POLITECNICO DI MILANO

VI Facoltà di Ingegneria Edile-Architettura

Corso di Laurea Specialistica in Ingegneria dei Sistemi Edilizi

IMPROVEMENT OF CESTEC-ANCE THERMAL BRIDGES ABACUS

Degree thesis of: Elisa AFFETTI

Matriculation number: 752185

Supervisor: Prof. Ing. Livio MAZZARELLA

Assistant Supervisor: Ing. Michele LIZIERO

Academic Year 2010-2011

ESTRATTO

Come è ben noto, l'edilizia comporta il 40% del consumo globale di energia ed è il settore con le più ampie possibilità di miglioramento. Per questo motivo le direttive europee 2002/91/CE e 2010/31/UE forniscono regole generali sull'efficienza energetica in edilizia. Dall'entrata in vigore di queste norme, gli edifici sono divenuti sempre più efficienti e quindi il ponte termico ha assunto sempre più influenza all'interno del bilancio energetico dell'edificio.

Lo scopo di questa tesi è quello di completare e validare l'abaco dei ponti termici redatto dal Dipartimento di Energia del Politecnico di Milano in collaborazione con ANCE¹ e con CESTEC². Questo abaco è composto da schede che riportano, per ogni schematizzazione di ponte termico, le correlazioni (per le dimensioni interne ed esterne) che identificano la trasmittanza lineica in funzione di diversi parametri che rappresentano le caratteristiche termofisiche e geometriche degli elementi costruttivi in esame.

In primo luogo, per completare l'abaco, sono state sviluppate nuove correlazioni che esprimono il fattore di temperatura superficiale, fattore che permette di valutare la condensazione superficiale.

In secondo luogo si è deciso di validare parte delle correlazioni dell'abaco per capire quanto queste possano essere applicate alla realtà. A questo scopo sono state svolte delle simulazioni su nodi costruttivi reali e si è valutato l'errore che i risultati di queste generano in riferimento alla correlazione di riferimento.

Questa tesi quindi ha permesso di ottenere delle correlazioni che permettono di valutare anche la seconda conseguenza del ponte termico (la condensazione) e di stimare quale errore ci si possa aspettare nello studio di casi reali.

Le correlazioni determinate per il fattore di temperatura superficiale presentano un intervallo di confidenza spesso vicino a 0.01, valore che indica un buona relazione tra le variabili in esame. Dalla validazione emerge che l'impiego di stratigrafie non omogenee spesso può portare a valori al di fuori dell'intervallo di confidenza prescritto. Nei casi con un errore rilevante è necessario svolgere un'analisi più approfondita tramite ulteriori simulazioni bidimensionali.

¹ ANCE: Associazione Nazionale Costruttori Edili.

² CESTEC: Centro per lo Sviluppo Tecnologico, l'Energia e la Competitività.

ABSTRACT

As well known, building determines 40% of the total energy consumption in the world and it is the sector which has the widest possibilities of improvement. It is for this reason that the European directives 2002/91/CE and 2010/31/UE provide general rules about the energy efficiency in buildings. Since these norms were established, buildings have become more and more efficient and so thermal bridges have more and more influence inside the building energy balance.

The general purpose of this thesis is to complete and validate the thermal bridges abacus drawn up by the Energy Department of *Politecnico di Milano* in collaboration with ANCE and CESTEC. This abacus is composed of reports which contain, for each thermal bridge schematization, the correlations (based on internal and external dimensions) which provide the linear thermal transmittance as a function of different parameters. These represent the thermophysical and geometrical characteristics of the building elements taken into consideration.

First, to complete the CESTEC abacus it has been necessary to develop new correlations about the temperature factor at the internal surface, the factor that allows the evaluation of the superficial condensation.

Secondly, it has been decided to validate part of the abacus correlations to understand how much these could be applied on real building junctions. For this purpose it has been evaluated the error generated by these real cases related to the correlation taken in exam.

Therefore this thesis has given the possibility to obtain some correlations which allow to estimate also the second effect of the thermal bridge (the condensation) and to evaluate the error which could be expected in real case studies.

The correlations for the temperature factor at the internal surface present a confidence interval often near to 0.01, a value that shows a good relation among the variables considered. From the validation it emerges that the use of non-homogeneous stratigraphy can often bring the results out of the confidence interval provided by the report. In cases with a significant error it is necessary to have a deeper analysis through further two-dimensional simulations.

TABLE OF CONTENTS

LIS	ST OF FIGURES	3
LIS	ST OF TABLES	4
1	INTRODUCTION	5
2	THERMAL BRIDGES	7
2		
	2.2 THERMAL BRIDGE DEFINITION	
	2.2.1 Normative definition	9
	2.2.2 Thermal bridge description	
		18
	2.3 LINEAR THERIVIAL TRANSIVITTAINCE ADACUS DESCRIFTION	
	2.3.2 Parameters definition	
	2.3.3 Calculation dominion	24
	2.4 TEMPERATURE FACTOR AT THE INTERNAL SURFACE	
	2.4.1 Temperature factor at the internal surface definition	
	2.5 NUMERICAL METHODS AND PROGRAMS USED	30
	2.5.1 Finite Volume Method (FVM) description	
	2.5.2 Finite Element Method (FEM)description	
	2.5.3 FVM and FEM according to the UNI EN ISO 10211	
	2.5.5 THERM	
	2.6 STATISTICAL PRINCIPLES	
З		41
5		л 1
	3.1 LINEAR THERMAL TRANSMITTANCE CALCULATION	
	3.2 TEMPERATURE FACTOR AT THE INTERNAL SURFACE DETERMINATION	
	3.3 1 Reports structure	
	3.3.2 Junction between external wall and un-insulated pillar	
	3.3.3 Junction between external wall and insulated pillar	
	3.3.4 Concave corner with un-insulated pillar	
	3.3.5 Concave corner without pillar	
	3.3.7 Projecting corner with un-insulated pillar	64
	3.3.8 Projecting corner with insulated pillar	68
	3.3.9 Projecting corner without pillar	
	3.3.10 Junction between external wall and insulated plane roof with un-insulated beam	
	3.3.12 Junction between external wall and insulated plane roof with insulated beam	
	3.3.13 Junction between external wall and un-insulated plane roof with parapet	
	3.3.14 Junction between external wall and insulated plane root with parapet	
	3.3.16 Junction between external wall and floor with insulated beam	
	3.3.17 Junction between external and internal walls	100
	3.3.18 Junction between external wall and un-insulated balcony.	
	3.3.19 Junction between external wall and window positioned in the middle	
	3.3.21 Junction between external wall and window positioned outside	
	3.3.22 Junction between external wall and window positioned inside	123
	3.4 FINAL EVALUATION ABOUT CONDENSATION	129
4	VALIDATION	135
	4.1 ADOPTED APPROACH	
	4.2 PROGRAMS COMPARISON	
	4.3 VALIDATION REPORTS	
	4.3.1 Reports structure	
	4.3.2 Junction between external wall and pillar	
	4.3.3 Projecting corners	165 189
_		
5	CONCLUSIONS	205

6	ANNEXES	207
	 6.1 ANNEX A: EC of some correlations of CESTEC-ANCE thermal bridges abacus 6.2 ANNEX B: Thermal characteristics of the adopted stratigraphies 6.3 ANNEX C: Surface resistances applied in the simulations 6.4 ANNEX D: Dimensions used in the simulations 6.5 ANNEX E: Reports with nine validation cases 	207 208 214 217 222
7	BIBLIOGRAPHY	228
	7.1 NORMATIVE REFERENCES 7.1.1 International standards 7.1.2 European directives 7.1.3 National norms and laws 7.2 BOOKS AND MAGAZINES 7.2.1 Books 7.2.2 Journals 7.3 WEB SITES	228 228 228 228 229 229 229 229 229

LIST OF FIGURES

Figure 2.1 - Example of development of the temperature at the internal surface	12
Figure 2.2 – Examples of structural an geometrical discontinuities [W10]	12
Figure 2.3 - UNI EN ISO 13789 [N8], Figure 1	14
Figure 2.4 - Example of corner without pillar	14
Figure 2.5 - Scheme of internal and external dimensions of a corner	15
Figure 2.6 - Subdivision of the thermal bridge in two parts	15
Figure 2.7 - Identification of the fictitious wall	16
Figure 2.8 - Fictitious wall for a corner	17
Figure 2.9 - Superficial condensation photo [W11]	18
Figure 2.10 - UNI EN ISO 6946 [N1], table 1	22
Figure 2.11 - Temperature profile (junction between wall and pillar, Um, I=2m)	24
Figure 2.12 - Temperature profile (junction between wall and pillar, Um, I=1m)	24
Figure 2.13 - Temperature profile in different sections of the wall	25
Figure 2.14 - UNI EN ISO 13788 [N7], Annex A, figure A.1	28
Figure 2.15 - Evaluation through an ASHRAE diagram	29
Figure 2.16 - Cell-centered solution on the left and vertex-centered solution on the right [W4]	31
Figure 2.17 - Example of a shape function [W15]	32
Figure 2.18 - Basic program structure [B4]	35
Figure 2.19 - Correlation examples [W5]	38
Figure 3.1 - Structure of the reports of the thermal bridges abacus	44
Figure 3.2 - Heat flow rate in concave corners with three different type of insulated wall	130
Figure 3.3 - Comparison between concave and projecting corners	131
Figure 3.4 - Windows comparison	134
Figure 4.1 - Schematization of the thermal bridge dimensions	136
Figure 4.2 - Structure or the first page of validation reports	144
Figure 4.3 - Structure of the second page of the validation reports	145
Figure 4.4 - Rectangular pillar case	165
Figure 4.5 - L-shape beam case	189
Figure 5.1 – External wall insulated in the middle with floor and insulated beam	206
Figure 5.2 - External wall insulated inside with un-insulated plane roof, insulated beam and insu	ilated
parapet	206
Figure 6.1 - Uy schematization	207

LIST OF TABLES

26
27
28
1 1
ł3
)8
)9
10
11
12
13
6
17
17
8
9
20
20
21
21
21
2224400111111122222

1 INTRODUCTION

It is well known that buildings are responsible for 40% of the global energy consumption and that the construction sector is the field with more possibilities to reduce its energy use.

For this reason the European directives 2002/91/CE and 2010/31/UE impose general rules about the energy efficiency in buildings. Owing to this growth of European norms, which has caused the drawing up of the national ones, the buildings start being more and more efficient and so the thermal bridge influence becomes more and more significant: dispersions due to the thermal bridge can reach 50% of the total energy consumption of a building.

In recent years it has never been developed rules which could be sufficient and exhaustive to evaluate the real influence of a thermal bridge in the building energy balance. For this reason the Energy Department of *Politecnico di Milano* with the support of ANCE and CESTEC has drawn up a thermal bridges abacus. This abacus provides reports with a graphic representation of the thermal bridge schematization and some correlations (based on internal and external dimensions) which allow the assessment of the linear thermal transmittance with their confidence interval and validity fields. These correlations are expressed in function of some parameters, which define the thermophysical and geometrical characteristics of the building elements composing the thermal bridge.

The UNI EN ISO 14683 [N9] says that thermal bridges are building discontinuities which [...] "give rise to changes in heat flow rates and surface temperatures compared with those of the unbridged structure." These two effects are expressed respectively by the linear thermal transmittance and the temperature factor at the internal surface. So the CESTEC-ANCE thermal bridges abacus considers only the first one of these aspects.

This thesis starts from this abacus to develop the correlations of the temperature factor at the internal surface and to validate some abacus reports through real building junctions.

The first step to define these new correlations has been the extrapolation of the results of surface temperature provided by the same simulations used to calculate the linear thermal transmittance. Through these temperature values it has been possible to determine the minimum acceptable value of the temperature factor at the internal surface for each simulation. Then these final results have been unified in correlations, one for each schematization of thermal bridge, based on the same parameters described before.

The second part of this thesis is the validation of some of the abacus reports. For this purpose, it has been decided to validate some representative families of thermal bridge, which are:

- junctions between external wall and pillar;
- projecting corners;
- junctions between external wall and floor.

This validation starts from simulations on real building junctions that correspond to the reference ones. The outputs of these simulations have allowed the evaluation of the linear thermal transmittance and the temperature factor at the internal surface for each validation case. With these values it has been possible to evaluate the mean square error generated by them with reference to the abacus correlations. In this way it is possible to compare the confidence interval obtained through the simulations on thermal bridge schematizations (for the reference thermal bridges abacus), which are characterized by homogeneous layers, and the mean square error generated by simulations on real building junctions, characterized by

non-homogeneous layers. The mean square error is also represented by its percentage on the average of the values provided by the real examples simulated.

In conclusion, the following chapters give: an introductive description of all the theoretical aspect taken into consideration in this study in chapter **2**; the calculation procedure for linear thermal transmittance and temperature factor at the internal surface, the final abacus reports and a conclusive evaluation on condensation in chapter **3**; the adopted approach during the validation, its final reports and their evaluation in chapter **4**.

2 THERMAL BRIDGES

2.1 NORMATIVE REFERENCES

In order to evaluate the influence of a thermal bridge in the building energy balance, first of all it's necessary to calculate the thermal transmittance of any constructive element. From this point of view, the normative references are:

- UNI 7357 FA-3 [N11]: this standard introduces a calculation method to determine the thermal need to heat a building and in its annex indicates some rules to obtain the unitary wall thermal transmittance. It considers cases of homogeneities, heterogeneities, variable thicknesses, ventilated air layers, different types of junction (between two similar or different walls, between walls and doors or windows, between internal and external walls, etc.), ground floors and basement walls. The thermal resistance of an homogeneous layer is the ratio between the thickness and the thermal conductivity of the layer itself. The normative reference for thermal conductivities indicated in this standard is the UNI FA 101.
- UNI 10351 [N12]: this norm integrates the UNI FA 101 and gives tabulated values of thermal conductivity and vapour permeability of the most materials on the market.
- UNI 10355 [N13]: this standard gives tabulated values of thermal resistance for non homogeneous elements, such as walls and floors. In its annex it indicates the initial hypothesis used to determine these values and how are considered airspaces and plasters in the calculation method (Finite Element Method).
- UNI EN ISO 10456 [N6]: this norm gives tabulated values of hygrothermal properties for thermally homogeneous building materials and products. It indicates the test conditions and methods to obtain their declared and design values and how to convert tabulated values under other boundary conditions (different temperature, moisture, age and natural convection).
- UNI EN ISO 6946 [N1]: this standard provides rules to obtain the thermal resistance and transmittance of building elements, except windows, curtain walls, ground floors and components which are air permeable. It updates the UNI 7357 FA-3 and introduces the concept of superficial resistance, unheated space thermal resistance (for example roof spaces) and the correction factors for air voids in insulation, mechanical fasteners penetrating an insulation layer and precipitation on inverted roofs.
- UNI EN ISO 10077-1-2 [N3][N4]: these norms introduce rules to obtain the thermal transmittance of windows and doors (with different types of glazing, opaque panels, various types of frame and the additional thermal resistance introduced by different types of closed shutter). With the rules provided by the first part of this norm it is possible to obtain the thermal transmittance of: single, double or coupled windows; single or multiple glazing; windows with shutters and completely glazed doors or doors without glazing. In its annex it indicates tabulated values that have to be introduced in the rules explained over, such as the linear thermal transmittance of frame/glazing junction. The second part of this norm explains the numerical method to calculate the thermal transmittance of frame profiles and the linear thermal transmittance of their junction with glazing or opaque panels. It can also be used to evaluate the thermal resistance of shutter profiles and the thermal characteristics of roller shutter boxes.
- UNI EN ISO 9346 [N2]: this norm is a reference vocabulary to define a lot of the aspects used in studies about the energy balance.

One of the scopes of this thesis is to try to define a complete abacus about the temperature factor at the internal surface, based on a previous abacus about the linear thermal transmittance of some categories of thermal bridges, chosen through an analysis on the market. From this point of view, the normative references are:

- UNI EN ISO 14683 [N9]: this standard deals with simplified methods to determine heat flows through linear thermal bridges which occur at junctions of building elements. It shows how thermal bridges influence the overall heat transfer and it lists the possible methods to determine the linear thermal transmittance. In its annex it provides tabulated values of this for different types of junction of building elements, classified according to their composition, and some calculation examples.
- UNI EN ISO 10211 [N5]: this norm sets out the specifications for a three-dimensional and a two-dimensional geometrical model of a thermal bridge for the numerical calculation of heat flows, in order to assess the overall heat loss from a building or part of it, and minimum surface temperatures, in order to assess the risk of surface condensation. It explains the principles, the construction model and how to obtain the necessary outputs. In its annex it shows how to validate the numerical method, some calculation examples and the outputs determination with more boundary conditions.
- UNI EN ISO 13788 [N7]: this standard gives the calculation methods necessary to obtain the temperature at the internal surface of a building element below which mould growth is likely and the assessment of the risk of interstitial condensation due to water vapour diffusion, with some simplifying assumptions. For this purpose, it defines the temperature factor at the internal surface and provides same calculation examples. In the last annexes it considers additional aspects, such as the condensation on window frames.

2.2 THERMAL BRIDGE DEFINITION

2.2.1 Normative definition

The theme of the energy balance is diffusing a lot in the last period, owing to a greater interest in environmental problems, such as CO_2 emission and greenhouse effect. One of the most important aspect which influences the total dispersion of a building is the thermal bridge. As a consequence, a lot of norms have tried to define it and its effects.

The UNI EN ISO 14683 [N9], norm which provides tabulated values of the linear thermal transmittance, begins introducing the thermal bridge effects: "Thermal bridges in building constructions give rise to changes in heat flow rates and surface temperatures compared with those of the unbridged structure. These heat flow rates and temperatures can be precisely determined by numerical calculation in accordance with ISO 10211. However, for linear thermal bridges, it is often convenient to use simplified methods or tabulated values to obtain an estimate or their thermal transmittance.

The effect of repeating thermal bridges which are part of an otherwise uniform building element, such as wall ties penetrating a thermal insulation layer or mortar joints in lightweight blockwork, needs to be included in the calculation of the thermal transmittance of the building element concerned, in accordance with ISO 6946.

Although not covered by this International Standard, it is worth noting that thermal bridges can also give rise to low internal surface temperatures, with an associated risk of surface condensation or mould growth."

This standard defines linear thermal bridge as a "thermal bridge with a uniform cross section along one of the three orthogonal axes" and indicates the locations in a building envelope in which it is possible to find it:

- at junctions between external elements (corners of walls, wall to roof, wall to floor);
- at junctions of internal walls with external walls and roofs;
- at junctions of intermediate floors with external walls;
- at columns in external walls;
- around windows and doors.

The UNI EN ISO 10211 [N5], as indicated in the UNI EN ISO 14683 introduces the use of numerical methods to evaluate the thermal bridge effects: "Although similar calculation procedures are used, the procedures are not identical for the calculation of heat flows and of surface temperatures.

A thermal bridge usually gives rise to three-dimensional or two-dimensional heat flows, which can be precisely determined using detailed numerical calculation methods as described in this International Standard.

In many applications, numerical calculations based on a two-dimensional representation of the heat flows provide results of adequate accuracy, especially when the constructional element is uniform in one direction."

"This International Standard sets out the specifications for a three-dimensional and a twodimensional geometrical model of a thermal bridge for the numerical calculation of:

- heat flows, in order to assess the overall heat loss from a building or part of it;
- minimum surface temperatures, in order to assess the risk of surface condensation.

These specifications include the geometrical boundaries and subdivisions of the model, the thermal boundary conditions, and the thermal values and relationships to be used.

This International Standard is based upon the following assumptions:

- all physical properties are independent of temperature;
- there are no heat sources within the building element.

This International Standard can also be used for the derivation of linear and point thermal transmittances and of surface temperature factors."

This norm defines precisely the concept of thermal bridge as a "part of the building envelope where the otherwise uniform thermal resistance is significantly changed by full or partial penetration of the building envelope by materials with a different thermal conductivity, and/or a change in thickness of the fabric, and/or a difference between internal and external areas, such as occur at wall/floor/ceiling junctions."

The UNI EN ISO 13788 [N7] inserts the concept of thermal bridge speaking about the determining parameters that govern surface condensation and mould growth, besides the external climate (air temperature and humidity), that are:

- "the "thermal quality" of each building envelope element, represented by thermal resistance, thermal bridges, geometry and internal surface resistance. The thermal quality can be characterized by the temperature factor at the internal surface, f_{Rsi};
- the internal moisture supply;
- internal air temperature and heating system."

The composition of international standards about environmental problems goes with the drawing up of European directives (such as the 2002/91/CE, modified by the 2010/31/UE [N10]) and national and regional norms (such as the D. Lgs. n.192 [N14], the D. Lgs. n.311 [N15], the D.D.G. n.5796 [N16], the D.G.R. n.VIII/8745 [N17] and the D.P.R. n.59 [N18]).

The D. Lgs. n. 192 and the D. Lgs. n.311 define the thermal bridge as an "insulation discontinuity which can be in correspondence of grafts of structural elements." They also impose that a thermal bridge is correct "when the thermal transmittance of the fictitious wall (part of the wall in correspondence of the thermal bridge) doesn't exceed that one of the wall for no more than the 15%."

The D.G.R. n.VIII/8745 expands a little the national definition: the thermal bridge is "a discontinuity in the thermal characteristics which can be in correspondence of grafts of structural elements (e.g. junction between floor and vertical structures or between vertical structures to each other) or also in presence of particular geometries (edges or corners)."

2.2.2 Thermal bridge description

The concept of thermal bridge is important in the calculation of the thermal dispersions of the building envelope.

The point of reference in this field is the Fourier differential equation, which, solved with hypothesis of one-dimensional flow and steady state, becomes:

$$Q = U \cdot A \cdot \Delta T \quad (W)$$
 (2.1)

Where:

- Q is the heat flow rate;
- U is the unitary wall thermal transmittance;
- A is the wall surface;
- ΔT is the difference between internal and external air temperatures.

The bases which this rule is constructed on are a lot:

- all the factors are constant during the time;
- the internal and external air temperatures have the same value in every point of the space;
- the materials thermal properties and the surface heat transfer coefficients are independent from the time;
- the walls are plane, extended indefinitely and composed by parallel material layers, which are all different;
- the thermal resistances due to the contact between two layers are null;
- the heat flow is one-dimensional and perpendicular to the plane surfaces delimiting the wall.

These hypothesis aren't so real: in fact, for example, the walls have finite dimensions and are located in the space in different way (e.g. corner) and the materials can't always create perfect and planar layers (e.g. brick wall with plaster joints). So the rule (2.1) doesn't consider these aspects with consequent errors in the calculation of the thermal dispersions and of the development of the temperature at the internal surface.

This temperature can be calculated equating the total heat flow rate and the heat flow rate in correspondence of the internal surface:

$$T_{si} = T_i - \frac{U}{h_i} \cdot (T_i - T_e)$$
 (K) (2.2)

Where:

- T_{si} is the temperature at the internal surface;
- T_i and T_e are internal and external air temperatures;
- h_i is the heat transfer coefficient at the internal surface.

The development of the value provided by this rule is shown in the following picture with a dotted line.

Figure 2.1 - Example of development of the temperature at the internal surface

This development isn't so real because temperature differences not equal to zero in correspondence of a constructive element different from the wall itself determine a transverse heat flow. This aspect contradicts the hypothesis of an heat flow one-dimensional and perpendicular to the wall surface. The presence of a transverse heat flow generates a less difference between the temperature at the internal surface in correspondence of the wall and of the discontinuity element, but it increases the length of the zone interested by the thermal bridge. The real temperature development is described by a continuous line in the picture before. As it is possible to see, in correspondence of the thermal bridge the isotherms aren't parallel to each other: they have a curvilinear development more accentuated when the effect of the thermal bridge is stronger. Owing to the fact that the heat flow is always perpendicular to the isotherms, in correspondence of the thermal bridge there is a concentration of the dispersions. These zones are characterized by a surface cooling and a loss of the wall insulating power with consequent variations in the energy balance.

So the thermal bridge is a constructive discontinuity that causes a twodimensional heat flow. A constructive discontinuity is a part of the building which presents thermal characteristics significantly different from that of the near ones.

In a building it is possible to find three different types of discontinuity: insulation one, material one (e.g. an armed concrete pillar in a brick wall) and geometric one (e.g. the corners without pillar or junctions between internal and external walls). Naturally it is possible to find the last two ones together (e.g. corners with an armed concrete pillar). The value of lost heat flow due to thermal bridge can reach the 30% of the total lost heat flow.

Figure 2.2 – Examples of structural an geometrical discontinuities [W10]

The critical points in which it is possible to find a thermal bridge are:

- junctions between wall and pillar or beam;
- ground floors;
- junctions between wall and window or door;
- junctions between internal and external walls;
- balconies;
- rolling shutter boxes.

The thermal bridges can be represented by the linear thermal transmittance Ψ . This factor indicates the loss of heat flow for a unitary length of the thermal bridge and for a unitary difference between internal and external air temperatures.

 Ψ is calculated comparing the situation with and without thermal bridge. As said before in (2.1) the theoretical heat flow rate is:

$$Q_{theor} = U \cdot A \cdot \Delta T \quad (W)$$

Whereas the real value is obtained by simulations through a two-dimensional calculation code.

 $\boldsymbol{\Psi}$ derives from the difference between these two values:

$$\Psi = \frac{(Q_{real} - Q_{theor})}{\Delta T \cdot l} \quad (\frac{W}{m \cdot K})$$
(2.3)

Where:

- O_{real} is the real heat flow rate;
- I is the development of the thermal bridge.

Through the rule provided before, it is possible to write:

$$Q_{real} = Q_{theor} + \Psi \cdot l \cdot \Delta T = \Delta T \cdot (U \cdot A + \Psi \cdot l) = \Delta T \cdot H_T \quad (W) \quad (2.4)$$

Where H_T is transmission heat transfer coefficient.

So to determine the linear thermal transmittance it is important to know precisely the thermal properties of each building element.

Now it is provided an example of calculation of thermal bridge applied on a corner without pillar.

One of the first questions is what dimensions to consider in the procedure. The UNI EN ISO 13789 [N8] indicates three different types of dimensions:

Key

a internal dimension

b overall internal dimension

c external dimension

Figure 2.3 - UNI EN ISO 13789 [N8], Figure 1

Considering external dimension and the contribution of the only walls, the transmission heat transfer coefficient is:

$$H_T = A_{1,E} \cdot U_1 + A_{2,E} \cdot U_2 \qquad (\frac{W}{K})$$
(2.5)

Where:

- A_{1,E} and A_{2,E} are the surfaces of the two walls of the corner based on external dimensions;
- $U_1 \in U_2$ are the thermal transmittances of the two walls.

It is evident that this calculation isn't correct because the "corner zone" is considered twice. So it is necessary to add the edge contribution through Ψ :

Figure 2.4 - Example of corner without pillar

So, using external dimensions, the thermal bridge characterized by a corner without pillar (geometrical discontinuity) is negative in order to reduce H_T . Whereas if in correspondence of

the junction between the walls there were a pillar (material discontinuity), this thermal bridge would become positive.

This reasoning is different using internal dimensions: in this case the thermal bridge is always positive because the "corner zone" is never considered.

Of course H_T based on external dimensions and H_T based on internal dimensions are equal. This aspect points out that the linear thermal transmittance value has to be consistent with the chosen dimensions system. The relation between the two values is:

$$\Psi_E = \Psi_I - s_1 \cdot U_1 - s_2 \cdot U_2 \qquad (\frac{W}{m \cdot K})$$
(2.7)

Where:

- Ψ_E is the linear thermal transmittance based on external dimensions;
- Ψ₁ is the linear thermal transmittance based on internal dimensions;
- $s_1 e s_2$ are the thicknesses of the two walls of the corner.

Figure 2.5 - Scheme of internal and external dimensions of a corner

In case of a planar junction internal and external dimensions are equal.

When a thermal bridge is in correspondence of the border between two different thermal zones (e.g. junction between a floor and an external wall) it can be halved. Of course this is a simplifying criterion; it is possible to do a lot of considerations about this argument: the thermal bridge contribution can be divided in different ways, such as on the basis of the thermal transmittance values of the different building elements in the junction or on their transmission heat transfer coefficient.

The evaluation of the thermal bridge is becoming more and more important because with the modern performing buildings

Figure 2.6 - Subdivision of the thermal bridge in two parts

the influence of discontinuity elements is very high (it can be about 50% of the total thermal dispersion). Above all this evaluation is necessary to respect normative prescriptions.

For example, the D. Lgs. n.311 [N15] imposes that:

- The total thermal dispersion is less than EP_i, which is the index of energy performance for heating air conditioning: the dispersions caused by thermal bridges are part of the total transmission dispersion of a building;
- There isn't superficial condensation: the thermal bridges determine a low surface temperature, which can be less than dew-point one and so it can cause superficial condensation;
- The building elements thermal transmittance is less than the limit imposed by this norm for each type of opaque element, indicated with U_{lim}: these limits are referred to a condition of correct thermal bridge; when the thermal bridge isn't correct the average between the element thermal transmittance and the fictitious wall one has to be less than the limit value.

This comparison is feasible when it is possible to identify the fictitious wall: this happens in case of planar junction with only material discontinuities, when the stratigraphy of the discontinuity element has layers perpendicular to the heat flow (e.g. junction between wall and pillar or between external wall and floor when this is homogeneous). For junctions between roof and external wall or corners, whereas, the problem is that there is a geometrical discontinuity (the stratigraphy and the heat flow aren't perpendicular between them) and so in this case is difficult to determine thermal transmittance in correspondence of the thermal bridge.

Figure 2.7 - Identification of the fictitious wall

In general the rules are:

$$U_{TB} \le U + 15\% \quad \left(\frac{W}{m^2 \cdot K}\right) \tag{2.8}$$

$$U < U_{lim} \quad \left(\frac{W}{m^2 \cdot K}\right) \tag{2.9}$$

Or with incorrect thermal bridge:

$$U_{ave} = \frac{U \cdot A + U_{TB} \cdot A_{TB}}{A + A_{TB}} < U_{lim} \quad (\frac{W}{m^2 \cdot K})$$
 (2.10)

Where:

- U_{TB} is the fictitious wall thermal transmittance;
- U is the wall thermal transmittance;
- U_{lim} is the limit value of thermal bridge imposed by D. Lgs. n.311 [N15] referred to a condition with correct thermal bridges;
- U_{ave} is the thermal transmittance value that corresponds to the weighted average between U and U_{TB} ;
- A is the wall surface;
- A_{TB} is the fictitious wall surface.

When it isn't possible to identify the fictitious wall U_{ave} is:

$$U_{ave} = \frac{\sum U_i \cdot A_i + \sum \Psi_j \cdot l_j}{A_{tot}} = \frac{\sum H_i}{A_{tot}} = \frac{H_T}{A_{tot}} \quad (\frac{W}{m^2 \cdot K})$$
 (2.11)

Where:

- $\sum U_i \cdot A_i$ is the sum of products between the thermal transmittance and the surface of each building element, indicated with subscript i;
- $\sum \Psi_j \cdot l_j$ is the sum of products between the linear thermal transmittance and the length of each thermal bridge, indicated with subscript j;
- A_{tot} is the total dispersant surface.

In general it is better to use this rule because the rule (2.10) considers the wall and the thermal bridge as two parts totally separated with a perpendicular heat flow, whereas they really interact and the heat flow is two-dimensional with a greater thermal dispersion: calculating the transmission heat transfer coefficient the relation between the wall and the thermal bridge is taken into consideration through Ψ .

Comparing the H_T based on external dimensions and H_T based on fictitious wall:

$$U_{TB} \cdot A_{TB} = U \cdot A_{TB} + \Psi \cdot l \quad (\frac{W}{m^2 \cdot K})$$
(2.12)

$$U_{TB} = U + \Psi \cdot \frac{l}{A_{TB}} = U + \frac{\Psi}{s} \quad (\frac{W}{m^2 \cdot K})$$
 (2.13)

Where:

- Ψ is the linear thermal transmittance of the thermal bridge;
- I is the development of the thermal bridge;
- s is the thickness of the incident wall.

The meaning of this rule is: the thermal transmittance increase is equal to the thermal bridge "spread" on the fictitious wall.

Figure 2.8 - Fictitious wall for a corner

2.2.3 Thermal bridge effects

The UNI EN ISO 14683 [N9] says that the two most important effects of a thermal bridge are:

- a change in the heat flow rate;
- a change in the internal surface temperature.

The first one can be calculated using numerical methods, such as Finite Element Method (FEM) and Finite Volume Method (FVM), or with simplified rules, provided by the normative references or by national catalogues.

The second one involves a verification of the hygrothermal behaviour of the building element. This verification is fundamental either during the project to identify the correct stratigraphies or in improvement intervention for insulation to understand the right position and thickness to adopt.

The non-homogeneous temperature distribution in correspondence of the structural elements can cause the growth of internal tensions with a consequent degradation of the materials.

The surface temperature decrease determines a local discomfort when the difference between the internal air temperature and the that of surface is more than 3K. When the temperature at the internal surface becomes less than that of the dew-point and there is the condensation with mould growth the hygienic conditions decrease a lot: the

Figure 2.9 - Superficial condensation photo [W11]

mould releases toxins and spores that can be breathed by **photo** [will] people. In this case it is used the following expression: "Sick Building Syndrome", concept that unifies all the indoor pollution problems, both microbiological and chemical or physical.

A low value of the surface temperature can cause two types of condensation: the superficial and the interstitial.

The interstitial condensation is due to the vapour diffusion inside the building element layers because of a difference between internal and external pressures. This passage doesn't create problems until the vapour meets a layer with a surface temperature less than the dew-point one. In this case it is important to verify that the condense accumulated during the heating period is disposed during the cooling period.

The condense permanence inside a building element determines a fast decrease of the thermal resistance and so this process is amplified continuously.

In this study it is analyzed the superficial condensation, which is strongly linked with the internal conditions and the insulation level of the building elements, in fact the presence of an insulation increases a lot the surface temperature. To exclude the possibility of this type of condensation it is important to maintain the temperature at the internal surface less than the dew-point one T_{dp} :

$$T_{si} > T_{dp}$$
 (K) (2.14)

With an hypothesis of one-dimensional heat flow, as said before, the surface temperature is:

$$T_{si} = T_i - \frac{U}{h_i} \cdot (T_i - T_e) \quad (K)$$

In this rule, introducing T_{dp} as T_{si} , it is possible to obtain the maximum acceptable thermal transmittance:

$$U_{max} = \frac{T_i - T_{dp}}{T_i - T_e} \cdot h_i \quad \left(\frac{W}{m^2 \cdot K}\right)$$
(2.15)

So the additional thermal resistance R_{add} offered by the insulation is:

$$\frac{1}{U_{max}} - \frac{1}{U} = R_{add} = \frac{s_{ins}}{\lambda_{ins}} \left(\frac{m^2 \cdot K}{W}\right)$$
(2.16)

Where:

- U is the thermal transmittance of the building element;
- s_{ins} is the insulation thickness;
- λ_{ins} is the insulation thermal conductivity.

In this study, the superficial condensation has been evaluated through the temperature factor at the internal surface:

$$f_{Rsi} = \frac{T_{si} - T_e}{T_i - T_e} \quad (-)$$
 (2.17)

Where:

- T_{si} is the temperature at the internal surface;
- T_i and T_e are the internal and external temperatures.

This coefficient is explained better in the chapter 2.4.

The solutions to reduce the effects of the thermal bridges are: ensuring a great insulation level (e.g. through an insulation layer outside of the structural elements, such as pillar or beam, or even better through an insulation layer that covered totally the outside surface of the building) and a right ventilation, that decreases the internal relative humidity. The ventilation can be natural or forced.

Generally the limit values for internal relative humidity are 40% and 60%: a relative humidity less than 40% can irritate the respiratory system and promote infections; whereas one greater than 60% can cause the mould growth with a possible risk of asthma.

2.3 LINEAR THERMAL TRANSMITTANCE ABACUS DESCRIPTION

The study exposed in this thesis starts from a previous analysis on linear thermal transmittance of a lot of thermal bridge schematizations.

This previous analysis began with a large research about the thermal bridges in the market (125 types were found), which then have been examined by ANCE in order to determine the most widespread (47 types). These ones have been divided in some categories, according to the UNI EN ISO 14683 [N9].

The typological families studied are the following ones:

- junction between wall and pillar;
- concave corner;
- concave corner with pillar in correspondence of the junction;
- projecting corner;
- projecting corner with pillar in correspondence of the junction;
- junction between wall and plane roof;
- junction between wall and floor;
- junction between external and internal walls;
- balcony;
- junction between wall and window or door;
- compluvium;
- ridge.

From these initial selection and classification it has been possible to define every thermal bridge schematization and so to plan every simulation. The calculation method applied (two-dimensional Finite Volume simulation through Fluent software) has been verified through the example 2 of the Annex A of the UNI EN ISO 10211 [N5].

2.3.1 Adopted approach for calculation

In order to simulate every type of the selected thermal bridges it has been necessary to choose typologies of wall, floor and roof that have to be usual in constructions and representative of the different technologies in the market.

In this study it has been considered walls with or without insulation: in case of insulated walls the insulation position can be either inside or outside or in the middle with three different thicknesses: 5 cm, 10 cm or 15 cm. In some particular cases, such as corners, other thicknesses have been taken into consideration, for example 20 cm.

It's important to consider different insulation positions because, while in the thermal transmittance calculation its position is negligible, whereas this aspect is fundamental in twodimensional thermal flow calculation.

Another differentiation has been the bricks density: three different densities have been taken into consideration: 1800 kg/m³, 1200 kg/m³ or 760 kg/m³. The references for the hygrothermal properties values have been the UNI 10351 [N12], the UNI 10355 [N13] and the UNI EN ISO 10456 [N6]. In order to obtain a large variety of thermal transmittance in every simulation, for any brick density three different cases with different thicknesses of bricks and insulation (U_{max} , U_m , U_{min}) have been studied: U_{max} presents a brick thickness of 25 cm and an insulation thickness of 5 cm, U_m presents a brick thickness of 40 cm and an insulation thickness of 10 cm, U_{min}

presents a brick thickness of 45 cm and an insulation thickness of 15 cm. The values obtained have been reported in the ANNEX B (chapter **6.2**). In the case with further insulation thicknesses other thermal transmittance have been studied.

Some simulations have demonstrated the possibility of homogenizing some wall layers (the layers which haven't insulating properties) through the introduction of an equivalent thermal conductivity.

Armed concrete pillars and beams, as floors and roofs, have been studied with or without insulation (the insulation position can be inside or outside).

These input data have been inserted in the simulations to obtain the final value of linear thermal transmittance for every case of study. Then these final results have been unified in correlations, which allow to obtain the linear thermal transmittance value for every type of thermal bridge. These correlations have been enveloped in function of some parameters, such as thermal transmittance (U) or equivalent thermal conductivity (λ_{eq}) of the principal elements, non dimensional transmittance (U^{*}) and non dimensional length (L^{*}).

The final abacus has been structured in reports which contain a graphic representation of the thermal bridge into consideration, the estimated correlation with the definition of the parameters inserted in, the validity range of these parameters and the confidence interval.

The correlations elaborated in this abacus can be used for thermal bridges, which have constructive elements with properties inside the validity range indicated in the relative report. For other cases these ones can give only an idea of a possible result, but the indicated tolerances aren't guaranteed.

2.3.2 Parameters definition

As mentioned previously, the correlations have been enveloped in function of different parameters, which are explained in the following paragraphs.

Thermal transmittance

The references to obtain walls and windows thermal transmittance are respectively the UNI EN ISO 6946 [N1] and the UNI EN ISO 10077-1-2 [N3][N4].

The first one indicates the calculation method to obtain thermal resistance of every plane element with parallel homogeneous layers perpendicular to the thermal flow:

$$\frac{1}{U} = R_T = R_{si} + R_1 + R_2 + \dots + R_{se} \quad (\frac{m^2 \cdot K}{W})$$
 (2.18)

Where:

- R_{si} and R_{se} are internal and external surface resistances;
- R₁, R₂ ... R_n are the design thermal resistances of each layer, calculated as the ratio between thickness and thermal conductivity of each layer itself.

In case of internal elements or of elements situated between the internal space and an unheated space, R_{si} has to be applied on both element fronts.

 R_{si} and R_{se} have to be taken from the UNI EN ISO 6946 [N1] in function of the heat flow direction. However it's possible to applied the R_{si} relative to an horizontal direction of the heat

flow on every surface taken into consideration when the direction of the heat flow is uncertain or when a whole building is analyzed with only one calculation. In ANNEX C (chapter **6.3**) it is possible to find the surface resistance values considered in this case of study

	Surface resistance	Direction of heat flow			Direction of heat flow		
$m^2 imes K/W$		upwards	horizontal	downwards			
R _{si}		0,10	0,13	0,17			
R _{se}		R _{se} 0,04		0,04			
Note 1 Note 2	Note 1 The values given are design values. For the purposes of declaration of the thermal transmittance of components and other cases where values independent of heat flow direction are required, or when the heat flow direction is liable to vary, it is advisable that the values for horizontal heat flow be used. Note 2 The surface resistances apply to surfaces in contact with air. No surface resistance applies to surfaces in contact with another material.						

Figure 2.10 - UNI EN ISO 6946 [N1], table 1

In this study the UNI EN ISO 10077-1-2 [N3][N4] aren't taken as reference for the calculation method, but to extrapolate the thermal transmittance range to consider. Two different types of frame are considered: a wooden frame with a thermal transmittance of 1,9 W/m²K and a metallic frame with a thermal transmittance of 5,5 W/m²K. Using the inverse relation, it's possible to obtain the equivalent thermal conductivity:

$$R_{f} = \frac{1}{U_{f}} = R_{si} + \frac{s_{f}}{\lambda_{eq,f}} + R_{se} \quad (\frac{m^{2} \cdot K}{W})$$
(2.19)

$$\lambda_{eq,f} = \frac{S_f}{\frac{1}{U_f} - R_{si} - R_{se}} \quad \left(\frac{W}{m \cdot K}\right)$$
(2.20)

The equivalent thermal conductivity values obtained are:

- $\lambda_{eq,f} = 0.168 \text{ W/(m * K)}$ for wooden frame;
- $\lambda_{eq,f} = 5.077 \text{ W/(m * K)}$ for metallic frame.

From the rules indicated before, it's possible to understand that the frame is considered as composed by full material, without cavities, with an equivalent thermal conductivity equal to the ones indicated before. This is real for a wooden frame, but not for a metallic one, but it doesn't determine an excessive error because this study isn't interested in the temperature development inside the metallic frame, but in the influence of the frame presence on the wall.

