculations.
The inviscid solver is in fact directly borrowed from the RAM v1.0 module,
which analyzes an arbitrary vehicle shape and reconstructs the inviscid pres-
sure �eld via approximated methods, while a Matlab algorithm is developed
for the streamline reconstruction and for viscous and thermal analysis. RAM
v1.0 code classes have been modi�ed in order to build objects apt to receive
the viscous and thermal solutor in the near future.

To conclude the work, a comparison between the results of our viscous
approximate solver and more sophisticated hypersonic �ows CFD simulations
is performed, in order to give a �rst esteem of the accuracy which can be
reached with this kind of approach.



Abstract - Italian

Questo lavoro di tesi presenta un algoritmo per la soluzione approssimata dei
�ussi viscosi ipersonici, sotto l'ipotesi di thin shock layer. Questa ipotesi è
stata ampiamente utilizzata nei software di calcolo ipersonici, in quanto pone
le basi per una vasta gamma di metodi approssimati per il calcolo della dis-
tribuzione di pressione sui corpi di forma arbitraria. Queste soluzioni approssi-
mate possono fornire risultati accurati con uno sforzo di calcolo molto basso,
se confrontato con solutori CFD ipersonici, e quindi sono in grado di fornire
uno strumento di calcolo aerodinamico rapido, per risolvere per esempio prob-
lemi di assetto o di ottimizzazione in fase di design preliminare. Lo scopo del
presente lavoro è quello di estendere questo approccio risolutivo con una carat-
terizzazione viscosa del veicolo in movimento in un campo di moto ipersonico.
I metodi viscosi e le correlazioni approssimate sviluppate nella letteratura iper-
sonica sono indagati, e il loro accoppiamento con la soluzione approssimata non
viscosa è proposto.

Dopo aver discusso la validità della base teorica per questo tipo di approc-
cio, un algoritmo per il calcolo delle proprietà di un campo di moto ipersonico
è sviluppato: metodi di inclinazione locali sono utilizzati per risolvere il �usso
viscoso, mentre le sollecitazione degli sforzi di taglio e il �usso termico sono
calcolati utilizzando dei metodi di entalpia di riferimento per caratterizzare lo
stato energetico dello strato limite. Un campo di velocità stimato è proposto
ed integrato, per ottenere un campo di streamlines di riferimento sul quale
applicare le correlazioni viscose approssimate. Per calcolare la temperatura di
parete, l'equilibrio termico tra il �usso di calore convettivo e il �usso di calore
emesso dal veicolo è imposto, sotto le ipotesi di parete adiabatica e gas non ra-
diativi. L'analisi termica è condotta contemporaneamente al modello viscoso,
per la forte dipendenza esistente tra lo sforzo di taglio e la distribuzione del
�usso termico sulla super�cie, esempli�cato dall'analogia di Reynolds. Par-
ticolare cura viene utilizzata per la modellazione accurata della miscela di
gas attraverso l'imposizione dell' equilibrio termochimico, poichè in un �usso
ipersonico, come vedremo in seguito, gli e�etti della temperatura elevata non
possono essere trascurato.

L'algoritmo è applicabile ad una geometria arbitraria, secondo il formato
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LaWGS, calcolando le proprietà termodinamiche, lo sforzo di taglio e il �usso
di calore sulla super�cie del veicolo, data la corrente asintotica. Allo stato at-
tuale del lavoro, l'algoritmo è implementato parzialmente in C + + e parzial-
mente in Matlab. L'algoritmo è stato sviluppato con l'obiettivo di estendere
il Re-entry Aerodynamic Module (RAM) dello Space Trajectory Analysis soft-
ware, un ambiente open-source per l'analisi di una missione spaziale, sviluppato
dall'Agenzia Spaziale Europea, al �ne di renderlo capace di calcoli preliminari
della parte viscosa e dei �ussi termici. Il solutore non viscoso è infatti preso
in prestito direttamente dal modulo RAM v1.0, che analizza una forma arbi-
traria del veicolo e ricostruisce il campo di pressioni senza attrito attraverso
metodi approssimati, mentre un algoritmo Matlab è stato sviluppato per la
ricostruzione delle streamline e per l'analisi viscosa e termica. Le classi del
codice RAM v1.0 sono state modi�cate al �ne di costruire oggetti idonei a
ricevere il solutore termico e viscoso in un prossimo futuro.

Per concludere il lavoro, è presentato un confronto tra i risultati del nostro
solutore viscoso approssimato con più accurate simulazioni CFD ipersoniche,
in modo da fornire una prima stima della precisione che può essere raggiunta
con questo tipo di approccio.
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Chapter 1

Introduction

1.1 Research motivation and goals

Computational �uid dynamics have reached by present day a signi�cant evo-
lution. The accurate modelling of Navier-Stokes equations has attained a sig-
ni�cant degree of con�dence, even in the analysis of hypersonic �ows, which
requires a satisfying treatment of compressibility and thermochemical e�ects
on the gas mixture. However, this classic approach in the �eld of numeric
aerodynamics has some disadvantages when the number of solutions required
is great. The solving of Navier - Stokes equations, even with turbulence mod-
els, is an expensive process in terms of required time and computational e�ort,
and gives an extremely detailed description of the �ow on the surface of a
vehicle and in a wide surrounding region. For these reasons, the classic CFD
approach is unsuitable in solving problems which require fast and repeated
calculation of the aerodynamics properties on a body, such as vehicle shape
design and optimization or trajectory analysis. For this kind of studies, a high
number of solutions is needed, while the wide spread of information and the
�ne accuracy provided by a CFD code is often unnecessary. The aim of an
approximate solutor like the one we are proposing here is then to obtain a
fast tool to have quick estimates of the �ow�eld properties over a body at an
incidence, in order to calculate the aerodynamic characterization of a vehicle
at a given attitude in seconds or minutes, instead of the hours needed to an
accurate hypersonic solver. In this way aerodynamic forces can be quickly ob-
tained to solve an attitude problem, for example the trajectory propagation of
a re-entering spacecraft; or an attitude-Mach matrix can be obtained in order
to perform optimization analysis, which would be prohibitive if we would be
using only CFD tools.

There is another reason to develop an approximate solver in the hypersonic
�eld, and that reason is the fact that hypersonic aerodynamics lends itself to

3
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approximation. The particular nature of the �ow in this extreme region of
aerodynamics makes possible to describe highly non-linear relations with very
simpli�ed hypotheses. These assumptions will be discussed in detail in the
following sections, but we can say that, thanks to these hypotheses, it will
be possible to calculate some �ow properties, such as pressure and velocity
vectors on the surface, locally - i.e. knowing only the freestream �ow and the
local inclination of the vehicle surface. This will lead to a fast and simpli�ed
inviscid solution, on which we will reconstruct the viscous e�ect. These e�ects
can't be described locally, because they depend on the �ow history, but they
can be reconstructed once the inviscid solution is known. This approach is
typical of other approximate hypersonic solvers, as will it be discussed when
considering the state of the art of this branch of aerodynamics.

We can now begin to understand why the construction of this kind of algo-
rithm is justi�able, and for what kind of purposes it is suitable to use this es-
timated analysis. This thesis work was born indeed in the context of a mission
analysis tool developed at the European Space Agency, named Space Trajec-
tory Analysis. STA is a development project for an open source astrodynamics
suite, which involves an huge number of universities and research institutions,
including Politecnico di Milano, and its coordinated by the European Space
Agency ESTEC center. For what concerns aerodynamics, an important part-
ner of this project is also the Von Karman Institute, which provided its support
also for this speci�c work. The idea underlying this program is to develop a
mission analysis tool involving professors, researchers, PhD and M. Sc. stu-
dents from renowned European institutions and universites; promoting in this
way the exchange of scienti�c and technical ideas in the area of astrodynamics
and space exploration. STA is currently developed under an open source for-
mat, although its availability has been recently restricted to ESTEC internal
use. The project is written in C++ language, using the object oriented pro-
gramming in order to create a modular software architecture, which permits
the simultaneous development of di�erent software features by independent
groups or individuals. A professional Graphic User Interface is developed, us-
ing the free Nokia Qt IDE, such that the �nal user �nds an intuitive and easy
to learn environment in which he can plan and analyze space missions. The
main idea underlying STA architecture is to create a space scenario, in which
active participants, such as satellites, ground stations, spacecrafts are inserted,
and for every player particular actions can be performed. For example, one
can characterize a satellite or a spacecraft with a mission arc, i.e. a loitering
orbit, a space manouver or a re-entry and landing path. Other actions, such
as, e.g., transmission simulation between ground stations and satellites can be
activated, depending on the nature of the actors.
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Figure 1.1: STA main view, including object selection and mission arcs win-
dows (left), propagation bar (bottom) and trajectory view (central)

The application of our analysis to STA is located in the re-entry trajec-
tory analysis module, which needed an aerodynamic module, named Re-entry
Aerodynamic Module, or RAM, for the trajectory and attitude propagation
during the re-entry phase of a space mission. In particular, an inviscid ap-
proximate solver exploiting the particular features of the hypersonic �ow�eld
was already been developed, during the M.Sc. thesis work of Dominic Dirkx
- for more informations see [1] - and will be called here RAM v1.0. The
present work illustrates the concepts underlying this kind of solver, and ex-
tend, both theoretically and practically, the aerodynamic solver elaborated in
the STA project to the viscous characterization of the �ow. This extension will
include the determination of approximate relations for calculating the shear
stress pattern on the vehicle surface, and the heat �ow transfer calculation
in the hypothesis of equilibrium between the convective heat �ow in the �uid
and the thermal radiation emitted by the vehicle surface, considering the wall
as adiabatic and the �uid as non-radiative. The goal of this work is then to
provide a tool to quickly esteem the hypersonic �ow over an arbitrary vehicle
shape, reconstructing pressure and shear stress distribution on the surface, in
order to calculate the aerodynamic coe�cients for a given freestream �ow and
attitude. A calculation of the heat �ow distribution is also performed, both for
thermal analysis, and because its determination is mandatory for the viscous
characterization of the �ow. A comparison between the algorithm's results
and CFD calculations over di�erent shapes of re-entering space vehicles will
be presented. Even if our algorithm is still in the development phase, and it
is still partially written in Matlab, we will refer to it as the RAM v2.0, or vis-
cous Re-entry Aerodynamics Module, since its main destination is to provide
a viscous and thermal aerodynamic analysis tool to STA software. Obviously,
this is not the only possible application of the algorithm that is outlined in
this work, since its architecture can be exported to other environments, due to
its open source nature. For example, it can be proposed as a stand-alone aero-
dynamic solver, or can be integrated, for example, in optimization softwares
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which want to include viscous aerodynamics or heating analysis in the design
of launchers and re-entry vehicles.

1.2 Thesis outline

1.2.1 General

The present thesis work is subdivided in three parts, the �rst one introducing
the work and presenting all the teorethical bases which underlie to the inviscid
and viscous approximate analysis. In the second part, an algorithm for the
calculation of shear stress and heat transfer, based on theoretical conclusions
from part I, is exposed. The third part deals with RAM v2.0 algorithm re-
sults and comparison with high accuracy hypersonic CFD simulations, and
proposes development guidelines to improve results quality and algorithm's
performances.

1.2.2 Part I

In the current chapter, a discussion on re-entry and hypersonic aerodynamics'
main peculiarities is dealt with, presenting the in�uence of the particular phe-
nomena which occur in this extreme region of gas dynamics. A brief overview
on the state-of-the art hypersonic approximate solvers is presented. Chapter 2
deals with the de�nition of inviscid local surface inclination approximate solu-
tions methods, to obtain pressure distribution over a body of arbitray shape.
These methods are the backbone of RAM v1.0 algorithm, and are the basis
on which we will build our viscous analysis solver. In chapter 3, the search
for approximate viscous solutions in the hypersonic �ow�eld is faced, by look-
ing at new advancements in the reference enthalpy methods, and the thermal
analysis on the vehicle surface is sketched, since viscous and thermal proper-
ties are so interconnected in the hypersonic regime that they are almost the
same phenomena, and together they have to be dealt with. In chapter 4, a
thermochemical equilibrium model of the gas mixture is presented, since the
�ow�eld thermodynamic properties cannot be determined without enormous
error from the common perfect gas hypothesis, completely wrong in hypersonic
gas mixture �ow�elds.

1.2.3 Part II

Part two is divided in two chapters, the �rst one, chapter 5, presenting the algo-
rithm outline, including a summary of the previous RAM v1.0 version, and the
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general approximation of the �ow �eld, including surface velocity �eld deter-
mination and streamline calculation and integration, stagnation point analysis
and separation. A viscous solution is proposed, obtained from the iteration
on wall temperature, by imposing a heat �ow balance between convective heat
from the �ow and radiation emitted by the vehicle surface.

Chapter 6 presents the geometrical de�nition of the problem, and exposes
the numerical tools adopted to calculate the relations proposed in chapter 5.
These features include Runge Kutta integrator and quadrilateral interpolation
for streamline calculation over a rough geometry.

1.2.4 Part III

Part three deals with the comparison of the results obtained by RAM v2.0, pre-
sented in chapter 7, against some high accuracy CFD simulations over actual
re-entry capsules and test geometries, such as IXV and Expert. An in-depth
comparison with the DART ESA test geometry, which is used for CFD codes
validation, is performed.

Chapter 8 summarize the results achieved and the already de�ned routes to
carry on the implementation, to improve both the accuracy and the e�ciency
of RAM v2.0 algorithm.

A �nal appendix presents a tutorial for the use of RAM v1.0 and v2.0 as
standalone analysis, and shows in more detail the current implementation of
the algorithm.

1.3 Re-entry aerodynamics

Planetary re-entry is probably the most critical phase of a space mission, ex-
pecially for manned �ights. High velocities and atmospheric gas rarefaction
during the aerodynamic braking of the vehicle from orbit to conditions proper
to atmospheric glide or parachute opening lead to a very severe heating load
on the vehicle surface, so that the thermal protection design and the shape
optimization for reducing heat become key factors in the development of the
project. The crucial importance of this mission phase has been tragically
stressed by the Space Shuttle Columbia accident of February 1st, 2003, when
a failure in the reinforced carbon-carbon thermal protection shield on the left
wing leading edge, due to a foam debris impact in the launch phase, led to
the loss of the vehicle during the re-entry phase, causing the death of all the
seven crewmembers �ying the mission. It is signi�cant that the crack of the
TPS was located at the leading edge, because in this region the �ow stagnates,
thus leading to a greater increase of the after-shock pressure and temperature,
which results in a dramatic peak of the heat �ow.
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Figure 1.2: IXV during re-entry phase - artist concept

The determination of the �ow properties must also take into account the
various phenomena that occur in the hypersonic regime, which is the most
trying condition that the vehicle will encounter through its way back home.
In this region, the intense temperature rise behind the shock wave, combined
with the rarefaction of the freestream �ow, leads to phenomena such as molec-
ular dissociation and ionization, and radiative heath transfer from the high
temperature gas to the surface.

Viscous friction, which is closely linked to heating by Reynold's analogy, is
also crucial for re-entry trajectory determination. The contribution of viscous
drag can be small compared to the huge pressure drag induced by the shock and
the �ow impact on the surface, but it becomes signi�cant when its contribution
is integrated on an entire arch of re-entry.

1.4 Hypersonic �ows

How to de�ne an hypersonic �ow? The answer is not trivial, since there isn't a
change in the �ow behaviour from a supersonic to a hypersonic �ow so abrupt
as it can be between subsonic and supersonic �ow. In this paragraph we will
try to describe the most important features of an hypersonic �ow, i.e. the
features that will characterize the di�erence between an hypersonic �ow and
a simply supersonic �ow. We stress again the fact that there isn't a de�nite
boundary between these two types of �ow, so we will describe features that
will increase with Mach number, and when these features become predominant,
we can talk of an hypersonic �ow. Let us describe these properties and their
involvment in our study. It is important to notice, in the following subsections,
what hypotheses of all the hypersonic �ow properties are considered to design
our algorithm. For an in depth description of these features, we recommend
the reading of [2].
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1.4.1 Thin shock layer

One of the properties of an hypersonic �ow is that, when the �ow encounters a
body, it produces a shock which is very close to the body. If we call the region
between the shock and the body a shock layer, we can say that hypersonic
�ows are characterized by a thin shock layer. This phenomenon happens as a
prosecution of the oblique shock layer theory, which states that if we increase
the freestream Mach number, we obtain a shock which lies closer to the body.
This can be easily veri�ed by considering the relation between the wedge angle
and the shock angle, given by the equation

tan (θ) = 2 cot (β)

[
M2

1 sin
2 (β)− 1

M2
1 (γ + cos (2β)) + 2

]
(1.1)

which lead to the well-known β-θ diagram:
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Figure 1.3: β - θ diagram for M = [2, ∞]

where we can predict that the shock tends to be closer to the body as M
tends to in�nity, as one can see also in the following image, where the oblique
shock relation is resolved for a wedge at θ = 25° and increasing Mach number:

Figure 1.4: Oblique shock over a 25° fence at M = [2, ∞]

This behaviour leads to one of the key hypotheses of our algorithm, that
is the fact that the �ows tends to change almost instantaneously its direction
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from the freestream orientation to a direction tangential to the surface. This
consideration leads to a very simplifying approximate de�nition of the velocity
vector over the body surface, which is found by considering the velocity on the
body as the tangential component of the freestream velocity:

Vbody = V‖ = V∞ −V⊥ = V∞ − n̂ ·V∞ · n̂ (1.2)

This hypothesis permits us to achieve two fundamental results:

I The �rst fact is that we have the velocity �eld on the vehicle surface,
which will be indispensable for calculating body streamlines in order to
characterize the viscous �ow, as we will se in the following chapters.

I The second fact is that we will obtain the inviscid pressure on the vehi-
cle surface, simply by considering the loss of normal momentum in the
almost instantaneous change of �ow direction from normal to tangential.
This is the fundamental hypothesis of Newton method, which will be
discussed in the next chapter.

This hypothesis is used in professional hypersonic approximate solvers such as
CBAERO, which will be described in sec. 1.5.

1.4.2 Entropy layer

This phenomenon is a direct consequence of the existence of a thin shock
layer. We can say, by knowing that the shock intensity decreases with its
inclination, that a normal shock produces a higher entropy increase rather
than an oblique shock. In hypersonic �ows, if we have a blunt body, we
have a normal shock near the stagnation region which lies very near to the
body, due to the fact that the shock layer is thin. After the blunt nose, the
shock becomes quickly inclined. We have then an abrupt change of shock
intensity near the body surface, thus leading to strong gradients of entropy
in the proximity of the wall. We can then identify this zone of near-body,
fast-changing entropy as an entropy layer, a concept similar to the boundary
layer, but involving entropy rather than velocity. In hypersonic �ows, the
entropy layer is usually comparable to the boundary layer, so the boundary
layer starts its growth in this variable entropy region, that for the Crocco's
theorem is also a strong vorticity region. This fact leads to some problems
in the correct identi�cation of external �ow and internal �ow, with respect to
the boundary layer. Fortunately, this e�ect is signi�cant only if we perform an
exact calculation of the boundary layer �ow�eld, for example by solving the
boundary layer equations. Since we are planning to construct an approximate
solver of the hypersonic �ow which won't calculate the exact boundary layer
solution, the entropy layer does not a�ect our algorithm, so it will be ignored.
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1.4.3 Viscous interaction

In hypersonic �ows, the boundary layer is dragged by an external �ow which
contains a large amount of kinetic energy. The subsequent viscous dissipation
is necessarily large, resulting in an increase of temperature within the boundary
layer. Such an increase of temperature produces an increase of viscosity, which
results in a thicker boundary layer. Remembering also the state equation
P = ρRT , an increase of temperature at a �xed pressure - since the normal
gradient through the layer is zero - results in a decreased density. To sustain
the required mass �ow, the boundary layer has to grow even thicker. The
combination of these two e�ects results in an increased boundary layer growth
in hypersonic �ows. In fact, for a uncompressible �at plate �ow we have that
the boundary layer thickness δ is, for a laminar �ow:

δ ∝ 1√
Rex

(1.3)

while for a compressible �at plate �ow, this length goes as, according to [2]

δ ∝ M2
∞√
Rex

(1.4)

thus becoming signi�cantly increased for high Mach numbers.
The consequence of this faster increase of δ is felt by the external �ow as

an increased displacement e�ect, so that the inviscid �ow sees a much thicker
body with respect to the incompressible �ow. The change in the external
�ow provides a further modi�cation of boundary layer growht. This two-way
interaction between external and boundary �ow is called viscous interaction.
The e�ects of viscous interaction are sign�cantly larger in the nose region, and
consist mainly in a modi�cation of the surface pressure distribution, a�ecting
lift and momentum, and of the shear stress and heat �ow distribution. In
particular, we have a general rise of pressure in the nose region, for the aug-
mented displacement e�ect, and a general increase of skin friction and heat
transfer. Unfortunately, no local approximate method which can reconstruct
pressure rise due to viscous interaction can be reconstructed from here, so we
will have to neglect viscous interaction in the development of our algorithm.
This seems an unsuccesful conclusion, but as we will see in section 1.5, every
professional hypersonic approximate solver neglects this e�ect as well. Indeed,
comparisons between our algorithm and professional hypersonic CFD resulsts
show no sensible in�uence of the viscous interaction on the pressure �eld, up
to M∞ = 15, as can be seen in chapter 7.
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1.4.4 High temperature e�ects

Another key concept of hypersonics is the fact that the �ow can reach ex-
tremely high temperatures - up to 11000 K for Apollo re-entry, almost twice
the temperature on the surface of the Sun. In these severe conditions, the
hypotesis of air, or other extra-terrestrial atmosphere gas mixtures, as a calor-
ically perfect gas must be abandoned. If we take the gas mixture known as
air, and we look at its properties as temperature rises, we can see that:

I below 800 K, the mixture can be considered as a calorically perfect gas,
i.e. with constant speci�c heats. Speci�c heat ratio γ = 1.4 and mixture

constant R = 286.9
[
kJ
kgK

]
are then constants.

I from 800 K to 2000 K, the vibrational degrees of freedom of the molecules
composing the mixture are excited. As a result of this fact, speci�c heats
begin to show a relation with temperature and pressure: cp = cp (T, p)
and cv = cv (T, p). As a consequence, we will have also γ = γ (T, p) and
R = R (T, p) .

I Above 2000 K, the mixture becomes chemically active and the molecules
of di�erent species begin to dissociate. Mixture composition starts to
change, with the creation of new species and the progressive disappear-
ance of initial species. The new molecular and atomic composition bring
to a non-linear variation of gas properties - i.e. the dependence of cp and
cv from temperature varies not only from excitation, but also from the
variation of the species molar fraction in the mixture.

I Above 9000 K, ions are formed, and the gas mixture becomes a partially
ionized plasma, the model being similar to a dissociated mixture, but
considering also free electrons and ions as species.

A chemically active mixture can be described following two di�erent assump-
tions: in the �rst case, we suppose that chemical reaction take place almost
instantaneously, so that the chemical composition is directly dependant over
the temperature of the gas. This is the case of reactions happening in a lapse
of time much shorter than the timestep needed for a �uid particle to travel
from one point to another, and it is called thermochemical equilibrium. The
second case is when reaction time and �uid-dynamic time are comparable. In
this case, chemical composition depends on the temperature and on the travel
history of a particle. This kind of �ow fall under the name of thermochemical
non-equilibrium, and is far more di�cult to represent than the thermochemi-
cal equilibrium. In counterposition to these two teories on chemically reacting
�ow, a low temperature �ow�eld with no reaction at all falls under the de�-
nition of frozen composition or frozen equilibrium �ow. In our algorithm we
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will use the hypothesis of thermochemical equilibrium, which is described in
detail in chapter 4 to calculate the �ow across the shock. We notice that often
this high temperature behavior of the gas is referred as real gas e�ect. This
de�nition is ambiguous, since a real gas model is a modelling of a single-species
gas with intermolecular forces, and not a description of a chemically reacting
mixture with no intermolecular forces as in our case. These e�ects will be then
addressed as high temperature e�ects or simply as thermochemical equilibrium.
In the development of the model, we found evidence that a thermochemical
equilibrium representation is mandatory in order to obtain correct values be-
hind the shock, and we noticed that the pressure and temperature rise behind
the shock wave was excessively overestimated if a simple frozen equilibrium,
constant γ = 1.4 model was used. On the other hand, after the shock, the
di�erences between the two models become small again, so to save calculation
time a frozen equilibrium composition hypothesis on the vehicle external �ow
can be used, obviously by imposing the speci�c heats, γ and composition of
the gas mixture after the shock - we surely won't have anything with a 1.4 γ
speci�c heat ratio after an hypersonic normal shock.

Another important e�ect which arises from the high temperature of the
mixture is the surface heating caused by the high energy �ow. There are two
main forms of heating, the �rst is the classical convective heating, which is
generated by the hot �uid �owing on the surface. The second kind of heating,
which gain more importance when the �ow temperatures rise to severely high
levels, is the radiative heating from the hot �uid to the surface, that must not
be confused with the radiation created by the vehicle surface which radiates
to the external �ow. This kind of radiative heating exist when the �uid par-
ticles reach extremely high temperatures (above 9000 K) so that they start
to emit considerable amount of thermal radiation. In our modelling of the
hot gas, convective heating is considered, since it is the main heating source
on a re-entering space vehicle, while the description of the gas radiative heat-
ing is omitted, since it is less relevant, almost until very high temperatures are
reached, mainly because of the extreme di�culty of modelization of a radiative
gas surrounding a body. An esteem of the termal �ow over the vehicle surface
is then obtained, in our algorithm, by imposing an equilibrium between the
convective �ow granted by the �uid on the surface, and the radiation emitted
by the surface, considered as adiabatic, i.e. without an heat sink.

There can be other complex phenomena near the vehicle wall, such as
molecular recombination in the boundary layer, or combination with ablative
material chemical products, which produces complex chemical reactions near
the wall. For the degree of approximation required by our model these kind of
phenomena can be safely neglected.
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1.5 State of the art

1.5.1 The S/HABP software

The �rst software which presented the concept of approximate hypersonic soft-
ware was the Supersonic/Hypersonic Arbitrary Body Program - S/HABP -
developed by Douglas Aircraft company in 1964, and modi�ed various times
until a �nal version was released in 1980. We present the key concepts of this
algorithm, a detailed description of it being present in reference [3]. The main
concept of this software is to de�ne an arbitrary geometry using quadrilaterals
- or panels - and to determine with approximate methods the inviscid �ow
properties - i.e. the inviscid pressure distribution. This set of methods, which
are known as Local Surface Inclination methods, or LSI, are used to esteem the
inviscid pressure on a panel knowing only the local angle between the panel
and the freestream �ow, and obviously the freestream �ow properties. Such
methods, which are derived from di�erent theoretical assumptions, but sharing
the main concept of thin shock layers presented in 1.4.1, will be presented in
detail in the next chapter.

When the inviscid �ow�eld is resolved, streamlines are calculated and a
viscous approximation based on this information is attempted. The approx-
imate viscous methods used are however quite obsolete, if compared to the
methods presented in this work. Another limitation of S/HABP is that a real
consideration of high temperature e�ects is missing, and these phenomena are
reconstructed using only experimental correlations, instead of performing a
thermochemical equilibrium calculation, thus reconstructing the actual prop-
erties of the mixture. The inviscid solver maintains however a high degree of
con�dence on the results while performing only light calculations, due to the
fact that LSI methods provide quite accurate results with extremely low in-
formation. An interesting comparison between the S/HABP Mark IV inviscid
solution and actual experiment data presented in [4] shows the good level of
agreement of these inviscid results on a variety of shapes. The other main
advantage of S/HABP is that - at present day - it is released as free software,
Fortran 77 source code included. For these reasons it is still used today as a
preliminary design and optimization tool.

1.5.2 The CBAERO software

The Con�guration Based Aerodynamic tool, or CBAERO, represents the present
day evolution of S/HABP software. Developed at the Ames Research center
at the beginnig of this century, it springs from the same intuitions of S/HABP
- i.e. using LSI methods in combination with streamline calculation as a basis
for the viscous and thermal analysis - but with present day implementation
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concepts. The mesh is a triangular unstructred mesh, which can provide bet-
ter accuracy in describing complex shapes with respect to a panel, and can
be directly linked to other solvers parametrization. The advantages are that
an immediate comparison with CFD solution can be easily made, and it is
also possible, for example, to link an Euler equations inviscid solver to the
aerothermal viscous analyzer of CBAERO, bypassing the LSI methods and
using a more accurate viscous solution. This solution will not be adopted in
our program, since we need to support the LaWGS for compatibility with STA
software, which is a quadrilateral ordered mesh similar to S/HABP paneliza-
tion.

Other interesting concept, that will be used in our work are the C++ object
oriented implementation, which is present in our algorithm as a skeleton for
future STA integration and the use of a topologic analysis for the determina-
tion of stagnation points and attachment lines on the vehicle surface. Another
interesting concept in CBAERO is the de�nition of search trees to order the
mesh points in order to perform faster searches of panel points in the inte-
gration of the velocity �eld on the surface. These concept are explained very
clearly in the program presentation by Kinney [5]. In this work the concepts
of surface velocity �eld obtained by imposing tangential �ow on the panel and
calculating the surface heat �ow by imposing equilibrium between convective
heat �ow and adiabatic wall emitted radiation are also present. The refer-
ence enthalpy method, which is the approximate viscous calculation method
that will be used also in this work, although in a more advanced version with
respect to CBAERO, is also presented.

CBAERO is surely a modern hypersonic preliminary analysis tool, but it
still shows some limitations. The �rst and most evident one is that the program
is not freely available to the public, and also its reperibility for purchase is very
limited. The other fact is that the viscous solution doesn't take into account
the most recent developments of the reference enthalpy method for shear stress
and heat �ow calculation. The discussion about these advancements, that are
used by our algorithm, will be the core of chapter 3.

1.6 The LaWGS format

1.6.1 General description

We introduce here the LaWGS format, de�ned as the standard geometry ve-
hicle description format from Langley Research Center, and used in STA and
RAM v1.0 to identify space vehicles shapes. The LaWGS �les, characterized
by the *.wgs extension, will be the �rst input for the inviscid calculations per-
formed by RAM v1.0 algorithm. A more accurate description can be found in
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Dirkx RAM v1.0 description in [1] or in the Nasa Langley report [6].
De�ning the global coordinate system, the x axis is to be set along the main

axis of the vehicle, with the minimum x value at the nose and the maximum x
at the back. z axis is chosen from the bottom to the top, and y is to be set in
order to form a right handed cartesian basis. This setting is fundamental to a
proper outcome of the calculation. To obtain proper physical description, all
the points coordinates have to be expressed in meters.

Figure 1.5: Global coordinate system

A *.wgs �le is substantially composed by objects, or parts, which for ex-
ample represent a fuselage, a wing, a �ap. It is important to have separated
objects dividing a fusiform body - i.e. a fuselage or a generic body which has
the y direction comparable to the z direction - from a non fusiform body - e.g.
a wing, a �ap, or a body wich is developed mainly in the y direction. At the
present moment, the algorithm is not able to treat vertical tails, although a
simple rotation of the coordinates should �x this problem.

Every object is de�ned by contours, so points are subdivided in contour
lines. For fusiform shapes, the �rst line de�nes the points standing at the
fuselage front ordinate, while the last line contains the points corresponding to
the last ordinate. For non fusiform bodies, the lines substantially correspond
to the wing ribs, even if is not mandatory that the y coordinates are the same.
In the following �gure contour lines are presented, notice that contours on a
fusiform body are oriented as fuselage ordinates, while on a non fusiform body
they are parallel to wing ribs.



CHAPTER 1. INTRODUCTION 17

Figure 1.6: Points (light cyan) subdivided in contour lines (blue)

On every line, points are arranged in a clockwise manner. This subdivision
in contour lines is very important, since it will be used to develop several
routines during the algorithm, which will depend on the point grouping in
contour lines. We will use the general convention, during our exposition to
denote contour lines by the index i, or I, and clockwise indexing along a single
line with the index j, or J. Obviously, j index is coherent between di�erent
lines, so that, e.g., point with index j = 31 on line i = 15 will be adjacent to
point j = 31 on line i = 16, and on linei = 14 as well.

1.6.2 *.wgs �le buildup

The �le is composed by a �rst line containing the vehicle name, enclosed in
single quotes:

I line 1 : 'Vehicle Name'

Then the description for every object is written, following the subsequent for-
mat

I line i : 'Part Name'

I line i+1 : Charachterization array

I line i+2, i+3, ... : Point coordinates

The charachterization array contain the information about the number of lines
of which the part is composed, the number of points for every line, the rotation
angles and the translation coordinates from a local coordinate system, the local
and global symmetry identi�cators, and the scaling factor. All the numbers
are put in one line, separated by a single space, as in the following scheme:

ID nLines nPoints locSym θx θy θz ∆x ∆y ∆z zoomX zoomY zoomZ globSym

where
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I ID is the part number identi�cation

I nLines is the number of contour lines composing the part

I nPoints is the number of points for every contour line

I locSym is the local symmetry identi�cator, i.e. if a part is self-symmetrical
with respect of a plane of the local coordinate system

I θx θy θz are the rotation angles, in radiants, between the local and the
global coordinate system

I ∆x ∆y ∆z are the translation coordinates between the local and the
global coordinate system

I zoomX zoomY zoomZ are the scaling factors of the part in the three
directions, default is 1

I globSym is the local symmetry identi�cator, i.e. if a part is self-symmetrical
with respect of a plane of the local coordinate system

Point coordinates are ordered in numbers separated from spaces, �rst come
the x-coordinate of the �rst point of the �rst line, then the y-coordinate, then
the z-coordinate; then we have the x-coord of the second point of the �rst line
and so on. Points are to be put in an ordered way from the �rst point of the
�rst line to the last point of the �rst line, then introducing points of the second
line and so on. A newline can be put after each point or contour line de�nition
for better readability.

