

Politecnico di Milano
Polo di Como

Scuola di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

BPMETRICS: a Software System for the
Evaluation of Some Metrics for Business

Process

Supervisor: Prof. Giuseppe POZZI

Master Graduation Thesis by:

Carlo CORTI Id. 729868

Academic Year 2010 - 2011

2

Abstract

It’s during the 1990s that the workflow management prevailed as a new

technology to support business processes and the term “process” became a new

productivity paradigm but up to now many organizations have modeled and are

modeling and designing business processes without the aid of metrics to

question the quality of their models. As result, it may happen that simple

processes are modeled in a complex and unsuitable way leading to a lower

understandability, higher maintenance costs and inefficient execution of the

process.

As modern organizations spend a lot of time creating and maintaining business

processes, the importance of business process metrics is becoming increasingly

important over time.

This thesis presents several business process metrics to evaluate the quality of a

Business Process Model and all these metrics are available through the

application BPMETRICS, in both web and standalone versions.

Keywords: business process, business process models, business process metrics,

metrics, complexity, workflow metric, XPDL

3

Sommario

E 'nel corso degli anni 1990 che il workflow management si impose come una

nuova tecnologia a supporto dei processi di business e il termine "processo"

diventò un paradigma della nuova produttività, ma fino ad oggi molte

organizzazioni hanno modellato e stanno modellando e progettando processi di

business senza l'ausilio di metriche che definiscano la qualità dei loro modelli.

Come risultato, può accadere che i processi semplici sono modellati in modo

complesso e inadatto portando ad una minore comprensibilità, maggiori costi di

manutenzione e rendendo inefficiente l'esecuzione del processo.

Dal momento che le moderne organizzazioni spendono un sacco di tempo a

creare e mantenere i processi di business, l'importanza delle metriche dei

processi di business sta diventando sempre maggiore nel corso del tempo.

Questa tesi presenta diverse metriche di processi di business per valutare la

qualità di un modello di business process e tutte queste metriche sono

disponibili attraverso l'applicazione BPMETRICS, in entrambe le versioni stand-

alone e web.

Parole chiave: processo di business, modelli dei processi di business, metriche

dei processi di business, metriche, complessità, metriche dei workflow, XPDL

4

Table of Contents

Abstract ……………………………………………………………………….. . 2

Sommario …………………………………………………………………….. .. 3

Table of Contents …………………………………………………………….. . 4

List of Figures ……………………………………………………………….. ... 7

1 Introduction ... 8
 1.1 Business Software Management .. 8
 1.2 Software Metrics .. 10
 1.3 Thesis Structure ... 12

2 State of Art .. 13
 2.1 Business Process Metrics ... 13
 2.2 Approaches .. 15

2.2.1 Software-related Metric Approach 15
2.2.2 Axioms Approach ... 18
2.2.3 Category Approach ... 20

 2.3 Relevant Projects .. 21
2.3.1 Prediction of error probability based on metrics 21
2.3.2 ProM tool .. 22

3 Requirements Analysis .. 24
 3.1 Goals .. 24
 3.2 Project Constraints ... 25
 3.2.1 Java ... 25
 3.2.2 XPDL .. 26
 3.3 User Requirements ... 27

4 Design Choices ... 28
 4.1 Software ... 28
 4.1.1 Together Workflow Editor ... 28
 4.1.2 Libraries and Framework ... 29
 4.2 Metrics .. 31
 4.2.1 Activity Size ... 32
 4.2.2 Data Flow Size ... 33
 4.2.3 Data Flow Complexity ... 34

5

 4.2.4 Resources Size .. 35
 4.2.5 Resources Coupling .. 35
 4.2.6 Event Size ... 35
 4.2.7 Start Event Size .. 36
 4.2.8 End Event Size ... 36
 4.2.9 Intermediate Event Size .. 37
 4.2.10 Connector Size .. 37
 4.2.11 And Split Size ... 38
 4.2.12 And Join Size .. 38
 4.2.13 Or Split Size ... 39
 4.2.14 Or Join Size .. 39
 4.2.15 Xor Split Size ... 39
 4.2.16 Xor Join Size .. 40
 4.2.17 Control Flow Size ... 40
 4.2.18 Control Flow Complexity ... 41
 4.2.19 Diameter ... 41
 4.2.20 Density .. 42
 4.2.21 Coefficient of Connectivity .. 42
 4.2.22 Activity Coupling ... 42
 4.2.23 Degree of Connectors ... 42
 4.2.24 Separability ... 43
 4.2.25 Sequentiality ... 43
 4.2.26 Depth .. 44
 4.2.27 Connector Mismatch .. 45
 4.2.28 Connector Heterogeneity .. 45
 4.2.29 Cyclicity ... 46
 4.2.30 Token Split ... 46

5 Description of the System ... 47
 5.1 Architecture ... 47
 5.2 Data structure ... 48
 5.3 Algorithms ... 52
 5.3.1 Paths ... 52
 5.3.2 Cut Vertex .. 55

6 Results …...………………….... . 58
 6.1 Standalone Application .. 58
 6.2 Web Application .. 60
 6.3 Scenarioes .. 63
 6.3.1 Stand-alone scenario ... 63
 6.3.2 Web scenario .. 64
 6.4 Sample Process .. 65

6

 6.4.1 EOrder Process ... 65
 6.4.2 Credit Check Sub-process .. 66
 6.4.3 Fill Order Sub-process .. 66
 6.5 Metric Results .. 68
 6.5.1 Activity Metrics .. 69
 6.5.2 Data Flow Metrics ... 70
 6.5.3 Resources Metrics .. 71
 6.5.4 Control Flow Metrics ... 71

7 Conclusions and Future Works .. 80
 7.1 Conclusions .. 80
 7.2 Future Research Directions .. 81

References ... 83

7

List of Figures

2.1 An example system .. 18

5.1 Diagram of the data structure ad hoc created for the BPMETRICS

application ... 48

5.2 Graph based representation of a possible XPDL process 53

5.3 Graph based representation of a possible XPDL process, with the blue

colored nodes representing the cut vertices of the graph 56

6.1 Option section of the BPMETRICS standalone application 59

6.2 Result section of the BPMETRICS standalone application 60

6.3 Metrics Unit of the BPMETRICS web application showing the panel to

upload the XPDL file and the metrics selection panel 61

6.4 Metrics Unit of the BPMetrics web application showing the results of the

metrics in tabular form and the report section .. 62

6.5 The Fill Order sub-process ... 66

6.6 The Credit Check sub-process .. 66

6.7 EOrder Main Process .. 67

6.8 Options panel of the BPMETRICS standalone application showing the

metrics selected to be computed for the EOrder sampe process 68

6.9 Result panel of the BPMETRICS standalone application showing the

metric results computed for the EOrder sampe process 69

8

Chapter 1

Introduction

This chapter provides a brief introduction to Business Process Management, the

area in which the realization of this thesis arises, and Software Metrics, on

which are based many of the Business Process Metrics. Will be finally presented

the structure of this paper, briefly explaining the content of each chapter..

1.1 Business Software Management

In the last years, there has been a growing interest in business process

management from industry as well as from business administration and systems

research but the current management and improvement approach, with formal

definitions and technical modelling, has been around since the early 1990s. In

fact, it is only during the 1990s, that the workflow management prevailed as a

new technology to support business process and the term “process” became a

new productivity paradigm. The flourishing market and the availability of a

wide range of products, in addition to allowing individual product vendors to

focus on specific functional capabilities and users to take particular products to

meet specific application needs, has revealed a fundamental problem: the lack of

standards to enable the cooperation of different WFM products. To solve this

problem, in 1993, a group of companies have joined to form the WFM Coalition

that had as its primary purpose the establishment of standards and rules that

allow the cooperation of different WFM products. In fact, the idea of creating

standards and therefore developing appropriate specification for the

implementation of workflow products arises from the fact that all the workflow

9

management systems have certain common characteristics with the purpose to

enable the possibility to achieve the interoperability. In addition, these

specifications, as well as allowing the interoperability between heterogeneous

workflow products, has also improved the integration of workflow applications

with other IT services (electronic mail, document management ...) but overall

has improved the opportunities for the effective use of workflow technology

within the IT market.

Since the 1990s the BPM market, and in particular the market BPM-related

software, has always been expanding to become today a considerable market for

software vendors, IT service providers and business consultants. In fact, market

research have revealed that organizations that have had the best results in

implementing business process management have spent more than 40% of the

total time of the project in the study and implementation of the initial process

model. In fact, the Business Process Modeling was considered one of the top 10

technology strategies in 2008 [1].

Business Process Modeling aims at producing a model of one or more business

processes by defining the ways in which operations are carried out to achieve

the objectives of an organization, known as Business Process Model. It may be

constructed in multiple layers as the business process may be composed not only

by a single process but by multiple nested processes. This model is an

abstraction of reality and is used to describe the workflow or the integration

between business processes. In particular, when we talk about Workflow we

refer to the automation of procedures where documents, information or tasks are

passed between participants according to a defined set of rules to achieve an

overall business goal. The majority of the workflows are normally organized,

within the context of an IT system, in order to provide support for the procedural

automation.

10

In essence, business process is a collection of related, structured activities or

tasks that produce a specific service or product for a particular goal. Three types

of business process exist:

• Management processes that govern the operation of a system

• Operational processes that constitute the core business and create the

primary value stream (Marketing, Sales …)

• Supporting processes which support the core processes (Recruitment,

Technical Support…)

From the real importance of the business processes and their representation

within the area of workflow software and the objectives of standardization of the

WfMC, it follows the birth of language XPDL in the late 90's. In fact the XML

Process Definition Language (XPDL) is a standard designed to exchange the

process definition, both the graphics and the semantics of a workflow business

process. Due to this fact, with the XPDL standard is possible to interchange

business process definitions between different workflow products [2]. Later on,

in the 2004 WfMC endorsed the Business Process Model Notation, a graphical

formalism to standardize the way that process definitions were visualized.

Therefore, XPDL was extended specifically with the goal to be able to represent

in XML all of the concepts present in a BPMN diagram.

1.2 Software Metrics

In the mid-1960’s software engineers started to use metrics, a measure of some

property of a piece of software or its specifications, to characterize the

properties of their code. As [3] says it is typical to divide the attributes/metrics

into internal and external ones. In particular, internal software attributes can be

11

measured based only on the knowledge of a software artifact, such as size,

cohesion and complexity while external software attributes can only be

measured if additional knowledge is available about the environment of the

software and of the interaction between the software and the environment, such

as maintainability.

The main purpose of software quality metrics is to support the design phase in

order to obtain program designs that are better structured, both from the point of

view of the complexity of the model and from the point of view of the

readability of the model by the user. In addition, the software quality metrics

may have numerous applications in activities such as cost estimation, software

quality assurance testing and performance optimization.