Wall equivalent thermal conductivity

The equivalent thermal conductivity is a value which represents a weighted average of the thermal conductivity of every layer, except the insulation:

$$\lambda_{eq} = C \cdot L \quad \left(\frac{W}{m \cdot K}\right) \tag{2.21}$$

Where:

 C is the wall conductance, which is the inverse of the sum of the ratio between thicknesses L_i and thermal conductivities λ_i of each layer, excluding insulation:

$$C = \frac{1}{\sum \frac{L_i}{\lambda_i}} \quad \left(\frac{W}{m}\right) \tag{2.22}$$

• L is the wall thickness, excluding insulation:

$$L' = \sum L_i \quad (m) \tag{2.23}$$

Non dimensional thermal transmittance

The non dimensional thermal transmittance represents, in presence of a pillar or of a beam, the ratio between the pillar (or beam) thermal transmittance and that one of the wall:

$$U^* = \frac{U_P}{U_W} \quad (-)$$
 (2.24)

The pillar (or beam) thermal transmittance is calculated as the inverse of the total thermal resistance, but the direction, which the calculation is applied on, depends on every case: for example in a corner it is calculated on the pillar diagonal, whereas for the beam a significant section is defined in every case of study (generally a thickness equal to that one of the wall is applied).

Non dimensional length

The non dimensional length represents the ratio between the pillar (or beam) characteristic length (defined every times) and the wall thickness:

$$L^* = \frac{L_P}{L_W} \quad (-)$$
 (2.25)

2.3.3 Calculation dominion

The simulations have been done considering one meter of wall from the discontinuity element in horizontal or vertical direction. This choice has been applied according to the UNI EN ISO 10211 [N5] and has been verified through the calculation method: after one meter from the discontinuity element the isotherms are parallel, the heat flow is one-dimensional and perpendicular to the wall surface and so the thermal bridge influence is negligible. The following picture shows this aspect clearly.

On the contrary, the following picture reports the temperature profile with one meter of wall on both side of the discontinuity element:

A graphic representation explains this aspect better:

Figure 2.13 - Temperature profile in different sections of the wall

If it were necessary to analyze a thermal bridge with different dimensions from the ones explained before, the correlations could be applied, but it's fundamental that the parameters are inside the validity field indicated in the relative report.

2.4 TEMPERATURE FACTOR AT THE INTERNAL SURFACE

2.4.1 Temperature factor at the internal surface definition

The temperature factor at the internal surface is defined by the UNI EN ISO 13788 [N7] as "the difference between the temperature of the internal surface and the external air temperature, divided by the difference between the internal air temperature and the external air temperature, calculated with a surface resistance at the internal surface R_{si} ":

$$f_{Rsi} = \frac{T_{si} - T_e}{T_i - T_e} \quad (-)$$

In order to create a reference abacus it is better to refer to the minimum acceptable value:

$$f_{Rsi,min} = \frac{T_{si,min} - T_e}{T_i - T_e} \quad (-)$$
 (2.26)

This norm introduces this factor to explain the thermal quality of each building element represented by thermal resistance, thermal bridges, geometry and internal surface resistance.

If internal and external air temperature values are considered constant, as in the design hypothesis of this study ($T_i=20^{\circ}C e T_e=-5^{\circ}C$), this factor allows to evaluate the thermal bridge influence on the temperature at the internal surface and so on the superficial condensation because $T_{si,min}$ is in correspondence of the thermal bridge. The less is $T_{si,min}$ the less is f_{Rsi} and so it means that superficial condensation is more likely.

As declared by this norm the calculation method to obtain the temperature factor at the internal surface is provided by the UNI EN ISO 10211 [N5]. In this study, the simulation are enveloped through a calculation method which corresponds with the conditions imposed by this international standard (case 2-Annex A). The validation of the calculation code is reported in the CESTEC-ANCE thermal bridges abacus.

2.4.2 Calculation of the minimum acceptable temperature factor at the internal surface

The UNI EN ISO 13788 [N7] says that "To avoid mould growth the relative humidity at the surface should not exceed 0,8 for several days" and so it provides a calculation method to determine the minimum acceptable temperature at the internal surface.

The first step in achieving this value is to identify external conditions, which are resumed in the following table:

Te	p _{v,e}	P _{vsat,e}	φ _e
(°C)	(Pa)	(Pa)	(%)
-5	407	407	100

Table 2.1 – External conditions for condensation evaluation

According to the design hypothesis, it has been assumed that $T_e = -5^{\circ}C$ and $\varphi_e = 100\%$, with:

$$\varphi_e = \frac{p_{v,e}}{p_{vsat,e}} \cdot 100 \quad (\%)$$
(2.27)

And so the vapour pressure $p_{v,e}$ became equal to $p_{vsat,e}$, which has been determined through the following relation [B3]:

$$p_{vsat} = e^{\frac{C_1}{T} + C_2 + C_3 \cdot T + C_4 \cdot T^2 + C_5 \cdot T^3 + C_6 \cdot \ln(T)}$$
(Pa) (2.28)

Where:

- C₁=-5800,2206
- C₂=1,3914993
- C₃=0,048640239
- C₄=0,000041764768
- C₅=-0,00000014452093
- C₆=6,5459673
- T is the temperature into consideration, expressed in K.

From the values reported in the first table it's possible to evaluate internal conditions, which have been reported in the following table:

	Ti	P _{v,i}	P _{vsat,i}	Φι	
	(°C)	(Pa)	(Pa)	(%)	
	20	1298	2365	54.88	
Table 2.2 –	Interna	l conditio	ns for con	densation	evaluation

As the external air temperature, also the internal air temperature T_i has been assumed constant according to design hypothesis ($T_i = 20^{\circ}$ C).

To obtain $p_{v,i}$ is is necessary to know the difference between internal and external vapour pressure Δp , whose values are provided by the Annex A of the UNI EN ISO 13788 [N7] in function of the humidity class of the building and of the external air temperature. In the cases presented in this study the most widespread type of building are dwellings with low or high occupancy. Δp value has been multiplied by a coefficient of 1.1 to provide a safety margin.

Figure 2.14 - UNI EN ISO 13788 [N7], Annex A, figure A.1

Using the relations indicated before for $p_{vsat,e}$ (2.28) and for ϕ_e (2.27), it has been possible to calculate $p_{vsat,i}$ and ϕ_i .

The limit value of saturated vapour pressure $p_{vsat}(T_{si})$ has been obtained dividing the internal vapour pressure $p_{v,i}$ for the limit of 0.8:

$p_{vsat}(T_{si,min})$	T _{si,min}	Ti	Te	f _{Rsi,min}
(Pa)	(°C)	(°C)	(°C)	(-)
1622.50	14.07	20	-5	0.76

 Table 2.3 – Minimum acceptable temperature factor at the internal surface

With this values of $p_{vsat}(T_{si,min})$ it has been possible to obtain $T_{si,min}$, inverting (2.28), and then $f_{Rsi,min}$, through (2.26).

Using an ASHRAE³ diagram, it is possible to see that the intersection between the condensation line determined by $T_{si,min}$ =14.07°C and T_i =20,00°C gives a value of φ_i near 70%.

Figure 2.15 - Evaluation through an ASHRAE diagram

Owing to the low precision of the values taken into consideration and the assumed design hypothesis, it has been chosen a φ_i =70% with a T_{si,min}=14.30°C. So the minimum acceptable temperature factor at the internal surface is:

$$f_{Rsi,min} = \frac{T_{si,min} - T_e}{T_i - T_e} = \frac{14.3 - (-5)}{20 - (-5)} = 0.77 \quad (-)$$

³ ASHRAE: American Society of Heating, Refrigerating and Air-Conditioning Engineers. AICARR: Associazione Italiana Condizionamento dell'Aria, Riscaldamento e Refrigerazione.

2.5 NUMERICAL METHODS AND PROGRAMS USED

2.5.1 Finite Volume Method (FVM) description

The Finite Volume Method (FVM) is a method for solving partial differential equations in the form of algebraic equations. Similar to the finite difference method (FDM) and to the finite element method (FEM), it is based on a discretization of the problem through a meshed geometry, but while the finite difference method uses derivative approximations, the finite volume method, as the finite element method, uses an approximation of the initial continuous domain. "Finite Volume" stands for the small volume surrounding each node point on a mesh and it's constant during the time.

In the FVM, volume integrals in a partial differential equation that contains a divergence term are converted to superficial integrals, through divergence theorem. These terms are then considered as flows at the finite volume surfaces. Because the flow entering in a given volume is the same of the one exiting from the adjacent volume, this method is conservative.

An advantage of this method is that it is possible to use it for unstructured meshes: in fact, for discretization of the conservative laws, it doesn't take into account mesh dimensions. Whereas these are important for the flow evaluation. Furthermore, the FVM is preferable to the other methods because the boundary conditions can be applied not invasively: in fact the variables values are defined inside the volume element, and not at nodes or surfaces.

To explain this method it is possible to consider the general conservation law problem:

$$\frac{\partial u}{\partial t} + \nabla \cdot f(u) = \Psi$$
 (2.29)

Where:

- u represents the vector of state;
- f is the correspondent flow tensor;
- Ψ is the variation of u owing to external sources.

So it is possible to divide the total volume V in a lot of small finite volume v_i (control volumes) and to apply a volume integral on the conservation law for each one:

$$\int_{v_i} \frac{\partial u}{\partial t} dv + \int_{v_i} \nabla \cdot f(u) dv = \int_{v_i} \Psi dv$$
(2.30)

The first term, inverting integral and derivative (v_i is fixed in space), becomes a volume average, whereas the second one becomes a surface integral, through the divergence theorem. Ψ is assumed as a constant.

$$v_i \cdot \frac{d\overline{u_i}}{dt} + \oint_{S_i} f(u) \cdot n \, dS = v_i \cdot \overline{\Psi_i}$$
(2.31)

Where:

- S_i represents the total external surface of the finite volume;
- n is the unit vector normal to the external surface and pointing outward.
Finally the final equation is:

$$\frac{d\overline{u_i}}{dt} + \frac{1}{v_i} \cdot \oint_{S_i} f(u) \cdot n \, dS = \overline{\Psi}_i$$
(2.32)

The interpretation of this equation is simple: the temporal variation of the volume average of u is equal to the rate of transport of u through the external surface by flow tensor with the contribution of external sources.

The discretization of the total volume can be cell-centered or vertex-centered. In the first one, shown in the left side of the **Figure 2.16**, the triangles themselves serve as control volumes and the variables are located in a point inside the finite volume, which is called node. This solution can appear logical, but it presents a disadvantage: to apply boundary conditions on the volume edge it is necessary to use particular devices because there aren't any nodes on it. The vertex-centered discretization, shown in the right side of the **Figure 2.16**, solves this problem: control volumes are formed as a geometric dual to the triangle complex. In particular case of study with a lot of variables both solutions are used together: in this case the solution is called as staggered grid. It is possible to use interpolation to obtain values of the intermediate points.

Figure 2.16 - Cell-centered solution on the left and vertex-centered solution on the right [W4]

2.5.2 Finite Element Method (FEM)description

The Finite Element Method (FEM) is a numerical method used to solve approximately problems described by partial differential equations, transforming these ones in algebraic equations. This method belongs to the Galerkin Method class, that starts from the weak formulation of a differential problem.

One of the FEM principal characteristics is the discretization of the initial continuous domain in a discrete domain through a mesh based on primitives (finite elements) characterized by a simple shape (triangle and quadrilateral for two-dimensional dominions, tetrahedron and hexahedral for tridimensional dominions). The definition of the model geometry that idealizes the real element happens through the collocation of a number of nodes able to describe the real structure. It is possible to use interpolation to obtain values of the intermediate points.

To explain this method it is possible to consider the heat stationary equation:

$$f(x) = -\nabla \cdot [k(x) \cdot \nabla \cdot T(x)]$$
(2.33)

The main idea is to approximate, for every element characterized by the simple shape, the exact solution T(x), written in the weak formulation, with a continuous envelop based on a linear combination of local functions called *base functions* or *shape functions* Φ_{i} .

$$T(x) \approx \hat{T}(x) = \sum_{j=1}^{M} T_j \cdot \Phi_j(x)$$
(2.34)

The *shape functions* choice is fundamental in this method. In general they are polynomial in pieces and so the solution becomes a linear function in pieces.

Figure 2.17 - Example of a shape function [W15]

The coefficient number that characterizes the solution depends on the degree of the chosen polynomial. This last one regulates the solution precision.

As said before the solution found through FEM is an approximate solution. A rule to reduce the difference between this solution and the real one is the weighted residues method, which imposes that:

$$\int R \cdot W_i dS = 0 \tag{2.35}$$

$$R = \nabla \cdot [k(x) \cdot \nabla T(x)] + f(x)$$
(2.36)

Where:

- W_i(x) are the weight function;
- R are the residues.

Another aspect to consider is that the approximate solution has to satisfy the boundary condition also. In this case Dirichlet conditions are considered. These ones are satisfied imposing:

$$\hat{T}(x) = \Psi(x) + \sum_{j=1}^{M} T_j \cdot \Phi_j(x)$$
 (2.37)

Where $\Psi(x)$ is any equation that satisfies the boundary conditions and Φ_j nullify themselves in correspondence of the edge.

Introducing this one in the weighted residues integral it is possible to obtain an equation system that can be written as:

$$K \cdot T = c \tag{2.38}$$

Where:

- K is the global stiffness matrix,;
- T is the coefficient vector;
- c is the load vector.

Inverting this equation it is possible to calculate the final coefficients T_j.

2.5.3 FVM and FEM according to the UNI EN ISO 10211

The Finite Volume Method (FVM) and the Finite Element Method (FEM) are defined by the UNI EN ISO 10211 [N5] as numerical methods with an high precision calculation, which require a subdivision of the object considered. "The method is a set of rules to form a system of equations, the number of which is proportional to the number of subdivisions. The system is solved using either a direct solution method or an iterative method. The solution of the system is normally the temperatures at specific points, from which the temperatures at any point of the object considered (by interpolation); the heat flows through specific surfaces can also be derived."

The UNI EN ISO 10211 [N5] imposes that:

- "the method shall provide temperatures and heat flows;
- the extent of subdivision of the object (i.e. the number of cells, nodes) is not "method defined" but "user defined", although in practice the degree of subdivision is "machine limited". Therefore, in the test reference cases, the method being validated shall be able to calculate temperatures and heat flows at locations other than those listed;
- for an increasing number of subdivisions, the solution of the method being validated shall converge to the analytical solution, if such a solution exists;
- the number of subdivisions shall be determined as follows: the sum of the absolute values of all the heat flows entering the object is calculated twice, for n nodes (or cells) and for 2n nodes (or cells). The difference between these two results shall not exceed 1%. If not, further subdivisions shall be made until this criterion is met;
- if the system solution technique is iterative, the iteration shall continue until the sum of all heat flows (positive and negative) entering the object, divided by half the sum of the absolute values of all these heat flows, is less than 0,0001."

The norm adds as note that: "for an increasing number of subdivisions, the solution converges. The number of subdivisions required to obtain good accuracy depends on the problem considered and on the solution technique. The error is expected to take the form α/N^{V3} where α and β are constants for a given problem and N is the total number of nodes in the model."

2.5.4 FLUENT

The program used in this study to simulate every type of thermal bridge is FLUENT 6.3.26, which uses finite volume simulations.

"FLUENT is a state-of-the-art computer program for modeling fluid flow and heat transfer in complex geometries. It provides complete mesh flexibility, including the ability to solve your flow problems using unstructured meshes that can be generated about complex geometries with relative ease" [B5].

"It is written in the C computer language and makes full use of the flexibility and power offered by the language. Consequently, true dynamic memory allocation, efficient data structures, and flexible solver control are all possible" [B5].

"FLUENT package includes the following products:

- FLUENT, which is the solver;
- GAMBIT, which is the preprocessor for geometry modeling and mesh generation;
- TGrid, which is an additional preprocessor that can generate volume meshes from existing boundary meshes;
- Filters (translators) for import of surface and volume meshes from CAD/CAE packages such as ANSYS, CGNS, I-deas, NASTRAN, PATRAN, and others."[B5]

The program structure is the following one:

Figure 2.18 - Basic program structure [B4]

Ones the mesh is created by GAMBIT, "all remaining operations are performed within FLUENT. These include setting boundary conditions, defining fluid properties, executing the solution, refining the mesh, and viewing and postprocessing the results." [B5] "The FLUENT solver has the following modeling capabilities:

- 2D planar, 2D axisymmetric, 2D axisymmetric with swirl (rotationally symmetric), and 3D flows;
- Quadrilateral, triangular, hexahedral (brick), tetrahedral, prism (wedge), pyramid, polyhedral and mixed element meshes;
- Steady-state or transient flows
- Incompressible or compressible flows, including all speed regimes (low subsonic, transonic, supersonic and hypersonic flows);
- Inviscid, laminar, and turbulent flows;
- Newtonian or non-Newtonian flows;
- Heat transfer, including forced, natural, and mixed convection, conjugate (solid/fluid) heat transfer, and radiation;
- Chemical species mixing and reaction, including homogeneous and heterogeneous combustion models and surface deposition/reaction models;
- Free surface and multiphase models for gas-liquid, gas-solid, and liquid-solid flows;
- Lagrangian trajectory calculation for dispersed phase (particles/droplets/bubbles), including coupling with continuous phase and spray modeling;
- Cavitation model;
- Phase change model for melting/solidification applications;
- Porous media with non-isotropic permeability, inertial resistance, solid heat conduction, and porous-face pressure jump conditions;
- Lumped parameter models for fans, pumps, radiators, and heat exchangers;
- Acoustic models for predicting flow-induced noise;
- Inertial (stationary) or non-inertial (rotating or accelerating) reference frames;
- Multiple reference frame (MRF) and sliding mesh options for modeling multiple moving frames;
- Mixing-plane model for modeling rotor-stator interactions, torque converters, and similar turbomachinery applications with options for mass conservation and swirl conservation;
- Dynamic mesh model for modeling domains with moving and deforming mesh;
- Volumetric sources of mass, momentum, heat, and chemical species;
- Material property database;
- Extensive customization capability via user-defined functions;
- Dynamic (two-way) coupling with GT-Power and WAVE;
- Magnetohydrodynamics (MHD) module (documented separately);
- Continuous fiber module (documented separately);
- Fuel cell modules (documented separately);
- Population balance module (documented separately).

FLUENT is ideally suited for incompressible and compressible fluid-flow simulations in complex geometries" [B5].

The software used in this case of study to model every simulation and to create the mesh is GAMBIT, which is "a software package designed to help analysts and designers to build and mesh models for computational fluid dynamics (CFD) and other scientific application" [W6].

2.5.5 THERM

The program used to do the simulation necessary to validate the reference abacus is THERM 5.2.

"THERM is a state-of-the-art, Microsoft Windows-based computer program developed at Lawrence Berkeley National Laboratory (LBNL) for use by building component manufacturers, engineers, educators, students, architects, and others interested in heat transfer. Using THERM, you can model two-dimensional heat-transfer effects in building components such as windows, walls, foundations, roofs, and doors; appliances; and other products where thermal bridges are of concern. THERM's heat-transfer analysis allows you to evaluate a product's energy efficiency and local temperature patterns, which may relate directly to problems with condensation, moisture damage, and structural integrity.

THERM's two-dimensional conduction heat-transfer analysis is based on the finite-element method, which can model the complicated geometries of building products. The program's graphic interface allows you to draw cross sections of products or components to be analyzed. To create the cross sections, you can trace imported files in DXF or bitmap format, or input the geometry from known dimensions. Each cross section is represented by a combination of polygons. You define the material properties for each polygon and introduce the environmental conditions to which the component is exposed by defining the boundary conditions surrounding the cross section. Once the model is created, the remaining analysis (mesher and heat transfer) is automatic. You can view results from THERM in several forms, including U-factors, isotherms, heat-flux vectors, and local temperatures."

"THERM is a module of the WINDOW+5 program under development by LBNL. WINDOW+5 is the next generation of the WINDOW software series and is being developed for the Microsoft Windows operating environment. THERM's results can be used with WINDOW's center-of-glass optical and thermal models to determine total window product U-factors and Solar Heat Gain Coefficients."

"THERM has three basic components:

- a graphic user interface that allows you to draw a cross section of the product or component for which you are performing thermal calculations.
- a heat-transfer analysis component that includes: an automatic mesh generator to create the elements for the finite-element analysis, a finite-element solver, an optional error estimator and adaptive mesh generator, and an optional view-factor radiation model.
- a results displayer."

"The results from THERM's finite-element analysis of a fenestration product or building component can be viewed as:

- U-factors;
- isotherms;
- color-flooded isotherms;
- heat-flux vector plots;
- color-flooded lines of constant flux;
- • temperatures (local and average, maximum and minimum)." [B6]

2.6 STATISTICAL PRINCIPLES

The linear thermal transmittance has been calculated through simulations for each thermal bridge configuration, characterized by different thicknesses of brick and insulation and by different brick densities. These final values have been unified in some correlations, one for each type of thermal bridge.

A correlation indicates the relation degree among some variables: these variables are perfectly correlated when everyone satisfies an equation (e.g. circumference and radius), whereas they are uncorrelated, when none satisfies it. If every point of a scatter diagram seams to lay on a straight line, there's a linear correlation. When Y grows with X growth, the correlation is called positive, whereas when Y decreases with X growth the correlation is called negative.

Figure 2.19 - Correlation examples [W5]

A curve correlation is a non-linear correlation and it can be positive and negative at the same time.

When a scatter diagram is described by a linear equation it is important to evaluate how it is able to represent this variables relation. One of the most important parameter to analyze it is the correct valuation standard error, which is (for small samples as in the case of study):

$$\hat{s}_{Y,X} = \sqrt{\frac{N}{N-2}} \cdot s_{Y,X} = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - Y_{est,i})^2}{N-2}}$$
(2.39)

Where:

- $\hat{s}_{Y,X}$ is the correct valuation standard error;
- $s_{Y,X}$ is the valuation standard error;
- N is the number of the points calculated through the simulations and used for the determination of the final correlations;
- Y_i is the value determined through simulation, for the ith couple of parameters;
- Y_{est,I} is the value determined through correlation, for the ith couple of parameters.

The valuation standard error has properties similar to standard deviation: if there were straight lines parallel to the correlation one with a distance equal to $s_{Y,X}$, $2^*s_{Y,X}$ and $3^*s_{Y,X}$ a lot of values would be inside them: respectively 68%, 95% and 99,7%.

In fact the valuation standard error is introduced in every report of this study through an indication of the confidence interval, which is the interval in which it is possible to find the real solution with a probability of 95%:

$$IC^{95\%} = 2 \cdot \hat{s}_{x,y}$$
 (2.40)

It's important to point out that this value is calculated for each schematization of this analysis. If the correlations are used for other technological junction between building elements, whose schematization doesn't correspond with the ones indicated in the report, the probability to find the real solution inside the confidence interval could be less than 95%.

Another important parameter to evaluate the precision of a linear correlation is the correlation coefficient, which allows to assess the difference between the real values and the estimated ones. Its definition starts from the total deviance, which is:

$$\sum_{i=1}^{N} (Y_i - \bar{Y})^2 = \sum_{i=1}^{N} (Y_i - Y_{est,i})^2 + \sum_{i=1}^{N} (Y_{est,i} - \bar{Y})^2$$
 (2.41)

Where \overline{Y} is the Y_i average.

The first term of the right member of the equation corresponds to the residual deviance, the second one is the explained deviance. The correlation coefficient is the square root of the ratio between the explained deviance and the total one:

$$r = \pm \sqrt{\frac{\sum_{i=1}^{N} (Y_{est,i} - \bar{Y})^2}{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}} = \pm \sqrt{1 - \frac{s_{Y,X}^2}{s_Y^2}}$$
(2.42)

Where s_Y is the standard deviation of Y:

$$s_Y = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}{N}}$$
 (2.43)

If the explained deviance is null, this coefficient is null: this means that the estimated value is the same of the average and so there isn't a linear correlation; whereas if the residual deviance is null, r is equal to 1 or -1 (respectively for positive and negative correlations): this means that the real values and the estimated ones are the same and so there's a perfect correlation.

r is non-dimensional and so it doesn't depend on the unit of measurement and also it doesn't depend on the type of correlation used, but only on the obtained results. In fact if r is null with values determined through a linear correlation, it means that the this type of correlation isn't possible, but there could be a non-linear one.

What has been said so far is referred to relation between two variables, but for example in case of three variables (multiple correlation), the rules indicated before for valuation standard error *(2.39)* and correlation coefficient *(2.42)* become:

$$\hat{s}_{Y,XZ} = \sqrt{\frac{N}{N-3}} \cdot s_{Y,XZ} = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - Y_{est,i})^2}{N-3}}$$
(2.44)

$$R_{Y,XZ} = \sqrt{1 - \frac{s_{Y,XZ}^2}{s_Y^2}}$$
 (2.45)

Where:

- $\hat{s}_{Y,XZ}$ is the correct valuation standard error;
- $s_{Y,XZ}$ is the valuation standard error;
- N is the number of the points calculated through the simulations and used for the determination of the final correlations;
- Y_i is the value determined through simulation, for the ith group of parameters;
- Y_{est,i} is the value determined through correlation, for the ith group of parameters;
- $R_{Y,XZ}$ is the multiple correlation coefficient;
- s_Y is the standard deviation of Y.

For the validation it has been used also the mean square error (MSE), which is better explained in chapter **4.1**.

3 THERMAL BRIDGES ABACUS COMPOSITION

3.1 LINEAR THERMAL TRANSMITTANCE CALCULATION

The UNI EN ISO 10211 [N5] defines the linear thermal transmittance as the "heat flow rate in the steady state divided by length and by the temperature difference between the environments on either side of a thermal bridge":

$$\Psi = \frac{\phi^{2D} - \sum_{i}^{N} \phi_{i}^{1D}}{L_{TB} \cdot \Delta T} \quad \left(\frac{W}{m \cdot K}\right) \tag{3.1}$$

Where:

- Φ^{2D} is the heat flow rate determined through a two-dimensional calculation;
- Φ^{1D} is the heat flow rate determined through a one-dimensional calculation;
- L_{TB} is the characteristic length of the thermal bridge;
- ΔT is the difference between internal and external air temperatures.

So the linear thermal transmittance allows the calculation of the additional heat flow rate due to the thermal bridge compared with the one-dimensional heat flow rate obtained for the building elements composing the junction. Operatively it can be determined in the following way:

$$\Psi = \frac{\phi^{2D} - \sum_{i}^{N} \phi_{i}^{1D}}{L_{TB} \cdot \Delta T} = \frac{\phi^{2D}}{L_{TB} \cdot \Delta T} - \sum_{i}^{N} \frac{\phi_{i}^{1D}}{L_{TB} \cdot \Delta T} = L_{2D} - \sum_{i}^{N} U_{i} \cdot l_{i} \quad (\frac{W}{m \cdot K})$$
(3.2)

Where:

- L_{2D} is the thermal coupling coefficient determined through a two-dimensional calculation;
- U_i is the thermal transmittance of the ith building element;
- l_i is the length of the ith building element in the geometric model considered (it is different in the hypothesis of calculation based on internal or external dimensions).

The thermal transmittance of each building element is determined according to the UNI EN ISO 6946 [N1].

The UNI EN ISO 10211 [N5] defines the thermal coupling coefficient as the "heat flow rate per temperature difference between two environments which are thermally connected by the construction under consideration."

The simulations done through the calculation code provide the two-dimensional heat flow rate Φ^{2D} and so it has been possible to determine the thermal coupling coefficient in the following way with an hypothesis of $L_{TB}=1m$:

$$L_{2D} = \frac{\phi^{2D}}{L_{TB} \cdot (T_i - T_e)} \quad (\frac{W}{m \cdot K})$$
(3.3)

In the linear thermal transmittance calculation it is important to point out which dimensions the calculation is based on (internal Ψ_I or external Ψ_E). For a lot of types of thermal bridge this differentiation is fundamental.

As said before, the values obtained from all the simulations for a type of thermal bridge are unified, using MATLAB, in a correlation in function of some parameters, which defines thermophysical and geometrical characteristics of the thermal bridge itself.

3.2 TEMPERATURE FACTOR AT THE INTERNAL SURFACE DETERMINATION

As said before, the UNI EN ISO 13788 [N7] defines the temperature factor at the internal surface as "the difference between the temperature of the internal surface and the external air temperature, divided by the difference between the internal air temperature and the external air temperature, calculated with a surface resistance at the internal surface R_{si} ":

$$f_{Rsi} = \frac{T_{si} - T_e}{T_i - T_e} \quad (-)$$

In order to create a reference abacus it has been referred to the minimum acceptable value:

$$f_{Rsi,min} = \frac{T_{si,min} - T_e}{T_i - T_e} \quad (-)$$

To obtain this value for each schematization of thermal bridge, at the beginning, it has been necessary to extrapolate T_{si} values for each simulation (differenced for brick and insulation thickness and for brick densities) and then to consider the smallest one, which is in correspondence of the discontinuity element. So, applying the temperature factor at the internal surface definition with the design hypothesis of $T_i=20^{\circ}$ C and $T_e=-5^{\circ}$ C, it has been possible to determine its minimum acceptable value.

Finally, using MATLAB, these are unified in some correlation (one for each schematization of thermal bridge) in function of some parameters, which define thermally the schematization itself.

The criteria with which one correlation has been chosen among the other are:

- the confidence interval amplitude;
- the use of parameters simple to obtain;
- to try to have the same parameters to define the correlation of junctions with similar constructive characteristics, such the un-insulated pillar or the insulated roof.

The cases of junction between external wall and pillar totally insulated outside or inside (PIL.007 and PIL.008 reports) are particular because the simulations about them determine a linear thermal transmittance values very similar to zero. This means that the thermal bridge influence is negligible, the isotherms are parallel and so the temperatures at the internal surface due to the wall and the pillar are very similar. To allow a greater margin of security, it has been taken into consideration the temperature in correspondence of the pillar.

Using one-dimensional laws, it is possible to obtain:

$$T_{si,min} = T_i - \frac{U_P}{h_i} \cdot (T_i - T_e) \quad (^{\circ}C)$$
$$f_{Rsi,min} = \frac{T_{si,min} - T_e}{T_i - T_e} \quad (-)$$

$$f_{Rsi,min} = \frac{T_{si,min} - T_e}{T_i - T_e} = \frac{1}{T_i - T_e} \cdot \left[T_i - \frac{U_P}{h_i} \cdot (T_i - T_e) - T_e \right] = 1 - \frac{U_P}{h_i} = 1 - R_{si} \cdot U_P \quad (-)$$

The reports shown in the following pages aren't all of the CESTEC-ANCE thermal bridges abacus: in default of the simulations on ridges and compluviums it hasn't been possible to evaluate the values of surface temperature for these cases. There are no simulations on them because the equations provided by the reference abacus had been developed with a geometrical approach.

3.3 THERMAL BRIDGES ABACUS REPORTS

3.3.1 Reports structure

The Figure 3.1 shows the structure of the reports that compose the thermal bridges abacus.

Figure 3.1 - Structure of the reports of the thermal bridges abacus

3.3.2 Junction between external wall and un-insulated pillar

3.3.3 Junction between external wall and insulated pillar

3.3.4 Concave corner with un-insulated pillar

3.3.5 Concave corner with insulated pillar

3.3.6 Concave corner without pillar

3.3.7 Projecting corner with un-insulated pillar

3.3.8 Projecting corner with insulated pillar

3.3.9 Projecting corner without pillar

3.3.10 Junction between external wall and un-insulated plane roof with un-insulated beam

3.3.11 Junction between external wall and insulated plane roof with un-insulated beam

3.3.12 Junction between external wall and insulated plane roof with insulated beam

3.3.13 Junction between external wall and un-insulated plane roof with parapet

3.3.14 Junction between external wall and insulated plane roof with parapet

3.3.15 Junction between external wall and floor with uninsulated beam

3.3.16 Junction between external wall and floor with insulated beam

3.3.17 Junction between external and internal walls

3.3.18 Junction between external wall and un-insulated balcony

3.3.19 Junction between external wall and insulated balcony

3.3.20 Junction between external wall and window positioned in the middle

3.3.21 Junction between external wall and window positioned outside

3.3.22 Junction between external wall and window positioned inside

3.4 FINAL EVALUATION ABOUT CONDENSATION

After having developed the correlations for each type of thermal bridge schematization, $f_{Rsi,min}$ values have been compared with each other to do some evaluation.

For this scope it is important to remember that the minimum acceptable temperature factor at the internal surface is:

$$f_{Rsi,min} = \frac{T_{si,min} - T_e}{T_i - T_e} = \frac{14.3 - (-5)}{20 - (-5)} = 0.77 \quad (-)$$

Junction between external wall and un-insulated pillar

The considerations about these cases are the following:

- PIL.001 and PIL.003: the results show that with the brick density decrease the condensation increases: this is because the brick density decrease generates a greater gap between the wall thermal transmittance and that one of the pillar. So the heat flow rate increases with the linear thermal transmittance and the internal surface temperature decreases. This aspect is more visible with a greater pillar length S_P.
- PIL.002 and PIL.004: they always condense because the pillar creates a preferential passage for the heat flow. This is so big that it determines a surface temperature lower than that one of the dew point and thus the condensation.

Junction between external wall and insulated pillar

The considerations about these cases are the following ones:

- PIL.005, PIL.007 and PIL.008: they never condense.
- PIL.006: it condenses only with a medium (1200 kg/m³) or high (1800 kg/m³) brick density and with a wall characterized by a thermal transmittance equal to the maximum one. These properties cause a surface temperature less than that one of the dew point with a consequent condensation.

After an examination of these evaluations about junction between external wall and pillar, it is possible to see that when the pillar isn't insulated the condensation is very likely; in fact the cases with an insulated pillar hardly ever condense.

Concave corner with un-insulated pillar

The considerations about these cases are the following:

CC.001: it condenses only with a medium (1200 kg/m³) or high (1800 kg/m³) brick density and with a wall characterized by a thermal transmittance equal to the maximum one. This case is worse than CC.002 and CC.003 because a corner with a wall insulated inside determines a greater passage of the heat flow than a corner with a wall insulated outside or in the middle (Figure 3.2). Whereas it is worse than the case without insulation (CC.004) because the presence of the insulation generates a greater difference between the wall thermal transmittance and that one of the pillar and thus an heat flow increase.

Figure 3.2 - Heat flow rate in concave corners with three different type of insulated wall

- CC.002 and CC.003: they never condense.
- CC.004: this case condenses only with an high brick density (1800 kg/m³) and with a wall characterized by a thermal transmittance equal to the maximum one. These properties cause a surface temperature less than that one of the dew point with a consequent condensation.

Concave corner with insulated pillar

These cases (CC.005, CC.006 and CC.007) never condense.

Concave corner without pillar

The considerations about these cases are the following:

- CC.008, CC.009 and CC.010: they never condense.
- CC.011: the situation is very similar to CC.004 case, in fact both don't present any kind of insulation.

Projecting corner with un-insulated pillar

These cases (PC.001, PC.002, PC.003 and PC.004) always condense because the pillar creates a preferential passage for the heat flow. This is so big that it determines a surface temperature less than that one of the dew point and so the condensation.

Projecting corner with insulated pillar

The considerations about these cases are the following:

- PC.005: the results show that with the brick density decrease the condensation increases in fact this case condense only with a low brick density (760 kg/m³) and with a wall characterized by a thermal transmittance equal to the maximum one; this is because the brick density decrease generates a greater gap between the wall thermal transmittance and that one of the pillar. So the heat flow rate increases with the linear thermal transmittance and the internal surface temperature decreases.
- PC.006: it always condenses, except for the cases with a low brick density (760 kg/m³) and an insulation thickness equal to 10 cm or 15 cm (U_m, U_{min}, U_u and U_y). These properties decrease the heat flow rate with an increase of the internal surface temperature.
- PC.007: it always condenses, except for the cases with an insulation thickness equal to 15 cm (U_{min} and U_y). As said before, these properties decrease the heat flow rate with an increase of the internal surface temperature.

Projecting corner without pillar

The considerations about these cases are the following:

- PC.008, PC.009 and PC.010: they never condense.
- PC.011: it always condenses, except for the cases with a low brick density (760 kg/m³). These properties decrease the heat flow rate with an increase of the internal surface temperature.

Comparison between concave and projecting corners

From a comparison between the two types of corner studied it is possible to see that concave corners are better than the projecting ones.

Figure 3.3 - Comparison between concave and projecting corners

In this picture, which compares the worst cases of both types of corner, it is possible to see that in the first one the passage width is less than in the second one.

Another important evaluation is that in the concave and the projecting corners the presence of the pillar increases a lot the possibility of condensation, in fact the cases without pillar hardly ever condense.

Junction between external wall and un-insulated plane roof with un-insulated beam

These cases (PR.001, PR.002, PR.003 and PR.004) always condense because the beam creates a preferential passage for the heat flow. This is so big that it determines a surface temperature less than that one of the dew point and thus the condensation.

Junction between external wall and insulated plane roof with un-insulated beam

These cases (PR.005, PR.006, PR.007 and PR.008) always condense, except for PR.005, which doesn't condense only in the cases of medium brick density (1200 kg/m³) and a wall characterized by a thermal transmittance equal to the minimum one or of high brick density (1800 kg/m³) and a wall characterized by a thermal transmittance equal to the medium or the minimum one. This happens because the insulation increases the difference between the thermal transmittance of the building elements composing the junction and that one of the beam and so junctions with a low brick density become more prone to condensation than the same with a high brick density.

Junction between external wall and insulated plane roof with insulated beam

When also the beam is insulated (PR.009) there isn't condensation.

Junction between external wall and un-insulated plane roof with parapet

These cases (PR.010, PR.011, PR.012, PR.013 and PR.014) always condense for the same reasons of the cases with un-insulated plane roof and un-insulated beam (PR.001, PR.002, PR.003 and PR.004).

Junction between external wall and insulated plane roof with parapet

The considerations about these cases are the following:

- PR.015 and PR.018: they never condense because they have an insulated beam.
- PR.016 and PR.017: they always condense because the beam isn't insulated and create a preferential passage for the heat flow.

From all the evaluation for junction between external wall and plane roof, it is possible to say that to avoid condensation the beam has to be insulated.

Junction between external wall and floor with un-insulated beam

The considerations about these cases are the following:

- FL.001: owing to the difference between the wall thermal transmittance and that one of the beam, this case condenses only in case of a medium (1200 kg/m³) or a low (760 kg/m³) brick densities with a wall characterized by a thermal transmittance equal to the maximum one. These properties cause a surface temperature less than that one of the dew point with a consequent condensation.
- FL.002: it always condenses because the beam creates a preferential passage for the heat flow. This is so big that it determines a surface temperature less than that one of the dew point and so the condensation.
- FL.003: it condenses only with wall characterized by a thermal transmittance equal to the maximum one.
- FL.004: it always condenses when the beam length is equal to 50 cm. When the beam length is equal to 60 cm it doesn't condense only in the cases with a low (760 kg/m³) and a medium (1200 kg/m³) brick densities and a wall characterized by a thermal transmittance equal to the minimum one; whereas when it is equal to 70 cm it doesn't condense only in cases with a medium brick density (1200 kg/m³) and a wall characterized by a thermal transmittance equal to the minimum one; or cases with a low brick density (760 kg/m³) and a wall characterized by a thermal transmittance equal to the minimum one or cases with a low brick density (760 kg/m³) and a wall characterized by a thermal transmittance equal to the medium or the minimum one. In this case seems that the decrease of the beam width generates a greater difference between the wall thermal transmittance and that one of the beam. So the heat flow increases and the internal surface temperature decreases.

Junction between external wall and floor with insulated beam

These cases (FL.005, FL.006 and FL.007) never condense, except for FL.006, which condenses in cases of a medium brick density (1200 kg/m³) and a wall characterized by a thermal transmittance equal to the maximum one or cases of a maximum brick density (1800 kg/m³) and a wall characterized by a thermal transmittance equal to the maximum one.

From all the evaluation for junction between external wall and floor, it is possible to say that: when the beam isn't insulated the condensation is more likely than the cases with insulated

beam. The exception is FL.006, that with an internal insulation can't nullify the thermal bridge effect.

Junction between external and internal walls

These cases (INT.001, INT.002, INT.003 and INT.004) never condense, except for INT.004, which condenses in cases with an high brick density (1800 kg/m³) and a wall characterized by a thermal transmittance equal to the maximum one. These properties cause a surface temperature less than that one of the dew point with a consequent condensation.

So superficial condensation happens only when the wall isn't insulated.

Junction between external wall and floor with un-insulated balcony

The considerations about these cases are the following:

- BALC.001: owing to the difference between the wall thermal transmittance and that of the balcony, this case condenses only in case of a low brick density (760 kg/m³) with a wall characterized by a thermal transmittance equal to the maximum one. If the floor thickness increases it condenses also in the cases of a medium brick density (1200 kg/m³) with a wall characterized by a thermal transmittance equal to the maximum one. These properties cause a surface temperature less than that one of the dew point with a consequent condensation.
- BALC.002: it always condenses, except for cases of a low brick density (760 kg/m³) with a wall characterized by a thermal transmittance equal to the medium or minimum one. These properties decrease the heat flow rate with an increase of the surface temperature.
- BALC.003: it condenses only in cases of wall characterized by a thermal transmittance equal to the maximum one.
- BALC.004: it condenses only in cases of wall characterized by a thermal transmittance equal to the maximum one and also in cases of an high brick density (1800 kg/m³) and a wall characterized by a thermal transmittance equal to the medium one.

Junction between external wall and floor with insulated balcony

These cases (BALC.005, BALC.006 and BALC.007) never condense, because the balcony is insulated.

What has been said before for junction between external wall and floor can be extended to balcony: when the balcony is insulated the condensation doesn't occur, in the other cases it is very likely.

Junction between external wall and window positioned in the middle

The metallic frames always determine condensation because of the difference between the frame thermal transmittance and that one of the wall. The wooden ones act in the same way, except for the cases with the insulation in correspondence of the window (WIND.004), which never condense, and for the cases with insulation outside (WIND.001), which don't condense only in cases of a low brick density (760 kg/m³) and a wall characterized by a thermal transmittance equal to the maximum one. These properties decrease the heat flow rate with an increase of the internal surface temperature.

Junction between external wall and window positioned outside

The metallic frames, as said before, always determine condensation because of the difference between the frame thermal transmittance and that one of the wall. The wooden ones act in the same way, except for the cases with the insulation in correspondence of the window (WIND.007), which never condense.