As for the symmetry, value of the identi�ers are provided here:

I 0: not symmetrical

I 1: symmetrical about X-Z plane

I 2: symmetrical about X-Y plane

I 3: symmetrical about Y-Z plane

Symmetry option makes you able to de�ne, for example, the right wing of
a space plane by de�ning only the points of the left one and then choos-
ing a global symmetry about the X-Z plane, or the points of a fuselage by
de�ning only the right half, and mirroring them around the local symmetry
plane. These operations will be performed automatically by the RAM v1.0 al-
gorithm, in the pre-processing procedure, which uses the stand-alone program
WgsReader, based on Dirkx STA RAM v1.0 C++ classes, that contain all the
functions and routines apt to perform the mirroring, translations, rotations
and scaling de�ned in a *.wgs �le, as will be explained in sec. A.3.1.
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1.6.3 Centroids mesh

To succesfully calculate pressure distribution and other quantities, such as
velocity vectors, normal vectors, and associated areas, have to be de�ned. In
order to characterize these quantities over the mesh generated by the LaWGS
format, we will use the originary points mesh xp,ij, as generated by the *.wgs
�le processing, to de�ne panels, to be used to de�ne local areas, normals,
velocites. Each panel will be formed joining four adjacent point

xp, ij, xp, i+1,j, xp, i+1,j+1, xp, i,j+1

The centroid will be calculated as the center of mass of the panel:

xc,ij =
xp, ij + xp, i+1,j + xp, i+1,j+1 + xp, i,j+1

4
(1.5)

Hence the panel diagonals will be formed:

d1 = xp, i+1,j+1 − xp, ij (1.6)

d2 = xp, i+1,j − xp, i,j+1 (1.7)

From diagonals, we can de�ne the local centroid normal versor

n̂ij =
d2 × d1

‖d2 × d1‖
(1.8)

The versor just obtained is checked, in order to obtain a versor pointing
outward the part surface.

The area of the panel, which will be associated to every centroid, is obtained
from:

Aij =
1

2
‖d2 × d1‖ (1.9)

Tangential versors t̂ij will be obtained once the velocity surface will be
de�ned, following the hypotheses in sec. 5.3.

The obtained centroids xc,ij mantain the same ordering in contour lines, as
can be seen in the next �gure, where centroids mesh lines are plotted against
the old point mesh lines. From now on, the centroid mesh will be the algorithm
main mesh, and we will refer to it, since in the centroids we have the geometric
characterization, i.e. n̂ij,t̂ij, Aij, which will be used in our calculations.
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Figure 1.7: New centroid contour lines (red) plotted against old point contour
lines (blue)

1.7 Development reference case - ESA Dart CFD

simulations

We present here the reference case which has been used during the develop-
ment of the algorithm, to confront the results of the di�erent models, choosing
the best options to shape RAM v2.0 solver in the most general and accurate
way. The algorithm results, and in particular the viscous and heating models,
were compared with the results provided by the ESA ESTEC Aerothermo-
dynamic Division team. The data, courtesy of mr. Louis Walpot from the
ESTEC Aerothermodynamic team, come from a CFD simulation using the
Lore code, which is a Navier-Stokes solutor with high temperature, chemical
non-equilibrium capabilities, under laminar hypotheses. The simulation has
been conducted over a DART geometry, which is a testbed con�guration for
ESTEC CFD validations and experimental measurements. As we can see in
the following �gure, DART consist in a blunt nose, followed by a cylindrical
region and a �are.

Figure 1.8: ESA Dart geometry

The reference case has been chosen at the following attitude and freestream
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conditions:

Table 1.1: Dart LORE CFD Freestream parameters
parameter value

α 0°

β 0°

V∞ 3146.94
[
m
s

]
M∞ 10.4077
Pr∞ 0.75
P∞ 1162.4854 [Pa]

ρ∞ 1.7801e−2
[
kg
m3

]
T∞ 226.734 [K]

The simulation, which includes a nitrogen and oxygen non-equilibrium ther-
mochemical state reconstructor, provides several output databases, such as
pressure coe�cient cp, friction coe�cient cf distribution, surface heat �ow qw,
wall temperature Tw and some external �ow values, such asMe, ρe, Te, Ve. We
have then all the interesting quantities to be confronted with our program out-
put, to verify the validity of the models tested during the development phase.
We report here the solution for the surface distribution of cp, cf , qw and Tw,
which will be used in the following chapter as a reference for the validation of
the algorithm and to justify the selection of a particular model among di�erent
choices.

Figure 1.9: cp distribution from ESA DART CFD laminar simulation - M∞ =
10.4077, α = 0°, β = 0°
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Figure 1.10: cf distribution from ESA DART CFD laminar simulation -M∞ =
10.4077, α = 0°, β = 0°

Figure 1.11: qw distribution from ESA DART CFD laminar simulation -M∞ =
10.4077, α = 0°, β = 0°

Figure 1.12: Tw distribution from ESA DART CFD laminar simulation -M∞ =
10.4077, α = 0°, β = 0°



Chapter 2

Models for inviscid hypersonic

�ow

2.1 Local surface inclination methods

This chapter is dedicated to the description of the approximate methods used
to obtain the inviscid external �ow, which will be used as the boundary condi-
tion for the viscous characterization of the surface. Even if we call it external,
it will be solved only on the proximity of the wall. No calculations on the
�ow �eld surrounding the body will be made, as the local methods presented
here need only surface geometrical data in order to describe the inviscid wall
�ow. As we have anticipated during the introduction, all of these methods
rely on the assumption of thin shock layer, i.e. the consideration that, due
to the proximity of the oblique shock to the vehicle surface, we can suppose
that the �ow directon changes istantaneously from the freestream heading to
the tangential-to-freestream component. This hypothesis has been presented
in 1.4.1 and its utilization is justi�ed in CBAERO presentation by Kinney [5].

These approximated analyses are known as Local Surface Inclination meth-
ods, or LSI, because they rely only on the orientation of the panel with respect
to the freestream direction, in order to obtain pressure distribution on the
body, and have the enormous advantage that they don't require the solution
of the �ow�eld surrounding the vehicle, and that they are completely local, so
the solution on a single panel doesn't depend on the solution on other panels.
The use of LSI analysis is typical of all the solvers which we've been discussing
in the �rst chapter. In fact, all these tools are presented in the S/HAPB doc-
umentation [3], as well as in classical hypersonic textbooks [2]. Even the �rst
development of the STA aerodynamic solver - denominated Re-entry Aerody-
namic Module, or RAM - includes a brilliant implementation of these methods,
as one can see in the release technical note [1]. We will present these methods

23



CHAPTER 2. MODELS FOR INVISCID HYPERSONIC FLOW 24

in the following sub-sections, including a discussion on the theoretical justi-
�cations. We will divide these methods in two branches: the compression
methods, for determining the pression on the windward side, where the �uid is
compressed by the shock wave, and the expansion methods, which are suitable
for the description of pressure distribution on the leeward side of the craft,
where the gas expands.

2.2 Newton Methods

2.2.1 Newton method

The origin of the Newton method is based upon an amazing coincidence be-
tween the hypotheses that sir Isaac Newton formulated when considering a
�at plate immersed in a freestream low-speed �ow - which were con�rmed to
be wrong for this case - and the conditions that arise when considering an
hypersonic �ow. Newton described the freestream �uid as a stream of parti-
cles travelling togheter at the same speed, with no other kind of �uctuation
or motion. He proposed that every particle, when impacting the front surface,
would loose all of its normal momentum, conserving instead all the tangential
momentum, like a bowling ball which enters in the side channel. As the par-
ticles are supposed to move straight and to change their direction only when
impacting a surface, on the back side of a plate there would be no impact at
all - i.e. the particles are not able to turn around the plate or body to reach
its back.

This description has been proved to be too simpli�ed for low speed aero-
dynamics, by misinterpreting the actual �ow�eld shape and totally neglecting
the viscous e�ects. However, when Mach number rises, the shock moves close
to the body, constraining the �uid to change its direction from freestream
to tangential in a very narrow space, as one can see in the following �gure,
displaying streamlines over a 15° wedge at M = 15:

Figure 2.1: Streamlines over a 15°, 15M wedge

This kind of motion is very similar to the one proposed by Newton. We
can then describe the �ow against an inclined �at plate as a current of parallel
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particles with freestream velocity V∞. The �at plate has an area A and an
inclination θ with respect to the freestream �ow.

A ��� � �

�

V
�	
��� �

V
�

��

Figure 2.2: Inclined �at plate

The mass �ux over the surface is then

ṁ = ρ∞V∞A sin(θ) (2.1)

and, after the impact, the �ow looses its normal velocity, experiencing a re-
duction of

∆V = V∞ sin(θ) (2.2)

so the time variation of the �ow momentum becomes

dQ

dt
= ṁ∆V = ρ∞V

2
∞A sin2(θ) (2.3)

by the second principle of dynamics, the time variation of momentum equals
the force exerted on the body:

F =
dQ

dt
= ρ∞V

2
∞A sin2(θ) (2.4)

or
F

A
= ρ∞V

2
∞ sin2(θ) (2.5)

We have at this point the de�nition of a pressure on the body. But to which
pressure we are referring? As we have previously said, by describing this �ow
we considered the �uid particles moving in a rectilinear direction, with no other
kind of motion. The random molecular motion, which gives birth to the static
pressure of the �uid, is then neglected. The pressure which we found from this
�ow is so not the absolute pressure, but the di�erence between the absolute
pressure and the freestream static pressure, which was not considered before.
We have then:

F

A
= p− p∞ (2.6)
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which considering eq. 2.5, becomes

p− p∞ = ρ∞V
2
∞ sin2(θ) (2.7)

or

p− p∞
1
2
ρ∞V 2

∞
= 2 sin2(θ) (2.8)

So, Newtonian theory de�nes the pressure coe�cient on a body in a very simple
way, using only the surface inclination:

Cp = 2 sin2(θ) (2.9)

This relation is valid only for the region of the body which does directly impact
the hypersonic �ow, i.e. the windward side of an hypersonic vehicle, is then
a compression formula. The simply�ed model of the �ow we presented here
describes the �ow as an impact of molecules. Particles cannot then turn behind
the body and impact the shadow region, or the leeward side of the vehicle,
depicted for the IXV geometry in the next �gure.

Figure 2.3: Shadow region over an IXV geometry for a 45° AOA reentry

In this region, we have no impact, hence no modi�cation of freestream
pressure is possible. On the leeward side we have then the following expansion
model

Cp = 0 (2.10)

A small consideration on the de�nition of inclination angle θ: if the surface
panel has a normal n̂, and the angle of the normal vector to the freestream
velocity vector is φ, we obtain that the surface inclination is given by, as can
be seen in �g. 2.2:

θ = π − φ (2.11)

The leeward region, or shadow region, is hence de�ned by:

θ < 0 (2.12)
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2.2.2 Corrected Newton method

Pure Newtonian theory returns accurate results only for γ → 1, M → ∞,
which is an hypersonic limit (see chap 3.5 of [2]). For hypersonic �ows which
don't reach exactly these limits, Newton method tends to overestimate stagna-
tion pressure values after the normal shock in the front region of blunt bodies.
At the same moment, the shadow region imposition of Cp = 0 can underesti-
mate the value in the back, since the value of freestream pressure is reached
after a certain distance from the nose. A correction of this method is proposed
by Lester Lees, and reconstruct the right pressure value behind the shock,
exploiting the normal shock relations. The Newton law sinus squared law is
replaced by

Cp = Cp,max sin2(θ) (2.13)

where Cp,max is the value of the pressure coe�cient between freestream
condition and nose, after-shock stagnation pressure:

Cp,max =
p0,2 − p∞

1
2
ρ∞V 2

∞
(2.14)

the value of total stagnation pressure behind a normal shock is given, for
a perfect ideal gas, by the Rayleigh pitot tube formula:

p0,2

p∞
=

[
(γ + 1)2M2

∞
4M2

∞ − 2 (γ − 1)

] γ
γ−1 [

1− γ + 2γM2
∞

γ + 1

]
(2.15)

By expressing 1
2
ρ∞V

2
∞ as γ

2
p∞M

2
∞ we obtain:

Cp,max =
2

γM2
∞

[
p0,2

p∞
− 1

]
(2.16)

which becomes:

Cp,max =
2

γM2
∞


[

(γ + 1)2M2
∞

4M2
∞ − 2 (γ − 1)

] γ
γ−1 [

1− γ + 2γM2
∞

γ + 1

]
− 1

 (2.17)

Notice that eqn. (2.17) will not be used to determine Cp,max in our algo-
rithm, and its reported only for the sake of completness. This formulation
doesn't hold anymore when considering high temperature e�ects in the solving
of the hypersonic �ow. The determination of after-shock properties such as
Cp,max performed with perfect gas hypotheses, such as in eqn. (2.17), or pres-
sure in (2.15), leads to completely wrong results for high gas temperatures,
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since the huge distortion of gas properties due to dissociation e�ects, which
are largely present at these temperatures, is not taken into account. The de-
termination of after shock properties for the viscous solutor part will be then
performed used a chemically reacting gas mixture model, combined with shock
relations, as we will see in more detail in chapter 4. Currently only Newton-
modi�ed pressure distribution are used, but this consideration must be applied
also to the other shock relation based methods that we will see in this chapter,
when applying shock based formulas like, for example, (2.20).

2.3 Tangent wedge/cone method

We present here a classical compression method used for determining pressure
over slender, pointed nose bodies immersed in hypersonic �ows, with zero angle
of attack. The method is referred as tangent wedge method when is used over a
bi-dimensional shape, or tangent cone if it is used for three-dimensional bodies.
As said before, the requirements of this methods are that the body considered
is slender and pointed, and we add the fact that the local surface angle θi has
to be less than the maximum de�ection angle for the local �ow θmax. Assuming
these hypotheses, we present at �rst the tangent wedge method for 2D shapes
- i.e. wing leading edges or similar:

M
�

Body

p
i 
surface pressure 

on a θ
i
semiwedge

θ
i

θ
i

i

Wedge shock

Body shock

Equivalent semi-

wedge for point i

Figure 2.4: Tangent wedge method

Let us consider a point i on the body surface, on which we want to know
the pressure. In order to �nd the pressure value, we imagine a semiwedge,
tangent to the body in the point i, which form an angle θi with the freestream
�ow, and we calculate the pressure from the supersonic oblique-shock exact
relations for a wedge of angle θi. This is valid for a bi-dimensional body. If we
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are dealing with a three-dimensional shape, we can extend the argumentation,
using cone shock relations instead of oblique-shock relations. Such kind of
relations can be found tabled, for example, in [7]. The tangent cone method
is exactly the analogous of the tangent wedge, but we will consider equivalent
cones at point i, instead of wedges.

Let us consider now the theoretical founding of these two methods. In fact,
these methods don't stem directly from a model of the hypersonic �ow, as it
was in the Newton method, but they come from pure intuition. The results
have proven to be quite accurate, although, and we will try to understand
why. Consider the following �gure, relative to the tangent wedge method,
magnifying the region surrounding the point i:

Body

Wedge shock

Body shock

Equivalent wedge

M
�

a

b

i

����� > ������

������

Figure 2.5: Tangent cone method - point i

In an hypersonic �ow around an oblique shock over a slender body, we
have that the v component of the �ow is changed more strongly than the u
component. In fact, in an hypersonic current, the shock are very inclined with
respect to the free-stream, if θ is small, and since only the velocity component
normal to the shock is modi�ed, we have that the u component is only slightly
modi�ed. It is possible to demonstrate that, in an hypersonic �ow:

∆u

V∞
= O

(
θ2
)

∆v

V∞
= O (θ)

so, for small angles of de�ection we have a predominant velocity change in
the direction normal to the shock. This implies, by recalling Euler equation
dp = −ρV dV , that the pressure gradient is almost aligned with the normal
to the body direction. Looking at �gure 2.5 we can then understand that the
pressure in i depends mainly from the pressure value behind the shock in a.
The pressure in i should be less than in a, since we have centrifugal e�ects due
to the body curvature, so pi < pa. If we consider the wedge-shock instead of
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the actual body shock shape, we obtain a less inclined shock: βwedge < βshock.
We have then, by considering the equivalent wedge, a less inclined, thus less
intense, shock. This results in a lower pressure behind a wedge shock: pb < pa.
This is coherent with the presence of the centrifugal e�ects, and gives the rule-
of-thumb justi�cation for these two methods, partially explaining why they
have proven to be accurate, even with no true theoretical foundation.

We conclude with a simple observation, which is very trivial but must be
taken into account, on the applicability of these methods. The fact is that
the tangent wedge/cone method provide accurate results only for zero angle
of attack bodies, so if we have a pointed-nose body with incidence, we can use
these methods to calculate the zero AOA pressure value, then correct it by
adding the contribution of the α angle, using the Newtonian theory model, as
proposed in paragraph 4.8 of [2]:

Cp = Cp,α=0°
+ 2sin2(α) (2.18)

If α is small, however, it is possible that the global θi is still less than the
maximum de�ection angle for the given freestream �ow, so that a wedge/cone
solution is applicable on the whole surface. Another consideration which has
to be made is that these methods are obviously inaccurate for blunt bodies,
but they become accurate at a certain distance from the nose, where the shock
and the �ow�eld tend to be more similar to those of a sharp body, so that
these tangent methods can be applied with reasonably limited error.

2.4 Prandtl-Meyer Expansion method

The Prandtl-Meyer Expansion method is based upon almost the same hypothe-
ses as the tangent wedge/cone method, because it is based on a very similar
concept, although its theoretical bases are more solid. It requires an attached
shock, which is proper of sharp-nosed bodies, and a local angle less than the
maximum de�ection angle, and this means that this method is valid only for
low or null angle of attack. The theory which describes this method is very
straightforward: it simply calculates the �ow properties after the shock and
consider the subsequent expansion by mean of the exact theory.

I The Mach number and pressure just after the nose shock, Mn and pn are
calculated from the exact oblique shock theory.

I We want to calculate the pressure at a generic downstream point i on the
body surface. We assume then a Prandtl-Meyer expansion to calculate
the Mach number at point i :

∆θ =

√
γ + 1

γ − 1

[
atan

(√
γ − 1

γ + 1
(M2

n − 1)

)
− atan

(√
γ − 1

γ + 1
(M2

i − 1)

)]
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−
[
atan

(√
(M2

n − 1)
)
− atan

(√
(M2

i − 1)

)]
(2.19)

where ∆θ = θn − θi, which implies θi < θn as an additional hypothesis.

Mi is found by the numerical solving of the equation for assigned ∆θ and
Mn, e.g. with the application of a tangent Newton Rhapson algorithm
(we are referring here to the method for the numerical solving of a non-
linear function, not to the just presented pressure determination Newton
method!).

I Once Mi is known, we can then easily calculate pressure at point i via
the exact isoentropic expansion formula, from p0 = const. after the shock

pi
pn

=

[
1 + γ−1

2
M2

n

1 + γ−1
2
M2

i

] γ
γ−1

(2.20)
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Figure 2.6: Prantdl-Meyer Expansion Method

Let us consider now the validity of this method. As already stated before,
one of the requirements is that the angle of attack is zero or small, because
of the maximum de�ection angle constraint for an attached shock. Another
fact that must be stressed is that the Prandtl-Meyer expansion gives correct
results only in the case of hypersonic �ows. In our approach we have in fact
neglected the evidence that, when the expansions characteristics reach the
shock, they are re�ected as compression characteristics, thus mody�ng the
�ow �eld. The hypothesis of a perfect, iso-entropic expansion is then not valid
on the surface when these compression characteristics reach the surface again.
However, if we consider the �ow as hypersonic, the shock wave is very close to
the body. The expansion characteristics travel then for a long distance before
being re�ected, and the subsequent compression characteristics hit the body
wall very far from the nose. Evidence from [2] shows that in the nose region
of a sharp-nosed pro�le the Shock/Prandtl-Meyer expansion method grants
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very accurate results, which slowly move away from the exact solution as we
walk away from the nose. This combined compression/expansion method is
derivated over an exact bi-dimensional solution, so it is particularly suitable
for sharp-edged wings.

For bodies in incidence, the Prandtl-Meyer expansion can be combined with
the Newton method or Modi�ed Newton method in order to treat wider angles
of attack, as already did in 2.18 for the tangent cone/wege method. We can use
also the Modi�ed Newton for calculating the pressure value in the nose region
of a blunt body, and then apply a Prandtl-Meyer expansion downstream, thus
resolving even blunt bodies with isoentropic exact expansion, always remem-
bering the fact that this consideration is made possible by the fact that we have
a thin shock layer. This method is called Modi�ed Newtonian/Prandtl-Meyer
expansion. We stress the fact that isoentropic relations can be used only with
frozen mixture hypothesis, and will grant acceptable results only if a correct
γ value is adopted. This value can be obtained by treating the shock with a
chemial equilibrium reacting mixture model.

2.5 High Mach number base pressure

We present here another semi-empirical methods to esteem the value of pres-
sure in the leeward region of bodies, as can be seen in [1]. Summing up to this
point, we have seen the generic Newton method leeward free-stream pressure
hypothesis - i.e. Cp = 0 - and the Prandtl-Meyer expansion for sharp edged
bi-dimensional bodies. This other expansion method comes from a correction
of the vacuum pressure coe�cient, where the vacuum hypothesis is assumed
to describe expansion after a steep change in the geometry, such as there can
be in a �at back of a missile - with rocket boosters o� - or a capsule.

Remembering the Cp expression in terms of Mach number:

Cp =
p− p∞

1/2ρ∞V 2
∞

=
p− p∞

1/2γp∞M2
∞

(2.21)

we have, in the void (p = 0), the vacuum expansion formula:

Cp = − 2

γM2
∞

(2.22)

Empirical correlations have shown that, in an high hypersonic �ow with
viscous e�ects, such as recirculation at the vehicle rear, this relation can be
corrected in what is known as the high Mach number base pressure formula:

Cp = − 1

M2
∞

(2.23)

This method can be used to describe the rear of blunt vehicles.



Chapter 3

Models for viscous hypersonic �ow

3.1 Reference enthalpy methods

At this moment, we have determined in an approximate way the inviscid �ow
over the vehicle surface. To calculate the e�ects of viscosity we need to charac-
terize in some way the properties of the boundary layer surrounding the body.
The mathematical solution of the compressible boundary layer has been stud-
ied in depth, at least for the laminar �ow. Exact solutions for the self-similar,
laminar �ow have been derived from the governing boundary layer equations,
either for the �at plate and the stagnation region case. Algorithms for the
calculation of a non self-similar current have been investigated, and �nite dif-
ference solutions have been tested. For an in depth look at these subjects, a
good presentation can be found in chapter 6 of [2]. These methods are however
too sophisticate for the philosophy of our algorithm, so we have to �nd a way
to de�ne the in�uence of the boundary layer on our �ow without solving the
exact equations, which would be prohibitive in terms of computational cost
and time, considering the aims of our program.

Fortunately, engineering empirical correlations and approximate calcula-
tions linked to the description of the viscous properties of an hypersonic or
supersonic body, knowing only the external inviscid �ow�eld, have been al-
ready developed in literature. The �rst complete analysis of this kind had been
elaborated in the Fifties by Eckert [8], then in more recent days Meador and
Smart [9], and Simeonides [10],[11], proposed new studies and theoretical justi-
�cations on the work of Eckert. The main idea underlying the studies of these
authors is to link the compressible boundary layer analysis to the theoretic
relations obtained for the incompressible laminar and turbulent �ows. The
charactheristic numbers and formulas used for the description of the boundary
layer, e.g. the friction coe�cient cf calculation for the shear stress, or the
Stanton number CH for the heat transfer, will have the same formulation as

33
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in uncompressible �ows. So in which way compressible e�ects are included in
the description?

The key of these methods is that the whole of the coe�cents, character-
istic numbers, thermodinamic variables, and other values that identify the
boundary layer state are calculated at a certain enthalpy, representative of the
internal energy of the compressible boundary layer, taken somewhere inside
the layer. For this reason these methods are gathered under the name of ref-
erence enthalpy methods. Obviously, these approximate methods are intended
for preliminar, quick design calculations, for the great simplicity they grant,
since they are based on quasi-one-dimensional analysis and on averages of the
thermodinamic properties across the boundary layer. These methods show a
great dependence over Rex , and this is the main reason which justi�es stream-
line calculation, which is then mandatory for obtaining the correct curvilinear
coordinate x.

We present here the formulations proposed by these three authors, from
the simplest and oldest idea to the most generalized and recent one. In the
implementation of our algorithm, we have �rst used the Meador - Smart ref-
erence method, which is based only on the nature of the �ow and not on the
geometry, and then some relations from Simeonides, to take account of the
geometry of our vehicle, expecially when considering the stagnation region.
Eckert method has been implemented as a part of Simeonides method. We
will present it as �rst to give an idea of how a reference enthalpy method is
composed.

3.2 Eckert's reference temperature method

Eckert was the �rst to propose a method based on the concept of a reference
temperature indicative of the energy status inside the boundary layer. We
describe here his work as it is presented in [2].

First, we de�ne the formulas for the friction coe�cients and Stanton num-
ber, which are taken from the �at plate hypoteses.
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Table 3.1: Coe�cients calculation for Eckert method
Incompressible Flat Plate Compressible Flat Plate

laminar

cf = 0.664√
Rex

c∗f = 0.664√
Re∗x

Cf = 1.328√
Rec

C∗f = 1.328√
Re∗c

CH = 0.332√
Rex

Pr−2/3 C∗H = 0.332√
Re∗x

Pr∗−2/3

turbulent

cf = 0.0592
(Rex)0.2 c∗f = 0.0592

(Re∗x)0.2

CH =
cf
2s

C∗H =
c∗f
2s∗

As one can see, the formulation doesn't change between the compressible
and incompressible case. The only di�erence is that the values marked with
an asterisk are calculated at a given reference temperature T ∗, i.e.:

c∗f =
τw

1
2
ρ∗u2

e

(3.1)

C∗f =
Df

1
2
ρ∗u2

eS
(3.2)

C∗h =
q∗w

ρ∗ue (h∗aw − h∗w)
(3.3)

Re∗x =
ρ∗uex

µ∗
(3.4)

Re∗c =
ρ∗uec

µ∗
(3.5)

Pr∗ =
µ∗c∗P
k∗

(3.6)

with ρ∗ = ρ (T ∗), µ∗ = µ (T ∗) and so on. ue is the inviscid velocity cal-
culated outside the boundary layer. From now on, with the e subscript we
denote the values calculated from inviscid theory just outside the BL.

We need then a relation for the reference temperature, that is obtained
from empirical correlation, in Eckert's work:

T *

Te
= 1 + 0.032M2

e + 0.58

(
Tw
Te
− 1

)
(3.7)
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Given the external �ow with Te,Me and the wall temperature of the vehicle
Tw we are in the condition to calculate T ∗ and all the reference variables,
obtaining the compressible friction coe�cient c∗f and the compressible Stanton
number C∗H in every point of the surface.

We remember here that these approximations are valid for a �at plate. For
conical geometries and laminar �ows, [2] proposes to multiply the local skin-
friction coe�cient and Stanton number by the Mangler fraction

√
3, in order

to take account of the rise in the skin friction and heat transfer due to the
thinning of the boundary layer in a three dimensional geometry.

3.3 Meador Smart reference enthalpy method

In 2005, �fty years later than the work of Eckert, William E. Meador and
Michael K. Smart extended the concept of reference temperature [9], taking as
the main parameter to characterize the boundary layer the reference enthalpy
ratio:

g∗ =
h∗

he
(3.8)

With respect to Eckert's work, this study poses the selection of the refer-
ence enthalpy formulas on a theoretical ground, elaborating a de�nition of the
reference enthalpy which is not based anymore on empirical correlations, but
on analytical elaborations of the exact boundary layer equations. For the lam-
inar �ows, the enthalpy ratio is obtained from the Van Driest enthalpy pro�le
g(f), where f is the non-dimensionalized velocity pro�le in the BL equations;
and from Whit�eld and High's �rst-order theory for turbulent boundary lay-
ers. Basing their work on these assumptions, Meador and Smart propose an
average of the local enthalpy ratio over the boundary layer velocity pro�le.
Two di�erent formulas for the reference enthalpy, one for laminar and another
for turbulent �ows, are obtained. For the laminar we obtain:

T ∗

Te
= 0.45 + 0.55

Tw
Te

+ 0.16 r

(
γ − 1

2

)
M2

e (3.9)

while for a turbulent �ow we have:

T ∗

Te
= 0.5

(
1 +

Tw
Te

)
+ 0.16 r

(
γ − 1

2

)
M2

e (3.10)

with r =
√
Pr∗ as the adiabatic recovery factor.

Obviously these formulas are intended for a perfect gas with costant γ and
cp. For the laminar �ow, formulas for obtaining shear stress are the same as
Eckert's work, while for turbulent �ows, the authors propose the following:
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c∗f =
0.02296

(Re∗x)
0.139

(
ρ∗

ρe

)0.861(
µ∗

µe

)0.139

(3.11)

On the other hand, when presenting this method, Anderson [2] proposes
the following expressions for the local and global (�at plate) skin-friction co-
e�cents:

c∗f =
0.02296

(Re∗x)
0.139 (3.12)

C∗f =
0.02667

(Re∗c)
0.139 (3.13)

For the determination of the compressible turbulent Stanton number C∗H ,
it should be obtained from the skin-friction coe�cient using the Reynolds
analogy. We refer to section 3.6 for this discussion. However, knowing c∗f and
obtaining C∗H from Reynolds analogy, we have analyzed the viscous �ow over
the surface.

The preceding equations 3.9-3.11 have been used in a previous implemen-
tation of the algorithm, even if they rely on the hypothesis of perfect gas. As
the authors already proposed in their work, the reference enthalpy can be gen-
eralized by replacing perfect gas γ and Pr with their reference corrispectives,
calculated with a gas mixture chemical equilibrium solutor, as we do in our
work:

γ∗ =
Cp (T ∗)

Cv (T ∗)
(3.14)

Pr∗ =
Cp (T ∗) µ (T ∗)

k (T ∗)
(3.15)

The equations 3.9, 3.10 become, in a more generalized presentation, relating
them to laminar and turbulent �ow respectively:

g∗ = 0.45 + 0.55φ+ 0.16 r

(
γ∗ − 1

2

)
M2

e (3.16)

g∗ = 0.5 (1 + φ) + 0.16 r

(
γ∗ − 1

2

)
M2

e (3.17)

with φ = h∗w/he. This formulation is used in order to treat chemical reacting
mixtures.

Meador Smart method gives slight enhancement in the results with respect
to Eckert work, but its main virtue is to pose theoretical basis to the reference
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enthalpy formulation. We remember that the authors underline that their for-
mulas are valid only in an engineering approximation sense, and we underline
the fact that this method is presented only for the �at plate approximation,
hence introducing further exstimation error in our model. To quantify in some
way the approximation introduced by a reference enthalpy method, we present
here the comparison of the friction factor and the Stanton number of Eckert
and Meador Smart compared with numerical solutions over a �at plate, as is
presented in [9].

Figure 3.1: Laminar Cf and CH prediction comparison with numerical solu-
tions

In these two graphs we can see the comparison over numerical laminar �at
plate results. We want to stress two facts that emerge from the analysis of
these results. The �rst one is evident in the left image, which represents the
confront between cf

√
Re at di�erent Mach numbers. If we impose a value of φ,

we can see that the numerical solutions tend to lie between Eckert and Meador
Smart methods. But if we focus on the adiabatic solution - i.e. the solution
imposed in our algorithm - which is the red line in the graph, we can see
that both these reference enthalpy methods underestimate friction factor, and
hence Stanton number, as the Mach number grows. A certain underestimation
of these coe�cients at high Mach numbers typical of the hypersonic �ow is to
be expected.

We conclude the Meador Smart method presentation by stressing the fact
that this method has been developed under �at plate hypoteses, which have
been used for g determination. We will present in the next section a more
generalized method, that is currently used by RAM v2.0 viscous solutor, which
takes into account di�erent geometrical shapes, two and three-dimensional
�elds, junctions and other features.
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3.4 Simeonides generalized reference enthalpy method

3.4.1 Reference enthalpy method

The main limitation of the methods presented until this moment is that they
are referred at the �at plate case. This is a good initial approximation, which
has been proven quite accurate for the estimation of friction factor in regions
which are far enough from the stagnation region. In the stagnation region, or
in other regions of the vehicle which are characterized by di�erent geometries,
such as wings leading edges, the relations which produce the friction factor
or the Stanton heating coe�cient can be sign�cantly di�erent. The e�ect of
three-dimensional �ow �elds has also to be taken into account.