Given the importance that software metrics cover, in recent years it has tried to

find the corresponding metrics for Business Process. In fact, several researchers,

like Cardoso, Vanderfeesten and Mendling, have already identified similarities

between software programs and business process design and recognized the

potential of quality metrics in business process Management [4].

In fact the metrics of business process were born as the adaptation of software

metric to the definitions of Business Process and in particular, most of these

metrics are adapted considering the scheme/graph of the Business Process.

Subsequently these metrics have been improved or new ones have been

designed and created specifically for the BP in order to provide more useful

information for creating Business Process Model. These metrics, not only

consider the pure graphical representation of BP, but as internal software

metrics, they also take into consideration those elements, attributes and

definitions that are based on the knowledge of the Business Process definition.

12

1.3 Thesis Outline

The thesis is structured as follows:

• Chapter 2 – Start of Art: The chapter presents the state of the art of the

business process metrics by providing an historical perspective about

their development and about the approaches to the business process

metrics in recent years. It also presents a couple of projects / software

that are strictly related to the metrics for business process models.

• Chapter 3 – Goals of the Thesis: The chapter discusses the goals of the

thesis, the design constraints and the requirements gathering.

• Chapter 4 – Design Choices: The chapter analyzes the design choices

made during the analysis of the problem from the point of view of the

software and from the point of view of the metrics to implement. In

particular it discusses software, libraries and frameworks used during the

development of this project and explains every metric available within

the software.

• Chapter 5 – Description of the System: The chapter describes the system

developed and its architecture. The chapter also explains the data

structures and illustrates two of the main algorithms used to compute

some of the metrics.

• Chapter 6 - Results: The chapter presents the results of the software

implemented, illustrating both the stand-alone application and the web

application, providing also the main scenario for each of them. The

chapter then describes the sample process used to test all the metrics

developed, showing the results and the proof of their correctness.

• Chapter 7 – Conclusions and Future Work: The chapter discusses the

conclusions and the future developments of the thesis.

13

Chapter 2

State of Art

This chapter presents the state of the art of the business process metrics by

providing an historical perspective about their development. The chapter

discusses the approaches to the business process metrics in recent years and in

the end it also presents a couple of projects / software that are strictly related to

the metrics for business process models.

2.1 Business Process Metrics

In the mid-1960’s, as reported in [5], software engineers started to use metrics to

characterize the properties of their code, providing a good analysis mechanism

to assess the quality of the software program design. Although the research in

this area progressed over the years, we must expect the beginning of the 90 for

the first work done in the field of Business Process. In 1990, Lee and Yoon with

[6, 7] have led a job on the definition of metrics for Petri net process models and

their empirical validation. In their work the metrics proposed were divided into

two groups: structural metrics, which included simple calculations of places,

transitions and arcs of the control graph, and dynamic metrics that cover the

number markings and the maximum and average number of tokens for the

original and a reduced state space. It was however Nissen the first to introduce

the measurement concepts for business process modelling and business process

design [8, 9]. The metrics he proposed cover counts for distinct paths, hierarchy

levels and nodes in the process model, cycles, diameter and parallelism as

number of nodes divided by the diameter. After Nissen, three Indian researchers

Tjarden, Narasmihan and Gupta operationalize four characteristics of a business

process that need to be balanced: simplicity, flexibility, integration and

14

efficiency [10, 11] while Morasca proposed with [12] a set of metrics for Petri

nets identifying size, length, structural complexity and coupling and for each of

them he defined a set of axiomatic properties which a respective metric would

have to fulfil. Later on, Latva-Koivisto in [13] proposed several complexity

metrics for business process models including the Coefficient of Network

Connectivity, Cyclomatic Number, Reduction Complexity Index but these

metrics were not considered that much because the work from Latva-Koivisto

was published only as a technical report.

Research in this field hasn't always followed the same direction for all. In fact

over the years have been created different streams among which we must

mention the stream of research that adapts coupling and cohesion concepts from

software engineering to the business process modelling. In this stream, Reijers

and Vanderfeesten [14] developed a set of coupling and cohesion metrics to

guide the design of workflow processes while on another different stream,

Cardoso centered his work around the adaptation of the cyclomatic number for

business process to what he called Control Flow Complexity (CFC) [15, 16].

Differing from the Latva-Koivisto, Cardoso is calculating, with the CFC metric,

the complexity of a model by summing up the split connectors weighted by the

combination of output markings they can product. Another different direction

was taken by the research conducted by a group including Canfora, Rolon,

Garcia, Piattini, Ruiz and Visaggio extended the work related to the

measurement of the software process. In particular, Canfora et al. in [17]

presented a set of metrics and evaluate their suitability to serve as predictors for

maintainability of the process model while on another side, Balasubramanian

and Gupta, inspired by Nissen’s and Tjaden’s work, proposed a set of metrics to

support business process design [18], In particular, this set includes metrics to

quantify the degree of automatic decision making, role integration, activity

parallelism and activity automation.

15

Not all of the aspect, during the last year, had the same relevance in this research

field. In fact, one of those that was a bit left in the corner were the cognitive

considerations that play an important role for understanding good design in

software engineering. In fact, while Gruhn and Laue in [19, 20] adapt the

cognitive weights from software engineering to business process models,

Vanderfeesten et all define the cross-connectivity metric that aims to capture

how difficult is to understand how two nodes in a process model relate to each

other [21]. Another aspect that was left out is the modularity that builds insight

on software design as it is related to the number, the size and the depth of

nesting modules. Regarding this concept, the approach by Lassen and Van De

Aalst identified structured components in arbitrary process models for the

translation to structured BPEL and, even more important, these components can

be used to describe the process model in a quantitative way.

What has been presented is the historical evolution of the research on metrics

related to business Process model and the various aspects that have

characterized the past 20 years. Research in this field is still in its infancy and

over time arouses more interest. In fact, besides the metric, in recent years have

been presented some approaches, that will be described below, in which metrics

are collected and "catalogued" in accordance with certain characteristic.

2.2 Approaches

Now we will describe the approaches to Business Process metrics that over the

last few years have been identified and adopted by many researchers.

2.2.1 Software-related Metric Approach

Cardoso et al. in [4] proposed an approach that focuses on software metrics. In

fact, the software metrics, according to Conte, Dunsmore & Shen in [22] has as

16

main purpose to obtain program design that are better structured. The

advantages that this brings in first place are that the overall program logic is

easier to understand for both the programmers and the users and in second place

are that the identification of the modules is easier, since different functions are

performed by different modules, which makes the maintenance of the software

program easier. According to Conte and Shepperd in [22, 23] the useful metrics

for a better quality of design areas based on 5 principles:

• Coupling It measures the number of interconnections among the

modules. The degree of coupling depends on how complicated the

connections are and on the type of connections. It is hypothesized that

programs with a high coupling will contain more error than programs

with a lower coupling value.

• Cohesion It measures the relationships between elements within a

module. It is hypothesized that programs with low cohesion will contain

more errors than programs with higher cohesion.

• Complexity Measure relative to the number of control constructs and

to the number of modules. With the increase of these values, increases

the value of complexity. In fact it is hypothesized that the higher design

complexity the more errors the design will contain.

• Modularity It represents the degree of modularization. It is

hypothesized that a low modularity is generally relates to more errors

than higher modularity.

• Size It represents the size of the software both from the point of view

of the modules and of their nesting. In fact it has been hypothesized that

a larger program will contain more errors of a smaller one.

17

Based on this approach, Cardoso et al. in [4] presents the Business Process

metrics that have been developed, designed or adapted in recent years, using the

same classification:

• Coupling It measures the number of interconnections among the

modules of the model and it is highly related to degree and density

metrics in network analysis [24]. An example is the average degree, also

called Coefficient of Connectivity, described in [13], that refers to the

average number of connections that a node has with other nodes of the

process graph. In contrast, there is the density metric [Mendling], that

relates the number of available connections to the number of maximum

connections for the given number of nodes.

• Cohesion It measures the coherence within the parts of the model.

The only cohesion metric, developed so far, is described in [25] and it

looks at the coherence within the activities of the process model. In

particular it focuses on the information processing in the process and

takes a data oriented view. In fact, for each activity in the process model

the total cohesion is calculated by multiplying the information cohesion

and the relation cohesion of the activity and then the mean of all activity

cohesion values gives the whole process cohesion value.

• Complexity It measures the ease and understandability of the design.

This kind of metric can be used by business process analysts and process

designers to analyze the complexity of the process and, if possible,

develop simpler one.

• Modularity It measures the degree to which a design is split into

several modules. As stated into [26] there are no business process

metrics that measure the modularity of a business process design.

18

• Size It measures the size of the model. This kind of measure is

considered very important to complement other forms of process

analysis.

2.2.2 Axioms Approaches

Another approach is the one presented by Antonini et al in [3]. In fact, in this

case, it is considered the similarity between software and business process but

using a more rigorous method. Actually, Antonini considers only the internal

qualities of software, omitting the outer ones, and in particular he considers the

size, the structural complexity and the coupling as Business Process Measures.

For each of them are defined some properties and in the case where a metric

don't satisfies such property, this metric is not considered valid. Indeed Morasca

in [27] defines these properties, called axioms. Since the process model is

represented by graphs using the BPMN standard, the axioms are defined on a

graph-based representation of the software artifact, called system. Considering

Figure 2.1, the system S is formed by two modules M1 and M2 and E1, E2, E3

and E4 are the elements respectively of M1 and M2 connected via the relation

R.

Figure 2.1 An example system

19

Based on the graph (Figure 2.1) the axioms are so defined:

Size:

• The overall size of S can never be greater than the sum of the sizes of M1 and

of M2, if every element Ei belong either to M1, or to M2, or to both of them;

• The overall size of S equals the sum of the sizes of M1 and of M2, if every

element Ei belongs either to M1, or to M2, but not to both of them.

Complexity:

• The overall complexity of S can never be smaller than the sum of the

complexity of M1 and of M2, where S is composed by M1 and M2;

• The overall complexity of S equals the sum of the complexity of M1 and of

M2, if M1 and M2 are two disjoint modules, with no connections from

elements of one to elements of the other.

Coupling:

• The coupling of a module with no external relationship is null;

• If we add a new relationship R2 to an existing module M1, the coupling of

M1 does not decrease;

• If we join the two modules M1 and M2, the coupling of the resulting module

is never greater than the sum of the coupling of M1 and of M2;

• If we join two disjoint modules M1 and M2, the coupling of the resulting

module is the sum of the coupling of M1 and of M2.

20

Thus, for every metric it should be checked that it conforms to the axioms and

then is determined whether it is a measure of size, complexity or coupling. Once

that is done, the measure is labeled according to its category. Antonini et al

consider the metrics divided in 4 categories:

• Activity Attributes that consider the activities in a BP

• Control Flow Attribute that are defined based on the pure static structure

of the graph of a BP

• Data flow attributes that address the flow of the information among the

several activities involved in the graph of a BP

• Resource Attributes that consider the resources required and used by the

graph of a BP during the process execution.