Junction between external wall and window positioned inside

The metallic frames, as said before, always determine condensation. For the wooden ones the considerations are the following:

- WIND.013 and WIND.016: they don't condense only in cases with a low brick density (760 kg/m³). These properties decrease the heat flow rate with an increase of the surface temperature.
- WIND.014 and WIND.015: they never condense.
- WIND.017: it always condenses because of the presence of an architrave between the wall and the window.
- WIND.018: it doesn't condense only in cases with a low brick density (760 kg/m³) and a wall characterized by a thermal transmittance equal to the medium or the minimum one.

Windows comparison

It is possible to say that the best condition is offered by windows positioned inside because the passage of the heat flow is reduced compared to the other two positions.

Figure 3.4 - Windows comparison

The **Figure 3.4** shows that the alignment of window and insulation reduces almost totally the thermal bridge. Whereas for the cases with a window positioned in the middle and a window positioned inside with an insulation outside of the wall the thermal bridge becomes significant. From the figure it is possible to see that the input length in the case of a window positioned in the middle is greater than the case of a window positioned inside and the heat flow increase.

4 VALIDATION

4.1 ADOPTED APPROACH

After having developed the correlations about the linear thermal transmittance and the temperature factor at the internal surface, it has been decided to evaluate if these ones could be applied on real examples.

For this purpose, it has been necessary to execute some simulations on real building junctions that correspond to the reference ones.

FLUENT is a very precise program, which allows to define all material properties, the boundary conditions and the precision level of the geometric mesh; but this software is expensive and it requires a lot of time to learn it and its preprocessors, such as GAMBIT. In order to verify if the correlations can be applied to real examples studied by mid-level planners, it has been decided to use a free software, which is very easy to learn and to use: this is the case of THERM. An important difference between these two programs is the geometric model: FLUENT is based on finite volume calculation and it allows to define precisely the amplitude of the mesh, whereas THERM is based on finite element calculation and it provides the mesh automatically (it is possible to impose only a level of definition of it).

The results of the simulation through THERM are the minimum temperature at the internal surface and the medium thermal transmittance of any building junction.

The first one allows to determine the minimum acceptable value of the temperature factor at the internal surface for any case, through the following rule *(2.26)*:

$$f_{Rsi,min} = \frac{T_{si,min} - T_e}{T_i - T_e} \quad (-)$$

The second one allows to calculate the heat flow rate due to the thermal bridge:

$$Q_{TB} = U_{av} \cdot A \cdot (T_i - T_e) \quad (W)$$
(4.1)

With: $A = l_{TB} \cdot z_{TB}$

Where:

- U_{av} is the medium thermal transmittance of the building junction;
- T_i and T_e are the internal and external air temperatures;
- A is the total surface of the building junction;
- z_{TB} is the thermal bridge development;
- I_{TB} is the other dimension of the thermal bridge.

As said before, the linear thermal transmittance derives from the difference between this heat flow rate and the one-dimensional one. According to *(2.1)* and *(2.3)*, it is possible to obtain:

$$\Psi = \frac{(Q_{TB} - Q_{1D})}{\Delta T \cdot z_{TB}} = \frac{A \cdot (T_i - T_e) \cdot (U_{av} - U_W)}{(T_i - T_e) \cdot z_{TB}} = l_{TB} \cdot (U_{av} - U_W) \quad (\frac{W}{m \cdot K}) \qquad (4.2)$$

In case of two different dispersant building elements (e.g. external wall and roof), it becomes:

$$\Psi = \frac{(Q_{TB} - Q_{1D})}{\Delta T \cdot z_{TB}} = \frac{(T_i - T_e) \cdot (A \cdot U_{av} - A_W \cdot U_W - A_{roof} \cdot U_{roof})}{(T_i - T_e) \cdot z_{TB}}$$

$$= l_{TB} \cdot U_{av} + l_W \cdot U_W + l_{roof} \cdot U_{roof} \quad (\frac{W}{m \cdot K})$$
(4.3)

With: $A = A_W + A_{roof} = l_W \cdot z_{TB} + l_{roof} \cdot z_{TB}$

Where:

- U_w and U_{roof} are the wall and roof (or other opaque elements) thermal transmittance;
- A_w and A_{roof} are the wall and roof (or other opaque elements) total surface;
- I_w and I_{roof} are the wall and roof (or other opaque elements) extension.

Figure 4.1 - Schematization of the thermal bridge dimensions

In order to execute the validation, it has been decided to execute simulation based on internal dimensions only on representative families of thermal bridges, which are the following:

- junctions between external wall and pillar;
- projecting corners;
- junctions between external wall and floor.

The number of real examples studied for each schematization of thermal bridge is five. The first cases of the first two families have been analyzed through nine examples also, but in ANNEX E (chapter **6.5**) it is shown that the difference is negligible.

The approach used in these simulations is the same of that of a mid-level planner, in fact the materials used in the stratigraphies have been taken from constructive details of some projects, technique reports and reference norms (such as the UNI EN ISO 10355 [N13]).

The results obtained by the simulations on real building junctions are new points near the plane described by each reference correlation. So it has been possible to evaluate the mean square error (MSE) given by these points.

The mean square error (MSE) is one of many ways to quantify the difference between values implied by an estimator and the true values of the quantity being estimated.

For example, the mean square error for the linear thermal transmittance is:

$$MSE_{\Psi} = \sqrt{\frac{\sum_{i=1}^{N} (\Psi_{i} - \widehat{\Psi}_{i})^{2}}{N - 1}}$$
(4.4)

Where:

- Ψ_i is the true value of the quantity being estimated;
- $\widehat{\Psi}_{l}$ is the value obtained through the estimator (the correlation);
- N is the number of samples studied (in this case five).

Finally, as a reference parameter, it has been indicated its percentage on the average of the values obtained through the simulations on real examples (MSEP).

$$MSEP_{\Psi} = \frac{MSE_{\Psi}}{\sum \frac{\Psi_i}{N}}$$
(4.5)

According to the its definition, the mean square error is positive, but in the validation reports it has been decided to point out its sign with reference to the values of the obtained error. When only one error has a different sign and an order of magnitude smaller than the other ones, this value is considered as an outlayer and so the final sign is determined by the other ones.

4.2 PROGRAMS COMPARISON

The values of linear thermal transmittance and temperature factor at the internal surface used to determine the reference abacus correlations have been obtain through FLUENT. Whereas, as said before, the simulations done on real building junctions to validate these correlations have been developed through THERM.

At the beginning it has been necessary to compare the results of the same simulations obtained through the two programs to evaluate the relative error of one program on the other. For this purpose, it has been taken into consideration the junction between external wall and pillar with a pillar width equal to 30 cm.

The following table resumes the value obtained through both programs, with:

$$\Delta U = U_{av} - U_W \quad (\frac{W}{m^2 \cdot K}) \tag{4.6}$$

$$\Delta Q = |Q_{TH} - Q_{FL}| \quad (W)$$
(4.7)

$$\Delta \Psi = |\Psi_{TH} - \Psi_{FL}| \quad (\frac{W}{m \cdot K})$$
(4.8)

$$\Delta f_{Rsi,min} = \left| f_{Rsi,min,TH} - f_{Rsi,min,FL} \right| \quad (-)$$
(4.9)

$$f_{Rsi,min,TH} = \frac{T_{si,min,TH} - T_e}{T_i - T_e} \quad (-)$$
 (4.10)

$$\Delta T_{si,min} = \left| T_{si,min,TH} - T_{si,min,FL} \right| \quad (°C)$$
(4.11)

$$T_{si,min,FL} = f_{Rsi,min,FL} \cdot (T_i - T_e) + T_e \quad (-)$$
(4.12)

Where:

- U_{av} is the medium thermal transmittance due to the thermal bridge;
- U_w is the wall thermal transmittance;
- Q_{TH} is the heat flow rate determined through THERM, using **(4.1)** with $z_{TB}=1$ m;
- Q_{FL} is the heat flow rate determined through FLUENT;
- Ψ_{TH} is the linear thermal transmittance determined through U_{av} by THERM, using (4.2);
- Ψ_{FL} is the heat flow rate determined through FLUENT;
- T_{si,min,TH} is the minimum temperature at the internal surface determined through THERM;
- $f_{Rsi,min,TH}$ is the minimum acceptable value of the temperature factor at the internal surface determined through THERM, using **(4.10)** with the design hypothesis of $T_i=20^{\circ}C$ and $T_e=-5^{\circ}C$;
- f_{Rsi,min,FL} is the minimum acceptable value of the temperature factor at the internal surface determined through FLUENT;
- T_{si,min,FL} is the minimum temperature at the internal surface determined through FLUENT, using *(4,12)*.
| | Brick
density | U _w
type | Uw | U _{av} | ΔU | Iтв | QTH | Q _{FL} | Δq | ∆Q/Q _{FL} | Ψ _{TH} | Ψ_{FL} | ΔΨ | $\Delta \Psi / \Psi_{FL}$ | T _{si,min,TH} | f _{Rsi,min,TH} | f _{Rsi,min,FL} | ∆f _{Rsi,min} | ∆f _{Rsi,min} /
f _{Rsi,min,FL} | T _{si,min,FL} | ∆T _{si,min} | ΔT _{si,min}
/T _{si,min,}
FL |
|-------|------------------|------------------------|---------|-----------------|---------|-----|-------|-----------------|------|--------------------|-----------------|-------------|--------|---------------------------|------------------------|-------------------------|-------------------------|-----------------------|--|------------------------|----------------------|---|
| | (kg/m³) | | (W/m²K) | (W/m²K) | (W/m²K) | (m) | (₩) | (₩) | (W) | % | (W/mK) | (W/mK) | (W/mK) | % | (°C) | (-) | (-) | (-) | % | (°C) | (°C) | % |
| | | U _{max} | 0,531 | 0,949 | 0,418 | 2,3 | 54,57 | 54,47 | 0,10 | 0,19 | 0,962 | 0,957 | 0,004 | 0,42 | 11,80 | 0,672 | 0,673 | 0,001 | 0,22 | 11,84 | 0,04 | 0,31 |
| | 1200 | Um | 0,293 | 0,644 | 0,351 | 2,3 | 37,04 | 36,98 | 0,06 | 0,17 | 0,807 | 0,805 | 0,003 | 0,31 | 14,50 | 0,780 | 0,779 | 0,001 | 0,09 | 14,48 | 0,02 | 0,12 |
| | | U _{min} | 0,210 | 0,537 | 0,327 | 2,3 | 30,89 | 30,84 | 0,05 | 0,16 | 0,752 | 0,750 | 0,002 | 0,27 | 15,30 | 0,812 | 0,814 | 0,002 | 0,25 | 15,35 | 0,05 | 0,33 |
| - | | U _{max} | 0,578 | 1,025 | 0,447 | 2,3 | 58,94 | 58,82 | 0,13 | 0,21 | 1,027 | 1,022 | 0,005 | 0,49 | 12,20 | 0,688 | 0,689 | 0,001 | 0,15 | 12,23 | 0,03 | 0,21 |
| IL.00 | 1800 | Um | 0,316 | 0,701 | 0,385 | 2,3 | 40,32 | 40,24 | 0,08 | 0,20 | 0,886 | 0,883 | 0,003 | 0,36 | 14,90 | 0,796 | 0,796 | 0,000 | 0,03 | 14,89 | 0,01 | 0,04 |
| 6 | | U _{min} | 0,223 | 0,583 | 0,359 | 2,3 | 33,51 | 33,45 | 0,06 | 0,19 | 0,827 | 0,824 | 0,003 | 0,31 | 15,70 | 0,828 | 0,830 | 0,002 | 0,28 | 15,76 | 0,06 | 0,37 |
| | | U _{max} | 0,399 | 0,787 | 0,388 | 2,3 | 45,25 | 45,16 | 0,09 | 0,21 | 0,893 | 0,889 | 0,004 | 0,43 | 11,10 | 0,644 | 0,645 | 0,001 | 0,15 | 11,12 | 0,02 | 0,22 |
| | 760 | Um | 0,227 | 0,536 | 0,309 | 2,3 | 30,81 | 30,75 | 0,05 | 0,17 | 0,711 | 0,708 | 0,002 | 0,30 | 13,70 | 0,748 | 0,747 | 0,001 | 0,08 | 13,69 | 0,01 | 0,11 |
| | | U _{min} | 0,170 | 0,453 | 0,283 | 2,3 | 26,06 | 26,02 | 0,04 | 0,16 | 0,651 | 0,649 | 0,002 | 0,26 | 14,50 | 0,780 | 0,782 | 0,002 | 0,20 | 14,54 | 0,04 | 0,28 |
| | | U _{max} | 0,531 | 0,888 | 0,357 | 2,3 | 51,08 | 50,92 | 0,16 | 0,32 | 0,822 | 0,815 | 0,007 | 0,80 | 9,40 | 0,576 | 0,572 | 0,004 | 0,71 | 9,30 | 0,10 | 1,09 |
| | 1200 | Um | 0,293 | 0,594 | 0,301 | 2,3 | 34,15 | 34,01 | 0,13 | 0,39 | 0,691 | 0,686 | 0,005 | 0,77 | 11,50 | 0,660 | 0,659 | 0,001 | 0,20 | 11,47 | 0,03 | 0,29 |
| | | U _{min} | 0,210 | 0,492 | 0,282 | 2,3 | 28,30 | 28,21 | 0,08 | 0,30 | 0,648 | 0,645 | 0,003 | 0,52 | 12,30 | 0,692 | 0,690 | 0,002 | 0,25 | 12,26 | 0,04 | 0,35 |
| 2 | | U _{max} | 0,578 | 0,946 | 0,367 | 2,3 | 54,38 | 54,20 | 0,18 | 0,34 | 0,845 | 0,837 | 0,007 | 0,87 | 8,90 | 0,556 | 0,552 | 0,004 | 0,71 | 8,80 | 0,10 | 1,11 |
| IL.00 | 1800 | Um | 0,316 | 0,635 | 0,319 | 2,3 | 36,50 | 36,35 | 0,16 | 0,43 | 0,733 | 0,727 | 0,006 | 0,86 | 11,00 | 0,640 | 0,637 | 0,003 | 0,44 | 10,93 | 0,07 | 0,64 |
| Р | | U _{min} | 0,223 | 0,524 | 0,301 | 2,3 | 30,14 | 30,04 | 0,10 | 0,33 | 0,692 | 0,688 | 0,004 | 0,57 | 11,80 | 0,672 | 0,670 | 0,002 | 0,29 | 11,75 | 0,05 | 0,41 |
| | | U _{max} | 0,399 | 0,757 | 0,358 | 2,3 | 43,53 | 43,38 | 0,15 | 0,35 | 0,824 | 0,818 | 0,006 | 0,74 | 10,00 | 0,600 | 0,598 | 0,002 | 0,37 | 9,94 | 0,06 | 0,55 |
| | 760 | Um | 0,227 | 0,511 | 0,285 | 2,3 | 29,40 | 29,30 | 0,10 | 0,35 | 0,654 | 0,650 | 0,004 | 0,63 | 12,30 | 0,692 | 0,690 | 0,002 | 0,32 | 12,25 | 0,05 | 0,45 |
| | | U _{min} | 0,170 | 0,431 | 0,261 | 2,3 | 24,77 | 24,70 | 0,07 | 0,29 | 0,599 | 0,596 | 0,003 | 0,47 | 13,10 | 0,724 | 0,721 | 0,003 | 0,44 | 13,02 | 0,08 | 0,61 |
| | | U _{max} | 0,531 | 0,936 | 0,405 | 2,3 | 53,83 | 53,85 | 0,02 | 0,04 | 0,932 | 0,932 | 0,001 | 0,09 | 11,10 | 0,644 | 0,644 | 0,000 | 0,07 | 11,11 | 0,01 | 0,10 |
| | 1200 | Um | 0,293 | 0,627 | 0,334 | 2,3 | 36,05 | 36,03 | 0,02 | 0,06 | 0,768 | 0,767 | 0,001 | 0,11 | 13,80 | 0,752 | 0,752 | 0,000 | 0,05 | 13,81 | 0,01 | 0,07 |
| | | U _{min} | 0,210 | 0,519 | 0,309 | 2,3 | 29,84 | 29,82 | 0,02 | 0,06 | 0,710 | 0,709 | 0,001 | 0,10 | 14,70 | 0,788 | 0,788 | 0,000 | 0,01 | 14,70 | 0,00 | 0,01 |
| m | | U _{max} | 0,578 | 1,004 | 0,425 | 2,3 | 57,71 | 57,73 | 0,02 | 0,03 | 0,978 | 0,979 | 0,001 | 0,08 | 11,30 | 0,652 | 0,651 | 0,001 | 0,23 | 11,26 | 0,04 | 0,33 |
| L.00 | 1800 | Um | 0,316 | 0,674 | 0,358 | 2,3 | 38,78 | 38,75 | 0,03 | 0,08 | 0,824 | 0,823 | 0,001 | 0,15 | 14,00 | 0,760 | 0,761 | 0,001 | 0,15 | 14,03 | 0,03 | 0,21 |
| Ы | | U _{min} | 0,223 | 0,556 | 0,333 | 2,3 | 31,97 | 31,94 | 0,03 | 0,08 | 0,765 | 0,764 | 0,001 | 0,13 | 14,90 | 0,796 | 0,798 | 0,002 | 0,20 | 14,94 | 0,04 | 0,27 |
| 1 | | U _{max} | 0,399 | 0,785 | 0,386 | 2,3 | 45,13 | 45,10 | 0,03 | 0,06 | 0,888 | 0,887 | 0,001 | 0,13 | 10,80 | 0,632 | 0,632 | 0,000 | 0,02 | 10,80 | 0,00 | 0,03 |
| 1 | 760 | Um | 0,227 | 0,532 | 0,305 | 2,3 | 30,58 | 30,55 | 0,03 | 0,10 | 0,701 | 0,700 | 0,001 | 0,17 | 13,40 | 0,736 | 0,735 | 0,001 | 0,17 | 13,37 | 0,03 | 0,23 |
| 1 | | U _{min} | 0,170 | 0,448 | 0,278 | 2,3 | 25,76 | 25,73 | 0,02 | 0,09 | 0,639 | 0,638 | 0,001 | 0,15 | 14,20 | 0,768 | 0,769 | 0,001 | 0,09 | 14,22 | 0,02 | 0,13 |

	Brick density	U _w type	Uw	U _{av}	ΔU	I _{TB}	Q _{TH}	Q _{FL}	Δq	∆Q/Q _{FL}	Ψ _{TH}	Ψ _{FL}	ΔΨ	$\Delta \Psi / \Psi_{FL}$	T _{si,min,TH}	f _{Rsi,min,TH}	f _{Rsi,min,FL}	∆f _{Rsi,min}	∆f _{Rsi,min} / f _{Rsi,min,FL}	T _{si,min,FL}	∆T _{si,min}	ΔT _{si,min} /T _{si,min,} FL
	(kg/m ³)		(W/m²K)	(W/m²K)	(W/m²K)	(m)	(\VV)	(W)	(W)	%	(W/mK)	(W/mK)	(W/mK)	%	(°C)	(-)	(-)	(-)	%	(°C)	(°C)	%
		U _{max}	1,580	1,824	0,244	2,3	104,90	104,91	0,01	0,00	0,562	0,563	0,000	0,04	9,80	0,592	0,593	0,001	0,13	9,82	0,02	0,20
	1200	Um	1,098	1,313	0,215	2,3	75,51	75,51	0,00	0,00	0,495	0,495	0,000	0,01	12,20	0,688	0,689	0,001	0,19	12,23	0,03	0,27
		U _{min}	0,997	1,202	0,205	2,3	69,11	69,11	0,00	0,00	0,472	0,472	0,000	0,01	12,80	0,712	0,713	0,001	0,08	12,81	0,01	0,11
4		U _{max}	2,089	2,260	0,171	2,3	129,97	130,01	0,04	0,03	0,394	0,395	0,001	0,38	9,70	0,588	0,589	0,001	0,17	9,73	0,03	0,26
L.00	1800	Um	1,506	1,663	0,157	2,3	95,62	95,64	0,02	0,02	0,360	0,361	0,001	0,21	12,10	0,684	0,685	0,001	0,17	12,13	0,03	0,24
6		U _{min}	1,378	1,529	0,151	2,3	87,91	87,93	0,02	0,02	0,346	0,347	0,001	0,19	12,70	0,708	0,708	0,000	0,05	12,71	0,01	0,07
		U _{max}	0,796	1,149	0,353	2,3	66,05	65,99	0,06	0,09	0,812	0,810	0,002	0,30	9,80	0,592	0,591	0,001	0,10	9,79	0,01	0,15
	760	Um	0,524	0,818	0,294	2,3	47,01	46,97	0,04	0,08	0,676	0,674	0,001	0,22	12,20	0,688	0,686	0,002	0,25	12,16	0,04	0,35
		U _{min}	0,470	0,747	0,277	2,3	42,97	42,93	0,03	0,08	0,637	0,636	0,001	0,20	12,70	0,708	0,709	0,001	0,17	12,73	0,03	0,24
		U _{max}	0,531	0,707	0,176	2,3	40,67	40,51	0,16	0,40	0,405	0,399	0,006	1,62	14,90	0,796	0,798	0,002	0,29	14,96	0,06	0,39
		Um	0,293	0,461	0,168	2,3	26,50	26,37	0,13	0,49	0,386	0,381	0,005	1,35	16,20	0,848	0,849	0,001	0,13	16,23	0,03	0,17
	1200	U _{min}	0,210	0,360	0,149	2,3	20,68	20,56	0,12	0,59	0,343	0,339	0,005	1,42	16,90	0,876	0,877	0,001	0,14	16,93	0,03	0,18
		Ux	0,210	0,424	0,214	2,3	24,39	24,29	0,10	0,41	0,492	0,488	0,004	0,82	16,00	0,840	0,841	0,001	0,09	16,02	0,02	0,12
		Uy	0,531	0,516	-0,015	2,3	29,69	29,64	0,04	0,15	-0,034	-0,036	0,002	4,91	18,20	0,928	0,928	0,000	0,05	18,21	0,01	0,07
		U _{max}	0,578	0,796	0,217	2,3	45,74	45,58	0,16	0,35	0,499	0,493	0,006	1,29	14,40	0,776	0,780	0,004	0,51	14,50	0,10	0,69
5		Um	0,316	0,529	0,213	2,3	30,41	30,27	0,14	0,45	0,489	0,484	0,005	1,12	15,90	0,836	0,837	0,001	0,11	15,92	0,02	0,14
IL.00	1800	U _{min}	0,223	0,415	0,192	2,3	23,88	23,75	0,13	0,56	0,441	0,436	0,005	1,21	16,70	0,868	0,867	0,001	0,07	16,69	0,01	0,09
6		Ux	0,223	0,477	0,254	2,3	27,45	27,36	0,09	0,34	0,584	0,580	0,004	0,65	15,90	0,836	0,836	0,000	0,03	15,91	0,01	0,04
		Uy	0,578	0,560	-0,019	2,3	32,19	32,14	0,05	0,16	-0,043	-0,045	0,002	4,47	18,20	0,928	0,923	0,005	0,55	18,07	0,13	0,70
		U _{max}	0,399	0,516	0,117	2,3	29,67	29,53	0,14	0,48	0,269	0,264	0,006	2,16	15,90	0,836	0,839	0,003	0,38	15,98	0,08	0,49
		Um	0,227	0,326	0,099	2,3	18,76	18,66	0,10	0,53	0,229	0,225	0,004	1,77	17,00	0,880	0,881	0,001	0,07	17,02	0,02	0,09
	760	U _{min}	0,170	0,254	0,084	2,3	14,61	14,53	0,08	0,57	0,193	0,190	0,003	1,75	17,60	0,904	0,903	0,001	0,10	17,58	0,02	0,13
		Ux	0,170	0,317	0,147	2,3	18,26	18,15	0,10	0,57	0,339	0,335	0,004	1,23	16,50	0,860	0,859	0,001	0,12	16,48	0,02	0,15
		Uy	0,399	0,396	-0,003	2,3	22,76	22,72	0,04	0,16	-0,007	-0,009	0,001	16,74	18,40	0,936	0,936	0,000	0,01	18,40	0,00	0,02

	Brick density	U _w type	Uw	U _{av}	ΔU	I _{TB}	Q _{TH}	Q _{FL}	Δq	ΔQ/Q _{FL}	Ψ _{TH}	Ψ _{FL}	ΔΨ	ΔΨ/Ψ _{FL}	T _{si,min,TH}	f _{Rsi,min,TH}	f _{Rsi,min,FL}	∆f _{Rsi,min}	∆f _{Rsi,min} / f _{Rsi,min,FL}	T _{si,min,FL}	∆T _{si,min}	ΔT _{si,min} /T _{si,min,} FL
	(kg/m³)		(W/m²K)	(W/m²K)	(W/m²K)	(m)	(\VV)	(W)	(₩)	%	(W/mK)	(W/mK)	(W/mK)	%	(°C)	(-)	(-)	(-)	%	(°C)	(°C)	%
		U _{max}	0,531	0,707	0,176	2,3	40,66	40,49	0,17	0,41	0,405	0,398	0,007	1,67	13,90	0,756	0,759	0,003	0,44	13,98	0,08	0,59
		Um	0,293	0,463	0,170	2,3	26,61	26,48	0,13	0,51	0,390	0,385	0,005	1,40	16,20	0,848	0,850	0,002	0,26	16,26	0,05	0,34
	1200	U _{min}	0,210	0,362	0,151	2,3	20,79	20,67	0,12	0,60	0,348	0,343	0,005	1,44	17,20	0,888	0,888	0,000	0,03	17,21	0,01	0,03
		U _x	0,210	0,427	0,217	2,3	24,58	24,48	0,10	0,41	0,499	0,495	0,004	0,80	15,80	0,832	0,832	0,000	0,01	15,80	0,00	0,02
		Uy	0,531	0,515	-0,016	2,3	29,60	29,55	0,04	0,15	-0,038	-0,039	0,002	4,47	17,70	0,908	0,911	0,003	0,30	17,77	0,07	0,38
		U _{max}	0,578	0,792	0,214	2,3	45,54	45,37	0,16	0,36	0,491	0,484	0,007	1,36	13,30	0,732	0,732	0,000	0,02	13,30	0,00	0,02
900		Um	0,316	0,529	0,213	2,3	30,42	30,27	0,14	0,47	0,490	0,484	0,006	1,18	15,70	0,828	0,829	0,001	0,18	15,74	0,04	0,24
PIL.	1800	U _{min}	0,223	0,416	0,193	2,3	23,92	23,79	0,14	0,57	0,443	0,438	0,005	1,24	16,80	0,872	0,871	0,001	0,11	16,78	0,02	0,14
		U _x	0,223	0,479	0,255	2,3	27,51	27,42	0,09	0,34	0,587	0,583	0,004	0,65	15,50	0,820	0,820	0,000	0,01	15,50	0,00	0,02
		Uy	0,578	0,558	-0,021	2,3	32,07	32,02	0,05	0,15	-0,048	-0,050	0,002	3,92	17,60	0,904	0,905	0,001	0,09	17,62	0,02	0,12
		U _{max}	0,399	0,520	0,121	2,3	29,90	29,75	0,15	0,50	0,278	0,272	0,006	2,16	15,60	0,824	0,828	0,004	0,52	15,71	0,11	0,69
	74.0	Um	0,227	0,330	0,103	2,3	18,96	18,85	0,10	0,55	0,237	0,232	0,004	1,79	17,40	0,896	0,898	0,002	0,21	17,45	0,05	0,27
	780	Ux	0,170	0,323	0,153	2,3	18,58	18,48	0,10	0,55	0,352	0,348	0,004	1,17	16,70	0,868	0,869	0,001	0,17	16,74	0,04	0,22
		Uy	0,399	0,395	-0,003	2,3	22,74	22,70	0,04	0,17	-0,008	-0,010	0,002	15,79	18,20	0,928	0,930	0,002	0,16	18,24	0,04	0,21

Table 4.1 - Comparison between results obtained through FLUENT and THERM

As it is possible to see in this table, the comparisons have been applied on the heat flow rate Q, the linear thermal transmittance Ψ , the minimum temperature factor at the internal surface $f_{Rsi,min}$ and the minimum internal surface temperature $T_{si,min}$.

The maximum difference between the values obtained through THERM and FLUENT are pointed out with light grey cells and bold style: the high value of $\Delta \Omega$ is equal to 0,18 W, value that determines a $\Delta \Psi$ equal to 0,007 W/m*K; the high value of $\Delta T_{si,min}$ is equal to 0,13 °C, value that determines a $\Delta f_{Rsi,min}$ equal to 0,005. These values show that these differences are negligible.

But, considering the percentage of these variations on the relative values obtained through FLUENT, the final evaluation is different: for the heat flow, the temperature factor at the internal surface and the internal surface temperature this ratio is near to the 1% and so it's negligible, but the percentage provided by the linear thermal transmittance in more high. The problem is in the cases with U_y (as indicated by grey cells in $\Delta \Psi / \Delta \Psi_{FL}$ column), where the insulation present in the middle of the wall and the one inside or outside of the pillar communicate and so they create a sort of continuous insulation: in this case the heat flow in correspondence of the pillar is very similar of the one in correspondence of the wall and so the linear thermal transmittance is very near to zero. This comports that though $\Delta \Psi$ is very little, it determines an high error on a Ψ_{FL} so low.

These simulations with U_y had been excluded by the reference correlations, owing to this communication between the two insulations that would have introduced another degree of freedom in this type of junction. However this consideration can become useful in the cases of junctions totally insulated inside or outside, which are very similar to these.

4.3 VALIDATION REPORTS

4.3.1 Reports structure

The validation reports have been structured in two different pages. The first one provides on its summit the reference abacus case being validated with its correlations and confidence intervals. It is important to point out that the reference cases are based on schematization characterized by homogenous layers. In the middle of this form it has been evaluated the influence of real examples, based on non-homogenous stratigraphy. This part in fact reports the values obtained through the simulation on real examples and the values obtained through the reference correlations with the parameters values corresponding to that of the real examples. $\Delta \Psi$ and Δf_{Rsi} represent the differences, and so the error, between these two values respectively for the linear thermal transmittance and the temperature factor at the internal surface. The error is the amount by which the value implied by the estimator differs from the quantity to be estimated.

The chapter **4.2** shows that the difference between the values obtained through FLUENT and THERM has an order of magnitude equal to the third decimal number and so the errors have been evaluated with two decimal numbers.

Using the rules indicated in chapter **4.1**, it has been possible to determine the mean square error (MSE) and its percentage related to the average of the real examples values (MSEP).

For the first cases new correlations have been developed unifying the points of the reference cases with the ones of the validation cases, in order to evaluate how these real examples change the correlations and its confidence interval. The difference between the confidence interval obtained through the validation and the reference one has been evaluated through $\Delta IC_{IRSi}^{95\%}$ and $\Delta IC_{IRSi}^{95\%}$.

At the end of the first page of the report there is a space dedicated to the development of particular considerations on each case.

The second page report all the stratigraphies with the relative thermal transmittance for each validation case with the results of the minimum surface temperature and the medium thermal transmittance obtained through THERM. The tables provided all the material layers with their thermal conductivity and their thickness. The bold style show the layers that have the greater contribute on the thermal resistance.

The thermal transmittance has been calculated through the following rule:

$$U = \frac{1}{R} = \frac{1}{R_{si} + \frac{L_1}{\lambda_1} + \frac{L_2}{\lambda_2} + \dots + \frac{L_n}{\lambda_n} + R_{se}} \qquad (\frac{W}{m^2 \cdot K})$$
(4.13)

Where:

- L₁, L₂,... L_n are the layers thicknesses;
- L₁, L₂,... L_n are the layers thermal conductivity;
- R_{si} are R_{se} are the surface resistances.

R _{si}	(m²k/W)	0,13
R _{se}	(m²k/₩)	0,04

Table 4.2 - Surface resistances used in validation

Figure 4.2 - Structure or the first page of validation reports

Report area used to identify the wall thermal transmittance

Report area used to identify the thermal transmittance of the discontinuity element.

				l	/alidatio/	n cases			
		WALL	L, (m)	λ_i (W/mK)	R, (m ² K/W)	PILLAR (Sp=40cm)	L, (m)	$\lambda_i (W/mK)$	R; (m ² K/W)
		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
		Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,3	1,91	0,16
	=	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,4	0,01
	10	Alluminium vapour barrie	0,002	0,17	0,01	Alluminium vapour barries	0,002	0,17	0,01
;	P.	EPS insulation	0,05	0,038	1,32	External plaster	0,005	1,4	0,00
1	5	External plaster	0,005	1,4	0,00		Up	(W/m ² K)	2,55
1			Uw	(W/m ² K)	0,41]			
1									
1		Uav		(W/m²K)	0,85	T _{si,min}		(°C)	12,30
;		WALL	Լ (m)	$\lambda_i (W/mK)$	R _i (m ² K/W)	PILLAR (Sp=40cm)	Ц (m)	λ _i (W/mK)	R _i (m ² K/W)
1		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
;		Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,35	1,91	0,18
1	0	Alluminium and a second	0,01	1,4	0,01	Futurminium vapour barrier	0,002	0,17	0,01
1 .	E	EPS insulation	0,002	0,17	0,01	exection paster	0,005	1,7	0,00
1 1	2.P	Ers insulation	0,09	0,038	2,37	4 !	Up	(W/m*K)	z,43
1 1	>	External plaster	0,005	1,4	0,00	1			
1 1			Uw	(W/m ² K)	0,29	4			
1 1									18.55
1 /		Uav		(W/m²K)	0,73	T _{si,min}		(°C)	12,80
1 1		WALL	L, (m)	A, (W/mK)	R, (m ² K/W)	PILLAR (Sp=30cm)	L, (m)	A, (W/mK)	R, (m ² K/W)
1 1		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
1 1		Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,3	1,91	0,16
Validation	001	Alluminium uncourr barrie	0,01	0.17	0,01	Aluminium users a barrie	0,01	0.17	0,01
cases	JL.	EPS insulation	0.02	0,030	1.22	External plaster	0,002	1.4	0.00
codes.	/3.5	External plaster	0,005	14	0.00	CALCERTON (MODECT	11-	1	2 55
	-	concernor prester	Lbr	111/1002141	0.41	ł ¹	Op	(W/m ⁻ K)	2,33
			0	(w/m K)	0,41				
		Uav		(W/m ² K)	0,77	T _{si,min}		(°C)	12,70
		WALL	L, (m)	λ_i (W/mK)	R, (m ² K/W)	PILLAR (Sp=40cm)	L, (m)	$\lambda_i (W/mK)$	R, (m²K/W)
		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
		Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,35	1,91	0,18
\ \	5	Concrete darter	0.01						
		concrete paster	0,01	1,4	0,01	Alluminium vapour barrie	0,002	0,17	0,01
	L.O	Alluminium vapour barrie	0,002	0,17	0,01	Alluminium vapour barrie External plaster	0,002 0,005	0,17 1,4	0,01
	1.PIL.0	Alluminium vapour barrie Polyurethan insulation	0,002	0,17 0,028	0,01 0,01 3,21	Alluminium vapour barrie External plaster	0,002 0,005 Up	0,17 1,4 (W/m ² K)	0,01 0,00 2,43
	V4.PIL.0	Alluminium vapour barrie Polyurethan insulation External plaster	0,002 0,009 0,005	1,4 0,17 0,028 1,4	0,01 0,01 3,21 0,00	Alluminium vapour barries External plaster	0,002 0,005 Up	0,17 1,4 (W/m ² K)	0,01 0,00 2,43
	V4.PIL.0	Alluminium vapour barrie Polyurethan insulation External plaster	0,002 0,009 0,005 Uw	1,4 0,17 0,028 1,4 (W/m ² K)	0,01 0,01 3,21 0,00 0,23	Alluminium vapour barrie External plaster	0,002 0,005 Up	0,17 1,4 (W/m ² K)	0,01 0,00 2,43
	V4.PIL.0	Alluminium vapour barrie Polyurethan insulation External plaster	0,002 0,009 0,005 Uw	1,4 0,17 0,028 1,4 (W/m ² K)	0,01 0,01 3,21 0,00 0,23	Atluminium vapour barries External plaster	0,002 0,005 Up	0,17 1,4 (W/m ² K)	0,01 0,00 2,43
	V4.PIL.0	Alluminium vapour barrie Polyurethan insulation External plaster U _{av}	0,002 0,009 0,005 U _W	1,4 0,17 0,028 1,4 (W/m ² K)	0,01 0,01 3,21 0,00 0,23 0,69	Alluminium vapour barries External plaster Tsil,min	0,002 0,005 Up	0,17 1,4 (W/m ² K) (*C)	0,01 0,00 2,43 12,90
	V4.PIL.0	Alluminum vapour barrie Polyurethan insulation External plaster Uav WALL	0,01 0,002 0,09 0,005 Uw	1,4 0,17 0,028 1,4 (W/m²K) λ _i (W/m ^K)	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m ² K/W)	Alluminium vapour barrie External plaster Tsi.min PILLAR (Sp=50cm)	0,002 0,005 Up	0,17 1,4 (₩/m ² K) (*C) λ _i (₩/mK)	0,01 0,00 2,43 12,90 R _i (m ² K/W)
	V4.PIL.0	Alluminum vapour barrie Polyurethan insulation External plaster Uav WALL Chalk plaster	0,002 0,09 0,005 U _W	1,4 0,17 0,028 1,4 (W/m ² K) (W/m ² K) λ _i (W/mK) 0,35	0,01 0,01 3,21 0,00 0,23 0,69 R, (m²K/W) 0,04	Alluminium vapour barrie External plaster Tsi,min PILLAR (Sp=50cm) Chalk plaster	0,002 0,005 Up L _i (m) 0,015	0,17 1,4 (Ψ/m²K) (*C) λ _i (Ψ/mK) 0,35	0,01 0,00 2,43 12,90 R, (m²K/W) 0,04
	V4.PIL.0	Alluminum vapour barrie Polyurethan insulation External plaster Uav WALL Chalk plaster Brick (25x30cm)	0,002 0,009 0,005 Uw L _i (m) 0,015 0,3	1.4 0,17 0,028 1.4 (W/m ² K) (W/m ² K) λ _i (W/mK) 0,35 0,288	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m²K/W) 0,04 1,04	Alluminium vapour barrie External plaster Tsi.min PILLAR (SP=50cm) Chalk plaster Armed concrete	0,002 0,005 Up L, (m) 0,015 0,35	0,17 1,4 (W/m ² K) (*C) λ ₁ (W/mK) 0,35 1,91	0,01 0,00 2,43 12,90 R _i (m ² K/W) 0,04 0,18
	001 V4.PIL.0	Alluminum vapour barrie Polyurethan insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster	0,002 0,009 0,005 Uw L, (m) 0,015 0,3	1.4 0,17 0,028 1.4 (W/m ² K) (W/m ² K) λ _i (W/mK) 0,35 0,288 1,4	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m²K/W) 0,04 1,04	Alluminium vapour barries External plaster Tsi.min PILLAR (SP=50cm) Chalk plaster Armed concrete Concrete plaster	0,002 0,005 Up L, (m) 0,015 0,35	0,17 1,4 (W/m ² K) (*C) λ ₁ (W/mK) 0,35 1,91 1,4	0,01 0,00 2,43 12,90 R _i (m²K/W) 0,04 0,18 0,01
	V4.PIL.00	Alluminium vapour barrie Polyurethan insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie	0,002 0,009 0,005 Uw L, (m) 0,015 0,01 0,002	1.4 0,17 0,028 1.4 (W/m²K) (W/m ² K) λ _i (W/mK) 0,35 0,288 1.4 0,17	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m²K/W) 0,04 1,04 0,01 0,01	Alluminium vapour barries External plaster Tsilmin PILLAR (SP=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barries	0,002 0,005 Up L, (m) 0,015 0,35 0,01 0,002	0,17 1,4 (W/m ² K) (*C) λ _i (W/mK) 0,35 1,91 1,4 0,17	0,01 0,00 2,43 12,90 R _i (m ² K/W) 0,04 0,18 0,01 0,01
	75.PIL.001 V4.PIL.0	Alluminium vapour barrie Polyurethan insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie EPS insulation	0,002 0,09 0,005 Uw L, (m) 0,015 0,3 0,01 0,002 0,05	1.4 0,17 0,028 1.4 (W/m²K) (W/m ² K) λ _i (W/mK) 0,35 0,288 1.4 0,17 0,038	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m ² K/W) 0,04 1,04 0,01 0,01 1,32	Alluminium vapour barries External plaster Tsilmin PILLAR (SP=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barries External plaster	0,002 0,005 Up L, (m) 0,015 0,35 0,01 0,002 0,005	0,17 1,4 (W/m²K) (*C) λ _i (W/mK) 0,35 1,91 1,4 0,17 1,4	0,01 0,00 2,43 12,90 R_i (m²K/W) 0,04 0,18 0,01 0,01 0,00
	V5.PIL.001 V4.PIL.0	Alluminium vapour barrie Polyurethan insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie EPS insulation External plaster	0,002 0,009 0,005 Uw L _i (m) 0,015 0,01 0,002 0,005	1.4 0,17 0,028 1.4 (W/m²K) (W/m ² K) 0,35 0,288 1.4 0,17 0,038 1.4	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m²K/W) 0,04 1,04 0,01 0,01 1,32 0,00	Alluminium vapour barries External plaster Tsilmin PILLAR (SP=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barries External plaster	0,002 0,005 Up L, (m) 0,015 0,35 0,01 0,002 0,005 Up	0,17 1,4 (W/m ² K) (*C) λ _i (W/mK) 0,35 1,91 1,4 0,17 1,4 (W/m ² K)	0,01 0,00 2,43 12,90 R_i (m²K/W) 0,04 0,18 0,01 0,01 0,01 0,00 2,39
	V5.PIL.001 V4.PIL.0	Uav Alluminium vapour barrie Polyurethan insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie EPS insulation External plaster	0,002 0,09 0,005 Uw L, (m) 0,015 0,01 0,002 0,005 0,005 Uw	1.4 0,17 0,028 1.4 (W/m ² K) (W/m ² K) 0,35 0,288 1,4 0,17 0,038 1,4 (W/m ² K)	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m²K/W) 0,04 1,04 0,01 0,01 1,32 0,00 0,39	Alluminium vapour barries External plaster Tsi.min PILLAR (SP=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barries External plaster	0,002 0,005 Up L, (m) 0,015 0,015 0,015 0,010 0,002 0,005 Up	0,17 1,4 (W/m ² K) (°C) λ _i (W/mK) 0,35 1,91 1,4 0,17 1,4 (W/m ² K)	0,01 0,00 2,43 12,90 R_i (m²K/W) 0,04 0,18 0,01 0,01 0,01 0,00 2,39
	V5.PIL.001 V4.PIL.0	Alluminium vapour barrie Polyurethan insulation External plaster Uaw WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie EPS insulation External plaster	0,002 0,09 0,005 Uw 0,015 0,015 0,015 0,015 0,015 0,002 0,005 0,005 0,005 Uw	1.4 0,17 0,028 1.4 (W/m ² K) (W/m ² K) 0,35 0,288 1.4 0,17 0,038 1.4 (W/m ² K) (W/m ² K)	0,01 0,01 3,21 0,00 0,23 0,69 R, (m²K/W) 0,04 1,04 0,01 0,01 0,01 1,32 0,00 0,39	Alluminium vapour barrie External plaster Tst.min PILLAR (Sr=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barries External plaster	0,002 0,005 Up 0,015 0,015 0,015 0,002 0,005 Up	0,17 1,4 (W/m ² K) (*C) λ _i (W/mK) 0,35 1,91 1,4 0,17 1,4 (W/m ² K)	0,01 0,00 2,43 12,90 R _i (m ² K/W) 0,04 0,18 0,01 0,01 0,01 0,00 2,39
	V5.PIL.001 V4.PIL.0	Uaver parter Alluminum vapour barrie Polyurethan insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie EPS insulation External plaster Uax	0,002 0,09 0,005 Uw L, (m) 0,015 0,3 0,01 0,002 0,05 0,005 Uw	1.4 0,17 0,028 1.4 (W/m ² K) (W/m ² K) 0,35 0,288 1.4 0,17 0,038 1.4 (0,17 0,038 1.4 (W/m ² K)	0,01 0,01 3,21 0,00 0,23 0,69 R, (m²K/W) 0,04 1,04 0,01 0,01 1,32 0,00 0,39 0,86	Alluminium vapour barrie External plaster TsLmin PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barrie External plaster Tsi,min	0,002 0,005 Up L, (m) 0,015 0,015 0,010 0,002 0,005 Up	0,17 1,4 (W/m ² K) (*C) λ _i (W/mK) 0,35 1,91 1,4 0,17 1,4 (W/m ² K) (*C)	0,01 0,00 2,43 12,90 R, (m ² K/W) 0,04 0,18 0,01 0,01 0,01 0,00 2,39
	V5.PIL.001 V4.PIL.0	Alluminium vapour barrie Polyurethan insulation External plaster Uaw WALL Chalk plaster Brick (25x30cm) Concrete plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie EPS insulation External plaster	0,002 0,09 0,09 Uw Uw 0,015 0,015 0,015 0,015 0,005 0,005 Uw	1.4 0,17 0,028 1.4 (W/m ² K) (W/m ² K) 0,35 0,288 1.4 0,17 0,038 1.4 (W/m ² K) (W/m ² K)	0,01 0,01 3,21 0,00 0,23 0,69 R, (m²K/W) 0,04 1,04 0,01 0,01 1,32 0,00 0,39 0,86	Alluminium vapour barrie External plaster Tsi.min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barrie External plaster Tsi,min	0,002 0,005 Up 0,015 0,015 0,010 0,002 0,005 Up	0,17 1,4 (W/m ² K) (*C) λ _i (W/mK) 0,35 1,91 1,4 0,17 1,4 (W/m ² K) (*C)	0,01 0,00 2,43 12,90 R, (m ² K/W) 0,04 0,18 0,01 0,01 0,01 0,00 2,39 12,70
	V5.PIL.001 V4.PIL.01	Alluminium vapour barrie Polyurethan insulation External plaster Uaw WALL Chalk plaster Brick (25x30cm) Concrete plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie EPS insulation External plaster	0,002 0,09 0,09 Uw Uw 0,015 0,015 0,015 0,015 0,005 0,005 Uw	1.4 0,17 0,028 1.4 (W/m ² K) (W/m ² K) 0,35 0,288 1.4 0,17 0,038 1.4 (0,17 0,038 1.4 (W/m ² K) (W/m ² K)	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m²K/W) 0,04 1,04 0,01 0,01 1,32 0,00 0,39 0,86	Alluminium vapour barrie External plaster PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barrie External plaster Tsi,min	0,002 0,005 Up 0,015 0,015 0,010 0,002 0,005 Up	0,17 1,4 (W/m ² K) (°C) λ _i (W/mK) 0,35 1,91 1,4 0,17 1,4 (W/m ² K) (°C)	0,01 0,00 2,43 12,90 R; (m ² K/W) 0,04 0,18 0,01 0,01 0,01 0,01 0,01 0,01 0,01
	V5.PIL.001 V4.PIL.01	Alluminium vapour barrie Polyurethan insulation External plaster Uaw WALL Chalk plaster Brick (25x30cm) Concrete plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrie EPS insulation External plaster	0,002 0,009 0,009 Uw Uw 0,015 0,015 0,015 0,015 0,005 0,005 Uw	1.4 0,17 0,028 1.4 (W/m ² K) (W/m ² K) 0,35 0,288 1.4 0,17 0,038 1.4 (0,17 0,038 1.4 (W/m ² K) (W/m ² K)	0,01 0,01 3,21 0,00 0,23 0,69 R _i (m²K/W) 0,04 1,04 0,01 0,01 1,32 0,00 0,39 0,86	Alluminium vapour barrie External plaster PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster Alluminium vapour barrie External plaster Tsi,min Tsi,min	0,002 0,005 Up 0,015 0,015 0,010 0,005 0,001 0,002 0,005 Up	0,17 1,4 (W/m ² K) (°C) λ _i (W/mK) 0,35 1,91 1,4 0,17 1,4 (W/m ² K) (°C)	0,01 0,00 2,43 12,90 R _i (m ² K/W) 0,04 0,01 0,01 0,01 0,01 0,01 0,01 0,01

program for each validation case.

