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Abstract

The purpose of this study is to understand the behavior of a ductile iron under combined
compressive axial and torsional nonproportional loading conditions. Moreover, the final aim is to

propose a model to predict the multiaxial fatigue limit for defective materials.

Chapter 1 is the introduction part explains briefly importance of multiaxial fatigue on structural
mechanical components and methodology performed in this study. Chapter 2 covers the general
review of the literature about fatigue, multiaxial fatigue and prediction models for multiaxial fatigue
limit. In the Chapter 3, experimental methodology of axial, torsional and multiaxial tests, and
mechanical information of the material are mentioned. Chapter 4 is the results and discussion part,
all the experimental results of axial, torsional and multiaxial fatigue tests, and fracture surfaces of
specimens with microstructural characterizations were published. Moreover, Papadopoulos model
was applied and error percentages with respect to experimental results were calculated. Finally,
Nadot’s methodology was applied in order to define the effect of defect size on multiaxial fatigue

limit.

Keywords: high cycle fatigue; multiaxial fatigue; nonproportional loading; out of phase loading;

ductile cast iron; integral approach; casting defect



1. Introduction

Most of structural mechanical components as crank shafts, pressure vessels, blade/rotor junctions,
and aeronautical components are usually subjected to multiaxial loading conditions in service and
the sources of multiaxiality mostly arise from geometry, defects, residual stresses, and external
loadings. Multiaxial fatigue can be defined as the fatigue process consisted of combined complex

states of stresses [1] [2] [3].

The purpose of this study is to understand the behavior of a ductile iron roll for tube production
under combined compressive axial and torsional nonproportional loading conditions. Due to the
casting process, these materials have casting defects as shrinkage porosities. According to the FEM
data, these rolls are working under nonproportional multiaxial stresses at 90° phase difference and

the ratio of R = :m—m = —4 and -3. In order to understand the behavior; pure axial, pure torsional,
amp

and multiaxial fatigue tests were run; moreover microstructural and fracture surfaces were observed.
Furthermore, Papadopoulos Criterion [4] was proposed to predict the multiaxial fatigue limit with the
inputs of pure axial and pure torsional fatigue limits. Furthermore, among different approaches in
the literature for containing defects, Nadot’s methodology [5] was chosen to define effect of defect
size on fatigue limit which consists of Murakami’s empirical approach [6] and a multiaxial fatigue

limit prediction criterion (Papadopoulos Criterion).



2. Fatigue and Multiaxial Fatigue on Cast Iron

Ductile irons’ have a defective structure due to the casting process. Defects in this study are
shrinkage porosities which behave as stress risers and decrease the stress bearing cross section area
of the component. One approach about the effect of defect size on fatigue limit in the literature is
proposed by Murakami [6] where the crack is considered as a pre-existing crack and the crack
threshold is estimated from the fatigue limit. In this approach, defect size is considered in the square
root of the surface area (varea) of the defect in the plane perpendicular to the maximum principal
stress direction. Then, effect of these changes in defect size is considered in the manner of multiaxial
fatigue condition by considering Papadopoulos criterion [4]. In the next sections of Chapter 2,

general information of fatigue and multiaxial fatigue was mentioned.

2.1 Fatigue Mechanism
Fatigue life has two discrete periods namely crack nucleation and early growth, and crack growth of
stage I-1I-1ll. Conditions like environment, surface quality, residual stress, microstructure, etc. affect
these two periods differently; some of them have an influence on nucleation, some of them have on

growth [7].

2.1.1 Crack Nucleation and Early Growth
Nucleation of fatigue cracks occurs at very early stages of component life generally on the surface of
the material, almost just after the stress level above fatigue limit. It starts preferably from the
surface at lower stresses because surface grains are surrounded by the environment (e.g. air, sea
water) and have lower constraints on slip systems than subsurface grains which are constrained by
other grains of the material. As a consequence, it can be said that fatigue crack nucleation is a

surface phenomenon [7] [8, pp. 77-98].

Cracks rarely nucleate at subsurface. If it happens, it is generally at a porosity, grain boundary,

second phase particle or inclusion as shown in Figure 2.1.1. [8, pp. 77-98].
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Figure 2.1.1 Some mechanisms of fatigue crack nucleation [9]

The slip bands take place due to the cyclic shear stresses. They initiate from the grains whose
crystallographic slip planes are favorably oriented with respect to the applied cyclic shear stress.
Therefore, each grain has a different resolved shear stress on its planes according to its orientation
and applied cyclic shear stress. When the applied stress is increased, the number of grains who are

under a higher stress than critical resolved shear stress will increase [8, pp. 77-98].

A model of nucleation mechanism of a fatigue crack is shown in Figure 2.1.2. During the loading part
a new surface will be appeared and it will be oxidized immediately; and also, due to the loading, a
strain hardening will take place on the slip band. Therefore, upon unloading part a larger shear stress
in reversed direction will be present on the slip band. These two causes (oxide layer formation and
strain hardening) explain why fatigue phenomenon is not fully reversible. Finally, reversed slip occurs
on the adjacent parallel slip planes on the same slip band and this position of the reversed slip
determines that it forms intrusion or extrusion. If it takes place upper side of the slip band, it forms

intrusion; otherwise, it forms extrusion [7] [9].

free
surface T 7 T 7
new '
fresh |
surface I
J |
) A I I

intrusion extrusion
1st cyele 2nd cycle

Figure 2.1.2 Formation of intrusion and extrusion [7]



2.1.2 Crack Growth
Surface properties are not relevant for growth mechanism. Crack has already propagated to the
interior of the materials may be a couple of grains but low surface restraints or surface properties
like roughness are not related to the crack anymore. Therefore, the resistance against the crack

growth is a bulk property [7].

Once the cracks have nucleated on the surface under continuous cyclic stresses, they tend to merge
and propagate along the planes of maximum shear stress for each grain. This is the growth of stage I.
After a couple of grains, crack starts to grow along the axis perpendicular to tensile stress as in Figure

2.1.3 until reaching the critical length which gives rise to failure of the material [8, pp. 77-98] [10].

loading direction

free /'

surface

-/

Ll
-

h 4

\J

Stage 1 StageII

Figure 2.1.3 Stage | and Stage Il growths [8, pp. 77-98]

If the proportions of spent time in various stages of the whole lifetime are considered, it will be seen
that under low stresses: nucleation and stage | will take the large proportion but under high stresses,

stage Il will take the large proportion as seen in Figure 2.1.4 [11].
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Figure 2.1.4 Schematic representation of fatigue process [10]

2.1.2.1 Growth Mechanism under Tensile Stress (Mode 1)

After crack has grown away from the surface under tensile cyclic stresses, it propagates in the duplex

shear band form (zig-zag form, Figure 2.1.5). This mechanism forms striation mark on the crack

surface and each cycle results in the formation of one striation mark (Figure 2.1.6) [8, pp. 77-98].

— 7
N\

Figure 2.1.5 Crack growth in duplex shear band form [8, pp. 77-98]
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Figure 2.1.6 Striation marks on Al-alloy sheet [7]

Mechanism takes place macroscopically under tensile stresses but microscopically governed by local
shear stresses on the crack tip [8, pp. 77-98]. At the start of the loading cycle the crack tip is sharp
(Figure 2.1.7-a). As the tensile load is applied at the crack tip, slips takes place along planes of
maximum shear stress (Figure 2.1.7-b). As the crack widens to its maximum extension (Figure 2.1.7-c)
it grows longer by plastic shearing and at the same time its tip becomes blunter. If the stress is
reversed, the crack tip re-sharpens by buckling and folding of the newly created surface into a double
notch resulting in a striation formation (Figure 2.1.7-d) and (Figure 2.1.7-e). The re-sharpened crack is

then ready to advance and be blunted in the next stress cycle [11] [12].
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Figure 2.1.7 Plastic blunting process for growth of stage Il fatigue crack [11]

2.1.2.2 Growth Mechanism under Shear Stress (Mode II)
Under shear stress fatigue crack propagates parallel to direction of the stress (Figure 2.1.8). The
difference of Mode Il growth with Mode | growth is in Mode Il growth crack faces are in contact so
they create friction. This decreases the propagation rate. Due to the rubbing of the faces, marks like
striations are not formed, and its fracture surface is featureless. However, combined tension Mode |
and Mode Il load can reduce the rubbing of the faces and greatly accelerate the crack. As well,

compression Mode | slows down the crack growth by increasing the friction forces [8, pp. 77-98].

shear stress dp}am\ds

Figure 2.1.8 Crack growth under shear stress [8, pp. 77-98]



2.2 Proportionality and Nonproportionality of Multiaxial Loadings
Multiaxial fatigue stresses are classified in two categories: proportional loadings and nonproportional
loadings. In proportional loading, principal stress directions remain fixed with respect to the loading
axes and components of stress vary with time. In nonproportional loading, principal stress directions,

components of stress and/or ratios between principal stresses vary with time.