2.2.3 Category Approaches

The third and last approach, presented by Mendling in [5], is different from the

others as it does not consider correlation between software metrics and metrics

for BP, but considers them as exclusive metrics for Business Process and

dividing them into six categories:

• Size, group of metrics related to the number of nodes of the process

model;

• Density, group of metrics that relates the number of nodes to the number

of arcs;

• Partitionality, group of metrics that refers to those aspect of a process

21

model that relate to the relationship of subcomponents to the overall

model;

• Connector Interplay, group of metrics related to connectors (split and

join and their 3 different type: and, or, xor) and their interplay;

• Cyclicity, group of metrics related to the cyclic parts of the model;

• Concurrency, group of metrics related to the concurrent paths of a

business process model that need to be synchronized.

2.3 Relevant Projects

The applications that have been taken into account during this analysis are

moving on two very different roads. The first one is presented by Mendling in

[5] and takes into account the possible relations between the values given by the

metrics and the presence of errors within a business process model. The second,

however, is a tool that supports the design of business process models with the

help of metrics.

2.3.1 Prediction of error probability based on metrics

Cardoso et al in [4] states that business process models which are designed using

the business process metrics contain less error and are easier to understand and

maintain. A first step made towards the validation of this hypothesis is made in a

quantitative analysis about the connection between simple metrics and error

probability in [5].

22

This survey proposed by Mendling is divided into two parts the verification of

relaxed soundness, which is a minimal correctness criterion for a business

process model, and the prediction error probability based on statistic methods.

The verification of relaxed soundness has brought to light that a part of the

tested models (6% to about 600) contains errors and already this result suggests

the need for verification tools for business process modelling projects of

business process modelling projects.

In the second part, Mendling explain the possibility to use some of the business

process metrics to predict the error probability. The author use a set of simple

metrics related to size of the models as input to a logistic regression model. The

results show that these metrics are suitable to predict the error probability and,

in particular, it appears that a higher number of join-connectors is most strongly

connected with an increase in error probability. But, as Cardoso reports in [4],

there is a need for a further empirical investigation in order to establish an

understanding of when a threshold value of a certain metrics indicates bad

design in terms of maintainability or likely error proneness.

2.3.2 ProM tool

In last years, ProM has emerged as a powerful process analysis tool, supporting

all kind of analysis related to business process. In contrast to many other tools,

ProM uses process mining techniques and attempts to extract non-trivial and

useful information from the so-called “event-logs” [4]. In fact, the process

mining techniques use event logs as input in order to obtain the process model

itself and, in particular, ProM offers many techniques to obtain the process

model and the result may be a Petri net, EPC or a YAWL model. Otherwise, if

the model is already given, the information stored in logs, can be used to check

conformance, that is how well do reality and model fit together. This aspect can

be seen as another quality dimension. Last but not least, ProM offers various

23

plug-ins to analyze the correctness of a model like soundness and absence of

deadlocks and also allows the calculation of various quality metrics like

cohesion, complexity, size, etc.

24

Chapter 3

Requirement Analysis

Considering the situation of the Business Process metrics and the software

related to them, that were outlined in the previous chapter, in this chapter are

explained the goals of the thesis, the project constraints and the few user

requirements that are needed for a correct use of the BPMETRICS application and

understanding correctly the metrics and their results.

3.1 Goals

The main goal of the thesis is to create a software application named

BPMETRICS, that allows the assessment of Business Process Model in XPDL

format, using quality metrics.

In order to achieve this goal, the work was divided into several parts:

• First of all, a literature search was performed of all available metrics for

business process and part of these have been chosen only if they were

"internal" metrics and considering their feasibility in terms of software

development. Next, was performed an analysis phase in which were

identified the characteristics of the system to be realized, both for the

standalone version and for the web version.

• Next, we developed the BPMETRICS application, standalone version, that

implements the metrics selected and which are described in Chapter 4.

• Subsequently was developed the BPMETRICS application, web version.

Finally, both the applications have been tested using some XPDL files created

using the software TWE or publicly available on the website of the WfMC.

25

3.2 Project Constraints

The design constraints, that during the analysis phase of the problem have been

imposed, concern for the most the technological part of the project. In fact, as

design constraints, were imposed the use of Java as the programming language

to build the BPMETRICS application standalone version and as consequence the

use of the JSP technology to build the web version one.

As regards instead the Business Processes, have been required the use of the

language XPDL as regards the definition of business process and consequently

the BPMN notation for the creation of graphs. Now the constraints and their

motivations will be described in detail.

3.2.1 Java

Java is the programming language Object Oriented used for the development of

the application BPMETRICS.

Java was imposed as Project Constraints due to his strengths. In fact, as object-

oriented programming language provides a high portability, allowing software

to be made independent of the platform and the hardware on which it was made.

Despite the high portability, maintains optimum performance and a good

flexibility with regard to the graphics, desktop GUIs and web user interfaces. To

remember, even the very good and well-thought-out exception handling and the

huge library choice that Is available, like for example those aimed at the creation

and manipulation of XML and PDF documents.

For the development of the BPMETRICS application was used Eclipse as working

environment.

Finally, the last thing to consider is the fact that both Java and Eclipse are free

and OpenSource.

26

3.2.2 XPDL

Xml Process Definition Language was imposed as Project Constraints for the

Business Process part due to the fact that it’s a standard file format for persisting

BPMN diagrams and interchanging Process definitions and especially the

BPMETRICS application supports the XPDL version 2.0 and XPDL version 2.1.

In details, XPDL provides a standard graphical approach to Business Process

Definition based on BPMN graphics. The file format is based on the WfMC

meta-model which establishes a framework for defining, importing and

exporting process definitions for numerous products including execution

engines, simulators, BPA modelling tools, Business Activity Monitoring and

reporting tools. One of the key elements of XPDL is its extensibility to handle

information used by a variety of different tools. XPDL may never be capable of

supporting all additional information requirements in all tools and that XPDL is

a generic construct that supports vendor specific attributes for use within the

common representation. Another characteristic is the possible mappings to

specific execution languages (e.g. BPEL) and other XML-based specifications

(e.g. ebXML). Finally, BPMN Model Portability conformance classes greatly

increase the likelihood of true portability at the design level between a

significant number of different vendor tools.

27

3.3 User Requirements

Below are listed the user requirements in order to use correctly the software and

understand the results.

• The user must have knowledge, even basic, on the features and elements

of the XPDL language, in order to understand certain metrics.

• The user must have knowledge regarding the Business Process Model

Notation as it's necessary for the realization of business process which

will then be used for the calculation of the metrics.

• Knowledge and meanings of the metrics proposed. For this purpose the

application, both web and standalone version, offers a help section that

allows the user to easy understand the meaning of each metric.

28

Chapter 4

Design Choices

In this chapter are discussed the design choices made during the realization of

the BPMETRICS applications. All the choices are grouped into two categories:

Software and Metrics. Both the groups are now explained in details.

4.1 Software

This groups relates to all those choices that are related to the technologies,

libraries or frameworks used for the development of the application and to all

the external software used to create test cases.

4.1.1 Together Workflow Editor

Together Workflow Editor (TWE) is the Workflow editor selected for the

project as it fully implement the WfMC (Workflow Management Coalition)

XPDL specifications. The TWE software was used to produce several Business

Process Model that were used during the development phase but especially for

the testing phase to check the correctness of the metrics developed.

Among all the various workflow editors, TWE was chosen for some of its

characteristics:

• Pure Java application, usable on almost every operating system

• Transient XPDL package references

• View Referring elements for an XPDL elements

• On-line documentation including XPDL explanations and configuration

• Possibility to customize XPDL element's property panels

29

• View relation between main XPDL package and its external packages

• In-line property panels for editing XPDL

• Save XPDL with XPDL namespace prefix

4.1.2 Libraries and Framework

The framework and libraries used for the development of the BPMETRICS

application will be now explained, defining also the reasons for which were

chosen.

• Struts2 is the framework used to develop the BPMETRICS application

web version. In fact Struts 2 is an elegant, extensible framework for

creating enterprise-ready Java web applications. This framework is

designed to streamline the full development cycle, from building, to

deploying, to maintaining applications over time.

• iText is the Java library used by the BPMETRICS application to generate

the PDF reports of the metrics computed. This library was chosen for the

BPMETRICS because it is used both in the standalone version and in the

web version. It also allows the creation of dynamic PDF in an easy and

intuitive way from a data structure in Java.

• JAXB (Java Architecture for XML Binding) is a Java libraries that allows

developers to map Java classes to XML representations. JAXB provides

two main features: the ability to marshal Java objects into XML and the

inverse. In other words, JAXB allows storing and retrieving data in

memory in any XML format, without the need to implement a specific

set of XML loading and saving routines for the program's class structure.

30

JAXB is particularly useful when the specification is complex and

changing. In such a case, regularly changing the XML Schema

definitions to keep them synchronized with the Java definitions can be

time consuming and error prone. This library is used inside the

BPMETRICS to generate the XML reports of the metrics computed.

• SAX (Simple API for XML) is a programming interface, implemented in

different languages, that allows to read and modify XML documents.

Through SAX it's possible to implement specific XML parsers. SAX is

used by the BPMETRICS application to load the XPDL file and convert it

into the specific designed data structure (Chapter 5.2) and was preferred

instead of DOM since SAX parsers have some benefits over DOM-style

parsers:

o SAX is event based, unlike DOM, and reacts to parsing events

making report to the application.

o A SAX parser only needs to report each parsing event as it

happens, and normally discards almost all of that information

once reported while a DOM parser builds a tree representation of

the entire document.

o The minimum memory required for a SAX parser is proportional

to the maximum depth of the XML file and the maximum data

involved in a single XML event while DOM parsers memory

usage increases with the entire document length. This takes

considerable time and space for large documents, like XPDL

files.

o SAX has better performance with large files due to its event-

driven nature and processing documents is generally far faster

than DOM-style parsers.

31

4.2 Metrics

The metrics that have been collected, selected and implemented are divided into

4 categories:

• Activity Metrics, that consider only the activities in a Business Process

• Control Flow Metrics, that are defined on the pure static structure of the

graph of a Business Process.

• Data Flow Metrics, that consider the flow of information among the

several activities involved in the graph of a Business Process.

• Resource Metrics, that consider the resources involved and used by the

graph of a Business Process during the execution.