Figure 4.3 - Structure of the second page of the validation reports

4.3.2 Junction between external wall and pillar

The fundamental characteristics that change in the stratigraphies of the validation cases are:

- the insulation and brick thickness;
- the insulation and brick thermal conductivity;
- the pillar width.

The reports provided in following pages show that for the first six cases the MSEP is between 18% and 26% for the linear thermal transmittance and it is between 1% and 5% for the temperature factor at the internal surface. This values indicate that the predicted error during a study on real examples isn't so big.

The correlations reported at the end of the reports show the influence of this error on the confidence interval. These correlations have been developed unifying the results used to draw up the reference abacus with the results of the validation cases. For example, taking into consideration the first report (PIL.001), the $\Delta IC_1^{95\%}$ is equal to 0,06 W/m*K because a lot of the validation results are outside the reference confidence interval. Whereas $\Delta IC_{fRsi}^{95\%}$ is equal to 0,00 because the real cases generate a MSEP equal to 4%, but their values are all inside the reference confidence interval.

When the validation values are all inside the reference confidence interval, these are underlined.

The last two cases show complete different results: the MSEP for the linear thermal transmittance is so high because it is referred to an initial value equal to zero. This determines that even if the error is low, the MSEP will be very big. In these cases it is necessary to do a more detailed analysis to understand if the error depends on the case itself or on the geometrical model applied. As said before in chapter **4.2**, the different between the results obtained through FLUENT and THERM become more significant in the cases of a continuous insulation. One of the possibilities to solve this problem could be the analysis of the same validation cases through FLUENT and the evaluation of the difference between the values obtained through the two programs.

In these last two cases the MSEP is very low for the temperature factor at the internal surface and so it shows that the reference correlations provide a good representation of the reality.

			L	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	$R_i (m^2 K/W)$
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,3	1,91	0,16
-	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,4	0,01
00	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
PIL	EPS insulation	0.05	0.038	1.32	External plaster	0.005	1,4	0.00
2.	External plaster	0,005	1,4	0,00		U.	(W/m^2K)	2.55
		Uw	(W/m^2K)	0.41	-	-		=,
				-,	1			
	Uav		(W/m^2K)	0.85	Tsi min		(°C)	12.30
	W/ALL	L; (m)	λ. (W/mK)	R: (m ² K/W)	PILLAR $(S_n=40 \text{ cm})$	L; (m)	λ. (W/mK)	R; (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0.25	0,288	0.87	Armed concrete	0.35	1.91	0,18
_	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,002	0,17	0,01
8	Alluminium vapour barriei	0,002	0,17	0,01	External plaster	0,005	1,4	0,00
PIL.	EPS insulation	0.09	0.038	2.37		U₽	(W/m^2K)	2.43
2	External plaster	0.005	14	0.00	-	Ξr	(W / K)	_,
-		0,005	····· ? ···	0,00	ł			
		Uw	(W/m²K)	0,29	-			
			() ¥((== 2)()	0.72	т		1°C)	12.00
		1 (m)	(W/M ⁻ K)	U,75	si,min	1 (m)	(C)	P (m ² K/\V/)
	Chalk plaster	0.015	0.35	0.04	Chalk plaster	0.015	0.35	0.04
	Brick (25x30cm)	0.25	0,55	0,04		0,015	1.91	0,04
_	Concrete plaster	0.01	1.4	0.01		0.01	14	0.01
8	Alluminium vapour barriei	0.007	0.17	0.01	Alluminium vapour barrier	0.007	0.17	0.01
PIL	EPS insulation	0.05	0.038	1.32	External plaster	0.005	1.4	0.00
Š	External plaster	0,005	1,4	0,00		U₽	(W/m^2K)	2.55
		Uw	(W/m^2K)	0,41	-	-1		_,
			(,,					
	U _{av}		(W/m ² K)	0,77	T _{si,min}		(°C)	12,70
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,35	1,91	0,18
Ξ	Concrete plaster	0.01	1.4	0.01	Alluminium vapour barriei	0.007	0.17	0.01
8	Alluminium vapour barriei	0.002	0.17	0.01	External plaster	0.005	1.4	0.00
II.	Polyurethan insulation	0.09	0.028	3.21		Un	$() V/(m^2 K)$	2 43
4	External plaster	0.005	1.4	0.00	-	Ur .		2,10
		Uw	(W/m^2K)	0,23				
		- W						
	U _{av}		(W/m^2K)	0,69	T _{si,min}		(°C)	12,90
	WALL	L _i (m)	λ _i (W/mK)	R _I (m ² K/W)	PILLAR (S _P =50cm)	L _i (m)	λ _i (W/mK)	R _I (m ² K/W)
	Chalk plaster	0.015	0.35	0.04	Chalk plaster	0.015	0.35	0.04
	Prick (2Ev20cm)	0,015	0,399	1.04	Armod concrete	0.25	1.01	0.19
15	Concrete plaster	0,0	1.4	0.01		0,35	1,71	0,18
Ŭ,	Alluminium vanour barriei	0,01	0.17	0.01	Alluminium vanour barrier	0,01	0.17	0,01
PII		0.05	0,17	1 37	External plaster	0.005	1.4	0,01
2	External plaster	0.005	14	0.00			()¥(/m ² /)	2 20
		Uw	$\left(\frac{1}{2}\right)$	0.39	- ¹	Οp	[w/m K]	4,31
		- W		0,07	1			
	U _{av}		(W/m^2K)	0,86	T _{si.min}		(°C)	12,70

			L	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	$R_i (m^2 K/W)$	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,015	0,21	0,07
	EPS insulation	0,05	0,038	1,32	Concrete plaster	0,01	1,4	0,01
2	Concrete plaster	0,01	1,4	0,01	Armed concrete	0,3	1,91	0,16
8	Brick (25x30cm)	0,25	0,288	0,87	Concrete plaster with san	0,015	0,9	0,02
PIL	Concrete plaster with san	0,015	0,9	0,02		U₽	(W/m^2K)	2.37
5		Uw	(W/m^2K)	0.41	-	-1		_,
		- w		-,				
	Uav		(W/m^2K)	0.75	Tei min		(°C)	12.30
	W/ALL	L: (m)	$\lambda_{\rm c}$ (W/mK)	R: (m ² K/W)	PILLAR (S=40cm)	L: (m)	λ. (W//mK)	R: (m ² K/W)
	Plasterboard	0.015	0.21	0.07	Plasterboard	0.015	0.21	0.07
		0.09	0.038	2 37	Armed concrete	0.35	1.91	0.18
		0.01	1.4	0.01	Concrete plaster with san	0.015	0.9	0.07
002	Brick (25x30cm)	0.25	0.288	0.87	Concrete plaster with sam	0,015	()))	0,02 2 27
Ë.	Concrete plaster with san	0,25	0,200	0.07	-	Op	(w/m K)	2,21
2.F	Concrete plaster with sam	0,015	0,7	0,02	-			
>		Uw	(W/m²K)	0,29	_			
	U _{av}		(W/m²K)	0,64	T _{si,min}		(°C)	12,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =30cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,015	0,21	0,07
	EPS insulation	0,05	0,038	1,32	Concrete plaster	0,01	1,4	0,01
02	Concrete plaster	0,01	1,4	0,01	Armed concrete	0,3	1,91	0,16
Ľ.	Brick (25x30cm)	0,25	0,288	0,87	Concrete plaster with san	0,015	0,9	0,02
Ч.	Concrete plaster with san	0,015	0,9	0,02	4	Up	(W/m²K)	2,37
>		Uw	(W/m²K)	0,41	-			
	Uav		(W/m^2K)	0.68	T _{si min}		(°C)	12.30
	WALL	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$	PILLAR (S _P =40cm)	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,015	0,21	0,07
	Polyurethan insulation	0.09	0.028	3.21	Armed concrete	0.35	1.91	0.18
2		0,07	0,020	0.01		0,55		0,10
00		0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
PIL		0,25	0,288	0,87	-	Up	(W/m²K)	2,21
<u>4</u> .	Concrete plaster with san	0,015	0,9	0,02	4			
-		Uw	(W/m²K)	0,23	-			
			() ¥((0.(0	–		(***	12 50
	Uav		(w/m-ĸ)	0,60	si,min		()	12,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR (S _P =50cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,015	0,21	0,07
	EPS insulation	0,05	0,038	1,32	Concrete plaster	0,01	1,4	0,01
202	Concrete plaster	0,01	1,4	0,01	Armed concrete	0,35	1,91	0,18
JL.(Brick (25x30cm)	0,3	0,288	1,04	Concrete plaster with san	0,015	0,9	0,02
,5.P	Concrete plaster with san	0,015	0,9	0,02		Up	(W/m ² K)	2,23
>		Uw	(W/m²K)	0,38]			
]			

				/alidatio	n cases			
	WALL	L. (m)	λ. (W/mK)	$R_{\rm c}$ (m ² K/W)	PILLAR (S=40cm)	L. (m)	λ. (W/mK)	R_{i} (m ² K/W)
	Chalk plaster	0.015	0,35	0,04	Chalk plaster	0.015	0,35	0,04
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,4	1,91	0,21
m	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
00	EPS insulation	0,06	0,038	1,58	Concrete plaster with san	0,015	0,9	0,02
III.	Concrete plaster	0,01	1,4	0,01		UP	(W/m ² K)	2,22
5	Brick (25x30cm)	0,25	0,288	0,87	1 -			
	Concrete plaster with san	0,015	0,9	0,02	1			
		Uw	(W/m ² K)	0,34	l			
	Uav		(W/m ² K)	0,70	T _{si,min}		(°C)	13,00
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,4	1,91	0,21
33	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
L. 0(EPS insulation	0,11	0,038	2,89	Concrete plaster with san	0,015	0,9	0,02
2.PI	Concrete plaster	0,01	1,4	0,01	ļ I	UP	(W/m ² K)	2,22
>	Brick (L=20cm)	0,2	0,239	0,84				
	Concrete plaster with san	0,015	0,9	0,02	1			
		Uw	(W/m ² K)	0,24	<u> </u>			
	U _{av}		(W/m ² K)	0,62	T _{si,min}		(°C)	13,00
	WALL	L _i (m)	λ_i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =30cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,4	1,91	0,21
003	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
IL.C	EPS insulation	0,06	0,038	1,58	Concrete plaster with san	0,015	0,9	0,02
Ч. Б	Concrete plaster	0,01	1,4	0,01	ļ _	UP	(₩/m²K)	2,22
>	Brick (25x30cm)	0,25	0,288	0,87				
					1			
	Concrete plaster with san	0,015	0,9	0,02				
	Concrete plaster with san	0,015 Uw	0,9 (W/m ² K)	0,02 0,34	т.		(***)	12.10
	Concrete plaster with san Uav	0,015 Uw	0,9 (W/m ² K) (W/m ² K)	0,02 0,34 0,63	T _{si,min}	1 (m)	(°C)	13,10
	Concrete plaster with san Uav WALL	0,015 Uw L _i (m)	0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK)	0,02 0,34 0,63 R _i (m ² K/W)	T _{si,min} PILLAR (S _P =40cm)	L _i (m)	(°C) λ _i (W/mK)	13,10 R _i (m ² K/W)
	Concrete plaster with san Uav WALL Chalk plaster	0,015 Uw Li (m) 0,015	0,9 (W/m ² K) (W/m ² K) λ _i (W/mK) 0,35	0,02 0,34 0,63 R _i (m ² K/W) 0,04	T _{si,min} PILLAR (S _P =40cm) Chalk plaster	L_i (m) 0,015	(°C) λ _i (W/mK) 0,35	13,10 R _i (m ² K/W) 0,04
	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm)	0,015 Uw Li (m) 0,015 0,08	0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3	0,02 0,34 0,63 R _i (m ² K/W) 0,04 0,27	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete	L_i (m) 0,015 0,4	(°C) λ _i (W/mK) 0,35 1,91	13,10 R _i (m ² K/W) 0,04 0,21
003 E00	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier	0,015 Uw L, (m) 0,015 0,08 0,002	0,9 (W/m ² K) (W/m ² K) λ _i (W/mK) 0,35 0,3 0,17	0,02 0,34 0,63 R ₁ (m ² K/W) 0,04 0,27 0,01	T _{si,min} PILLAR (S _P =40cm) Chalk plaster Armed concrete Alluminium vapour barrier	Li (m) 0,015 0,4 0,002	(°C) λ ₁ (W/mK) 0,35 1,91 0,17	13,10 R _i (m ² K/W) 0,04 0,21 0,01
PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation	0,015 Uw Li (m) 0,015 0,008 0,002 0,11	0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028	0,02 0,34 0,63 R ₁ (m ² K/W) 0,04 0,27 0,01 3,93	T _{si,min} PILLAR (S _P =40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san	Li (m) 0,015 0,002 0,002	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9	13,10 R _i (m ² K/W) 0,04 0,21 0,01 0,02
V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster	0,015 U _W L _i (m) 0,015 0,008 0,002 0,11 0,01	0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4	0,02 0,34 0,63 R; (m ² K/W) 0,04 0,27 0,01 3,93 0,01	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san	Li (m) 0,015 0,042 0,002 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K)	13,10 R _i (m ² K/W) 0,04 0,21 0,01 0,02 2,22
V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster	0,015 U _W L ₁ (m) 0,015 0,08 0,002 0,11 0,01 0,2 0,015	0,9 (W/m ² K) (W/m ² K) λ_i (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239	0,02 0,34 0,63 R _i (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san	Li (m) 0,015 0,02 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K)	13,10 R _i (m ² K/W) 0,04 0,21 0,01 0,02 2,22
V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san	0,015 Uw 0,015 0,08 0,002 0,11 0,01 0,2 0,015	0,9 (W/m ² K) (W/m ² K) 0,35 0,3 0,17 0,028 1,4 0,239 0,9	0,02 0,34 0,63 R ₁ (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,18	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san	Li (m) 0,015 0,40 0,002 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K)	13,10 R _i (m ² K/W) 0,04 0,21 0,01 0,02 2,22
V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san	0,015 Uw 0,015 0,008 0,002 0,11 0,01 0,2 0,015 Uw	0,9 (W/m ² K) (W/m ² K) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K)	0,02 0,34 0,63 R _i (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san	L _I (m) 0,015 0,4 0,002 0,015 U _P	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K)	13,10 R _i (m ² K/W) 0,04 0,21 0,01 0,02 2,22
V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav	0,015 Uw 0,015 0,008 0,002 0,010 0,01 0,01 0,015 Uw	0,9 (W/m ² K) (W/m ² K) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K)	0,02 0,34 0,63 R, (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san Concrete plaster with san Tsi,min	L _i (m) 0,015 0,4 0,002 0,015 U _P	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K) (°C)	13,10 R _i (m ² K/W) 0,04 0,21 0,01 0,02 2,22 13,00
V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL WALL	0,015 Uw 0,015 0,08 0,002 0,11 0,01 0,21 0,015 Uw L, (m)	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK)	0,02 0,34 0,63 R _i (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R _i (m ² K/W)	T _{si,min} PILLAR (S _P =40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san Concrete plaster with san T _{si,min} PILLAR (S _P =50cm)	Li (m) 0,015 0,002 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K) (W/m ² K) (°C) λ ₁ (W/mK)	13,10 R _i (m ² K/W) 0,04 0,21 0,01 0,02 2,22 13,00 R _i (m ² K/W)
V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster	0,015 Uw 0,015 0,008 0,002 0,11 0,01 0,015 Uw Lu (m) 0,015	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35	0,02 0,34 0,63 R ₁ (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R ₁ (m ² K/W) 0,04	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san Concrete plaster with san FillLAR (SP=50cm) Chalk plaster	Li (m) 0,015 0,02 0,015 UP	 (°C) λ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m²K) λ₁ (W/mK) 0,35 	13,10 R _i (m ² K/W) 0,04 0,01 0,02 2,22 13,00 R _i (m ² K/W) 0,04
V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm)	0,015 Uw 0,015 0,008 0,002 0,015 0,015 Uw L _i (m) 0,015 0,08	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3	0,02 0,34 0,63 R; (m²K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R; (m²K/W) 0,04 0,27	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster with san Concrete plaster with san Tsi,min PILLAR (SP=50cm) Chalk plaster Armed concrete	L, (m) 0,015 0,02 0,015 Up L, (m) 0,015	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 1,91	13,10 R ₁ (m ² K/W) 0,04 0,21 0,02 2,22 13,00 R ₁ (m ² K/W) 0,04 0,04
003 V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav Uav Concrete plaster with san Concrete plaster with san Concrete plaster with san Brick (L=8cm) Alluminium vapour barrier	0,015 Uw 1, (m) 0,015 0,002 0,012 0,015 Uw L, (m) 0,015 0,002	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,3 0,17	0,02 0,34 0,63 R _i (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R _i (m ² K/W) 0,04 0,27 0,01	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san Concrete plaster with san Tsi,min PILLAR (SP=50cm) Chalk plaster Armed concrete Alluminium vapour barrier	Li (m) 0,015 0,02 0,015 UP Li (m) 0,015 0,41	(°C) λ, (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K) (W/m ² K) λ, (W/mK) 0,35 1,91 0,17	13,10 R _i (m ² K/W) 0,04 0,01 0,02 2,22 13,00 R _i (m ² K/W) 0,04 0,02 0,01
PIL.003 V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier EPS insulation	0,015 Uw 0,015 0,008 0,010 0,010 0,015 Uw Lı (m) 0,015 0,015 0,008 0,002	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,038	0,02 0,34 0,63 R _i (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R _i (m ² K/W) 0,04 0,27 0,01 1,58	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster with san Image: Strate stra	 Li (m) 0,015 0,02 0,015 Li (m) 0,015 0,015 0,41 0,002 0,015 	 (°C) λ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m²K) δ,1 (W/m²K) δ,1 (W/mK) 0,35 1,91 0,17 0,17 0,9 	13,10 R _i (m ² K/W) 0,04 0,01 0,02 2,22 13,00 R _i (m ² K/W) 0,04 0,04 0,04 0,04 0,01 0,01 0,01 0,02
V5.PIL.003 V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier EPS insulation Concrete plaster	0,015 Uw 1, (m) 0,015 0,008 0,002 0,11 0,01 0,015 Uw 1, (m) 0,015 0,005 0,005 0,006 0,001	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,038 1,4	0,02 0,34 0,63 R ₁ (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R ₁ (m ² K/W) 0,04 0,27 0,01 1,58 0,01	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san Discrete plaster PILLAR (SP=50cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster Uninium vapour barrier Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san	 Li (m) 0,015 0,02 0,015 UP 1, (m) 0,015 0,415 0,015 0,015 0,015 0,015 	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K) λ ₁ (W/m ² K) 0,35 1,91 0,17 0,17 0,9 (W/m ² K)	13,10 R ₁ (m ² K/W) 0,04 0,21 0,02 2,22 13,00 R ₁ (m ² K/W) 0,04 0,04 0,02 0,01 0,02 0,02 2,22
V5.PIL.003 V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (25x30cm)	0,015 Uw 1, (m) 0,015 0,002 0,012 0,01 0,015 0,015 0,015 0,002 0,008 0,002 0,006 0,01	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,3 0,17 0,038 1,4 0,288	0,02 0,34 0,63 R ₁ (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R ₁ (m ² K/W) 0,04 0,27 0,01 1,58 0,01 0,87	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san District Concrete plaster with san PILLAR (SP=50cm) Chalk plaster Armed concrete Alluminium vapour barrier Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san	Li (m) 0,015 0,02 0,015 UP Li (m) 0,015 0,015 0,015 UP UP	 (°C) λ, (W/mK) 0,35 1,91 0,17 0,9 (W/m²K) λ, (W/mK) 0,35 1,91 0,17 0,	13,10 R ₁ (m ² K/W) 0,04 0,21 0,02 2,22 13,00 R ₁ (m ² K/W) 0,04 0,04 0,01 0,02 0,02 2,22
V5.PIL.003 V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (25x30cm) Concrete plaster with san	0,015 Uw 0,015 0,002 0,002 0,010 0,015 Uw 0,015 0,005 0,002 0,005 0,002 0,002 0,005 0,002 0,005	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,038 1,4 0,288 0,9	0,02 0,34 0,63 R ₁ (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R ₁ (m ² K/W) 0,04 0,27 0,01 1,58 0,01 1,58	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san Discrete plaster with san PILLAR (Sp=50cm) Chalk plaster Armed concrete Alluminium vapour barrier Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san	 Li (m) 0,015 0,02 0,015 Li (m) 0,015 0,015 0,02 0,015 UP 	(°C) λ, (W/mK) 0,35 1,91 0,17 0,9 (W/m ² K) 0,35 1,91 0,17 0,17 0,17 0,9 (W/m ² K)	13,10 R _i (m ² K/W) 0,04 0,01 0,02 2,22 13,00 R _i (m ² K/W) 0,04 0,04 0,01 0,02 0,01 0,02 2,22
V5.PIL.003 V4.PIL.003	Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier Polyurethan insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (25x30cm) Concrete plaster with san	0,015 Uw 1, (m) 0,015 0,08 0,002 0,11 0,01 0,01 Uw 1, (m) 0,015 0,08 0,002 0,015 0,00 0,015 0,015 0,015	0,9 (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,028 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,038 1,4 0,288 0,9 (W/m ² K)	0,02 0,34 0,63 R _i (m ² K/W) 0,04 0,27 0,01 3,93 0,01 0,84 0,02 0,19 0,59 R _i (m ² K/W) 0,04 0,27 0,01 1,58 0,01 1,58 0,01 0,87 0,02	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster with san Image: Strate stra	 Li (m) 0,015 0,41 0,015 UP 0,015 0,015 0,015 0,015 0,015 UP UP 	 (°C) λ, (W/mK) 0,35 1,91 0,17 0,9 (W/m²K) 0,35 1,91 0,17 0,35 1,91 0,17 0,17 0,9 (W/m²K) (W/m²K) 	13,10 R _i (m ² K/W) 0,04 0,01 0,02 2,22 13,00 R _i (m ² K/W) 0,04 0,04 0,04 0,01 0,02 2,22 2,22

			L	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
4	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,015	0,9	0,02
10		Uw	(W/m^2K)	0,79		UP	(W/m^2K)	2,59
PIL.					1 .		(,,	
5								
	U _{av}		(W/m²K)	1,11	T _{si,min}		(°C)	12,00
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =30cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
4	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,015	0,9	0,02
8		Uw	(W/m ² K)	0,79		UP	(₩/m²K)	2,59
E I]			
2								
			$() V (m^2 k)$	1.05	Tatata		l°C)	12 20
		L. (m)	$\lambda_{\rm c}$ (W/mK)	R. (m ² K/W)		L. (m)	<u>λ. ()¥//mK)</u>	$R_{\rm r} / m^2 K / W/$
		0.015	0.35	0.04		0.015	035	0.04
	Brick (25x30cm)	0.25	0.288	0.87	Armed concrete	0.25	1.91	0.13
4	Concrete plaster with san	0.015	0.9	0.02	Concrete plaster with san	0.015	0.9	0.02
8		Uw	$() V/(m^2 K)$	0.91		U	$() V/(m^2 K)$	2.77
Ы		- w		-,	-	-r		_,
R S								
3								
A3								
٢٩	U _{av}	_	(W/m ² K)	1,18	T _{si,min}		(°C)	11,60
V3	U _{av} WALL	L _i (m)	(W/m ² K) λ _i (W/mK)	1,18 R _i (m ² K/W)	T _{si,min} PILLAR (S _P =50cm)	L _i (m)	(°C) λ _i (W/mK)	11,60 R _i (m ² K/W)
٢٩	U _{av} WALL Chalk plaster	L_i (m) 0,015	(W/m ² K) λ _ι (W/mK) 0,35	1,18 R _i (m ² K/W) 0,04	T _{si,min} PILLAR (S _P =50cm) Chalk plaster	L_i (m) 0,015	(°C) λ _i (W/mK) 0,35	11,60 R _i (m ² K/W) 0,04
۲3	Uav WALL Chalk plaster Brick (30x30cm)	L_i (m) 0,015 0,3	(W/m ² K) λ _i (W/mK) 0,35 0,288	1,18 R₁ (m²K/W) 0,04 1,04	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete	L_i (m) 0,015 0,3	(°C) λ ₁ (W/mK) 0,35 1,91	11,60 R _i (m ² K/W) 0,04 0,16
14 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san	L _i (m) 0,015 0,3	(W/m ² K) λ ₁ (W/mK) 0,35 0,288	1,18 R _i (m ² K/W) 0,04 1,04	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete	L_i (m) 0,015 0,3	(°C) λ _i (W/mK) 0,35 1,91 0.9	11,60 R _i (m ² K/W) 0,04 0,16
.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san	L _i (m) 0,015 0,3 0,015	(W/m ² K) λ _i (W/mK) 0,35 0,288 0,9	1,18 R _i (m ² K/W) 0,04 1,04 0,02 0,79	T _{si,min} PILLAR (S _P =50cm) Chalk plaster Armed concrete Concrete plaster with san	L _i (m) 0,015 0,3 0,015	(°C) λ ₁ (W/mK) 0,35 1,91 0,9	11,60 R _i (m ² K/W) 0,04 0,16 0,02 2 59
.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san	L, (m) 0,015 0,3 0,015 UW	(W/m ² K) λ _i (W/mK) 0,35 0,288 0,9 (W/m ² K)	1,18 R ₁ (m ² K/W) 0,04 1,04 0,02 0,79	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san	Li (m) 0,015 0,31 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,9 (W/m ² K)	11,60 R _i (m ² K/W) 0,04 0,16 0,02 2,59
V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san	L, (m) 0,015 0,31 0,015 Uw	(W/m ² K) λ ₁ (W/mK) 0,35 0,288 0,9 (W/m ² K)	1,18 R _I (m ² K/W) 0,04 1,04 0,02 0,79	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san	Li (M) 0,015 0,015 0,015 UP	(*C) λ ₁ (W/mK) 0,35 1,91 0,9 (W/m ² K)	11,60 R _i (m ² K/W) 0,04 0,16 0,02 2,59
V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with sam	L, (m) 0,015 0,3 0,015 Uw	(W/m ² K) λ ₁ (W/mK) 0,35 0,288 0,9 (W/m ² K)	1,18 R; (m ² K/W) 0,04 1,04 0,02 0,79	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san	L, (M) 0,015 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,9 (W/m ² K)	11,60 R _i (m ² K/W) 0,04 0,16 0,02 2,59
V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san	Li (m) 0,015 0,3 0,015 Uw	(W/m ² K) λ _i (W/mK) 0,35 0,288 0,9 (W/m ² K)	1,18 R _i (m ² K/W) 0,04 1,04 0,02 0,79	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san	Li (m) 0,015 0,015 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,9 (W/m ² K)	11,60 R _i (m ² K/W) 0,04 0,16 0,02 2,59
V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san	L, (m) 0,015 0,3 0,015 Uw	(W/m ² K) λ ₁ (W/mK) 0,35 0,288 0,9 (W/m ² K)	1,18 R _i (m ² K/W) 0,04 1,04 0,02 0,79 0,79	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san	L, (m) 0,015 0,3 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,9 (W/m ² K)	11,60 R _i (m ² K/W) 0,04 0,16 0,02 2,59 11,90
V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san	L, (m) 0,015 0,3 0,015 Uw	(W/m ² K) λ ₁ (W/mK) 0,35 0,288 0,9 (W/m ² K) (W/m ² K)	1,18 R; (m ² K/W) 0,04 1,04 0,02 0,79 1,17 B; (m ² //W)	T _{si,min} PILLAR (S _P =50cm) Chalk plaster Armed concrete Concrete plaster with san Concrete plaster with san	L, (m) 0,015 0,3 0,015 Up	(°C) λ ₁ (W/mK) 0,35 1,91 0,9 (W/m ² K) (°C) λ (W/mK)	11,60 R _i (m ² K/W) 0,04 0,16 0,02 2,59 11,90 B (m ² K/W)
V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san Concrete plaster with san	L, (m) 0,015 0,3 0,015 Uw	(W/m ² K) λ ₁ (W/mK) 0,35 0,288 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK)	1,18 R; (m²K/W) 0,04 1,04 0,02 0,79 0,79 1,17 R; (m²K/W)	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san Concrete plaster with san	L, (M) 0,015 0,015 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,9 (W/m ² K) (W/m ² K) (°C) λ ₁ (W/mK)	11,60 R ₁ (m ² K/W) 0,04 0,02 0,02 2,59 11,90 R ₁ (m ² K/W)
V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san Concrete plaster with san Uav Uav	L, (m) 0,015 0,3 0,015 Uw Lu (m)	(W/m ² K) λ ₁ (W/mK) 0,35 0,288 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK)	1,18 R _i (m ² K/W) 0,04 1,04 0,02 0,79 0,79 1,17 R _i (m ² K/W) 0,04	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san Concrete plaster with san Tsi,min PILLAR (Sp=40cm) Chalk plaster	L, (m) 0,015 0,31 UP VP	(°C) λ _i (W/mK) 0,35 0,9 (W/m ² K) λ _i (W/m ² K) λ _i (W/mK)	11,60 R _i (m ² K/W) 0,04 0,02 2,59 2,59 11,90 R _i (m ² K/W) 0,04
V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san Concrete plaster with san Uav Uav Chalk plaster Concrete bricks	L, (m) 0,015 0,3 0,015 Uw L, (m) 0,015	(W/m ² K) λ ₁ (W/mK) 0,35 0,288 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,45	 1,18 R₁ (m²K/W) 0,04 1,04 0,02 0,79 1,17 R₁ (m²K/W) 0,04 0,04 0,89 	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san Concrete plaster with san Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete	L, (m) 0,015 0,015 UP L, (m)	(°C) λ, (W/mK) 0,35 0,9 (W/m ² K) (W/m ² K) λ, (W/mK) 0,35 1,91	11,60 R; (m²K/W) 0,04 0,02 2,59 11,90 R; (m²K/W) 0,04 0,21
004 V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san Uav Uav Chalk plaster Concrete bricks Concrete plaster with san	L, (m) 0,015 0,3 Uw Uw L, (m) 0,015	 (W/m²K) λ₁ (W/mK) 0,35 0,9 (W/m²K) (W/m²K) λ₁ (W/m²K) 0,35 0,45 0,9 	 1,18 R; (m²K/W) 0,04 0,02 0,79 1,17 R; (m²K/W) 0,04 0,89 0,02 	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san Si,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Concrete plaster with san	L, (m) 0,015 0,015 UP VP	 (°C) λ, (W/mK) 0,35 0,9 (W/m²K) (W/m²K) λ, (W/mK) 0,35 1,91 0,9 	11,60 R _i (m ² K/W) 0,04 0,02 2,59 11,90 R _i (m ² K/W) 0,04 0,02
7L.004 V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with sam Uav WALL Chalk plaster Concrete bricks Concrete plaster with sam	L, (m) 0,015 0,3 0,015 Uw Uw 0,015 0,4 0,015	(W/m ² K) λ ₁ (W/mK) 0,35 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,45 0,9 (W/m ² K)	1,18 R; (m²K/W) 0,04 0,02 0,79 1,17 R; (m²K/W) 0,04 0,04 0,05 0,02 0,089	Tsi,min PILLAR (SP=50cm) Chalk plaster Armed concrete Concrete plaster with san Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Concrete plaster with san	L, (m) 0,015 0,015 UP V V V V V V V V V V V V V V V V V V	(°C) λ, (W/mK) 0,35 1,91 0,9 (W/m ² K) (W/m ² K) λ, (W/mK) 0,35 1,91 0,9 (W/m ² K)	11,60 R _i (m ² K/W) 0,04 0,02 2,59 11,90 R _i (m ² K/W) 0,04 0,02 0,02 0,02 2,28
/5.PIL.004 V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san Uav WALL Chalk plaster Concrete bricks Concrete plaster with san	L, (m) 0,015 0,015 Uw Uw 0,015 0,015 0,015	(W/m ² K) λ ₁ (W/mK) 0,35 0,288 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/m ² K) 0,35 0,45 0,9 (W/m ² K)	 1,18 R; (m²K/W) 0,04 0,02 0,79 0,79 1,17 R; (m²K/W) 0,04 0,04 0,02 0,89 0,89 	Tsi,min PILLAR (SP=50cm) Chalk plaster Armed concrete Concrete plaster with san Si,min PILLAR (SP=40cm) Chalk plaster Armed concrete Concrete plaster with san Si,min PILLAR (SP=40cm) Chalk plaster Armed concrete Concrete plaster with san	 Li (m) 0,015 0,015 UP 0,015 0,015 0,015 0,015 UP 	(°C) λ, (W/mK) 0,35 0,9 (W/m ² K) λ, (W/m ² K) 0,35 1,91 0,35 1,91 0,9 (W/m ² K)	 11,60 R₁ (m²K/W) 0,04 0,02 2,59 11,90 R₁ (m²K/W) 0,04 0,02 0,02 0,02 0,02 2,28
V5.PIL.004 V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san Uav WALL Chalk plaster Concrete bricks Concrete plaster with san	L, (m) 0,015 0,3 Uw Uw 0,015 0,015 0,41 0,015	 (W/m²K) λ₁ (W/mK) 0,35 0,288 0,9 (W/m²K) λ₁ (W/mK) 0,35 0,45 0,9 (W/m²K) 	 1,18 R₁ (m²K/W) 0,04 0,02 0,79 1,17 R₁ (m²K/W) 0,04 0,04 0,04 0,89 0,89 0,89 0,89 	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san Image: Straight of the straight of th	 Li (m) 0,015 0,315 UP UP 0,015 0,015 0,015 0,015 0,015 0,015 0,015 	 (°C) λ, (W/mK) 0,35 (W/m²K) ζ 	11,60 R _i (m ² K/W) 0,04 0,02 2,59 11,90 R _i (m ² K/W) 0,04 0,04 0,02 0,02 2,28
V5.PIL.004 V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san Uav WALL Chalk plaster Concrete bricks Concrete plaster with san	L, (m) 0,015 0,3 Uw Uw 0,015 0,415 0,015 0,415 0,015	(W/m ² K) λ ₁ (W/mK) 0,35 (W/m ² K) (W/m ² K) 0,35 0,45 0,9 (W/m ² K)	 1,18 R, (m²K/W) 0,04 0,02 0,79 1,17 R, (m²K/W) 0,04 0,04 0,89 0,89 0,89 	Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Concrete plaster with san Image: Specific stress of the same s	L, (m) 0,015 0,015 UP 4 0,015 0,015 0,015 0,015	(°C) λ, (W/mK) 0,35 0,9 (W/m²K) λ, (W/m²K) 0,35 1,91 0,35 1,91 0,9 (W/m²K)	11,60 R _i (m ² K/W) 0,04 0,02 2,59 11,90 R _i (m ² K/W) 0,04 0,02 0,02 2,28
V5.PIL.004 V4.PIL.004 V3	Uav WALL Chalk plaster Brick (30x30cm) Concrete plaster with san Uav WALL Chalk plaster Concrete bricks Concrete plaster with san	L, (m) 0,015 0,3 0,015 Uw Uw	(W/m ² K) λ ₁ (W/mK) 0,35 0,9 (W/m ² K) (W/m ² K) 0,35 0,45 0,9 (W/m ² K)	1,18 R; (m²K/W) 0,04 0,02 0,79 1,17 R; (m²K/W) 0,04 0,04 0,02 0,02 0,89	Tsi,min PILLAR (SP=50cm) Chalk plaster Armed concrete Concrete plaster with san Image: Straight of the straight of th	L, (m) 0,015 0,015 UP 0,015 0,15 0,015 0,41 0,015	(°C) λ, (W/mK) 0,35 0,9 (W/m ² K) 0,35 1,91 0,35 1,91 0,35 1,91 0,9 (W/m ² K)	11,60 R _i (m ² K/W) 0,04 0,02 2,59 11,90 R _i (m ² K/W) 0,04 0,02 0,02 2,28

this case to evaluate the MSE.