In 1996 a collection of di�erent empirical correlations, including Eckert's
work as well as other similar enthalpy correlations for di�erent geometries
was assembled by Simeonides ([10],[11]), which elaborated a joint algorithm
to describe friction and heating based on these formulations. In his work,
Simeonides found di�erent geometric and �uid-dynamic criteria in order to
choose a proper formulation for the part of the �ow which was to be analyzed.

To obtain a better description of the boundary layer physics, the author
proposed also a characterization of the running length of the �ow�eld based
on the e�ective boundary layer growth length. In these cases, Simeonides pro-
poses a very intuitive method to adjust the boundary layer growth over vehicle
junctions, which is to rede�ne the current boundary layer growth, length, i.e.
the reference length L, to the e�ective boundary layer origin. L becomes then
the e�ective boundary layer growth length, i.e. the length the boundary layer
should have if the boundary layer origin had been placed as if the boundary
layer was growing over the same generic surface from its e�ective origin. At
the present state of the work, this Simeonides' proposal has not been included
in our algorithm, but the RAM v2.0 structure is suitable for this extension
in future work, so we will present only its generalization of reference enthalpy
methods to generic geometries and �ow regimes. A junction method descrip-
tion can be found in [10], and an extended exposition is presented in [11].

The core of Simeonides method is the de�nition of an unique adimensional
formulation for the skin-friction coe�cient and for the Stanton number, where
the appropriate correlations for the particular �ow nature or geometry are trig-
gered by appropriate coe�cients. We recall the de�nition of some coe�cients
in order to present a clear de�nition of Simeonides main relation.

At �rst we de�ne the local skin-friction coe�cient cf , which is the main
indicator of the �ow viscous behaviour

cf =
τw

1/2ρ∞u2
∞

(3.18)
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where the subscript ∞ refers to freestream conditions, which in our algo-
rithm are the inviscid results, and the subscript w refers to wall conditions.
This coe�cient must not be confused with the very similar friction factor,
which is used in Simeonides' exposition:

f =
τw

ρ∞u2
∞

(3.19)

The heat �ow characterization is obtained instead by the de�nition of the
Stanton number :

St =
qw

ρ∞u∞ (hrec − hw)
(3.20)

where hrec is the adiabatic recovery enthalpy, sometimes presented in litera-
ture as haw, where the subscript aw is for adiabatic wall. Notice the fact that in
Simeonides method, in contrast with the CH Stanton coe�cient de�nition pro-
posed in sec. 3.2 for Eckert method, Stanton number is non-dimensionalized
using freestream quantities instead of external quantities. The adiabatic recov-
ery enthalpy,

hrec = he + r
u2
e

2
(3.21)

which is also presented as

hrec =

(
h0 −

u2
e

2

)
+ r

u2
e

2
(3.22)

that, if considering the fact that h0 = he + 1
2
u2
e, results as equivalent to

(3.21).
The recovery factor r is de�ned as

r =
hrec − he
h0 − he

(3.23)

and is proved that , even in the hypersonic case, it can be approximated as

r =
√
Pr (3.24)

for the laminar case, or

r = Pr
1/3 (3.25)

for the turbulent �ow, as it can be found in [10] and in [2], page 299.
We introduce here the Reynolds analogy, which will be presented in a ex-

austive way in sec. 3.6, which can be expressed, for a laminar �ow, as:
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St = f Pr−
2/3 (3.26)

or, alternatively, as

St =
cf
2s

(3.27)

where s is the Reynolds analogy factor, which for a laminar case is s = Pr2/3.
Simeonides de�nes a common generalized expression for the friction factor

and the Stanton number, which is reported as:

f =
τw

ρ∞u∞umain
= St Pr

2/3 =
qw Pr

2/3

ρ∞u∞ (hrec − hw)
=

= C

(
ρ∗

ρ∞

)(1−n)(
µ∗

µ∞

)n(
umain
u∞

)(1−2n)(
ugrad

L

u∞

)n
Re

(−n)
∞,L (3.28)

This formulation can be reported in an adimensional form by multiplying
for Re∞,L:

τwL

µ∞umain
=

qw L Pr
2/3

µ∞ (hrec − hw)
=

= C

(
ρ∗

ρ∞

)(1−n)(
µ∗

µ∞

)n(
umain
u∞

)(1−2n)(
ugrad

L

u∞

)n
Re

(1−n)
∞,L (3.29)

This formulation does not assume the calorically perfect hypothesis, so it is
perfect for the use with the equilibrium hypothesis adopted in our algorithm.
Simeonides presents other formulations for perfect gases, which we will not
present here for this reason, taking (3.29) as the main reference. We note
that eqn. (3.29) depends on a series of coe�cients and de�nitions which are
determined by the �ow nature and by the particular geometry of the �ow�eld
region. We report here these de�nitions in two tables, one for the laminar and
the other for the turbulent �ow:
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Table 3.2: Simeonides coe�cients and variables de�nition - Laminar �ow
Laminar Flow (n = 0.5)

2D
stag.
region

Axis.
stag.
region

In�nite
sweep
l.e.

Planar
b.l.

Conical
b.l.

Constant C 0.570 0.763 0.570 0.332 0.576

Reference
density

ρ∗ ρe or (ρ0.8
e ρ0.2

w ) @ Eckert's h∗

and Pe

Reference
viscos-
ity

µ∗ µe or (µ0.8
e µ0.2

w ) @ Eckert's h∗

and Pe

Main
b.l.
edge

velocity

umain Term drops out of the RHS in
laminar �ow, ue on the LHS
remains for shear stress

Local
velocity
gradient

ugrad
due
ds

normal to
attachment line

ue
x

Length
scale

L Leading edge / nose
radius of curvature R

Surface
length, L
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Table 3.3: Simeonides coe�cients and variables de�nition - Turbulent �ow
Turbulent Flow (n = 0.2)

2D
stag.
region

Axis.
stag.
region

In�nite sweep
l.e. (n =
0.21)

Planar
b.l.

Conical
b.l.

Constant C 0.040 0.042 0.0345 0.0296 0.0348

Reference
density

ρ∗ ρe or (ρ0.8
e ρ0.2

w ) @ Poll's h∗

and Pe

@ Eckert's h∗

and Pe

Reference
viscos-
ity

µ∗ µe or
(µ0.8

e µ0.2
w )

@ Poll's h∗

and Pe

@ Eckert's h∗

and Pe

Main
b.l.
edge

velocity

umain ue along local
�ow direction

ve along
attachment

line

ue along local
�ow direction

Local
velocity
gradient

ugrad
due
ds

normal to attachment
line

ue
x

Length
scale

L Leading edge / nose radius
of curvature R

Surface
length, L

We note that Simeonides proposes di�erent expressions of the reference
quantities. For example, the stagnation region density and viscosity values
are often taken as the external values, or, after the analysis of Fay & Riddel
(1958), as a weighted product of the wall and external values: ρ∗ = ρ0.8

e ρ0.2
w and

µ∗ = µ0.8
e µ0.2

w , while in the turbulent case, we have the di�erentiation between
Eckert classical formulation for the reference enthalpy, which is

h∗ = 0.28he + 0.50hw + 0.22hrec (3.30)

and the formulation proposed by Poll in 1992, which is considered more
accurate in the in�nite swept cylindircal leading edge, which more weighted
recovery enthalpy, and lessens the wall in�uence:

h∗ = 0.30he + 0.10hw + 0.60hrec (3.31)

Another quantity de�nition which has to be cleared is the velocity gradient
in the stagnation region. Simeonides proposes an approximated determination
of the velocity gradient based on the Bernoulli equation:
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ugrad =
due
ds

=

√
2 (pe − p∞)

ρe
(3.32)

whereas, as we will see in section 6.3 a numerical determination of ugrad is
possible. Another approximated formulation for the stagnation region is given
by:

ugrad =
due
ds

=
1

R
414.67

(
htot − hw
R0T0

)
(3.33)

Another consideration to remember is that , when applying this method to
swept leading edges, the relevant freestream velocity is

u∞,swept = u∞cos (Λ) (3.34)

This method can then be applied on the whole vehicle, by taking care to
choose the correct approximate formulation corresponding to the appropiate
region of the body. In the validation of our algorithm, only a distinction be-
tween stagnation region and downstream region has been made, considering the
stagnation region as axisymmetric for fusiform bodies and as two-dimensional
for wings and non-fusiform bodies. For the rest of the vehicle, the considered
correlation is the planar boundary layer relation. Dirkx [1] elaborated an au-
tomated algorithm to select and split into di�erent parts the vehicle region,
de�ning blunt and non-blunt regions, and curved and non-curved regions. At
the present stage of the work a direct software integration has not been devel-
oped, and the blunt/slender di�erentiation is made manually by choosing the
appropriate station between the stagnation region and the downstream part
of the body.

We would like to clarify the indexes of (3.29) referring to our geometry. For
the downstream part of the vehicle, i.e. the region downstream the stagnation
region, surface length L is calculated as the actual running length curvilinear
coordinate x in order to obtain the correct friction factor given by the actual
distance travelled by �uid particles. In the downstream region the vehicle
surface is hence considered as a single �at plate (or a curved plate for conical
surfaces), where all the �ow properties are calculated along the streamline, as
well as the length L which is the distance from the stagnation point measured
along the streamline curvilinear coordinate x, so in our formulation we will
take

L = x (3.35)

when we are dealing with planar or conical boundary layers.
The last consideration that we will stress in Simeonides work is about the

contribution of viscous interaction. In his study Simeonides clearly states that
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these correlations mantain their validity since the viscous interaction e�ects
are negligible. We can agree with this, since our algorithm is not intended to
study external �ow-�eld modi�cations due to increased boundary layer growth.
However, we would like to rembember that, since Simeonides method is based
upon Eckert's method, and that Meador and Smart showed that a certain
consideration of viscous heating in�uence is included in the quadratic growth
of the reference enthalpy ratio (see sec. 3.3) both for their method and for
Eckert's, it is not completely true that all the high enthalpy �ow viscosity
e�ects are not represented.

3.5 Transition

Since the beginning of this chapter, we have proposed formulations and cor-
rections which depended in a strong way from the nature of the �ow. Indeed,
laminar and turbulent �ows carry signi�cant di�erences which motivate the dif-
ferent correlations which have to be found in order to describe them properly,
both in a numerical simulation or in an approximate solver like ours. And here
we come to the front line on which aerodynamic research is holding from over a
century. Ludwig Prandtl, while studying the subject of boundary layer in the
beginning of the XX century, put his trust on the powerful mathematical tools
discovered in those years, that in a few decades the problem of aerodynamic
transition would be solved. By present day, we can de�netively say that his
prevision was too optimistic. As one of the most experienced hypersonic aero-
dynamcists, John D. Anderson Jr., says in our era (2006): �Turbulence, and
transition to turbulence, is one of the unsolved problems in basic physics�[2].

We can certainly agree with that, and we add the consideration that, while
for fully developed turbulent �ows literature has developed several empirical
or theoretical correlations to describe its behaviour, we can't say the same
thing for turbulent transition. Transition keeps itself elusive, expecially in the
hypersonic �ow�eld, where to the challenging study of �uid stability, other
in�uences are added, since transition depends strongly over Mach number and
thermo-�uid-dynamic properties of the �ow. However, in order to take into
account the development of a turbulent �ow, a transition point guess, in an
engineering approximation sense, has to be made. We propose here two cor-
relations, as presented in [2], to provide an approximate criteria of transition.
We would like to stress again the fact that they are provided just to make a
very rough esteem of the transition point on our vehicle, as the only way to
obtain reliable transition values nowadays is through experimentation or direct
numerical simulation - which for our geometries and �ow regimes is absolutely
una�ordable. For a discussion on the current state of the art on transition, we
recommend the reading of [12].
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The main concept of the two formulations presented here is to de�ne an
appropriate Reynolds number, the transition Reynolds number, which is asso-
ciated with a proper lenght xT which identi�es transition, along the curvilinear
coordinate x.

ReT =
ρeVexT
µe

(3.36)

The �rst method to be presented here, which has found some use in hypersonic
vehicle design - e.g. Space Shuttle transition determination - is based on
the de�nition on a transition Reynolds number based on the boundary layer
momentum thickness:

ReθT =
ρeVeθT
µe

(3.37)

where θT is the transition boundary layer momentum thickness, the bound-
ary layer momentum thickness being de�ned as:

θ =

eˆ

0

ρ (y)u (y)

ρeVe

(
1− u (y)

Ve

)
dy (3.38)

Transition is reached when:

ReθT
Me

= 100 (3.39)

This formulation is particularly unsuitable for our case, since that it requires
an approximate calculation of the momentum thickness, since we don't solve
the boundary layer. Following this road adds further approximation to an
already raw formulation, and it requires an accurate identi�cation of the �ow-
�eld region nature in order to determine properly θT . We will propose here
another correlation, based on the study of hypersonic waveriders, which gives
the Reynolds numer directly in terms of transition lenght sT :

log10 (ReT ) = 6.421 exp
(
1.209× 10−4M2.641

e

)
(3.40)

This formulation is more straightforward and requires less approximated
hypotheses on the boundary layer, so it will be used in our algorithm.

In the description of his generalized method [10], Simeonides proposes an
interesting consideration, which leads to an accurate description of heat �ow
during the transition, with a correct match of experimental data. His proposal
is to set the transition point at the location where a heating �ux peak is
achieved - obviously not the stagnation peak, but a downstream peak on the
body. This consideration has been con�rmed through Simeonides method
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validation against experimental wind tunnel data over the Halis Axisymmetric
Con�guration - HAC - which is the axisymmetric analogous of the Shuttle
windward centerline. We see the comparison in the following picture which
confronts heat �uxes from Simeonides, CFD code and experimental

Figure 3.2: Heat �ux over HAC con�guration - prediction and measurements

As we can see, Simeonides method with transition at the heating peak,
dashed line in �g. 3.2, matches the experimental data with an high level of
accuracy for the level of approximation of this method. A word of caution on
these results is to be said: Simeonides results are confronted on an axisymmet-
ric, �ared con�guration, as the HAC is, and the peak produced by the presence
of a �are is very clear. The validity of this method should be tested even on
less characteristic geometries.

We end this chapter with the recommendation to use an high level of at-
tention on these results, in particular on eqn.s (3.39) and (3.40), since they are
extracted from very general correlations, and do not give completely reason of
an highly non-linear and not fully understood process, as it is the transition
phenomenon. We suggest hence to �nd, depending on the particular analyzed
case and on the availability of experimental or numerical data, an appropriate
value or correlation for ReT , and insert it into the algorithm.
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3.6 Heat �ux calculation - Reynolds analogy

3.6.1 Theoretical Reynolds analogy

In the treatment of uncompressible viscous �ows, there is a direct correlation
between the friction coe�cient and the Stanton number, which takes the name
of Reynolds analogy, and it is of the form:

St =
cf
2s

(3.41)

where s is called the analogy factor, and for a laminar �at plate �ow is
simply de�ned as:

s = Pr
2/3 (3.42)

This results implies the fact that there is a direct link between the convec-
tive heat �ow in the current and its internal dissipation due to friction. This
is con�rmed by the fact that Prandtl number:

Pr =
cpµ

k
(3.43)

express the ratio between the frictional dissipation and the thermal con-
duction inside the �uid.

For a turbulent �ow, such an exact relationship does not exist. Reason-
able values can be taken from the work of Van Driest [13], which analyzes,
both experimentally and theoretically, the behaviour of s with Me and Rex.
Considering the behaviour of s with Me for a �at plate, it seem from the data
that s tends to a value of 0.815 for Me > 5 . Unfortunately, due to the fact
that the experimentations were carried out more than 60 years ago, we don't
have data for higher Mach numbers. As for the Rex dependancy, there is only
one analysis conducted at Me = 0, which shows that s slowly increases with
Rex. However, this dependence is weaker than the one on Me, i.e. we have an
increase of s of 1.2% between Rex = 106 and Rex = 108.

According to the considerations stated before, and knowing that this is
an hazardous guess, we take as an analogy factor for the turbulent �ow in
hypersonic conditions

s = 0.815 (3.44)

thus obtaining the following Reynolds analogy for turbulent �ows:

St =
cf

1.63
(3.45)

The analogy is presented here for the incompressible, �at plate �ow. How-
ever, we can see that, in sec. 6.5.1 of [2], which deals with viscous �ow solutions
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over a �at plate, that the validity of these results extend with little approx-
imation even to the hypersonic �ow regime. We can then simply extend the
Reynolds analogy in the reference enthalpy sense, as Simeonides already did
(see 3.4.1):

St
∗ =

c∗f
2s∗

(3.46)

where s∗ = Pr∗2/3 for laminar �ows, and s∗ = 0.815 for turbulent �ows.
Simeonides proposes the Pr∗2/3 value for both formulations. We will choose
the best correlation with our experimental data.

3.6.2 Reynolds analogy in RAM v2.0

In this paragraph, we would like to present some evidences about the practical
use of Reynolds analogy in heat �ow determination, and how the heat �ow
is currently calculated in our algorithm. From the comparison of our results
with the ones provided by ESTEC CFD Dart calculations, see sec. 1.7, we
have noticed indeed that the heat �ow distribution followed a di�erent pattern
with respect to the friction factor coe�cient. Since Reynolds analogy gives a
linear relation between St and cf , if we consider Pr almost constant - indeed it
does not vary excessively even in the thermochemical equilibrium model - the
heat �ow distribution pattern has the same trend as the friction factor curve,
in contraddiction with CFD data, as can be seen in the following �gure:
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Notice that cf has the same trend between our model and ESA CFD sim-
ulations, while ESA qw tends to resemble �at plate distribution, in contrary
to our heat distribution, which, coherently with Reynolds analogy, mantains
the same cf curve trend. This is a limitation of our algorithm, but we accept
it noticing that a very good agreement with the CFD values is obtained over
a great part of the geometry, the integral error being thus limited. We no-
tice the fact that, if the data are used for a preliminary heat �ow study, in
the stagnation region the heat peak value from RAM v2.0 should be used in
place of the current RAM v2.0 stagnation value, since it would provide a more
accurate description of the nose region.

3.7 Viscosity relation

In order to describe correctly the viscous behaviour of the �ow, we need a
relation to describe properly the dependence of µ from temperature T . An-
derson [2] proposes the classical Sutherland's law, even if it is valid only for
non-reacting gases, justifying himself by stating that this relation is valid for
air in a range of several thousand of degrees. What happens in the event of
molecular dissociation at over 2000 K (for atomspheric air) is not clear. How-
ever, Anderson assures that this formulation is appropriate for hypersonic �ow
calculations, so we will report it here:

µ (T ) = µ0

(
T

T0

)3/2
T0 + S

T + S
(3.47)

where, for air, we have µ0 = 1.789 10−5
[
kg
ms

]
, T0 = 288 [K] and S = 110.4 [K] .

Obviously, this correlation is valid only for terrestrial air. In the hypothesis of
analysis of an extra-terrestrial re-entry path, appropriate coe�cients µ0 and
S have to be found. However, we will notice that, for high temperatures,
coe�cient S looses importance.

3.47 can be written for air then, by substituting the previous constants, as:

µ (T ) = C1
T 3/2

T + C2

(3.48)

with:

I C1 = 1.458e−6
[

kg
msK1/2

]
I C2 = 110.4 [K]

In real gas and mixtures, however, viscosity tends to follow a power law, like
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µ (T ) = µ∞

(
T

T∞

)α
(3.49)

with α = 0.5→ 1.
Simeonides, in his generalized reference enthalpy analysis, �nds that the

following term from equation 3.29(
ρ∗

ρ∞

)(1−n)(
µ∗

µ∞

)n
(3.50)

which, in perfect gas hypotesis is proportional to

(
T∞
T ∗

)(1−n)(
µ∗

µ∞

)n
=

(
T∞
T ∗

)(1−2n)(
T∞
T ∗

µ∗

µ∞

)n
=

(
T∞
T ∗

)(1−2n)

C∗n (3.51)

thus leading to the following relation for viscosity:

µ∗ = µ∞C
∗ T
∗

T∞
(3.52)

In his study, Simeonides �nd that C∗, while globally depending on T ∗/T∞,
is locally linear. A local relation for µ can be found, for example by using the
Chapman-Rubesin relation for viscosity:

µ∗

µ∞
= C∗ (Tw, T∞)

T ∗

T∞
(3.53)

where C∗ is chosen to satisfy Sutherland's relation at the wall:

C∗ (Tw, T∞) =

(
Tw
T∞

)1/2
T∞ + S

Tw + S
(3.54)

Unfortunately, Tw is not available before an appropriate iterative solution
of the termal problem on the surface, which can be obtained only after the
calculation of the external �ow. We could include this viscosity formulation
inside the termal problem, but this solution could increase dramatically the
non-linearity of an already non linear problem in Tw, as we will see in chapter
5, so we don't reccommend this option.

Another choice is to couple the viscosity with the thermochemical solver
for the gas thermodynamic properties, which will be presented in chapter 4,
along with a coherent model for viscosity determination in an equilibrium
mixture. This choice is immediate and accurate, but, as we will see, the use
of the thermochemical solver is quite expensive, and it is mandatory to obtain
correct results only in the presence of a shock. We won't use it in every point
of our vehicle, so viscosity can be obtained only where the solver is actually
used. In all the other regions, the standard Sutherland relation 3.47 is used.



Chapter 4

Thermochemical equilibrium

4.1 Introduction

When considering thermodynamic problems dealing with very high temper-
atures, the commonly used perfect gas hypothesis looses its validity. Shock
calculations made under perfect gas hypotheses, such as those presented in
eqn.s (2.15), (2.17), based on the hypothesis of constant speci�c heats, i.e.
cP , cv = const. and γ = const., produce incorrect results. As temperatures
and re-entry velocities rise, vibrational excitation �rst, and molecular dissoci-
ation then, change the gas properties, as we have already seen in sec. 1.4.4.
The temperature and pressure increase within the shock wave is absorbed,
with respect to the perfect gas shock, in part by the activation of vibrational
degrees of freedom, and in part by the variation of the gas mixture compo-
sition, resulting in modi�ed global gas properties - i.e. the variation of the
speci�c gas constant R and of the gas speci�c heats. These e�ects tend to pro-
duce a reduced increase of temperature through the shock. Calculations made
under the unrealistic hypothesis of perfect gas overextimate the after-shock
values of pressure and temperature, leading to completely wrong results when
analyzing classical high-energy, high-Mach re-entry problems. An appropriate
reconstruction of the gas thermodinamic state in these conditions has then to
be adopted.

Some preliminary concepts will be introduced here to facilitate the theoret-
ical description of high energy gas behaviour. When temperature rises over the
level of molecular dissociation - over 2000 K for air - the gas composition starts
to change. This modi�cation dominates the thermodynamic properties of the
gas, which now reveals its true nature as a mixture of di�erent elements. This
is the typical situation encountered in hypersonic �ows, where the high temper-
atures reached after a shock wave produce such dissociation. In this process,
all the gas properties must be determined from point to point depending on

52
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the mixture composition, by assigning the number of moles for each species.
From the de�nition of the gas composition the other gas properties can be de-
termined by treating every species as a single perfect gas, and combining the
various species properties via the de�nition of the global mixture constants.

At this point, we can divide the description of chemically reacting mix-
tures in two categories, depending on the assumptions we can make over the
particular �ow. If the speed of chemical reactions is very fast, such that the
variation of gas chemical composition can be supposed as instantaneous, we
can say that the system we are considering is in thermochemical equilibrium.
This means that the composition variation, which needs a �nite amount of
time to take place, has enough time to settle itself to a point of equilibrium. If
equilibrium hypothesis can be used, the composition of the mixture is instan-
taneously determined by the choiche of two variables of state, so that we can
describe the properties of the gas by determining these two variables, e.g.:

h = h (T, p)

e = e (T, p)

cp = cp (T, p)

cv = cv (T, p)

If this assumption is not met, i.e. chemical reactions take place at a rate
comparable to �uid convection time, the actual composition of the gas mixture
does not only depend on the thermodynamic two-variables state, but also on
the �ow hystory. In this condition, gas properties and energies depend not only
on the state variables, but also on the actual composition, which is the result
of the chemical and �uid dynamic time evolution of the �ow. This condition
is referred to as thermochemical nonequilibrium. For what we said before, in
this case we have:

h = h (T,N1, N2, ..., Nn)

e = e (T,N1, N2, ..., Nn)

cp = cp (T,N1, N2, ..., Nn)

cv = cv (T,N1, N2, ..., Nn)
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where Ni is the i-th species number of moles. To describe this kind of
gas, the assumption that chemical reactions take place at a �nite rate leads
to the de�nition of chemical rates through the de�nition of appropriate rate
equations, depending on the chemical reactions which take place in the �ow.

It is interesting to note that, in both cases, the perfect gas equation of state
still holds:

pv = RT (4.1)

However, R is not a constant anymore, since it depends on the gas mixture
composition:

R =
∑
i

ρi
ρ
Ri =

∑
i

Ni

N

Mi

M
Ri (4.2)

where:
ci = ρi

ρ
is the mass fraction of a species, while

Xi = Ni
N

is the mole fraction
and their relation is expressed by:

ci = Xi

(
Mi

M

)
(4.3)

where Mi is the molecular weight of the single species, and M is the
molecular weight of the mixture.

Since our problem deal with thermochemical reacting mixtures of gas, we
will use this formulation for the description of the gas thermodynamic state.
In particular, we will use the assumption of thermochemical equilirium. This
decision is the consequence of some facts: the �rst is that, since our solution
technique is based on the approximate description of the �ow�eld on the vehi-
cle surface, we are not interested in the accurate reconstruction of the �ow�eld
in other regions. Evidence in the assembly of our algorithm has been found
that the major impact on the thermodinamic reconstruction accuracy is lo-
cated in the correct description of the �ow after the frontal shock wave. This
analysis requires to use a chemically reacting gas model, since the huge tem-
perature increase through the shock lead to dissociation in hypersonic �ows.
However, non-equilibrium e�ects are felt only in the immediate surroundings
of the shock, as the gas composition tends to reach equilibrium before the
vehicle surface. So the assumption of equilibrium �ow is suitable if our aim is
to reconstruct the correct thermodynamic state at the body wall.

Another reason to prefer an equilibrium analysis is that the in�nite rate
of chemical reactions leads to a very immediate formulation for the mixture
composition; while the determination of the mixture composition for a non-
equilibrium �ow requires the thermodinamic state equations to be accompanied
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at every point of the calculation by a whole system of equations, describing
�nite rate chemical reactions and accounting for the present composition of
the mixture. This approach tends to slow excessively computational times,
and since the increment of accuracy in the �ow description through and just
behind the shock wave doesn't a�ect the accuracy on the vehicle body, this
additional e�ort is not justi�able. In the following subsections, accurate the-
oretical description of the thermochemical equilibrium gas mixture applied to
a shock wave and its implementation are a�orded.

4.2 Thermochemical equilibrium through a shock

wave

4.2.1 Thermochemical equilibrium via equilibrium con-
stant method

Introduction In this section, we will present the thermodinamic description
of an equilibrium mixture, and how to impose the thermodinamic equilibrium
by Gibbs energy minimization and equilibrium entropy de�nition. This is
not the actual implementation of thermochemical equilibrium adopted in our
algorithm, but it introduces some basilar concepts that will be used in the
formulation of the currently used equilibrium iterative method, that will be
presented in sec. . We will introduce some basilar concepts and de�nitions in
order to describe correctly the equilibrium de�nition. In the following section,
capital letters are used for extensive quantities, small letters for mass speci�c
quantities and small hat letters for molar speci�c quantities. For example

H [J ]

is the extensive enthalpy,

h =
H

m
[
J

kg
]

is the speci�c enthalpy, and

ĥ =
H

N
[
J

mol
]

is the molar speci�c enthalpy.
In a non-reacting gas mixture, or a frozen mixture, the internal energy of

the �uid depends only on two state variables, the entropy S and the volume
V:

E = E (S, V ) (4.4)
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When we are considering the e�ects of chemical reactions, however, a de-
pendance on mixture composition is present, as we stated before:

E = E (S, V,Ni) (4.5)

Hence, for a reacting mixture, the energy di�erential becomes:

E =
∂E

∂S

∣∣∣∣
V,Ni

dS +
∂E

∂V

∣∣∣∣
S,Ni

dV +

Nsp∑
i=1

∂E

∂Ni

∣∣∣∣∣
S,V,Nj 6=i

dNi (4.6)

thus, recalling that
∂E

∂S

∣∣∣∣
V,Ni

= T (4.7)

and

∂E

∂V

∣∣∣∣
S,Ni

= −p (4.8)

we can express internal energy into the subsequent formulation:

dE = TdS − pdV +

Nsp∑
i=1

µ̂idNi (4.9)

We underline the fact that the two �rst terms of the right hand side of 4.9
are one of the most classical forms of the �rst principle of thermodynamics
for a non-reacting gas. In addition we have the contribution of composition
change:

Nsp∑
i=1

µ̂idNi

where

µ̂i =
∂E

∂Ni

∣∣∣∣
S,V,Nj 6=i

(4.10)

is called the molar electrochemical potential.

Gibbs Free Energy We de�ne now Gibbs energy G as the Legendre trans-
formation of internal energy E, with the substitution of (S, V ) with(T, P ) as
variables of state:

G = G (T, P,Ni) = E (S, V,Ni)−
∂E

∂S

∣∣∣∣
V,Ni

S − ∂E

∂V

∣∣∣∣
S,Ni

V (4.11)
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that, for eqn. (4.7), (4.8) becomes:

G = E − TS + pV (4.12)

Expressing Gibbs energy di�erential leads to:

dG = dE − TdS − SdT + pdV + V dp (4.13)

which becomes, by substituting eqn. (4.9):

dG = −SdT + V dp+

Nsp∑
i=1

µ̂idNi (4.14)

One of the properties of Gibbs energy is to be linear with respect to an
arbitrary parameter, λ. We can then write:

G (S, V, λNi) = λG (S, V,Ni) (4.15)

Gibbs energy is also addictive, hence leading to:

G
(
S, V,

∑
Ni

)
= G (S, V,N1) +G (S, V,N2) + ...+G

(
S, V,NNsp

)
(4.16)

By combining these two properties if G, one can write:

G
(
S, V,

∑
Ni

)
=

Nsp∑
i=1

∂G

∂λ
=

Nsp∑
i=1

∂G

∂ (λNi)

∂ (λNi)

∂λ
=

Nsp∑
i=1

∂G

∂ (λNi)
Ni (4.17)

which becomes, for the arbitrariness of λ:

G =
∑
i

∂G

∂Ni

Ni (4.18)

for λ = 1.
Now, recalling the de�nition of the electrochemical potential (4.10), and of

the internal and Gibbs energy di�erentials, respectively (4.9) and (4.14), we
can write:

∂E

∂Ni

∣∣∣∣
S,V,Nj 6=i

=
∂G

∂Ni

∣∣∣∣
T,P,Nj 6=i

= µ̂i (4.19)

thus demonstrating that the electrochemical molar potential coincides with
the molar gibbs energy for the single species:
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∂G

∂Ni

∣∣∣∣
T,P,Nj 6=i

= ĝi = µ̂i (4.20)

Eqn. (4.18) can be then rewritten as:

G =
∑
i

∂G

∂Ni

Ni =
∑
i

ĝiNi =
∑
i

µ̂iNi (4.21)

Thermochemical Equilibrium by Minimization of Gibbs Free Energy

We can now de�ne thermochemical equilibrium by using the de�nition of en-
tropy. Considering:

dS = dSrev + dSirr (4.22)

and remembering that

dE = TdS − pdV (4.23)

we have that

TdSrev = dE + pdV + TdSirr (4.24)

which, confronted to eqn. (4.9), leads to the consideration that irreversible
entropy is generated via species modi�cation and mixing:

TdSirr = −
∑
i

µ̂idNi (4.25)

If we introduce now the hypothesis of chemical equilibrium, we must ob-
serve the fact that, if chemical reactions are balanced in both directions with
an instantaneous rate, this mean that the production of irreversible entropy is
null, hence:

dSirr = 0 (4.26)

which leads to ∑
i

µ̂idNi = 0 (4.27)

which is called the algebraic equilibrium condition.
We need now to correlate the species composition of the mixture to the

actual chemical reactions which happens in high temperature mixtures. A
generic chemical reaction inside the mixture can be expressed as:

νiAi 
 νjBj (4.28)
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where ν is the stoichiometric coe�cient.
We can then de�ne the reaction rate ξ as the rate of creation and destruc-

tion of new species, as
dNi = νidξ (4.29)

with νi < 0 if the species i is a reactant, and νi > 0 if the species i is a
product. The algebraic equilibrium condition becomes then∑

i

µ̂iνidξ = 0 (4.30)

If we assume chemical equilibrium, we have to suppose that chemical reac-
tions take place istantaneusly at every moment, hence dξ 6= 0 at any moment.
The algebraic equilibrium then becomes∑

i

µ̂iνi = 0 (4.31)

Let us underline the fact that the imposition of chemical equilibrium coin-
cides with the minimization of Gibbs energy function:

dG =
∑
i

µ̂idNi =
∑
i

µ̂iνidξ = 0 (4.32)

If we know the chemical reactions that occur in a particular mixture, i.e.
the stoichiometric coe�cients, the only thing that is left to �nd in order to
impose thermochemical equilibrium is to determine the molar electrochemical
potential µ̂i. Let us describe the following molar quantities for the i-th species:

êi =

T̂

Tref

ĉv,idT + êref,i (4.33)

ĥi =

T̂

Tref

ĉp,idT + ĥref,i (4.34)

For a single species, the Dalton's law holds:

p =
∑
i

pi (4.35)

remembering that:
pi
p

=
Ni

N
≡ Xi (4.36)

The relation for entropy for the single species then becomes:
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dŝi =
1

T
(dêi + pidv̂i) =

1

T

(
dĥi − v̂idpi

)
=

1

T
(ĉp,idT − v̂idpi) (4.37)

having identi�ed the molar volume as v̂i = V
Ni

= RT
pi
.