The metrics implemented and available within the application are the following:

• Activity Size

• Data Flow Size

• Data Flow Coupling

• Resources Size

• Resources Coupling

• Event Size

• Start Event Size

• End Event Size

• Intermediate Event Size

• Connector Size

• And Split Size

• And Join Size

32

• Or Split Size

• Or Join Size

• Xor Split Size

• Xor Join Size

• Control Flow Size

• Control Flow Complexity

• Diameter

• Density

• Coefficient of Connectivity

• Activity coupling

• Degree of Connectors

• Maximum Degree of Connector

• Separability

• Sequentiality

• Depth

• Average Depth

• Connector Mismatch

• Connector Heterogeneity

• Cycility

• Token Split

The metrics listed above will now be presented individually with a detailed

description.

4.2.1 Activity Size

The Activity Size [3] metric represents the number of tasks of the Business

Process. We must also consider that a BP may contain one (or more) supertask

33

or one (or more) subprocess and then we must consider the number of tasks

contained by them. In fact, the size of a process is as follows:

𝑆𝑖𝑧𝑒! 𝑝 = 𝑆𝑖𝑧𝑒!(𝑡𝑎𝑠𝑘!)

!!

!!!

+ 𝑆𝑖𝑧𝑒!(𝑠𝑢𝑝𝑒𝑟𝑡𝑎𝑠𝑘!)
!!"

!!!

 (4.1)

where 𝑆𝑖𝑧𝑒! 𝑡𝑎𝑠𝑘! = 1 and 𝑆𝑖𝑧𝑒!(𝑠𝑢𝑝𝑒𝑟𝑡𝑎𝑠𝑘!) is the sum of the sizes of the

n tasks in the supertask.

4.2.2 Data Flow Size

The data-flow size represent the amount of data (number of data items) managed

by a process. As reported in [3], the data that a process could manage are

divided in 4 kinds:

• Reference: these data (DR) univocally identify a process instance and the

path followed by these data is the control flow of the graph of a Business

Process.

• Operational: these data (DO) are needed by an activity for its processing

and, in general, are not visible outside the task itself;

• Decision: these data (DD) are a subset of the operational data and are

used by routing tasks to selectively activate the outgoing/incoming arc of

the graph;

• Contextual: these data (DC) belong to a wider category of data, are

relevant for the Business Process and typically include all the data

managed by all the tasks of the process.

In particular the Data flow size of a process 𝑝 is defined as:

34

𝑆𝑖𝑧𝑒𝐷𝐹 𝑝 = 𝑉!,!

!
!!

!!!

= 𝐷𝑅!,!
!

!!

!!!

+ 𝐷𝑂!,!
!

!!

!!!

+ 𝐷𝐶!,!
!

!!

!!!

 (4.2)

where 𝑛! is the number of activities of the process and 𝑉!,!
! is the data recieved

and produced by the node j.

4.2.3 Data Flow Complexity

The Data Flow Complexity take in consideration the data managed by a process

but it treat this data in a different way that the Data Flow Size metric do. In fact

this metric takes into consideration both a component deriving from the routing

tasks and a component deriving from the tasks which set up a Business Process.

As [3] states, this distinction is made due to the fact that routing task (RT) have

a lower complexity if compared with a normal task (T) with the resulting overall

complexity for data flow defined as the sum of the 2 components:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦!" 𝑝

= 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦!" 𝑅𝑇! +
!!"

!!!

 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦!" 𝑇!

!!

!!!

(4.3)

where

 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦!" 𝑅𝑇! = 1

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦!" 𝑇! = 𝑉!,!
!

(4.4)

35

4.2.4 Resources Size

The Resource Size [3] take into consideration all the resources required and

used by the graph of a Business Process during process execution and is defined

as follow:

𝑆𝑖𝑧𝑒! 𝑝 = 𝑟!

!!

!!!

= 𝑅 (4.5)

where 𝑛! is the number of activities of the process and 𝑅 are the resources

available for the excution of the activities.

4.2.5 Resources Coupling

The Resource Coupling [3] is a metric that put in relation the “resources” and

the relation between the activities within them. In fact, it considers the number

of arcs which cross two (or more) swim lanes: every crossing means that the

work item requires a new and different resources for its execution.

 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔! 𝑝 = 𝐻 (4.6)

where H is the number of the transition between two activities that belong to a

different swim lane.

4.2.6 Event Size

The Event Size [5] is a metric that counts the number of the Events in the

Business Process.

36

 𝑆𝑖𝑧𝑒! 𝑝 = 𝑆𝑖𝑧𝑒! 𝑡
!∈!"#$%

 (4.7)

where

 𝑆𝑖𝑧𝑒! 𝑡 = 1 (4.8)

4.2.7 Start Event Size

The Start Event Size [5] is a metric that counts the number of the Start Events in

the Business Process.

 𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!" 𝑡
!∈!"#$%!!"#$"

 (4.9)

where

 𝑆𝑖𝑧𝑒!" 𝑡 = 1 (4.10)

4.2.8 End Event Size

The End Event Size [5] is a metric that counts the number of the End Events in

the Business Process.

 𝑆𝑖𝑧𝑒!! 𝑝 = 𝑆𝑖𝑧𝑒!! 𝑡
!∈!"#$%!!"#

 (4.11)

where

 𝑆𝑖𝑧𝑒!! 𝑡 = 1 (4.12)

37

4.2.9 Intermediate Event Size

The Intermediate Event Size [5] is a metric that counts the number of the

Intermediate Events in the Business Process. An Intermediate Event is an event

that occurs after a Business Process has been started. It will affect the flow of

the process, but will not start or directly terminate the process. Then, this type of

event can be used to disrupt the normal flow through exception handling or

show the extra work required for compensation. It’s also used to show where

messages that are expected or sent within the process or where delays are

expected within the process.

 𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!" 𝑡
!∈!"#$%!!"#$%&$'!(#$

 (4.13)

where

 𝑆𝑖𝑧𝑒!" 𝑡 = 1 (4.14)

4.2.10 Connector Size

The Connector Size [5] metric counts the number of connectors, divided in And,

Or and Xor.

 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑆𝑖𝑧𝑒 𝑝

= 𝑆𝑖𝑧𝑒!"# 𝑟𝑡
!"∈!"#

+ 𝑆𝑖𝑧𝑒!" 𝑟𝑡
!"∈!"!!"#$%

+ 𝑆𝑖𝑧𝑒!"# 𝑟𝑡
!"∈!"#

(4.15)

38

where

 𝑆𝑖𝑧𝑒!"# 𝑟𝑡 = 1

𝑆𝑖𝑧𝑒!" 𝑟𝑡 = 1

𝑆𝑖𝑧𝑒!"# 𝑟𝑡 = 1

(4.17)

4.2.11 And Split Size

The And Split Size metric [5] counts the number of And Split connectors.

 𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!"#!!"#$% 𝑟𝑡
!"∈!"#!!"#$%

 (4.18)

where

 𝑆𝑖𝑧𝑒!"#!!"#$% 𝑟𝑡 = 1 (4.19)

4.2.12 And Join Size

The And Join Size metric [5] counts the number of And Join connectors.

 𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!"#!!"#$ 𝑟𝑡
!"∈!"#!!"#$

 (4.20)

where

 𝑆𝑖𝑧𝑒!"#!!"#$ 𝑟𝑡 = 1 (4.21)

39

4.2.13 Or Split Size

The Or Split Size metric [5] counts the number of Or Split connectors.

 𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!"!!"#$% 𝑟𝑡
!"∈!"!!"#$%

 (4.22)

where

 𝑆𝑖𝑧𝑒!"!!"#$% 𝑟𝑡 = 1 (4.23)

4.2.14 Or Join Size

The Or Join Size metric [5] counts the number of Or Join connectors.

 𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!"!!"#$ 𝑟𝑡
!"∈!"!!"#$

 (4.24)

where

 𝑆𝑖𝑧𝑒!"!!"#$ 𝑟𝑡 = 1 (4.25)

4.2.15 Xor Split Size

The Xor Split Size metric [5] counts the number of Xor Split connectors.

 𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!"#!!"#$% 𝑟𝑡
!"∈!"#!!"#$%

 (4.26)

40

where

 𝑆𝑖𝑧𝑒!"#!!"#$% 𝑟𝑡 = 1 (4.27)

4.2.16 Xor Join Size

The Xor Join Size metric [5] counts the number of Xor Join connectors.

 𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!"#!!"#$ 𝑟𝑡
!"∈!"#!!"#$

 (4.28)

where

 𝑆𝑖𝑧𝑒!"#!!"#$ 𝑟𝑡 = 1 (4.29)

4.2.17 Control Flow Size

The Control Flow Size [3] of a process is defined as the number of activities and

control elements of a process.

𝑆𝑖𝑧𝑒!" 𝑝 = 𝑆𝑖𝑧𝑒!"(𝑡!)

!!

!!!

+ 𝑆𝑖𝑧𝑒!"(𝑟𝑡!)
!!

!!!

 (4.30)

where

 𝑆𝑖𝑧𝑒!" 𝑡! = 1

𝑆𝑖𝑧𝑒!" 𝑟𝑡! = 1
(4.31)

41

4.2.18 Control Flow Complexity

The Control Flow Complexity [3] for a process p is the sum of the complexities

originated by the splits as:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦!" 𝑝

= 𝐶𝐹𝐶!"#!!"#$% 𝑟𝑡
!"∈!"#!!"#$%

+ 𝐶𝐹𝐶!"!!"#$% 𝑟𝑡
!"∈!"!!"#$%

+ 𝐶𝐹𝐶!"#!!"#$% 𝑟𝑡
!"∈!"#!!"#$%

(4.32)

where

 𝐶𝐹𝐶!"#!!"#$% 𝑟𝑡 = 1

𝐶𝐹𝐶!"!!"#$% 𝑟𝑡 = 2!"#!!"#(!") − 1

𝐶𝐹𝐶!"#!!"#$% 𝑟𝑡 = 𝑓𝑎𝑛 − 𝑜𝑢𝑡(𝑟𝑡)

(4.33)

fan-out is the number of task to which it is connected

4.2.19 Diameter

The Diameter [5, 28, 12] of a Business Process is the length of the longest path
from a start node to an end node in the process model.

42

4.2.20 Density

The Density [5, 29] of a process graph is the number of arcs (A) divided by the

number of the maximum number of arcs for the same number of nodes (N):

Δ 𝐺 =

|𝐴|
𝑁 ∙ (𝑁 − 1) (4.34)

4.2.21 Coefficient of Connectivity

The Coefficient of Connectivity (CNC) [5, 13, 26] represents the ration of arcs

(A) to nodes (N).

𝐶𝑁𝐶 𝐺 =

|𝐴|
|𝑁| (4.35)

4.2.22 Activity Coupling

The Activity Coupling (NCA) [5, 17] represents the ratio of nodes to arcs.

𝑁𝐶𝐴 𝐺 =

|𝑁|
|𝐴| =

1
𝐶𝑁𝐶 (4.36)

4.2.23 Degree of Connectors

The Degree of a Connector [26, 30] is the number of nodes a connector is

connected to. Two metrics relate to this concept:

43

• Average Degree of Connectors that represent the number of nodes a

connector is in average connected to.