			L	/alidatio	n cases			
	VY/ALL	1. (m)	λ. (W//mK)	$R_{\rm r}$ (m ² K/W)		l. (m)	λ. ()¥//mK)	$R_{\rm c}/m^2 K/W$
		0.015	0.35	0.04		0.015	035	0.04
	Brick (L=8cm)	0.08	0.3	0.27	Armed concrete	0.35	1.91	0,18
ŝ	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
8	EPS insulation	0,06	0,038	1,58	EPS insulation	0,05	0,038	1,32
PIL.	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
5	Brick (25x30cm)	0,25	0,288	0,87		Up	(W/m ² K)	0,57
	Concrete plaster with san	0,015	0,9	0,02	1			
		Uw	(₩/m²K)	0,34				
	U _{av}		(W/m^2K)	0,49	T _{si,min}		(°C)	16,00
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,3	1,91	0,16
ß	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
ĕ	EPS insulation	0,06	0,038	1,58	EPS insulation	0,1	0,038	2,63
L L	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
2	Brick (25x30cm)	0,25	0,288	0,87		Up	(W/m²K)	0,33
	Concrete plaster with san	0,015	0,9	0,02				
		Uw	(W/m²K)	0,34				
	U _{av}		(W/m²K)	0,44	T _{si,min}		(°C)	16,80
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =30cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,35	1,91	0,18
005	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
Ľ.	EPS insulation	0,06	0,038	1,58	EPS insulation	0,05	0,038	1,32
Э.Р	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
>	Brick (25x30cm)	0,25	0,288	0,87	4 1	UP	(W/m²K)	0,57
	Concrete plaster with san	0,015	0,9	0,02	4			
		Uw	(W/m^2K)	0,34	т		(***)	15 70
		1. (m)	(W/M ⁻ K)	0,48 R. (m ² K/\¥/)	I si,min	1. (m)	(C)	ID,70 R. (m ² K/\¥/)
		0.015	0.35	0.04		0.015	035	0.04
		0,015	0,55	0,01		0,015	0,00	0,01
	Brick (L-ocrii)	0.00	0.2	0.27	Armod concrata	0.2	1.01	0.14
Ö			0,3	0,27	Armed concrete	0,3	1,91	0,16
	Alluminium vapour barriei	0,002	0,3 0,17	0,27 0,01	Armed concrete Alluminium vapour barriei	0,3	1,91 0,17	0,16 0,01
PIL.(Alluminium vapour barriei EPS insulation	0,002 0,11	0,3 0,17 0,038	0,27 0,01 2,89	Armed concrete Alluminium vapour barriei EPS insulation	0,3 0,002 0,1	1,91 0,17 0,038	0,16 0,01 2,63
V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster	0,002 0,11 0,01	0,3 0,17 0,038 1,4	0,27 0,01 2,89 0,01	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san	0,3 0,002 0,1 0,015	1,91 0,17 0,038 0,9	0,16 0,01 2,63 0,02
V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm)	0,002 0,11 0,01 0,2	0,3 0,17 0,038 1,4 0,239	0,27 0,01 2,89 0,01 0,84	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san	0,3 0,002 0,1 0,015 U _P	1,91 0,17 0,038 0,9 (W/m ² K)	0,16 0,01 2,63 0,02 0,33
V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san	0,002 0,11 0,01 0,2 0,015	0,3 0,17 0,038 1,4 0,239 0,9	0,27 0,01 2,89 0,01 0,84 0,02	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san	0,3 0,002 0,1 0,015 U _P	1,91 0,17 0,038 0,9 (W/m ² K)	0,16 0,01 2,63 0,02 0,33
V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san	0,002 0,11 0,01 0,2 0,015 U _W	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K)	0,27 0,01 2,89 0,01 0,84 0,02 0,24	Armed concrete Alluminium vapour barrier EPS insulation Concrete plaster with san	0,3 0,002 0,1 0,015 U _P	1,91 0,17 0,038 0,9 (W/m ² K)	0,16 0,01 2,63 0,02 0,33
V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav	0,002 0,11 0,01 0,2 0,015 U _W	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K)	0,27 0,01 2,89 0,01 0,84 0,02 0,24 0,35	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san Tsi,min	0,3 0,002 0,1 0,015 Up	1,91 0,17 0,038 0,9 (W/m ² K)	0,16 0,01 2,63 0,02 0,33 17,10
V4.PIL.0	Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL	0,002 0,11 0,01 0,2 0,015 U _W	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK)	0,27 0,01 2,89 0,01 0,84 0,02 0,24 0,35 R ₁ (m ² K/W)	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san Tsi,min PILLAR (Sp=50cm)	0,3 0,002 0,1 0,015 UP	1,91 0,17 0,038 0,9 (₩/m ² K) ([°] C)	0,16 0,01 2,63 0,02 0,33 0,33 17,10 R ₁ (m ² K/W)
V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster	0,002 0,11 0,01 0,2 0,015 Uw L _i (m) 0,015	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35	0,27 0,01 2,89 0,01 0,84 0,02 0,24 0,35 R ₁ (m ² K/W) 0,04	Armed concrete Alluminium vapour barrier EPS insulation Concrete plaster with san Tsi,min PILLAR (Sp=50cm) Chalk plaster	0,002 0,015 0,015 UP Li (m)	1,91 0,17 0,038 0,9 (₩/m²K) (*C) λ ₁ (₩/mK)	0,16 0,01 2,63 0,02 0,33 17,10 R ₁ (m ² K/W)
5 V4.PIL.0	Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm)	0,002 0,11 0,01 0,2 0,015 Uw L _i (m) 0,015 0,08	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3	0,27 0,01 2,89 0,01 0,84 0,02 0,24 0,35 R _i (m ² K/W) 0,04	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete	0,002 0,01 0,015 UP L ₁ (m) 0,015 0,35	1,91 0,17 0,038 0,9 (W/m ² K) ((*C) λ ₁ (W/mK) 0,35 1,91	0,16 0,01 2,63 0,02 0,33 17,10 R ₁ (m ² K/W) 0,04 0,18
005 V4.PIL.C	Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with sam Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei	0,002 0,11 0,01 0,015 Uw Li (m) 0,015 0,015 0,008 0,002	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17	0,27 0,01 2,89 0,01 0,84 0,02 0,24 0,35 R ₁ (m ² K/W) 0,04 0,04 0,27 0,01	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san Concrete plaster with san Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Alluminium vapour barriei EPE insulation	0,002 0,11 0,015 UP Li (m) 0,015 0,025	1,91 0,17 0,038 0,9 (₩/m²K) Δ, (₩/mK) 0,35 1,91 0,17	0,16 0,01 2,63 0,02 0,33 17,10 R ₁ (m ² K/W) 0,04 0,18 0,01
.PIL.005 V4.PIL.0	Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation	0,002 0,11 0,01 0,2 0,015 Uw L ₁ (m) 0,015 0,08 0,002 0,06	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,35 0,35 0,35	0,27 0,01 2,89 0,02 0,24 0,24 0,35 R ₁ (m ² K/W) 0,04 0,04 0,27 0,01 1,58	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san Concrete plaster with san Internation Internation Chalk plaster Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster Concrete	0,002 0,11 0,015 Up Li (m) 0,015 0,015 0,020 0,05	1,91 0,17 0,038 0,9 (₩/m ² K) Δ, (₩/mK) 0,35 1,91 0,17 0,038	0,16 0,01 2,63 0,02 0,33 17,10 R ₁ (m ² K/W) 0,04 0,04 0,18 0,01 1,32
V5.PIL.005 V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation Concrete plaster	0,002 0,11 0,01 0,2 0,015 Uw Li (m) 0,015 0,08 0,002 0,006 0,01	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,3 0,17 0,038 1,4	0,27 0,01 2,89 0,01 0,84 0,02 0,24 0,35 R _i (m ² K/W) 0,04 0,27 0,01 1,58 0,01	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san Tsi,min PILLAR (SP=50cm) Chalk plaster Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san	 0,002 0,015 UP Li (m) 0,015 0,025 0,025 0,015 	1,91 0,17 0,038 0,9 (₩/m²K) (0,7 0,35 1,91 0,17 0,038 0,9	0,16 0,01 2,63 0,02 0,33 17,10 R _i (m ² K/W) 0,04 0,18 0,01 1,32 0,02
V5.PIL.005 V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san- Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (25x30cm) Concrete plaster with con	0,002 0,11 0,01 0,2 0,015 Uwv L ₁ (m) 0,015 0,008 0,002 0,06 0,015 0,025 0,015	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,038 1,4 1,4	0,27 0,01 2,89 0,02 0,24 0,24 0,35 R ₁ (m ² K/W) 0,04 0,27 0,01 1,58 0,01 1,58	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san	0,002 0,015 U _P 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,91 0,17 0,038 0,9 (W/m ² K) Δ, (W/m ² K) 0,35 1,91 0,17 0,038 0,9 (W/m ² K)	0,16 0,01 2,63 0,02 0,33 17,10 R ₁ (m ² K/W) 0,04 0,04 0,18 0,01 1,32 0,02 0,57
V5.PIL.005 V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with sam Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (25x30cm) Concrete plaster with sam	0,002 0,11 0,01 0,2 0,015 Uw L ₁ (m) 0,015 0,08 0,002 0,06 0,01 0,25 0,015	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,3 0,17 0,038 1,4 0,288 0,9	0,27 0,01 2,89 0,02 0,24 0,24 0,35 R ₁ (m ² K/W) 0,04 0,04 0,01 1,58 0,01 1,58 0,01 0,87 0,02	Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san T si,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Alluminium vapour barriei EPS insulation Concrete plaster with san	 0,002 0,015 U_P 0,015 0,015 0,02 0,05 0,015 U_P 	 1,91 0,17 0,038 0,9 (W/m²K) 0,35 1,91 0,17 0,038 0,9 (W/m²K) 	0,16 0,01 2,63 0,02 0,33 17,10 R _i (m ² K/W) 0,04 0,04 0,01 1,32 0,02 0,57
V5.PIL.005 V4.PIL.(Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=20cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (25x30cm) Concrete plaster with san	0,002 0,11 0,01 0,2 0,015 Uw Li (m) 0,015 0,08 0,002 0,06 0,01 0,25 0,015 Uw	0,3 0,17 0,038 1,4 0,239 0,9 (W/m ² K) (W/m ² K) 0,35 0,3 0,17 0,038 1,4 0,288 0,9 (W/m ² K) (W/m ² K)	0,27 0,01 2,89 0,01 0,84 0,02 0,24 0,35 R ₁ (m ² K/W) 0,04 0,04 0,01 1,58 0,01 1,58 0,01 0,87 0,02 0,34	Armed concrete Alluminium vapour barrie EPS insulation Concrete plaster with san Tsi,min PILLAR (Sp=50cm) Chalk plaster Armed concrete Alluminium vapour barrie EPS insulation Concrete plaster with san Concrete plaster with san	 0,002 0,015 UP 4, (m) 0,015 0,015 0,002 0,005 0,015 UP 	1,91 0,17 0,038 0,9 (₩/m²K) 0,9 1,91 0,17 0,038 0,9 (₩/m²K)	0,16 0,01 2,63 0,02 0,33 17,10 R ₁ (m ² K/W) 0,04 0,04 0,01 1,32 0,02 0,57

WALL L, i, mi N, (W/mK) R, (m ² K/W) PILLAR (Sp=40cm) L, (m) A, (W/mK) R, (m ² K/W) Chak jabater 0.015 0.25 0.04 Chak jabater 0.015 0.05 0.04 Brick 1-effect 0.06 0.3 0.27 Aluminium appour barrie 0.002 0.17 0.01 Aluminium appour barrie 0.02 0.17 0.01 EPS insulation 0.05 0.038 1.32 Concrete plater 0.01 1.4 0.01 Concrete plater with am 0.015 0.9 0.02 Uw (W/m ² K) 0.34 Tsimin (°C) 1.6500 Uw (W/m ² K) 0.34 Tsimin 0.015 0.25 0.04 Concrete plater 0.015 0.25 0.28 0.04 1.01 0.02 0.02 0.07 0.03 0.01 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.03 0.02 0.01 0.01 <td< th=""><th></th><th></th><th></th><th>L</th><th>/alidatio</th><th>ncases</th><th></th><th></th><th></th></td<>				L	/alidatio	ncases			
Chale plater Out Out Chale plater Out Out <thout< th=""> Out Out</thout<>		WALL	L. (m)	λ. (W/mK)	$R_{\rm c}$ (m ² K/W)	PILLAR (S=40cm)	L. (m)	λ. (W/mK)	$R_i (m^2 K/W)$
Bick (=2cm) 0.08 0.3 0.27 Aluminium sepour barrie 0.002 0.17 0.01 Bick (=2cm) 0.06 0.038 1.58 Amminium sepour barrie 0.05 0.038 1.32 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Concrete plaster 0.01 0.25 0.288 0.87 Up (W/m²K) 0.57 Concrete plaster 0.015 0.9 0.02 Up (W/m²K) 0.57 Concrete plaster 0.015 0.9 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.03 0.04 Chaik plaster 0.015 0.35 0.04 Multimium sepurb barrie 0.002 0.17 0.01 Pis insulation 0.1 0.028 2.63 Multimium sepurb barrie 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03		Chalk plaster	0.015	0,35	0,04	Chalk plaster	0.015	0,35	0,04
Open Participant Altaminium sepaor barrie 0.002 0.17 0.01 EPS insulation 0.05 0.038 1,32 Concrete plaster 0.01 1.4 0.01 0.007 0.02 0.02 0.038 0.015 0.9 0.02 Brick [25x30cm] 0.25 0.288 0.87 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.03 0.04 Clask ploster 0.015 0.03 0.04 Clask ploster 0.015 0.03 0.04 Clask ploster 0.011 0.03 0.02		Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,17	0,01
Open to the product of the	9	Alluminium vapour barriei	0,002	0,17	0,01	EPS insulation	0,05	0,038	1,32
Image: concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick [25:30cm] 0.25 0.286 0.67 0.67 0.07 0.02 0.01 0.03 0.04 Murminum vapour barrie 0.002 0.01 0.03 0.04 Murminum vapour barrie 0.002 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02	00	EPS insulation	0,06	0,038	1,58	Armed concrete	0,35	1,91	0,18
S Bick (25x30cm) 0.25 0.288 0.87 Uw (W/m²K) 0.34 0.02 Uw (W/m²K) 0.34 Uw (W/m²K) 0.34 Uw (W/m²K) 0.34 Chak plaster 0.015 0.35 Chak plaster 0.015 0.35 Chak plaster 0.012 0.32 Bick (L=12m) 0.12 0.232 0.52 Aluminum vapour barrie 0.002 0.17 0.01 EPS insulation 0.07 0.038 1.84 Armed concrete 0.3 1.91 0.16 Concrete plaster worth an 0.015 0.9 0.02 0.02 0.02 WALL L (m) A. (W/m²K) 0.26 0.27 0.33 0.04 Rick (L=2com) 0.02 0.17 0.01 Concrete plaster worth an 0.015 0.35 0.04 Rick (L=3com) 0.06 0.33 0.27 Aluminum vapour barrie 0.02 1.7 0.01	III.	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
Concrete plaster with san 0.015 0.9 0.02 Uw UW/m ² Kl 0.34 WALL Li (m) A. (W/m ² K) 0.34 WALL Li (m) A. (W/m ² K) 0.34 Bink (L-12m) 0.15 0.35 0.04 Chaik plaster 0.015 0.35 0.04 Bink (L-12m) 0.12 0.232 0.52 Aluminium vapour barrie 0.002 0.17 0.01 Bink (L-12m) 0.012 0.232 0.52 Aluminium vapour barrie 0.002 0.17 0.01 Bink (L-12m) 0.01 0.01 Concrete plaster with san 0.01 0.02 0.02 Bink (L-20cm) 0.2 0.239 0.04 Concrete plaster with san 0.015 0.9 0.02 Uw W/m ² Kl 0.35 0.04 Concrete plaster with san 0.015 0.33 0.44 Concrete plaster with san 0.015 0.35 0.04 Chaik plaster 0.015 0.35 0.04 Bink (L-3cm) 0.06 <th>5</th> <td>Brick (25x30cm)</td> <td>0,25</td> <td>0,288</td> <td>0,87</td> <td></td> <td>UP</td> <td>(W/m²K)</td> <td>0,57</td>	5	Brick (25x30cm)	0,25	0,288	0,87		UP	(W/m ² K)	0,57
Um (W/m²K) 0.34 Uav (W/m²K) 0.46 Tsumin (°C) 16,50 WALL L ₁ (m) h. (W/mK) R. (m²K/W) PILAR (S,=40cm) L ₁ (m) h. (W/mK) R. (m²K/W) Other platter 0.015 0.35 0.04 Chaik platter 0.015 0.33 0.04 Other platter 0.012 0.232 0.52 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.01 0.16 0.38 2.63 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Um (W/m²K) 0.29 0.04 Up (W/m²K) 0.36 Tsumin (°C) 17.80 WALL L ₁ (m) A. (W/m²K) 0.16 Concrete plaster 0.01 0.02 0.17 0.01 Uav (W/m²K) 0.36 Tsumin (°C) 17.80 0.44 Brick (1-2cm) 0.08 0.3 0.27 <t< td=""><th></th><td>Concrete plaster with san</td><td>0,015</td><td>0,9</td><td>0,02</td><td>-</td><td></td><td></td><td></td></t<>		Concrete plaster with san	0,015	0,9	0,02	-			
Uw (W/m²k) 0.46 Tstmin (*C) 16.50 WALL L, (m) A, (W/mK) R, (m²K/W) PILLAR (Sp=40cm) L, (m) A, (W/mK) R, (m²K/W) Cnak plaster 0.015 0.35 0.04 Chak plaster 0.015 0.35 0.04 Brick [L-12cm] 0.12 0.232 0.52 Aluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.07 0.038 1.84 Armed concrete 0.3 1.91 0.16 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick [L-2cm) 0.2 0.23 0.84 Up (W/m²k) 0.33 0.04 MW/m²k) 0.33 0.04 Concrete plaster with san 0.015 0.3 0.44 Chak plaster 0.015 0.3 0.41 Chak plaster 0.015 0.3 0.27 Alluminum vapour barrie 0.002 0.17 0.01 Brick [L-2cm] 0.06 0.33			Uw	(₩/m²K)	0,34				
WALL L, (m) A, (W/mK) R, (m ² K/W) PILLAR (sp=40cm) L, (m) A, (W/mK) R, (m ² K/W) Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Brick [L=12m] 0.12 0.52 0.04 Chalk plaster 0.01 0.038 2,63 Brick [L=12m] 0.01 0.03 1.44 Armed concrete 0.3 1.91 0.16 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick [L=2cm] 0.2 0.23 0.84 Concrete plaster with san 0.015 0.9 0.02 Uw (W/m ² K) 0.36 Tsi_min ('C') 17,80 WALL L (m) N (W/m ² K) 0.27 Alluminium vapour barrie 0.02 0.17 0.01 Alluminium vapour barrie 0.002 0.7 0.01 Cancrete plaster 0.015 0.3 0.04 Alluminium vapour barrie 0.002 0.7 <		U _{av}		(W/m²K)	0,46	T _{si,min}		(°C)	16,50
Orak plaster 0.015 0.235 0.04 Chalk plaster 0.015 0.235 0.04 Bick (L-12cm) 0.12 0.232 0.52 Alluminium vapour barrie 0.002 0.17 0.01 Alluminium vapour barrie 0.007 0.038 1,84 Armed concrete 0.3 1,91 0,16 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Bick (L-20cm) 0.2 0.239 0.84 Concrete plaster with san 0.015 0.9 0.02 Uw (W/m ² K) 0.29 0.23 0.04 1.84 Armed concrete 0.3 1.91 0.16 Concrete plaster with san 0.015 0.35 0.04 Chaki plaster 0.015 0.35 0.04 1.32 0.02 0.17 0.01 Concrete plaster 0.015 0.9 0.02 0.17 0.01 EPS imaulation 0.05 0.038 1.32 EDS insidiston 0.06 0.038 <		WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
OP OLZ O,12 O,12 O,12 O,17 O,01 Alluminium vapour barrie 0,02 0,17 0,01 EPS insulation 0,1 0,038 2,63 EPS insulation 0,07 0,038 1,84 Armed concrete 0,3 1,91 0,16 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick [L-20cm] 0,2 0,239 0,84 Concrete plaster with san 0,015 0,9 0,02 Uw (W/m²k] 0,29 0,29 0,15 0,33 0,04 Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,35 0,04 Brick [L-8cm) 0,06 0,38 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster with san 0,12 0,22 0,47 0,015 0,9 0,02 Brick [L-8cm) 0,06 0,38 1,58 Armed concrete 0,35 0,04		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
OPE Alluminum vapour barrier 0.007 0.018 1.84 Armed concrete 0.3 1.91 0.16 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick [L-20cm) 0.2 0.239 0.84 Up (W/m ² K) 0.33 Concrete plaster with san 0.015 0.9 0.02 U (W/m ² K) 0.35 Concrete plaster with san 0.015 0.9 0.02 U (W/m ² K) 0.35 Concrete plaster with san 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.06 0.038 1.58 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.015 0.9 0.02 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick [L-32cm] 0.22 0.22		Brick (L=12cm)	0,12	0,232	0,52	Alluminium vapour barriei	0,002	0,17	0,01
Open concrete plaster 0.07 0.038 1.84 Armed concrete 0.3 1.91 0.16 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Bink (L-20cm) 0.2 0.239 0.84 Up Up (W/m²K) 0.33 Concrete plaster with san 0.015 0.9 0.02 U U/m²K) 0.33 Concrete plaster 0.015 0.3 0.29 U/m²K) 0.36 Tsi.min (*C) 17.80 WALL L, (m) A, (W/mK) R, (m²K/W) PILLAR (Sp=30cm) L, (m) A, (W/mK) R, (m²K/W) Brick (L=8cm) 0.06 0.33 0.27 Alluminium vapour barrie 0.002 0.017 0.01 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.05 0.038 1.32 Brick (Zsa0cm) 0.25 0.288 0.87 Concrete plaster with san 0.015 0.9 0.02 Uw (W/m²K) 0	90	Alluminium vapour barriei	0,002	0,17	0,01	EPS insulation	0,1	0,038	2,63
Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (L=20cm) 0.2 0.339 0.84 UP [W/m²k] 0.33 Concrete plaster with san 0.015 0.9 0.02 UP [W/m²k] 0.33 Usw (W/m²k) 0.29 0.02 17.80 17.80 WALL L (m) A: (W/m²k) 0.27 17.80 0.015 0.35 0.04 Brick (L=2cm) 0.08 0.3 0.27 Alluminium vapour barrie 0.002 0.17 0.01 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.06 0.038 1.52 EPS insulation 0.06 0.038 1.58 Armed concrete 0.35 1.91 0.18 Concrete plaster with san 0.015 0.9 0.02 0.17 0.11 0.4 0.015 0.9 0.02 Usw (W/m²k) 0.35 0.04 Chalk plaster 0.015	L.0	EPS insulation	0,07	0,038	1,84	Armed concrete	0,3	1,91	0,16
Brick (L-20cm) 0,2 0,239 0,84 Concrete plaster with san 0,015 0.9 0.02 Uw (W/m ² K) 0,29 0.02 WALL L, (m) A, (W/mK) R, (m ² K/W) PILLAR (Sp=30cm) L, (m) A, (W/mK) R, (m ² K/W) MALL L, (m) A, (W/mK) R, (m ² K/W) PILLAR (Sp=30cm) L, (m) A, (W/mK) R, (m ² K/W) Math L, (m) A, (W/mK) R, (m ² K/W) PILLAR (Sp=30cm) L, (m) A, (W/mK) R, (m ² K/W) Chak plaster 0.015 0.35 0.04 Chak plaster 0.015 0.35 0.04 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.05 0.038 1.32 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.015 0.35 0.04 Chak plaster 0.015 0.35 0.04 <	PII	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
Concrete plaster with san 0.015 0.9 0.02 Usv (W/m ² K) 0.29 WALL L (m) A, (W/mK) R, (m ² K/W) PILLAR (Sp=30cm) L, (m) A, (W/mK) R, (m ² K/W) Brick (L=6cm) 0.08 0.35 0.04 Chaik plaster 0.015 0.35 0.04 Brick (L=6cm) 0.08 0.3 0.27 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.06 0.038 1,58 Armed concrete 0.35 1,91 0.18 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (25x30cm) 0.25 0.288 0.487 Tst.min (*C) 16,60 WALL L, (m) A, (W/m ² K) 0.455 Tst.min (*C) 16,60 Usv W/(m ² K) 0.35 0.04 Chaik plaster 0.015 0.35 0.04 Brick (L=12cm) 0,12 0.232 0.52 Al	>	Brick (L=20cm)	0,2	0,239	0,84		UP	(W/m²K)	0,33
Uw (W/m²K) 0.29 Uav (W/m²K) 0.36 Tst.min (*C) 17,80 WALL Li (m) λi (W/mK) R, (m²K/W) PILLAR (Sp=30cm) Li (m) λi (W/mK) R, (m²K/W) Chak plaster 0.015 0.35 0.04 Chak plaster 0.015 0.35 0.04 Alluminium vapour barrie 0.08 0.3 0.27 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.05 0.038 1.32 PS insulation 0.06 0.038 1.58 Armed concrete 0.35 1.91 0.18 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (L=3cm) 0.25 0.288 0.87 Tst.min (*C) 16,60 WALL Li (m) Ni (W/m²K) 0.34 D.15 0.9 0.02 Brick (L=12cm) 0.12 0.232 0.52 Alluminium vapour barrie 0.002 0.17 0.01<		Concrete plaster with san	0,015	0,9	0,02]			
Uav (W/m²k) 0.36 Tsi,min (*C) 17,80 WALL I, (m) h, (W/mK) R, (m²k/W) PILLAR (Sp-30cm) I, (m) h, (W/mK) R, (m²k/W) Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Alluminium vapour barrie 0.08 0.3 0.27 Alluminium vapour barrie 0.02 0.17 0.01 Alluminium vapour barrie 0.002 0.17 0.01 EPS insulation 0.06 0.038 1,58 Armed concrete 0.35 1,91 0,18 Concrete plaster 0.01 1,4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (25x30cm) 0.25 0.288 0.87 Up (W/m²k) 0.34 Uw (W/m²k) 0.34 Up (W/m²k) 0.35 0.04 16.60 Uav (W/m²k) 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.012			Uw	(₩/m²K)	0,29				
WALL L, (m) Å, (W/mK) R, (m²k/W) PILLAR (Sp=30cm) L, (m) Å, (W/mK) R, (m²k/W) Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Brick (L=8cm) 0.08 0.3 0.27 Alluminium vapour barriei 0.002 0.17 0.01 Alluminium vapour barriei 0.026 0.038 1.52 Alluminium vapour barriei 0.025 0.038 1.32 EPS insulation 0.06 0.038 1.58 Armed concrete 0.35 1.91 0.18 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (25x30cm) 0.25 0.288 0.87 Concrete plaster with san 0.015 0.9 0.02 Uw (W/m²K) 0.45 Tsi.min (*C) 16.60 WALL L, (m) A, (W/mK) R, (m²K/W) PILLAR (Sp=40cm) L, (m) A, (W/mK) R/m²K/W) Chalk plaster 0.012 <		U _{av}		(W/m²K)	0,36	T _{si,min}		(°C)	17,80
Brick [L=8cm] 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Alluminium vapour barriei 0.008 0,3 0,27 Alluminium vapour barriei 0.002 0,17 0.01 Alluminium vapour barriei 0.002 0,17 0.01 EPS insulation 0.06 0.038 1,32 EPS insulation 0.06 0.038 1,58 Armed concrete 0.35 1,91 0,18 Concrete plaster 0.015 0.9 0.02 0.02 0.02 0.05 0.038 1,32 Brick (25x30cm) 0.25 0.288 0.87 0.02 0.02 0.02 Uw (W/m2K) 0.34 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Chalk plaster <td< th=""><th></th><th>WALL</th><th>L_i (m)</th><th>λ_i (W/mK)</th><th>R_i (m²K/W)</th><th>PILLAR (S_P=30cm)</th><th>L_i (m)</th><th>λ_i (W/mK)</th><th>R_i (m²K/W)</th></td<>		WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =30cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
Brick (L=Bcm) 0.08 0.3 0.27 Alluminium vapour barrier 0.002 0.17 0.01 Brick (L=Bcm) 0.08 0.02 0.17 0.01 EPS insulation 0.05 0.038 1.32 Alluminium vapour barrier 0.06 0.038 1.58 Armed concrete 0.35 1.91 0.18 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (25x30cm) 0.25 0.288 0.87 Up (W/m ² K) 0.57 Concrete plaster with san 0.015 0.9 0.02 Up (W/m ² K) 0.57 Concrete plaster with san 0.015 0.9 0.02 Imminium vapour barrier 0.02 0.17 0.01 Maluminium vapour barrier 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Brick (L=12cm) 0.12 0.232 0.52 Alluminium vapour barrier 0.022 1.7 0.01 EPS insulation 0		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
Moluminium vapour barrier 0.002 0.17 0.01 EPS insulation 0.05 0.038 1.32 EPS insulation 0.06 0.038 1.58 Armed concrete 0.35 1.91 0.18 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (25x30cm) 0.225 0.288 0.87 Concrete plaster with san 0.015 0.9 0.02 Uw (W/m²K) 0.34 U U (W/m²K) 0.34 Uav (W/m²K) 0.45 Tsi,min (*C) 16.60 WALL Li (m) A, (W/m²K) 0.45 Tsi,min (*C) 16.60 WALL Li (m) A, (W/m²K) 0.45 Aluminium vapour barrier 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Alluminium vapour barrier 0.02 0.17 0.01 EPS insulation 0.1 0.038 <th></th> <td>Brick (L=8cm)</td> <td>0,08</td> <td>0,3</td> <td>0,27</td> <td>Alluminium vapour barriei</td> <td>0,002</td> <td>0,17</td> <td>0,01</td>		Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,17	0,01
Poinsulation 0.06 0.038 1,58 Armed concrete 0.35 1,91 0,18 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (25x30cm) 0.25 0.288 0.87 Up (W/m²k) 0.57 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²k) 0.57 WALL L ₁ (m) λ ₁ (W/mK) R ₁ (W/m²k) PILLAR (Sp=40cm) L ₁ (m) λ ₁ (W/m²k) Brick (L=12cm) 0.12 0.232 0.52 Alluminium vapour barrie 0.002 0.17 0.01 Alluminium vapour barriei 0.002 0.17 0.01 EPS insulation 0.1 0.038 2.63 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²k) 0.35 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²k) 0.33 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²k) <th>900</th> <td>Alluminium vapour barrie</td> <td>0,002</td> <td>0,17</td> <td>0,01</td> <td>EPS insulation</td> <td>0,05</td> <td>0,038</td> <td>1,32</td>	900	Alluminium vapour barrie	0,002	0,17	0,01	EPS insulation	0,05	0,038	1,32
M Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (25x30cm) 0.25 0.288 0.87 Up (W/m²K) 0.57 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²K) 0.57 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²K) 0.57 Concrete plaster with san 0.015 0.34 0.34 Up (W/m²K) 0.57 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Brick (L=12cm) 0.12 0.232 0.52 Alluminium vapour barriei 0.002 0.17 0.01 EPS insulation 0.1 0.038 2.63 Armed concrete 0.25 1.91 0.13 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²K) 0.33 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²K) <	Ľ.	EPS insulation	0,06	0,038	1,58	Armed concrete	0,35	1,91	0,18
Brick [25330th] 0,25 0,288 0,97 Concrete plaster with san 0,015 0,9 0,02 Uw (W/m ² K) 0,34 WALL Li (m) Ai (W/m ² K) 0,45 Tsi,min (*C) 16,60 WALL Li (m) Ai (W/m ² K) 0,45 Tsi,min (*C) 16,60 WALL Li (m) Ai (W/m ² K) PILLAR (Sp=40cm) Li (m) Ai (W/m ² K) R (m ² K/W) Brick [L=12cm) 0,12 0,232 0,52 Alluminium vapour barrie 0,002 0,17 0,01 EPS insulation 0,1 0,038 2,63 Armed concrete 0,25 1,91 0,13 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (L=12cm) 0,12 0,232 0,52 Up (W/m ² K) 0,33 Concrete plaster with san 0,015 0.9 0,02 Up (W/m ² K) 0,33 Concrete plaster 0,015	/3.F	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
View W/m²K) 0.02 Uw (W/m²K) 0.34 Uav (W/m²K) 0.45 View 0.015 0.35 Old Chalk plaster 0.015 0.35 Old Chalk plaster 0.012 0.232 0.52 Alluminium vapour barriei 0.002 0.17 0.01 EPS insulation 0.1 0.038 2.63 Correte plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (L=12cm) 0.12 0.232 0.52 Up (W/m²K) 0.33 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²K) 0.33 Corerete plaster with san 0.015	~	Brick (25x30cm)	0,25	0,288	0,87		UP	(W/m²K)	0,57
Ow (W/m*k) 0.34 Uav (W/m*k) 0.45 Tsi,min (*C) 16,60 WALL Li (m) Åi (W/mk) Ri (W/m²k) PILLAR (Sp=40cm) Li (m) Åi (W/mk) Ri (m²k/W) Chalk plaster 0,015 0.35 0.04 Chalk plaster 0,015 0.35 0.04 Brick (L=12cm) 0,12 0,232 0,52 Alluminium vapour barriei 0.002 0,17 0.01 EPs insulation 0,1 0,038 2,63 Armed concrete 0,25 1,91 0,13 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0.015 0,9 0.02 Brick (L=12cm) 0,12 0,232 0,52 Up (W/m²k) 0,33 Concrete plaster with san 0.015 0.9 0.02 Up (W/m²k) 0,33 Concrete plaster with san 0.015 0.35 0.04 Li (m) Åi (W/mk) Ri (m²k/W) Chalk plaster 0.015 0.35 <t< td=""><th></th><td>Concrete plaster with san</td><td>0,015</td><td>0,9</td><td>0,02</td><td>-</td><td></td><td></td><td></td></t<>		Concrete plaster with san	0,015	0,9	0,02	-			
Value (W/III K) 0.745 13,min (C) 10,00 WALL L ₁ (m) λ ₁ (W/mK) R ₁ (W/m ² K) PILLAR (Sp=40cm) L ₁ (m) λ ₁ (W/mK) R ₁ (m ² K/W) Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.015 0.35 0.04 Brick (L=12cm) 0.12 0.232 0.52 Alluminium vapour barriei 0.002 0.17 0.01 EPS insulation 0.1 0.038 2.63 Armed concrete 0.25 1.91 0.13 Concrete plaster 0.01 1.4 0.01 Concrete plaster with san 0.015 0.9 0.02 Brick (L=12cm) 0.12 0.232 0.52 1.91 0.13 Concrete plaster with san 0.015 0.9 0.02 Up (W/m ² K) 0.33 Concrete plaster with san 0.015 0.9 0.02 Up (W/m ² K) 0.33 Concrete plaster with san 0.015 0.35 0.04 Chalk plaster 0.015 0.35 <th></th> <th></th> <th>0</th> <th>(w/m⁻ĸ)</th> <th>0,34</th> <th>T</th> <th></th> <th></th> <th>1/ /0</th>			0	(w/m⁻ĸ)	0,34	T			1/ /0
Wall Link Link <thlink< th=""> Link Link <thl< th=""><th></th><th>U U U U</th><th></th><th>$(NV/m^{2}K)$</th><th>0.45</th><th></th><th></th><th>l'C)</th><th>10 011</th></thl<></thlink<>		U U U U		$(NV/m^{2}K)$	0.45			l'C)	10 011
View User User <th< td=""><th></th><td>W/ALL</td><td>1. (m)</td><td><u>(W/m²K)</u></td><td>0,45 R: ()¥//m²K)</td><td>I si,min</td><td>L. (m)</td><td>(°C)</td><td>R. (m²K/W)</td></th<>		W/ALL	1. (m)	<u>(W/m²K)</u>	0,45 R: ()¥//m ² K)	I si,min	L. (m)	(°C)	R. (m ² K/W)
Mick [L-12ch] 0,12 0,22 0,32 Michannan vapour barriel 0,02 0,17 0,01 Alluminium vapour barriel 0,002 0,17 0,01 EPS insulation 0,1 0,038 2,63 EPS insulation 0,1 0,038 2,63 Armed concrete 0,25 1,91 0,13 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (L=12cm) 0,12 0,232 0,52 Up (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,33 WALL Li (m) Ai (W/mK) Ri (m²K/W) PILLAR (Sp=50cm) Li (m) Ai (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,35 0,04 Brick (L=8cm) 0,08 0,3 0,27 Alluminium vapour barriei		WALL Chalk plaster	L_i (m)	(W/m ² K) λ _i (W/mK)	0,45 R _i (W/m ² K)	PILLAR (S _P =40cm)	L_i (m)	(°C) λ _i (W/mK)	R _i (m ² K/W)
Villaminitum vapour barriei 0,002 0,17 0,01 EPs insulation 0,1 0,038 2,63 EPS insulation 0,1 0,038 2,63 Armed concrete 0,25 1,91 0,13 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (L=12cm) 0,12 0,232 0,52 Up (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,33 WALL Li (m) Ai (W/mK) Ri (m²K/W) PILLAR (Sp=50cm) Li (m) Ai (W/mK/W) Ri (m²K/W) Brick (L=8cm) 0,008 0,3 0,27 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 EPS insulat		WALL Chalk plaster Prick (I = 12cm)	L _i (m)	(W/m ² K) λ _i (W/mK) 0,35	0,45 R _i (W/m ² K) 0,04 0,53	Image: simin PILLAR (Sp=40cm) Chalk plaster	L_i (m) 0,015	(°C) λ _i (W/mK) 0,35 0.17	R _i (m ² K/W) 0,04
Installation 0,1 0,036 2,63 Affied Contrete 0,23 1,91 0,13 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (L=12cm) 0,12 0,232 0,52 Up (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,33 WALL L ₁ (m) λ ₁ (W/mK) R ₁ (m²K/W) PILLAR (Sp=50cm) L ₁ (m) λ ₁ (W/mK) R ₁ (m²K/W) Brick (L=8cm) 0,08 0,3 0,27 Alluminium vapour barriei 0,002 0,17 0,01 EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san </td <th>5</th> <td>WALL Chalk plaster Brick (L=12cm)</td> <td>L_i (m) 0,015 0,12</td> <td>(W/m²K) λ_i (W/mK) 0,35 0,232</td> <td>0,45 R; (W/m²K) 0,04 0,52</td> <td>Isi,min PILLAR (Sp=40cm) Chalk plaster Alluminium vapour barriei</td> <td>L_i (m) 0,015 0,002</td> <td>(°C) λ_i (W/mK) 0,35 0,17</td> <td>R₁ (m²K/W) 0,04 0,01</td>	5	WALL Chalk plaster Brick (L=12cm)	L _i (m) 0,015 0,12	(W/m ² K) λ _i (W/mK) 0,35 0,232	0,45 R; (W/m ² K) 0,04 0,52	Isi,min PILLAR (Sp=40cm) Chalk plaster Alluminium vapour barriei	L_i (m) 0,015 0,002	(°C) λ _i (W/mK) 0,35 0,17	R ₁ (m ² K/W) 0,04 0,01
Contrete plaster 0,01 1,4 0,01 Contrete plaster with sail 0,013 0,47 0,02 Brick (L=12cm) 0,12 0,232 0,52 UP (W/m²K) 0,33 Concrete plaster with san 0,015 0,9 0,02 UP (W/m²K) 0,33 Uw (W/m²K) 0,26 U (*C) 17,80 WALL Li (m) Åi (W/mK) Ri (m²K/W) PILLAR (SP=50cm) Li (m) Åi (W/mK) Ri (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,002 0,17 0,01 Brick (L=8cm) 0,08 0,3 0,27 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 EPS insulation 0,05 0,038 1,32 EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01	.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barrier	L; (m) 0,015 0,12 0,002	(W/m ² K) λ ₁ (W/mK) 0,35 0,232 0,17 0,028	0,45 R _i (W /m ² K) 0,04 0,52 0,01 2,42	Image: Signal	L; (m) 0,015 0,002 0,1	(°C) λ ₁ (W/mK) 0,35 0,17 0,038	T8,80 R ₁ (m ² K/W) 0,04 0,01 2,63
Unick [L = 12ch] U, Z U, ZZ	PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barrier EPS insulation	L, (m) 0,015 0,12 0,002 0,1	(W/m ² K) λ _i (W/mK) 0,35 0,232 0,17 0,038	0,45 R _i (W /m ² K) 0,04 0,52 0,01 2,63 0,01	Image: Signal	L _i (m) 0,015 0,002 0,1 0,25	(°C) λ ₁ (W/mK) 0,35 0,17 0,038 1,91	10,00 Ri (m²K/W) 0,04 0,01 2,63 0,13
V Uw (W/m²K) 0,26 Uav (W/m²K) 0,33 Tsi,min (°C) 17,80 WALL Li (m) λi (W/mK) Ri (m²K/W) PILLAR (Sp=50cm) Li (m) λi (W/mK) Ri (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,35 0,04 Brick (L=8cm) 0,08 0,3 0,27 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 EPS insulation 0,05 0,038 1,32 EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (25x30cm) 0,25 0,288 0,87 Up Up (W/m²K) 0,57 Concrete plaster with san 0,015 0,9 0,02 Up Up (Y/m²K) 0,57	V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=12cm)	L, (m) 0,015 0,12 0,002 0,1 0,01	(W/m ² K) λ_i (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232	0,45 R _i (W/m ² K) 0,04 0,52 0,01 2,63 0,01 0,52	* si,min PILLAR (Sp=40cm) Chalk plaster Alluminium vapour barrier EPS insulation Armed concrete Concrete plaster with san	L, (m) 0,015 0,002 0,11 0,25 0,015	(°C) λ _i (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/ (2/4))	16,80 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33
Var (W/m ² K) 0,33 T _{si,min} (°C) 17,80 WALL L _i (m) λ_i (W/m ² K) 0,33 T _{si,min} (°C) 17,80 WALL L _i (m) λ_i (W/mK) R _i (m ² K/W) PILLAR (S _P =50cm) L _i (m) λ_i (W/mK) R _i (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,35 0,04 Brick (L=8cm) 0,08 0,3 0,27 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 EPS insulation 0,05 0,038 1,32 EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (25x30cm) 0,25 0,288 0,87 UP (W/m ² K) 0,57 Concrete plaster with san 0,015 0,9 0,02 UP	V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san	 Li (m) 0,015 0,12 0,002 0,1 0,01 0,01 0,12 0,015 	(W/m ² K) λ _i (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9	0,45 R _i (W/m ² K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02	* si,min PILLAR (SP=40cm) Chalk plaster Alluminium vapour barrier EPS insulation Armed concrete Concrete plaster with san	L, (m) 0,015 0,002 0,11 0,25 0,015	(°C) A ₁ (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K)	10,80 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33
WALL L ₁ (m) λ_1 (W/mK) R_1 (m ² K/W) PILLAR (S _P =50 cm) L ₁ (m) λ_1 (W/mK) R_1 (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,35 0,04 Brick (L=8cm) 0,08 0,3 0,27 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 EPS insulation 0,05 0,038 1,32 EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (25x30cm) 0,25 0,288 0,87 UP (W/m ² K) 0,57 Concrete plaster with san 0,015 0,9 0,02 UP (W/m ² K) 0,57	V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san	L, (m) 0,015 0,12 0,002 0,11 0,01 0,12 0,015	(W/m ² K) λ ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m ² K)	0,45 R ₁ (W/m ² K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,26	Image: si,min PILLAR (SP=40cm) Chalk plaster Alluminium vapour barriei EPS insulation Armed concrete Concrete plaster with san	L, (M) 0,015 0,002 0,11 0,25 0,015 UP	(°C) λ _i (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K)	10,00 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33
VALL L (m) A (w/mk) A (m r/y w) PTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) PTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) PTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) FTLLAK (3p-30tm) L (m) A (w/mk) K (m r/y w) A (m) A (w) A (w	V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san	L, (m) 0,015 0,12 0,002 0,12 0,12 0,015 Uw	(W/m ² K) Å _i (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m ² K) (W/m ² K)	0,45 R; (W/m²K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,02 0,26 0,33	* si,min PILLAR (Sp=40cm) Chalk plaster Alluminium vapour barrier EPS insulation Armed concrete Concrete plaster with san	L, (M) 0,015 0,002 0,11 0,25 0,015 UP	(°C) λ _i (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K)	16,80 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33
Open Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,35 0,04 Brick (L=8cm) 0,08 0,3 0,27 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 EPS insulation 0,05 0,038 1,32 EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (25x30cm) 0,25 0,288 0,87 Up UW/m ² K) 0,57 Concrete plaster with san 0,015 0,9 0,02 Up UV/m ² K) 0,57	V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san Uav	L, (m) 0,015 0,12 0,002 0,11 0,01 0,015 Uw	(W/m ² K) λ ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m ² K) (W/m ² K) λ. (W/mK)	0,45 R; (W/m ² K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,26 0,33 R. (m ² K/W)	Image: si,min PILLAR (SP=40cm) Chalk plaster Alluminium vapour barrier EPS insulation Armed concrete Concrete plaster with san Tsi,min PILLAP (S=50cm)	L, (m) 0,015 0,002 0,11 0,25 0,015 UP	(°C) A ₁ (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K) (°C) Ar (W/mK)	10,80 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 17,80 B. (m²K/W)
Brick (L=8cm) 0,08 0,3 0,27 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 EPS insulation 0,05 0,038 1,32 EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (25x30cm) 0,25 0,288 0,87 Up (W/m²K) 0,57 Concrete plaster with san 0,015 0,9 0,02 Up (W/m²K) 0,57	V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san Uav WALL	L, (M) 0,015 0,12 0,02 0,11 0,01 0,12 0,015 Uw Luw	 (W/m²K) λ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m²K) (W/m²K) λ₁ (W/mK) 	0,45 R ₁ (W/m ² K) 0,04 0,52 0,01 0,01 0,52 0,02 0,26 0,26 0,33 R ₁ (m ² K/W)	Isi,min PILLAR (SP=40cm) Chalk plaster Alluminium vapour barriei EPS insulation Armed concrete Concrete plaster with san Tsi,min PILLAR (SP=50cm)	L, (M) 0,015 0,002 0,15 0,25 UP V	(°C) λ, (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K) (W/m ² K) λ, (W/mK)	10,80 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 17,80 Ri (m²K/W)
Alluminium vapour barriei 0,002 0,17 0,01 EPS insulation 0,05 0,038 1,32 EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (25x30cm) 0,25 0,288 0,87 Up Up (W/m ² K) 0,57 Concrete plaster with san 0,015 0,9 0,02 0,24 0,57 0,57 Uw (W/m ² K) 0,34 0,46 Tutere (°C) 16.50	V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san Uav WALL Chalk plaster	 L, (m) 0,015 0,02 0,12 0,01 0,015 	(W/m ² K) λ _i (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m ² K) (W/m ² K) λ _i (W/mK) 0,35	 0,45 R_i (W/m²K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,26 0,33 R_i (m²K/W) 0,04 	* si,min PILLAR (Sp=40cm) Chalk plaster Alluminium vapour barrier EPS insulation Armed concrete Concrete plaster with san Tsi,min PILLAR (Sp=50cm) Chalk plaster	L, (M) 0,015 0,002 0,015 0,015 UP L, (M)	(°C) λ, (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K) ζ(V/m ² K) λ, (W/mK) 0,35	10,00 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 17,80 Ri (m²K/W) 0,04
EPS insulation 0,06 0,038 1,58 Armed concrete 0,35 1,91 0,18 Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (25x30cm) 0,25 0,288 0,87 Up UV/m ² K) 0,57 Concrete plaster with san 0,015 0,9 0,02 Up UV/m ² K) 0,57 Uw UV/m ² K) 0,34 Uv Uv UV/m ² K) 0,46 Tot pix (°C) 16.50	6 V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm)	 L, (m) 0,012 0,02 0,12 0,01 0,12 0,015 0,015 	 (W/m²K) λ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m²K) (W/m²K) λ₁ (W/mK) 0,35 0,3 	0,45 R; (W/m²K) 0,04 0,52 0,01 2,63 0,01 0,02 0,02 0,26 0,33 R; (m²K/W) 0,04 0,27	Image: si,min PILLAR (Sp=40cm) Chalk plaster Alluminium vapour barriei EPS insulation Armed concrete Concrete plaster with san Image: si,min PILLAR (Sp=50cm) Chalk plaster Alluminium vapour barriei	L, (m) 0,015 0,002 0,015 0,015 UP L, (m)	(°C) λ, (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K) (W/m ² K) λ, (W/mK) 0,35 0,17	10,80 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 17,80 Ri (m²K/W) 0,04 0,01
S Concrete plaster 0,01 1,4 0,01 Concrete plaster with san 0,015 0,9 0,02 Brick (25x30cm) 0,25 0,288 0,87 UP (W/m²K) 0,57 Concrete plaster with san 0,015 0,9 0,02 UP (W/m²K) 0,57 Uw (W/m²K) 0,34 UV UV UV 0,46 Tatining (°C) 16.50	.006 V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei	 L, (m) 0,015 0,02 0,12 0,01 0,01 0,015 Uw L, (m) 0,015 0,015 0,015 0,015 0,015 0,015 0,015 0,015 	 (W/m²K) λ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m²K) (W/m²K) λ₁ (W/mK) 0,35 0,3 0,17 	 0,45 R_i (W/m²K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,27 0,01 0,01 	* si,min PILLAR (SP=40cm) Chalk plaster Alluminium vapour barriei EPS insulation Armed concrete Concrete plaster with san Concrete plaster with san PILLAR (Sp=50cm) Chalk plaster Alluminium vapour barriei EPS insulation	L, (M) 0,015 0,002 0,015 UP UP L, (M) 0,015 0,002	(°C) λ, (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K) (W/m ² K) 0,5 λ, (W/mK) 0,35 0,17 0,038	10,00 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 17,80 Ri (m²K/W) 0,04 0,01 1,32
Brick (25x30cm) 0,25 0,288 0,87 Concrete plaster with san 0,015 0,9 0,02 Uw (W/m²K) 0,34	.PIL.006 V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation	 L, (m) 0,015 0,02 0,12 0,01 0,015 Uw L, (m) 0,015 0,015 0,015 0,02 0,06 	 (W/m²K) λ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m²K) (W/m²K) λ₁ (W/mK) 0,35 0,3 0,17 0,038 1,17 0,038 1,17 0,038 1,17 0,038 1,17 0,038 1,17 	 0,45 R_i (W/m²K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,26 0,26 0,26 0,26 0,26 0,26 0,26 0,02 0,26 0,02 0,02 0,02 0,02 0,01 1,58 0,01 	* si,min PILLAR (SP=40cm) Chalk plaster Alluminium vapour barrier EPS insulation Armed concrete Concrete plaster with san Image: Simin strain stra	 L, (m) 0,015 0,02 0,15 0,015 UP 0,015 0,015 0,015 0,015 0,015 0,025 0,035 	(°C) λ, (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K) δ, (W/mK) 0,35 0,17 0,038 1,91	10,00 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 17,80 Ri (m²K/W) 0,04 0,01 1,32 0,18
Uw (W/m ² K) 0,34	V5.PIL.006 V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier EPS insulation Concrete plaster	 L, (m) Q,015 Q,02 Q,12 Q,12 Q,01 Q,12 Q,12 Q,12 Q,12 Q,12 Q,12 Q,12 Q,12 Q,015 Q,155 Q,155	 (W/m²K) λ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m²K) (W/m²K) 0,35 1,4 0,038 1,4 0,232 	 0,45 R_i (W/m²K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,26 0,33 R_i (m²K/W) 0,04 0,27 0,01 1,58 0,01 	* si,min PILLAR (Sp=40cm) Chalk plaster Alluminium vapour barriei EPS insulation Armed concrete Concrete plaster with san Distribution Armed concrete Concrete plaster with san PILLAR (Sp=50cm) Chalk plaster Alluminium vapour barriei EPS insulation Armed concrete Concrete plaster with san	 Li (m) 0,015 0,02 0,15 0,015 0,015 0,025 0,025 0,035 0,015 0,015 	(°C) λ, (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K) (W/m ² K) 0,35 0,17 0,35 0,17 0,38 1,91 0,9	10,00 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 17,80 Ri (m²K/W) 0,04 0,05 0,01 1,32 0,18 0,02
$(W/M^{-}K) = 0.5^{+}$	V5.PIL.006 V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (L=8cm) Alluminium vapour barriei EPS insulation Concrete plaster Brick (25x30cm) Concrete plaster	 L, (m) 0,015 0,12 0,12 0,11 0,01 0,015 Uw L, (m) 0,015 	(W/m ² K) λ ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m ² K) (W/m ² K) 0,35 0,35 0,37 0,17 0,038 1,4 0,288	 0,45 R_i (W/m²K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,26 0,26 0,26 0,26 0,26 0,26 0,27 0,01 1,58 0,01 0,87 0,02 	* si,min PILLAR (SP=40cm) Chalk plaster Alluminium vapour barriei EPS insulation Armed concrete Concrete plaster with san Discrete plaster with san PILLAR (SP=50cm) Chalk plaster Alluminium vapour barriei EPS insulation Armed concrete Concrete plaster with san	 L, (m) 0,015 0,025 0,015 UP 0,015 0,015 0,035 0,015 UP 	(°C) λ, (W/mK) 0,35 0,17 0,038 1,91 0,9 (W/m ² K) 0,35 0,17 0,35 0,17 0,38 1,91 0,9 (W/m ² K)	10,80 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 Ri (m²K/W) 0,04 0,01 17,80 Ri (m²K/W) 0,04 0,01 1,32 0,18 0,02 0,57
	V5.PIL.006 V4.PIL.006	WALL Chalk plaster Brick (L=12cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (L=12cm) Concrete plaster with san- Uav WALL Chalk plaster Brick (L=8cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (1=8cm) Alluminium vapour barrier EPS insulation Concrete plaster Brick (25x30cm) Concrete plaster with san-	 L, (m) 0,015 0,02 0,12 0,01 0,01 0,015 Uw L, (m) 0,025 0,06 0,015 0,015 0,015 0,015 0,015 0,015 	(W/m ² K) λ ₁ (W/mK) 0,35 0,232 0,17 0,038 1,4 0,232 0,9 (W/m ² K) (W/m ² K) 0,35 0,35 0,3 0,17 0,038 1,4 0,288 0,9 (W/m ² K) 0,17 0,038 1,4 0,288 0,9 (W/m ² K)	 0,45 R₁ (W/m²K) 0,04 0,52 0,01 2,63 0,01 0,52 0,02 0,26 0,26 0,33 R₁ (m²K/W) 0,04 0,27 0,01 1,58 0,01 0,87 0,02 0,24 	* si,min PILLAR (SP=40cm) Chalk plaster Alluminium vapour barrier EPS insulation Armed concrete Concrete plaster with san Discrete plaster with san PILLAR (SP=50cm) Chalk plaster Alluminium vapour barrier EPS insulation Armed concrete Concrete plaster with san Armed concrete Concrete plaster with san	 L, (m) 0,015 0,015 0,015 UP 0,015 	(°C) λ, (W/mK) 0,35 0,17 0,038 0,9 (W/m ² K) 0,35 0,17 0,35 0,17 0,038 1,91 0,9 (W/m ² K)	10,00 Ri (m²K/W) 0,04 0,01 2,63 0,13 0,02 0,33 17,80 Ri (m²K/W) 0,04 0,01 1,32 0,18 0,02 0,57