Integration of (4.37) leads to:

ŝi =

T̂

Tref

ĉp,i
dT

T
−R

Piˆ

Pref

dpi
pi

+ ŝref,i (4.38)

ŝi =

T̂

Tref

ĉp,i
dT

T
−R ln

(
pi
pref

)
+ ŝref,i (4.39)

Remembering that the electrochemical potential is equivalent to Gibbs mo-
lar energy, we have

µ̂i = ĝi = êi − T ŝi + piv̂i = ĥi − T ŝi (4.40)

which becomes

µ̂i = ĥi−T ŝi =

T̂

Tref

ĉp,idT+ĥref,i−T
T̂

Tref

ĉp,i
dT

T
+TR ln

(
pi
pref

)
−T ŝref,i (4.41)

Let us divide the contribution due to the o�set from initial conditions from
the potential depending from the partial pressure of the mixture, which is
proportional to gas composition:

µ̂i = µ̂0,i (T ) + TR ln (pi) (4.42)

where

µ̂0,i (T ) =

T̂

Tref

ĉp,idT − T
T̂

Tref

ĉp,i
dT

T
+ ĥref,i − TR ln (pref )− T ŝref,i (4.43)

is the single species electrochemical potential calculated from reference con-
ditions, neglecting the potential variation due to mixing.

We can then express the equilibrium condition (4.31) as:∑
i

µ̂iνi =
∑
i

(µ̂0,i (T ) + TR ln (pi)) νi = 0 (4.44)
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which leads to:

nSP∑
i=1

ln (pi) νi =

∑nSP
i=1 µ̂0,i (T ) νi

TR
(4.45)

which can be rewritten as

nSP∏
i=1

pνii = e

∑nSP
i=1 µ̂0,i(T )νi

TR ≡ Kp (T ) (4.46)

KP (T ) is called the mixture equilibrium constant and it can be calculated
once µ̂0,i (T ) is known. The molar electrochemical potentialsµ̂0,i (T ) can be
obtained in two ways: the most common way is trough tabulated experimen-
tal variables, such as NASA tabulations contained in [14]. In these tables,
reference enthalpies and Gibbs energies are tabulated against T, in the form

{ĥ0 (T )− ĥ0 (0)}
[
KJ

mol

]
for enthalpies, and

{− ĝ0 (T )− ĥ0 (0)

T
}
[

J

molK

]
for Gibbs energies - remembering that µ̂0 (T ) = ĝ0 (T ), from eqn. (4.40).

Similarly to the de�nition of µ̂0 (T ), we can express molar enthalpy, molar
entropy and molar gibbs energy for the single species without the mixing con-
tribution, referred to a standard state reference point pressure pref = 1 bar,
thus obtaining:

ĥ0,i (T ) =

T̂

Tref

ĉp,idT + ĥref,i (4.47)

and

ŝ0,i (T ) =

T̂

Tref

ĉp,i
dT

T
+ ŝref,i +R ln (pref ) (4.48)

which results in a de�nition for Gibbs energy, from eqn. (4.40):

ĝ0,i = ĥ0,i − T ŝ0,i (4.49)

which is equivalent to (4.43).
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The standard state reference point temperature is chosen at ĥ0 (298.15) =
0, i.e. to have null molar enthalpy, with respect to the standard state, at
Tref = 298.15K, remembering also pref = 1 bar. We notice that, as can be

immediatly seen from eqn. (4.40), that at 0 K we have ĝ0 (0) = ĥ0 (0), and
ŝ0 (0)=0.

Obviously, these reference quantities are tabulated relatively to elements
and species in their most common compositon at the standard state. For
composite species which are created by high temperature reactions, the species
enthalpy of formation contribution from the reference state has to be calculated
from the balance of products minus reactants, taken at the most common
standard state form:

∆f ĥ0,comp.species (T ) =
nSP∑
i=1

νiĥ0,i (T ) (4.50)

where, as stated before νi < 0 for reactants and νi > 0 for products are the
stoichiometric coe�cients.

Electrochemical potentials can be directly calculated from tabulated values
of Gibbs molar energies, noting that for the generic reaction through the gas
mixture we can write:

∆f ĝ0 (T ) =
nSP∑
i=1

νiĝ0,i (T ) =
nSP∑
i=1

νiµ̂0,i (T ) (4.51)

Hence, equilibrium constants can be expressed as

Kp (T ) = e

∑nSP
i=1 µ̂0,i(T )νi

TR = e
∆f ĝ0(T )

TR (4.52)

We can now write, for every reaction which is present in our mixture, an
equation of the form (4.46), hence obtaining a description of the species compo-
sition in form of partial pressures. This introduces an unknown in pressure for
every species present in the mixture, so obviously we will have more degrees of
freedom than the number of reactions, hence making it necessary to introduce
new equations. One could think that the way to close the system would be to
add more chemical reactions to the system. However, we are forgetting that
thermochemical equilibrium must satisfy two physical constraints. The �rst is
the Dalton law of partial pressures, eqn. (4.35), while the second constraint is
the conservation of atomic nuclei in the composition variation, which can be
written as

nSP∑
j=1

ν̃i,jNj −N0,i = 0 i = 1 : nEL (4.53)
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where ν̃i,j is the ratio of the atomic mole number of element i on the species
j mole number (e.g., if we are considering the number of oxigen atoms in the
species O2, hence we have ν̃O,O2 = 2) and N0,i is the initial number of atomic
nuclei for a given element; nSP is the total number of species, while nEL is the
total number of elements. Notice the di�erence between ν̃i,j, which is always
positive and counts not the stoichiometric value but the times an element
appears in a species, and the stoichiometric coe�cient νi, which depends of
whether we are considering products or reactants and counts the ratio of species
in a reaction.

We can then express (4.53) in terms of partial pressures as:

nSP∑
j=1

ν̃i,jpj −N0,i
V

RT
= 0 i = 1 : nEL (4.54)

which is immediately obtained from the molar form of the state equation
(4.1)

piV = NiRT (4.55)

We can obtain a closed form equation for partial pressures if we express
eqn. (4.54) by expressing it as a ratio between di�erent elements:∑nSP

j=1 ν̃i,jpj −N0,i∑nSP
j=1 ν̃l,jpj −N0,l

= 0 (4.56)

Obviously in this form we can write nEL−1 equations, if we close the mass
balance system with equation (4.35) we have nEL equations in P, equivalent
to system (4.53). In a thermochemical equilibrium system, which is composed
by nCHEM chemical reaction equations of the form (4.46), of nEL− 1 mass
conservation ratios de�ned as in eqn. (4.56), and of 1 Dalton sum of partial
pressures (4.35), the balance of these equation could be not uniquely de�ned
. One will chose the correct balance of reaction equations and mass equations
depending on the reactions which actually take place and on the unknowns
number, which depends on species and on the number of elements for each
single species.

4.2.2 Thermochemical equilibrium via constrained mini-
mization of Gibbs energy (CEA)

Introduction In this subsection, we will show in detail the current imple-
mentation of thermochemical equilibrium. An algorithm of the form presented
in sec. 4.2.1 is very versatile and intuitive, but has to be implemented and
validated for every new composition which has to be analyzed. In the last 40
years, NASA Lewis Research Center has devoted some of his best energies and
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e�orts in de�ning a complete tool for thermochemical equilibrium and high
temperature gas mixture properties determination. This tool, called Chemical
Equilibrium with Applications, or CEA, is already validated by the decade-long
NASA experience in high temperature gas dynamics, and is presented to the
public in a open-source, completely free format.

Its main source code is composed by an unique Fortran 77 main �le and
by some thermodynamics external databases, which reproduce in a digital way
the data contained in [14]. In the present form of our aerodynamic module,
a modi�ed version with respect to standard CEA distribution, which can be
found in [15], is used. In particular, the input and output patterns of NASA
standard version have been adjusted in order to produce a compiled version
which is now fully automated inside a Matlab script. An optimization of the
output has been made, so that only the variables of interest are returned to
the script, written in the correct format. A quick re-compilation for C++
integration, under the same philosophy of de�nining an external executable
optimized to operate with the current language will be followed, modifying
the output in a proper way.

Restrained Minimization of Gibbs Energy We will analyze in this para-
graph the formulation which underlies the implementation of CEA software,
its analogies and di�erences from the method presented in sec. 4.2.1, and the
iteration forms of the theoretical equations used for actual calculations. The
concept underlying CEA software is again the minimization of Gibbs energy,
which as we have seen in eqn. (4.32), coincides with thermochemical equilib-
rium by imposing to zero the generation of irreversible entropy. In the previous
formulation we have used the molar speci�c form of energies and quantities,
here we will use the speci�c formulations. Hence we de�ne the mole per kilo-
gram of mixture as

ni =
Ni

M
(4.57)

where M is the total mass of the mixture. The total moles per kilogram
can be de�ned as:

n =
nSP∑
i=1

ni (4.58)

The di�erence between the use of Ni and ni is that, in the �rst case, we
obtain from the molar speci�c species properties the extensive properties; for
example for Gibbs energy we have:
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G =
nSP∑
i=1

ĝiNi (4.59)

If we use mole per kilogram expression, we obtain instead the speci�c quan-
tity of Gibbs energy, i.e.:

g =
nSP∑
i=1

ĝini (4.60)

Recalling eq. (4.20), we have that:

ĝi = µ̂i =
∂G

∂Ni

∣∣∣∣
T,P,i 6=j

=
∂g

∂ni

∣∣∣∣
T,P,i 6=j

(4.61)

hence

g =
nSP∑
i=1

µ̂ini (4.62)

As in the previous section, we want to �nd the minimization of Gibbs
free energy, but we will be looking for it while satisfying the mass-balance
constraint, expressed by eqn. (4.53), which can be rewritten, by dividing for
the mixture mass, as:

nSP∑
j=1

ν̃i,jnj − n0,i = 0 i = 1 : nEL (4.63)

where

n0,i =
N0,i

M
(4.64)

is the number of atomic nuclei for element i per unit of mixture mass.
Introducing constraint (4.63) in eqn. (4.62) through Lagrange multipliers,

we obtain:

ḡ = g +
nEL∑
i=1

(
nSP∑
j=1

ν̃i,jnj − n0,i

)
λi =

nSP∑
j=1

µ̂jnj +
nEL∑
i=1

(
nSP∑
j=1

ν̃i,jnj − n0,i

)
λi

(4.65)
The condition of equilibrium comes from the imposition of stationarity for

the constrained potential ḡ:

δḡ =
nSP∑
j=1

(
µ̂j +

nEL∑
i=1

λiν̃i,j

)
δnj +

nEL∑
i=1

(
nSP∑
j=1

ν̃i,jnj − n0,i

)
δλi = 0 (4.66)
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Treating variations as independent leads to:

µ̂j +
nEL∑
i=1

λiν̃i,j = 0 j = 1 : nSP (4.67)

from the variation δnj, and to the mass balance equation (4.63) from the
variation δλi.

We can then begin to solve the equilibrium system de�ned by (4.67) and
(4.63), by recalling that the electrochemical potential can be expressed as in
eqn. (4.42). We can notice that the term

TR ln (pi)

can be rewritten, since pi = XiP as:

TR ln (pi) = TR ln (Xip) = TR ln (Xi) + TR ln (p)

which, noting that Xi = Ni
N

= ni
n
, let us rewrite eqn. (4.42) as

µ̂i = µ̂0,i (T ) + TR ln
(ni
n

)
+ TR ln (p) (4.68)

where µ̂0,i (T ) = ĝ0,i (T ) can be obtained from tabulated data using the
procedure explained in the preceding subsection.

Once we have de�ned the equilibrium system, we must select the two as-
signed termodynamic variables which characterize the state at the equilibrium
point. For our problem, which is a shock problem, we will use as state vari-
ables temperature T and pressure p. Other state variables can be choosen,
the possible alternative pairs being (h,p) or (s,p) for the formulation in Gibbs
free energy. For other state descriptions, an Helmolthz formulation is needed.
For state formulation di�erent from (T,p) we recommend the complete CEA
algorithm analysis as reported in [16], in this chapter we will analyze only the
impositon of equilibrium in pressure and temperature.

Iteration Equations for Restrained Gibbs Energy Once the electro-
chemical potential de�nition is cleared, we can begin to write the iteration
equations for obtaining thermodynamic state in (T,p). The three equations
that will be used to de�ne chemical equilibrium are the constrained chemical
equilibrium equation (4.67), the speci�c mass conservation equation (4.63) and
the speci�c molar composition conservation (4.58). The system is hence:

µ̂j +
∑nEL

i=1 λiν̃i,j = 0 j = 1 : nSP∑nSP
j=1 ν̃i,jnj − n0,i = 0 i = 1 : nEL

n =
∑nSP

i=1 ni

(4.69)
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with the imposed thermodynamic state at equilibrium:{
T = Te

p = pe
(4.70)

We proceed to discretize the system through Newton-Rhapson algorithm.
The increment independent variables which will be used are ∆ ln (nj) ,, ∆ ln (n),
for j = 1 : nSP , ∆ ln (T ) and πi = − λi

RT . πi is not marked as an increment,
since because the system is strictly linear in λi, we will start the linearization
from λi = 0. These variables are chosen in order to obtain simpler derivatives
of the �rst function of system (4.69), which can be rewritten as, remembering
eqn. (4.68):

µ̂j+
nEL∑
i=1

λiν̃i,j = µ̂0,j (T )+TR ln
(nj
n

)
+TR ln (p)+

nEL∑
i=1

λiν̃i,j = 0 j = 1 : nSP

(4.71)
Rewriting the previous equation in non-dimensional form leads to:

µ̂j
RT
−

nEL∑
i=1

πiν̃i,j =
µ̂0,j (T )

RT
+ ln

(nj
n

)
+ ln (p)−

nEL∑
i=1

πiν̃i,j = 0 j = 1 : nSP

(4.72)
If we linearize the previous equation around the equilibrium state, in our

independent variables ln (nj) for j = 1 : nSP , ln (n), ln (T ), with null lagrange
multipliers, we obtain:

µ̂j
RT

=

=

(
µ̂j
RT

)
e

+
∂

∂ lnT

(
µ̂j
RT

)
e

∆ ln (T )+
∂

∂ lnnj

(
µ̂j
RT

)
e

∆ ln (nj)+
∂

∂ lnn

(
µ̂j
RT

)
e

∆ ln (n)

(4.73)
Recalling eqn. (4.68) and eqn. (4.40), we have that:

∂

∂ lnT

(
µ̂j
RT

)
e

=
∂

∂ lnT

(
µ̂0,j (T )

RT

)
e

=
∂

∂ lnT

(
ĝ0,j (T )

RT

)
e

(4.74)

since µ̂0,j (T ) is the only temperature dependent term of µ̂j.
We have that

∂

∂ lnT
(·) = T

∂

∂T
(·) (4.75)
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hence eqn. (4.74) becomes:

∂

∂ lnT

(
µ̂j
RT

)
e

= T
∂

∂T

(
µ̂0,j (T )

RT

)
e

(4.76)

We have that:

∂

∂T

(
ĝ0,j (T )

RT

)
e

=
RT ∂µ̂0,j(T )

∂T
− µ̂0,j (T )R

(RT )2 (4.77)

Considering (4.43) and (4.48), we have that:

∂µ̂0,j (T )

∂T
= ĉp,j −

T̂

Tref

ĉp,j
dT

T
− ĉp,j −R lnPref − ŝref,j = −ŝ0,j (T ) (4.78)

hence, recalling (4.49):

∂

∂T

(
ĝ0,j (T )

RT

)
e

=
−RT ŝ0,j (T )−

(
ĥ0,j (T )− T ŝ0,j (T )

)
R

(RT )2 = − ĥ0,j (T )

RT 2

(4.79)
which leads to

∂

∂ lnT

(
µ̂j
RT

)
e

= − ĥ0,j (T )

RT 2
(4.80)

Let us �nd the derivatives with respect to the other correction variables:
from equation (4.68) we obtain readily

∂

∂ lnnj

(
µ̂j
RT

)
e

= 1 (4.81)

and

∂

∂ lnn

(
µ̂j
RT

)
e

= −1 (4.82)

The increment becomes then:

µ̂j
RT

=

(
µ̂j
RT

)
e

− ĥ0,j

RT
∆ ln (T ) + ∆ ln (nj)−∆ ln (n) (4.83)

The iterative equation can be derived then, by substituting the increment
in eqn. (4.72):
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∆ ln (nj)−∆ ln (n)− ĥ0,j

RT
∆ ln (T )−

nEL∑
i=1

πiν̃i,j = − µ̂j
RT

j = 1 : nSP (4.84)

recalling that πi is theoretically an increment, but starting from zero as
discussed before. The reference to an equilibrium point is omitted, since we
are considering the left hand side as the increment calculated from the previous
iteration, which is then the right hand side.

Notice the fact that pressure doesn't appear as an increment, as one would
think when looking at eqn. (4.68); this is because we are searching for the
equilibrium condition by imposing state through conditions (4.70). In fact,
when imposing temperature, even the variation ∆ ln (T ) disappears; we have
kept it just because the Gibbs approach presented here, which always require
the imposition of pressure as a thermodynamic state variable, accepts as the
other state variable T, h or s. In the latter two cases, a variation in T is
required, hence we are proposing it in eqn. (4.84).

The second and third equation of system (4.69) are written in n and nj,
their increments have to be expressed in terms of ∆ ln (nj) and ∆ ln (n) . The
second equation is written as:

nSP∑
j=1

ν̃i,jnj − n0,i = 0 i = 1 : nEL (4.85)

Its variation, considering the presence of the single iteration variable ∆ ln (nj),
near the equilibrium state, becomes:

(
nSP∑
j=1

ν̃i,jnj − n0,i

)
e

+
∂

∂ ln (nj)

(
nSP∑
j=1

ν̃i,jnj − n0,i

)
e

∆ ln (nj) = 0 (4.86)

Since d ln (nj) = 1/njdnj the logarithmic derivative can be expressed as:

∂nj
∂ ln (nj)

= nj
∂nj
∂nj

= nj (4.87)

hence obtaining a variation of the form:(
nSP∑
j=1

ν̃i,jnj − n0,i

)
e

+

(
nSP∑
j=1

ν̃i,jnj

)
e

∆ ln (nj) = 0 (4.88)

The reference to an equilibrium point can be omitted, considering, as we
did with eqn. (4.84), the stationary term in eqn. (4.88) as the previous itera-
tion variables and the increment term as the correction term, in the Newton-
Rhapson algorithm sense; the equation can be then rewritten in the form:
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nSP∑
j=1

ν̃i,jnj∆ ln (nj) = n0,i −
nSP∑
j=1

ν̃i,jnj i = 1 : nEL (4.89)

Proceeding in the same way for the third equation:

n−
nSP∑
j=1

nj = 0 (4.90)

we obtain the increment

(
n−

nSP∑
j=1

nj

)
e

+
∂

∂ ln (nj)

(
n−

nSP∑
j=1

nj

)
e

∆ ln (nj)+
∂

∂ ln (n)

(
n−

nSP∑
j=1

nj

)
e

∆ ln (n) = 0

(4.91)
which leads to the iteration step:

nSP∑
j=1

nj∆ ln (nj)− n∆ ln (n) = n−
nSP∑
j=1

nj (4.92)

The iteration system becomes then, combining (4.84),(4.89) and (4.92):



∆ ln (nj)−∆ ln (n)− ĥ0,j

RT ∆ ln (T )−
∑nEL

i=1 πiν̃i,j = − µ̂j
RT ,

j = 1 : nSP

∑nSP
j=1 ν̃i,jnj∆ ln (nj) = n0,i −

∑nSP
j=1 ν̃i,jnj , i = 1 : nEL

∑nSP
j=1 nj∆ ln (nj)− n∆ ln (n) = n−

∑nSP
j=1 nj

(4.93)

The system which we present here is apt to solve only the thermochemi-
cal equilibrium with assigned state in (T,p). To de�ne equilibrium in (h,p),
an iteration equation on enthaply must be written, and similarly, an equilib-
rium in (s,p) requires an iteration equation on entropy. Iteration variables
are ∆ ln (n), ∆ ln (nj), and πj, since temperature is assigned, and ∆ ln (T ) is
reported here only for the sake of completness with respect to entropy and
enthalpy formulations.

Considering system (4.93), another reduction of variables is suggested, since
the resolution of a high number of simultaneous equations is an expensive
process, expecially if the number of considered species grows. We perform
then an algebraic substitution on the system, by obtaining ∆ ln (nj) from the
�rst equation of (4.93) and substituting it in the other two, hence obtaining
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nEL∑
k=1

nSP∑
j=1

nj ν̃k,j ν̃i,jπi +
nSP∑
j=1

ν̃k,jnj∆ ln (n) +
nSP∑
j=1

ν̃k,jnj
ĥ0,j

RT
∆ ln (T ) =

= n0,k −
nSP∑
j=1

ν̃k,jnj +
nSP∑
j=1

ν̃k,jnj
µ̂j
RT

(4.94)

for k = 1 : nEL from the second iteration equation, and

nEL∑
i=1

nSP∑
j=1

πiν̃i,jnj +

(
nSP∑
j=1

nj − n

)
∆ ln (n) +

nSP∑
j=1

nj
ĥ0,j

RT
∆ ln (T ) =

= n−
nSP∑
j=1

nj +
nSP∑
j=1

nj
µ̂j
RT

(4.95)

These two equations form a new iteration system in the variables πi, ∆ ln (n)
and ∆nj. The last variable is the correction on nj, in fact after the iteration
of the two main equations, the correction for mixture composition ∆nj is ob-
tained from ∆ ln (nj), found from equation (4.84), and then substituted to
update nj:

nj = nj + ∆nj (4.96)

In this way only two coupled equations are solved from step to step, and the
third variable need only to be updated. To extend this formulation to other
state variables, the same approach is available in [16], where along with the
extended treatment for Gibbs energy equilibrium in p for temperature, entropy
and enthalpy, there is also an Helmoltz energy equilibrium formulation, which
is supposed to treat the imposition of a thermodynamic state where one of the
state variables is volume instead of pressure.

4.2.3 Reconstruction of mixture properties from mixture
composition

The reconstruction of mixture properties can be readily performed, once the
composition is calculated and since the tabulated values for every species are
known. The enthalpy of the mixture is then

h =
nSP∑
j=1

njĥ0,j (T ) (4.97)
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where ĥj,0 (T ) is the enthalpy referred to the standard state T = 0 K,
p = 1 bar. This value could be calculated for the single species, by considering
the di�erential expression of enthalpy

dĥi = ĉp,idT (4.98)

which leads to:

ĥi = ĥi,ref +

T̂

Tref

ĉp,idT (4.99)

where ĉp could be recovered from the Meyer relation

ĉp,i = ĉv,i +R (4.100)

where ĉv,i could be obtained, e.g. from kinetic gas theory - see sec. 11.8 of
[2], as:

ĉv,i =


3
2
R+ ∂êel

∂T
for atomic species

5
2
R+

(
θv,i
T

)2
exp

(
θv,i
T

)
(

exp
(
θv,i
T

)
−1

)2 R+ ∂êel
∂T

for molecular diatomic species

(4.101)

where are cleary visible the translational (3
2
R or 5

2
R), vibrational

((
θv,i
T

)2
exp

(
θv,i
T

)
(

exp
(
θv,i
T

)
−1

)2 R

)
and electronic

(
∂êel
∂T

)
contributions. By using this method we would calculate

ĥ0,i (T ) as

ĥ0,i (T ) = ĥi,ref. +

T̂

Tref

ĉp,idT (4.102)

However, this is not the approach followed in [16], where ĥ0,i (T ) is obtained
from extrapolation of tabulated data, hence is supposed as a known function
for every species included in the analysis. In the same way, entropy is obtained
as

s =
nSP∑
j=1

nj ŝj (4.103)

where the molar entropy contribution can be obtained, from (4.39), as:

ŝj = ŝ0,j (T )−R ln
(nj
n

)
−R ln (p) (4.104)
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where

ŝ0,j (T ) = ŝi,ref. +

T̂

Tref

ĉp,i
dT

T
(4.105)

can be obtained directly from tabulated data.
As one can see, di�erently from the molar enthalpy for the single species,

which doesn't depend from the current mixture composition, molar entropy of
the single species contains the term

R ln (pj) = R ln
(nj
n

)
+R ln (p) (4.106)

which represent the generation of entropy due to the mixing of molecular
species, and for this reason term (4.106) is called mixing entropy term.

The speci�c heat can be obtained by the derivation of (4.97), which can be
obtained in the following way:

cp =
dh

dT

∣∣∣∣
p

=
d

dT

(
nSP∑
j=1

njĥ0,j (T )

)
p

=

=
nSP∑
j=1

nj
dĥ0,j (T )

dT

∣∣∣∣∣
p

+
nSP∑
j=1

dnj
dT

∣∣∣∣
p

ĥ0,j (T ) =

=
nSP∑
j=1

nj ĉp0,j (T ) +
nSP∑
j=1

dnj
dT

∣∣∣∣
p

ĥ0,j (T ) (4.107)

It is easy to divide in (4.107) the contribution of the frozen mixture and
the reaction composition change contribution:

cp = cp,f + cp,r (4.108)

where

cp,f =
nSP∑
j=1

nj ĉp0,j (T ) (4.109)

with ĉp0,j (T ) obtained from tabulated data,
and

cp,r =
nSP∑
j=1

dnj
dT

∣∣∣∣
p

ĥ0,j (T ) (4.110)
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We want now to express cp derivative with respect to logarithmic deriva-
tives, in order to obtain an expression of the speci�c heat which can be directly
linked to the correction variables adopted in our discrete system (4.93).

Since

d ln (T ) =
1

T
dT

and

d ln (ni) =
1

ni
dni

we can rewrite (4.107) as

cp =
nSP∑
j=1

nj ĉp0,j (T ) +
nSP∑
j=1

nj
ĥ0,j (T )

T

(
d lnnj
d lnT

)
p

(4.111)

The derivative
(
d lnnj
d lnT

)
p
must be obtained from our correction variables.

Now, if one take a glance at system (4.93) and remebers that it is obtained at
imposed pressure, it is immediate to express its derivatives as:



(
∂ ln(nj)

∂ ln(T )

)
p
−
(
∂ ln(n)
∂ ln(T )

)
p
−
∑nEL

i=1 ν̃i,j

(
∂πi

∂ ln(T )

)
p

=
ĥ0,j

RT ,

j = 1 : nSP

∑nSP
j=1 ν̃i,jnj

(
∂ ln(nj)

∂ ln(T )

)
p

+
∑nSP

j=1 ν̃i,j

(
∂nj

∂ ln(T )

)
p

= 0 , i = 1 : nEL

∑nSP
j=1 nj

(
∂ ln(nj)

∂ ln(T )

)
p
− n

(
∂ ln(n)
∂ ln(T )

)
p

= 0

(4.112)

Exactly as in iteration system (4.93), it is possible to reduce the order of

the system by eliminating
(
∂ ln(nj)

∂ ln(T )

)
p
by substituting it in the second and third

equation from the �rst, hence obtaining the reduced system



∑nEL
k=1

∑nSP
j=1 nj ν̃k,j ν̃i,j

(
∂πi

∂ ln(T )

)
p

+
∑nSP

j=1 ν̃k,jnj

(
∂ ln(n)
∂ ln(T )

)
p

= −
∑nSP

j=1 ν̃k,jnj
ĥ0,j

RT ,

i = 1 : nEL

∑nEL
i=1

∑nSP
j=1 ν̃i,jnj

(
∂πi

∂ ln(T )

)
p

= −
∑nSP

j=1 nj
ĥ0,j

RT

(4.113)
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Notice that in the second equation the term
(∑nSP

j=1 nj − n
)(

∂ ln(n)
∂ ln(T )

)
p
which

should come from derivation doesn't appear, because since we are not evalu-

ating the correction of an increment, the term
(∑nSP

j=1 nj − n
)
is zero.

Once system (4.113) is solved, we can calculate
(
∂ lnnj
∂ lnT

)
p
from the �rst

equation of (4.112), and then we can reconstruct speci�c heat from (4.111).

Including the substitution of
(
∂ lnnj
∂ lnT

)
p
in the expression of cp adn dividing by

R, we can express the speci�c heat for the mixture as a direct function of the
derivatives obtained from (4.113):

cp
R

=
nSP∑
j=1

nj
ĉp0,j (T )

R
+

nEL∑
k=1

nSP∑
j=1

ν̃i,jnj
ĥ0,j (T )

RT

(
∂πi

∂ ln (T )

)
p

+

+
nSP∑
j=1

nj
ĥ0,j (T )

RT

(
∂ ln (n)

∂ ln (T )

)
p

+
nSP∑
j=1

nj

(
ĥ0,j (T )

RT

)2

(4.114)

To obtain other important quantities, such as velocity of sound and cv,
we need the equilibrium system derivatives with respect to pressur. These
derivatives can be obtained again by the di�erentiation of eqn. (4.72), (4.85)
and (4.90), leading, following the same approach by which we obtained system
(4.112), but considering now T �xed and p variable, thus obtaining:



(
∂ ln(nj)

∂ ln(p)

)
T
−
(
∂ ln(n)
∂ ln(p)

)
T
−
∑nEL

i=1 ν̃i,j

(
∂πi

∂ ln(p)

)
T

= −1,

j = 1 : nSP

∑nSP
j=1 ν̃i,jnj

(
∂ ln(nj)

∂ ln(p)

)
T

+
∑nSP

j=1 ν̃i,j

(
∂nj
∂ ln(p)

)
T

= 0 , i = 1 : nEL

∑nSP
j=1 nj

(
∂ ln(nj)

∂ ln(p)

)
T
− n

(
∂ ln(n)
∂ ln(p)

)
T

= 0

(4.115)

which can be reduced, by the substitution of
(
∂ ln(nj)

∂ ln(p)

)
T
from the �rst to

the other two derivatives, to the system
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∑nEL
k=1

∑nSP
j=1 nj ν̃k,j ν̃i,j

(
∂πi

∂ ln(p)

)
T

+
∑nSP

j=1 ν̃k,jnj

(
∂ ln(n)
∂ ln(p)

)
T

=
∑nSP

j=1 ν̃k,jnj,

i = 1 : nEL

∑nEL
i=1

∑nSP
j=1 ν̃i,jnj

(
∂πi

∂ ln(p)

)
T

=
∑nSP

j=1 nj

(4.116)(
∂ ln(nj)

∂ ln(p)

)
T
can be then obtained by the �rst equation of (4.115).

From the perfect gas equation of state in the form:

pV = nRT (4.117)

we obtain the derivatives:(
∂ lnV

∂ ln p

)
T

= −1 +

(
∂ lnn

∂ ln p

)
T

(4.118)

(
∂ lnV

∂ lnT

)
p

= −1 +

(
∂ lnn

∂ lnT

)
p

(4.119)

which are known from the resolution of systems (4.113) and (4.116).
The sound velocity a can be obtained from its de�nition

a2 =

(
∂p

∂ρ

)
S

=
P

ρ

(
∂ ln p

∂ ln ρ

)
S

= −P
ρ

(
∂ ln p

∂ lnV

)
S

(4.120)

where
(
∂ ln p
∂ lnV

)
S
can be written, as is reported in [16], as:(
∂ ln p

∂ lnV

)
S

=
cp

cp

(
∂ lnV
∂ ln p

)
T

+ PV
T

(
∂ lnV
∂ lnT

)2

p

(4.121)

or (
∂ ln p

∂ lnV

)
S

=
cp

cv

(
∂ lnV
∂ ln p

)
T

(4.122)

since

cv =

(
∂e

∂T

)
V

= cp +
PV

T

(
∂ lnV
∂ lnT

)2

p(
∂ lnV
∂ ln p

)
T

(4.123)

Now, we can de�ne the speci�c heats ratio:
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γ =
cp
cv

(4.124)

which is not anymore constant, such as in the perfect gas hypothesis, but
is dependent from the mixture composition, that in the hypothesis of thermo-
chemical equilibrium is uniquely de�ned by the imposition of the thermodi-
namic state (T,p), as we have seen in sec. (4.1), i.e.