Under nonproportional multiaxial fatigue loading conditions, different cyclic deformations (strain

hardening or softening) and fatigue behaviors may be observed depending on the material type [8].

Proportional loading is illustrated for combined axial and torsion loading of a shaft shown in Figure
2.2.1(a). The loads in Figure 2.2.1(b) are applied in-phase, so that the maximum and minimum axial
and torsion stresses occur simultaneously. The ratio of axial stress, gy, and torsion stress, Ty,
remains constant during cycling as shown by the linear relationship in Figure 2.2.1(c). And also,
Mohr’s circles of stress at times 2 and 3 during the in-phase loading cycle are shown in Figure
2.2.1(d). It can be seen that the orientation of the principal normal stress directions remains fixed
(i.e., angle 2a remains constant), even though the size of the circle changes as the magnitudes of the

loads vary with time. This is, therefore, called proportional loading [10].

Stress o,

(a) (b)

Ty
:' ----------- Ff'\\ :
: ! in-phasc y-plane
% £ g -
i E GJ 1/' a’
, ;
.......... S 90° out-of-phase
@

(c) (d)

Figure 2.2.1 (a) Stress element in axial-torsion loading. (b) Applied in-phase axial and shear stress histories. (c) Stress
path for in-phase and 90° out-of-phase loading. (d) Mohr’s circle of stress at times 2 and 3 in the cycle for in-phase
loading [10]



If the loads are applied 90° out-of-phase as shown in Figure 2.2.2 (3, b), the stress path, g, — Ty,
follows an ellipse, as shown in Figure 2.2.2 (c). The ratio of axial stress, gy, and torsion stress, Ty,
continuously varies during the cycle. And also, Mohr’s circles of stress at three times (1, 2, and 3)
during the out-of-phase loading cycle are shown in Figure 2.2.2 (d). The orientations of the principal
normal stress axes continuously rotate with respect to the loading axes (i.e. x-y axes). The maximum
principal normal stress axis orientation starts out at « = 45° at time 1, decreases to a smaller a at
time 2, and rotates to a = 0° at time 3. Then it continues to rotate in a clockwise direction until point

9, where it returns to @ = 45°. This is, therefore, an example of nonproportional loading [10].

Stress

(a) (b) (c)

T T T
y-P];nc y-plane
2a
"
\Ea o / Ale o y-plane O
03 ap UJ\ ¥ (7} a; | Jor
@ S

(d)

Figure 2.2.2 (a) Stress element in axial-torsion loading. (b) Applied 90° out-of-phase axial and shear stress histories. (c)
Stress path for in-phase and 90° out-of-phase loading. (d) Mohr’s circle of stress at times 1, 2, and 3 in the cycle for 90°
out-of-phase loading [10]

2.2.1 Nonproportional Cyclic Hardening
Plastic deformation of a material results in work hardening because dislocations are generated in a
large amount and their movements are hindered due to the frequent interactions with each other
and dislocations pile up in front of barriers such as grain boundaries; these situations induce
hardening of the materials. This phenomenon is strongly relevant to Von Mises yield surface. Yield
surface is a separator convex surface between elastic and plastic regions. For strain hardened
materials, yield surface changes the stresses beyond initial yield point according to hardening rule

[13] [14].
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Nonproportional loading produces additional cyclic hardening with respect to uniaxial or any
proportional loadings. Therefore, it is expected that stress-strain curve of nonproportional loading is

above proportional one which can be seen in Figure 2.2.3.

150071

> 90° out-of-phase
=
§ 1000 Nonproportional
- hardening
=
oy
1]
w
g
e SO0 In-phase
>
g
T,

0 | | l |

0 0.005 0.01 0.015 Q.02

Effective strain amplitude

Figure 2.2.3 Cyclic stress-strain curve for proportional and nonproportional loading [9]

The reason of this additional hardening is interaction of slip planes, because slip systems are
activated easily under nonproportional conditions due to the rotation of principal axes. Maximum
Nonproportional hardening is seen with 90° out of phase loading path. In addition, amount of

hardening is highly related to microstructure of the material [8, pp. 44-61] [10].

For some materials like 1100 aluminum, proportional and nonproportional behaviors are same;

whereas, they are totally different for stainless steels [13].

2.3 Mean Stress
Mean stress has an important effect on fatigue life of components. Moreover, according to Papuga,
effect of mean stress is much more important and dominant than out of phase loadings [15].Tensile
mean normal stress has a tendency to decrease the fatigue life or compressive mean stress increases
it; on the contrary, non-zero mean shear stress does not have an effect on fatigue life if it is lower

than the material shear yield stress [16] [17].
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Sines et al [18] ran some experiments to establish the effect of mean stress. These experiments

include; cyclic axial with static tension and compression, cyclic torsion with static torsion, cyclic

bending with static torsion and cyclic torsion with static bending.

Figure 2.3.1 shows that effect of static tension or compression is linear as long as the maximum

stress does not exceed the yield strength of the material.

Axial Stress
Fatigue Strength
L 3
ol
ol
o]

Mean Stress
Yield Strength

Figure 2.3.1 Cyclic axial stress with static tension and compression [8, pp. 129-169]

Figure 2.3.2 shows that torsional mean stress does not have any effect on fatigue as long as

maximum shear stress remains below the yield strength of the material.
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Figure 2.3.2 Cyclic torsion with static torsion [8, pp. 129-169]

1.5

Figure 2.3.3 shows that torsional mean stress does not affect the fatigue limit in reversed bending as

long as the torsional yield strength is not exceeded by at least 50%.

04 =

Bending Stress
Bending Fatigue Strength

0 1.0 20

Static Tarsion Stress
Torsion Yield Strength

Figure 2.3.3 Cyclic bending with static torsion [8, pp. 129-169]

30

Figure 2.3.4 shows that effect of static tension on cyclic torsion results with the linearity between the

amplitude of alternating torsion and the static tensile stress.
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Figure 2.3.4 Cyclic torsion with static tension and compression [8, pp. 129-169]

For uniaxial fatigue, effect of mean stress is described by the general model of Marin. That is

e I+ (P o™ = 1

Equation 2.3.1
where f_; is fully reversed axial fatigue limit, o, , and o,,, are nominal stress amplitude and
nominal mean stress, respectively; and also, n, m, and f are constants. Constants change according to

the model. For some models;

e Soderberg:n=1, m=1, f = gyrg/ 0y,
e Goodman:n=1,m=1,f=1,

e Gerber:n=1,m=2,f=1,

e Dietman:n=2,m=1,f=1,

e the so-called elliptical relationship: n=2, m=2, f=1.

These models are compared with the experimental data in Figure 2.3.5 [17].
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Figure 2.3.5 Comparison of experimental data with the models for uniaxial fatigue [17]

2.4 Multiaxial Fatigue Models
Multiaxial fatigue takes place due to the presence of axial, bending and/or torsion type of loadings

together, at least two a of them at the same time.

There are two basic approaches for these problems; low cycle fatigue (under the condition of plastic
deformation) and high cycle fatigue. For the former strain based models, for the latter stress based
models are suggested to predict the multiaxial fatigue limit [19]. In this section, high cycle multiaxial

fatigue will be mentioned with stress based models.

As mentioned before, the most important threshold for high cycle fatigue is crack nucleation.
Therefore, the aim of the models is prediction of multiaxial fatigue limit in order to separate the

stress space as safe and unsafe regions [1] [20].
Before mentioning the models, some stress quantities should be understood.

Firstly, components of stress under multiaxial conditions (Figure 2.4.1);
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Figure 2.4.1 Components of stress in three dimensions [21]

These components can be separated as hydrostatic (o) and deviatoric (1) stresses. In the matrix form

they can be written as Cauchy stress tensor that defines all the components of state of stress at a

point.
011 012 013 Oxx Oxy Oxz Ox Txy Txz
0 =021 022 03| =|0yx Oyy Oyz|=|Tyx Oy Tyz
031 032 033 Ozx Ozy Oz Tzx Tzy Oy

Secondly, stress invariants; some models are based on mean hydrostatic stress tensor and stress

deviator tensor. They are directly related to stress invariants and deviatoric stress invariants,
especially I; and /], 4 [1]. When the applied load is uniaxial or in-phase multiaxial, I; and //, 4 are

equal to;
Iy =0+ 0y, +0,

Equation 2.4.1

T 1 2 2 2 2 2 2 2
]2,a = [g{(o-x,a - Uy,a) + (Uy,a - Uz,a) + (Uz,a - Ux,a) + 6(Txy,a + Tyz,a + sz,a)}]

Equation 2.4.2

For out-of-phase multiaxial fatigue loading, calculation of\/jzjis complicated. It changes from
author to author. \/fz_a represents the equivalent shear stress amplitude and within each cycle its
direction and magnitude changes. It can be seen on Figure 2.4.2, how \/Echanges along the cycle

on a proportional and nonproportional loading [1].
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Figure 2.4.2 Behavior of the shear stress amplitude under proportional and nonproportional loading [1]

Thirdly, some models use stress quantities on specific planes. A sign in Figure 2.4.3 represents the
plane under consideration. Stress acting on A is S,, which has the projection normal to the A as N and

orthogonal projection on A as C. N is the normal stress vector and C is the shear stress vector.