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	$R_1 (m^2 K/W)$	PILLAR (S _P =40cm)	L _i (m)	$\lambda_i (W/mK)$	R_{i} (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
5	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,4	0,01
8	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
III.	EPS insulation	0,05	0,038	1,32	EPS insulation	0,05	0,038	1,32
1	External plaster	0,005	1,4	0,00	External plaster	0,005	1,4	0,00
		Uw	(W/m ² K)	0,39		Up	(W/m ² K)	0,59
	-				1			
	U _{av}		(₩/m²K)	0,43	T _{si,min}		(°C)	17,60
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
5	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,4	0,01
ĕ	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
III.	EPS insulation	0,1	0,038	2,63	EPS insulation	0,1	0,038	2,63
22	External plaster	0,005	1,4	0,00	External plaster	0,005	1,4	0,00
		Uw	(W/m²K)	0,26		Up	(W/m²K)	0,33
	U _{av}		(W/m²K)	0,27	T _{si,min}		(°C)	18,60
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =30cm)	L _i (m)	λ _i (W/mK)	R ₁ (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
01	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,4	0,01
E.O	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
З.Р	EPS insulation	0,05	0,038	1,32	EPS insulation	0,05	0,038	1,32
>	External plaster	0,005	1,4	0,00	External plaster	0,005	1,4	0,00
	_	Uw	(W/m²K)	0,39	-	Up	(W/m²K)	0,59
				0.40	-			47.50
	Uav	1 ((W/m²K)	0,43	I si,min	1 ((°C)	17,50 D (m ² K 080
	WALL	L _i (m)	Λ _i (W/mK)	R _i (m ⁻ K/W)	PILLAR (Sp=50cm)	L _i (m)	Λ _i (W/MK)	R _i (m ⁻ K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
00	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,4	0,01
Ë.	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,002	0,17	0,01
(4. P	EPS insulation	0,05	0,038	1,32	EPS insulation	0,05	0,038	1,32
>	External plaster	0,005	1,4	0,00	External plaster	0,005	1,4	0,00
		Uw	(W/m²K)	0,39]	UP	(₩/m²K)	0,59
			2		_			
	U _{av}	_	(W/m²K)	0,44	l si,min		(°C)	17,70
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,25	1,91	0,13
00	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,4	0,01
JL.(Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barrie	0,002	0,17	0,01
/5.F	Polyurethan insulation	0,1	0,028	3,57	Polyurethan insulation	0,1	0,028	3,57
`	External plaster	0,005	1,4	0,00	External plaster	0,005	1,4	0,00
	_	Uw	(W/m²K)	0,21	4	UP	(W/m²K)	0,25
	-							
			() 1/ (2)()	0.22	т		1°C)	19.00

			l	/alidatio	n cases			
	WALL	L, (m)	λ ₁ (W/mK)	$R_1 (m^2 K/W)$	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	$R_1 (m^2 K/W)$
8	Plasterboard	0,015	0,21	0,07	Plasterboard	0,015	0,21	0,07
	EPS insulation	0,05	0,038	1,32	EPS insulation	0,05	0,04	1,32
	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,40	0,01
00-	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
III.	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,015	0,9	0,02
5		Uw	(W/m^2K)	0,38		UP	(W/m^2K)	0,58
	-				1 .			
	U _{av}		(W/m^2K)	0,43	T _{si,min}		(°C)	18,20
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,015	0,21	0,07
	EPS insulation	0,1	0,038	2,63	EPS insulation	0,1	0,04	2,63
8	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,40	0,01
0	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
Ы	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,015	0,9	0,02
V2		Uw	(W/m ² K)	0,25		Up	(W/m ² K)	0,33
	-				1 .			
	U _{av}		(W/m^2K)	0,27	T _{si,min}		(°C)	19,00
	WALL	L _i (m)	λ_i (W/mK)	R ₁ (m ² K/W)	PILLAR (S _P =30cm)	L _i (m)	$\lambda_i (W/mK)$	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,015	0,21	0,07
	EPS insulation	0,05	0,038	1,32	EPS insulation	0,05	0,04	1,32
08	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,40	0,01
IL.0	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,3	1,91	0,16
3.P	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,015	0,9	0,02
>		Uw	(W/m ² K)	0,38		UP	(W/m ² K)	0,58
	Uav		(W/m^2K)	0.42	T _{si min}		(°C)	18.30
	WALL	L; (m)	λ _i (W/mK)	$R_i (m^2 K/W)$	PILLAR (S _P =50cm)	L; (m)	λ _i (W/mK)	$R_i (m^2 K/W)$
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,015	0,21	0,07
	FPS insulation	0.05	0.038	1.32	FPS insulation	0.05	0.04	1.32
~		0,00	1.4	0.01		0,00	1.40	0.01
00		0,01	1,4	1.04		0,01	1,40	0.14
PIL	Brick (SUXSUCIT)	0,5	0,200	0.07		0,5	0.9	0,10
<u> </u>	Concrete plaster with same	1.	()v/(m ² k)	0,02		0,015	() V (m ² K)	0,02
	1	Uw	(W/III K)	0,50	-	Up	(W/III K)	0,50
	Uav		(W/m^2K)	0,43	T _{si.min}		(°C)	18,20
	WALL	L; (m)	λ _i (W/mK)	$R_i (m^2 K/W)$	PILLAR (S _P =40cm)	L; (m)	λ. (W/mK)	$R_i (m^2 K/W)$
	Plasterboard	0.015	0.21	0.07	Plasterboard	0.015	0.21	0.07
	Polyurethan insulation	0.1	0,028	3.57	Polyurethan insulation	0.1	0.03	3,57
8	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,01	1,40	0,01
0	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,25	1,91	0,13
II.	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,015	0,9	0,02
<5		Uw	(W/m^2K)	0,21		UP	(W/m^2K)	0,25
	-				1 .			
	Uav		(W/m^2K)	0.22	Tsi min		(°C)	19.20

4.3.3 Projecting corners

The fundamental characteristics that change in the stratigraphies of the validation cases are:

- the insulation and brick thickness;
- the insulation and brick thermal conductivity;
- the pillar dimensions.

A particular case simulated in this study is the V5.PC.004, in which the pillar has a rectangular shape. This characteristic has never been considered to draw up the reference abacus. For this case the pillar thermal transmittance has been calculated on a length equal to that of the quadratic pillar, as it is shown in this figure.

For the most part of these building junctions the MSEP for linear thermal transmittance is between 5% and 29%.

This means that the expected error in real cases isn't so Figure 4.4 - Rectangular pillar case high.

The exceptions are PC.005 that, owing to the continuity of the insulation present a greater MSEP (46%) and PC.009 in which the reference correlations provide negative values of the linear thermal transmittance, whereas the real building junctions, based on a non-homogenous stratigraphy, determine positive values of it. The difference between these results increase a lot the MSEP.

Probably the non-homogeneity of the layers determine the change of the heat flow direction.

The MSEP for the temperature factor at the internal surface is always between 1% and 11% and so the expected error is very small. This indicates that the non-homogeneity of the layers composing the wall has a smaller influence on the temperature factor at the internal surface than on the linear thermal transmittance.

			l	/alidatio	n cases			
	WALL	L. (m)	λ. (W/mK)	$R_{\rm c} (m^2 K/W)$	PILLAR (30x30cm)	L. (m)	λ. (W/mK)	$R_1 (m^2 K/W)$
_		0.015	0.35	0.04	Chalk plaster	0.021	0.35	0.06
	Brick (25x30cm)	0.25	0.288	0.87	Armed concrete	0.424	1.91	0.22
	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,014	1,400	0,01
00.	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02
PC-	EPS insulation	0,05	0,038	1,32	External plaster	0,007	1,4	0,01
5	External plaster	0,005	1,4	0,00	· ·	UP	(W/m^2K)	2,06
		Uw	(W/m^2K)	0,41			(,,	•
	-				1			
	U _{av}		(W/m ² K)	0,65	T _{si,min}		(°C)	10,70
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,495	1,91	0,26
=	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,003	0,17	0,02
00	Alluminium vapour barriei	0,002	0,17	0,01	External plaster	0,007	1,4	0,01
PC -	EPS insulation	0,09	0,038	2,37		UP	(W/m ² K)	1,96
<2	External plaster	0,005	1,4	0,00	1			
		Uw	(W/m ² K)	0,29	1			
	-		1,,		1			
	U _{av}		(W/m ² K)	0,55	T _{si,min}		(°C)	11,00
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Lightened bricks	0,3	0,23	1,30	Armed concrete	0,495	1,91	0,26
01	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,014	1,400	0,01
0.0	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02
З.Р	EPS insulation	0,05	0,038	1,32	External plaster	0,007	1,4	0,01
>	External plaster	0,005	1,4	0,00	4 1	UP	(W/m ² K)	1,92
	1	Uw	(W/m²K)	0,35	-			
	[]		$\left(\frac{1}{2}\right)$	0.56	T-i min		(°C)	11.00
	VY/ALL	1. (m)	(W/III K) λ. (W/mK)	P. (m ² K/W)	PILLAR (35x35cm)	1. (m)	λ. (W//mK)	P. (m ² K/W)
	Chalk plaster	0.015	0 35	0.04	Chalk plaster	0.021	0 35	0.06
	Brick / 25x20cm	0.75	0.200	0.97	Armod concrete	0.495	1.01	0.74
		0,25	0,200	0,87		0,775	1,71	0,20
00		0,01	1,4	0,01	Alluminium vapour barriel	0,003	0,17	0,02
Ъ.		0,002	0,17	0,01	External plaster	0,007	1,4	0,01
<u></u>		0,09	1.4	3,21	-	UP	(W/m²K)	1,90
	External plaster	0,005	1,4	0,00	4			
		Uw	(w/m⁻ĸ)	0,25				
	Uav		(W/m^2K)	0 50	Tei min		(°C)	11 10
	W/ALL	1. (m)	λ. ()¥//mK)	$R_{\rm r} (m^2 K / W)$	PILLAR (35x35cm)	1. (m)	λ. ()¥//mK)	R. (m ² K/W/)
		0.015	0.35	0.04	Chalk plaster	0.021	035	0.06
		0,015	0,55	1 30	Armed concrete	0.495	1.91	0,00
_	Concrete plaster	0.01	14	0.01	Concrete plaster	0.014	1 400	0.01
00.	Alluminium vapour barrier	0.002	0.17	0.01	Alluminium vapour barrier	0.003	0.170	0.02
D.	Polyurethan insulation	0.05	0.028	1.79	External plaster	0.007	1.4	0.01
V5.	External plaster	0.005	1.4	0.00		Un	$() V/(m^2 K)$	1.92
		Uw	(W/m^2K)	0,30	-	-1		.,.=
	-				1			
	U _{av}		(W/m^2K)	0,52	T _{si.min}		(°C)	11,10

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/₩)	PILLAR (30x30cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
2	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	EPS insulation	0,05	0,038	1,32	Armed concrete	0,424	1,91	0,22
	Brick (25x30cm)	0,25	0,288	0,87	Concrete plaster with san	0,021	0,9	0,02
8	Concrete plaster with san	0,015	0,9	0,02		UP	(W/m^2K)	1,94
۲.		Uw	(W/m^2K)	0,41	1 .			
5					1			
	U _{av}		(W/m ² K)	0,47	T _{si,min}		(°C)	12,90
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	EPS insulation	0,09	0,038	2,37	Armed concrete	0,495	1,91	0,26
2	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,021	0,900	0,02
8	Brick (25x30cm)	0,25	0,288	0,87		UP	(W/m²K)	1,81
N.	Concrete plaster with san	0,015	0,9	0,02				
22		Uw	(W/m^2K)	0,29				
			(,		-			
	Uni		$() \mathbf{Y} / m^2 \mathbf{K}$	0 35	Tei min		l'C)	12 90
	WALL	L, (m)	λ. (W/mK)	R; (m ² K/W)	PILLAR (35x35cm)	L, (m)	<u>λ</u> (W/mK)	$R_i (m^2 K/W)$
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	EPS insulation	0,05	0,038	1,32	Armed concrete	0,495	1,91	0,26
5	Lightened bricks	0,3	0,23	1,30	Concrete plaster with san	0,021	0,9	0,02
8	Concrete plaster with san	0,015	0,9	0,02		UP	(W/m^2K)	1,81
P.		Uw	(W/m^2K)	0,35	1 -		(,,	
Š					1			
	U _{av}		(W/m ² K)	0,41	T _{si,min}		(°C)	12,90
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	Polyurethan insulation	0,09	0,028	3,21	Armed concrete	0,495	1,91	0,26
2	Concrete plaster	0.01	1.4	0.01	Concrete plaster with san	0.021	0.900	0.02
0	Brick (25x30cm)	0,25	0,288	0,87		UP	(W/m^2K)	1.81
R P	Concrete plaster with san	0,015	0,9	0,02	-	- F		.,
4		Uw	(W/m^2K)	0.23	-			
		- w	(W / K)	-,	1			
	Uav		(W/m^2K)	0,28	T _{si.min}		(°C)	13,20
	WALL	L, (m)	λ _ι (W/mK)	$R_1 (m^2 K/W)$	PILLAR (35x35cm)	L, (m)	λ _ι (W/mK)	$R_1 (m^2 K/W)$
	Plasterboard	0.015	0.21	0.07	Plasterboard	0.021	0.21	0.10
	Polyurethan insulation	0,05	0.028	1.79	Armed concrete	0.495	1,91	0,26
2	Lightened bricks	0.3	0,23	1,30	Concrete plaster with san	0,021	0.9	0,02
00.	Concrete plaster with san	0,015	0,9	0,02		Up	(W/m^2K)	1,81
PC		Uw	(W/m^2K)	0.30	1 '			.,
<5	 				1			
	11		(W/m^2K)	0.36	Tei min		(°C)	13 20

	Validation cases									
V1.PC.003	WALL	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$	PILLAR (40x40cm)	L _i (m)	$\lambda_i (W/mK)$	R _i (m ² K/W)		
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06		
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,566	1,91	0,30		
	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,17	0,02		
	EPS insulation	0,06	0,038	1,58	Concrete plaster with san	0,021	0,900	0,02		
	Concrete plaster	0,01	1,4	0,01		UP	(W/m^2K)	1,76		
	Brick (25x30cm)	0,25	0,288	0,87	1		(/ /			
	Concrete plaster with san	0,015	0,9	0,02						
		Uw	(W/m^2K)	0,34						
	U _{av}		(W/m^2K)	0,51	T _{si.min}		(°C)	10,90		
	WALL	L _i (m)	$\lambda_i (W/mK)$	R _i (m ² K/W)	PILLAR (40x40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)		
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06		
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,566	1,91	0,30		
m	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02		
8	EPS insulation	0,11	0,038	2,89	Concrete plaster with san	0,021	0,900	0,02		
PC D	Concrete plaster	0,01	1,4	0,01		UP	(W/m^2K)	1,76		
V2	Brick (L=20cm)	0,2	0,239	0,84	1 .		. , ,			
	Concrete plaster with san	0,015	0,9	0,02	-					
		Uw	(W/m^2K)	0,24	1					
	U _{av}		(W/m^2K)	0,42	T _{si.min}		(°C)	10,90		
	WALL	L _i (m)	$\lambda_i (W/mK)$	R _i (m ² K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)		
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06		
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,495	1,91	0,26		
m	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,17	0,02		
8	EPS insulation	0,06	0,038	1,58	Concrete plaster with san	0,021	0,900	0,02		
P.	Concrete plaster	0,01	1,4	0,01		UP	(₩/m²K)	1,89		
19	Lightened bricks	0,2	0,23	0,87	1					
	Concrete plaster with san	0,015	0,9	0,02]					
		Uw	(W/m²K)	0,34						
	U _{av}		(W/m ² K)	0,51	T _{si,min}		(°C)	10,80		
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (40x40cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)		
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06		
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,566	1,91	0,30		
33	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02		
0 U	Polyurethan insulation	0,11	0,028	3,93	Concrete plaster with san	0,021	0,900	0,02		
4. P	Concrete plaster	0,01	1,4	0,01		UP	(W/m ² K)	1,76		
>	Brick (L=20cm)	0,2	0,239	0,84						
	Concrete plaster with san	0,015	0,9	0,02						
		Uw	(₩/m²K)	0,19						
	U _{av}		(W/m²K)	0,37	T _{si,min}		(°C)	11,00		
	WALL	L _i (m)	λ _ι (W/mK)	R _i (m ² K/W)	PILLAR (40x40cm)	L _i (m)	λ _i (W/mK)	R ₁ (m ² K/W)		
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06		
	Brick (L=12cm)	0,12	0,232	0,52	Armed concrete	0,566	1,91	0,30		
ß	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,17	0,02		
0 U	EPS insulation	0,07	0,038	1,84	Concrete plaster with san	0,021	0,900	0,02		
5. P	Concrete plaster	0,01	1,4	0,01		UP	(W/m ² K)	1,76		
>	Brick (L=20cm)	0,2	0,239	0,84]					
	Concrete plaster with san	0,015	0,9	0,02	ļ					
		Uw	(W/m ² K)	0,29						
	U _{av}		(W/m^2K)	0,47	T _{si,min}		(°C)	11,00		

transmittance. This is due to the different pillar geom case it is rectangular.

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/₩)	PILLAR (30x30cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (30x30cm)	0,3	0,288	1,04	Armed concrete	0,424	1,91	0,22
4	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,021	0,900	0,02
0		Uw	(W/m^2K)	0,79		UP	(W/m^2K)	2,10
P.			(,		1 .			
2								
	U _{av}		(₩/m²K)	0,94	T _{si,min}		(°C)	10,20
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,354	1,91	0,19
4	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,021	0,900	0,02
8		Uw	(₩/m²K)	0,91		UP	(W/m ² K)	2,28
D.	-							
22								
	l.l		$() V (m^2 k)$	1.05	Tatanta		l'CI	9.90
	W/ALL	L. (m)	<u>λ. (W/mK)</u>	R. (m ² K/W)	PILLAR (30x30cm)	L. (m)	<u>(</u>) (W/mK)	R. (m ² K/W)
		0.015	0.35	0.04		0.021	0.35	0.06
	Lightened bricks	0,3	0,23	1,30	Armed concrete	0,424	1,91	0,22
4	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,021	0,900	0,02
8		Uw	(W/m^2K)	0.65		Up	(W/m^2K)	2.10
PC -		- w		0,00		-r		_,
Š								
	U _{av}		(W/m^2K)	0,80	T _{si.min}		(°C)	10,50
	WALL	L _i (m)	λ _i (W/mK)	$R_i (m^2 K/W)$	PILLAR (40x40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Concrete bricks	0.4	0.45	0.89	Armed concrete	0.566	1.91	0.30
4	Concrete plaster with san	0.015	0.9	0.07	Concrete plaster with can	0.071	0.900	0.07
Ò	Concrete plaster with sam	0,013	0,7	0,02	Concrete plaster with sam	0,021	0,700	1.02
2	1	Uw	(w/m⁻ĸ)	0,67		Up	(w/m⁻ĸ)	1,02
<u> </u>								
-								
	11		() *(/ 2 / /)	1.00	т		100	10.40
		1 (m)	(W/III K)	D (m ² K/)V()	si,min	1 (m)		D (m ² K()V()
						L (III)		
		0,015	0,35	0,04		0,021	0,35	0,06
4	Concrete plastor with car	0,5	0.200	0.02	Concrete plastor with car	0.021	0.900	0.02
0	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,021	0,900	2.10
PC.		Uw	(w/m²K)	0,79		Up	(w/m²K)	2,10
V5.								
	U		$() V (m^2 k)$	1.03	T.:		(°C)	8 60