 𝑑! 𝐺 =
1
𝐶 𝑑(𝑐)

!∈!

 (4.37)

• The Maximum degree of a connector that is the highest degree of a

connector inside a process.

 𝑑! 𝐺 = max 𝑑 𝑐 𝑐 ∈ 𝐶} (4.38)

4.2.24 Separability

The Separability metric [5] is defined as the number of cut-vertices, that are

those nodes in a graph whose deletion separates the process models into

multiple and separated components, to the number of nodes.

Π 𝐺 =

| 𝑛 ∈ 𝑁 𝑛 𝑖𝑠 𝑐𝑢𝑡 − 𝑣𝑒𝑟𝑡𝑒𝑥 }
𝑁 − 2 (4.39)

4.2.25 Sequentiality

The Sequentiality metric [5, 12] is the number of arcs between non-connectors

nodes divided by the number of arcs.

Ξ 𝐺 =

| 𝐴 ∩ 𝑇 × 𝑇 |
|𝐴| (4.40)

44

4.2.26 Depth

The Depth metric [5, 28] relates to the maximum nesting of structured blocks in

a process. To calculate depth is define an algorithm that calculates the in-depth

𝜆!" 𝑛 of a node 𝑛 relative to its predecessor nodes 𝑛. All nodes are initialized

with an in-depth value of 0 and at each node the updates the in-depth value

𝜆′!" 𝑛 following these rules:

𝜆!!" 𝑛 =

max 𝜆!" 𝑛 , 𝜆!" 𝑝𝑟𝑒 + 1 𝑖𝑓 𝑝𝑟𝑒 ∈ 𝑆 ∧ 𝑛 ∉ 𝐽
max 𝜆!" 𝑛 , 𝜆!" 𝑝𝑟𝑒 𝑖𝑓 𝑝𝑟𝑒 ∈ 𝑆 ∧ 𝑛 ∈ 𝐽
max 𝜆!" 𝑛 , 𝜆!" 𝑝𝑟𝑒 𝑖𝑓 𝑝𝑟𝑒 ∉ 𝑆 ∧ 𝑛 ∉ 𝐽

max 𝜆!" 𝑛 , 𝜆!" 𝑝𝑟𝑒 − 1 𝑖𝑓 𝑝𝑟𝑒 ∉ 𝑆 ∧ 𝑛 ∈ 𝐽

 (4.41)

where

• S is the set of Splits

• J is the set of Joins

• 𝜆!!" 𝑛 is the new in in-depth value

• 𝜆!" 𝑝𝑟𝑒 is the in-depth value of the previously visited predecessor node

• 𝜆!" 𝑛 is the current in-depth value

There are two metrics related to this concept:

• Average Depth

Λ 𝐺 =

1
|𝑁| 𝜆!

!

!!!

(𝑛) (4.42)

• Maximum Depth

 Λ G = max 𝜆 𝑛 𝑛 ∈ 𝑁 } (4.43)

45

4.2.27 Connector Mismatch

The Connector Mismatch metric (MM) [5] gives the sum of the mismatches for

each connector type.

 𝑀𝑀 𝐺 = 𝑀𝑀!" + 𝑀𝑀!"# + 𝑀𝑀!"# (4.44)

where

 𝑀𝑀! = | 𝑑 𝑐
! ∈ !!

− 𝑑 𝑐
! ∈ !!

| (4.45)

4.2.28 Connector Heterogeneity

The Connector heterogeneity metric (CH) [5] refers to which extent different

connectors are used in a business process model. For defining a suitable metric

that ranges from 0 in the case that there are only connectors of one type, to 1 in

the case that there are the same amount of connectors of all three types, we refer

to the information entropy measure which has exactly these characteristics and

defined as follows:

 𝐶𝐻 𝐺 = − 𝑝 𝑙 ∙ log! 𝑝(𝑙)
!∈{!"#,!",!"#}

 (4.46)

where

𝑝 𝑙 =

|𝐶!|
|𝐶| (4.47)

46

4.2.29 Cyclicity

The Cyclicity metric [5] represent the ratio between the nodes on a cycle and the

total number of nodes.

𝐶𝑌𝐶! =

|𝑁!|
|𝑁| (4.48)

4.2.30 Token Split

The Token Split metric [5] sums up the output-degree 𝑑!"# 𝑛 of AND-splits

and OR-splits minues one.

 𝑇𝑆 𝐺 = 𝑑!"# 𝑛 − 1
!∈!!"∪!!"#

 (4.49)

47

Chapter 5

Description of the System

Based on the specifications of the XPDL Workflow Management Coalition, has

been implemented a Java application and a Web application, both named

BPMETRICS, which are able to parse a XPDL file version 2.0 or 2.1 and evaluate

those metrics that have been described in the chapter 4. However, this chapter

describes the architecture of the application common to both versions, the data

structure at the base of the application and two different algorithms that are used

for the calculation of some metrics.

5.1 Architecture

The application that has been made, implements the metrics that have been

described in Chapter 4 and in particular receives as input the XPDL file, created

by the user with external software, and provides as output the metrics that are

selected by the user.

This application has been made as a stand-alone application and as a Web

Application.

Both applications made are divided into three main modules:

• Parsing in which has been implemented a parser dedicated to the XPDL

files which converts the XPDL file contents in a data structure created

specially to be able to compute the metrics;

• Metrics is the module in which the metrics have been implemented;

• Reports is the module in which have been implemented the two modes

of reporting, as PDF file or as XML file, the results obtained by the

application.

48

All three modules have been made in order to reduce the computational load and

make the execution as light as possible to achieve the best performance of each

of the modules. In particular way, in the Parsing module was used SAX and not

DOM as the method for XPDL file parsing since SAX is way better then DOM

for XPDL files (See Chapter 4.1.2), thus reducing the computational load of the

first module. In the second module the metrics were implemented with

algorithms that aim to optimize and reduce the computational costs since the

metrics are calculated on a graph-based structure.

Communication via these modules is made through the data structure, designed

ad hoc for this application, which is explained below.

5.2 Data Structure

Once the XPDL file is loaded and read by the SAX parser, it needs to be

converted into a proper data structure in order to easy access the data contained

from the source code. For this reason, an ad hoc data structure was created in

order to store all the information that could be gathered from the XPDL file

(Figure 5.1).

Figure 5.1 Diagram of the data structure ad hoc created for the BPMETRICS application.

49

The main entities of this structure are Process, Activity and Transition which

respectively represent the generic process defined within a workflow, a generic

activity contained within a process and a generic transition that binds two

activity.

In particular, all these classes, except the Workflow, refer to a superclass called

XPDLElement that defines the attributes common to all elements extracted from

the XPDL file.

Below are described in detail the classes represented in the diagram.

Workflow This class represent the whole XPDL file. This class has as only

attribute the xpdlVersion of the file. This class contains a list of Process, a list

of Pool, a list of Participant and a list of Data Field.

XPDLElement This is an abstract class and represent the generic XPDL element

except for the Workflow. The most significant attributes of this class are:

• id: is an attribute of type string that represents the unique id of the XPDL

element to which it refers.

• name: this is an attribute of type string identifies the visual name of

XPDL element.

Process This is a class that inherits from XPDLElement and defines a

generic process defined in XPDL file read by the parser. This class contains a

list of Activity and a list Transition.

Activity Even this class inherits from XPDLElement and represents the

generic entity or node defined within a single process XPDL. This class contains

lists of Extended Attribute and Parameter Actual that are used by the same

Activity. The most significant attributes of this class are:

50

• isRouting: is a boolean attribute and identifies whether the node is a

routing task or a simple task;

• routingType: is an attribute of type String and it identifies the type of

routing element, that is if the routing task type is Exclusive (XOR),

Parallel (AND) or Inclusive (OR)

• routingPosition: it is also an attribute of type String and it indicates the

position of ruoting task in the Control Flow of the process, which

indicates whether the routing task is a split or a join.

• startEvent, endEvent, intermediateEvent: These attributes are Boolean

and respectively indicate whether the node/element in the process is a

start event, an end event or an intermediate event.

• subProcessId: is an attribute of type String and indicates the sub-process

id when the element is not a simple activity within the process but it

represents a subprocess.

Transition This is a class that inherits from the generic XPDLElement and

represents the transition between two entities or nodes within a process. The

most significant attributes of this class are:

• from: this is an attribute of type String indicating the start activity of the

transition.

• to: is an attribute of type String indicating the destination activity of the

transition.

Participant This is a class that inherits from the generic XPDLElement and

its definition represents an abstraction level between the real performer and the

activity, which has to be performed. Only during run time this definition is

evaluated and assigned to concrete humans and/or programs.

51

Pool This is a class that inherits from the generic XPDLElement and it

represents a Participant in the process that can be a specific business entity or a

more general business role. The Pool class contains the list of the lanes in

which the it’s divided and is characterized by these attributes:

• mainPool: this is a boolean attribute indicating if the pool is the main

pool or not.

• Process: this is a String type attribute that indicates to which process the

pool refers.

Lane Also this class inherits from the generic XPDLElement and it represent a

sub-partition within a Pool. Lanes are often used for such things as internal roles

and systems. The only attribute that the Lane class has is the performer attribute

that indicates who is performing the activities within the lane.

DataField This is a class that inherits from the generic XPDLElement and it

provides information about what the process does.

Application This is a class that inherits from the generic XPDLElement and it

represents an application/service or tool required and invoked by the process

defined within the process definition.

Formal Parameter This is a class that inherits from the generic

XPDLElement and it represents a parameter that can be used as attribute in

process or in application. These parameters are passed during invocation and

return of control. The relevant attributes of this class are:

• Mode: is a String attribute and it indicates if the attribute is given as

input or as output.

• Type: is a String attribute and it indicates the type of the attribute itself.

52

Extended Attribute This is a class that inherits from the generic

XPDLElement and, as these attributes can be used in all entities (for this reason

is not represented in the diagram), vendors use them to extend the functionality

of the specification to meet individual needs. The only relevant attribute of this

class is the value one that, as String attribute, indicates the value of the extended

attribute defined in the XPDL file.

ActivitySet Also this class inherits from the XPDLElement class and it

represent a self-contained set of activities and transitions. In particular the

transitions in the set should refer only to activities in the same set and there

should be no transitions into or out of the set.

5.3 Algorithms

In this section will be described two particular algorithms that are used for the

calculation of the metrics. Respectively will be described the algorithm for the

calculation of control flow paths within an oriented graph and the algorithm for

the calculation of cut vertices inside an oriented graph.

5.3.1 Paths

The algorithm Path, implemented within the application, is used for the

calculation of multiple metrics such as Diameter, Cyclicity and Depth. This

algorithm allows to calculate all non-cyclic and cyclic paths, which has the

beginning of a Start Event (node A in Figure 5.2) as a term and an End Event

(nodes G and N in Figure 5.2), that exist within a directed graph, which in our

case represent the XPDL process.