Figure 2.4.3 Stresses on plane A [20]

Another quantity is T which is the resolved shear stress vector. It is the shear stress acting along a slip

line L of the plane A and is equal to the projection of shear stress C on this line (Figure 2.4.3) [20].

17



2.4.1 Stress Based Models
Most valid stress based models for high cycle fatigue can be classified into three categories; stress

invariant, critical plane and average stress approach.

2.4.1.1 Stress Invariant Approach

This approach is based on hydrostatic stress and invariant of the stress deviator.

2.4.1.1.1 Sines Criterion

This criterion [18] is one of the oldest and famous models. It is the combination of equivalent shear

stress amplitude, //, ; and mean hydrostatic stress, oy mean [1].

\/]2,a + kUH,mean < ,8

Equation 2.4.3

where k and B are material constants which are obtained from repeated tension limit, f;, and fully

reversed torsion limit, t_;.

k = (3;;1) -3, 8=t

Equation 2.4.4

Disadvantages of this criterion are; fy is rarely available to researchers, predictions are non-
conservative for brittle metals, effect of mean stress is only used via mean hydrostatic stress which is

not enough, application of this criterion under fully reversed bending results with the constant ration

of t—1/f_1 = 1/\/§ for all metals; however, it varies from 0.5 for mild metals to 1 for brittle metals

(15] [1] [20].
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2.4.1.1.2 Crossland Criterion
The difference with Sines is that Crossland [22] considers the influence of the maximum hydrostatic

stress, Oy max-

\/]Z,a + kGH,max < .3

Equation 2.4.5

where k and B are material constants which are obtained from fully reversed bending limit, f_;, and

fully reversed torsion limit, t_;.

(=)0,

Equation 2.4.6

By the change of the incorporation of mean stress, this criterion predicts much more better results

than Sines; however its applicability to out-of-phase loading is poor [15].

2.4.1.2 Critical Plane Approach
This approach is based on a specified plane, A, which is the most severely loaded in the material and
governs the fatigue process by nucleation of the fatigue crack on it. This plane changes model to
model due to the different approaches to critical planes like maximum shear stress observed plane or
maximum damaged plane, etc. A is searched via finding the normal and shear stress amplitudes and

mean values on each possible A plane that passes by the point of interest [1].

Stresses on a defined plane are mentioned before. Under proportional cyclic loading conditions,
shear stress vector, C, changes in magnitude and in direction; therefore, tip of C draws a closed curve
W on plane A. Then a circle is drawn around this curve which is unique and called minimum
circumscribed circle. This circle’s center point is defined by C,, and radius of this circle is C, which

can be seen in Figure 2.4.4 [20].
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Figure 2.4.4 Construction of minimum circumscribed circle [20]

Also, resolved shear stress vector on A, T, changes only in magnitude so it moves back and forth

between points A and Z on line L. Thus, T,, and T, are defined as in Figure 2.4.5 [20].

20



Figure 2.4.5 Definition of T, and T, [20]

2.4.1.2.1 Matake Criterion
Mateke criterion [23] uses a damage parameter of the linear combinations of C, and N,,,, acting on

the critical plane where shear stress reaches the maximum value. His criterion is formulized as;

Ca(@",07) + KNpax (97, 0%) < B

Equation 2.4.7

where k and B are material parameters, and (¢*, 8%) are the spherical coordinates of the critical

plane [20] [24].

K= (Zt‘l/f_l) —landf =t_,

Equation 2.4.8
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2.4.1.2.2 McDiarmid Criterion
Damage parameter and critical plane are same as Matake’s model. Only difference is that McDiarmid
[25] considers the concept of Case A and Case B cracks (Brown and Miller [26]). Case A crack
propagates along the surface and case B crack propagates inwards toward the surface. Case B is

more severe than A. McDiarmid’s formula is

* * tArB * *
Ca((p '9 )+2_Nmax((p ,9 ) < tA,B
o

Equation 2.4.9

where oy is ultimate tensile strength and t4 p is the fatigue limit depending on which case the critical

plane corresponds to [16] [20].

2.4.1.2.3 Dang Van Criterion
Dang Van'’s criterion [27] is based on a linear combination of maximum mesoscopic shear stress and
hydrostatic shear stress on the critical plane. This criterion is different from regular critical plane
approaches; it considers the process at the mesoscopic scale which is a scale between micro and
macro scales (Figure 2.4.6). According to Dang Van, crack nucleation is a local process which takes

place in grains that are under the stress of plastic deformation [8, pp. 129-169].
This criterion’s general formula is:
7(t) + aoy(t) = B

Equation 2.4.10

where 7(t) and oy (t) are instantaneous microscopic shear stress and hydrostatic stress; and, a and
are material constants. These microscopic stresses are different from macroscopic stresses because

material is not homogeneous or isotropic at the microstructural scale [8, pp. 129-169].

foa
t_, —5*
st T2

fou
3

B=t,y

Equation 2.4.11
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Figure 2.4.6 Microscopic, macroscopic stresses and strains X;;(M, t) is macroscopic stresses, E;;(M, t) is macroscopic
strains, (M, t) is microscopic stresses, €(M, t) is microscopic strains, V(M)is elementary volume and all of them are
functions of position within the structure, M, and/or time [8, pp. 129-169]

The plastic shear deformation of the grains with the most severe orientations is constrained due to
the elastic behavior of neighboring grains having less severe orientations. As loading continues, the
hardening takes place as kinematic and isotropic hardening. In order to find the local stresses, p* has

to be considered that is stabilized residual stress tensor. It represents the hardening of the material.
Therefore the resulting microscopic stresses are;
O'ij(t) = Zij(t) + devp*

Equation 2.4.12

where devp® is the deviatoric part of the stabilized residual tensor [8, pp. 129-169].

Moreover, microscopic shear stress, T(t), is calculated by the theory of Tresca maximum shear

stress.

() = 5 [01(t) — 03(1)]

N| =

Equation 2.4.13

where g, (t) and o3 (t) are microscopic principal stresses.
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This criterion can be described with graph of 7(t) and g, which are the main parameters of this
criterion. It creates two zones that are safe and unsafe, respectively. If the loading path crosses the
boundaries, material will have fatigue failure; if it stays within the boundaries it will have an infinite

life (Figure 2.4.7) [8, pp. 129-169].

T
’ T(t) + a o, (t) = b |
— Tailure

~——_ ~—_
predicted
\Q‘, loading path \

Figure 2.4.7 Application of Dang Van criterion [8, pp. 129-169]

2.4.1.3 Integral Approach (Average Stress Approach)
In this approach, the equivalent stress acting on plane (A) is calculated within a specified volume (V).

It considers all the possible angles of A within V.

2.4.1.3.1 Liuand Zenner Criterion
This criterion [28] is the functions of the stresses on the intersection plane which are g, (¢, 6),

om(©,0), t,(@,0), and 7,,, (¢, 0) as seen in Figure 2.4.8.
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Figure 2.4.8 Stress components in an intersection plane [28]

And its general formula is:
2 2 2 2
atiqa + boiqa + ctéqgm + dOegm < f5

Equation 2.4.14

where Tgq 4 and 7.4, are particular averages of the shear stresses amplitude and mean shear

stresses acting on possible planes of A within volume V. They are defined as;

15 ™ 2 1/2
Teqa = —f f 12(,0) sin dp db
81 Jg=0 Jp=0

1 |15

T =—
M Teqa |8T

T 27 1/2
f f 22 (,0)72 (9, 0) sin 0 dg de]
60=0"¢p=0

Equation 2.4.15

And also, d¢q,q and g,4 m are specific averages of the normal stress amplitude and mean value acting

on plane A. They are defined as;

15 (™ 21 1/2

— | 2 .

Ocqa = [ j f s (p,0)sin0de d@]

81 Jo—0 Jp=0

1 15 ™ 21

Oeqm = —3 [_f f 02(9,0) 0, (p,0)sin b de de]

Teq.a 18T Jo=0Jp=0

Equation 2.4.16
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One disadvantage of this model is that needs four stress quantities to calculate parameters a, b, c,

and d which are functions of f_4, fy, t_1, and t, [29].

SIS
b:_6_z({_;i)f

Equation 2.4.17

However, Liu and Zenner proposed an easy formula (Equation 2.4.18) for ty and the concept of mean

stress sensitivity for f; which is shown in Figure 2.4.9 and the formulae on the Figure 2.4.9.

4t_
to = —1

2/
1

Equation 2.4.18
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Figure 2.4.9 Mean stress sensitivity for axial loading and torsion [30]

This criterion belongs to ductile materials and limited to range of 0.577 <t‘1/f ) < 0.866
otherwise a or b might be negative.

Zenner et al [30] tested the material at 3 different phase differences and calculated their fatigue
limits. That was concluded that under nonproportional loadings phase difference angle does not

affect the fatigue limit. However; it is seen from Equation 2.4.15, it is claimed that superimposed

static shear stress alter the fatigue limit.