consequence, this value has been excluded by the evaluation of the MSE for the linear thermal transmittance.
WALL L (m) A, (W/mk) R, (m ² k/W) PILLAR (25x25cm) L (m) A, (W/mk) R, (m ² k/W) Chaik platter 0.015 0.35 0.04 Chaik platter 0.021 0.35 0.06 Brick (25x30m) 0.25 0.288 0.87 Amred concrete plaster 0.014 1.40 0.01 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.033 1.70 0.02 EPS insulation 0.05 0.038 1.32 EPS insulation 0.07 1.4 0.01 Uw (W/m ² K) 0.41 0.02 1.4 0.00 Esternal plaster 0.007 1.4 0.01 Uw (W/m ² K) 0.51 T_s.min (*C) 1.4/20 0.01 1.4/20 0.01 0.35 0.64 Chaik plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Chaik plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 <				l	/alidatio	n cases			
Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Brock [25:30cm] 0.25 0.288 0.47 Ammed concrete 0.354 1.91 0.19 Concret plaster 0.01 1.4 0.01 Concret plaster 0.01 1.400 0.017 Aluminum vapour barrie 0.002 0.17 0.01 Aluminum vapour barrie 0.003 0.170 0.022 Birk fizion 0.05 0.48 1.000 External plaster 0.007 1.4 0.012 Uw (W/m²k) 0.51 Taumin (°C) 1.4 0.00 VALL L (m) A, (W/mk) R, (m²k/W) PLLAR (25x25cm) L (m) A, (W/mk) R, (m²k/W) Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.031 0.04 1.400 0.01 Concrete plaster 0.01 1.4 0.01 Aluminum vapour barrie 0.02 0.27 0.28 Disk YW/M2K 0.2		WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/₩)	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
Bick (25x30cm) 0,25 0,288 0,87 Armed concrete 0,354 1,91 0,19 Bick (25x30cm) 0,02 0,17 000 Aluminium sepour barrie 0,003 0,170 0,022 Firs mulation 0,05 0,038 1,32 Firs mulation 0,071 0,038 1,86 External platter 0,005 1,4 0,00 External platter 0,007 1,4 0,00 WALL L (m) N (W/m²K) 0,51 Tsiumin ('C) 1,47.00 WALL L (m) N (W/m²K) 0,61 Tsiumin ('C) 1,47.00 Concrete plaster 0,015 0.35 0.04 Chaik platter 0,021 0.35 0,06 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,01 Aluminum spour barrie 0,023 0,24 WALL L (m) N (W/m²K) 0,23 0,24 Dist 0,35 0,04 Concrete plaster 0,01 Aluminum spour barrie 0,		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 EPS insulation 0,02 0,17 0,01 Adurnium magour barrier 0,038 1,82 EPS insulation 0,005 0,38 1,32 EPS insulation 0,071 0,038 1,40 Uw (W/m²k) 0,41 Uw (W/m²k) 0,41 0,007 1,4 0,01 WALL L (Im) N (W/m²k) 0,51 T_silmin (°C) 14,70 WALL L (Im) N (W/m²k) 0,51 T_silmin (°C) 1,47,00 Chak plaster 0,015 0,35 0,44 Chak plaster 0,014 1,40 0,10 0,35 0,04 Chak plaster 0,01 1,4 0,01 Charce plaster 0,01 0,10 0,02 0,17 0,02 Adurnitium wapour barriei 0,020 0,17 0,12 0,10 0,10 0,10 0,10 0,10 0,10 0,11 0,00		Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,354	1,91	0,19
Nominum vapour barrier 0.002 0.17 0.01 Aluminium vapour barrier 0.003 0.170 0.02 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m²k) 0.41 Ur Ur/m²k) 0.41 0.01 Uw (W/m²k) 0.41 Ur (V/m²k) 0.41 0.01 Value (W/m²k) 0.51 Tsi.min ('C) 14.70 Value (W/m²k) 0.52 0.288 0.87 Armed concrete 0.35 0.06 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.40 0.01 Concrete plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m²k) 0.34 Tsi.min ('C) 16.40 Uw (W/m²k) 0.34 Tsi.min ('C) 16.40 Uw (W/m²k) 0.33 0.41 1.40	ъ	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,014	1,400	0,01
P3	0	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02
S External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m²K) 0.41 Up (W/m²K) 0.41 Uw (W/m²K) 0.51 Tstmin ('C) 14,70 WALL L (m) A, (W/mK) R, (m²K/W) PILLAR (25x25cm) L (m) A, (W/mK) R, (m²K/W) Chak plaster 0.015 0.35 0.04 Chak plaster 0.021 0.35 0.04 Concrete plaster 0.01 1.4 0.01 Constrete plaster 0.011 1.400 0.01 Concrete plaster 0.01 0.038 2.63 ES Sinulation 0.14 0.03 0.372 Eternal plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m²K) 0.34 Tstmin ('C) 16,40 WALL L (m) A (W/m²K) 0.34 Tstmin ('C) 16,40 Ugstendar	Р.	EPS insulation	0,05	0,038	1,32	EPS insulation	0,071	0,038	1,86
Uw (W/m ² K) 0.41 Uv (W/m ² K) 0.41 Uav (W/m ² K) 0.51 TsLmin (*C) 14.70 WALL L (m) h (W/m ² K) 0.51 TsLmin (*C) 14.70 Chak plaster 0.015 0.35 0.04 Chak plaster 0.021 0.35 0.06 Concete plaster 0.011 4.001 Concrete plaster 0.014 1.400 0.01 Concete plaster 0.005 1.4 0.01 Concrete plaster 0.003 0.170 0.02 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m ² K) 0.27 Up (W/m ² K) 0.24 0.24 Uw (W/m ² K) 0.27 Up (W/m ² K) 0.24 0.05 Chak plaster 0.015 0.35 0.04 Chak plaster 0.016 0.02 Chak plaster 0.015 0.35 0.04 Chak plaster	5	External plaster	0,005	1,4	0,00	External plaster	0,007	1,4	0,01
Uav (W/m²k) 0.51 Tst.min (*C) 14,70 WALL L (m) A, (W/mk) R, (m²k/W) PILLAR (25x25cm) L, (m) A, (W/mk) R, (m²k/W) Ghak plaster 0.015 0.35 0.04 Chak plaster 0.021 0.35 0.06 Brick (25x30cm) 0.25 0.288 0.87 Amed concrete 0.354 1,91 0.19 Gorrete plaster 0.01 1,4 0.01 Concrete plaster 0.03 1,70 0.02 Alluminium vapour barrie 0.002 1,7 0.01 Alluminium vapour barrie 0.03 1,70 0.02 Uw (W/m²k) 0.34 Tst.min (*C) 16,40 Uw (W/m²k) 0.34 Tst.min (*C) 16,40 Uw (W/m²k) 0.33 0.23 1,30 Amed concrete 0.424 1,91 0.22 Concrete plaster 0.01 1,4 0.01 Concrete plaster 0.01 1,400 0.01 Lightened bricks			Uw	(W/m ² K)	0,41		Up	(W/m ² K)	0,43
Uav (W/m²K) 0.51 Tst.min (*C) 14,70 WALL L (m) A, (W/mK) R, (m²K/W) PILLAR (25x25cm) L (m) A, (W/mK) R, (m²K/W) Chak plaster 0.015 0.35 0.04 Chak plaster 0.021 0.35 0.06 Brick (25x30cm) 0.25 0.288 0.87 Armed concrete 0.354 1,91 0.19 Concrete plaster 0.01 1,4 0.01 Aluminium vapour barrie 0.033 0.70 0.02 Ebst maulation 0,1 0.038 2.633 EPS insulation 0,141 0.038 3,72 Ebst mal plaster 0.005 1,4 0.00 External plaster 0.007 1,4 0.01 Uav (W/m²K) 0,34 Tst.min (*C) 16,40 Uav (W/m²K) 0,34 Tst.min (*C) 16,40 Uav (W/m²K) 0,35 0.04 Chak plaster 0.021 0.35 0.06 Uav (W/m²K) 0,35 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>		-				1			
WALL L, (m) Å, (W/mK) R, (m²k/W) PILLAR (25x25cm) L, (m) Å, (W/mK) R, (m²k/W) Chak plaster 0.015 0.35 0.04 Chak plaster 0.021 0.35 0.06 Bick (25x30cm) 0.225 0.288 0.87 Armed concrete 0.354 1.91 0.19 Concrete plaster 0.011 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Alluminium vapour barriei 0.002 0.17 0.01 Alluminium vapour barriei 0.003 0.170 0.02 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m²K) 0.22 0.27 Ur (W/m²K) 0.24 Chak plaster 0.015 0.35 0.04 Chak plaster 0.021 0.35 0.06 Concrete plaster 0.011 1.4 0.01 Concrete plaster 0.021 0.35 0.06 Concrete plaster 0.011 1.4		U _{av}		(W/m^2K)	0,51	T _{si,min}		(°C)	14,70
Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Brick (25x30cm) 0.25 0.288 0.87 Armed concrete 0.354 1.91 0.19 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Alluminium vapour barrie 0.002 0.17 0.01 Alluminium vapour barrie 0.003 0.170 0.022 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Usv (W/m ² K) 0.34 Tst.min (*C) 16,40 Usv (W/m ² K) 0.34 Tst.min (*C) 16,40 Usptened bricks 0.3 0.23 1.30 Armed concrete 0.424 1.91 0.22 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.02 0.17 0.01 Alluminium vapour barrie 0.03 0.170 0.02 Concrete plaster 0.015		WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/₩)
Brick (25x30cm) 0.25 0.286 0.87 Armed concrete 0.354 1.91 0.19 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Concrete plaster 0.010 0.17 0.01 Alluminium vapour barries 0.002 0.17 0.01 EfF insulation 0.1 0.038 2.63 EPS insulation 0.141 0.002 0.07 1.4 0.001 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.017 0.01 Alluminium vapour barries 0.007 1.4 0.01 0.021 0.35 0.06 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.017 0.02 0.03 0.170 0.02 Ighthemed bricks 0.3 0.23 1.30 Armed concrete 0.424 1.91 0.22 Pojurethan insulation 0.05 0.028 1.79 Pojurethan insulation 0.011 0.007 1.4		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
Concrete plaster 0,01 1.4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barrie 0,002 0,17 0,01 Alluminium vapour barrie 0,003 0,170 0,02 External plaster 0,005 1.4 0,006 External plaster 0,007 1.4 0,01 Wall Uw (W/m ² K) 0,27 Up (W/m ² K) 0,24 Wall L (m) Ai (W/m ² K) 0,34 Tst.min (*C) 16,40 Wall L (m) Ai (W/mK) R (m ² K/W) PILLAR (30x30cm) L (m) Ai (W/mK) R (m ² K/W) Uptoted Onio 0.55 0.628 Chait plaster 0.011 Alluminium vapour barrie 0.002 0.028 2.53 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.015 Polyurethan insulation 0.05 0.028 1.79 Polyurethan insulation 0.071 0.028 2.53 External plaster<		Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,354	1,91	0,19
Open Alkuminium vapour barrie 0.002 0.17 0.01 Alkuminium vapour barrie 0.003 0.170 0.02 EFS insulation 0.1 0.038 2,63 EPS insulation 0,141 0,038 3,72 External plaster 0.005 1,4 0.00 External plaster 0.007 1,4 0.01 Uw (W/m²K) 0,27 Up (W/m²K) 0,24 Uav (W/m²K) 0,34 Tstmin (*C) 16,40 Uav (W/m²K) 0,35 0.04 Chaik plaster 0.01 0.35 0.06 Lightened bricks 0.3 0.23 1.30 Armed concrete 0.424 1,91 0,22 Concrete plaster 0.01 1,4 0.01 Concrete plaster 0.011 1,400 0.01 Alkuminium vapour barrie 0.005 0.028 1,79 Polyurethan insulation 0.07 1,4 0.01 Alkuminium vapour barrie 0.005 1,4 0.00 External plaster <td< td=""><td>5</td><td>Concrete plaster</td><td>0,01</td><td>1,4</td><td>0,01</td><td>Concrete plaster</td><td>0,014</td><td>1,400</td><td>0,01</td></td<>	5	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,014	1,400	0,01
UN EPS insulation 0,1 0.038 2,63 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,27 Up (W/m²K) 0,24 Uw (W/m²K) 0,34 Tsi.min ('C') 16,40 WALL L (m) A, (W/mK) R, (m²K/W) PILLAR (30x30cm) L (m) A, (W/mK) R, (m²K/W) Chalk plaster 0,015 0.35 0.04 Chalk plaster 0.021 0.35 0,06 Ughtened bricks 0,3 0,23 1,30 Armed concrete 0,424 1,91 0,22 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,39 Tsi,min ('C') 15,20 <t< td=""><td>8</td><td>Alluminium vapour barriei</td><td>0,002</td><td>0,17</td><td>0,01</td><td>Alluminium vapour barriei</td><td>0,003</td><td>0,170</td><td>0,02</td></t<>	8	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02
No. External plaster 0.005 1,4 0.00 External plaster 0.007 1,4 0.01 Uw (W/m²K) 0.27 Up (W/m²K) 0.24 WALL Li (m) A; (W/m²K) 0.34 Tsi.min (*C) 16,40 Chaik plaster 0.015 0.35 0.04 Chaik plaster 0.021 0.35 0.06 Lightened bricks 0.3 0.23 1.30 Armed concrete 0.424 1.91 0.222 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Muminum vapour barrie 0.005 0.028 1.79 Polyurethan insulation 0.071 0.028 2.53 External plaster 0.005 0.028 1.79 Polyurethan insulation 0.071 0.028 2.53 External plaster 0.015 0.35 0.04 Chaik plaster 0.007 1.4 0.01 WALL Ly (m/m²K) 0.39 Tsi.min (*C)	DC I	EPS insulation	0,1	0,038	2,63	EPS insulation	0,141	0,038	3,72
Uw (W/m ² K) 0.27 Up (W/m ² K) 0.24 Uav (W/m ² K) 0.34 Tsi,min (*C) 16,40 WALL L, (m) h, (W/mK) R, (m ² K/W) PILLAR (30x30cm) L, (m) h, (W/mK) R, (m ² K/W) Lightened bricks 0.3 0.23 1.30 Armed concrete 0.424 1.91 0.22 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Alluminium vapour barriei 0.002 0.17 0.01 Alluminium vapour barriei 0.003 0.170 0.02 Polyurethan insulation 0.05 0.028 1.79 Polyurethan insulation 0.071 0.028 2.53 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m ² K) 0.39 Tsi,min (*C) 15,20 WALL Li (m) Ai (W/mK) Ri (m ² K/W) PILLAR (25x25cm) Li (m) Ai (m ² K/W)	V2 .	External plaster	0,005	1,4	0,00	External plaster	0,007	1,4	0,01
Uav (W/m²K) 0.27 (W/m²K) 0.24 WALL L ₁ (m) λ ₁ (W/m²K) 0.34 Tsi,min (*C) 16,40 WALL L ₁ (m) λ ₁ (W/m²K) 0.34 Chalk plaster 0.021 0.35 0.06 Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Alluminium vapour barrie 0.002 0.17 0.01 Alluminium vapour barrie 0.003 0.170 0.02 Polyurethan insulation 0.05 0.028 1.79 Polyurethan insulation 0.071 0.028 2.53 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m²K) 0.39 Tsi,min (*C) 15,20 WALL Li (m) λi (W/m²K) 0.37 0.021 0.35 0.06 Brick (25x30cm) <td></td> <td></td> <td>L hw</td> <td>$\left(\frac{1}{2}\right)$</td> <td>0.27</td> <td></td> <td>Un</td> <td>$\left(\frac{1}{2}\right)$</td> <td>0.24</td>			L hw	$\left(\frac{1}{2}\right)$	0.27		Un	$\left(\frac{1}{2}\right)$	0.24
Uav (W/m ² K) 0.34 T _{st.min} (*C) 16,40 WALL L ₁ (m) λ ₁ (W/mK) R ₁ (m ² K/W) PILLAR (30x30cm) L ₁ (m) λ ₁ (W/mK) R ₁ (m ² K/W) Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Lightened bricks 0.3 0.23 1.30 Armed concrete 0.424 1.91 0.22 Ornerete plaster 0.01 1.4 0.01 Concrete plaster 0.017 0.01 Alluminium vapour barriei 0.003 0.070 0.02 Polyurethan insulation 0.05 0.028 1.79 Polyurethan insulation 0.007 1.4 0.01 Lw (W/m ² K) 0.30 UP (W/m ² K) 0.33 UP (W/m ² K) 0.33 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 VALL L ₁ (m) λ ₁ (W/mK) R ₁ (m ² K)W PILLAR (25x25cm) L ₁ (m) A ₁ (W/mK /W <		1	0		0,21	-	Op.		0,21
WALL L, (m) N, (W/mK) R, (m ² K/W) PILLAR (30x30cm) L, (m) A, (W/mK) R, (m ² K/W) Chalk plaster 0.01 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Lightened bricks 0.3 0.23 1.30 Armed concrete 0.424 1.91 0.22 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Alluminium vapour barriei 0.002 0.17 0.01 Alluminium vapour barriei 0.03 0.170 0.02 Polyurethan insulation 0.05 0.028 1.79 Polyurethan insulation 0.071 0.028 2,53 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m ² K) 0.39 Tsi.min (*C) 15.20 VALL L, (m) h, (W/mK) R, (m ² K/W) PILLAR (25x25cm) L, (m) h, (m ² K/W) Concrete plaster 0.01 1.4 <t< th=""><th></th><th>Uav</th><th></th><th>(W/m^2K)</th><th>0 34</th><th>Tei min</th><th></th><th>(°C)</th><th>16 40</th></t<>		Uav		(W/m^2K)	0 34	Tei min		(°C)	16 40
Wall Link Link <thlink< th=""> Link Link <thl< th=""><th></th><th>WALL</th><th>L, (m)</th><th>λ. (W/mK)</th><th>R_{i} (m²K/W)</th><th>PILLAR (30x30cm)</th><th>L, (m)</th><th><u>λ</u> (W/mK)</th><th>R; (m²K/W)</th></thl<></thlink<>		WALL	L, (m)	λ. (W/mK)	R_{i} (m ² K/W)	PILLAR (30x30cm)	L, (m)	<u>λ</u> (W/mK)	R; (m ² K/W)
With the second secon		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
Sourcete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Alluminium vapour barriei 0.002 0.17 0.01 Alluminium vapour barriei 0.003 0.170 0.02 Polyurethan insulation 0.05 0.028 1.79 Polyurethan insulation 0.071 0.028 2,53 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m²K) 0.39 Tsi,min (*C) 15,20 WALL Li (m) λ_i (W/m²K) 0.39 Tsi,min (*C) 15,20 Brick (25x30cm) 0,25 0,288 0.87 Armed concrete 0.354 1,91 0,19 Alluminium vapour barriei 0.002 0.17 0.01 Alluminium vapour barriei 0.002 0.170 0.02 Alluminium vapour barriei 0.002 0.17 0.01 Alluminium vapour barriei 0.010 0.011 0.028 5,05 External plaster 0.01		Lightened bricks	0,3	0,23	1,30	Armed concrete	0,424	1,91	0,22
With the second secon	2	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,014	1,400	0,01
Very Polyurethan insulation 0.05 0.028 1.79 Polyurethan insulation 0.071 0.028 2.53 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m²K) 0.30 Up (W/m²K) 0.33 Value Li (m) A ₁ (W/mK) R ₁ (m²K/W) PILLAR (25x25cm) Li (m) A ₁ (W/mK) R ₁ (m²K/W) Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Brick (25x30cm) 0.25 0.288 0.87 Armed concrete 0.354 1.91 0.19 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.01 Alluminium vapour barrie 0.002 0.17 0.01 Alluminium vapour barrie 0.003 0.170 0.02 Polyurethan insulation 0.1 0.028 3.57 Polyurethan insulation 0.141 0.028 5.05 External plaster	00	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02
No No External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m ² K) 0.30 External plaster 0.007 1.4 0.01 Uw (W/m ² K) 0.30 Up (W/m ² K) 0.33 Uav (W/m ² K) 0.39 Tst.min (*C) 15.20 WALL Li (m) Ai (W/mK) Ri (m ² K/W) PILLAR (25x25cm) Li (m) Ai (W/mK) Ri (m ² K/W) Chaik plaster 0.015 0.35 0.04 Chaik plaster 0.021 0.35 0.06 Brick (25x30cm) 0.25 0.288 0.87 Armed concrete 0.354 1.91 0.19 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.012 Polyurethan insulation 0.1 0.028 3.57 Polyurethan insulation 0.141 0.028 5.05 External plaster 0.005 1.4 0.00 External plaster 0.	PC.	Polyurethan insulation	0.05	0,028	1,79	Polyurethan insulation	0.071	0,028	2,53
Uw (W/m ² K) 0,30 U _P (W/m ² K) 0,33 Uav (W/m ² K) 0,39 Tsi,min (*C) 15,20 WALL Li (m) Åi (W/mK) Ri (m ² K/W) PILLAR (25x25cm) Li (m) Åi (W/mK) Ri (m ² K/W) Chaik plaster 0.015 0.35 0.04 Chaik plaster 0.021 0.35 0.06 Brick (25x30cm) 0.25 0.288 0.87 Armed concrete 0.354 1.91 0.19 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1.400 0.012 Polyurethan insulation 0.1 0.028 3.57 Polyurethan insulation 0.141 0.028 5.05 External plaster 0.005 1.4 0.00 External plaster 0.007 1.4 0.01 Uw (W/m ² K) 0.27 Tsi,min (*C) 17.10 Uav (W/m ² K) 0.27 Tsi,min (*C) 17.10 Uav (W/m ² K) <	Š	External plaster	0,005	1,4	0,00	External plaster	0,007	1,4	0,01
Uav (W/m²K) 0,39 T _{st,min} (°C) 15,20 WALL L ₁ (m) Å ₁ (W/mK) R ₁ (m²K/W) PILLAR (25x25cm) L ₁ (m) Å ₁ (W/mK) R ₁ (m²K/W) Chalk plaster 0,015 0.35 0.04 Chalk plaster 0,021 0.35 0,06 Brick (25x30cm) 0,25 0,288 0,87 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Polyurethan insulation 0,1 0,028 3,57 Polyurethan insulation 0,141 0,028 5,05 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,27 Tsi,min (°C) 17,10 Vav			Uw	(W/m^2K)	0,30		U₽	(W/m^2K)	0,33
Uav (W/m²K) 0,39 Tsi.min (*C) 15.20 WALL Li (m) Åi (W/mK) Ri (m²K/W) PILLAR (25x25cm) Li (m) Åi (W/mK) Ri (m²K/W) Chalk plaster 0,015 0.35 0.04 Chalk plaster 0,021 0.35 0.06 Brick (25x30cm) 0,25 0,288 0,87 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1.4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,003 0,170 0,02 Polyurethan insulation 0,1 0,028 3,57 Polyurethan insulation 0,141 0,028 5,05 External plaster 0,005 1.4 0,00 External plaster 0,007 1.4 0,01 Uw (W/m²K) 0,27 Tsi.min (*C) 17,10 WALL Li (m) Åi (W/mK) Ri (m²K/W) PILLAR (25x25cm) <		-		(,		-	•	(,	
WALL L ₁ (m) Å ₁ (W/mK) R ₁ (m ² K/W) PILLAR (25x25cm) L ₁ (m) Å ₁ (W/mK) R ₁ (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,25 0,288 0,87 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barrier 0,002 0,17 0,01 Alluminium vapour barrier 0,002 5,05 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m ² K) 0,27 Tsi,min (*C) 17,10 Uav (W/m ² K) 0,27 Tsi,min (*C) 17,10 Uw (W/m ² K) 0,27 Tsi,min (*C) 17,10 Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06		U _{av}		(W/m^2K)	0,39	T _{si.min}		(°C)	15,20
Vertical Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Brick (25x30cm) 0.25 0.288 0.87 Armed concrete 0.354 1.91 0.19 Concrete plaster 0.01 1.4 0.01 Concrete plaster 0.014 1,400 0.01 Alluminium vapour barriei 0.002 0.17 0.01 Alluminium vapour barriei 0.003 0,170 0.02 Polyurethan insulation 0,1 0,028 3,57 Polyurethan insulation 0,141 0,028 5,05 External plaster 0.005 1.4 0,00 External plaster 0,007 1.4 0,01 Uw (W/m ² K) 0,27 Tsi,min (*C) 17,10 Value Li (m) Ai (W/mK) Ri (m ² K/W) PILLAR (25x25cm) Li (m) Ai (W/mK) Ri (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3		WALL	L _i (m)	λ _i (W/mK)	$R_i (m^2 K/W)$	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	$R_i (m^2 K/W)$
Brick (25x30cm) 0,25 0,288 0,87 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barrier 0,002 0,17 0,01 Alluminium vapour barrier 0,003 0,170 0,02 Polyurethan insulation 0,1 0,028 3,57 Polyurethan insulation 0,14 0,01 0,014 0,002 5,05 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,21 Up (W/m²K) 0,18 0,01 Uav (W/m²K) 0,27 Tsi,min (*C) 17,10 WALL Li (m) Ai (W/mK) Ri (m²K/W) PILLAR (25x25cm) Li (m) Ai (W/mK) Ri (m²K/W) Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,01 0,19 Concrete plaster 0,01 1,4 0,01		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
You You <td></td> <td>Brick (25x30cm)</td> <td>0 25</td> <td>0 288</td> <td>0.87</td> <td>Armed concrete</td> <td>0 354</td> <td>1 9 1</td> <td>0 19</td>		Brick (25x30cm)	0 25	0 288	0.87	Armed concrete	0 354	1 9 1	0 19
Wall Li (m) λi (W/m²K) 0,27 Tsi,min (°C) 17,100 0,01 Wall Uw (W/m²K) 0,21 0,01 Alluminium vapour barriei 0,003 0,170 0,02 Wall 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,21 UP (W/m²K) 0,02 0,170 0,02 Vav (W/m²K) 0,21 UP (W/m²K) 0,21 UP (W/m²K) 0,18 Wall Li (m) λi (W/mK) Ri (m²K/W) PILLAR (25x25cm) Li (m) λi (W/mK) Ri (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002	5		0.01	1.4	0.01		0.014	1 400	0.01
Watch in dam vapour barrier 0,002 0,17 0,01 Princh in indim vapour barrier 0,003 0,141 0,028 5,05 Polyurethan insulation 0,1 0,028 3,57 Polyurethan insulation 0,141 0,028 5,05 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m ² K) 0,21 Up (W/m ² K) 0,18 Uav (W/m ² K) 0,27 Tsi,min (*C) 17,10 WALL Li (m) Ai (W/mK) Ri (m ² K/W) PILLAR (25x25cm) Li (m) Ai (W/mK) Ri (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barrier 0,005 0,038 1,32 <td>8</td> <td>Alluminium vanour barrieu</td> <td>0,01</td> <td>0.17</td> <td>0.01</td> <td>Alluminium vanour barrier</td> <td>0,011</td> <td>0.170</td> <td>0.07</td>	8	Alluminium vanour barrieu	0,01	0.17	0.01	Alluminium vanour barrier	0,011	0.170	0.07
Note et del mindades i 0,1 0,020 3,3 Pope et del mindades i 0,11 0,020 3,35 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,21 Up (W/m²K) 0,11 0,020 1,4 0,01 Watch L ₁ (m) Λ ₁ (W/m²K) 0,27 Tsi,min (°C) 17,10 Watch L ₁ (m) Λ ₁ (W/m²K) 0,27 Tsi,min (°C) 17,10 Watch L ₁ (m) Λ ₁ (W/m²K) 0,27 Tsi,min (°C) 17,10 Watch L ₁ (m) Λ ₁ (W/m²K) 0,27 Tsi,min (°C) 17,10 Watch L ₁ (m) Λ ₁ (W/m²K) R ₁ (m²K/W) PILLAR (25x25cm) L ₁ (m) Λ ₁ (W/mK) R ₁ (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,066 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete <th< td=""><td>PC</td><td>Polyurethan insulation</td><td>0,002</td><td>0.028</td><td>3 57</td><td>Polyurethan insulation</td><td>0 141</td><td>0.028</td><td>5.05</td></th<>	PC	Polyurethan insulation	0,002	0.028	3 57	Polyurethan insulation	0 141	0.028	5.05
Uw (W/m²K) 0,00 External plaster 0,007 1,1 0,011 Uw (W/m²K) 0,21 UP (W/m²K) 0,11 Uav (W/m²K) 0,21 (*C) 17,10 WALL Li (m) λ_1 (W/mK) R_1 (m²K/W) PILLAR (25x25cm) Li (m) λ_1 (W/mK) R_1 (m²K/W Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,003 0,170 0,02 EPS insulation 0,05 0,038 1,32 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01	44	External plaster	0.005	1.4	0.00	External plaster	0.007	1.4	0.01
Uav (W/m K) 0,21 Op (W/m K) 0,10 Uav (W/m²K) 0,27 Tsi,min (°C) 17,10 WALL Li (m) Åi (W/mK) Ri (m²K/W) PILLAR (25x25cm) Li (m) Åi (W/mK) Ri (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,003 0,170 0,022 EPS insulation 0,05 0,038 1,32 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,39 UP (W/m²K) 0,24 0,24 <			1.1	() (0,00		0,007	() (0.18
Uav (W/m²K) 0,27 T _{si,min} (°C) 17,10 WALL L _i (m) λ ₁ (W/mK) R _i (m²K/W) PILLAR (25x25cm) L _i (m) λ _i (W/mK) R _i (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,01 1,400 0,01 Alluminium vapour barriei 0,005 0,038 1,32 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,39 Up Up (W/m²K) 0,24		1	0		0,21	4 -	0,		0,10
WALL L _i (m) λ_1 (W/mK) R_1 (m ² K/W) PILLAR (25x25cm) L _i (m) λ_1 (W/mK) R_1 (m ² K/W) Grad Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,003 0,170 0,02 EPS insulation 0,05 0,038 1,32 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01		Unu		(W/m^2K)	0.27	Teimin		(°C)	17 10
Victor Linit X, (W/mk) K, (m, V) FiltExk (25x25cm) Linit X, (W/mk) K, (m, V) K, (m, V			1 (m)) ()¥(/mK)	P (m ² K/W/)	PILLAP (25x25cm)	1 (m)) ()V(/mK)	P (m ² K ()¥/)
Solution Chaik plaster 0,015 0,35 0,04 Chaik plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,003 0,170 0,02 EPS insulation 0,05 0,038 1,32 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m ² K) 0,39 Up Up (W/m ² K) 0,24									
Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,354 1,91 0,19 Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,003 0,170 0,02 EPS insulation 0,05 0,038 1,32 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,39 Up (W/m²K) 0,24		Chaik plaster	0,015	0,35	0,04		0,021	0,35	0,06
Concrete plaster 0,01 1,4 0,01 Concrete plaster 0,014 1,400 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Alluminium vapour barriei 0,003 0,170 0,02 EPS insulation 0,05 0,038 1,32 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,39 Up (W/m²K) 0,24	10	DIICK (25X3UCM)	6.01	0,288	1,04		0,354	1,91	0,19
Aluminium vapour barriel 0,02 0,17 0,01 Aluminium vapour barriel 0,03 0,170 0,02 EPS insulation 0,05 0,038 1,32 EPS insulation 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,39 Up (W/m²K) 0,24	00	Concrete plaster	0,01	1,4	0,01	Concrete plaster	0,014	1,400	0,01
S Erstinstitution 0,05 0,05 0,08 1,32 Erstinstitution 0,141 0,038 3,72 External plaster 0,005 1,4 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,39 UP (W/m²K) 0,24	PC.		0,002	0,17	0,01		0,003	0,170	0,02
External plaster 0,003 1,+ 0,00 External plaster 0,007 1,4 0,01 Uw (W/m²K) 0,39 Up (W/m²K) 0,24	V5.	Ers Insuidtion	0,05	1.4	1,32	Ers insuiduon	0.007	1.4	3,72
Uw (w/m ⁻ K) 0,37 Up (W/m ⁻ K) 0,24		בענכו וומו ממצובו	0,005	1,4 0 V // 2 //	0,00		0,007	1,4	0.01
			Uw	(w/m ⁻ K)	0,37		UP	(w/m ⁻ K)	0,24
Um ()¥(/m ² ¥) 0.46 T (°C) 15.40		H		$\left(\frac{1}{2}\right)$	0.46	Terme		10	15.60

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/₩)	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	EPS insulation	0,05	0,038	1,32	Armed concrete	0,354	1,91	0,19
9	Brick (25x30cm)	0,25	0,288	0,87	EPS insulation	0,071	0,038	1,86
8	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,021	0,900	0,02
P.		Uw	(W/m ² K)	0,41		UP	(W/m^2K)	0,43
5					1 .			
	U _{av}		(W/m²K)	0,45	T _{si,min}		(°C)	13,80
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	EPS insulation	0,09	0,038	2,37	Armed concrete	0,354	1,91	0,19
9	Concrete plaster	0,01	1,4	0,01	EPS insulation	0,141	0,038	3,72
8	Brick (25x30cm)	0,25	0,288	0,87	Concrete plaster with san	0,021	0,900	0,02
L L	Concrete plaster with san	0,015	0,9	0,02		Up	(W/m²K)	0,24
22		Uw	(₩/m²K)	0,29				
	-							
	U _{av}		(W/m^2K)	0,33	T _{si,min}		(°C)	14,10
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (30x30cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	Polyurethan insulation	0,05	0,028	1,79	Armed concrete	0,424	1,91	0,22
C.006	Lightened bricks	0,3	0,23	1,30	Polyurethan insulation	0,071	0,028	2,53
	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,021	0,900	0,02
B.P.		Uw	(₩/m²K)	0,30		Up	(W/m²K)	0,33
>								
	U _{av}		(W/m²K)	0,34	T _{si,min}		(°C)	14,20
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	Polyurethan insulation	0,09	0,028	3,21	Armed concrete	0,354	1,91	0,19
90	Concrete plaster	0,01	1,4	0,01	Polyurethan insulation	0,141	0,028	5,05
0 U	Brick (25x30cm)	0,25	0,288	0,87	Concrete plaster with san	0,021	0,900	0,02
4. P	Concrete plaster with san	0,015	0,9	0,02		Up	(W/m²K)	0,18
>		Uw	(₩/m²K)	0,23				
	U _{av}		(₩/m²K)	0,27	T _{si,min}		(°C)	14,30
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Plasterboard	0,021	0,21	0,10
	EPS insulation	0,05	0,038	1,32	Armed concrete	0,354	1,91	0,19
90	Brick (25x30cm)	0,3	0,288	1,04	EPS insulation	0,141	0,038	3,72
0.0	Concrete plaster with san	0,015	0,9	0,02	Concrete plaster with san	0,021	0,900	0,02
5.P		Uw	(W/m ² K)	0,38		UP	(W/m ² K)	0,24
>								
			11941 7141	0.43	Т.,		1.01	14 20

this value and the minimum of the allowed range is low, but the generated error is very significant. As a consequence, this value has been excluded by the evaluation of the MSE for the linear thermal transmittance.

			l	/alidatio	n cases			
	WALL	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,495	1,91	0,26
5	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,17	0,02
00	EPS insulation	0,06	0,038	1,58	EPS insulation	0,071	0,038	1,86
PO-	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,021	0,900	0,02
5	Brick (25x30cm)	0,25	0,288	0,87		UP	(W/m^2K)	0,42
	Concrete plaster with san	0,015	0,9	0,02	1 -			
		Uw	(W/m ² K)	0,34	1			
	U _{av}		(W/m ² K)	0,46	T _{si,min}		(°C)	12,70
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (30x30cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,424	1,91	0,22
2	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02
00	EPS insulation	0,11	0,038	2,89	EPS insulation	0,141	0,038	3,72
PC.	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,021	0,900	0,02
V2	Brick (L=20cm)	0,2	0,239	0,84		Up	(W/m²K)	0,24
	Concrete plaster with san	0,015	0,9	0,02	+ -		• •	
		Uw	(W/m ² K)	0,24	1			
	U _{av}		(W/m ² K)	0,34	T _{si,min}		(°C)	13,90
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (L=12cm)	0,12	0,232	0,52	Armed concrete	0,495	1,91	0,26
2	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,17	0,02
õ	Polyurethan insulation	0,07	0,028	2,50	Polyurethan insulation	0,071	0,028	2,53
З. Р.	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,021	0,900	0,02
>	Brick (L=20cm)	0,2	0,239	0,84		UP	(W/m ² K)	0,33
	Concrete plaster with san	0,015	0,9	0,02	ļ			
		Uw	(W/m ² K)	0,24				
	U _{av}		(W/m ² K)	0,37	T _{si,min}		(°C)	13,30
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K∕₩)	PILLAR (30x30cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,424	1,91	0,22
01	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,170	0,02
0.0	Polyurethan insulation	0,11	0,028	3,93	Polyurethan insulation	0,141	0,028	5,05
4.P	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,021	0,900	0,02
>	Brick (L=20cm)	0,2	0,239	0,84		UP	(W/m²K)	0,18
	Concrete plaster with san	0,015	0,9	0,02				
		Uw	(W/m²K)	0,19				
	U _{av}		(₩/m²K)	0,30	T _{si,min}		(°C)	14,10
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (25x25cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (L=8cm)	0,08	0,3	0,27	Armed concrete	0,354	1,91	0,19
007	Alluminium vapour barriei	0,002	0,17	0,01	Alluminium vapour barriei	0,003	0,17	0,02
U V	EPS insulation	0,06	0,038	1,58	EPS insulation	0,141	0,038	3,72
/5.F	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,021	0,900	0,02
1	Brick (L=20cm)	0,2	0,239	0,84	4 <u> </u>	UP	(W/m ² K)	0,24
	Concrete plaster with san	0,015	0,9	0,02	ł			
		Uw	(W/m²K)	0,34	-			
	U _{av}		(W/m²K)	0,44	si.min		(°C)	13.90

			l	/alidatior	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04				
	Brick (25x30cm)	0,25	0,288	0,87				
8	Concrete plaster	0,01	1,4	0,01				
8	Alluminium vapour barriei	0,002	0,17	0,01				
P.	EPS insulation	0,05	0,038	1,32				
5	External plaster	0,005	1,4	0,00		UP	(₩/m²K)	
		Uw	(W/m ² K)	0,41				
	-							
	U _{av}		(W/m ² K)	0,48	T _{si,min}		(°C)	16,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04				
	Brick (25x30cm)	0,25	0,288	0,87				
œ	Concrete plaster	0,01	1,4	0,01				
8	Alluminium vapour barriei	0,002	0,17	0,01				
P. 1	EPS insulation	0,1	0,038	2,63				
22	External plaster	0,005	1,4	0,00		UP	(W/m^2K)	
		U _W	(W/m^2K)	0.27			(,,	
		- w		-,				
	U _{av}		(W/m^2K)	0,32	T _{si,min}		(°C)	17,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04				
	Lightened bricks	0,3	0,23	1,30				
8	Concrete plaster	0,01	1,4	0,01				
No.	Alluminium vapour barriei	0,002	0,17	0,01				
L L	EPS insulation	0,05	0,038	1,32				
19	External plaster	0,005	1,4	0,00		UP	(W/m²K)	
		Uw	(W/m²K)	0,35				
	U _{av}		(W/m ² K)	0,41	T _{si,min}		(°C)	16,90
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04				
	Brick (25x30cm)	0,25	0,288	0,87				
8	Concrete plaster	0,01	1,4	0,01				
ŏ	Alluminium vapour barriei	0,002	0,17	0,01				
P. P.	Polyurethan insulation	0,1	0,028	3,57				
Š	External plaster	0,005	1,4	0,00		UP	(₩/m²K)	
		Uw	(W/m ² K)	0,21				
	U _{av}		(W/m²K)	0,26	T _{si,min}		(°C)	18,00
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04				
	Lightened bricks	0,3	0,23	1,30				
80	Concrete plaster	0,01	1,4	0,01				
ŏ	Alluminium vapour barriei	0,002	0,17	0,01				
5. P(Polyurethan insulation	0,05	0,028	1,79				
2	External plaster	0,005	1,4	0,00		UP	(W/m ² K)	
		Uw	(W/m²K)	0,30				
	Uav		(W/m^2K)	0,35	T _{si.min}		(°C)	17,20

			l	/alidatior	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07				
	EPS insulation	0,05	0,038	1,32				
6	Concrete plaster	0,01	1,4	0,01				
No.	Brick (25x30cm)	0,25	0,288	0,87				
A.	Concrete plaster with san	0,015	0,9	0,02				
5		Uw	(W/m ² K)	0,41		UP	(W/m ² K)	
	U _{av}		(W/m²K)	0,43	T _{si,min}		(°C)	16,90
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07				
	EPS insulation	0,1	0,038	2,63				
6	Concrete plaster	0,01	1,4	0,01				
l ŏ	Brick (25x30cm)	0,25	0,288	0,87				
2. PC	Concrete plaster with san	0,015	0,9	0,02				
>		Uw	(W/m²K)	0,27		Up	(W/m²K)	
	U _{av}		(W/m²K)	0,28	T _{si,min}		(°C)	17,80
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07				
	EPS insulation	0,05	0,038	1,32				
60	Concrete plaster	0,01	1,4	0,01				
0;	Lightened bricks	0,3	0,23	1,30				
Э.Р	Concrete plaster with san	0,015	0,9	0,02				
>		Uw	(₩/m²K)	0,35		UP	(₩/m²K)	
	Uav		(N/m^2K)	0 37	Teimin		(°C)	17 30
	W/ALL	L, (m)	λ_{i} (W/mK)	R: (m ² K/W)	PILLAR	L; (m)	<u>λ</u> (W/mK)	R ₁ (m ² K/W)
	Plasterboard	0.015	0.21	0.07			11,	
	Polyurethan insulation	0.1	0.028	3 57				
		0,1	0,028	3,57				
00	Concrete plaster	0,01	1,4	0,01				
Ъ.	Brick (25x30cm)	0,25	0,288	0,87				
<u></u>	Concrete plaster with san	0,015	0,9	0,02			() N (2 (
		Uw	(w/m⁻K)	0,21		Up	(w/m⁻K)	
	Um		$\left(\frac{1}{2}\right)$	0.23	Taimin		l'C)	18 20
	VX/ALL	1. (m)	$\lambda_{\rm L}$ (W/mK)	R. (m ² K/W)	PILLAR	1. (m)	λ. (W//mK)	R. (m ² K/W)
	Plasterboard	0.015	0.21					
		0,015	0,21	1 79				
6		0.03	1.4	0.01				
00	Lightened bricks	0,01	0.73	1 30				
PC	Concrete plaster with cap	0.015	0.25	0.07				
V5.	concrete plaster with sall	11	()¥(/m ² k)	0,02		He	$(N/m^2/)$	
		2.	(w/m K)	5,30		Οp	[w/m K)	
	Uav		(W/m^2K)	0.32	T _{si min}		(°C)	17.70

			l	/alidatior	n cases			
	WALL	L _i (m)	$\lambda_i (W/mK)$	R _i (m ² K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04				
	Brick (L=8cm)	0,08	0,3	0,27				
0	Alluminium vapour barriei	0,002	0,17	0,01				
0	EPS insulation	0,06	0,038	1,58				
۲Ľ	Concrete plaster	0,01	1,4	0,01				
5	Brick (25x30cm)	0,25	0,288	0,87		UP	(₩/m²K)	
	Concrete plaster with san	0,015	0,9	0,02				
		Uw	(W/m ² K)	0,34				
	U _{av}		(W/m^2K)	0,38	T _{si,min}		(°C)	17,30
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04		-		
	Brick (L=8cm)	0,08	0,3	0,27				
0	Alluminium vapour barriei	0,002	0,17	0,01				
.01	EPS insulation	0,11	0,038	2,89				
P.	Concrete plaster	0,01	1,4	0,01				
2	Brick (L=20cm)	0,2	0,239	0,84		UP	(W/m^2K)	
	Concrete plaster with san	0,015	0,9	0,02			(,,	
		Uw	(W/m^2K)	0,24				
	Uav	- •	(W/m^2K)	0.26	T _{si min}		(°C)	18.00
	WALL	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$	PILLAR	L _i (m)	λ _i (W/mK)	$R_i (m^2 K/W)$
	Chalk plaster	0,015	0,35	0,04				
	Brick (L=8cm)	0,08	0,3	0,27				
0	Alluminium vapour barriei	0,002	0,17	0,01				
0	EPS insulation	0,06	0,038	1,58				
5	Concrete plaster	0,01	1,4	0,01				
۳ ۲	Lightened bricks	0,2	0,23	0,87		UP	(₩/m²K)	
	Concrete plaster with san	0,015	0,9	0,02				
		Uw	(W/m ² K)	0,34				
	U _{av}		(W/m ² K)	0,37	T _{si,min}		(°C)	17,30
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04				
	Brick (L=8cm)	0,08	0,3	0,27				
0	Alluminium vapour barriei	0,002	0,17	0,01				
0	Polyurethan insulation	0,11	0,028	3,93				
Ă.	Concrete plaster	0,01	1,4	0,01				
Ž	Brick (L=20cm)	0,2	0,239	0,84		U₽	(W/m^2K)	
	Concrete plaster with san	0,015	0,9	0,02			(,	
		Uw	(W/m^2K)	0,19				
	U _{av}		(W/m^2K)	0,21	T _{si,min}		(°C)	18,30
	WALL	L _i (m)	λ _i (W/mK)	$R_1 (m^2 K/W)$	PILLAR	L _i (m)	λ _i (W/mK)	$R_1 (m^2 K/W)$
	Chalk plaster	0,015	0,35	0,04				
	Brick (L=12cm)	0.12	0.232	0.52				
0	Alluminium vapour barriei	0,002	0,17	0,01				
0	EPS insulation	0,07	0,038	1,84				
PC.	Concrete plaster	0,01	1,4	0,01				
<5	Brick (L=20cm)	0,2	0,239	0,84		Up	(W/m^2K)	
	Concrete plaster with san	0,015	0,9	0,02				
		Uw	(W/m ² K)	0,29				
	U _{av}		(W/m^2K)	0,33	T _{si,min}		(°C)	17,50

			L	/alidatior	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K∕₩)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04				
	Brick (30x30cm)	0,3	0,288	1,04				
-	Concrete plaster with san	0,015	0,9	0,02				
0		Uw	(W/m^2K)	0,79				
P.								
5						UP	(W/m^2K)	
							(/ /	
	U _{av}		(W/m^2K)	0,85	T _{si.min}		(°C)	14,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04				
	Brick (25x30cm)	0,25	0,288	0,87				
_	Concrete plaster with san	0,015	0,9	0,02				
0		Uw	(W/m^2K)	0,91				
٦.	-		(0)					
<u>2</u> .						11-	() (2/2)	
-						Op	(w/m K)	
			1) W (2 10)	0.07	Ŧ		(10)	12.00
-		1 (m)	(W/m ⁻ K)	0,97	I si,min	1 (m)		I 3,70
		0.015	0.35	0.04	PILLAR	L _i (m)		K _i (m Ky W)
	Lightened bricks	0,015	0,33	1 30				
	Concrete plaster with cap	0,5	0,25	0.07				
01		0,015	(),7	0,02				
Ú.		UW	(w/m⁻ĸ)	0,85				
Ś.						11-	() (
-						Op	[W/III K]	
	L		(W/m^2K)	0.71	Taimin		l'C)	15 40
	W/ALL	L. (m)	$\lambda_{\rm L}$ (W/mK)	$R_{\rm I}$ (m ² K/W)	PILLAR	L. (m)	λ. (W/mK)	R. (m ² K/W)
		0.015	035	0.04	1122/ 11	-, ,,		
		0,015	0,55	0,01				
		0,4	0,45	0,89				
011	Concrete plaster with san	0,015	0,9	0,02				
ÿ		Uw	(W/m²K)	0,89				
/4.1							-	
-						UP	(W/m²K)	
		_	2		-	_		
	U _{av}		(W/m²K)	0,98	l si,min		(°C)	13,90
	WALL	L _i (m)	λ _ι (W/mK)	R _i (m²K/W)	PILLAR	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Insulating plaster	0,01	0,091	0,11				
	Brick (30x30cm)	0,3	0,288	1,04				
110	Concrete plaster with san	0,015	0,9	0,02				
ů.		Uw	(W/m ² K)	0,75				
/5.F								
						UP	(W/m ² K)	
			-		_			
			$\left(\frac{1}{2} \right)$	0.80			I'C)	14 60

4.3.4 Junction between external wall and floor

The fundamental characteristics that change in the stratigraphies of the validation cases are:

- the insulation and brick thickness;
- the insulation and brick thermal conductivity;
- the beam geometry;
- the floor characteristics.

For this type of building junction it has been decided to evaluate the influence of the beam geometry with the cases V4 and the influence of a floor insulated for radiant panels with cases V5.

The MSEP has low values for the most part of the validation reports: it is between 7% and 11% for the linear thermal transmittance and it is between 2% and 11% for the temperature factor at the internal surface. Only FL.001 and FL.003 are characterized by a greater

MSEP for the linear thermal transmittance, due to the non- Figure 4.5 - L-sh homogeneity of the stratigraphies.

Figure 4.5 - L-shape beam case

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,325	1,91	0,17
	Brick (25x30cm)	0,25	0,288	0,87	Alluminium vapour barriei	0,002	0,170	0,01
=	Concrete plaster	0,01	1,4	0,01	External plaster	0,005	1,4	0,00
0	Alluminium vapour barriei	0,002	0,17	0,01		UP	(W/m ² K)	2,81
Ē.	EPS insulation	0,05	0,038	1,32				
5	External plaster	0,005	1,4	0,00				
		Uw	(W/m²K)	0,41				
	U _{av}		(W/m²K)	0,87	T _{si,min}		(°C)	13,90
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,375	1,91	0,20
	Brick (25x30cm)	0,25	0,288	0,87	Alluminium vapour barriei	0,002	0,17	0,01
=	Concrete plaster	0,01	1,4	0,01	External plaster	0,005	1,4	0,00
8	Alluminium vapour barriei	0,002	0,17	0,01		Up	(W/m²K)	2,62
E.FL	EPS insulation	0,1	0,038	2,63				
>	External plaster	0,005	1,4	0,00				
		Uw	(W/m ² K)	0,27	1			
	-				1			
	U _{av}		(W/m ² K)	0,70	T _{si,min}		(°C)	14,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,375	1,91	0,20
	Lightened bricks	0,3	0,23	1,30	Alluminium vapour barriei	0,002	0,170	0,01
3.FL.001	Concrete plaster	0,01	1,4	0,01	External plaster	0,005	1,4	0,00
	Alluminium vapour barriei	0,002	0,17	0,01		UP	(W/m²K)	2,62
	Polyurethan insulation	0,05	0,028	1,79				
>	External plaster	0,005	1,4	0,00				
		Uw	(W/m²K)	0,30	-			
			$\left(\frac{1}{2}\right)$	0.72	Taimin		l'C)	14 40
	WALL	L; (m)	$\lambda_i (W/mK)$	R ₁ (m ² K/W)	BEAM	L, (m)	λ, (W/mK)	R _i (m ² K/W)
	Chalk plaster	0.015	0.35	0.04	Armed concrete	0.325	1.91	0.17
	Brick (25x30cm)	0.25	0.789	0.87	Alluminium vanour barrieu	0.007	0.17	0.01
		0,25	0,200	0,07		0,002	0,17	0,01
001		0,01	1,4	0,01	External plaster	0,005	1,4	0,00
E.		0,002	0,17	0,01	4 1	UP	(W/m²K)	2,81
<u> </u>		0,05	0,038	1,32	4			
	External plaster	0,005	1,4	0,00	4			
	1	Uw	(W/m²K)	0,41	-			
	Unit		$\left(\frac{W}{m^{2}K}\right)$	0 99	Taimin		l'C)	11 70
		1 (m)) ()¥(/mK)	P (m ² K/)Y/)	BEAM	1 (m)) ()¥//mK)	P (m ² K/\¥/)
		0.015	0.25	0.04	Armod constate	0 2 2 5	1.01	0.17
	Brick (25x30cm)	0,015	0,30	0,04	Alluminium vanour barriou	0,323	0.170	0.01
_	Concrete plaster	0.01	1.4	0.01	External plaster	0,002	1.4	0,01
00	Alluminium vanour barrier	0,007	0 17	0,01			()¥(/m ²)()	7.81
1	FPS insulation	0.05	0.038	1 32		Op	(w/m K)	2,01
٧5	External plaster	0.005	1.4	0,00	4			
		Uw	(W/m^2K)	0,41	1			
		- w		-,	1			
	Uav		(W/m^2K)	0.88	T _{si min}		(°C)	13.70

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,325	1,91	0,17
	EPS insulation	0,05	0,038	1,32	Concrete plaster with san	0,015	0,9	0,02
2	Concrete plaster	0,01	1,4	0,01		Up	(W/m ² K)	2,80
8	Brick (25x30cm)	0,25	0,288	0,87	1			
I.F.	Concrete plaster with san	0,015	0,9	0,02				
>		Uw	(W/m ² K)	0,41				
	U _{av}		(W/m²K)	0,85	T _{si,min}		(°C)	13,10
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,375	1,91	0,20
	EPS insulation	0,1	0,038	2,63	Concrete plaster with san	0,015	0,900	0,02
2	Concrete plaster	0,01	1,4	0,01		Up	(W/m²K)	2,61
8	Brick (25x30cm)	0,25	0,288	0,87				
2.FI	Concrete plaster with san	0,015	0,9	0,02				
>		Uw	(W/m²K)	0,27				
	U _{av}		(W/m ² K)	0,68	T _{si,min}		(°C)	13,60
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,375	1,91	0,20
:L.002	Polyurethan insulation	0,05	0,028	1,79	Concrete plaster with san	0,015	0,9	0,02
	Concrete plaster	0,01	1,4	0,01		UP	(₩/m²K)	2,61
	Lightened bricks	0,3	0,23	1,30				
Э. F	Concrete plaster with san	0,015	0,9	0,02	-			
>		Uw	(₩/m²K)	0,30	-			
	Uav		(W/m^2K)	0.70	Tsi min		(°C)	13.70
	WALL	L _i (m)	$\lambda_i (W/mK)$	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,325	1,91	0,17
	FPS insulation	0.05	0.038	1 32	Concrete plaster with san	0.015	0.900	0.02
	Concrete platter	0.01	1.4	0.01		0,015		2.00
00	Brick / 25x20cm	0.25	0.260	0,01		UP	(W/m²K)	2,80
Ľ.	Concrete plaster with san	0,25	0,288	0.07	+			
44		0,015	()) (m ² /()	0,02	-			
	1	0	(w/III K)	0,71	-			
	U _{av}		(W/m^2K)	0 94	Tsi min		(°C)	11 10
	W/ALL	L. (m)	λ. (W/mK)	R. (m ² K/W)	BEAM	1. (m)	<u>λ. (W/mK)</u>	R. (m ² K/W)
	Plasterboard	0.015	0.21	0.07	Armed concrete	0 325	1.91	0.17
	EPS insulation	0.05	0.038	1.32	Concrete plaster with san	0.015	0.9	0.02
2	Concrete plaster	0.01	1.4	0.01			(W/m^2K)	2 80
00	Brick (25x30cm)	0.25	0.288	0.87	4 ¹	0,		2,00
E.	Concrete plaster with san	0,015	0.9	0,02	1			
<5		Uw	(W/m^2K)	0,41	1			
		- w		-, • •	1			
	Uav		(W/m^2K)	0.87	Tsimin		(°C)	12,90

only one correlation.