γ =
cp (T, p)

cv (T, p)
= γ (T, p) (4.125)

We conclude this section by showing a more compact de�nition of the sound
velocity (4.120), by de�ning (

∂ ln p

∂ lnV

)
S

≡ γS (4.126)

hence obtaining the classical formulation

a2 = nRTγS (4.127)

which, since n = 1/M and R = R/M, can be written as:

a2 = γSRT (4.128)

4.2.4 Reconstruction of transport properties

Once we have calculated the thermodynamic properties of our mixture, we
need to reconstruct its transport properties, especially the viscosity µ - which
we will not confuse with the molar electrochemical potential µ̂, and the thermal
conductivity k. As viscosity and thermal conductivity for the single species
are tabulated as functions of temperature (see chapter 5 of [16]) we have to
reconstruct µ and k for the mixture. The methods presented here are approxi-
mate and not exact as the thermochemical equilibrium determination method
presented in sec. (4.2.2), and are derived from various correlations, collected
in [16].

The viscosity for the mixture can be obtained from:

µ =
nSP∑
i=1

Xiµi

Xi +
∑nSP

j = 1
j 6= i

Xjφij
(4.129)

where φij is called the viscosity interaction coe�cient between species i
and species j, and can be obtained by the correlation:
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φij =
1

4

[
1 +

(
µi
µj

) 1
2
(
Mj

Mi

) 1
4

]2(
2Mj

Mi +Mj

) 1
2

(4.130)

For some species binary combinations, a viscosity interaction parameter µij
is included in the species data. In these cases, the interaction coe�cient can
be reconstructed from:

φij =
µi
µij

2Mj

Mi +Mj

(4.131)

To obtain the thermal conductivity coe�cient k, we must reconstruct both
the frozen contribution and the equilibrium contribution, in a similar way as
we have seen for the cp in eqn. (4.108):

k = kf + kr (4.132)

The frozen thermal conductivity can be obtained from an interaction cor-
relation form:

kf =
nSP∑
i=1

Xiki

Xi +
∑nSP

j = 1
j 6= i

Xjψij
(4.133)

where

ψij = φij

[
1 +

2.41 (Mi −Mj) (Mi − 0.142Mj)

(Mi +Mj)
2

]
(4.134)

The method for reaction thermal conductivity is a little less intuitive; the
mixture reaction thermal conductivity can be obtained as:

kr = R
nREAC∑
i=1

∆rĥ0,i (T )

RT
kr,i (4.135)

where ∆rĥ0,i (T ) are the molar enthalpies of reaction of the nREAC chem-
ical reactions occuring in our mixture, calculated as:

∆rĥ0,i (T ) =
nSP∑
k=1

νikĥ0,i (T ) i = 1 : nREAC (4.136)

where νik are the stoichiometric coe�cients of the species i for the k -th
reaction as de�ned in form (4.28), with νik < 0 for reactants and νik > 0 for
products.
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The reaction thermal conduction coe�cients for the single species, kr,i, can
be obtained by solving the following set of linear equations:

nREAC∑
j=1

gijkr,j =
∆rĥ0,i (T )

RT
i = 1 : nREAC (4.137)

where the coe�cients gij can be obtained by

gij =
nSP−1∑
k=1

nSP∑
l=k+1

(
RT
PDkl

XkXl

)(
νik
Xk

− νil
Xl

)(
νjk
Xk

− νjl
Xl

)
(4.138)

where

RT
PDkl

=
5MkMl

3A∗klµkl (Mk +Ml)
(4.139)

with A∗kl factor is a collision cross-section ratio between molecules and µkl
is the viscosity interaction factor just presented. For the extreme complexity
to obtain all the terms in eqn. (4.139), the following approximate hypothesis
is adopted in CEA, as justi�ed in [16]:

RT
PDkl

∼= 1.1 (4.140)

We can now reconstruct the thermal conduction coe�cient of the whole
mixture.

The mixture Prandtl number can be reconstructed as:

Pr =
cpµ

k
(4.141)

or, recalling eqn. (4.108) and (4.132), as:

Pr = Prf + Prr =
cp,fµ

kf
+
cp,rµ

kr
(4.142)

4.2.5 Shock wave solution

We will now apply what we have studied in the previous subsection to the
case of a normal shock. This formulation will be used in the analysis of a
blunt body, where for blunt bodies we are considering both fusiform bodies
and slender bodies, like wings, but with rounded noses or leading edges. For
sharp edged bodies, like pointed nose fusiform bodies or sharp leading edges,
the inclined shock formulation must be adopted.
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This is not a problem, since the formulation presented here mantains its
validity for the �ow component normal to the shock, while for the tangential
component the �ow remains unaltered. The after shock properties can be cal-
culated by calculating the discontinuity along the normal direction, using in the
equilibrium shock formulation only the normal components, i.e. velocities u1

and u2 and normal Mach numbersMn,1 = M1 cos β andMn,2 = M2 cos (β − θ),
while tangential components remain unaltered - i.e. v1 = v2. Parallel Mach
number is however subject to change due to the variation of the sound velocity
throughh the shock:

M2,‖ =
v2

a2

6= M2 sin (β − θ)

The following �gure explicates the terms and notations used in the oblique
shock description:

V
�

v
�

u
�

V
�

v
�

u
�

θ

β

Figure 4.1: Oblique shock scheme with notation

Notice that, although the inclined shock waves are bent in the hypersonic
case due to chemical non-equilibrium e�ects - not included in our model - the
description of the classical inclined shock (see sec. 1.4.1 for a brief outlook) still
works, because we are interested to the near-surface �ow�eld, and the shock
inclination at the nose is the same with respect to the frozen �ow equilibrium
angle, i.e. relation (1.1), as can be seen clearly in sec. 15.3 of [2].

We will now present the equations used in CEA for the after-shock prop-
erties calculation, underlining the importance of using chemical equilibrium
hypothesis, as already discussed in sec. 2.2.2, to obtain correct values of the
thermodynamic state after the wave, since a perfect gas treatment would lead
to completely wrong values. The �ow through a shock wave preservs its mass
�ow, its momentum and its energy:
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ρ2u2 = ρ1u1

p2 + ρ2u
2
2 = p1 + ρ1u

2
1

h2 +
u2

2

2
= h1 +

u2
1

2

(4.143)

By substituting u2 from the �rst equation and rearranging we can obtain:
p2

p1
= 1− ρ1u2

1

p1

(
ρ1

ρ2
− 1
)

h2 = h1 +
u2

1

2

[
1−

(
ρ1

ρ2

)2
] (4.144)

which can be rewritten in the form:
p̃− p2

p1
= 0

h̃−h2

R = 0

(4.145)

with:

p̃ = 1− ρ1u
2
1

p1

(
ρ1

ρ2

− 1

)
(4.146)

and:

h̃ = h1 +
u2

1

2

[
1−

(
ρ1

ρ2

)2
]

(4.147)

We will now express the variations of system (4.145), as we did with thermo-
chemical equilibrium relations in the previous subsection, in order to provide
a Newton - Rhapson algorithm solutor for the two shock equations. The vari-
ation will be expressed in terms of logarithmic derivatives with respect to the
jump of (p,T) variables across the shock. The iterative system obtained from
(4.145) is then:

∂
(
p̃− p2

p1

)
∂ ln

(
p2
p1

) ∆ ln
(
p2

p1

)
+

∂
(
p̃− p2

p1

)
∂ ln

(
T2
T1

) ∆ ln
(
T2

T1

)
= p2

p1
− p̃

∂
(
h̃−h2
R

)
∂ ln

(
p2
p1

) ∆ ln
(
p2

p1

)
+

∂
(
h̃−h2
R

)
∂ ln

(
T2
T1

) ∆ ln
(
T2

T1

)
= h2−h̃

R

(4.148)

where the iteration step is:
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∆ ln

(
p2

p1

)
k

= ln
(
p2

p1

)
k+1
− ln

(
p2

p1

)
k

∆ ln
(
T2

T1

)
k

= ln
(
T2

T1

)
k+1
− ln

(
T2

T1

)
k

(4.149)

We can express the partial derivatives in system (4.148) in terms of the ther-
mochemical derivatives (∂ lnV/∂ ln p)T and (∂ lnV/∂ ln p)T , obtained in sec. (4.2.3)
from (4.118) and (4.119), which are used and calculated in the equilibrium
model. From the perfect gas state equation (4.1), considering that R = R/M,
we can rewrite (4.146) as:

p̃ = 1− M1u
2
1

RT1

(
ρ1

ρ2

− 1

)
(4.150)

From the state equation we have:

ρ1

ρ2

=
p1

p2

M1

M2

T2

T1

hence we can rewrite the logarithmic derivatives of our system as:

∂
(
p̃− p2

p1

)
∂ ln

(
p2

p1

) = −ρ1

ρ2

M1u
2
1

RT1

(
∂ lnV

∂ ln p

)
T,2

− p2

p1

(4.151)

∂
(
p̃− p2

p1

)
∂ ln

(
T2

T1

) = −ρ1

ρ2

M1u
2
1

RT1

(
∂ lnV

∂ lnT

)
p,2

(4.152)

for the pressure equation, and:

∂
(
h̃−h2

R

)
∂ ln

(
p2

p1

) = −u
2
1

R

(
ρ1

ρ2

)2(
∂ lnV

∂ ln p

)
T,2

+
T2

M2

[(
∂ lnV

∂ lnT

)
p,2

− 1

]
(4.153)

∂
(
h̃−h2

R

)
∂ ln

(
T2

T1

) = −u
2
1

R

(
ρ1

ρ2

)2(
∂ lnV

∂ lnT

)
p,2

− T2cp,2
R

(4.154)

for enthalpy conservation.
The right hand sides can be also rewritten as:

p2

p1

− p̃ =
p2

p1

− 1 +
M1u

2
1

RT1

(
ρ1

ρ2

− 1

)
(4.155)
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from eqn. (4.150), and

h2 − h̃
R

=
h2 − h1

R
− u2

1

2R

[
1−

(
ρ1

ρ2

)2
]

(4.156)

Since we have expressed the increments using the same derivatives of the
thermochemical equilibrium problem, by means of (4.151), (4.152), (4.153),
(4.154), we can now integrate the shock iterative solution system (4.148) with
the thermochemical equilibrium iterative system (4.116), with the increment
derivatives linked by (4.118) and (4.119). The solution of the thermochemi-
cal shock in equilibrium will be then adopted to obtain correct values of the
thermodynamic quantities after the discontinuity wave. As we have already re-
minded in sec. 2.2.2, a thermochemical solution of the shock wave ismandatory
in order to obtain correct results, since the huge increase of thermodynamic
quantities through a hypersonic shock lead to a strong in�uence of high tem-
perature e�ects, modifying the mixture composition. Anderson [2] made an
esteem of shock-layer temperature on the Apollo re-entry vehicle, obtaining
a result of 58.128 K with the perfect case hypothesis, against 11.600 K with
the thermochemical equilibrium shock solution. Obviously the �rst result is
absolutely unrelated with actual re-entry shock-layer temperatures, while the
second is a reasonable esteem. This example clearly shows the fact that a
viscous and thermal analysis on re-entering bodies must be performed using a
chemical reacting gas model to treat the after-shock quantities determination;
another proof will be presented in chapter 7, by comparing our results with
state-of-the-art thermochemical CFD calculations.

If we consider now the �ow�eld region after the shock, the use of a thermo-
chemical model of the gas looses in part its importance, since expansion tends
to lower temperatures from the huge after-shock peak to more reasonable val-
ues, thus granting a gas behaviour closer to a frozen mixture. The idea to
use the thermochemical equilibrium only to calculate gas properties after the
shock is then tempting, since a full-body solution using equilibrium is quite
expensive for the purposes of our algorithm. The current viscous solution is
then obtained by calculating a chemical active shock, using equilibrium hy-
pothesis, and then isoentropic perfect gas expansion relations are used, as if
we would be considering a frozen mixture, but taking care to adopt the ther-
modynamic properties of the gas to those of the after-shock mixture obtained
witht the chemical equilibrium model. As we will see in the next paragraphs,
the loss in accuracy is truly lighter, if compared with the error we have if we
calculate the shock without thermochemical equilibrium, thus justifying this
approach to the viscous and thermal solution. Obviously one can also activate
the thermochemical solutor on the full body of the vehicle, in order to have
more accurate results. As we will see in the comparison with CFD data, this
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increment in accuracy is not excessively signi�cative.
What we would like to clarify here is where actually in our algorithm the

thermochemical equilibrium is adopted. We will confront here, over the by
now familiar Dart ESA CFD calculations, the heat �ow distributions obtained
in the three conditions of:

I Thermochemical equilibrium imposed only through the shock wave, fol-
lowed by a frozen composition gas model using the thermochemical prop-
erties calculated after the shock. Isoentropic frozen composition relations
are used to obtain external �ow�eld variables and reference enthalpy vari-
ables from Pe and T

∗- presented in our confront as Shock Equilibrium

I Thermochemical equilibrium imposed through the shock wave and in
the determination of the external �ow�eld variables - presented in our
confront as Shock and External Equilibrium, the variables for reference
enthalpy still obtained by isoentropic frozen composition relations.

I Thermochemical equilibrium everywhere, presented as Full Equilibrium

Evidence during the development RAM v2.0 showed that the the use of a Full
or Shock and External Thermochemical models does not improve the accuracy
of the method, leading to heat �ow values wich are almost identical to the Shock
Equilibrium model, while the use of perfect gas hypotheses lead to completely
wrong results. Since the use of the latter two thermochemical models requires
a remarkable increase of computational e�ort and times, we are talking of 10-
15 minutes of increased calculation time for the Full and Shock and External
models with respect to the simple Shock equilibrium model, which needs to
impose thermochemical equilibrium only downstream the shock, the simple
Shock Thermochemical equilibrium is then adopted by our algorithm. The use
of the External and Full models can be still easily triggered via appropriate
�ags while preprocessing the *.wgs �le. The use of these models is however
discouraged.

To conclude, we underline the fact that the perfect gas hypothesis is the
worst possible approximation, con�rming the arguments presented just above
on the impossibility to use always a perfect gas model in an hypersonic prob-
lem. The error in qw distribution could not seem dramatic, but if we confront
results on other quantities, such as the shear stress τw, one can easily see that
unaccetable error rises from the full perfect ideal gas (PIG) approximation:



CHAPTER 4. THERMOCHEMICAL EQUILIBRIUM 85

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

50

100

150

200

250

300

350
Surface Shear Stress

 

 

τ w
a

ll
 [

P
a

]

x [m]

ESA DART CFD calculations τ
w
 distribution

RAM v2.0 τ
w
 distribution − Equilibrium Shock model

RAM v2.0 τ
w
 distribution − PIG Shock model

Figure 4.2: Dart τw calculations - 0° α and β- M∞ = 10.41 - comparison
between Shock with Thermochemical equilibrium and Shock with PIG model.



Part II

Algorithm for shear stress and

heat �ow calculation

86



Chapter 5

Approximate solution of

hypersonic viscous �ows

5.1 RAM v1.0 inviscid algorithm description

5.1.1 General description

The �rst version of the Re-entry Aerodynamic Module, as developed by Do-
minic Dirkx and actually implemented in STA Cambrian version, is a power-
ful tool which implements all the inviscid approximate methods discussed in
chapter 2, including all the hypersonic Local Surface Inclination methods and
expansion methods. RAM v1.0 algorithm is described in the next subsection,
while its current software implementation will be discussed in sec. A.3.1, as
Dominic's C++ classes for inviscid pressure �eld determination have been used
as an input to our program, by developing an appropriate stand-alone software
which included the RAM v1.0 aerodynamic classes.

In this part we will describe brie�y Dominic's work, as the complete de-
scription has been given by the author in ref. [1]. RAM v1.0 implemented
all the LSI compression and expansion methods presented in chapter 2, with
the possibility for the user to choose the appropriate LSI method for com-
pression/windward region - and expansion/leeward region, depending on the
region bluntness an geometry. A look at �gure 2.3 should remind immediatly
what is intended for windward or compression region and leeward or expansion
region. The particular method chosen can be di�erentiated also by consider-
ing a di�erent method for the high Mach regime, since it has been proven that
LSI method accuracy changes with mach number. Dirkx proposes the follow-
ing di�erentiation of methods, based on di�erent studies, considering region
geometry an Mach number.

87
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Table 5.1: Approximate inviscid method selections - from RAM v1.0 inviscid
solver

Compression
Methods

Low Hypersonic High Hypersonic

M∞ = 3÷ 8.5 M∞ = 6.5÷∞
Blunt Region Modi�ed Newtonian- Modi�ed Newtonian-
stagnation point,
leading edge, etc.

Prandtl Meyer expansion Prandtl Meyer expansion

Low Inclination

Flat
Tangent Wedge Tangent Wedge Empirical

wing, tail, etc.
Low Inclination

Curved
Tangent Cone Tangent Cone

fuselage, nacelle,
etc.

Expansion Methods Low Hypersonic High Hypersonic
M∞ = 3÷ 8.5 M∞ = 6.5÷∞

Blunt Region Newtonian (Cp = 0) High M base pressure
Low Inclination

Flat

ACM Freestream Prandtl - Meyer

Low Inclination

Curved

ACM Freestream Prandtl - Meyer

As one can see, the range of Mach regimes is overlapping between the
low and high hypersonic, as results in this region are bridged with a cubic
function. The methods presented here are already discussed in chapter 2, with
exception of the Freestream Prandtl - Meyer, which is simply the application
of the Prandtl - Meyer relation described in sec. 2.4, but neglecting shock
and windward region upstream contribution, thus expanding directly from
freestream pressure to the local panel inclination value.

ACM, or Aerodynamic Con�gured Missile, is an empirical method used in
missile preliminary design calculations, which extends the High Mach number
base pressure formula to low Mach numbers, through the formulation:

cp = max

(
− 1

M2
∞
, θ

1

16M2
∞

)
(5.1)

where θrad is the local inclination angle in degrees.
The reason to prefer a method to another sits in the di�erent physical

phenomenon it highlights. For example, tangent-wedge method is well repre-
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senting a low inclination �at surface which is invested by a hypersonic �ow,
and tangent-cone add to this approach the contribution of a surface which
is curved perpendicularly to the �ow, thus describing precisely a curved, low
inclination region.

Newton modi�ed method describe better the stagnation process, since it
emphasizes the concept of �ow impact over a surface, as it is described in
2.2.1, and the correction matches the correct value of cp after a shock. In this
part we highlight a �aw in Dirkx's solutor, which is to consider the perfect gas
frozen composition model to treat the shock, using perfect gas relations such
as 2.17. As we have seen in chapter 4, this approach can lead to completely
wrong results. Since RAM v1.0 doesn't include a thermochemical solver, this
is the only possible approach, even if Dirkx mitigated it with the choice of
a value of γ = 1.2 which is better related with air at hypersonic speeds and
matches quite good with values encountered in our comparisons. If we consider
for example von Karman IXV simulations, whose freestream condition can be
found at sec. 7.1, we obtain the following values for the after-shock gas:

Table 5.2: After shock γ values from IXV simulations
Test n° γ M∞

1 1.28 6
2 1.16 11
3 1.13 15.04

In the purpose of pressure distribution calculation, which is the main pur-
pose of RAM v1.0 solver, the e�ect of having an approximated γ value pro-
duced however a great accuracy in pressure results. In spite of this, when
considering other thermodynamic values determination, what emerged from
comparison is a great dependance of the viscous solver, and of the signi�ca-
tive viscous related variables such as cp, Tw, Pr even to small modi�cations
of γ value after the shock, as we will see in chap. 7. In addition to this, we
also noticed the fact that in an equilibrium high temperature shock, the �ow
thermodynamic properties cannot be characterized only by a value of γ, hence
requiring a more complex modeling of the �ow, like the one we have from
our thermochemical equilibrium model, as also Dirkx noticed it in his work,
proposing a CEA extension of the gas model, which we have succesfully ful-
�lled. In conclusion, while relations like (2.17) can hold for the inviscid pressure
�eld determination, with an appropriate choice of approximated γ, the viscous
solver needs an equilibrium solution. Dirkx solutor can be then safely used for
pressure �eld determination, as also his validation work on RAM v1.0 suggest,
while for other after shock thermodynamic properties calculation, CEA equi-
librium, as been presented in chapter 4, has been adopted, since perfect gas
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results for these properties in an hypersonic �ow�eld are surely unreliable.

5.1.2 Automatic geometry identi�cation

Another interesting feature of Dominic algorithm, which is already imple-
mented in the STA C++ classes we have used as an origin for inviscid solving
of our vehicle, is the automatic selection of the vehicle region properties. As
we will see in keen detail in the actual description of the RAM v2.0 implemen-
tation, in chapter 6, every vehicle is subdivided into several objects, which will
be called parts, which can be, e.g.,wings, tails, fuselages. Dirkx elaborated an
algorithm which could identify geometrical properties of di�erent regions of
a single part, starting from the indication of a fusiform or planar character-
ization of the part - the exact meaning of these attributes has been clari�ed
when describing vehicle geometry in sec. 1.6. For example, referring to meth-
ods di�erentiation in table 5.1, Dirkx automated part analyzer can determine
if a region of a part can be characterized as blunt or slender, depending on
nose panels inclination, and if the planar parts are to be treated as curved
or uncurved. The concept underlying the identi�cation is to check if a region
of the part has di�erent features with respect to other parts of the vehicle,
and if so split the part in two di�erent parts, which can be treated separately
by di�erent approximated methods. We will present here only the baselines
of Dirkx automated geometry identi�er, a complete and detailed description
being available in [1], since for the development and validation phase of RAM
v2.0 we have not already linked its automated method identi�cator to our al-
gorithm, preferring manual input for sake of simplicity during our algorithm
implementation. Since some of the region characterizations are shared also by
Simeonides viscous method, as can be seen in sec. 3.4.1, the automated selec-
tor proposed by Dirkx will be surely considered as an extended development
of our algorithm.

Blunt part determination and splitting Fusiform parts are de�ned blunt
if the area weighted mean inclination of the nose panels exceed a certain value
de�ned by the user:

θ̄i =

∑nPoints
j=1 θijAij∑nPoints
j=1 Aij

(5.2)

where the index i is referred to the i-th centroid contour, the precise mean-
ing of centroid contour being clari�ed in sec. 1.6, while the index j is related
to the j-th centroid point over the i-th contour. Obviously the θ value pre-
sented here is taken at zero AOA, since we are dealing with a pure geometrical
characterization of the vehicle.
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If we refer ourselves to the front contour, i.e. i = 1, we can estabilish, if the
mean inclination is higher than a certain value, if the body is to be considered
blunt or not:

θ̄1 > C1 (5.3)

For planar parts, blunt regions are typically leading edges of wings and
tails. If a wing has an high sweep, it is possible that the leading edge should
be not considered as blunt. For this reason, a su�cient part of the wing contour
should be blunt enough for the whole wing leading edge being considered as
blunt. To determine whether the wing leading edge is blunt or not, the most
forward lateral wing centroid contour is examined, and the leading edge is said
to be blunt if C2% of the most lateral contour has a local inclination angle

θ > C3 (5.4)

where the percentage C2% is calculated from the areas of the contour,
projected on the y-z normal to the vehicle axis plane, so that an high sweep
leading edge will result with a decreased area with respect to a straight wing.

At this point we would like to split the blunt region part from the rest of the
vehicle. Splitting exactly at the point where criteria (5.3) or (5.4) are met is
unwise, since too rough for methods which require an expansion zone, such as
the Modi�ed Newton/Prandl-Meyer expansion method. Moving towards the
rear from one fusiform contour to another, the following condition is searched:

xlow = minx
(
δ̄i < C4

)
(5.5)

i.e. the minimum x position of the i-th contour where the contour-averaged
inclination falls down a certain value C4, which will be obviously minor than
C1. Taking a little bu�er zone, we split then at

xsplit = C5xlow

A �nal check is then made on the split location. If there are concavities
in the fusiform part which undergo the analysis, a split must be performed
including the concavity in the front region, and not performing the split at
the concavity, by confusing it with a low inclination region. A concavity can
be found if the local inclination is abruptly decreasing while moving from a
contour to the next one, towards increasing x. The longitudinal derivative
inclination must be considered then along all the centroid contours:

∂θ

∂xj
=

θi+1 − θi
xi+1,j − xi,j

(5.6)
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for every ensemble of points j along all contours i. If the concavity is in
the rear part of the vehicle, however, it can be ignored. For a concavity to be
taken into account, the following condition must be met:

xconc < x0 + C6xmax (5.7)

where x0 is the front coordinate and xmax is the back extreme coordinate. A
new value of xlow after the concavity must be searched, to see when the body
e�ectively starts to have low inclinated panels, this new value being named
xlow,c. A split after the concavity can be then performed:

xsplit = xconc + C5 (xlow,c − xconc) (5.8)

A condition on the fact that, if split point is almost in the back of the
vehicle the split should be avoided, must be included. A warning must be
issued, i.e. that xsplit should be set between a contour and the next one x
coordinates, in order not to split a single contour in two.

Curved or uncurved part determination Once all the part are splitted,
the automatic identi�cation algorithm de�nes if the part is curved or not. To
do this, we �rst project the contour lines over the plane perpendicolar to part
axis x (plane y-z for a fusifor part, e.g.). Then, for every contour I, a good
argument to determine whether a part is curved or not is to confront all the
angles di�erences between two points on the same contour, where ψ is the
angle of the segment obtained by projecting contour I on the y-z plane with
respect to the horizontal.

ψI,j

yI,j, zI,j

yI,j+1, zI,j+1

sI,j

Figure 5.1: Projected contour segment on the y-z plane from contour I and
with extremes points j and j+1, with angle ψI,j with the horizontal and pro-
jected span sI,j

One could think that if the angle between two adjacent segments becomes
too big, the part could be considered as curved:

maxI,j |ψI,j+1 − ψI,j| < k1 (5.9)
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but an uncurved part, with a very little region of curvature, e.g. a wingtip,
could be considered as curved, hence we will de�ne an angle gradient by weight-
ing it on the projected segment e�ective span, since in this way a curvature
concentrated in a little zone of the part can be ignored:

∂ψI,j
∂SI,j

=
|ψI,j+1 − ψI,j|

1
2

(
S
′
I,j + S

′
I,j+1

) (5.10)

where s
′
I,j is the weighted span of the projected segment sI,j on contour

line I of extreme points j and j+1. To obtain a weighted span of SI,j over a
contour line I, we de�ne:

s
′

I,j =
sI,j∑nPoints

j=1 sI,j
(5.11)

where
∑nPoints

j=1 sI,j is the perimeter of contour line I.
Once the angle spanwise derivative is de�ned, we can then considered un-

curved a part if a certain percentage k2% of its contour lines has

∂ψI,j
∂SI,j

< k3 (5.12)

This is the algorithm presented by Dirkx, some extimation on the user
coe�cients C1 ÷ C6 and k1 ÷ k3 has to be done. Dirkx proposes the following
table:

Table 5.3: Automatic part identi�er coe�cients
Parameter Value Parameter Value

C1 60° k1 40°
C2 40% k2 80%
C3 50° k3 180°
C4 30° - -
C5 2 - -
C6 0.6 - -

However, since the dependance over the particular shape of the vehicle
cannot be determined a priori, all these values can be set by the user in RAM
v1.0.

5.2 RAM v2.0 viscous algorithm description

In this subsection, we collect the results of the theorethical e�ort presented
in the previous chapters, showing how the viscous and heating problem is
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actually solved, from the *.wgs geometry �le to the �nal thermal and viscous
analysis results. The actual implementation consists in a �rst preprocessing
part, actuated by a stand-alone executable program called WgsReader, which
performs the inviscid solving of the pressure �eld, using RAM v1.0 classes
and the �rst part of RAM v2.0 preliminar calculations, including velocity �eld
determination. The program provides a database �le for the Matlab script,
which completes the analysis with streamline determination and the thermal
and viscous iteration on the reference enthalpy method, in order to obtain
shear stress and heat �ow distribution, as well as other interesting quantities,
such as wall temperature and friction coe�cient distribution on the surface
and other surface and external �ow �uid dynamic variables. The usage of
WgsReader and the modi�cation of Matlab input in order to use properly the
algorithm will be explained in a tutorial over the reference case in appendix
A, in this part we focus on the general outline of the algorithm.

The schema of the algorithm is presented here, while the single parts are
deepened in the following sections of the chapter. The algorithm is concep-
tually split into two parts, the �rst being the inviscid �ow�eld determination,
that, with respect to the pressure �eld determination provided by RAM v1.0,
adds further information by de�ning an approximated velocity �eld, with stag-
nation points and streamlines de�nition over the whole part surface. Once
streamlines are found, we can then a�ord the calculation of viscous and ther-
mal properties, since the enthalpy reference methods are to be applied along
the streamlines, knowing the boundary layer growth length from the stagnation
point.

Inviscid calculations

I From WGS reader, the geometry �le is processed, and a Matlab database
�le containing both RAM v1.0 solution - i.e. pressure �eld and approxi-
mated velocity �eld for the given freestream, incidence and sideslip con-
ditions - is obtained for the single part.

I Velocity derivatives are obtained from quadrilateral interpolation parametriza-
tion of the velocity �eld, see section 6.3, and a topological analysis on
the velocity �eld jacobian eigenvectors is provided, to be used in the
stagnation point determination.

I Forced separation is imposed, for those parts of the vehicle with abrupt
change of geometry features, on which the hypothesis of an inviscid at-
tached external �ow is to be considered absurd - e.g. vehicle �at rear
zone.
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I Stagnation point are determined, using topological criteria which will
be dealt with in sec. 5.5, and the eigenvalue analysis is performed in
the velocity �eld derivation. For fusiform bodies, a single stagnation
point is searched, while on planar bodies we have attachment lines, so
a stagnation point for every contour is found, thus leading to multiple
attachment points.

I Since we have de�ned a velocity �eld and identi�ed stagnation points
on the surface, we can then calculate streamlines. Search trees are built
before the iteration in order to perform fastest searches on the vehicle
part points, to �nd the nearest centroid over a given streamline point.
The algorithm to obtain streamlines, with the integration and surface
projection routine is presented in sec. 5.6.

I Once the streamlines are de�ned, the boundary layer running length for
every surface panel centroid is then calculated, by de�ning the curvilin-
ear length along the streamline, from the stagnation point to the nearest
point of the nearest streamline to the given centroid. A detailed proce-
dure is presented along with the streamline calculator description in sec.
5.6.

I We have now the necessary inputs for viscous and thermal algorithm.

Viscous and heat �ow calculations

I Shock properties are determined via the thermochemical equilibrium
shock solver exposed in chapter 4, having imposed the freestream condi-
tions.

I From the thermodynamic properties calculated after the shock, the ex-
ternal �ow�eld is calculated, assuming isoentropic expansion on the sur-
face. The mixture is considered frozen from this point on, coherently
with the results obtained by the end of chapter 4. A chemical equilib-
rium point per point solution is still selectable via �ag setting, even if it
not recommendable.

I Once the external thermodynamic state is solved, the iterative viscous
and thermal solution is searched. The iteration variable is the wall tem-
perature Tw, which is unknown. The iteration cycle is performed on
the viscous and thermal solution at the same time, since they are self -
interacting. We report here the sub - cycle of the viscous and thermal
iteration: starting from an initial guess of Tw, taken as half of the ex-
ternal temperatureTe, we iterate, from every centroid xc,ij - with i the
centroid contour index and j the point index - on the wall temperature
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Tw,k where k is the iteration step on temperature over the point xc,ij.
The k-cycle is then:

� From Tw,k, the corresponding reference temperature T ∗ is calcu-
lated, via Eckert or Meador Smart relations, using laminar hypoth-
esis.

� Thermodynamic properties, such as µ∗, ρ∗ are calculated from T ∗

and Pe - due to the external pressure constant gradient through the
boundary layer.

� Re∗x is then calculated from reference properties and streamline run-
ning lengths.

� Transition control is applied, as stated by eqn. 3.40.

. If the �ow is turbulent, appropriate Simeonides coe�cients for
the turbulent �ow are selected from table 3.3, depending on
the bluntness or slenderness of the part region, and eqn. 3.29
is solved and τw is obtained.

. If the �ow is laminar, laminar coe�cients are selected from table
3.2, according also in this case for the bluntness or slenderness
of the body. τw is calculated from eqn. 3.29.

� Friction factor is calculated, using freestream non-dimensionalization
for the actual cf :

cf =
τw

1
2
ρ∞V 2

∞
(5.13)

� Recovery enthalpy is calculated, as proposed in sec. 3.6.2, as hrec =
he + 1

2
reV

2
e

� Stanton number and heat �ow relative to temperature Tw,k are cal-
culated:

St =
cf.
2s

(5.14)

with s = Pr∗
2
3 for laminar �ows, or s = 0.815 for turbulent �ow.