According to Papadopoulos et al [29]; for 7, and 7,;,, Liu and Zener suggest an incorrect way of

calculation that results with a non-unique value of t,, under nonproportional condition.
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2.4.1.3.2 Papadopoulos Criterion
After the works of Dang Van, in early seventies, on mesoscopic approach; in late eighties
Papadopoulos developed his approach. In the mesoscopic approach, it is focused on the localized
plastic strain, yP, on the material which causes the fatigue crack nucleation. For very high number of
cycles (e.g. ~10° cycles) the accumulated plastic strain is proportional to resolved shear stress
amplitude, T,;, and also independent from the mean resolved shear stress T,,,. General formula of

this criterion [4] is

vV (Tnz) + A0y max < B
Equation 2.4.19

where /(T;?) is average value (volumetric root mean square) of T;? within volume V. Its formula is

mentioned below.

Under out-of-phase condition the path W on plane A which is defined by C s seen in Figure 2.4.10.

A

Figure 2.4.10 Elliptic path of W on a plane A [4]
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T, = \/Cﬁcosz)( + CZsin?y

Equation 2.4.20

where Y is the angle between line L and direction of the major axis of ellipse.

Then a new quantity is defined, T,,, which is the shear stress term of the general formula.

21

1
@0 = 5= [ (Tuw.0.0) dx
x=0
5 2w T
/(T,%)= Ef f(Tn(qo,G))zsianHdgo
=0 6=0

Equation 2.4.21

After some calculations which can be found in Reference [4], \/{T?) becomes

2
(1) = /%“ + 12

Equation 2.4.22

In addition, the maximum hydrostatic stress is equal to

04+ 0m
OHmax = 3

Equation 2.4.23

Therefore, the formula becomes

2
(0P Oq + 0y
—+1i+a——<
3 a 3 B

Equation 2.4.24

where a = o Vv3and f =t_;.

-1

It is seen that under combined axial and torsional loading conditions the fatigue limit is independent

of the phase difference angle. For this model, in order to keep the beneficial effect of compressive

mean stresses t_l/f must be between 0.577 and 0.8 that corresponds to ductile metals.
-1
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3. Experimental Procedure

3.1 Introduction

Ten ductile iron specimens were tested at R = Imin — _4 and eight at R=-3 in the frequency range

Tamp
of 15-22.5 Hz under combination of compressive axial and torsional nonproportional loadings. This R
ratio was decided on the basis of finite element analyses run by Tenaris (Figure 3.1.1). As seen in
Figure 3.1.1 (y-axes is normalized with maximum negative stress) S22 and S23 are governing the
fatigue by being the lowest compression and highest tensile stresses and their ratio is approximately

R=-4. After these analyses, multiaxial fatigue tests were started with the general data mentioned in

this section.
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Figure 3.1.1 FEA of stress components
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3.2 Material

3.2.1 General Information about the Material

The ductile irons (spheroidal cast iron) in this study were supplied in the name of SF1.

Cast irons can be classified according to their cooling rates from liquid form and compositions into
two as: gray cast iron (high cooling rate) and white cast iron (low cooling rate). Gray cast irons divide

into two types depending on graphite morphology as flake graphite iron, spheroidal graphite iron.

In this study, the material is ductile (spheroidal) cast iron. Spheroidal (nodular) cast irons are
produced with the addition of minor elements that are magnesium, calcium, rare earth (cerium,
lanthanum, etc.), and yttrium. These elements favor the formation of spheroidal graphite in order to

have a relatively better material in strength and toughness than flake graphite iron [31].

However, excessive addition of some elements such as V, Mo, Cr, and Mn give rise to formation of
carbides. Carbides increase the probability of shrinkage porosity formation by reducing the

expansion effects produced by the formation of graphite during solidification [31].

As mentioned in Reference [31]: “Factors that promote shrinkage formation include lack of mold
rigidity, unsuitable metal composition, incorrect pouring temperature, and a high degree of

nucleation. These factors may operate independently or in combination.”

3.2.2 Material Data
The material belongs to the ISO Standard 1083:2004 class of 700-2 which has the requirements of

hardness in the range of 229-302 HB and fully pearlitic microstructure.

Brinell (HB) hardness values obtained from the investigated cast iron are shown in Table 3.2.1.

306 327 296 302 348 280
318 320 273 289 252 243
270 262 232 276 243 256

Table 3.2.1 Hardness values in Brinell

By calculating average of these data, 283 HB (300 HV10) was obtained.
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Furthermore, chemical requirement ranges given to the supplier are shown below in Table 3.2.2 and

it was seen that EDS data obtained via SEM fit these ranges.

C Si Mn Cr Ni Mo

Requirements 2.90-3.70 1.50-2.20 0.10-0.70 0.10-0.60 1.90-2.90 0.30-0.90

Table 3.2.2 Chemical composition range of the material (in weight %)

Metallographic examination was performed by two methods; optical microscope and SEM (Zeiss Evo

50) equipped with Oxford Instruments Inca X-Sight (X-ray microanalyzer).

The specimens were mechanically grounded and polished following to mounting. They were etched
via Nital 2% in order to observe the microstructure of specimens. Moreover, fracture surfaces of
broken specimens were observed via SEM by both secondary electron (SE) and quantitative back

scattered electron (QBSE) modes.

The microstructure was observed as fully pearlitic by optical microscope as shown in Figure 3.2.1.

a) 500x magnification b) 25x magnification

Figure 3.2.1 Microstructure of ductile iron a) Pearlite matrix, b) General view of the same specimen. Black circles are
graphite nodules, white networks are intercellular carbides, black regions which are not circular are shrinkage porosities
and the matrix is pearlite

In order to improve the fatigue properties of SF1, stress relieving heat treatment process was done
(Figure 3.2.2). It eliminates tensile residual stresses remained from manufacturing and metalworking

processes. This process does not involve major microstructural transformations.
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Figure 3.2.2 Stress relieving of SF1

Finally, pure axial and pure torsional fatigue limits were measured by Tenaris that are f_; =

196.5 Mpa and t_; = 177.5 Mpa, respectively.

3.3 Experimental Method

3.3.1 Axial (Tensile) Fatigue Test
Axial fatigue tests were run at the laboratories of Tenaris Dalmine in the tensile direction, by applying
staircase method with the steps of having stress difference of 40 MPa. The sequences of experiments
Imin

were performed with the stress ratio of R = = —1 (fully reversed).

Omax

Specimens used in these experiments had the diameter of 7 mm at their thinnest region.

3.3.2 Torsional Fatigue Test
Torsional fatigue tests were run at the laboratories of Tenaris Dalmine, by applying staircase method
with the steps of having stress difference of 50 MPa. The sequences of experiments were performed
Imin

with the stress ratio of R = = —1 (fully reversed).

Omax

Specimens used in these experiments had the diameter of 16 mm at their thinnest region (same

specimen dimensions in multiaxial tests).

33



3.3.3 Multiaxial Fatigue Test
Multiaxial tests were performed by means of Multiaxial Servohydraulic Test System — Walter+Bai
LFV250-T2200 (Figure 3.3.1) that has limits of maximum axial dynamic force of 250 kN with 200 mm
actuator stroke and maximum torque of 2200 Nm with +50° torsional angle. Wedge grips were used

for these tests and the specimen shape and dimensions according to Reference [32] are seen in

Figure 3.3.2.

Figure 3.3.1 Multiaxial Servohydraulic Test System — Walter+Bai LFV250-T2200

34



®30

(e727) _ & _ (e727)

[t

GREs

S
m

200 \ 3
\.'0.075 A

Figure 3.3.2 Dimensions of the specimen

SF1 specimens were cut from large section of cast iron and shaped to the actual form by the supplier

as shown in Figure 3.3.3.

Figure 3.3.3 Cutting process of the specimen.

The sequences of experiments were performed in a manner of staircase. Staircase method is used
widely because of its simplicity, and, in order to calculate the median value of fatigue strength and its
standard deviation at a specific number of cycles that is 107 for this study. First specimen is tested at

an initial stress level, which is the best guess from calculations made or experiences for median
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fatigue strength. If that specimen fails before desired cycle number, for the next specimen, stress

level is decreased; if not, increased.

The stress difference between stress levels should equal to the standard deviation but not obligatory.
However, it cannot be larger than twice the value of the standard deviation [33] [34]. In this study,
axial stress difference and torsional stress difference between all steps are 100 MPa and 50 MPa,

respectively.

Omin

Ten specimens were tested at R = = —4 and eight at R = —3 in frequency range of 15-22.5 Hz

Tamp
under combination of axial and torsion loadings. Frequencies were changed due to the vibration
effect of the multiaxial testing system to the other experimental systems. Frequency difference is

very narrow so it was considered that multiaxial fatigue limit is not affected.