53

Figure 5.2 Graph based representation of a possible XPDL process

Below is reported the pseudo-code of the algorithm for the calculation of the

path.
//Initialization of the variables
finalPaths[] = {}; // Path StartEvent-EndEvent
cyclicPaths[] = {}; // Cyclic Paths
currentPaths[] = {}; // Temporal Paths
startEvents = findStartEvents(process);
transitions = process.getTransitions();
//Conversion of the Start Events into Graph Paths
currentPaths = convertStartEventToPath(startEvents);
//Analyzing the paths till each of them end with an EndEvent or is cyclic
while(currentPaths.size() > 0) {
 path = currentPaths.get(0);
 lastVisitedActivity = path.getLastVisitedActivity();
 if(lastVisitedActivity.isSubProcess()) {
 // Computing the paths for the subprocess
 subProcessPaths = computePaths(subProcess);
 //Removing last element of the path as it stand for a sub-Process
 path.remove(lastVisitedActivity);
 //Creating a new path for each sub-Process path
 for(i=0; i < subProcessPaths.size(); i++) {
 clonedPath =clonePath(path,subProcessPaths.get(i));
 //Scanning transitions outgoing lastVisitedActivity
 for(j=0; j < transitions.size();j++) {
 transition = transitions.get(j);

 if(transition.getFrom() == lastVisitedActivity) {
 // Destination of the transition
 transitionDestination = transition.getTo();
 // Cloning the path for each outgoing transition
 tempPath = clonePath(clonedPath, transitionDestination);

 // If is an End Event the path is closed
 if(isEndEvent(transitionDestination, process)) {
 finalPaths.add(tempPath);
 // If is a cyclic one the path is discarded

54

 } else if(isCyclic(tempPath, transitionDestination)){

 cyclicPaths.add(tempPath);
 } else {
 currentPaths.add(tempPath);
 }
 }
 }
 }
 } else {
 // Scanning each transitions outgoing lastVisitedActivity
 for(j=0; j < transitions.size();j++) {
 transition = transitions.get(j);
 if(transition.getFrom() == lastVisitedActivity) {
 // Destination of the transition
 transitionDestination = transition.getTo();
 // Cloning the path for each outgoing transition
 tempPath = clonePath(clonedPath, transitionDestination);
 // If is an End Event the path is closed
 if(isEndEvent(transitionDestination, process)) {
 finalPaths.add(tempPath);
 // If is a cyclic one the path is discarded
 } else if(isCyclic(tempPath, transitionDestination)){
 cyclicPaths.add(tempPath);
 } else {
 currentPaths.add(tempPath);
 }
 }
 }
 }
 //Removing the last analyzed path
 currentPaths.remove(0);
}
if(cyclicity) {
return cyclicPaths;
}
return finalPaths;

The algorithm begins with the collection of Event Start of the entire process,

since they represent the first node of each possible path within the graph, and

then inside paths we'll find as many paths as the Start Events. Then, for each

cycle, the path (currentPath) that is currently topping the list paths is selected

and the algorithm check if the last node of the currentPath is a sub-Process. If

so, the algorithm compute the paths for the subprocess and add to the

currentPath as many path as the sub-Process has. Then are taken into

consideration all outgoing transitions from the last node within the currentPath.

For each of them a path is created by duplicating the currentPath and adding to it

55

the destination node of the transition. Once you add the path to the destination

node checks the type of this node and presented four scenarios:

• If the node is an End Even, the path is closed and is added to the list of

finalPaths;

• If the node is a node already present inside the path, that path is

recognized as recursive and is discarded, in the case where you do not

seek recursive path;

• Otherwise it is added to the list paths.

Once completed the currentPath is removed from the paths list. The algorithm

continues its execution until all currentPaths are visited and discarded because

recursive or moved to finalPaths.

Considering the graph shown in Figure 5.2 and applying to it the algorithm

above described, we obtain as a result of the following paths:

A à B à C à H à L à M à N

A à B à C à H à I à M à N

A à B à D à E à C à H à L à M à N

A à B à D à E à C à H à I à M à N

A à B à D à E à F à G

5.3.2 Cut Vertex

The algorithm CutVertex implemented within the application is used for the

calculation of the Separability metric. This algorithm allows the identification of

the cut vertices inside the graph representing the XPDL process. In particular,

the cut vertices of a graph are those nodes that when are deleted from the graph,

the graph is divided into two distinct graphs with no interconnections.

Considering the graph shown in Figure 5.3, we can see how the cut vertices are

the blue colored nodes.

56

Figure 5.3 Graph based representation of a possible XPDL process, with the blue colored
nodes representing the cut vertices of the graph.

Below is reported the pseudo-code of the algorithm for the calculation of the cut
vertices.

counter = 0
low[] = {};
pre[] = {};
cutVertices[] = {};

//Initialization of variable
for (i=0; i < graph.getVertices(); i++) {
 low[i] = -1;
 pre[i] = -1;
}

for (i=0; i < graph.getVertices(); i++){
 if (pre[i] == -1) {
 dfs(graph, i, i);
 }
}

// Function that compute the Depth First Search algorithm
function dfs(Graph graph, int u, int v) {
 int children = 0;
 //Updating pre and low values of the v vertex
 pre[v] = counter++;
 low[v] = pre[v];
 //Analyzing the adjacent vertices of v
 for (int w : graph.adj(v)) {
 if (pre[w] == -1) {
 children++;
 dfs(graph, v, w);

 // update low number
 low[v] = Math.min(low[v], low[w]);

 // non-root of DFS is a cut vertex if low[w] >= pre[v]

57

 if (low[w] >= pre[v] && u != v)
 cutVertices[v] = true;
 } else if (w != u) {
 // update low number - ignore reverse of edge leading to v
 low[v] = Math.min(low[v], pre[w]);
 }
 }

 // root of DFS is a cut Vertex if it has more than 1 child
 if (u == v && children > 1)
 cutVertices[v] = true;
}

The algorithm begins with the definition and initialization of the pre, low and

cutVertices. Then each node is visited and the dfs function is computed. This

function gets as input the graph (that is already given as input to the algorithm)

and the vertex v to analyze. This function updates the low and pre value of the v

vertex and then check his adjacent vertices. For each of them, if they haven’t

been already processed, the dfs function is executed and then the low value is

updated. Once the low value is updated it can be determine if the vertex v is or

not a cut vertex by controlling these two conditions:

• a root vertex of DFS is a cut vertex if it has more than 1 child;

• non-root vertex of DFS is a cut vertex if the low value of its adjacent is

higher than the node pre value.

58

Chapter 6

Results

This chapter discusses the results obtained by the development of the two

applications. A scenario for both applications is proposed and a sample process

is used as test bed. Obtained results are discussed.

6.1 Standalone Application

The BPMETRICS application consists of 4 main units: Menu, Options, File

Loaded and Result.

The Menu is the means by which the user selects the operations, step by step , to

perform:

• File Composed of the elements Open, Run and Quit allowing the user

to, respectively, load and parse an XPDL file, run and calculate the

metrics selected and close the application. The Run menu will be

accessible to the user only after an XPDL file compliant to the project

specification is selected and loaded.

• Report Made up of 2 elements: Generate PDF and Generate XML.

These two elements allow respectively to generate a PDF or an XML

report according to user needs and requirements. Both features will be

available to the user only if the metrics, previously selected by the user,

have been calculated and the results are displayed on the screen.

• Metrics This menu's unit provides access to the help section of the

59

application providing the user with a brief explanation for each of the

metrics that are available within the application.

• ? This menu's unit offers information about the author of the application

in order to contact him.

Figure 6.1 Option section of the BPMETRICS standalone application.

The Options section is the core of the application. In fact, as shown in Figure

6.1, this module allows the user to select the metrics desired and if these metrics

need to be computed for each individual process within the XPDL file,

previously loaded. There is also, always in this section, a small console that

keeps track of the actions that are executed either manually by the user, or

automatically by the application, to make the use of the application more

transparent and clear.

60

The File Loaded section, instead, presents to the user the file XPDL loaded, in

the case where there is the need to consult the file itself.

Results section, finally, presents the calculated metrics as result, as shown in the

Figure 6.2.

Figure 6.2 Result section of the BPMETRICS standalone application.

6.2 Web Application

The BPMETRICS application, which was developed on the Struts2 framework,

consists of 4 units (pages): Home, Metrics, Metrics FAQ and Contact. The

Home is just a brief presentation of the application outlining the its objectives

and characteristics while the Contact unit allows the user to get in touch with the

author of the application for any further details and / or explanations. Metrics

61

and Metrics FAQ instead represent the core part of the Web project. In fact, the

unit Metrics is the unit that allows the user to upload his XPDL file and select

the metrics to be calculated, as shown in Figure 6.3.

Figure 6.3 Metrics Unit of the BPMETRICS web application showing the panel to upload

the XPDL file and the metrics selection panel

Once calculated the metrics, the results are displayed on screen in a tabular form

and the user will be able to generate a PDF report or XML, depending on the

needs or requirements (Fig 6.4).

62

Figure 6.4 Metrics Unit of the BPMETRICS web application showing the results of the
metrics in tabular form and the report section.

This Metrics unit has been created in order to follow the user step by step during

its use. In fact, the contents are not all proposed at once but are available step by

step. In fact, the user must first load the XPDL file and if that file will

correspond to the project specifications (XPDL file version greater than 2.0),

will be offered to the user the metrics panel in order to selected those required.

63

Finally the Metrics FAQ unit, as its corresponding module in stand-alone

version, is a brief help explaining the meaning of the metrics developed that are

available in the application to make easier the use of the application and to make

clearer the comprehension of the metrics.

6.3 Scenarios

Both versions of the application, as already mentioned above, were made to

follow the user, step by step, in its use. In fact, some features are not available

when the application starts but are made available only successful execution of

certain steps. For clarity will now be presented a complete scenario, for both for

the standalone and we version, from the upload of the XPDL file to the final

generation of reports.

6.3.1 Standalone scenario

• The user loads the XPDL file (Menu: File> Open)

• The XPDL file is parsed using SAX and it's created an instance of the

Workflow class containing the elements of XPDL file. When finished, it

will enable the possibility of calculating the metric (Menu: File> Run).

• The user selects the metrics (Panel Options) to perform and if he needed

it, select the option to calculate the metrics for each process contained in

the XPDL file.

• The user performs the calculation of the metric (Menu: File> Run) and

creates an instance of the XPDLMetrics class that contains all the

metrics calculated, that the user has previously selected.

• The calculated metrics are proposed in tabular form to the user (Result

Panel) and it's enabled the possibility to generate reports.

• The user generates a PDF report (Menu: Report> Generate PDF) or

64

XML (Menu: Report> Generate XML).