The heat �ow at iteration k is then

qw,k = ρ∞V
2
∞ St (hrec − cp,wTw,k) (5.15)

Due to the frozen composition hypothesis after the shock, we have,
in practice: cp,w = cp,e

� At this point, equilibrium between the convective heat �ow from
the �uid and the radiation emitted by vehicle surface is imposed,
under the hypotheses of adiabatic wall and non radiating gas, the
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latter hypothesis being acceptable under 11.000K - i.e. except for
superorbital re-entry vehicles:

qw,k = qw,rad,k (5.16)

with
qw,rad,k = σεwT

4
w,k (5.17)

where σ = 5.67e−8 is the Stefan-Boltzmann constant, and εw is the
surface emissivity, which has been taken as 0.8 in accordance with
the value adopted in VKI IXV CFD simulations. Since the equation
is not linear in Tw,k , a Newton-Rhapson iteration is performed,
de�ning:

fk = qw,rad,k − qw,k = σεwT
4
w,k − ρ∞V 2

∞ St (hrec − cp,wTw,k) = 0
(5.18)

and

f
′

k =
∂fk
∂Tw,k

= 4σεwT
4
w,k + ρ∞V

2
∞ St cp,w (5.19)

hence obtaining:

Tw,k+1 = Tw,k −
fk
f
′
k

(5.20)

� The iteration on k continues until the maximum number of itera-
tions, which has been set to 20, is reached, or the relative di�erence
between two iterations

∆Tk =
|Tw,k+1 − Tw,k|

Te
(5.21)

is less than 1e−20K.

I Once the viscous - thermal iteration is concluded for every centroid xc,ij,
the friction coe�cient cf , the shear stress τw and the heat �ow qw, as well
as the surface temperature Tw, are determined in every centroid, hence
the viscous and thermal problem are solved.

I Once shear stress distribution τw is known, its contribution to the vehicle
aerodynamic coe�cients can be determined, following the procedure in
sec. 5.7.
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5.3 Velocity �eld determination

As we have explained in the introductory chapter, in hypersonic �elds the
hypothesis of thin shock layer is one of the main features characterizing the
�ow. For this hypothesis, which is also one of the fundamentals of LSI meth-
ods such as Newton and Newton modi�ed methods (see chapter 2), we can
make a very strong approximation on the surface velocity �eld, by de�ning the
velocity on the surface as the tangential component of the freestream velocity.
This hypothesis, which would surely be very rough in every other aerodynamic
regime, becomes justi�able in an hypersonic context. As the shock wave ap-
proaches the body, the �ow�eld tends to change its direction abruptly from
freestream direction to tangential, maintaining its tangential momentum while
being heavily slowed down in the direction normal to the shock wave, as the
oblique shock theory suggest - see �g. 4.1. This consideration leads to the
tangential velocity body surface formula, eqn. (1.2), which we report here:

Vbody = V‖ = V∞ −V⊥ = V∞ − n̂ ·V∞ · n̂ (5.22)

This hypothesis permits to obtain almost instantaneously a coherent ap-
proximation of the windward velocity �eld, thus saving ourselves from the
great computational e�ort which is always linked with a numerical solution
of a three dimensional �ow�eld from Euler or Navier-Stokes equations. Such
hypothesis is, together with the LSI methods, the backbone of any approxi-
mate hypersonic solutor, having been used both by Gentry in the S/HABP
[3], and in CBAERO algorithm by Kinney, as is clearly stated in his program
presentation reported in [5]. The velocity surface �eld results provide very
good agreement with actual CFD data in the windward region, as the �ow in
this region �ts very well to the thin shock layer model.

On the leeward side, however, such proximity between the shock wave and
the vehicle surface gives out, becoming an unsatisfying hypothesis. For the
same reason, the LSI methods, which are mainly based on the thin shock layer
hypothesis in the compression region, have to use other methods when describ-
ing the expansion region, as can be clearly seen in chapter 2. In particular,
the use of tangential velocity leads to an overextimation of leeward velocity,
hence suggesting to adopt a di�erent relation in this region of �ow. Once the
external �ow�eld is solved, by assuming isoentropic expansion after the shock,
and knowing the pressure distribution from the application of a LSI method,
external enthalpy he can be calculated, as it is done in the external variables
determination in our algorithm. Leeward velocity can be then obtained from
the conservation of total enthalpy, as:

Vbody, leeward =
√

2 (h0 − he)
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where h0 is the total enthalpy, calculated at the stagnation point as:

h0 = cp,sT0

with T0 taken from the isoentropic relations:

T0 = Ts

[
1 +

1

2
(γs − 1)M2

s

]
where the subscript s indicates that the isoentropic arrest has been per-

formed with the frozen gas hypothesis, but with the gas properties calculated
after the equilibrium shock, hence considering the mixture change which has
taken place through the wave. The velocity direction is always assumed con-
sidering the tangential-to-freestream direction, coherently with the work of
Kinney.

Figure 5.2: Tangential Velocity Surface �eld - Horus geometry - α = 45° and
β = 30°

The surface velocity �eld has been then identi�ed over the whole part, and
we can proceed with its analysis, de�ning separation regions after steep angles,
stagnation points and streamline calculation.

5.4 Forced separation algorithm

In the study of typical re-entry geometries, we encounter often features like �at
back regions, where the �ow cannot be obviously attached, and the application
of the algorithm leads to unlikely streamlines patterns on the back of the
vehicle, as can be seen in the following �gure, where streamlines calculation
over an IXV geometry at incidence and sideslip is performed.
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Figure 5.3: Streamlines calculation on IXV geometry without forced separation
and with forced separation - α = 45° and β = 30°

As it can be seen, the streamlines pattern on the back cannot lead to
accurate results. After such steep angles, a separation is hence imposed. The
problem is to de�ne a convenient identi�cation of these steep geometries, in
order to perform separation in the correct region, independently from the �ow
orientation. A immediate criteria to identify an abrupt geometry change is, on
a fusiform part, to calculate the velocity vector angle variation from a contour
to the next. On the i-th contour we calculate then the angular variation of
the velocity vector between contours i and i+1 (or i-1 if we are on the last
contour), for every point j of the contour, and then we take the mean over the
entire contour i :

∆θij = arccos

 ~Vi+1,j,body · ~Vi,j,body∥∥∥~Vi+1,j,body

∥∥∥∥∥∥~Vi,j,body∥∥∥
 (5.23)

Then the mean value is taken over every point j of the contour i, de�ning
one variation value for every contour:

∆θi = ¯∆θij (5.24)

The detachment location is identi�ed by the contour on which we have
the maximum mean angular variation. The actual detachment is imposed two
contours before the maximum ∆θi, because otherwise the algorithm would be
still propagating streamlines towards the detachment region.

idetach = imaxi ∆θi − 2 (5.25)

In fact, since the velocity on the body is de�ned as the freestream veloc-
ity component tangential to the surface, an abrupt velocity angular variation
coincides with an abrupt geometrical shape variation, so we impose there sep-
aration.
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5.5 Stagnation point determination

In order to obtain the correct boundary layer e�ective running length, the
calculation of the distance along the streamline must be performed from the
stagnation point. Another reason to esteem the position of the stagnation
point is to reduce suitably the integrator step in order to reconstruct the stag-
nation region, in which we have strong velocity gradients mixed with a rough
geometry. The choice of a too loose iteration step may produce integration er-
rors, which result in a wrong de�nition of the running lenghts over the vehicle
surface, as can be seen in the following example:

Figure 5.4: Streamlines over Dart geometry at zero incidence - on the left we
can see streamlines calculated assuming the same step-size over the vehicle
surface leading to a convergence leak on streamlines iteration, on the right a
re�nement criteria based on the proximity to the calculated stagnation point,
is used.

A de�nition of the stagnation point over the vehicle surface has to be found.
An interesting work by Kentwright et al., [17], provides an automatic criterion
for identifying singular features in a velocity �eld, such as separations and at-
tachment points or lines. This criterion is used in other professional hypersonic
solvers such CBAERO, as Kinney observes in [5]. In their work, the authors
identify a suitable method, which can de�ne the presence of an attachment
or detachment point by means of analytical study of the local bi-dimensional
surface �ow�eld. While analyzing two-dimensional velocity �elds, the authors
noticed that in the proximity of asimptotically converging streamlines regions,
i.e. near a singularity point or line, one of the two eigenvectors of the jacboian
∇V of the local velocity �eld V aimed to be parallel to the velocity �eld itself.
Again, the authors proposed that if the aligning eigenvector is the largest, we
have a separation, while if it is the smallest, we are near a �ow attachment
point. The condition for attachment is then

e2 ×Vbody = 0 (5.26)
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e2 being the smallest eigenvector of the jacobian ∇V, while we have de-
tachment for

e1 ×Vbody = 0 (5.27)

with e1 the largest eigenvalue.
The attachment or separation criteria is applied only when both the eigen-

values are real, since real eigenvalues are linked to saddle point, or maxi-
mum/minimum points in the local velocity �eld, corresponding to the attach-
ment or detachment point we are looking for.

As we will discuss in chapter 6, streamlines, velocity �eld and its deriva-
tives are calculated using quadrilateral interpolation between centroid points,
in order to obtain converging integration and higher accuracy. The practical
de�nition of the local eigenvalues �eld will be presented along with the in-
terpolation parametrization in sec. 6.3, since the eigenvalue analysis will be
performed over the parametrized element. Our algorithm does not provide an
analytical velocity �eld, since the velocity �eld de�nition comes from an ap-
proximated hypothesis, and due to the usual roughness of the LaWGS mesh,
imposed by STA standard mesh and by computational times limitation, the
direct results provided by criteria (5.26) and (5.27) have proven to be unad-
equate. We have to remember that the authors proposed these criteria as
a tool to detect separation and attachment lines over a bi-dimensional �ow-
�eld, while we are working over a three dimensional �eld with approximated
derivative tools, as will be exposed in sec. 6.3.

Considering these limitations, a modi�ed criterion has been extrapolated
from Kentwright work, and has been proven to be e�ective over several LaWGS
geometries. The identi�cation, derived directly from eqn.s (5.26) and (5.27),
resulted more robust and independent from geometrical shape and mesh dis-
continuities, which are common in LaWGS formats. Eqn.s (5.26) and (5.27) in
fact showed an excessive conditioning over mesh irregularities. A topological
alignment variable is de�ned, in every centroid point j on the i-th contour , as

alij = max (|e1 ×Vij,body| , |e2 ×Vij,body|) (5.28)

When alij aims to zero, we are approaching the stagnation point. Imaginary
results are excluded from the de�nition, accordingly with Kentwright work.
Hence the minimum alignment coe�cient identi�es the stagnation centroid,
i.e. the nearest centroid to the stagnation point:

istag, jstag ←→ min (alij)

xc,stag = xc,istagjstag (5.29)
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Obviously, the alignment tends to zero even in the detachment region, hence
we are considering, in �nding the minimum value of alij, only the region which
is not included in the detached area identi�ed in the previous sub section from
criterion (5.25).

The point determined in this way is not the actual stagnation point, but
the centroid point nearest to stagnation, which can be o�set with respect to
a stagnation point. This centroid is used by the algorithm to de�ne a proper
surrounding area, identi�ed in a 7x7 centroids mesh, in which integration step
is reduced in order to avoid the streamline convergence fail presented in �gure
5.4. The following �gure presents stagnation point identi�cation via the alij
minimum criteria over the Dart geometry at incidence, and the corresponding
step reduction area, which leads to streamline convergence as presented in �g.
5.4. On this interval, quadrilateral interpolation is also performed, if the user
has selected this kind of velocity interpolation in the stagnation region.

Figure 5.5: Stagnation centroid point de�nition through jacobian eigenvectors
alignment minimization criteria (black diamond) and corresponding integra-
tion step re�nement area, represented by the square grid. Blue circles repre-
sent ignored imaginary alignments, while surface colouring shows calculated
alij value. DART reference geometry is used. If stagnation is in the further-
most lines, the step is re�ned in those �rst lines (left), if it is away from the
�rst lines, it is re�ned over a 7x7 patch (right).

For fusiform bodies, the search of the minimum alij value is performed over
the whole surface, while for non-fusiform bodies, a local stagnation point for
every contour line is de�ned, leading to a stagnation line de�nition over the
leading edge.

Actual stagnation point are obtained on every streamline: when the inte-
gration procedure provides a stationary solution, since streamlines are calcu-
lated from the detached region towards the stagnation area. Actual stagnation
points are represented by yellow points in �g. 5.4. However, this procedure
alone would not be su�cient if a proper step re�nement would not be adopted
near xc,stag, de�ned via the eigenvector alignment minimization criterium.
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If xc,stag is found over the furthermost contour lines, i.e. ixc,stag < 3, choos-
ing the surrounding panels does not lead to an accurate step re�nement criteria.
In this case the step is re�ned over the whole �rst 3 front lines of the fusiform
part.

The choice of the number of centroids composing the re�nement mesh,
such as the 7x7 centroids patch rather than the �rst 5 lines is linked to the
fact that, due to the adaptive step selection which we will expose subsequently,
the Runge Kutta integration step does not �nd a new streamline point beyond
two or three adjacents centroids. We have chosen to re�ne in an area from
5 to 7 adjacent centroids only to guarantee an high robustness to geometry
peculiarities.

Another function of knowing the nearest centroid to the stagnation point
is to arrest streamline calculation when the true stagnation point is inside the
�rst contour line, a thing which happens often for fusiform geometries at small
angles of attack. If the actual stagnation point is circumscribed by the �rst
contour line, we cannot properly interpolate velocity �eld, since we cannot de-
�ne properly 4 centroids to de�ne a quadrilateral over which the interpolation
can be performed. This is in fact a true hole in our mesh, which lead to a
completely wrong streamline calculation in the nose region, as can be seen in
�g. 5.4. We could �x this problem by de�ning a triangular interpolation patch
for this region, taking two centroids on the �rst line as the base segment and
the vertex point of the vehicle as the third point. However, since the de�ni-
tion of parametrical quadrilateral derivatives is a great e�ort, as we will see in
sec. 6.3, and some derivation and interpolation features have been speci�cally
found and developed by us speci�catedly for this algorithm, this feature has
not been implemented yet. An e�ective and easy to adopt solution is to cut
the streamline when it goes past the �rst line further x coordinate, when xc,stag
is found on the �rst contour line. The importance of the calculation of xc,stag
via the topological study of the surface velocity �eld is then increased.

This solution leads to an almost perfect streamline calculation when the
angle of attack α and the angle of sideslip β are small, as can be seen in �g. 5.4.
A little error in the streamline running length calculation, proportional to the
distance from the cutting point to the actual stagnation point, will be however
introduced. In the comparisons over the DART geometry, as can be seen in the
end of chapters 3 and 4, this error showed to be not signi�cantly in�uencing
the nose region cf or qw distribution, hence while a satisfying algorithm for the
particular mesh conditions of the very fore region of our vehicle. Obviously,
this problem is only encountered in fusiform bodies.

To conclude the procedure of xc,stag we must notice the last �x one has to
perform in order to obtain a correct alignment map aij. Due to the approx-
imated criteria on which velocity �eld and eigenvalues analysis is performed,
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during the algorithm development we have found the possibility to obtain some
outlier values, which cause the detection of an erroneous eigenvalues alignment
and can lead to wrong stagnation point identi�cation. To correct these values,
a blur gaussian �ltering has been applied to the aij matrix, hence smoothing
the isolated alignment singularities which come from numerical errors, and
enhancing the correct alignment detection.

The gaussian blur has been performed only in the j-wise direction, to avoid
windowing e�ects. In that direction, due to the axial geometry of a fusiform
body, we can border the matrix with the adjacent j-values, reproducing a
periodic in�nite signal. The �ltering is applied on the bordered matrix, which
is then trimmed again, so that the values at the extremes are not displaying
any kind of windowing e�ect. This procedure can not be applied in the i-wise
direction, since after the last contour and before the �rst contour we have no
data. Filtering by a 2d gaussian blur would hence �atten the local minimum,
which identi�es stagnation, towards the borders - i.e. the �rst contour line
if the stagnation point is near the aft of the vehicle - due to the presence of
windowing. A wrong stagnation point would be then found, leading to an error
in xc,stag determination. A mono-dimensional �ltering along the j direction
provides succesful outliers trimming while not modyi�ng the stagnation region
alignment pattern.

5.6 Streamline calculation

5.6.1 Introduction and analytical treatment

Once we have de�ned the velocity �eld over the vehicle surface, and the singu-
larities which characterize a typical �ow over an hypersonic re-entering body,
are succesfully dealt with, the calculation of streamlines can begin. In this sec-
tion we present the outline of the streamlines calculation process, while some
implementative aspects are left to the next chapter, for their importance and
extension.

Streamlines can be obtained directly from the integration of the velocity
�eld, which can be done, following the approach given in Gentry S/HABP
software manual [3], from the di�erential de�nition of velocity:

dx

dt
= Vx,

dy

dt
= Vy,

dz

dt
= Vz (5.30)

Since velocity modulus can be de�ned as:

V =
ds

dt
(5.31)
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we can express the local increment in terms of the in�nitesimal increment
step ds in terms of velocity director cosines Ci:

dx

ds
=
Vx
V

= Cx,
dy

ds
=
Vy
V

= Cy,
dz

ds
=
Vz
V

= Cz (5.32)

The numerical integration of relations (5.32) will lead to streamlines de�ni-
tion. Actually, these di�erential relations are integrated using a Runge-Kutta
second order method, which will be presented in detail in the next chapter.
Usually, in the calculation of streamlines over a given body, only two of these
equations are actually integrated, the third equation being a constraint equa-
tion describing local geometry of the form

z = f(x, y) (5.33)

A global de�nition of such a function is not possible over geometries of the
complexity we are treating here, since we would not have an univocal de�ni-
tion of the z coordinate given x and y, so in our algorithm we will integrate
over the three equations provided in (5.32). The resulting streamlines are not
mathematically forced on the vehicle surface, so at every step we will project
conveniently the resulting streamline iteration on the vehicle surface.

During the calculation of streamlines, the main problem we encounter is
linked to the fact that a coarse surface meshing is obtained from the LaWGS
format geometry description. In fact LaWGS is not truly an aerodynamic mesh
of the vehicle, but instead an aerodynamic panelization for LSI, or for other
aerodynamics panel methods, if we speak of other regimes than the hypersonic.
Due to this fact, streamlines cannot be de�ned on the coarse LaWGS centroid
mesh, but are de�ned separatedly, as independent points which can move freely
following the integration process.

The fact that streamlines geometry is not directly linked to centroid mesh
leads to three main issues to be solved. The �rst one is the fact that, as we are
not constrained on the vehicle surface, a projection of the calculated streamline
point on the panels identi�ed by the nearest centroids has to be made.

In order to �nd the surrounding centroids to de�ne a proper panel on which
perform the projection of the streamline, we must know which of the centroid
mesh points is the closest to our streamline calculated point. Hence, a global
search on the vehicle LaWGS mesh has to be performed. Such a search proved
to be the most expensive computation in the streamline calculation process,
hence a certain optimization via search trees and other devices will have to
be found. Search trees are a hyerarchical structure which can be used to
improve nearest-neighbour searches, and are proposed also by Kinney in [5];
more details on this tool will be given in chapter 6.

The last issue linked to the independence of streamlines coordinates from
centroid mesh is the fact that, if we are moving through a streamline, and we
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want to know the value of the velocity there in order to integrate the next step,
we need to interpolate the velocity �eld values from the surrounding centroids
to our actual position, since surface velocity vectors have been de�ned only in
centroid points. A quadrilateral linear interpolation will be performed, from
the surrounding centroid points, to the actual projected streamline point in
order to de�ne an accurate velocity vector for the next integration. Solving
the streamline problem without interpolation has hence lead to unsatisfying
results. The quadrilateral interpolation tool will be presented togheter with
the other implementation tools used in the streamline solutor in chapter 6.

5.6.2 General outline of streamline solutor

We report here the general structure of the streamline integration algorithm,
explaining every step in the rest of the section. The algoritm cycles on the
i-th contour from the aft towards the fore of a fusifuform body, starting after
the detached region, and then on the j-th point of the i-th contour. We are
moving from the back of the vehicle towards the front, hence using an inverse
propagation, since this solution is more stable. Starting from the nose would
lead to The velocity �eld is then reversed with respect to the one de�ned in
sec. 5.3:

Vstream = −Vbody (5.34)

For a non fusiform body the procedure is the same, except that the contours
usually start from the root of a wing and go toward the tip, hence streamline
calculation follows this order, while mantaining an inverse propagation, since
the stagnation points are usually in the front. Before the algorithm starts,
search trees of the LaWGS mesh are generated, in order to perform hierarchic
searches over the part geometry.

At every rs iteration, being r the line index of the starting point, and s
the point index over the r line, the following procedures are ful�lled:

I The starting point of the new iteration is selected as the centroid rs,
except if another streamline is not already passing nearby. Starting from
the last non-detached contour, and moving to the nose, streamlines are
calculated taking every centroids point s of the r-th contour as a start-
ing point. Before initializing a streamline, however, a check is made,
that another streamline generated by an aft point does not pass near
the centroid. In fact, if another streamline is already passing nearby the
centroid, we can already esteem the running length using that stream-
line, instead of generating a new one, hence saving a huge quantity of
calculation time.
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I The centroid indexes I,J,IP1,JP1 surrounding centroid rs are calculated,
in order to de�ne a proper panel, de�ned by the four vertex points

xc, I,J , xc, IP1,J ,xc, IP1,JP1,xc, I,JP1

where I,J,IP1,JP1 are adjusted indexes in order to not exceed part in-
dexing. I,J,IP1,JP1 are usually chosen as i, j, i+1, j+1, except when
they are reaching indexing limit. If the contours limits is exceeded, i.e.
i+1 > nLC, being nLC the numbers of contour lines of the part, indexes
are set to have non-exceeding values: for i = nLC we have I = nLC-1,
IP1 = nCL. The same thing is done with contour lines, having J = j,
JP1 = j+1, except when we are reaching the last point, in such case we
will have J = j, JP1 = j+1. We will use also JM1, IM1 in the rest of
the section to indicate the same non-exceeding indexing of i-1 and j-1.

I The datas of the starting streamline point are saved. To save streamlines
data a 4-dimensional array is created, de�ned as:

Xcalc (it, d, r, s)

where it is the iteration index, d the data storage index, r,s are the in-
dexes of the starting point. Given a starting point r̄, s̄, at every iteration
it six variables are saved in the array indexed by d = 1÷ 5:

� x,y,z coordinates of the current streamline point at iteration it.

� I and J indexes of the nearest centroid to the actual streamline.

I Another data saving variable, linked to Xcalc array, is used to save the
nearest streamline passing near a given centroid xc,IJ . This variable,
de�ned as saveDist is structured as:

saveDist (I, J, d)

where I and J are the reference indexes of the centroid saveDist is
referring to, and d is another data array, with d = 1÷ 4, which stores:

� The current distance of the nearest streamline to xc,IJ at the present
iteration time.

� r and s indexes of the starting point of the nearest streamline, hence
identifying a single streamline from the Xcalc data structure.

� The iteration it of the nearest streamline at which the nearest dis-
tance from xc,IJ is reached.
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I At this point the iteration over the single streamline is performed, and
Runge Kutta iteration procedure begins, being it the actual iteration
along the streamline:

� I and J indexes of the nearest centroid to the last streamline point
found on the previous iteration, which we will refer as xstream,it, and
last streamline point are retrieved from

Xcalc (it, d, r, s)

� The panel surrounding xstream,it is retrieved having been identi�ed
by the four indexes I, J, IP1, JP1 found at the previous iteration,
which identify the panel vertices xc, I,J , xc, I,JP1, xc, IP1,JP1, xc, IP1,J ,
as can be seen in �gure:

xc , IP1,JP1

xc , I,JP1
xc , I,J

x

y

z

xstream, it

xc , IP1,J

V
1

V
2

V
3

V
4

Figure 5.6: Centroid panel surrounding the streamline point xstream,it, with
the consequent velocites de�ned on every centroid as in sec. 5.3, which will be
interpolated over the panel and used for the Runge-Kutta step.

� Runge Kutta iteration step is calculated, by taking the minimum
distance hk between centroid xc, I,J and its eight surrounding cen-
troids, and dividing it for a coe�cient which depends on the nature
of the analyzed part and on the proximity to the stagnation nearest
centroid xc,stag:

h =
min (hk)

∆h

, k = 1÷ 8 (5.35)

where ∆h assumes the values of
1 if we are outside the stagnation step re�nement region, as de�ned in 5.5

10 if we are over a fusiform part in the stagnation step re�nement region

5 if we are over a non-fusiform part in the stagnation step re�nement region
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� Having found the correct iteration step h, a Runge Kutta second
order iteration is performed over the panel surrounding xstream,it.
Through the iteration, quadrilateral interpolation is applied to �nd
an accurate value of the velocity vector by the streamline point
and the intermediate integration points, using the velocity values
de�ned on the corner of the panel. These steps will be deepened in
the next chapter, since their analytical formulation is not trivial.

� The new centroid panel, identi�ed by the indexes I, IP1, J, JP1,
surrounding the newly found streamline point, is identi�ed over a
7x7 centroid grid surrounding the old nearest centroid xc,IJ , in the
following method:

. First, the nearest centroid xc, In,Jn to the new streamline point
xstream,it+1 is found

. Then, the four centroids xc, IP1,JP1, xc, IP1,JM1, xc, IM1,JP1 and
xc, IM1,JM1 are taken as vertex of a search panel, as showed in
�g. 5.7

. Over the extended search panel, diagonal vectors v1, v2, v3,
v4 are found. The actual new panel surrounding xstream,it+1 is
found by comparing these vectors with the distance vector from
the nearest centroid xc, In,Jn to the streamline point xstream,it+1,
de�ned as v∆. The panel surrounding the streamline point will
be then the one with the diagonal vector vk forming the maxi-
mum cosine with v∆ - i.e. the most aligned vector. The direc-
tion chosen is then the direction k which gives:

kmax ↔ max
k

(vk · v∆)

. Once the direction k is found, the corresponding vertices of the
new panel surrounding xstream,it+1 are easily found. They are re-
indexed such as the IJ point is the point with the minimum line
and point index i,j , the other poins being de�ned coherently
with the line contour and point contour indexing.
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Figure 5.7: New panel search algorithm: the newly calculated streamline point
xstream,it+1 being the blue triangle. Centroid points are represented as dots. In
this case, the maximum scalar product is between v∆ and v4. Hence the
actual coordinates of the panel surrounding xstream,it+1 will be (IM1, JP1),
(IM1, Jn), (In, Jn),(In, JP1), marked in red. They will be re-indexed as the
new surrounding panel coordinate, coherently with the red labels in �gure.

� The point is projected over the surrounding panel, since as stated
in sec. 5.6.1, since we don't have an analytical de�ned surface, the
calculated point might not adhere to the vehicle surface. To project
the point, the normal of the panel is obtained by its vertices:

. Diagonals are obtained:

d1 = xc, IP1,JP1 − xc, I,J (5.36)

d2 = xc, I,JP1 − xc, IP1,J (5.37)

. Normal versor is obtained then by:

n̂ =
d1 × d2

‖d1 × d2‖
(5.38)

. The center of the panel is then found by

xm,IJ =


xm
ym
zm


IJ

=
1

4


xI,J + xI,JP1 + xIP1,JP1 + xIP1,J

yI,J + yI,JP1 + yIP1,JP1 + yIP1,J

zI,J + zI,JP1 + zIP1,JP1 + zIP1,J


(5.39)

The distance vector from the panel midpoint is:

x0 = xstream,it+1 − xm,IJ (5.40)
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The projected point is:

x0|p = x0 − (x0 · n̂) n̂ (5.41)

The projected streamline point is then calculated by going back
from the xm,IJ reference to the global system:

xstream,it+1|p = x0|p + xstream,it+1 (5.42)

� The new streamline point coordinates are now on the surface, they
can hence be saved in the streamline data array:

Xcalc (it+ 1, d, r, s)

Notice that every streamline is identi�ed by its starting points in-
dexes rs.

� At this point, the nearest centroid xc,In,Jn to the newly calculated
streamline point is found using a nearest point search algorithm,
and its indexes are saved in Xcalc

� The nearest centroid indexes In, Jn are saved also in an external
map, so that the algorithm can recognize that a streamline is al-
ready passing nearby that particular centroid, and it deselect it as
a potential starting point. In this way, when the algorithm cycles
throug r and s, the indexes corresponding to a centroid with a
nearby passing streamline are avoided. In this way, the number of
streamlines to be calculated to associate at least a single streamline
to a centroid is greatly reduced, saving a huge amount of computa-
tional time

� For every step, it is veri�ed if the distance between xstream,it+1 and
xc, In,Jn identi�es the actual streamline as the nearest of all the
streamlines passing nearby xc, In,Jn. If the condition is met, the
current distance, the current iteration it + 1 and the centroid in-
dexes r,s are saved in

saveDist (r, s, d = {streamDist, r, s, it+ 1})

Hence, we can uniquely identi�cate for every centroid of the mesh
what is the closest streamline passing nearby, through its starting
point indexing rs. This feature will be crucial for boundary layer
running length determination.

� At this point we have two controls which save the so far calculated
streamline, cut it and break the cycle and re-intialize it from the
next starting point if:
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. The part is not fusiform and the streamlines exit from the lat-
eral boundary of the part, then the streamline is cut at the part
boundary.

. The part is fusiform and the stagnation point lies inside the
small nose region part not covered by the mesh, as explained
in sec. 5.5, hence the streamline must be cut o� in order to not
leave the body.

� The it step is concluded, the counter is set as it = it + 1 and the
cycle is re-initialized from a new starting point, until every point
on the centroid mesh is cleared or sees a streamline passing by.

I The streamline solutor delivers then the streamline information, con-
tained in the multidimensional arrays Xcalc (it, d, r, s) and saveDist (In, Jn, d),
to the running length determination routine, which will be explained in
the following section.

I Running lenghts can be determined, since after the calculation of all the
streamlines needed, we have de�ned, for every centroid xc,ij, the nearest
streamline passing by through the saveDist array. We have calculated
the streamlines with a backward integration, so from the last point to the
stagnation. Distance is obviously taken from stagnation to the last point,
so for every streamline array identi�ed by an rs we cycle from the last
iteration to the �rst, measuring the increment in the three coordinates,
for k decreasing from the last iteration to the �rst, as:

�

∆xrs,k = (xstream,k+1 − xstream,k)rs (5.43)

�

∆yrs,k = (ystream,k+1 − ystream,k)rs (5.44)

�

∆zrs,k = (zstream,k+1 − zstream,k)rs (5.45)

� The curvilinear step along the streamline is then

∆srs,k =

∥∥∥∥∥∥


∆xrs,k
∆yrs,k
∆zrs,k


∥∥∥∥∥∥ (5.46)

� The running length is then

rrs,k+1 = rrs,k + ∆srs,k (5.47)
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5.7 Aerodynamic coe�cients calculation

5.7.1 General

Once we have succesfully run the viscous algorithm over a part, we know, in
every centroid of the part, the surface pressure value pe,ij - from RAM v1.0
- and the shear stress at the wall τw,ij - from RAM v2.0. We are then able
to reconstruct the aerodynamic coe�cients' contribution of the part, both for
the inviscid and for the viscous components. Forces and moments will be
obtained in the body axes frame, coherent with the LaWGS de�nition, see
sec. 1.6, and then transformed in the wind axes frame, parallel to the velocity
vector, in order to obtain classical de�nition of lift, drag and sideforce, and
aerodynamic moments. At this point, aerodynamic coe�cients are obtained by
the appropriate non - dimensionalization. Notice that the conventions we take
as body axes or wind axes might be not coherent with homonymous literature
de�nitions. Aerodynamic forces and moments will be however obtained, at the
end of the transformation, in the most typical �ight dynamic convention rule.