Axial loading was always in compression with mean stress but torsional loading was fully reversed.
Moreover, these loadings are nonproportional; there is a phase difference of 90°. Examples of sine

curves are seen in Figure 3.3.4.
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Figure 3.3.4 Sine curves of loadings at R=-4
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4. Results and Discussion

4.1

4.1.1 Results of Axial (Tensile) Tests

The 11 specimens were tested at the stress ratio of R =

Experimental Results

Omin

Omax

sequence of staircase method were reported in Table 4.1.1 and Table 4.1.2, respectively.

= —1. Experimental results and the

Test# Spec.ID Freq.[Hz] Ac[MPa]l o6, [MPal 0,0an [MPa]  Cycle number Result
1 3 120.2 480 240 0 12000000 Run-out
2 4 120 520 260 0 2457200 Failed
3 5 120 480 240 0 1386200 Failed
4 6 120.1 440 220 0 728800 Failed
5 7 120.1 400 200 0 8087100 Failed
6 8 120.2 360 180 0 11900000 Run-out
7 9 120.3 400 200 0 203000 Failed
8 10 120.2 360 180 0 4179200 Failed
9 11 120.2 320 160 0 2718600 Failed
10 30 120.1 280 140 0 12000000 Run-out
11 31 120.4 320 160 0 12000000 Run-out

Table 4.1.1 Results of axial experiments

Ao
[MPa]
520
480
440
400
360
320
280

Test #

1 2 3 45 67 8 9 10 11 12

Table 4.1.2 Staircase table of axial experiments(x: failed, o: run-out)

By applying staircase method, the calculated axial fatigue limit for R=-1is Ad = 393 MPa. This value

was calculated with the method of Hodge-Rosenblatt [35] (explained detailed in Section 4.1.3).
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4.1.2 Results of Torsional Tests

The 7 specimens were tested at the stress ratio of R = Imin _ _1, Experimental results and the

Tmax

sequence of staircase method were reported in Table 4.1.3 and Table 4.1.4, respectively.

Test# Spec.ID At[MPa] t4[MPa] Tpean[MPa]l  Cycle number Result
1 G3 380 190 0 976428 Failed
2 G4 330 165 0 10000000 Run-out
3 G6 380 190 0 879576 Failed
4 G8 330 165 0 10060006 Run-out
5 G9 380 190 0 777011 Failed
6 G5 330 165 0 10012590 Run-out
7 G7 380 190 0 1657797 Failed

Table 4.1.3 Results of torsional experiments

At Test #

[MPa] 1 2 3 4 5 6 7 8
380 X X X X
330 o} o o} o}

Table 4.1.4 Staircase table of torsional experiments(x: failed, o: run-out)

By applying staircase method, the calculated torsional fatigue limit for R=-1 is At = 355 MPa. This

value was calculated with the method of Hodge-Rosenblatt [35] (explained detailed in Section 4.1.3).

38



4.1.3 Results of Multiaxial Tests

The 18 specimens were tested at two different values of R=-4 and R=-3 (which is defined in Section

3.1). The first set was tested under cyclic compressive load and cyclic torsional load (R=-4) whose

data are seen in Table 4.1.5 and the results were analyzed by means of staircase method [36] as

reported in Table 4.1.6. Results and staircase method [36] of the second set, which was tested with

R=-3, are reported in Table 4.1.7 and Table 4.1.8.

Test Spec. Freq. Ao Oalt Omean AT Tait  Tmean Cycle
# ID [Hz] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] number Result
1 3.6 22.5 600 300 -300 300 150 0 1337004 Failed
2 4.6 22.5 500 250 -250 250 125 0 10017026 Failed
3 2.6 22.5 400 200 -200 200 100 0 9172111  Run-out
4 5.6 15 500 250 -250 250 125 0 910812 Failed
5 6.6 22.5 400 200 -200 200 100 0 9317233 Failed
6 7.6 22.5 300 150 -150 150 75 0 10104404 Run-out
7 8.6 22.5 400 200 -200 200 100 0 10005347 Run-out
8 9.6 15 500 250 -250 250 125 0 3908321 Failed
9 10.6 15 400 200 -200 200 100 0 10000207 Run-out
10 1.7 15 500 250 -250 250 125 0 2708292 Failed

Table 4.1.5 Results of multiaxial experiments (R=-4)

Ao
[MPa]
600
500
400
300

At
[MPa]
300
250
200
150

Test #

1 2 3 4 5 6 7 8 9 10 11

X

Table 4.1.6 Staircase table R=-4 (x: failed, o: run-out)
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Test Spec. Freq. Ao Oalt  Omean AT Tait  Tmean Cycle :
Result
# ID [Hz] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] number

11 3.7 15 450 225 -225 300 150 0 993165 Failed
12 4.7 22.5 375 187.5 -187.5 250 125 10007033 Run-out
13 6.7 15 450 225 -225 300 150 1124024 Failed
14 5.7 15 375 187.5 -187.5 250 125 5944760 Failed
15 7.7 22.5 300 150 -150 200 100 10003288 Run-out
16 8.7 15 375 1875 -187.5 250 125 2577235 Failed

17 10.7 15 450 225 -225 300 150 1397668 Failed

o O O o o o o

18 9.7 15 375 1875 -187.5 250 125 10192777 Run-out

Table 4.1.7 Results of multiaxial experiments (R=-3)

Ao At Test #

[MPa] [MPa] 11 12 13 14 15 16 17 18 19

450 300 X X X o
375 250 o X X o
300 200 o)

Table 4.1.8 Staircase table R=-3 (x: failed, o: run-out)

By applying staircase method, the calculated multiaxial fatigue limit for R=-4 is Ac = 430 MPa,
Omean = —215 MPa, At = 215 MPa and for R=-3 it is Ac =400 MPa, Opeqn = —200 MPa,
At = 267 MPa. These values were calculated with the method of Hodge-Rosenblatt [35]. The

formulae used for these calculations are defined below:

Ao = ?:1(Ao-)i + AO'fe
n+1

?=1(AT)1' + ATfe

AT =
! n+1

Equation 4.1.1

where n is number of experiments performed, (Ag); and (A7); are the applied axial and torsional
stress ranges. Moreover, the method implies the use of a fictitious step (see red colored Test #11 in
Table 4.1.6 and Test #19 in Table 4.1.7) to be added at the end of the stair case as the last stress
level: for axial stress Agg, and for torsional Ats,. For R=-4 case, they are Aoy, =400 MPa

and Atg, = 200 MPa.
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Within these calculations, Test #1 has been discarded due to the high stress predictions made in the

beginning of the staircase method.

The tests were defined as run-out when they reach to 107 cycles; the failed condition was defined
when the crack could be observed visually during the experiments except Specimen 3.6 that failed
during test, and Specimen 4.6 that was considered as well a failed specimen even if completed the
107 cycles because exhibited a visual crack during test. Based on this observation we decided to
interrupt the tests at the moment when a visual crack appears. This explains why most of the fatigue

zones of the specimens are not large.

Failed specimens were submerged into the liquid nitrogen and then separated by multiaxial test

system in order to keep their fracture surfaces as same in the experiments.

Run-out specimens were broken in multiaxial test system under higher stresses in order to have the

fracture surface led by defects.

In the next section the fracture surfaces and defect dimensions of axial, torsional and multiaxial
specimens for both cases of R=-4 and R=-3, which are essential to understand the mechanism of

multiaxial fatigue.

4.2 Fractography

4.2.1 Fractography of Axial Test Specimens
All the axial test specimens were observed and it was seen that all of them have shrinkage porosities
(Figure 4.2.1) in different dimensions which are reported in Table 4.2.1. Moreover, the fatigue zones

are fully covered with striation marks as seen in Figure 4.2.2 and Figure 4.2.3.
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Mag= 150X
WD = 12.5 mm

EHT = 20.00 kv

Signal A = SE1
Photo No. = 1983

Figure 4.2.1 Shrinkage porosity (Specimen 5)

Date :11 Jul 2011
Time :15:01:53

100um EHT = 20.00 kv

|_| WD =175 mm

Signal A = SE1
Photo No. = 1930

Date :1 Jul 2011
Time :12:40:27

Figure 4.2.2 Fatigue zone (Specimen 4)
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Signal A = SE1 Date :1 Jul 2011 =5

Mag= ¥R0X EHT = 20.00 KV —] =
WD = 16.5 mm =20. PhotoNo.= 1934 Time 145002 — 1€NAFIS

i -

Figure 4.2.3 Fatigue zone in detail (Specimen 4)

Specimen  Area  +/area [pum] Result
# [um’]
1 1000000 1000 Failed
2 750000 866 Failed
4 175000 418 Failed
5 1161000 1077 Failed
6 1341000 1158 Failed
7 960000 980 Failed
9 1400000 1183 Failed
10 1350000 1162 Failed
11 6511000 2552 Failed
8 134000 366 Run-out
3 70000 265 Run-out

Average 1350182 1161.973

Table 4.2.1 Defect dimensions of axial specimens



4.2.2 Fractography of Torsional Test Specimens
Torsional test specimens could not be observed due to their 45° and rolling fracture surfaces but one
of the clear photos taken from these specimens is seen in Figure 4.2.4. For this reason their defect

dimensions could not be measured.