During each phase, the user can refer to the help (Menu: Metrics) to better

understand the meaning of each metric.

6.3.2 Web scenario

1. The user uploads the XPDL file

2. The UploadAction action, that loads the file, is invoked.

3. The XPDL file is parsed using SAX and it's created an instance of the

Workflow class containing the elements of XPDL files.

4. Metrics.jps page appears confirming that the file is correctly loaded and

parsed and it displays the metrics panel.

5. The user selects the metrics to be performed and in the case is needed,

selects the option to calculate the metrics for each process.

6. The user performs the calculation of metrics

7. The XPDLMetricsAction action is invoked and calculates the selected

metrics and creates an instance of the XPDLMetrics class than contains

all the resulting metrics, that the user has previously selected.

8. The calculated metrics are proposed to the user in a tabular form and it's

enabled the possibility to generate reports.

9. The user generates a PDF report or XML as needed.

During each phase the user can refer to the help (Metrics FAQ section) to better

understand the meaning of each metric or contact the application author for

further details or clarification.

65

6.4 Sample Process

For testing the application, we chose the EOrder sample process from the

WfMC Specification. There are two version of the EOrder sample process: the

1.0 and the 2.0. As the application is made to be able to read only XPDL

document past the version 2.0 we took in consideration only the Eorder sample

process 2.0.

6.4.1 EOrder Process

The main process takes a formatted string as an input and returns a string that

indicates whether the order was confirmed or rejected. It contains the following

steps:

• The string is first converted to a complex data object. If an exception is

caught (indicating that the string is incorrectly formatted), an alarm is

raised and the order is rejected.

• The data is checked for accuracy.

• The process determines whether payment is via a purchase order or a

credit card.

• Credit card orders are sent to a subprocess that authorizes the credit

purchase.

• Purchase orders are validated by an application that checks the vendor‘s

record and authorizes the purchase amount.

• The order is entered into the database and an order number is issued. The

next three activities happen in parallel:

• An acceptance message is composed to return to the end user. A

subprocess is invoked asynchronously to fill the order.

• An order confirmation email is sent to the end user. This activity is a

66

special activity that is managed by the system. It uses

ExtendedAttributes to specify the information the system needs for the

email.

• If an order is rejected, either because it is inaccurate or cannot obtain

authorization, a rejection message is composed, to return to the

customer.

Figure 6.5 EOrder Main Process

6.4.2 Credit Check Sub-process

The CreditCheck subprocess sets up a CreditInfo object from the input

parameters and then sends the information to a credit card web service for

authorization. The web service returns a status string that is converted to an

OrderStatus string and returned to the calling process.

Figure 6.6 The Credit Check sub-process

6.4.3 Fill Order Sub-process

This subprocess handles the shipping and billing of the order. This process

includes a participant called a “Shipper”

• The first activity displays the order information to a Shipper who ships

67

the items in the order and records the status of the line items. The

application returns the status of the order -- whether it is complete or

backordered. This activity includes some deadlines. If the activity is not

completed within 3 days, a notifyException is thrown an alarm is raised.

If the activity is still not completed within 5 days, a timeoutException is

thrown and the order is canceled.

• The process then determines if it is a PO or credit order. PO orders are

sent to the billing system and then an electronic invoice is created and

stored on a server.

• Credit card orders are sent to the credit card web service for charging

and then an electronic receipt is created and stored on a server.

• The last step sends the invoice or receipt to the customer as an

attachment to an email message. It uses ExtendedAttributes to specify

the information needed for the email.

Figure 6.7 The Fill Order sub-process

68

6.5 Metric Results

The process described above was executed both with the stand-alone application

and with the web application, obtaining the same results and therefore will be

presented only the stand-alone results. The EOrder.xpdl file has been loaded and

parsed from BPMETRICS and metrics have been selected to perform as shown in

Figure 6.8.

Figure 6.8 Options panel of the BPMETRICS standalone application showing the metrics
selected to be computed for the EOrder sample process.

The values of the metrics obtained, as shown in Figure 6.9, will now be

analyzed.

69

Figure 6.9 Result panel of the BPMETRICS standalone application showing the metric
results computed for the EOrder sampe process

6.5.1 Activity Metrics

The only activity metrics that the software evaluates is the Activity Size. The

BPMETRICS application returns these results:

• Workflow: 20

• Eorder main process: 10

• Credit Check SubProcess: 3

• Fill Order SubProcess:9

The correctness of the results is now checked by manual calculating.

In the EOrder main process, we have 10 activities (2 of them are sub Process), 3

Routing Task. Hence,

70

§ Activity Size = 10

In the Credit Check sub-process, we have 3 Activities, 0 Routing Task. Hence,

§ Activity Size = 3

In the Fill Order sub-process, we have 9 activities, 0 Routing Task.

§ Activity Size = 9

6.5.2 Data Flow Metrics

For the Data Flow Metrics the BPMETRICS evaluates 2 metrics: Size and

Complexity. The results follow:

Data Flow Size

• Workflow : 41

• EOrder main process: 21

• Credit Check SubProcess: 9

• Fill Order SubProcess:11

Data Flow Complexity

• Workflow: 44

• EOrder main process: 24

• Credit Check SubProcess: 9

• Fill Order SubProcess:11

All these metrics are correct since the Eorder main process activities are using
21 parameters and the process itself has 3 routing tasks. The activities in the
Credit Check SubProcess use 9 parameters and the ones in the Fill Order
SubProcess use 11 parameters.

71

6.5.3 Resources Metrics

For the resources Metrics the BPMetrics evaluates 2 metrics: Size and Coupling.

The results follow:

Resource Size

• Workflow : 3

• Eorder main process: 1

• Credit Check SubProcess: 1

• Fill Order SubProcess:1

Resource Coupling

• Workflow: 0

• Eorder main process: 0

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

Considering the correctness of the result, Resource size is correct since each

process has a single Swim Lane so each process has only one resource. Also the

Resource coupling is correct due to the fact that having only one swim lane for

each process mean that there aren’t transition that are crossing swim lanes.

6.5.4 Control Flow Metrics

The majority of the metrics that the software evaluates are grouped under the

Control Flow Metrics category and now we are going to see in details the

results:

Event Size:

• Workflow: 7

72

• Eorder main process: 3

• Credit Check SubProcess: 2

• Fill Order SubProcess:2

Start Event Size:

• Workflow: 3

• Eorder main process: 1

• Credit Check SubProcess: 1

• Fill Order SubProcess:1

End Event Size:

• Workflow: 3

• Eorder main process: 1

• Credit Check SubProcess: 1

• Fill Order SubProcess:1

Intermediate Event Size:

• Workflow: 1

• Eorder main process: 1

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

The four metrics listed above that consider the events are all correct since each

process has one start event and one end event and only the EOrder main process

has one Intermediate Event.

Now we can consider the Control Flow Metrics related to the connectors inside

the processes:

Connector Size:

• Workflow: 3

• EOrder main process: 3

73

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

AndSplitSize:

• Workflow: 1

• EOrder main process: 1

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

AndJoinSize:

• Workflow: 1

• EOrder main process: 1

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

OrSplitSize:

• Workflow: 0

• Eorder main process: 0

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

OrJoinSize:

• Workflow: 0

• EOrder main process: 0

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

XorSplitSize:

• Workflow: 1

• EOrder main process: 1

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

74

XorJoinSize:

• Workflow: 0

• EOrder main process: 0

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

All the metrics are correct since only the EOrder main process has three

connectors: an AND split, an AND join and a XOR split.

Now we can now consider the Control Flow Size and the Control Flow

Complexity and check directly their correctness.

Control Flow Size:

• Workflow: 23

• Eorder main process: 13

• Credit Check SubProcess: 3

• Fill Order SubProcess:9

Control Flow Complexity:

• Workflow: 3

• Eorder main process: 3

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

The control flow size is correct since Eorder main process contains 2 subProcess

activities: thus, when evaluating the expanded main process, we have to subtract

two activities from the count. However, the Control Flow Complexity is correct

since:

75

𝑪𝑭𝑪𝑨𝑵𝑫!𝒔𝒑𝒍𝒊𝒕 𝒓𝒕 = 𝟏

𝑪𝑭𝑪𝑿𝑶𝑹!𝒔𝒑𝒍𝒊𝒕 𝒓𝒕 = 𝒇𝒂𝒏− 𝒐𝒖𝒕 𝒓𝒕 = 𝟐

𝑪𝑭𝑪𝑶𝑹!𝒔𝒑𝒍𝒊𝒕 𝒓𝒕 = 𝟐𝒇𝒂𝒏!𝒐𝒖𝒕(𝒓𝒕) − 𝟏 = 𝟎

𝐶𝐹𝐶 𝑟𝑡 = 𝐶𝐹𝐶!"#!!"#$% 𝑟𝑡 + 𝐶𝐹𝐶!"#!!"#$% 𝑟𝑡 + 𝐶𝐹𝐶!"!!"#$% 𝑟𝑡

= 1+ 2 = 3

Diameter:

• Workflow: 20

• Eorder main process: 10

• Credit Check SubProcess: 5

• Fill Order SubProcess:7

This metric is correct since any single process diameter is correct and the

expanded diameter too due to the fact we have not to consider the 2 task

representing the sub processes.

Considering the metrics that put in relation the number of nodes and the number

of arcs:

Density:

• Workflow: 0,04

• Eorder main process: 0,1

• Credit Check SubProcess: 0,2

• Fill Order SubProcess:0,11

CNC

• Workflow: 1,16

76

• Eorder main process: 1,33

• Credit Check SubProcess: 0,8

• Fill Order SubProcess:1,09

Activity Coupling

• Workflow: 0,86

• Eorder main process: 0,75

• Credit Check SubProcess: 1,25

• Fill Order SubProcess:0,92

dc

• Workflow: 2

• Eorder main process: 2

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

Max dc:

• Workflow: 3

• Eorder main process: 3

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

All the metrics above are correct since the characteristics of each process are:

• Workflow: N = 31, A = 36

• EOrder main process: N = 15, A =20

• Credit Check SubProcess: N = 5, A = 4

• Fill Order SubProcess: N = 11, A = 12

77

Separability:

• Workflow: 0,33

• Eorder main process: 0,27

• Credit Check SubProcess: 0,21

• Fill Order SubProcess:0,04

This metric is correct since the Eorder main process has 3 cut vertices, the

Credit Check SubProcess has 1 cut vertices and the Fill Order SubProcess has 1

cut vertex.

Sequentiality:

• Workflow: 0,69

• Eorder main process: 0,45

• Credit Check SubProcess: 3,25

• Fill Order SubProcess:2,08

Average Depth

• Workflow: 0,33

• Eorder main process: 1

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

Max Depth

• Workflow: 2

• Eorder main process: 2

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

78

The metrics Sequentiality, Average Depth and Max Depth are correct but the

proof for this kind of metrics is not so simple that you can write it in a clear and

comprehensive.