5.7.2 Body frame forces and moments de�nition

Reconstruction of aerodynamic forces and moments in body axes from the pres-
sure and shear stress distribution is quite immediate. The global contribution
of pressure distribution over the part surface is:

Fb
inv =

ˆ
A

P ñdA = −
ˆ
A

P n̂dA (5.48)

being ñ the body normal entering the surface, andn̂ the body normal exit-
ing the surface, coerent with our de�nition of centroid normals n̂ij. The apex
b denotes the fact we are measuring forces in body axes. The contribution due
to viscous e�ects is, similarly:

Fb
visc =

ˆ
A

τwt̂dA (5.49)

where t̂ is the versor indicating the local tangent to the velocity �eld. Since
the velocity in the centroid points is known, it can be obtained by normalizing
the local velocity vector, as being de�ned in sec. 5.3:

t̂ij =
Vij

Vij
(5.50)

Referring to our centroids discretized geometry, we can express the indi-
vidual forces on a single centroid as:
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finv,ij = −AijPe,ijn̂ij (5.51)

for the invscid contribution, and

fvisc,ij = Aijτw,ij t̂ij (5.52)

being Aij the LaWGS panel area associated at the centroid xc,ij, as de�ned
in sec. 1.6.

for the viscous contribution. Eqn.s (5.48) and (5.49) become then:

Fb
inv =

nLC∑
i=1

nPC∑
j=1

finv,ij = −
nLC∑
i=1

nPC∑
j=1

AijPe,ijn̂ij (5.53)

Fb
visc =

nLC∑
i=1

nPC∑
j=1

fvisc,ij =
nLC∑
i=1

nPC∑
j=1

Aijτw,ij t̂ij (5.54)

The global forces acting on our part, in body axes, are then:

Fb = Fb
inv + Fb

visc (5.55)

In analogy with forces, moments can be de�ned as:

Mb
o,inv =

ˆ
A

P (ro × ñ) dA = −
ˆ
A

P (ro × n̂) dA (5.56)

Mb
o,inv =

ˆ
A

τw
(
ro × t̂

)
dA (5.57)

Using the discretized geometry, we have that the single moment over every
centroid is

minv,ij = −AijPe,ijroij × n̂ij = roij × finv,ij (5.58)

for the invscid contribution, and

mvisc,ij = Aijτw,ijroij × t̂ij = roij × fvisc,ij (5.59)

roij being the distance between the current centroid and the moment ref-
erence point xo:

roij = xc,ij − xo (5.60)

Developing the cross product, we have:
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minvx, ij = finv z, ij ro y, ij − finv y, ij ro z, ij
minv y, ij = finvx, ij ro z, ij − finv z, ij ro x, ij
minv z, ij = finv y, ij ro x, ij − finvx, ij ro y, ij

(5.61)

from the inviscid centroid forces, and
mviscx, ij = fvisc z, ij ro y, ij − fvisc y, ij ro z, ij
mvisc y, ij = fviscx, ij ro z, ij − fvisc z, ij ro x, ij
mvisc z, ij = fvisc y, ij ro x, ij − fviscx, ij ro y, ij

(5.62)

from the viscous centroid forces.
Moments acting on the single part can be de�ned then as:

Mb
inv =

nLC∑
i=1

nPC∑
j=1

minv,ij (5.63)

Mb
visc =

nLC∑
i=1

nPC∑
j=1

mvisc,ij (5.64)

The global moments acting on the part in body axes are then:

Mb = Mb
inv + Mb

visc (5.65)

Figure 5.8 shows forces and moment conventions over the body axes and
the panel centroids.
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Figure 5.8: Body axes forces and moment de�nitions and conventions

5.7.3 Wind frame forces and moments transformation

We have obtained forces and moments in the body axes frame. Aerodynamic
forces are typically calculated in a di�erent frame, the wind axes frame. The
wind axes frame presented here may di�er slightly from the most common
de�nitions found in literature, its de�nition being consistent with the one used
in RAM v1.0, as exposed in [1]. xw axis is aligned against the freestream
velocity vector V∞, zw axis is perpendicular to the xw axis and lying on the
vehicle symmetry plane, hence is aligned with the lift force. yw is chosen in
order to form a right-handed frame. To transform the body axes into wind
axes, two angles have to be de�ned, and they are the angle of attack α -
sometimes de�ned as AOA - which measures the angle between the vehicle
or part longitudinal axis and the freestream velocity parallel to the vehicle
symmetry plane V∞,‖ and the angle of sideslip β, which measures the angle
between the freestream velocity and the symmetry plane of the vehicle. These
angles are usually de�ned in the freestream conditions of the RAM v2.0 solver
in the WgsReader program input settings. Notice that our sign convention for
β is opposite to the classical �ight dynamics conventions, in order to maintain
us coherent with the RAM v1.0 de�nitions.

To obtain forces and moments in the wind frame, a transformation from
the body axes has to be performed. First, a rotation of the body frame is
performed along α, from the body frame b to an intermediate reference frame
i. The rotation can be measured in the frame b with the rotation matrix:
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Rb
1 =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 (5.66)

However, as can be seen in �g. 5.9, x and y axes are in the opposite
directions. This transformation can be represented by the operator:

T =

 −1 0 0
0 −1 0
0 0 1

 (5.67)

The two transformation can be joined in a single operator R̃b
1:

R̃b
1 = TRb

1 =

 − cosα 0 − sinα
0 −1 0

− sinα 0 cosα

 (5.68)

Another rotation, along angle β, is performed from the intermediate frame
i to the �nal wind axes frame w, which can be measured in the intermediate
frame with the rotation matrix:

Ri
2 =

 cos β sin β 0
− sin β cos β 0

0 0 1

 (5.69)

The following �gure shows the two trasformations R̃b
1 and Ri

2 required to
transform the coordinate system from body axes to wind axes.

V
∞

V ∞, ∥
V ∞, side

V
∞

V ∞, ∥
V ∞, side

�
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Figure 5.9: Transformations from the body frame b (in black) to the interme-
diate reference frame i (in blue), and from the intermediate reference frame i
to the �nal wind frame w (in red).

Global forces and moments in the wind axes frame can hence be obtained
by the combination of the two transformations:
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Fw = Ri
2R̃

b
1 Fb (5.70)

Mw = Ri
2R̃

b
1 Mb (5.71)

5.7.4 Aerodynamic frame forces and coe�cients de�ni-
tion

The relation of the wind forces with the classic de�nition of aerodynamic forces,
i.e. lift, drag and side force, and the relative aerodynamic moments is de�ned
by referring ourselves to the classic aerodynamic axes frame de�nition, which
is strictly related to the wind axes by the relation:

xa

ya

za

 =


xw

−yw
−zw


Lift, Drag and Side forces can be then de�ned as:

D
S
L

 =


−F a

x

−F a
y

−F a
z

 =


−Fw

x

Fw
y

Fw
z

 (5.72)

For the moments, body axes are used, since the pitching, roll and yaw mo-
ments are usually referred to the vehicle frame. We notice that this convention
is not always respected in RAM v1.0 as presented in [1], hence we will replace
the moments convention with ours, which respect the classical �ight dynamic
conventions. To be coherent with the most common de�nitions of pitch, roll
and yaw, some signs are changed from our de�nition of body frame:

L
M
N

 =


−M b

x

M b
y

−M b
z

 (5.73)

We can now de�ne the aerodynamic coe�cients; for the forces we have:

CL =
L

1
2
ρ∞V 2

∞Sref
(5.74)

CD =
D

1
2
ρ∞V 2

∞Sref
(5.75)

CS =
S

1
2
ρ∞V 2

∞Sref
(5.76)
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and for the moments:

CL =
L

1
2
ρ∞V 2

∞Sref cref
(5.77)

CM =
M

1
2
ρ∞V 2

∞Sref cref
(5.78)

CN =
N

1
2
ρ∞V 2

∞Sref cref
(5.79)

Even the aerodynamic coe�cients can be charachterized by the separation
between viscous and inviscid contribution, since the aerodynamic forces can be
calculated from the separate global forces contributions, which can obtained in
body axes from (5.53) and (5.54) for the forces and from (5.63) and (5.64). We
can calculate the separate contributions in wind frame for the forces, obtaining:

Fw
inv = Ri

2R̃
b
1 Fb

inv (5.80)

Fw
visc = Ri

2R̃
b
1 Fb

visc (5.81)

This procedure is not adopted for the moments since they are de�ned di-
rectly from the body axes. We have then:

D
S
L


inv

=


−Fw

x

Fw
y

Fw
z


inv

(5.82)


D
S
L


visc

=


−Fw

x

Fw
y

Fw
z


visc

(5.83)

for the forces and 
L
M
N


inv

=


−M b

x

M b
y

−M b
z


inv

(5.84)


L
M
N


visc

=


−M b

x

M b
y

−M b
z


visc

(5.85)

Hence, separate contribution of the aerodynamic coe�cients can be calcu-
lated, in order to esteem the viscous contribution to the vehicle dynamics.



Chapter 6

Algorithm implementation

6.1 Introduction

While the last chapter was focused on the de�nition of the algorithm tasks
and routines, explaining how the physical quantities were calculated, in this
chapter we will a�ord those numerical tools we did not deepen previously for
the sake of clarity. Some simpler tools, like the Newton - Rhapson iteration for
non-linear systems, and all the geometrical de�nitions algorithms, have been
already presented along with the global algorithm presentation, in sec. 5.2 or
with the streamline solutor, in sec. 5.6.2. Here, we will a�ront the complexity
of the Runge - Kutta method integration, with the embedded velocity inter-
polation and derivation over the quadrilateral. The tools for the topological
eigenvectors alignment analysis used for the stagnation point identi�cation,
adopted in sec. 5.5, will be deduced from the velocity interpolation. A brief
presentation of search trees hierarchical data structure for the nearest neigh-
bour search will be also showed. In the end, we will face some considerations
about the RAM v2.0 algorithm performances.

6.2 Runge Kutta Integration

To calculate the streamline �eld, the integration of the di�erential equations
presented in sec. 5.6.1 is needed. To perform the numerical integration of eqn.s
(5.32) a Runge Kutta 2nd order scheme will be used. Runge Kutta methods
are one-step non-linear methods, which can be easily adapted to adactive step
algorithms like our streamline solutor. Once the step h is set as de�ned in sec.
5.6.2. The currently adopted scheme is the 2nd order RK scheme known as
the trapezoidal rule, which can be presented also as a multistep method. The
increment scheme for the streamline coordinates is:

121
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xstream,it+1 = xstream,it +
h

2
(Cit + Cit+1) (6.1)

where C is the vector containing the velocity director cosines in the three
directions:

C =


Cx
Cy
Cz

 =


Vx
V
Vy
V
Vz
V

 (6.2)

Cit is obtained at the point xstream,it by evaluating the velocity vector there
using the most appropriate velocity interpolation, as will be de�ned in sub-
section 6.4.6. Since we don't have a functional de�nition of the velocity �eld,
which should be used to solve the non linear equation (6.1), we will adopt a
di�erent method to calculate Cit+1. To de�ne the velocity at the iteration it+1
a �rst esteem of the streamline coordinate is obtained with an explicit Euler
scheme

xstream, ˜it+1 = xstream,it + hCit (6.3)

the cosines are then approximated in the xstream, ˜it+1, hence obtaining the
cosines C ˜it+1, from the velocity vector interpolation, which will be used in
eqn. (6.1). Even if it is presented as a single step RK2 method for the sake
of simplicity, the version of the trapezoidal rule presented here is actually a
prediction-corrector method, the corrected �nal step being:

xstream,it+1 = xstream,it +
h

2

(
Cit + C ˜it+1

)
(6.4)

6.3 Quadrilateral interpolation

6.4 Isoparametric representation

While performing the streamlines integration, we have to interpolate the veloc-
ity values in position which are not generally localized in the mesh centroids,
since, as we have widely seen in the previous chapter. Hence, we will need
to interpolate velocity on every streamline point from the surrounding ver-
tex of the panel, as it has been de�ned in sec. 5.6.2. Since we are working
over quadrilateral panels with generic shape, and variously oriented through
the space, an intuitive idea is to use the isoparametric quadrilateral elements,
widely used in the �nite element theory to characterize panel or plate elements.

An exhaustive reference for isoparametric quadrilateral elements and for
�nite elements in general is [22]. In this work, however, quadrilateral elements
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are de�ned only for bi-dimensional quadrilaterals. We will extend the treat-
ment to the three-dimensional case, and propose also an approximate solution,
via the least square method of the inverse problem of obtaining the parametric
coordinates once the interpolated point, i. e. the streamline point, is known.
This problem has been already faced in [23], but its application is linked to the
bi-dimensional case, and it reaches an excessive peak of complication, hence we
will propose an alternate way. The solution of this problem occurs practically
when we have a streamline point, or an intermediate Runge - Kutta calculation
point, and we want to reconstruct the parametric representation of that point
in order to interpolate the velocity there.

6.4.1 Coordinates interpolation

If we have a generic quadrilateral patch, for example the quadrilateral panel
surrounding a streamline or an intermediate calculation point, we can express
any of its internal coordinates by a parametric representation, via the para-
metric space (ξ, η). The patch is de�ned on the panel surrounding the old
streamline point, in the Runge-Kutta integration process towards the new de-
�ned point, which has been de�ned by the vertices:

xc, I,J , xc, IP1,J ,xc, IP1,JP1,xc, I,JP1

To ease the notation of the following sections, a lighter notation is adopted,
and the panel vertices become, mantaining the same ordering, respectively:

x1,x2,x3,x4

ξ 

η

ξ = 0
η = 0

x

y

z 4

1

2

3

ξ = 1
η = − 1

xc , I,JP1

ξ = −1
η = − 1

xc , IP1,JP1

ξ = −1
η =  1

xc , IP1,J ξ = 1
η = 1

xc , I,J

xm

Figure 6.1: Quadrilateral patch in the three-dimensional space

To express the cartesian coordinates in the parametric space, we will use
linear shape functions:
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N1 = 1

4
(1 + ξ) (1 + η)

N2 = 1
4

(1− ξ) (1 + η)
N3 = 1

4
(1− ξ) (1− η)

N4 = 1
4

(1 + ξ) (1− η)

(6.5)

In three dimension, the internal coordinates of the quadrilateral can be
expressed, referring to the parametric coordinates and to corner values, as


x (ξ, η)
y (ξ, η)
z (ξ, η)

 =
[
N1I N2I N3I N4I

]



x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4



(6.6)

where

I =

 1 0 0
0 1 0
0 0 1

 (6.7)

A three-dimensional generic variable, de�ned on the corner points can be
also expressed as:


u (ξ, η)
v (ξ, η)
w (ξ, η)

 =
[
N1 (ξ, η) I N2 (ξ, η) I N3 (ξ, η) I N4 (ξ, η) I

]



u1

u2

u3

u4

v1

v2

v3

v4

w1

w2

w3

w4


(6.8)
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6.4.2 Inverse problem

De�nition The solution of the inverse problem will be used to perform with
increased accuracy the Runge - Kutta integration step in the routine 5.6.2.
We solve here the problem of obtaining ξ, η given an arbitrary point {xi yi zi},
which will be in our case the streamline coordinate xstream, it or an intermediate
step calculation point, as de�ned in the previous section. In this point we want
to interpolate other quantities de�ned in the quadrilateral vertex, e.g. in our
algorithm the velocity vectors:


x (ξ, η)
y (ξ, η)
z (ξ, η)

 =
[
N1I N2I N3I N4I

]



x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4



(6.9)

This expression can be rewritten as:


−4xi (ξ, η) + (x1 + x2 + x3 + x4) + (x1 − x2 − x3 + x4) ξ+

−4yi (ξ, η) + (y1 + y2 + y3 + y4) + (y1 − y2 − y3 + y4) ξ+

−4zi (ξ, η) + (z1 + z2 + z3 + z4) + (z1 − z2 − z3 + z4) ξ+

+ (x1 + x2 − x3 − x4) η + (x1 − x2 + x3 − x4) ξη = 0
+ (y1 + y2 − y3 − y4) η + (y1 − y2 + y3 − y4) ξη = 0
+ (z1 + z2 − z3 − z4) η + (z1 − z2 + z3 − z4) ξη = 0

(6.10)

or 
f1 (ξ, η) = 0
f2 (ξ, η) = 0
f3 (ξ, η) = 0

(6.11)

which is a non-linear system in the ξ, η variables.
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Newton Rhapson system solution We solve the non-linear ξ, η system
using a Newton - Rhapson algorithm

f1 (ξ, η) = f1 (ξ0, η0) + ∂f1

∂ξ

∣∣∣
0

∆ξ + ∂f1

∂η

∣∣∣
0

∆η = 0

f2 (ξ, η) = f2 (ξ0, η0) + ∂f2

∂ξ

∣∣∣
0

∆ξ + ∂f2

∂η

∣∣∣
0

∆η = 0

f3 (ξ, η) = f3 (ξ0, η0) + ∂f3

∂ξ

∣∣∣
0

∆ξ + ∂f3

∂η

∣∣∣
0

∆η = 0

(6.12)

which can be expressed as a linear system:

A

{
∆ξ
∆η

}
= −


f1 (ξ0, η0)
f2 (ξ0, η0)
f3 (ξ0, η0)

 (6.13)

The increment can be calculated by pseudo inversion in the least squares
sense of the matrix:

{
∆ξ
∆η

}
= −

(
ATA

)−1
AT


f1 (0, 0)
f2 (0, 0)
f3 (0, 0)

 (6.14)

the increment is then calculated an the step is increased:

ξ = ξ0 + ∆ξ (6.15)

η = η0 + ∆η (6.16)

Evidences have shown that error in the ξ, η determination goes under 1e−11

after two Newton iterations, for the typical panels de�ned in our LaWGS
geometries. Once ξ, η are known, the parametric identi�cation of a generic
point inside the quadrilateral is complete. We will use this inverse procedure
in the Runge-Kutta iteration, in order to �nd the parametric position of a
streamline point, or of a Runge-Kutta intermediate calculation point, inside
the surrounding panel. When the parametric position of this point is known,
parametric interpolation from the known velocity values Vx, Vy and Vz on the
panel vertices can be performed, for example using eqn. (6.8). Hence for the
next Runge - Kutta initial or intermediate step we have de�ned the accurate
velocity value in the starting point.

6.4.3 Scalar �eld derivation

We present here the basis of scalar quantity derivation in the parametric space,
which will be used to obtain velocity derivatives which will be used in the
tangential derivative de�nition, used in the Simeonides algorithm in de�ning
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ugrad for the solution of equation (3.29), and also to de�ne the velocity �eld
eigenvalues problem in order to obtain the alignment matrix alij presented in
sec. 5.5.

Two dimensions If we want to �nd the derivative of a quantity u = u (ξ, η) =
u (x, y) , we can express its derivatives in the parametric space by chain rule
derivation: {

∂u
∂ξ

= ∂u
∂x

∂x
∂ξ

+ ∂u
∂y

∂y
∂ξ

∂u
∂η

= ∂u
∂x

∂x
∂η

+ ∂u
∂y

∂y
∂η

(6.17)

which can be expressed in matricial form as:

J =

[
x/ξ y/ξ
x/η y/η

]
(6.18)

{
u/ξ
u/η

}
=

[
x/ξ y/ξ
x/η y/η

]{
u/x
u/y

}
= J

{
u/x
u/y

}
(6.19)

Looking at the single element of the jacobian matrix, the derivative with
respect to the parameter can be expressed in terms of derivatives of the shape
function: 

∂x
∂ξ

=
∑4

1Ni /ξxi
∂y
∂ξ

=
∑4

1Ni /ξyi
∂x
∂η

=
∑4

1Ni /ηxi
∂y
∂η

=
∑4

1Ni /ηyi

(6.20)

so that the Jacobian can be expressed as

J =

[ ∑4
1Ni /ξxi

∑4
1Ni /ξyi∑4

1Ni /ηxi
∑4

1Ni /ηyi

]
(6.21)

We have then

Γ = J−1 (6.22)

so that the derivative of φ on the quadrilateral can be expressed as{
u/x
u/y

}
= Γ

{
u/ξ
u/η

}
(6.23)
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Three dimensions with least squares The Jacobian for a three dimen-
sional quantity u = u (x, y, z) = u (ξ, η) can be expressed as:

J =

[
x/ξ y/ξ z/ξ
x/η y/η z/η

]
(6.24)

J =
1

4

[
(1 + η) − (1 + η) − (1− η) (1− η)
(1 + ξ) (1− ξ) − (1− ξ) − (1 + ξ)

]
x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

 (6.25)

We have then

{
u/ξ
u/η

}
= J


u/x
u/y
u/z

 (6.26)

Since J is not a square matrix anymore, the inversion of this relation re-
quires a least square pseudo-inverse:

u/x
u/y
u/z

 =
[(

JTJ
)−1

JT
]{ u/ξ

u/η

}
= Γ̃

{
u/ξ
u/η

}
(6.27)

6.4.4 Directional derivative on a quadrilateral patch

For the use of Meador Smart reference enthalpy, a de�nition of the tangential
derivative of the velocity is required. We will use isoparametric formulation to
obtain the tangential derivative projecting our velocity �eld on the parametric
element. Notice that the isoparametric element is now chosen as the panel
identi�ed by the IM1, IP1, JM1, JP1 centroids surrounding the middle I,J
centroid. In this way a derivative for every centroid xc,IJ can be de�ned. The
vertices of the panel on which we de�ne the velocity derivative are:

xc, IM1,JM1, xc, IM1,JP1,xc, IP1,JP1,xc, IP1,JM1

which, paying attention to not confuse them with the vertices de�nition
of the Runge Kutta inverse problem presented in the previous subsection, are
re-indexed as

x1,x2,x3,x4

for the sake of simplicity.
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Figure 6.2: Quadrilateral patch with base and velocities de�nitions

de�ne the tangent vector on the centroid of the quadrilateral as

t =
1

V

{
Vx Vy Vz

}T
(6.28)

The directional derivative of a function f = f (x, y, z) = f (x)along t can
be then expressed as:

∂f

∂t
=
∂f

∂x
· t (6.29)

Over a quadrilateral, it is easier to work in parametric coordinates:

t =
1

V

{
Vξ Vη

}T
(6.30)

so that

∂f

∂t
=
∂f

∂ξ
· t (6.31)

where ξ =
{
ξ η

}T
If we consider the velocity vector as the function to be derived, we have

then

∂V

∂t
=
∂V

∂ξ
=

1

V

{
∂V
∂ξ

∂V
∂η

}{ Vξ
Vη

}
(6.32)

We de�ne then Vξ and Vη as the projections of V =
{
Vx Vy Vz

}T
over

the quadrilateral patch. If we de�ne a versor base of the quadrilateral

îξ =
x(ξ=1,η=0) − x(ξ=−1,η=0)∥∥x(ξ=1,η=0) − x(ξ=−1,η=0)

∥∥ (6.33)

îη =
x(ξ=0,η=1) − x(ξ=0,η=−1)∥∥x(ξ=0,η=1) − x(ξ=0,η=−1)

∥∥ (6.34)
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we can de�ne

Vξ = V · îξ (6.35)

Vη = V · îη (6.36)

and hence t = 1
V

{
Vξ Vη

}T
.

Velocity derivatives in the panel centroid xc,IJ , i.e.
{

∂V
∂ξ

∂V
∂η

}
IJ

,can be
found by applying the �nite di�erence method directly along the ξ, η directions:

∂V

∂ξ

∣∣∣∣
IJ

=
V(ξ=1,η=0) − V(ξ=−1,η=0)

hξ
(6.37)

and

∂V

∂η

∣∣∣∣
IJ

=
V(ξ=0,η=1) − V(ξ=0,η=−1)

hη
(6.38)

if we de�ne the derivation steps in the ξ, η directions, which correspond to
the isoparametric elements dimensions along these directions, as:

hξ =
∥∥x(ξ=1,η=0) − x(ξ=−1,η=0)

∥∥ (6.39)

hη =
∥∥x(ξ=0,η=1) − x(ξ=0,η=−1)

∥∥ (6.40)

The velocities moduli V(ξ=1,η=0), V(ξ=−1,η=0), V(ξ=0,η=1) and V(ξ=0,η=−1) can
be de�ned, knowing velocities in the panel vertices, using the three dimensional
variable interpolation de�ned in eqn. (6.8), substituing the appropriate ξ, η
values.

We have now de�ned all the terms which are required to de�ne the tangen-
tial derivative in every centroid xc,IJ , which is, recalling eqn.(6.32):

∂V

∂t

∣∣∣∣
IJ

=
1

V

{
∂V
∂ξ

∂V
∂η

}
IJ

{
Vξ
Vη

}
(6.41)

6.4.5 Topological study on local vector �eld

We report here the determination of the eigenvalues from the parametric ve-
locity representation, to be used in the alignment matrix alij determination for
the analysis of the stagnation point, as de�ned in 5.5. The main concept is to
extract the eigenvectors of the local surface jacobian ∇V of the surface veloc-
ity. Given the eigenvectors ei, where i = 1 : 2 are two independent directions
of derivation along the panel surface, arranged in order that e1 is the largest
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modulus eigenvector, recalling eqn.s (5.26) and (5.27), we have attachment
when

e2 ×V = 0 (6.42)

and separation when

e1 ×V = 0 (6.43)

the local Jacobian, in parametric coordinates, can be expressed as:

∇V = Jv =

[
Vξ/ξ Vξ/η
Vη/ξ Vη/η

]
(6.44)

To obtain the jacobian elements, we must derive Vξ and Vη along the ξ, η
directions. We will adopt then �nite di�erences over the isoparametric element,
due to the noticeable simplicity of this formulation.

Hence, the �nite di�erences in isoparametric coordinates are easily obtained
as:

Vξ/ξ =
Vξ(ξ=1,η=0) − Vξ(ξ=−1,η=0)

hξ
(6.45)

Vξ/η =
Vξ(ξ=0,η=1) − Vξ(ξ=0,η=−1)

hη
(6.46)

Vη/ξ =
Vη(ξ=1,η=0) − Vη(ξ=−1,η=0)

hξ
(6.47)

Vη/η =
Vη(ξ=0,η=1) − Vη(ξ=0,η=−1)

hη
(6.48)

The isoparametric velocity components which are necessary to the �nite
derivation can be found by projecting the velocity vector in the appropriate
positions of the isoparametric quadrilateral. For example Vξ(ξ=1,η=0) can be
obtained from:

Vξ(ξ=1,η=0) = V(ξ=1,η=0) · îξ (6.49)

where V(ξ=1,η=0) can be obtained by the three-dimensional variable inter-
polation formula (6.8), with ξ = 1 and η = 0.

Following the same approach, we can �nd as well:

Vξ(ξ=−1,η=0) = V(ξ=−1,η=0) · îξ (6.50)

Vξ(ξ=0,η=1) = V(ξ=0,η=1) · îξ (6.51)
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Vξ(ξ=0,η=−1) = V(ξ=0,η=−1) · îξ (6.52)

for the velocity component along ξ, and

Vη(ξ=1,η=0) = V(ξ=1,η=0) · îη (6.53)

Vη(ξ=−1,η=0) = V(ξ=−1,η=0) · îη (6.54)

Vη(ξ=0,η=1) = V(ξ=0,η=1) · îη (6.55)

Vη(ξ=0,η=−1) = V(ξ=0,η=−1) · îη (6.56)

We can then calculate the �nite di�erence derivatives (6.45), (6.46), (6.47)
and (6.48), and �nd the local velocity �eld jacobian Jv. The jacobian eigen-
values we need for the topological study can then be obtained by solving the
eigenvalues problem

det (Jv − λI) = 0 (6.57)

obtaining the two eigenvalues λ1 and λ2.
The eigenvectors e1 and e2 are found from the solution of the system

Jvei = λiei (6.58)

paying attention to arrange ei so that e1 is the largest modulus eigenvector.
Our attachment and detachment alignment factors can be then calculated:

e2 ×V = e2,1Vη − e2,2Vξ (6.59)

e1 ×V = e1,1Vη − e1,2Vξ (6.60)

and the raw alignment map can be de�ned as, recalling eqn. (5.28):

alij = max (|e1 ×Vij,body| , |e2 ×Vij,body|) (6.61)

Then, as been explained in sec. 5.5, �ltering operations are performed and
stagnation nearest centroid xc,stag is found.
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6.4.6 E�ects on the Runge-Kutta integrator

We present here the confront of the streamline �eld determination accuracy
improvement by the use of quadrilateral interpolation against a non interpo-
lated RK streamline �eld. A simpli�ed model of RK integrator is used, by
de�ning a mean velocity component for every streamline or intermediate step
point on the panel, which consists simply of the mean of the corner velocites
components:

Vi,panel =
Vi1 + Vi2 + Vi3 + Vi4

4
i = x, y, z (6.62)

Results are presented over the Dart reference geometry at incidence, and
cleary shows an improvement of streamlines resolution over the bottom surface.
In fact, the asymptotic streamline on the windward centerline is not matched
well by the non interpolated streamlines �eld, while the RK integration with
quadrilateral interpolation feature catches better this particular �ow pattern,
as can be clearly seen in the following �gure:

Figure 6.3: RK streamlines calculation - without interpolation (top) and with
quadrilateral interpolation (bottom)

Streamline reconstruction with quadrilateral interpolation produces hence
an accuracy improvement over the RAM v2.0 algorithm. However, as we
can see, streamlines patterns far away of stagnation points and asymptotic
lines do not di�er sensibly, justy�ng only in part the adoption of such grade of
interpolation, which require the solving of a non linear system, with the pseudo
- inversion of the coe�cients matrix, as in system (6.14). This procedure
is to be repeated for every iteration step or intermediate streamline point,
hence twice the times the streamline points used in the whole algorithm. Such
computational e�ort is not always justi�able, hence it will be left as an user
option in the RAM v2.0 input �le, default setting will be the non interpolated
constant mean velocity value on the panel, as identi�ed by eqn.s (6.62).
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Chapter 7

Results and comparisons

7.1 Comparison on IXV geometry

7.1.1 General

We will present here the comparison between our algorithm and a CFD sim-
ulation over the IXV geometry at incidence, see �g. 1.2 to have an idea of
the spacecraft layout. The IXV vehicle is an unmanned testbed, developed by
ESA to provide a platform for the experimental veri�cation of re-entry mate-
rials and technologies, and to provide an autonomous european aerodynamic
controlled re-entry capability. The IXV �rst �ight is expected in 2013, using
the new Vega launch system, which has been succesfully tested in February
2012. We will confront here the patterns of several surface quantities, e.g. fric-
tion factor, shear stress, heat �ow and temperature distribution, against the
calculations which were committed by the European Space Agency to verify
the aerodynamic characteristics of the IXV. The simulations were performed by
a numerical Navier Stokes hypersonic and thermochemically active code, with
laminar and turbulent regime description capability, developed by Thorsten
Scholz for the Von Karman Institute of Fluid Dynamics, in collaboration with
professor Patrick Rambaud, and it is described in [24]. Out from the several
simulations, we confronted the results of our algorithm with three cases, ob-
tained in condition of symmetrical �ight, high incidence AOA (45°) and at
three di�erent Mach numbers. Turbulent modeling is activated to esteem its
validity with VKI CFD simulations.

With respect to the algorithm development case - i.e. the DART reference
case presented in sec. 1.7 - we have here a complex geometry, hence to obtain
the best correlation possible between our algorithm and the actual physical
phenomena, we described the nose geometry with a variable curvature radius,
in order to obtain a more accurate representation of the stagnation region
characteristic length which will be used in Simeonides shear stress formula
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(3.29). A center for the curvature radius is proposed, and then a radius for
every centroid in the nose region is calculated.

Another geometric complexity of the IXV is the presence of two control
�aps in the rear of the vehicle. At the current status of the algorithm imple-
mentation, non-fusiform parts are treated as wings, hence the running length
are calculated from the stagnation point. In the IXV case, this representation
is not anymore correct, at least for a comparsion with the CFD model, since
in this case the two �aps are part of the fuselage body, hence the boundary
layer growth length should be calculated from the vehicle nose, and not from
the �ap part stagnation point, as our streamline solver does, since it is opti-
mized for wing analysis. In the future developments we will expect to correct
this feature, but for now we accept poor results on the �ap region, since our
main aim is to verify the soundness of the model. Another di�erence from
our model is that in VKI CFD simulation, they are de�ected downward with
an angle δ = 10°, while our *.wgs �le they are not still de�ected, although it
could be done by using the rotating part de�nition de�ned in LaWGS format,
as de�ned in sec. 1.6.

7.1.2 M6 CFD simulation comparison

Freestream values We will provide here the freestream condition for this
simulation reference:

Table 7.1: Freestream and after shock values for VKI CFDM∞ = 6 simulation
freestream value shocked value

α 45° - -
β 0° - -
V∞ 1824.56

[
m
s

]
Vs 307.9993

[
m
s

]
M∞ 6.019 Ms 0.3912
Pr∞ 0.75 Prs 0.7547
P∞ 838.234 [Pa] Ps 36173 [Pa]

ρ∞ 0.012758804
[
kg
m3

]
ρs 0.0756

[
kg
m3

]
T∞ 228.9943 [K] Ts 1667.1 [K]

Surface values comparison We report here the comparison of the surface
distribution of cp, cf , qw and τw between the von Karman CFD high tem-
perature e�ects code simulation and our algorithm solution. The pressure
coe�cient will esteem the correctness of the RAM v1.0 inviscid model, the
other quantities the quality of the viscous solver of RAM v2.0.