Mag= 130X i = ;
d EHT = 20.00 kv Signal A = SE1 Date :12 Dec 2011

WD = 22.0 mm Photo No. = 2811 Time 155022 — 1@NAriS

Figure 4.2.4 Shrinkage porosity (Specimen G7)

4.2.3 Fractography of Multiaxial Test Specimens
It is observed that for ductile irons, fatigue crack mostly initiates with the mechanism which is
governed by the largest shrinkage porosity in the specimen. These shrinkage porosities behave as
stress risers and decrease the stress bearing cross section area of the component. They were
observed in different dimensions in all specimens we have, and measured in terms of area by image

processing free software “Fiji”. Their dimensions are reported in Table 4.2.2.
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Specimen#  Area[um’] +area[um] Result

6.6 1220000 1104.5361 Failed
9.6 320000 565.68542 Failed
10.6 460000 670.82039 Run-out
1.7 1650000 1284.5233 Failed
5.7 572000 768.11457 Failed
6.7 3530000 1878.8294 Failed
8.7 948000 974.67943 Failed
9.7 1845000 1358.3078 Run-out
10.7 1287000 1135.7817 Failed
5.6 7027000 2650.8489 Failed
7.6 840000 916.51514 Run-out
4.7 6510000 2551.4702 Run-out

Table 4.2.2 Defect dimensions of multiaxial specimens

The general characteristic of the external multiaxial fatigue crack path on the surface can be seen in

Figure 4.2.5 (photos taken at every 90°).

Figure 4.2.5 External crack path (Specimen 3.6)

Figure 4.2.5 is the external crack path of Specimen 3.6 which was left in the testing system until the
fracture occurred. This path was observed in the same way for all multiaxial test specimens. This path

compared with pure axial and torsional loads:

e Under pure axial stresses the fracture surfaces are flat that are perpendicular to applied load
(Figure 4.2.6-a);

e Under pure torsional stresses the fracture surfaces are at 45° (Figure 4.2.6-b).
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However, multiaxial fracture surfaces consist of both flat and 45° failure paths as seen in Figure

4.2.6-c.

a) b) c)

Figure 4.2.6 Fracture surfaces: a) pure axial (Specimen AG7) b) pure torsional (Specimen TG2) c) multiaxial (Specimen 3.6)

4.2.3.1 Specimens Tested at R= -4

4.2.3.1.1 Specimen 3.6
Fracture surface of Specimen 3.6 is seen from top in Figure 4.2.7, fatigue zone almost encircles the
fracture surface which was initiated from surface shrinkage porosity that was seen barely from the
top view (due to the fact that the position of the imperfection was under the first layers of the

fracture surface), but by tilting the specimen as reported in Figure 4.2.8 the observation is clear.
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Mag= 223X i Signal A = SE1
Wp=230mm o 2000KY oyto No. = 2612

Figure 4.2.8 Nucleation point of the fatigue crack (Specimen 3.6)

Date 18 Oct 2011 =
Time 131044 =

Tenaris
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In detail, as seen in Figure 4.2.9, there are smooth areas on fracture surface that are in the fatigue
zone. These are due to the high friction and rubbing between surfaces during the test (as mentioned
in Section 2.1.2.2 combination of compressive and torsional stresses give rise to friction and

rubbing).

Mag= 186X L4 Signal A = SE1 Date 18 Oct 2011 =
Wo=190mm o 000KY oo Ne.= 2485  Time 112746 ——

Figure 4.2.9 Fracture surface (Specimen 3.6)

Moreover, in the fatigue zone, graphite nodules cannot be seen. Likely, combination of compressive
stresses and torsional stresses on ductile iron give rise to fracture of graphite nodules and their
remaining particles are covered with matrix due to the plastic deformation in the fatigue zone; on
the other hand, brittle zone is different due to the lack of plastic deformation (both zones are in

Figure 4.2.10).
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Mag= 57X Signal A = SE1 Date :18 Oct 2011
WD = 18.5 mm Photo No. = 2501 Time :12:42:23

Figure 4.2.10 Transition area: fatigue and brittle zones (Specimen 3.6)

4.2.3.1.2 Specimen 4.6
Unlike others, specimen 4.6 (Figure 4.2.11) does not exhibit dangerous shrinkage porosity on the
fracture surface. However, it is seen that SF1 could not resist these stresses
(Camp = 250 MPa, opmean = —250 MPa, T4, = 125 MPa). Consequently, it is understood that

equivalent stress of these stresses is higher that the material’s multiaxial fatigue limit.
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Mag= 107X Signal A = SE1 Date 4 Nov 2011 555

WD = 16.0 mm . Phate Mo. = 2601 Time 1 2:36:45 -TEI‘I

Figure 4.2.11 Fatigue zone (Specimen 4.6)

4.2.3.1.3 Specimen 5.6
Specimen 5.6 has very large shrinkage porosity (Figure 4.2.12) next to the surface and one more in
the center of the fracture surface (Figure 4.2.13). These porosities, in particular, the large one

decrease the multiaxial fatigue limit.
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Figure 4.2.13 Shrinkage porosity in the center and its area [umz] (Specimen 5.6)
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4.2.3.1.4 Specimen 6.6

In the general case, fatigue cracks nucleate at the surface; however for defective materials like

ductile iron, it might be different. Due to the presence of the shrinkage porosity, it behaved as a

stress riser and fatigue crack nucleated then crack propagated towards surface (Figure 4.2.14).

3
|FiIE Edit Font Results

_|:Area |ME_an _|Min |Ma}_{_ | ]
1223762.597 97501 14 229

1

200pm Mag= 61X - Signal A = SE1 Dale 4 Nov 2011 = "
— WD=225mm ST - 2000K o oNo.=2598  Time-208:18 — JE€NAris

Figure 4.2.14 Fatigue zone and shrinkage porosity with area [p.mZ] (Specimen 6.6)
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4.2.3.1.5 Specimen 7.6

Specimen 7.6 is a run-out specimen and its observation by SEM showed that it does not have a large

shrinkage porosity. The only one (Figure 4.2.15) is in the center of the specimen, it is not a dangerous

site due to its position.

841184 362 142428 19

Mag= 95X Signal A = SE1 Dale 123 Jan 2012 =5 .
EHT = 20.00 k¥ —
WD = 27.0 mm PholoNo. = 3218 Time 161010 — NENAFIS

S =4

Figure 4.2.15 Shrinkage porosity with area [umzl (Specimen 7.6)

53



4.2.3.1.6  Specimen 9.6

As for specimen 6.6, also for specimen 9.6 crack probably nucleated at the shrinkage porosity and

propagated to surface (see Figure 4.2.16, with the other fracture surface details shown in Figure

4.2.17 and Figure 4.2.18).

s TN

5 . AR NG ]
100um Mag= 188X Signal A = SE1 Date :1 Dec 2011 =5

— wo=210mm 200K onsioNe.=2668  Time 102120 — lENAFIS
R T e T ]

Figure 4.2.16 Shrinkage porosity with area [umz] and fatigue zone (Specimen 9.6)
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Mag= 32X Sigral A = SE1 Date :1 Dec 2011 =
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—
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Figure 4.2.17 Specimen 9.6 has multiple numbers of shrinkage porosities (shown with arrows) on the fracture surface
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Mag= 48X Signal A = QBSD Date :1 Dec 2011 -
EHT = 20.00 KV
WD = 22.5 mm PhotoNo.=2674  Time 103556 — J@NAFIS
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Figure 4.2.18 Fatigue zone (taken at QBSE mode) (Specimen 9.6)

4.2.3.1.7 Specimen 10.6
Specimen 10.6 is a run-out specimen however it was broken after test in order to see if there is a
presence of a manufacturing imperfection from which fatigue crack can nucleate. It can be seen in
Figure 4.2.19 that fatigue has not initiated although the specimen has porosities and some of them
are close to surface. The measurements performed on these imperfections shows that the areas
were lower than the ones found on the failed specimens. Therefore, its equivalent stress is lower

than the multiaxial fatigue limit calculated with method of Hodge-Rosenblatt (see Section 4.1.1).
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Figure 4.2.19 Three of the shrinkage porosities (shown with arrows) and their areas [p.mz] (Specimen 10.6)

4.2.3.1.8 Specimen 1.7
Fatigue zone of Specimen 1.7 is seen in Figure 4.2.20 and Figure 4.2.21 which are taken at the same
magnification at quantitative back scattered electron (QBSE) and secondary electron (SE) modes,
respectively. The QBSE method was used in order to clearly underline the presence of the fatigue
region, it can be observed that is characterized by a darker color in Figure 4.2.20 (black circular

constituents are graphite nodules).

Fatigue initiated from a large porosity near the center that propagates to the surface (Figure 4.2.21).
Moreover, the specimen contains a second shrinkage porosity positioned close to the surface (Figure

4.2.22) with lower dimensions: 0.57 * 10°um?, 65% smaller than the large one (1.65 * 106 um?).