MM

• Workflow: 2

• Eorder main process: 2

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

CH

• Workflow: 0,58

• Eorder main process: 0,58

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

The Connector Mismatch metric (MM) and the Connector Heterogeneitymetric

(CH) are both correct since only the EOrder main process has three connectors:

an AND split, an AND join and a XOR split.

CYC

• Workflow: 0

• Eorder main process: 0

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

The Cyclicity metric is correct since none of the processes have a cycle between

its activities.

TS

• Workflow: 2

79

• Eorder main process:2

• Credit Check SubProcess: 0

• Fill Order SubProcess:0

Finally, also the Token Split metric is correct since only the EOrder main

process has 1 AND-split with 3 outgoing transition and no OR-splits.

80

Chapter 7

Conclusions and Future Works

The thesis aims at developing an application that allows one to compute some

metrics for Business Process Models defined by the XPDL language (XML-

Process Definition Language).

Some 30 metrics were implemented, providing a tool as much complete as

possible.

7.1 Conclusions

During the research about Business Process Metrics and during the development

of the BPMETRICS system, it clearly appeared that many organizations are

modelling and designing business processes without the support of metrics to

question the quality or properties of their business process models. As result, it

may happen that simple processes are modeled in a complex and unsuitable

way, leading to a poor readability, lower understandability, higher maintenance

costs and inefficient execution.

As modern organizations spend a lot of time and resources in creating and

maintaining business processes, the importance of business process metrics is

becoming increasingly important over time.

The BPMETRICS application is a step towards this direction, offering to the users

a tool to support the development, creation and maintenance of business

processes.

Nevertheless, during the analysis and the development, some metrics from the

literature have been discarded, not just for being unuseful to provide a quality

instrument, but for being uncomputable and based only on some internal

characteristics of the business process model.

81

Another aspect that emerged during the implementation of the algorithms is that

the adopted metrics are computed for Business Process Models that strongly

linked to the graph-based models and therefore, the algorithms implemented to

calculate the metrics are simply algorithms implemented on graphs and

consequently are strictly coupled to the complexity and to the problems that the

graphs can lead to.

Finally, the project confirmed that one single metric is not capable of identifying

the entire complexity of a business process model or the presence of errors and

bugs within it. Many metrics describe many aspects of BPM and can be used

during the design phase in order to make design decisions based on empirical

data and not on the intuition, possibly dictated by a limited experience.

7.2 Future Research Directions

Since this research is still in its early days, many features can be proposed to

enrich the BPMETRICS system.

A visual tool for the creation of Business Process Models that integrates with the

BPMETRICS application would allow the designer to obtain some metrics in

"real time" during the design phase.

 BPMETRICS could also benefit from the extension of the supported format and

language. In fact, the system could be extended to read XPDL files generated by

other design software, implementing the standard XPDL, i.e. not only Together

Workflow Editor, covering the various dialects of the XPDL. Continuing this

direction, one could extend the application to cover languages not directly

derived from the XPDL, such as EPC or YAWL [5, 32, 33].

Some other metrics could be implemented, tailoring them from other scientific

fields and trying to adapt them to the Business Process Model.

82

Finally, another possible improvement may combine the metrics to an error

prediction model, based on the calculated metrics. This was highlighted, even if

partially, by Mendling in [5]: however this kind of application requires a lot of

empirical validation of the metrics.

83

References

[1] Melenovsky, M.J.; Business Process Management’s Success Hinges on

Business-Led Initiatives. Gartner Note G00129411 (2005)
[2] Workflow Management Coalition website. XPDL Support and Resources.

http://www.wfmc.org/xpdl.html
[3] Antonini, A.; Ferreira, A.M.; Morascan, S.; Pozzi, G.; Software Measure

for Business Process. In: Proc. II of the 15th East-European Conference on
Advances in Databases and Information Systems, Vienna, Austria,
September 20 - 23, 2011.

[4] Vanderfeesten, I.; Cardoso, G.; Mendling, G.; Reijers, H.A.; Van der
Aalst, W.; Quality Metrics for Business. BPM and workflow handbook,
Ed. L. Fischer, pp.179-190 (2007)

[5] Mendling, J.; Metrics for Business Process Models: Empirical
Foundations of Verification, Error Prediction, and Guidelines for
Correctness. Springer (2008)

[6] Lee, G.S., Yoon, J.-M.: An empirical study on the complexity metrics of
petri nets. In: JTC-CSCC: Joint Technical Conference on Circuits
Systems, Computers and Communications, 1990, pp. 327–332 (1990)

[7] Lee, G.S., Yoon, J.-M.: An empirical study on the complexity metrics of
petri nets. Microelectronics and Reliability 32(3), 323–329 (1992)

[8] Nissen, M.E.: Valuing it through virtual process measurement. In: Proc.
15th. International Conference on Information Systems, Vancouver,
Canada, pp. 309–323 (1994)

[9] Nissen, M.E.: Knowledge-based organizational process redesign: using
process flow measures to transform procurement. PhD thesis, University
of South California (1996)

[10] Tjaden, G.S., Narasimhan, S., Mitra, S.: Structural effectiveness metrics
for business processes. In: Proceedings of the INFORMS Conference on
Information Systems and Technology, May 1996, pp. 396–400 (1996)

[11] Tjaden, G.S.: Business process structural analysis. Technical report,
Georgia Tech Re- search Corp. (June 2001)

[12] Morasca, S.: Measuring attributes of concurrent software specifications in
petri nets. In: METRICS ’99: Proceedings of the 6th International
Symposium on Software Metrics, Washington, DC, USA, pp. 100–110.
IEEE Computer Society Press, Los Alamitos (1999)

84

[13] Latva-Koivisto, A.M.: Finding a complexity for business process models.
In: Research report, February 2001, Helsinki University of Technology
(2001)

[14] Reijers, H.A.: A cohesion metric for the definition of activities in a
workflow process. In: Proceedings of the Eighth CAiSE/IFIP8.1
International Workshop on Evaluation of Modelling Methods in Systems
Analysis and Design (EMMSAD 2003), pp. 116–125 (2003)

[15] Cardoso, J.: About the complexity of teamwork and collaboration
processes. In: 2005 IEEE/IPSJ International Symposium on Applications
and the Internet Workshops (SAINT 2005 Workshops), 31 January - 4
February 2005, Trento, Italy, pp. 218–221. IEEE Computer Society Press,
Los Alamitos (2005)

[16] Cardoso, J.: Evaluating Workflows and Web Process Complexity. In:
Fischer, L. (ed.) Workflow Handbook 2005, pp. 284–290. Future
Strategies, Inc., Lighthouse Point (2005)

[17] Canfora, G., Garc ́ıa, F., Piattini, M., Ruiz, F., Visaggio, C.A.: A family of
experiments to validate metrics for software process models. Journal of
Systems and Software 77(2), 113–129 (2005)

[18] Balasubramanian, S., Gupta, M.: Structural metrics for goal based
business process design and evaluation. Business Process Management
Journal 11(6), 680–694 (2005)

[19] Gruhn, V., Laue, R.: Adopting the cognitive complexity measure for
business process models. In: Yao, Y., Shi, Z., Wang, Y., Kinsner, W.
(eds.) Proceedings of the Firth IEEE International Conference on
Cognitive Informatics, ICCI 2006, July 17-19, Beijing, China, pp. 236–
241. IEEE Computer Society Press, Los Alamitos (2006)

[20] Gruhn, V., Laue, R.: On experiments for measuring cognitive weights for
software control structures. In: Zhang, D., Wang, Y., Kinsner, W. (eds.)
Proceedings of the Six IEEE International Conference on Cognitive
Informatics, ICCI 2007, August 6-8, Lake Tahoe, CA, USA, pp. 116–119.
IEEE Computer Society Press, Los Alamitos (2007)

[21] Vanderfeesten, I., Mendling, J., Reijers, H., van der Aalst, W., Cardoso, J.:
On a quest for good process models: The cross-connectivity metric. In:
Bellahse`ne, Z., Le ́onard, M. (eds.) CAiSE 2008. LNCS, vol. 5074,
Springer, Heidelberg (2008))

[22] Conte, S.D.; Dunsmore, H.E.; and Shen, V.Y. (1986). Software
Engineering Metrics and Models, Benjamin/Cummings Publishing
Company, Inc..

85

[23] Shepperd, M. (1993). Software Engineering Metrics Volume I: Metrics
and Validations, McGraw-Hill.

[24] Brandes, U., and Erlebach, T., editors (2005). Network Analysis:
Methodological Foundations [outcome of a Dagstuhl seminar, 13-16 April
2004], volume 3418 of Lecture Notes in Computer Science. Springer-
Verlag.

[25] Reijers, H. A., and Vanderfeesten, I.T.P. (2004). Cohesion and Coupling
Metrics for Workflow Process Design. In J. Desel, B. Pernici, and M.
Weske, editors, Proceedings of the 2nd International Conference on
Business process Management (BPM 2004), Lecture Notes in Computer
Science volume 3080, pp. 290-305, Springer-Verlag, Berlin.

[26] Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A Discourse on
Complexity of Process Models. In: Eder, J., Dustdar, S. (eds.) BPM
Workshops 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg
(2006)

[27] Briand, L.C; Morasca, S.; Basili, V.R.; Property-Based Software
Engineering Measurement. IEEE Transactions on Software Engineering,
VOL. 22, NO. 1, January 1996.

[28] Nissen, M.E.: Redesigning reengineering through measurement-driven
inference. MIS Quarterly 22(4), 509–534 (1998)

[29] Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and coupling metrics for
workflow process design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM
2004. LNCS, vol. 3080, pp. 290–305. Springer, Heidelberg (2004)

[30] Henry, S., Kafura, D.: Software structure metrics based on information-
flow. IEEE Transactions On Software Engineering 7(5), 510–518 (1981)

[31] Workflow Management Coalition: Workflow Process Definition Interface
– XML Process Definition Language. Document Number WFMC-TC-
1025, December 5, 2008, Version 2.1b, Workflow Management Coalition
(2008)

[32] Mendling, J.; Moser, M.;Neumann, G.: Transformation of yEPC Business
Process Models to YAWL. In: 21st Annual ACM Symposium on Applied
Computing, Dijon, France, vol. 2, pp. 1262–1267. ACM, Dijon, France
(2006)

[33] Mendling, J.; Nu ̈ttgens, M.: Exchanging EPC Business Process Models
with EPML. In: Nu ̈ttgens, M., Mendling, J. (eds.) XML4BPM 2004,
Proceedings of the 1st GI Workshop XML4BPM – XML Interchange
Formats for Business Process Management at 7th GI Conference
Modellierung 2004, Marburg, Germany, March 2004, pp. 61–80 (2004)