We report the freestream values table for this simulation:
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Figure 7.1: cp distribution comparison between VKI CFD simulations (left)
and RAM v2.0 solution (right) - IXV geometry -M∞ = 6.019, α = 45°, β = 0°

Figure 7.2: cf distribution comparison between VKI CFD simulations (left)
and RAM v2.0 solution (right) - IXV geometry -M∞ = 6.019, α = 45°, β = 0°

Figure 7.3: τw [Pa] distribution comparison between VKI CFD simulations
(left) and RAM v2.0 solution (right) - IXV geometry - M∞ = 6.019, α = 45°,
β = 0°
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Figure 7.4: qw [ W
m2 ] distribution comparison between VKI CFD simulations

(left) and RAM v2.0 solution (right) - IXV geometry - M∞ = 6.019, α = 45°,
β = 0°

Figure 7.5: Tw [K] distribution comparison between VKI CFD simulations
(left) and RAM v2.0 solution (right) - IXV geometry - M∞ = 6.019, α = 45°,
β = 0°

As one can see, very good agreement is obtained for all the patterns, ex-
cept for the heat �ow and wall temperature in the nose region, where we have
an underprediction of actual values. The reason for this behaviour lies in the
RAM v2.0 determination of heat �ow through Reynolds analogy. As we have
seen while studying Reynolds analogy on the reference case, this method of
obtaining heat �ow provides very convincing values away from the stagnation
point, but it limits the heat �ow qw to follow the friction coe�cient cf curve
trend, as it was obtained from the comparison with DART reference case, see
�g. 3.3. We remember that �ap values can be di�erent from the actual calcu-
lated values, since our �ap are not de�ected and the boundary layer running
length should be increased by the fuselage aft running length values.
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7.1.3 M11 CFD simulation comparison

Table 7.2: Freestream values for VKI CFD M∞ = 11 simulation
freestream value shocked value

α 45° - -
β 0° - -
V∞ 3624.26

[
m
s

]
Vs 353.6559

[
m
s

]
M∞ 11.035 Ms 0.3023
Pr∞ 0.75 Prs 0.6802
P∞ 214.658 [Pa] Ps 33045 [Pa]

ρ∞ 0.002768343
[
kg
m3

]
ρs 0.0284

[
kg
m3

]
T∞ 270.2692 [K] Ts 3583.0 [K]

Freestream values

Figure 7.6: cp distribution comparison between VKI CFD simulations (left)
and RAM v2.0 solution (right) - IXV geometry - M∞ = 11.035, α = 45°,
β = 0°
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Figure 7.7: cf distribution comparison between VKI CFD simulations (left)
and RAM v2.0 solution (right) - IXV geometry - M∞ = 11.035, α = 45°,
β = 0°

Figure 7.8: τw [Pa] distribution comparison between VKI CFD simulations
(left) and RAM v2.0 solution (right) - IXV geometry - M∞ = 11.035, α = 45°,
β = 0°



CHAPTER 7. RESULTS AND COMPARISONS 141

Figure 7.9: qw [ W
m2 ] distribution comparison between VKI CFD simulations

(left) and RAM v2.0 solution (right) - IXV geometry - M∞ = 11.035, α = 45°,
β = 0°

Figure 7.10: Tw [K] distribution comparison between VKI CFD simulations
(left) and RAM v2.0 solution (right) - IXV geometry - M∞ = 11.035, α = 45°,
β = 0°

Surface values comparison As we can see, the �ow�eld reconstruction
is even better than the M∞ = 6.019 case. The considerations which were
exposed for the previous simulation are still applicable here, except for the
discussion about the turbulent �ow, which in these conditions is seen by our
algorithm as absent, since the transition condition de�ned by eqn. (3.40) is
not reached for this �ow condition. This di�erence is visible in the aft region
of the windward surface, i.e. the bottom rear zone and the lateral rear zone,
where CFD simulation show clearly an increment of friction factor and shear
stress, which was observed also in our algorithm for theM = 6.019 simulation,
and is now missing.
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7.2 Comparison on Expert geometry

As a further veri�cation of the validity of the aerodynamic coe�cients calcu-
lation, we will confront the data generated from RAM v2.0 with a database of
coe�cients which has been used for the design of the Expert mission. Expert
is another aerothermodynamics testbed capsule developed by ESA, principally
intended as an in-�ight veri�cation tool for ESA's design software and CFD
validation. It is composed of a pyramidal conic shape with four �xed �aps, its
geometry and mass being suitable to be launched from a Russian submarine
Volna ballistic missile. The Expert shape is also conceived to test the idea
of hot-structure, non ablative thermal shielding. Figure 7.11 shows the Ex-
pert geometry along with the streamlines pattern as calculated by RAM v2.0
algorithm:

Figure 7.11: Expert shape with streamlines, α = 5°,β = 0°, and the relative
shear stress pattern on the surface

The values of the RAM v2.0 will be presented against the data extracted
from a M − α aerodynamic coe�cients matrix database, generated for the
Expert mission design. The data are generated from a Thales Alenia in-house
�ight mechanics Simulink tool, called FMST. The aerodynamic tools used in-
side this design software are substantially the same used by RAM v1.0, i.e. LSI
methods such as the modi�ed Newtonian theory. There is then no clue about
the fact that the data provided from this Expert database are resembling the
actual values more than our RAM v2.0 viscous or inviscid results. However, we
will present here the comparison anyway, in order to show that the coe�cients
obtained in sec. 5.7 are plausible:
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Table 7.3: Expert lift coe�cient comparison - FMST values (top) against RAM
v1.0 inviscid values (center) and RAM v2.0 viscous values (bottom)

FMST Cl M = 6 M = 10 M = 16

α = 0° 0.0000 0.0000 0.0000
α = 5° 0.0648 0.0530 0.0611
α = 10° 0.1243 0.1009 0.1168
α = 20° 0.2219 0.1781 0.2078

RAM v1.0 Cl M = 6 M = 10 M = 16

α = 0° 0.0000 0.0000 0.0000
α = 5° 0.0948 0.0955 0.0958
α = 10° 0.1818 0.1832 0.1837
α = 20° 0.3245 0.3269 0.3277

RAM v2.0 Cl M = 6 M = 10 M = 16

α = 0° 0.0000 0.0000 0.0000
α = 5° 0.0946 0.0950 0.0946
α = 10° 0.1814 0.1822 0.1814
α = 20° 0.3238 0.3251 0.3236

Table 7.4: Expert drag coe�cient comparison - FMST values (top) against
RAM v1.0 inviscid values (center) and RAM v2.0 viscous values (bottom)

FMST Cd M = 6 M = 10 M = 16

α = 0° 0.3659 0.3474 0.3446
α = 5° 0.3758 0.3561 0.3539
α = 10° 0.4065 0.3834 0.3834
α = 20° 0.5151 0.4799 0.4896

RAM v1.0 Cd M = 6 M = 10 M = 16

α = 0° 0.3905 0.3934 0.3944
α = 5° 0.4030 0.4060 0.4071
α = 10° 0.4395 0.4428 0.4439
α = 20° 0.5738 0.5781 0.5796

RAM v2.0 Cd M = 6 M = 10 M = 16

α = 0° 0.3936 0.4008 0.4105
α = 5° 0.4061 0.4134 0.4232
α = 10° 0.4425 0.4502 0.4604
α = 20° 0.5769 0.5858 0.5968
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Table 7.5: Expert pitching moment coe�cient comparison - FMST values
(top) against RAM v1.0 inviscid values (center) and RAM v2.0 viscous values
(bottom)

FMST CM M = 6 M = 10 M = 16

α = 0° 0.0000 0.0000 0.0000
α = 5° -0.0063 -0.0039 -0.0067
α = 10° -0.0125 -0.0078 -0.0134
α = 20° -0.0261 -0.0162 -0.0278

RAM v1.0 CM M = 6 M = 10 M = 16

α = 0° 0.0000 0.0000 0.0000
α = 5° -0.0084 -0.0085 -0.0085
α = 10° -0.0166 -0.0167 -0.0167
α = 20° -0.0329 -0.0331 -0.0332

RAM v2.0 CM M = 6 M = 10 M = 16

α = 0° 0.0000 0.0000 0.0000
α = 5° -0.0085 -0.0088 -0.0093
α = 10° -0.0168 -0.0173 -0.0181
α = 20° -0.0332 -0.0340 -0.0351

Since our con�guration has no sideslip, the side force and the moment
coe�cients around the yaw and roll angle results zero under a 10e−10 tolerance.

Notice that RAM produces higher drag coe�cients with respect with the
FMST algorithm, expecially when using the RAM v2.0 viscous calculation,
coherently with the account for viscous e�ects. RAM produces also higher lift
coe�cients than FMST.

As for the pitching moment, FMST shows a particular behaviour, with
the coe�cient showing a great non-monotonic dependence over Mach number,
increasing and then decreasing with M∞. RAM algorithm shows instead a
constant behaviour of the pitching moment coe�cient as the Mach number
rises.

These results are obtained for a zero sideslip angle. We will confront now
some results from the Expert database, obtained from the same database, but
with an aerodynamic roll angle φ = 45°, in order to obtain some values on the
lateral force and on the yaw and roll angles. We report the conversion between
the angles on which the database is parametrized, i.e. the total angle of attack
αT and the roll angle φ, and the classical α and β̄ , where :

cosαT = cosα cos β̄ (7.1)
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tanφ =
tan β

sinα
(7.2)

tanα = tanαT cosφ (7.3)

sin β̄ = sinφ sinαT (7.4)

We remember that our sideslip angle is revered with respect to the classical
de�nition, hence:

β = −β̄ (7.5)

We report the comparison of forces and moments coe�cients for the above
�ight conditions for φ = 45° and αT = 5°, which correspond in our reference
system to the angles

α = 3.535° (7.6)

and

β = 3.535° (7.7)

Freestream condition are the same de�ned in the preceeding cases for M =
6, 10, 16

Table 7.6: Aerodynamic forces and moments coe�cient comparison between
FMST and RAM v2.0, α = 3.535°, β = −3.535°

FMST RAM v2.0
M = 6 M = 10 M = 16 M = 6 M = 10 M = 16

Cl 0.0648 0.0530 0.0611 0.0675 0.0672 0.0669
Cd 0.3578 0.3561 0.3539 0.3980 0.4020 0.4118
Cs -0.0487 -0.0419 -0.0459 -0.1172 -0.1175 -0.1184
CL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CM -0.0044 -0.0028 -0.0047 -0.0061 -0.0062 -0.0065
CN -0.0044 -0.0028 -0.0047 -0.0061 -0.0062 -0.0066

As we can see, even in this case our algorithm provides higher estimates
of the lift and drag coe�cients, and shows no moment coe�cent dependency
over the Mach number. Notice the fact that the yaw and pitching moments
coe�cients are identical, due to the Expert axial symmetry and to the equal
angle de�ection in the α and β directions.



Chapter 8

Conclusions and future

developments

8.1 Considerations on �nal results

The results provided in the preceeding chapter show that an accurate recon-
struction of the shear stress and the heat �ow over the surface can be obtained
from approximate streamline reconstruction and reference enthalpy methods,
as can be seen in the comparisons with IXV VKI simulations. The limitations
included in the determination of the heat �ow and temperature distribution
through Reynolds analogy produce however an underestimation of these quan-
tities in the stagnation region.

Comparisons with Thales approximated coe�cients on the Expert shape
show that a good reconstruction of the aerodynamic coe�cients is achieved.
The confront with RAM v1.0 inviscid calculations shows however that, except
for the drag coe�cient, which sees a noticeable rise, as can be expected from
the fact that we have introduced the viscous drag, the other coe�cients are not
sensibly modi�ed by the shear stress distribution over the vehicle surface. This
must not surprise us, since, as can be seen by the IXV datas obtained from
our algorithm or from VKI simulations, the magnitude of the shear stresses
over the surface is of the order of some percents compared to the pressure
inviscid �eld. This means that the contribution of the shear stresses integration
over the surface produces sensible results only in the CD calculation. Since
the calculation times for RAM v2.0 are at the present moment of the order
of minutes - by now 305.76 seconds are taken for the viscous calculation on
the IXV shape M∞ = 11 simulation presented in the previous chapter using
a Dell laptop PC - a viscous approximate solution for the only purpose to
obtain aerodynamic coe�cients could be still too expensive. This problem
can be solved by an appropriate future implementation in C++, using the

146



CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS 147

classes de�ned in WgsReader, presented in appendix B. We will expand the
optimization of the C++ implementation in the section dedicated to future
developments.

However, the present work shows the feasibility of a viscous approximate
solver and validates the concept that results of an accuracy suitable to pre-
liminary design and optimization of space vehicles can be obtained, using cal-
culation times which are signifcantly reduced if compared with an hypersonic
CFD simulation with high temperature e�ects, which still take several hours
even if using dedicated machines. Several tools for the automatic treatment
of velocity �elds are also provided in this work, looking for example at the
stagnation point determination algorithm or the quadrilateral interpolation
and derivation tools, which are powerful developing tools for an approximated
solver of any nature.

To improve the heat �ow results in the stagnation region, in order to get
a more plausible distribution of qw over the surface, an option to correct the
heat �ow over the nose is included in RAM v2.0. As already discussed in sec.
3.6.2, a better representation of the heat �ow in the stagnation region can be
reached by imposing the heat �ux peak value in the stagnation region. The
following �gure presents this concept over the DART test case, showing that
by this mean the local and integral error over the heat �ow distribution are
greatly reduced, with respect to the pure application of Reynolds analogy.
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Figure 8.1: DART heat �ow distribution, displaying actual ESA results to-
gether with the pure Reynolds analogy implementation and the heat peak
corrected �ow in the stagnation region.

This solution may seem rough, but is the only way to obtain more ac-
curate matches without a CFD solving of the external �ow, coupled with a
thermal analysis of the entire �ow�eld. This is surely is not a task which can
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be performed by an approximate solver, since the only approximated correla-
tion which exists between shear stress and heat �ow is the Reynolds analysis,
which constrains the heat �ow trend to adapt to the cf distribution, hence
misrepresenting the stagnation region. We show here the results for the heat
�ow and temperature distribution over the IXV geometry, for the M∞ = 11
simulation presented in the preceding chapter, where can be seen that a better
agreement with simulation datas can be achieved.

Figure 8.2: qw [ W
m2 ] distribution comparison between VKI CFD simulations

(left) and RAM v2.0 solution with thermal distribution correction (right) -
IXV geometry - M∞ = 11.035, α = 45°, β = 0°

Figure 8.3: Tw [ W
m2 ] distribution comparison between VKI CFD simulations

(left) and RAM v2.0 solution with thermal distribution correction (right) -
IXV geometry - M∞ = 11.035, α = 45°, β = 0°

Using these results will lead to a distribution which is suitable to perform
vehicle geometry shape optimization in a preliminar design phase, granting us
reliable confronts between di�erent set-ups.
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8.2 Future developments

The RAM v2.0, although has proven to reconstruct satisfying shear stress and
heat �ow distribution, could take advantage of several improvements, both on
the front of the modeling as of the calculation optimization.

As for the �ow modelization, an improved implementation of Simeonides
algorithm can be a�orded, in particular by linking the automatic part char-
acterization elaborated by Dirkx, and presented in sec. 5.1, which permits to
identify a region of the vehicle as blunt, non blunt, three- or two- dimensional,
with the appropriate Simeonides coe�cients, as presented in tables 3.2 and
3.3. This solution will lead to a more accurate reconstruction of the viscous
and thermal solutions over geometries of di�erent nature.

The other main improvement that will be done during the translation of the
algorithm from Matlab to C++ is the search optimization through search trees
implementation. Trees are informatic data structures used to optimize queries
on big amount of data. Data is organized in a hierarchical way from a �rst
data node called root. From the root there departs two or more nodes, called
branches or childs. Every step downwards is called a level, and the number of
childs is increasing depending of the number of childs for every parent. The
branches which are not connected to new childs are called leaves. If the number
of childs for every parent is restricted to two, we are using binary trees. These
structures can be utilized for optimizing the data in order to perform faster
searches inside the database. In the present work, they will be used to enhance
the search of the centroid mesh point nearest to a given streamline point, since,
as we have seen in sec. 5.6.2, streamlines are de�ned over di�erent points with
respect to the LaWGS mesh, so the tree data structure will be optimized for
nearest neighbour distance searches. The concept behind nearest neighbour
search is very simple. We have a point that has to be confronted with a set
of points - e.g., in our algorithm, the streamline point with respect to the
centroid mesh , so what the algorithm basically does is to split every time the
set of points in two. Imagine you have to search which is the nearest point
in an 1D set of points, e.g. a line, to a new point you want to evaluate. We
split the domain in two, by the point which is the nearest to the center of the
line. If the point searched is contained in the right child set of points, then the
left child set is discarded and the �rst is kept. The child set which contains
our point becomes the new parent. Then the set of points is split again in
two childs, right and left, and we search if our point is placed in the �rst or
second child, and the correct child becomes the new parent. By doing so the
number of points between which you have to search decreases at every time,
and you get a faster search. The points of our mesh will be put inside the tree
following a positioning criteria, so that if a point lies in a certain section of the
domain it will be put in a certain branch of a node, according to the principle
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of nearest neighbour search, in order to reduce search time. This concept will
be extended in the next subsections. The idea behind trees is that you take
some calculation e�ort to build a tree, but after this you will have very fast
researches in the tree, due to the optimized indexing. For more information,
one could want to look at [25], where there is an exhaustive chapter on trees
description and implementation, and at [5], where the implementation of search
trees to approximate hypersonic solutors is performed.

To conclude the outline of the future developments, there are some �xes
that have to be done to RAM v2.0, the main of them could be an automated
de�ection of moving parts, such as �aps, using the appropriate part rotation
de�nition contained in the LaWgs format, in order to obtain easily solutions
with de�ected surfaces, to perform better correlations of the results over ma-
neuvering simulations such as the IXV VKI CFD models.



Appendix A

Reference case Tutorial

In this chapter we report a tutorial to show how to correctly calculate data
output for a given *.wgs �le, showing how the data presented in this work
can be calculated. Files and folders are referred to the attached disk folder
structure, but it is not mandatory that WgsReader and Matlab algorithm are
in the same place. The tutorial and screenshots presented here are referred to
the IXV M∞ = 6 calculation presented in sec. 7.1.2, for all the others cases
the procedure is identical.

A.1 WgsReader Preprocessing

A.1.1 De�ning the simulation parameters

First, one should open WgsReader, which is in the Ram V2.0 main folder.
The programs consists of three data interfaces, the �rst one reading the cur-
rently loaded *.wgs �le contents, the second shows the point mesh geometry
of the processed �le, the third is a multipurpose window in which we will load
the Matlab preprocessing script that will be used in the second part of the
algorithm.
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Figure A.1: WgsReader Main Window

We show here the preprocessing procedure which has to be done with
WgsReader in order to get a proper Matlab input pre-processing �le.

Once the program is running, the �rst thing to do is to set the freestream
and simulation parameters, which can be reached using the Set Parameters
button. The button opens a dialog window in which all the properties needed
for a simulation have to be set:

Figure A.2: Set Properties Window - the properties set here are referred to
the IXV M∞ = 6 simulation

All the parameters which are set here can a�ect dramatically the results,
so they have to be introduced carefully. We give here a brief description of
every entry:

I AOA: insert here the angle of attack α - in degrees
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I Sideslip: insert here the sideslip angle β - in degrees

I Mach: the freestream Mach number M∞ is to be inserted.

I Freestream velocity V∞ must be put here, in
[
m
s

]
I Freestream density ρ∞ must be inserted here, in

[
kg
m3

]
.

� The other freestream quantities are calculated from the following
perfect gas relations, since the freestream gas is considered to be not

dissociated before the shock, with γ∞ = 1.4 and R∞ = 286.9
[

J
kgK

]
for standard air:

c∞ =
V∞
M∞

(A.1)

T∞ =
c∞

γ∞R∞
(A.2)

P∞ = ρ∞R∞T∞ (A.3)

I Prandtl: freestream Pr∞ number goes here

I Wall Temp: this cell contains an initial guess for the wall temperature
Tw. It is not used anymore and the default value should be left.

I Ref. length: here the reference length that will be used for the aerody-
namic coe�cients calculations, in [m].

I Nose center on X axis: the position of the nose center xnose [m], from
which the nose radius of every point in the stagnation region will be
calculated. This is a key value, since the friction factor and heat �ow
relations show a great dependence from nose radius. We report here
the nose center values used in the production of the results contained in
chapter 7 and in the validation of the software. Notice that the nose of
some LaWgs geometries could not be at x = 0, hence the actual nose
center position as de�ned in the original LaWgs main coordinate system
has to be inserted.

Table A.1: Nose center coordinates for the LaWgs geometries analyzed in this
work

vehicle nose center x coordinate

DART xnose = 0.225

IXV xnose = 0.5

Expert xnose = −0.75
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The procedure is applied only on fusiform parts, the nose on non-fusiform
parts being determinated from the actual wing geometry. Unfortunately,
at the present moment, this means that only one center can be imposed,
so only one main fusiform part will show correct nose radius calculation.
To obtain good correlations over di�erent fusiform parts, one should
repeat the preprocessing phase for every new fusiform part, using the
results of the algorithm only on that part and discarding the others. This
feature will be corrected in future release, but is not a major problem,
since non exotic re-entering space vehicles usually have only a single
fusiform body with winged extensions. If the nose radius is not reported,
an automatic calculator of the nose radius will be used, but a single radius
for every point of the nose will be used, hence loosing a great part of the
algorithm accuracy in the nose region.

I Ref Area: this is the reference area used for aerodynamic coe�cient
calculations, in [m2]

I Moment Xref, Yref, Zref: these are the moment coe�cients reference
point coordinates, expressed in [m] from the center of the LaWGS mesh
main coordinate system.

I Expansion method: this parameter select the expansion method, from
the models described in chapter 2.

I Compression method: this parameter identi�es the compression model,
taken from chapter 2 as well. Expansion and compression method input
selection are resumed in table A.2:

Table A.2: Compression and Expansion Method Selection Table
input Compression Expansion

0 Newtonian Vacuum
1 (default) Modi�ed Newtonian Modi�ed Newtonian

2 Mod. Newtonian - Prandtl Meyer Mod. Newtonian - Prandtl Meyer
3 Tangent Wedge PM Freestream
4 Tangent Wedge Empirical High Mach Base Pressure
5 Tangent Cone Empirical Van Dyke Uni�ed
6 Modi�ed Dahlem Buck ACM Empirical - see sec. 5.1

The methods indicated in Italic are not exposed in this work, since they
are RAM v1.0 add-ons taken from other solvers procedures, some of them
being used e.g. in [3]. However, they haven't been tested and validated
yet, so their veri�cation is left to the user.
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I Quad Interp: selects where the quadrilateral interpolation will be used:

� 0: quadrilateral interpolation is not used - faster calculation but
less accurate results

� 1: quadrilateral interpolation is used in the stagnation region - de-
fault choice

� 2: quadrilateral interpolation is used everywhere - slower calculation

I Equilibrium solver: selects where the thermochemical equilibrium gas
model will be used:

� 0: Equilibrium is used through the shock, the mixture being con-
sidered frozen afterward - default choiche

� 1: Equilibrium is imposed through the shock and for the determina-
tion of the external �ow properties - slower cand without signi�cant
increment of accuracy calculation.

� 2: Equilibrium is imposed everywhere, even in the boundary layer
reference values determination - dramatically slow and without ac-
curacy increment calculation, should be avoided.

As the parameters for the RAM calculation are set, clicking the ok button
saves the values into WgsReader, preparing us to load and pre-process the
geometry �le.

A.1.2 Loading the LaWgs �le

Once the simulation parameters have been set, we can load the *.wgs �le which
contains the complete vehicle geometry in LaWgs format. In our distribution,
one can �nd the *.wgs input �les for all the con�gurations showed in this work
in the subfolder \VehicleData\VehicleWgs. The Load button opens a dialog
window in which we can search the correct *.wgs �le and load it into the
WgsReader.
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Figure A.3: Wgs File loading

After the �le is loaded, all the LaWgs transformations and RAM v1.0 in-
viscid calculation are performed, and the other simulation parameters and
Matlab arrays containing vehicle centroid geometry, normals, velocities, and
areas for every vehicle part are generated. The �le is correctly loaded when
in the left window the content of the original *.wgs �le is shown, while the
center windows contains the coordinates of the vehicle points after the LaWgs
transformations.

Figure A.4: WgsReader after loading a *.wgs �le

A.1.3 Saving the Matlab pre-processing input

At this point, we have to export the Matlab pre-processing �le, using the third
window on the right. First we load the Matlab data into the window, by
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pushing the Choose Output button, and selecting the Matlab Output in the
little dialog which displays:

Figure A.5: Choosing Matlab output

Matlab input �le content will show up in the third window. Finally, we
can export the Matlab input �le to be processed by the RAM v2.0 Matlab
script. First we select the export data button, then we save the *.m �le into
the \VehicleData\ folder of the RAM Algorithm main folder. This step is
crucial for RAM v2.0 to work properly.

The �lename which we will give to this �le will be the one to be invoked
in Matlab, and it has to be representative of the con�guration choosen, e.g.
IXVM6AOA45S0.m can be the name of a �le for an IXV simulation at M =
6, α = 45°, β = 0°. Any �lename not containing spaces or special characters
can be choosen anyway.

Figure A.6: Saving the *.m �le inside VehicleData folder
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If the pre-processing �le is saved in the proper directory, we can close
WgsReader and head for Matlab to run the RAM v2.0 calculation. If however
we want to save another pre-processing �le, we can de�ne new properties in
the Set Parameters window, and then we have to load again the *.wgs �le
and select again the Matlab Output in the Choose Output dialog, in order to
reload the Matlab data into WgsReader. At this point we can export the *.m
�le, but not before. This is a known issue and will be �xed soon.

A.2 Matlab processing

Once the �le is correctly saved in the \VehicleData\ folder, the script MAIN.m
can be executed, taking care of specifying the correct vehicle database �lename
in the �rst line of the active code.

Figure A.7: Specifying the correct database name in the beginning of the
MAIN.m script, the example name IXVM6AOA45S0 being used

The user is then asked for the part to be treated, and if he wants to perform
the heat �ow correction as presented in chapter 8, then viscous calculations
are performed and outputs are produced and saved in the folder \Figures\.
Aerodynamic coe�cients are printed on the screen, however one can access
the variables c_aer for force aerodynamic coe�cients and c_aer_body and
c_mom for moments and forces in body axes.

A script called MERGE.m is present in the \Figures\ folder to merge the
output �gures of di�erent parts in one single �gure.

A.3 Current Implementation

After explaining the algorithm use, we will give in this section an in depth
glance at the current RAM v2.0 implementation status, explaining how RAM
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v1.0 is actually coded and how it interacts with the RAM v2.0 algorithm.
The current RAM v1.0 algorithm has been extrapolated from RAM v1.0 STA
Cambrian release classes, and included in a stand-alone software program,
called WgsReader, which performs the inviscid calculation and the preliminar
velocity �eld versor calculation using the thin shock layer hypothesis.

A.3.1 RAM v1.0 classes

The current RAM v1.0 module is coded inside the STA project, written in
C++ and using the open source Nokia Qt libraries. These libraries contain
several tools used to develop graphical user interfaces, or GUI, which have
been used to shape STA environment as well as the Re-entry Aerodynamic
Module properties window, which de�nes the aerodynamic properties of the
vehicles introduced in the space scenario of the current simulation. RAM v1.0
consist of six �les, which are in part dedicated to the aerodynamic properties
GUI, and in part to the actual calculation of the inviscid �ow. Obviously, the
classes contained in this �le are linked to various levels of the STA software: for
example the aerodynamic properties GUI is linked to the main STA graphic
environment, and the inviscid calculations performed by RAM v1.0 can be
used for the re-entry trajectory propagation in a STA simulation, as well as to
de�ne aerodynamic coe�cients for a given �ight condition.

We will describe here the RAM v1.0 implementation �les, focusing on the
source code related to the inviscid calculation classes, which have been ex-
ported to WgsReader, since the GUI of this little stand-alone program was
developed independently by us and is not strictly related with this work. RAM
v1.0 consist of six C++ �les, developed in the Qt IDE by Dominic Dirkx, with
their related headers. Files related to GUI implementations are accompanied
also by *.ui �les which contain graphic design of the interface in the Qt libraries
format. The structure of the module is the following:

I GUI de�nition �les, these �les are used only in STA project, and are
reported here for sake of completness:

� aerodynamicmethods.cpp, aerodynamicmethods.h, aerodynamicmeth-
ods.ui: these �les are related to the main RAM v1.0 user interface
window, in which all the general vehicle aerodynamic properties
are described, such as reference lengths and surfaces and other fea-
tures. Loading of *.wgs �les containing the LaWGS geometry is also
permitted. Through this interface we can select two other windows,
the Advanced Methods Selection and the Parametrization windows,
which are presented herebelow.
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� advancedselectionGUI.cpp, advancedselectionGUI.h, advancedselec-
tionGUI.ui: these �les de�ne the Advanced Methods Selection win-
dow, in which the method selection used for the inviscid solver,
which has been de�ned in table 5.1, can be modi�ed by the user.
An output �le containing the aerodynamic properties, such as aero-
dynamic coe�cients, can be generated.

� parametrization.cpp, parametrization.h, parametrizedgeometry.ui: these
sources contains a routine which permits to generate new *.wgs
parametrized capsule geometries, as described by Dirkx in [1].

I Inviscid calculation �les, these �les are used to read *.wgs �les and to
perform inviscid calculations. They have been exported to WgsReader,
and modi�cation to the original STA �les are underlined here:

� vehiclegeometry.cpp, vehiclegeometry.h: these �les include the de�-
nition of VehicleGeometry class, which is the main RAM v1.0 class.
This class loads the *.wgs �le, reads all the data in the LaWGS
format and creates the single parts which compose the vehicle.
This class has been renamed ReadGeometry in WgsReader pro-
gram, hence the respective �les are now called readgeometry.cpp,
readgeometry.h

� partgeometry.cpp, partgeometry.h: these �les de�nes the PartGeom-
etry class, which is used from VehicleGeometry class to de�ne single
parts objects. This class includes all the transformation functions
which perform the symmetric mirroring, the rotation, the transla-
tion and the scaling, as speci�ed in the LaWGS header. A panel
properties calculation function, which calculates the centroids xc,ij
from the original *.wgs points shape and de�nes all the properties
such as local normals n̂ij and centroid areas Aij is present. Cen-
troid's inviscid pressure coe�cients cp,ij are also initialized. Other
classes contained in these �les are the PartAnalysis class and its
childs PlanarPartAnalysis and FusiformPartAnalysis, which per-
form automated controls such as automatic blunt or slender nose
determination, and all the automated geometry identi�cation oper-
ations presented in sec. 5.1.2 and the relative part splitting.

� aeroanalysis.cpp, aeroanalysis.h: these �les contain the class Aero-
Analysis, which is the place where all the RAM v1.0 inviscid algo-
rithm calculations are performed. This class takes a PartGeometry
object as an input and calculates the inviscid �ow as it has been de-
�ned in chapter 2. The AeroAnalysis class contains functions which
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take the input parts, determine the local inclination of every cen-
troid, hence de�ning the leeward and windward portions, as de�ned
by relation 2.12, and performs the appropriate compression or ex-
pansion calculations, choosing the LSI method which matches the
user selection for that kind of region. A function for every method
presented in chapter 2 is de�ned in this class, so that we have every
tool needed to solve the inviscid �ow�eld. Functions for writing
output are also de�ned in this class

A.3.2 WgsReader classes

Inside the WgsReader programs, which contains the inviscid calculations �les
from STA RAM v1.0 module, i.e. readgeometry.cpp, readgeometry.h, partge-
ometry.cpp, partgeometry.h, aeroanalysis.cpp, aeroanalysis.h �les and related
classes, we have new classes de�nition, partially to have an independent GUI
which let us perform RAM v1.0 calculations from *.wgs �les independently
from STA environment, and partially to implement new features related to
the viscous analysis. These new classes are still in an embrional phase, but
they contain the initialization of RAM v2.0 features, such as streamlines, shock
calculation and running length determination. *.ui �les are not used here since
we have used Qt libraries without external design �le support. We will look
at the main new classes of WgsReader, which are added to the ones we have
exported from RAM v1.0:

I wgsreader.h, wgsreader.cpp: here the main program core is contained in
the WgsReader class, along with the main window GUI de�nition, the
*.wgs �le loader and the Matlab database output routine, which creates
the input database which will be used by the Matlab script in RAM v2.0,
as well as other output options. In this �le, the ReadGeometry vehicle
is created from *.wgs �le, and all the part de�nition, transformation and
inviscid calculations performed by the PartGeometry and PartAnalysis
classes are performed

I choosemethod.cpp, choosemethod.h contain the window which select the
appropriate output option, e.g. Matlab database or text �le containing
di�erent data which were used in the RAM v2.0 development and are
now no longer in use.

I setangle.h, setangle.cpp: another GUI window, which lets the user to se-
lect the α and β angles, the freestream conditions such asM∞, Pr∞, V∞,
p∞, ρ∞, the reference length and area for aerodynamic coe�cients calcu-
lations, the moments reference points, and the selection of the compres-
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sion and expansion LSI methods which have to be used in the windward
and leeward regions.

I thermovehicle.h, thermovehicle.cpp: in these �les, a ThermoVehicle class,
child of the ReadGeometry (ex VehicleGeometry) class is de�ned. This
class is the viscous extension of the STA VehicleGeometry class, and
takes the VehicleGeometry object which contains the parts and the in-
viscid �ow�eld results, extending it with external velocity calculation
function, after shock properties determination function, running lentgh
determination function, reference enthalpy calculations and isoentropic
expansion functions. These function are all in an embrional phase, and
are not yet used, the corrispective viscous calculations being performed
by the Matlab script. The only working function which is actually used
in RAM v2.0 is the determineVe function, which in WgsReader de�nes
correctly the velocity �eld direction versors tij in every centroid, ac-
cordingly with the thin shock layer hypothesis. These versors are used
in the Matlab script to determine external velocity and other features.
This class will contain the main viscous routine, which is actually imple-
mented in Matlab, in the future full translation of the RAM v2.0 viscous
routine in C++ language, for STA integration.

I streamline.h, streamline.cpp is an empty class which will contain the
streamline solutor in an apprpriate StreamLine class.

These classes are the backbone of WgsReader program, the user manual and
tutorial being presented in appendix A.

A.3.3 Matlab script

The Matlab script is the exact implementation of the viscous algorithm pre-
sented in the previous chapter. It takes as input the WgsReader matlab vehicle
database output �le.
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