57



Graphite nodules
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Mag 2X st Signal A = QBSD Date :1 Dec 2011

— s
WD = 22.0 mm Photo No. = 2693 Time:11:2151 — l@Naris

Figure 4.2.20 Fatigue zone (taken at QBSE mode) (Specimen 1.7)

Mag= 42X i = .
ag S Signal A = SE1 Date ;1 Dec 2011

WD = 22.0 mm PhotoNo.=2694  Time 112217 — J@NAFS

Figure 4.2.21 Fatigue zone and dendritic morphology of shrinkage porosity with an attached detailed image (Specimen
1.7)
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Figure 4.2.22 Shrinkage porosity next to the surface (Specimen 1.7)

Moreover, specimen 1.7’s counter piece’s fracture (Figure 4.2.23) surface was also observed by SEM.

It was seen that clearly the large shrinkage porosity governs the fatigue and its area was calculated.
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Figure 4.2.23 Shrinkage porosity with area [pmzl (Specimen 1.7 — Counter piece)

During the experiments a lot of rust points were formed (also observed visually) on the stress bearing
part of the specimens due to the oxidation of micro cracks on the surface. These cracks are non-
propagating cracks; one of them is seen in Figure 4.2.24. The number of these rust points has
increased while approaching to the fatigue crack nucleation point and failure moment for each

specimen.
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Mag= 96X Signal A = SE1 Date :1 Dec 2011 =5 -
EHT = 20.00 kV =
WD = 24.5 mm PhotoNo.= 2689 Time 41:1156 — JENAFIS

Figure 4.2.24 Non-propagating crack (Specimen 1.7)

4.2.3.2 Specimens Tested at R= -3

4.2.3.2.1 Specimen 3.7
No dangerous shrinkage porosities were observed for this specimen via SEM due to the high plastic
deformation in the fatigue zone. Its fatigue region via SE and QBSE modes is shown in Figure 4.2.25

and Figure 4.2.26, respectively.
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Mag= 66X _ Signal A = SE1
WD = 21.5 mm EHT=20.00kv Photo No. = 2697

Date :1 Dec 2011

Time :11:29:25

Tenaris

Figure 4.2.25 Fatigue zone (Specimen 3.7)

Mag= 66X _ Signal A = QBSD
WD =21.5 mm EHT =20.00 kv Photo No. = 2698

Figure 4.2.26 Fatigue zone (taken at QBSE mode) (Specimen 3.7)

Date :1 Dec 2011
Time :11:30:09

Tenaris
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4.2.3.2.2 Specimen 6.7

Fatigue zone and shrinkage porosity with its dimensions are shown in Figure 4.2.27.

File Edit Font Results
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Mag= 77X Signal A = SE1 Dale :12 Jan 2012 "
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WD = 22.5 mm PholoNo.=3035  Time-10:07:10 — IENAFIS

Figure 4.2.27 Fatigue zone and shrinkage porosity and its area [umz] (Specimen 6.7)

4.2.3.2.3 Specimen 5.7

General fatigue region (Figure 4.2.28) and shrinkage porosity with its dimensions (Figure 4.2.29) are

shown below.
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Figure 4.2.29 Shrinkage porosity and its area [p.mz] (Specimen 5.7)
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4.2.3.2.4 Specimen 8.7
On the fracture surface there are 4 crucial shrinkage porosities; number 1 initiated the fatigue (Figure
4.2.31), number 2 is nearby the fatigue zone (Figure 4.2.32), number 3 is in the center (Figure 4.2.33)
and number 4 is near to surface (Figure 4.2.34) but at the other side of the specimen. With respect to
their positions and areas, it can be commented that shrinkage porosities number 1 and number 2 act
as one porosity due to their positions (which are shown by arrows in Figure 4.2.30) and initiated the
fatigue together. Because porosity number 4 is larger than number 1, under normal conditions it

should have initiated the fatigue.

B3 X Signal A = SE1 Date :12 Jan 2012 &= -
WD = 22.0 mm PhotoNo.= 3039 Time 1026114 — J@NAFIS
7 e i > 2 3 o i 5

i »

Figure 4.2.30 Shrinkage porosities: number 1 and 2 (shown with arrows) (Specimen 8.7)
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Figure 4.2.32 Shrinkage porosity number 2 and its area [umZ] (Specimen 8.7)
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Figure 4.2.34 Shrinkage porosity number 4 and its area [p.mz] (Specimen 8.7)
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4.2.3.2.5 Specimen 10.7
Specimen 10.7 has multiple numbers of shrinkage porosities on the fracture surface and most of
them are nearby the fatigue region but one of them governs the failure of the specimen which is the

number 3 in Figure 4.2.35 and the largest one in the specimen.
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Figure 4.2.35 Shrinkage porosities (shown with arrows) and the area of porosity number 3 [p.mz] (Specimen 10.7)
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4.2.3.2.6  Specimen 9.7
Specimen 9.7 is a run-out specimen and its shrinkage porosity with dimensions is shown in Figure

4.2.36.
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Figure 4.2.36 Shrinkage porosity and its area [umz] (Specimen 9.7)

4.3 Microstructural Characterization
Microstructure is one of the most important parameters of ductile iron besides composition,
graphite nodule and shrinkage porosity shape, size, and distribution. It affects directly hardness, yield
strength, tensile strength, fatigue resistance, and many other mechanical properties of the ductile

iron.

SF1 has a fully pearlitic matrix as shown in Figure 4.3.1 taken by optical microscope.
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Figure 4.3.1 Microstructure at 100x magnification

Figure 4.3.2 Detailed image of matrix (500x)
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In Figure 4.3.1, black circular constituents are graphite nodules, matrix is pearlite (Figure 4.3.2) and
white network is intercellular (segregation) carbide that formed due to the addition of excess
amount of some elements such as V, Mo, Cr, and Mn. Segregation patterns of some alloy elements
are shown in Figure 4.3.3. These elements segregate to the grain boundaries and promote
intercellular carbides. Intercellular carbides lead to an increase in yield strength and a decrease in the
elongation capability and tensile strength of ductile iron (Figure 4.3.4). Furthermore, it was
mentioned in Section 3.2.1, these carbides give rise to shrinkage porosities during solidification.
Figure 4.3.5 and Figure 4.3.6 show that carbides cause porosities even within themselves as micro
voids (black regions in the white network) which were formed next or into the intercellular carbides.
According to data obtained from X-Ray microanalyzer of SEM, these carbides are Mo rich up to 80%

(in weight) and also contain Cr and V.
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Figure 4.3.3 Segregation patterns of some elements in ductile iron [37]
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Figure 4.3.4 Effect of nodularity and carbide content on tensile strength of pearlitic ductile iron [31]

Figure 4.3.5 Intercellular carbide (50x)
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Figure 4.3.6 Intercellular carbide and micro voids (100x)

Graphite shape is more important than dimensions or distribution of graphite nodules. In the case of
SF1, most of the graphites are nodular as spheroidal graphite on ASTM A 247 (Figure 4.3.7) which is

the optimum shape. Other shapes lead to a decrease in the mechanical properties.
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Wil

Figure 4.3.7 Typical graphite shapes. 1) spheroidal graphite, Il) imperfect spheroidal graphite, Ill) temper graphite, 1V)
compacted graphite, V) crab graphite, V1) exploded graphite, VIl) flake graphite [38]

SF1’s graphite diameters are mostly in the range of 100 um to 200 um; one of them is seen in Figure

4.3.8.

Finally, steadite formation is observed as in Figure 4.3.9. Steadite formation occurs in the presence of
phosphorus element. Upon solidification, this phosphorus may solidify according to Fe-Fe;P eutectic.
The resulting microstructure contains FesP particles and these particles are hard and brittle. Also,
steadite causes the formation of micro voids and shrinkage porosities in carbides as seen in Figure
4.3.6. Therefore, presences of steadite decrease the fatigue limit of the material and make it more
brittle. 0.044% is the phosphorus content of SF1 that is higher than 0.02% which is the lowest
amount of phosphorus for steadite formation; on the other hand, very low phosphorus content

decreases the fluidity of the molten state during casting [39] [31].
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Figure 4.3.8 Graphite nodule dimension (fracture surface of fatigue test specimen)

Figure 4.3.9 Steadite Steadite (black dots) Carbide (white background)
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4.4 Comparison of Experimental Results with the Results of

Papadopoulos Criterion
In this study in order to get best results an integral approach was selected due to the fact that: for
defective materials, predicting the critical plane is difficult because the applied stresses give rise to a
stress gradient on the material. For instance; Hoffman et al [40] showed that for “defect free”
materials experimental results match the results of Dang Van criterion; however, for defective
materials Dang Van criterion fails. It can be explained by the failure of the homogenization
assumption of Dang Van criterion. In detail: only a few grains near defect experience higher stresses
than bulk load. Therefore, the likelihood of any slip system of the grain near the defect is aligned
with the most critical plane predicted by Dang Van or other critical plane approaches is low. Another

reason is: Dang Van criterion cannot be used under compressive hydrostatic stresses.

Moreover, within integral approaches, Papadopoulos was selected due to its high applicability to

nonproportional multiaxial loading conditions.

It has to be mentioned that, for the ratio of t_;/f_;, SF1 (0.903) is in the limits of brittle materials
(>0.8). We assumed that as a ductile material due to its ductile manner and it is very close to ductile
to brittle transition threshold ratio (0.8) for Papadopoulos criterion. This assumption has a
detrimental effect on results because in this manner the beneficial effect of compressive mean stress
on multiaxial fatigue limit is avoided. However; for our case a does not affect the multiaxial fatigue
limit because both for R=-4 and R=-3, sum of normal stress amplitude and normal mean stress is

Oatom,,

always 0 which gives rise to the value 0 for “a * term of Papadopoulos criterion (Equation

2.4.24). The results are shown below both for R=-4 and R=-3 in Table 4.4.1 and g, 6,,,, and a,, are

the experimental values calculated by staircase method.

Error function used in this study is:

Opg — L
Error (%) = —4——

t_q
Equation 4.4.1
Papadopoulos
Uniaxial Test Results Multiaxial Test Results
Criterion’s Results
Onin
R = 7 t_y [MPa] f_i[MPa) o,[MPa] o,[MPa] t,[MPa] 0.,[MPa] Error(%)
amp
-4 177.5 196.5 215 -215 107.5 164.209 -7.49
-3 177.5 196.5 200 200 133.5 176.509 -0.56

Table 4.4.1 Experimental and Papadopoulos criterion’s results
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Furthermore, according to these data the graphs of Papadopoulos criterion on the plane of 7, and o,
are shown in Figure 4.4.1 for R=-4 and in Figure 4.4.2 for R=-3 with the marked points of

experimental multiaxial fatigue limits.
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Figure 4.4.1 Papadopoulos criterion at R= -4 with 5% error lines
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Figure 4.4.2 Papadopoulos criterion at R= -3 with 5% error lines

As seen from the Table 4.4.1, errors percentages of the predictions of Papadopoulos are -7.49% for

R=-4 and -0.56% for R=-3 that are lower than 10% so they can be assumed as reasonable results.
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Moreover, both of them are conservative results which are preferable in engineering. Therefore, it
can be said that according to these data, Papadopoulos criterion is convenient to be used for

nonproportional multiaxial fatigue conditions even for defective materials as SF1.

4.5 Effect of Defect Size on Multiaxial Fatigue Limit
In the Papadopoulos criterion defect size is not considered however fully reversed pure axial and
fully reversed pure torsional fatigue limits are obtained from the specimens which are dependent on
the existence of defects. Therefore, defective materials are also considered indirectly within
Papadopoulos criterion. Moreover; due to the dependence of inputs to defect size, stress gradient in
the specimen can be neglected. Despite the fact that they are considered indirectly, Nadot et al [5]
offered a methodology in order to define the effect of defect size on multiaxial fatigue limit. They
proposed to combine Murakami method [6] with multiaxial fatigue limit prediction criteria (i.e Dang

Van). Murakami proposed a relation between defect size and fully reversed fatigue limits which is:

tq= 1
/ (Varea) /n

-1 = /( Jara)

Equation 4.5.1

where G and D are material parameters describing the influence of defect on fatigue limit and n is a

constant which depends on the defect dimension (small and large cracks).

According to Murakami with respect to his own studies, and Frost [41], Kobayashi and Nakazawa
[42], for small defects which are in the range of 10 um to 800 um, n is equal to 6; for transition zone
between small and large defects, n is equal to 12; and for large defects which are larger than 1000

um, nis equal to 2.

Figure 4.5.1 shows the relation between threshold stress intensity factor range, AK;p, and varea.
AK:p, = YAov mvarea

Equation 4.5.2

where Y is shape factor.
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Figure 4.5.1 Dependence of AK,j, on defect size [6]

In this study, Dang Van criterion was changed with Papadopoulos criterion with unlike Reference [5]
and average defect size in Nadot’s study was in the small defect zone so n was taken as 6 but in this

study average defect size is in the large defect zone, therefore n was taken as 2.

All the defect dimensions are presented in Table 4.5.1 (for some specimens, defects could not
observed due to the high plastic deformation occurred during the fatigue tests). Only the specimens
that were loaded close to fatigue limit were considered as Nadot did in his own work so specimen 7.6
was excluded. And also, specimen 5.6 and specimen 4.7 were excluded from the average defect size
calculations because of having extremely large defects. Therefore, average defect size became
1146.59 um. Variations of t_; and f_; with respect to defect area are seen in Figure 4.5.2 and
dependence of multiaxial fatigue limit on defect size for R=-4 and R=-3 are seen in Figure 4.5.3 and

Figure 4.5.4, respectively.
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Specimen#  Area[um’] +area[um] Result
6.6 1220000 1104.5361 Failed
9.6 320000 565.68542 Failed
10.6 460000 670.82039 Run-out
1.7 1650000 1284.5233 Failed
5.7 572000 768.11457 Failed
6.7 3530000 1878.8294 Failed
8.7 948000 974.67943 Failed
9.7 1845000 1358.3078 Run-out
10.7 1287000 1135.7817 Failed

Average 1314667 1146.5891
5.6 7027000 2650.8489 Failed
7.6 840000 916.51514 Run-out
4.7 6510000 2551.4702 Run-out

Table 4.5.1 Defect dimensions of multiaxial specimens
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Figure 4.5.2 Effect of defect area on fatigue limits
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Figure 4.5.4 At R= -3 for different defect dimensions

This methodology was also run at MATLAB for both cases; it was found that D and G values are
6653.75 and 6010.38, respectively; and square root of maximum critical defect size under conditions
of the R=-4 case is 1341 um which is close to 1146.59 um. It gives an error of 16.96%. For R=-3 case;

that square root of maximum critical defect size is 1160 um. It gives an error of 1.17% which is very
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low. It can be concluded that for this methodology error of defect size is mostly dependent on the

error of Papadopoulos criterion.

Moreover, even though broad prediction range of this methodology, Figure 4.5.3 and Figure 4.5.4
shows that detrimental effect of defect size on multiaxial fatigue limit decreases with the increase in
defect size. Error functions of this methodology were calculated in terms of square root of area, for
this reason the error percentages are higher than usual for some cases. If we consider in terms of
fatigue limit the error function will decrease due to the suppressed effect of defect size on fatigue
limit for high defect dimensions. For instance, torsional fatigue limit difference for defect dimensions
2000 pm and 3000 pum is -18.36% however difference in area is 50%. Therefore, effect of defect size

must be considered in terms of fatigue limit.

Furthermore, knowing the real working conditions and material behavior, this methodology can be
applied for the prediction of the full scale components by measuring the average defect size or

extrapolating from measured data of specimens.
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5. Conclusion

In this study, multiaxial fatigue behavior of a ductile iron was aimed to be understood. Specimens

were tested under combined compressive axial and torsional nonproportional loadings at R =

Omin

Tamp

= —4 and R=-3. In all the specimens casting defects of shrinkage porosities in a broad range of

size were observed; each of them has unique and irregular shapes. The main outputs of this study

are:

Fatigue mechanism:

Fatigue mechanism is generally governed by largest shrinkage porosity, but also positions of
the defects are important. The well-known effect of the defect position was observed: the
defects close to the specimen surface are more dangerous than inner ones.

Combined compressive axial and torsional nonproportional cyclic loading gives rise to a
fatigue zone which is smooth and featureless at the fracture surface.

The detrimental effect of compressive strength on torsional fatigue limit was observed; by
decreasing the compressive stress from 215 MPa (R=-4) to 200 MPa (R=-3), torsional stress

increases from 107.5 MPa (R=-4) to 133.5 MPa (R=-3).

Multiaxial fatigue limit prediction models:

Integral multiaxial fatigue limit prediction approaches give sufficient results for defective
materials due to the consideration of all possible planes in an elementary volume.
Papadopoulos criterion was chosen as multiaxial fatigue limit prediction model, the
comparison with the experimental data results in a good agreement with both ratio cases
with an error of 7.5% and 0.6%.

In order to investigate effect of defect size on multiaxial fatigue limit, Nadot’s methodology
was applied. A detrimental effect was observed which decreases with the increase in defect
size.

For defective materials Dang Van criterion does not give proper results because its

homogenization assumption fails in the presence of defects.

Metallurgical point of view:

Shrinkage porosities are the main problem for high cycle multiaxial fatigue failures, all the

specimens failed due to the presence of shrinkage porosities.
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Excess molybdenum content has two different effects: firstly gives rise to formation of
intercellular carbides which can decrease the fatigue limits due to their brittle manner, and
secondly cause the formation of shrinkage porosities during casting.

Excess phosphorus (>0.02%) content lead to formation of steadites that can give rise to

formation of shrinkage porosities.
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