			L	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K∕₩)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,415	1,91	0,22
	Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,17	0,01
m	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster with san	0,015	0,900	0,02
8	EPS insulation	0,06	0,038	1,58		UP	(₩/m²K)	2,41
Ē.	Concrete plaster	0,01	1,4	0,01	1			
5	Brick (25x30cm)	0,25	0,288	0,87				
	Concrete plaster with san	0,015	0,9	0,02				
		Uw	(W/m ² K)	0,34				
	U _{av}		(W/m²K)	0,71	T _{si,min}		(°C)	14,40
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,415	1,91	0,22
	Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,170	0,01
m	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster with san	0,015	0,900	0,02
8	EPS insulation	0,11	0,038	2,89		Up	(₩/m²K)	2,41
2.FL	Concrete plaster	0,01	1,4	0,01				
>	Brick (L=20cm)	0,2	0,239	0,84				
	Concrete plaster with san	0,015	0,9	0,02	1			
		Uw	(W/m ² K)	0,24				
	U _{av}		(W/m^2K)	0,61	T _{si,min}		(°C)	14,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,415	1,91	0,22
	Brick (L=12cm)	0,12	0,232	0,52	Alluminium vapour barriei	0,002	0,17	0,01
m	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster with san	0,015	0,900	0,02
L.O	Polyurethan insulation	0,07	0,028	2,50		UP	(W/m²K)	2,41
З. F	Concrete plaster	0,01	1,4	0,01				
>	Brick (L=20cm)	0,2	0,239	0,84	-			
	Concrete plaster with san	0,015	0,9	0,02	-			
		Uw	<u>(W/m²K)</u>	0,24		_		
	U _{av}		(W/m²K)	0,62	T _{si,min}		(°C)	14,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,415	1,91	0,22
	Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,170	0,01
63	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster with san	0,015	0,900	0,02
Ľ.	EPS insulation	0,06	0,038	1,58		UP	(W/m²K)	2,41
(4.F	Concrete plaster	0,01	1,4	0,01				
>	Brick (25x30cm)	0,25	0,288	0,87				
	Concrete plaster with san	0,015	0,9	0,02				
		Uw	(W/m²K)	0,34				
	U _{av}		(W/m²K)	0,81	T _{si,min}		(°C)	12,00
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,415	1,91	0,22
	Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,17	0,01
03	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster with san	0,015	0,900	0,02
L.0	EPS insulation	0,06	0,038	1,58	ļ [UP	(W/m ² K)	2,41
′5.F	Concrete plaster	0,01	1,4	0,01	ļ			
	Brick (25x30cm)	0,25	0,288	0,87	1			
	Concrete plaster with san	0,015	0,9	0,02	4			
	1	Uw	$\left(\frac{1}{2}\right) $	034				
		0		0,51	_			

			L	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R₁ (m²K/₩)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,315	1,91	0,16
	Brick (30x30cm)	0,3	0,288	1,04	Concrete plaster with san	0,015	0,900	0,02
4	Concrete plaster with san	0,015	0,9	0,02		UP	(W/m^2K)	2,84
8		Uw	(W/m^2K)	0,79	-		(,	
1			(,	-				
2								
	U _{av}		(W/m^2K)	1,22	T _{si.min}		(°C)	13,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K∕₩)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,315	1,91	0,16
	Brick (L=20cm)	0,3	0,239	1,26	Concrete plaster with san	0,015	0,900	0,02
4	Concrete plaster with san	0,015	0,9	0,02		UP	(W/m^2K)	2,84
8		Uw	(W/m^2K)	0,67	· · ·			
					1			
22								
	11		$\left(\frac{1}{2}\right)$	1 09	Termin		I'CI	13.60
	VX/ALL	L. (m)	<u>(W/III K)</u> λ. (W/mK)	R. (m ² K/W)	BEAM	L. (m)	<u>(</u>), (W/mK)	R. (m ² K/W)
	Chalk plaster	0.015	0.35	0.04	Armed concrete	0.415	1.91	0.22
	Concrete bricks	0.4	0.45	0.89	Concrete plaster with san	0.015	0.900	0.02
4	Concrete plaster with san	0,015	0,9	0,02		U₽	(W/m^2K)	2.48
Ò		Uw	(W/m^2K)	0.89	-	- F		_,
	-	- w		0,07	4			
Š								
	U _{av}		(W/m^2K)	1,28	T _{si.min}		(°C)	14,10
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,315	1,91	0,16
	Brick (30x30cm)	0,3	0,288	1,04	Concrete plaster with san	0,015	0,900	0,02
4	Concrete plaster with san	0.015	0.9	0.02		Un	$\left(\frac{1}{2}\right)$	2 84
8.		Uw	(W/m^2K)	0.79	-	Ur		2,01
		<u>v</u>		0,77	-			
4								
	Uav		(W/m^2K)	1.31	T _{si min}		(°C)	11.50
	WALL	L, (m)	λ. (W/mK)	$R_1 (m^2 K/W)$	BEAM	L, (m)	λ. (W/mK)	R ₁ (m ² K/W)
		0.01	0.091	0.11	Armed concrete	0 3 1 0	1.91	0.16
	Brick (30x30cm)	0.3	0.288	1.04	Concrete plaster with san	0.015	0.900	0.02
4	Concrete plaster with san	0.015	0.9	0.02			()¥(/m ² K)	2 87
00		Uw	(W/m^2k)	0.75	4 · · · · ·	97		2,37
.FL			[w/III K]	3,73	1			
<5								
			2		-		(1.5)	

			L	/alidatio	n cases			
	WALL	L. (m)	λ. (W/mK)	R: (m ² K/W)	BEAM	L. (m)	λ. (W/mK)	R: (m ² K/W)
	Chalk plaster	0.015	0.35	0.04	Armed concrete	0.275	1.91	0.14
	Brick (25x30cm)	0,25	0,288	0,87	Alluminium vapour barriei	0,002	0,170	0,01
2	Concrete plaster	0,01	1,4	0,01	EPS insulation	0,050	0,038	1,32
00	Alluminium vapour barriei	0,002	0,17	0,01	External plaster	0,005	1,4	0,00
Ľ.	EPS insulation	0,05	0,038	1,32		UP	(W/m^2K)	0,61
5	External plaster	0,005	1,4	0,00	1 '		1,,	
		Uw	(W/m ² K)	0,41	1			
					1			
	U _{av}		(W/m ² K)	0,54	T _{si,min}		(°C)	17,80
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,275	1,91	0,14
	Brick (25x30cm)	0,25	0,288	0,87	Alluminium vapour barriei	0,002	0,17	0,01
5	Concrete plaster	0,01	1,4	0,01	EPS insulation	0,100	0,038	2,63
0	Alluminium vapour barriei	0,002	0,17	0,01	External plaster	0,005	1,4	0,00
2.FI	EPS insulation	0,1	0,038	2,63		UP	(W/m ² K)	0,34
>	External plaster	0,005	1,4	0,00				
		Uw	(W/m²K)	0,27]			
	U _{av}		(W/m²K)	0,34	T _{si,min}		(°C)	18,60
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,325	1,91	0,17
-L.005	Lightened bricks	0,3	0,23	1,30	Alluminium vapour barriei	0,002	0,170	0,01
	Concrete plaster	0,01	1,4	0,01	Polyurethan insulation	0,050	0,028	1,79
	Alluminium vapour barrie	0,002	0,17	0,01	External plaster	0,005	1,4	0,00
/3.1	Polyurethan insulation	0,05	0,028	1,79		UP	(₩/m²K)	0,47
_	External plaster	0,005	1,4	0,00	-			
	1	Uw	(w/m⁻ĸ)	0,30	-			
	Uav		(W/m^2K)	0.40	Tsi min		(°C)	18.20
	WALL	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$	BEAM	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,275	1,91	0,14
	Brick (25x30cm)	0,25	0,288	0,87	Alluminium vapour barriei	0,002	0,17	0,01
5	Concrete plaster	0.01	1.4	0.01	EPS insulation	0.050	0.038	1.32
00	Alluminium vapour barrie	0,002	0,17	0,01	External plaster	0,005	1,4	0,00
H.	EPS insulation	0,05	0,038	1,32		U₽	(W/m^2K)	0,61
2	External plaster	0,005	1,4	0,00	-	•	(0)	
		Uw	(W/m^2K)	0,41				
	-							
	U _{av}		(W/m²K)	0,54	T _{si,min}		(°C)	17,40
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,275	1,91	0,14
	Brick (25x30cm)	0,25	0,288	0,87	Alluminium vapour barriei	0,002	0,170	0,01
55	Brien (25%50em)			0.01	EPS insulation	0,050	0,038	1,32
05	Concrete plaster	0,01	1,4	0,01				
:L.005	Concrete plaster Alluminium vapour barriei	0,01 0,002	1,4 0,17	0,01	External plaster	0,005	1,4	0,00
/5.FL.005	Concrete plaster Alluminium vapour barriei EPS insulation	0,01 0,002 0,05	0,17 0,038	0,01 1,32	External plaster	0,005 U _P	1,4 (W/m ² K)	0,00 0,61
V5.FL.005	Concrete plaster Alluminium vapour barrier EPS insulation External plaster	0,01 0,002 0,05 0,005	1,4 0,17 0,038 1,4	0,01 1,32 0,00	External plaster	0,005 U _P	1,4 (W/m ² K)	0,00 0,61
V5.FL.005	Concrete plaster Alluminium vapour barrier EPS insulation External plaster	0,01 0,002 0,05 0,005	1,4 0,17 0,038 1,4 (W/m ² K)	0,01 1,32 0,00 0,41	External plaster	0,005 U _P	1,4 (W/m ² K)	0,00 0,61
V5.FL.005	Concrete plaster Alluminium vapour barrier EPS insulation External plaster	0,01 0,002 0,005 0,005 U _W	1,4 0,17 0,038 1,4 (W/m ² K)	0,01 1,32 0,00 0,41	External plaster	0,005 U _P	1,4 (W/m ² K)	0,00

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/₩)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,273	1,91	0,14
	EPS insulation	0,05	0,038	1,32	EPS insulation	0,05	0,038	1,32
9	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
8	Brick (25x30cm)	0,25	0,288	0,87		UP	(W/m^2K)	0,61
E.	Concrete plaster with san	0,015	0,9	0,02	1			
5		Uw	(₩/m²K)	0,41				
	-							
	U _{av}		(W/m²K)	0,67	T _{si,min}		(°C)	15,60
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,273	1,91	0,14
	EPS insulation	0,1	0,038	2,63	EPS insulation	0,05	0,038	1,32
9	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,900	0,02
8	Brick (25x30cm)	0,25	0,288	0,87		Up	(W/m²K)	0,61
E	Concrete plaster with san	0,015	0,9	0,02				
22		Uw	(W/m^2K)	0,27				
	U _{av}		(W/m^2K)	0,54	T _{si.min}		(°C)	15,80
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,323	1,91	0,17
	Polyurethan insulation	0,05	0,028	1,79	Polyurethan insulation 0,1		0,028	3,57
90	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san 0,015		0,9	0,02
8	Lightened bricks	0,3	0,23	1,30		UP	(W/m²K)	0,25
8.FI	Concrete plaster with san	0,015	0,9	0,02				
>		Uw	(₩/m²K)	0,30				
		_	2			_		
	U _{av}		(W/m²K)	0,49	T _{si,min}		(°C)	16,80
	WALL	L _i (m)	Λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	Λ _i (W/mK)	R _i (m ² K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,273	1,91	0,14
	EPS insulation	0,05	0,038	1,32	EPS insulation	0,05	0,038	1,32
90	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,900	0,02
Ľ.	Brick (25x30cm)	0,25	0,288	0,87		UP	(W/m²K)	0,61
(4.F	Concrete plaster with san	0,015	0,9	0,02				
^		Uw	(₩/m²K)	0,41				
	U _{av}	_	(W/m²K)	0,68	T _{si,min}		(°C)	15,30
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Plasterboard	0,015	0,21	0,07	Armed concrete	0,273	1,91	0,14
	EPS insulation	0,05	0,038	1,32	EPS insulation	0,05	0,038	1,32
900	Concrete plaster	0,01	1,4	0,01	Concrete plaster with san	0,015	0,9	0,02
<u>- Г. С</u>	Brick (25x30cm)	0,25	0,288	0,87	4 !	UP	(W/m ² K)	0,61
/5.	Concrete plaster with san	0,015	0,9	0,02	4			
		Uw	(W/m ² K)	0,41	4			
	11		$\left(\frac{1}{2}\right)$	0.70	Τ		(°C)	15 50

validation of only one correlation.

			L	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,355	1,91	0,19
	Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,17	0,01
2	Alluminium vapour barriei	0,002	0,17	0,01	EPS insulation	0,05	0,04	1,32
8	EPS insulation	0,06	0,038	1,58	Concrete plaster with san	0,015	0,900	0,02
Ē.	Concrete plaster	0,01	1,4	0,01		UP	(W/m ² K)	0,59
5	Brick (25x30cm)	0,25	0,288	0,87				
	Concrete plaster with san	0,015	0,9	0,02				
		Uw	(W/m ² K)	0,34				
	U _{av}		(W/m²K)	0,57	T _{si,min}		(°C)	16,20
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,305	1,91	0,16
	Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,170	0,01
5	Alluminium vapour barriei	0,002	0,17	0,01	EPS insulation	0,05	0,04	1,32
8	EPS insulation	0,11	0,038	2,89	Concrete plaster with san	0,015	0,900	0,02
L I	Concrete plaster	0,01	1,4	0,01		UP	(W/m²K)	0,60
>	Brick (L=20cm)	0,2	0,239	0,84				
	Concrete plaster with san	0,015	0,9	0,02]			
		Uw	(W/m²K)	0,24				
	U _{av}		(W/m²K)	0,46	T _{si,min}		(°C)	16,60
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,345	1,91	0,18
	Brick (L=12cm)	0,12	0,232	0,52	Alluminium vapour barriei	0,002	0,17	0,01
6	Alluminium vapour barriei	0,002	0,17	0,01	Polyurethan insulation	0,10	0,03	3,57
Õ	Polyurethan insulation	0,07	0,028	2,50	Concrete plaster with san 0,015		0,900	0,02
ШШ	Concrete plaster	0,01	1,4	0,01		UP	(W/m²K)	0,25
>	Brick (L=20cm)	0,2	0,239	0,84				
	Concrete plaster with san	0,015	0,9	0,02	-			
		Uw	<u>(W/m²K)</u>	0,24				
	Uav	<u></u>	(W/m²K)	0,42	si,min	<u></u>	(°C)	17,30
	WALL	L _i (m)	Λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	Λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,355	1,91	0,19
	Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,170	0,01
07	Alluminium vapour barriei	0,002	0,17	0,01	EPS insulation	0,05	0,04	1,32
Ľ.	EPS insulation	0,06	0,038	1,58	Concrete plaster with san	0,015	0,900	0,02
(4.F	Concrete plaster	0,01	1,4	0,01		UP	(W/m²K)	0,59
_	Brick (25x30cm)	0,25	0,288	0,87				
	Concrete plaster with san	0,015	0,9	0,02	4			
		Uw	(W/m ² K)	0,34		_		
	U _{av}		(W/m²K)	0,59	T _{si,min}		(°C)	15,50
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	BEAM	L _i (m)	λ _i (W/mK)	R _i (m²K∕₩)
	Chalk plaster	0,015	0,35	0,04	Armed concrete	0,355	1,91	0,19
	Brick (L=8cm)	0,08	0,3	0,27	Alluminium vapour barriei	0,002	0,17	0,01
07	Alluminium vapour barriei	0,002	0,17	0,01	EPS insulation	0,05	0,04	1,32
-L.C	EPS insulation	0,06	0,038	1,58	Concrete plaster with san	0,015	0,900	0,02
/5.1	Concrete plaster	0,01	1,4	0,01	4 !	UP	(W/m²K)	0,59
_	Brick (25x30cm)	0,25	0,288	0,87	4			
	Concrete plaster with san	0,015	0,9	0,02	4			
		Uw	(W/m²K)	0,34	–			
	11		/\¥//~~~~~//	<u> </u>			1.1.1	16 00

5 CONCLUSIONS

The study done for this thesis starts from the CESTEC-ANCE thermal bridges abacus, in order to complete and to validate it.

This reference abacus provides reports with some correlations about the linear thermal transmittance of several schematizations of thermal bridges. These allow the loss of heat flow rate evaluation because of the thermal bridge. The study described in this document tries to evaluate the second consequence of the thermal bridge: the condensation. For this purpose, it has been necessary to develop new correlations, which define the temperature factor at the internal surface. This factor allows the superficial condensation evaluation.

The second part of the analysis explained in this document is a validation of some abacus reports in order to determine if their correlations can be applied on real building junctions. The first step for the validation has been the setting up of some simulations on real building junctions and the calculation of the linear thermal transmittance and the temperature factor at the internal surface through their outputs. Then, it has been possible to obtain the mean square error given by these results with reference to the abacus correlation.

The criteria used to choose the correlation, which better represents the temperature factor at the internal surface for the schematization of thermal bridge in question, have been: the confidence interval amplitude, the use of parameters which are simple to obtain and the use of the same parameters for similar cases. The correlations provided by the reports show that it has been likely to apply all these criteria together. For example, taking into consideration the reports about the junctions between external wall and pillar, it is possible to see that the correlations of the junctions with an un-insulated pillar are based on the same parameters, as the junctions with an insulated pillar. However, these groups of correlations based on the same parameters present a low value of the confidence interval, which is usually between 0.01 and 0.06. The confidence interval, as explained before in chapter **2.6**, represents the distance from the correlation in which it is possible to find 95% of the values expressed by the correlation itself. If the confidence interval is equal to 0.01, as to 0.06, it means that there is a good relation among the variables indicated in the correlation.

The validation shows that the introduction of non-homogeneous elements often brings the simulations results out of the confidence interval given by the reference abacus. The MSEP (mean square error percentage) obtained is often less than 30% and so the schematizations used in this analysis can approximately represent real cases.

For the temperature factor at the internal surface the MSEP is very low (the maximum is 11%) and so its correlations, given by the reference abacus, are a good representation of the reality.

A possible development for the future could be the study of correlations about the linear thermal transmittance and the temperature factor at the internal surface for other schematizations of thermal bridge, such as:

- ground floors;
- vertical sections of junctions between external walls and windows;
- microventilated external walls.

Figure 5.2 - External wall insulated inside with uninsulated plane roof, insulated beam and insulated parapet

Figure 5.1 – External wall insulated in the middle with floor and insulated beam

Another development could be the addition of other schematization to the families already studied, such as: junction between external wall insulated inside and (insulated or un-insulated) plane roof with insulated beam and insulated parapet (**Figure 5.1**) or junction between external wall insulated in the middle and floor with insulated beam (**Figure 5.2**).

Other aspects to develop in the future are the evaluation of the correlations of the temperature factor at the internal surface for ridges and compluviums. These haven't been calculated because the adopted geometrical approach have not requested simulations on them.

The validation can be amplified studying the other abacus families and increasing the evaluations on the cases with a significant MSEP with more simulations on real building junctions or studying the same simulations with external dimensions in order to evaluate if the errors generated by the two dimensions are the same.

The cases of junctions between external wall and pillar totally insulated inside or outside could be studied through FLUENT to see if the mean square error is due to the building junction itself or to the relative error between the two programs.

In the end, another study could be the application of the abacus correlations on real buildings.

6 ANNEXES

6.1 ANNEX A: EC of some correlations of CESTEC-ANCE thermal bridges abacus

With a detailed analysis during the development of the correlations about the temperature factor at the internal surface and during the validation, it has been possible to point out some mistakes in the correlations about the linear thermal transmittance.

The reports that have been corrected are:

- CC.007;
- PC.007;
- PR.009;
- PR.013;
- PR.018;
- FL.005.

CC.007 and PC.007 correlations had been developed previously also on U_y results. U_y is the schematization in which the insulation of the wall and that one of the pillar communicate. This aspect add another degree of freedom to the building junction and so it should not be considered during the development of the correlation. The correlations indicated in the previous reports don't consider U_y . The same approach had already been

used in the correlations about junctions between Figure 6.1 - Uy schematization external wall and pillar.

In PR.009, PR.013 and PR.018 there was a problem in the thermal transmittance of the building elements (U_W and U_B) used to develop the correlation: the value was always the same despite the difference in the brick density and in the wall thickness.

FL.005 gave linear thermal transmittance values too high, considering that this schematization is totally insulated outside. Using MATLAB, it has been possible to verify the correlation and to see that there was an error in the order of magnitude of a coefficient.

6.2 ANNEX B: Thermal characteristics of the adopted stratigraphies

Wall characterized by a brick densities equal to 1200 kg/m^3 and a thermal conductivity equal to $0.54 \text{ W/m}^*\text{K}$

U _{max}								
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]			
E	Rse				0.040			
1	Insulation	0.050	37	0.040	1.250			
2	Brick	0.250	1200	0.540	0.463			
I	Rsi				0.130			
	Total thermal resista	ance [m²K/\	X /]		1.883			
	Total thermal transr	0.531						
Total thickness	0.30							

U _{min}					
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]
E	Rse				0.040
1	Insulation	0.150	37	0.040	3.750
2	Brick	0.450	1200	0.540	0.833
1	Rsi				0.130
	Total thermal resista	ance [m²K/\	X /]		4.753
	Total thermal transr	0.210			
Total thickness	0.60				

U _m						
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]	
E	Rse				0.040	
1	Insulation	0.100	37	0.040	2.500	
2	Brick	0.400	1200	0.540	0.741	
1	Rsi				0.130	
	Total thermal resista	ance [m²K/\	X /]		3.411	
	Total thermal transmittance [W/m ² K] 0.293					
Total thickness	0.50					

Table 6.1 - Thermal transmittance of insulated walls with a brick density equal to 1200 kg/m³

IMPROVEMENT OF CESTEC-ANCE THERMAL BRIDGES ABACUS Elisa Affetti matr. n.752185

U _{max}					
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]
E	Rse				0.040
1	Brick	0.250	1200	0.540	0.463
1	Rsi				0.130
	Total thermal resista	ance [m²K/\	X /]		0.633
	Total thermal transr	1.580			
Total thickness	0.25				

U _{min}	U _{min}								
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]				
E	Rse				0.040				
1	Brick	0.450	1200	0.540	0.833				
1	Rsi				0.130				
	Total thermal resista	ance [m²K/\	X /]		1.003				
	Total thermal transr	0.997							
Total thickness	0.45								

U _m	U _m								
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]				
E	Rse				0.040				
1	Brick	0.400	1200	0.540	0.741				
1	Rsi				0.130				
	Total thermal resista	ance [m²K/\	X /]		0.911				
	Total thermal transr	1.098							
Total thickness	0.40								

Table 6.2 - Thermal transmittance of un-insulated walls with a brick density equal to 1200 kg/m^3

Wall characterized by a brick densities equal to $1800 \text{ kg}/\text{m}^3$ and a thermal conductivity equal to $0.81 \text{ W/m}^*\text{K}$

U _{max}					
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]
E	Rse				0.040
1	Insulation	0.050	37	0.040	1.250
2	Brick	0.250	1800	0.810	0.309
1	Rsi				0.130
	Total thermal resista	ance [m²K/\	X /]		1.729
	Total thermal transr	0.578			
Total thickness	0.30				

U _{min}					
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]
Е	Rse				0.040
1	Insulation	0.150	37	0.040	3.750
2	Brick	0.450	1800	0.810	0.556
1	Rsi				0.130
	Total thermal resista	ance [m²K/\	X /]		4.476
	Total thermal transr	0.223			
Total thickness	0.60				

U _m						
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]	
E	Rse				0.040	
1	Insulation	0.100	37	0.040	2.500	
2	Brick	0.400	1800	0.810	0.494	
1	Rsi				0.130	
	Total thermal resista	ance [m ² K/	X /]		3.164	
	Total thermal transmittance [W/m ² K] 0.316					
Total thickness	0.50					

Table 6.3 - Thermal transmittance of insulated walls with a brick density equal to 1800 kg/m^3
U _{max}					
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]
E	Rse				0.040
1	Brick	0.250	1800	0.810	0.309
1	Rsi				0.130
	Total thermal resista	ance [m²K/\	X /]		0.479
	Total thermal transr	mittance [W	//m²K]		2.089
Total thickness	0.25				

U _{min}									
N	STRATIGRAPHY Thickness Density [m] Thermal conductivity [W/mK]								
E	Rse	0.040							
1	Brick	0.450	1800	0.810	0.556				
1	Rsi				0.130				
	Total thermal resista	ance [m²K/\	X /]		0.726				
	Total thermal transmittance [W/m ² K] 1.378								
Total thickness	0.45								

U _m									
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]				
E	Rse				0.040				
1	Brick	0.400	1800	0.810	0.494				
1	Rsi				0.130				
	Total thermal resista	ance [m²K/\	X /]		0.664				
	Total thermal transmittance [W/m ² K] 1.506								
Total thickness	0.40								

Table 6.4 -Thermal transmittance of un-insulated walls with a brick density equal to 1800 kg/m^3

Wall characterized by a brick densities equal to 760 kg $/m^3$ and a thermal conductivity equal to 0.23 W/m*K

U _{max}						
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]	
Е	Rse				0.040	
1	Insulation	0.050	37	0.040	1.250	
2	Brick	0.250	760	0.230	1.087	
1	Rsi				0.130	
	Total thermal resista	ance [m ² K/\	X /]		2.507	
	Total thermal transmittance [W/m ² K] 0.399					
Total thickness	0.30					

U _{min}						
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]	
E	Rse				0.040	
1	Insulation	0.150	37	0.040	3.750	
2	Brick	0.450	760	0.230	1.957	
1	Rsi				0.130	
	Total thermal resista	ance [m²K/\	X]		5.877	
	Total thermal transmittance [W/m ² K] 0.170					
Total thickness	0.60					

U _m					
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]
E	Rse				0.040
1	Insulation	0.100	37	0.040	2.500
2	Brick	0.400	760	0.230	1.739
1	Rsi				0.130
	Total thermal resista	ance [m ² K/	X /]		4.409
	Total thermal transr	mittance [W	//m²K]		0.227
Total thickness	0.50				

Table 6.5 - Thermal transmittance of insulated walls with a brick density equal to 760 kg/m 3

U _{max}						
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]	
E	Rse	0.040				
1	Brick	0.250	760	0.230	1.087	
1	Rsi				0.130	
	Total thermal resista	ance [m²K/\	X /]		1.257	
	Total thermal transmittance [W/m ² K] 0.796					
Total thickness	0.25					

U _{min}						
N	STRATIGRAPHY Thickness [m] Thickness [kg/m ³] Thermal conductivity [W/mK]					
E	Rse	0.040				
1	Brick	0.450	760	0.230	1.957	
1	Rsi				0.130	
	Total thermal resista	nce [m²K/\	<i>X/</i>]		2.127	
	Total thermal transmittance [W/m ² K] 0.47					
Total thickness	0.45					

U _m						
N	STRATIGRAPHY	Thickness [m]	Density [kg/m³]	Thermal conductivity [W/mK]	Sect A-A' [m ² K/W]	
E	Rse				0.040	
1	Brick	0.400	760	0.230	1.739	
1	Rsi				0.130	
	Total thermal resista	ance [m²K/\	X /]		1.909	
	Total thermal transmittance [W/m ² K] 0.524					
Total thickness	0.40					

Table 6.6 -Thermal transmittance of un-insulated walls with a brick density equal to 760 kg/m³

6.3 ANNEX C: Surface resistances applied in the simulations

This annex resumes the surface resistance values adopted in the simulations.

тр	HORIZONTA	AL SURFACE	VERTICA	L SURFACE		
ТВ	R _{si}	R _{se}	R _{si}	R _{se}		
From PIL.001 to PIL.008	0.13	0.04				
External wall with pillar	ŀ	HORIZONTAL SE	CTION			
		E	·			
	$R_{se} = 0.04$ $R_{si} = 0.13$					
тр	HORIZONT	AL SURFACE	VERTICA	L SURFACE		
ТВ	R _{si}	R _{se}	R _{si}	R _{se}		
From CC.001 to CC.011	0.13	0.04				
<u>Concave corners with or</u> <u>without pillar</u>	HO	RIZONTAL SECTI	<u>ON</u>			
		$E R_{se} = 0.0$	4 R _{si} =0	0.13		
	$R_{\infty} = 0.04$					
		$R_{si}\!=\!0.13$	Ι			

Table 6.7 - Summary of the internal and external surface resistance adopted in simulations

6.4 ANNEX D: Dimensions used in the simulations

This annex resumes the dimensions used in the simulations.

External wall with pillar

тв	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	PILLAR THICKNESS	Pillar Width	INSULATION THICKNESS (PILLAR)
	[m]	[m]	[m]	[m]	[m]	[m]	[m]
PIL.001	0.3 - 0.6	1	1	0.05 - 0.15	0.3 - 0.6	0.3-0.5	-
PIL.002	0.3 - 0.6	1	1	0.05 - 0.15	0.3 - 0.6	0.3-0.5	-
PIL.003	0.3 - 0.6	1	1	0.05 - 0.15	0.3 - 0.6	0.3-0.5	-
PIL.004	0.25 - 0.45	1	1	-	0.25 - 0.45	0.3-0.5	-
PIL.005	0.3 - 0.6	1	1	0.05 - 0.15	0.25 - 0.45	0.3-0.5	0.05 - 0.15
PIL.006	0.3 - 0.6	1	1	0.05 - 0.15	0.25 - 0.45	0.3-0.5	0.05 - 0.15
PIL.007	0.3 - 0.6	1	1	0.05 - 0.15	0.25 - 0.45	0.3-0.5	0.05 - 0.15
PIL.008	0.3 - 0.6	1	1	0.05 - 0.15	0.25 - 0.45	0.3-0.5	0.05 - 0.15

Table 6.8 - Dimensions for junction between external wall and pillar

Concave corners with or without pillar

тв	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	PILLAR THICKNESS	PILLAR WIDTH	INSULATION THICKNESS (PILLAR)
	[m]	[m]	[m]	[m]	[m]	[m]	[m]
			CONCAVE COR	NERS WITH PILL	AR		
CC.001	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	0.3 - 0.6	0.3 - 0.6	-
CC.002	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	0.3 - 0.6	0.3 - 0.6	-
CC.003	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	0.3 - 0.6	0.3 - 0.6	-
CC.004	0.25 - 0.45	1.25 - 1.45	1	-	0.25 - 0.45	0.25 - 0.45	-
CC.005	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	0.25 - 0.45	0.25 - 0.45	0.05 - 0.15
CC.006	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	0.25 - 0.45	0.25 - 0.45	0.05 - 0.15
CC.007	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	0.25 - 0.45	0.25 - 0.45	0.05 - 0.15
		(CONCAVE CORNI	ERS WITHOUT PL	LLAR		
CC.008	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	-	-	-
CC.009	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	-	-	-
CC.010	0.3 - 0.6	1.3 - 1.6	1	0.05 - 0.15	-	-	-
CC.011	0.25 - 0.45	1.25 - 1.45	1	_	-	-	-

Table 6.9 - Dimension for concave corners

ТВ	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	PILLAR THICKNESS	PILLAR WIDTH	INSULATION THICKNESS (PILLAR)
	[m]	[m]	[m]	[m]	[m]	[m]	[m]
			PROJECTING CO	RNERS WITH PIL	LAR		
PC.001	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	0.3 - 0.6	0.3 - 0.6	-
PC.002	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	0.3 - 0.6	0.3 - 0.6	-
PC.003	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	0.3 - 0.6	0.3 - 0.6	-
PC.004	0.25 - 0.45	1	1.25 - 1.45	-	0.25 - 0.45	0.25 - 0.45	-
PC.005	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	0.25 - 0.45	0.25 - 0.45	0.05 - 0.15
PC.006	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	0.25 - 0.45	0.25 - 0.45	0.05 - 0.15
PC.007	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	0.25 - 0.45	0.25 - 0.45	0.05 - 0.15
			PROJECTING CC	RNERS WITH PIL	LAR		
PC.008	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	-	-	-
PC.009	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	-	-	-
PC.010	0.3 - 0.6	1	1.3 - 1.6	0.05 - 0.15	-	-	-
PC.011	0.25 - 0.45	1	1.25 - 1.45	-	-	-	-

Projecting corners with or without pillar

Table 6.10 - Dimension for projecting corners

External wall with plane roof

тв	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	BEAM THICKNESS	Beam Width	SLAB THICKNESS	INS. THICKNESS (FLOOR)	INS. THICKNESS (BEAM)	FLOOR THICKNESS	BEAM WIDTH (internal dimensions)	BEAM WIDTH (external dimensions)	PARAPET HEIGHT	INS. THICKNESS (PARAPET)
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
PR.001	0.3 - 0.6	1	1.35	0.05 - 0.15	0.25	0.7	0.1	-	-	0.35	1.1 - 1.4	1.7	-	-
PR.002	0.3 - 0.6	1	1.35	0.05 - 0.15	0.25	0.7	0.1	-	-	0.35	1.1 - 1.4	1.7	-	-
PR.003	0.3 - 0.6	1	1.35	0.05 - 0.15	0.25	0.7	0.1	-	-	0.35	1.1 - 1.4	1.7	-	-
PR.004	0.25 - 0.45	1	1.35	-	0.25	0.7	0.1	-	-	0.35	1.25 - 1.45	1.7	-	-
PR.005	0.3 - 0.6	1	1.45	0.05 - 0.15	0.25	0.7	0.1	0.1	-	0.45	1.1 - 1.4	1.7	-	-
PR.006	0.3 - 0.6	1	1.45	0.05 - 0.15	0.25	0.7	0.1	0.1	-	0.45	1.1 - 1.4	1.7	-	-
PR.007	0.3 - 0.6	1	1.45	0.05 - 0.15	0.25	0.7	0.1	0.1	-	0.45	1.1 - 1.4	1.7	-	-
PR.008	0.25 - 0.45	1	1.45	-	0.25	0.7	0.1	0.1	-	0.45	1.25 - 1.45	1.7	-	-
PR.009	0.3 - 0.6	1	1.45	0.05 - 0.15	0.25	0.7	0.1	0.1	0.05 - 0.15	0.45	1.25 - 1.45	1.75 - 1.85	-	-
PR.010	0.3 - 0.6	1	1.75	0.05 - 0.15	0.25	0.7	0.1	-	0.05 - 0.15	0.35	1.25 - 1.45	1.75 - 1.85	0.5	0.05 - 0.15
PR.011	0.3 - 0.6	1	1.75	0.05 - 0.15	0.25	0.7	0.1	0.1	0.05 - 0.15	0.45	1.25 - 1.45	1.75 - 1.85	0.5	0.05 - 0.15
PR.012	0.3 - 0.6	1	1.75	0.05 - 0.15	0.25	0.7	0.1	-	-	0.35	1.1 - 1.4	1.7	0.5	0.05 - 0.15
PR.013	0.3 - 0.6	1	1.75	0.05 - 0.15	0.25	0.7	0.1	0.1	-	0.45	1.1 - 1.4	1.7	0.5	0.05 - 0.15
PR.014	0.3 - 0.6	1	1.75	0.05 - 0.15	0.25	0.7	0.1	-	0.05 - 0.15	0.35	1.475 - 1.575	1.875 - 2.075	0.5	0.05 - 0.15
PR.015	0.3 - 0.6	1	1.75	0.05 - 0.15	0.25	0.7	0.1	0.1	0.05 - 0.15	0.45	1.475 - 1.575	1.875 - 2.075	0.5	0.05 - 0.15
PR.016	0.25 - 0.45	1	1.75	-	0.25	0.7	0.1	-	-	0.35	1.25 - 1.45	1.7	0.5	-
PR.017	0.3 - 0.6	1	1.75	0.05 - 0.15	0.25	0.7	0.1	-	-	0.35	1.1 - 1.4	1.7	0.5	0.05 - 0.15
PR.018	0.3 - 0.6	1	1.75	0.05 - 0.15	0.25	0.7	0.1	0.1	-	0.45	1.1 - 1.4	1.7	0.5	0.05 - 0.15

Table 6.11 - Dimension for junction between external wall and plane roof

External wall with floor

ТВ	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	BEAM THICKNESS	BEAM WIDTH	SLAB THICKNESS	FLOOR THICKNESS	INSULATION THICKNESS (BEAM)	BEAM WIDTH (internal dimensions)	BEAM WIDTH (external dimensions)	parapet Height	INSULATION THICKNESS (PARAPET)
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
FL.001	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	-	1.1 - 1.4	1.7		
FL.002	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	-	1.1 - 1.4	1.7		
FL.003	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	-	1.1 - 1.4	1.7		
FL.004	0.25 - 0.45	1	2.25	-	0.25	0.7	0.1	0.35	-	1.25 - 1.45	1.7		
FL.005	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	0.05 - 0.15	1.25 - 1.45	1.75 - 1.85		
FL.006	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	0.05 - 0.15	1.25 - 1.45	1.75 - 1.85		
FL.007	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	0.05 - 0.15	1.25 - 1.45	1.75 - 1.85		

Table 6.12 - Dimension for junction between external wall and floor

External wall with balcony

ТВ	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	BEAM THICKNESS	BEAM WIDTH	SLAB THICKNESS	FLOOR THICKNESS	BEAM WIDTH (internal dimensions)	BEAM WIDTH (external dimensions)	BALCONY THICKNESS	BALCONY WIDTH	INSULATION THICKNESS (BALCONY)
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
BALC.001	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	1.1 - 1.4	1.7	0.25	1	-
BALC.002	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	1.1 - 1.4	1.7	0.25	1	-
BALC.003	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	1.1 - 1.4	1.7	0.25	1	-
BALC.004	0.25 - 0.45	1	2.25	-	0.25	0.7	0.1	0.35	1.25 - 1.45	1.7	0.25	1	-
BALC.005	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	1.1 - 1.4	1.7	0.25	1	0.05
BALC.006	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	1.1 - 1.4	1.7	0.25	1	0.05
BALC.007	0.3 - 0.6	1	2.25	0.05 - 0.15	0.25	0.7	0.1	0.35	1.1 - 1.4	1.7	0.25	1	0.05

Table 6.13 - Dimension for junction between external wall and balcony

External and internal walls

ТВ	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	INTERNAL WALL THICKNESS	INTERNAL WALL LENGTH
	[m]	[m]	[m]	[m]	[m]	[m]
INT.001	0.3 - 0.6	1	2.1	0.05 - 0.15	0.1	1
INT.002	0.3 - 0.6	1	2.1	0.05 - 0.15	0.1	1
INT.003	0.3 - 0.6	1	2.1	0.05 - 0.15	0.1	1
INT.004	0.25 - 0.45	1	2.1	-	0.1	1

Table 6.14 - Dimension for junction between external and internal walls

External wall with windows

ТВ	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	FRAME THICKNESS	FRAME WIDTH	LINTEL THICKNESS	LINTEL WIDTH
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
WIND.001	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.002	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.003	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.004	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.005	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	0.3 - 0.6	0.2
WIND.006	0.25 - 0.45	1	1	-	0.06	0.06	-	-
WIND.007	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.008	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.009	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.010	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.011	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	0.3 - 0.6	0.2
WIND.012	0.25 - 0.45	1	1	-	0.06	0.06	-	-
WIND.013	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.014	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.015	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.016	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	-	-
WIND.017	0.3 - 0.6	1	1	0.05 - 0.15	0.06	0.06	0.3 - 0.6	0.2
WIND.018	0.25 - 0.45	1	1	-	0.06	0.06	-	-

Table 6.15 - Dimension for junction between external wall and windows

Ridges and compluviums

ТВ	WALL THICKNESS	WALL LENGTH (internal dimensions)	WALL LENGTH (external dimensions)	INSULATION THICKNESS (WALL)	ROOF INCLINATION FROM THE HORIZONTAL
RID.001	everyone	everyone	everyone	everyone	≤ 30 °
RID.002	everyone	everyone	everyone	everyone	≤ 30 °
RID.003	everyone	everyone	everyone	everyone	≤ 30 °
COM.001	everyone	everyone	everyone	everyone	≤ 30 °
COM.002	everyone	everyone	everyone	everyone	≤ 30 °
COM.003	everyone	everyone	everyone	everyone	≤ 30 °

Table 6.16 - Dimension for ridges and compluviums

6.5 ANNEX E: Reports with nine validation cases

For the cases of junction between an external wall insulated outside and an un-insulated pillar (PIL.001) and the projecting corner with an external wall insulated outside and an un-insulated pillar (PC.001) it has been decide to execute more simulations on real examples in order to verify the influence of the number of simulation on the final error.

For the first case the reports are the following ones:

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/₩)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,3	1,91	0,16
=	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barrie	0,002	0,17	0,01
8	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,01	1,4	0,01
III.	EPS insulation	0,05	0,038	1,32	External plaster	0,005	1,4	0,00
5	External plaster	0,005	1,4	0,00		Up	(W/m ² K)	2,55
		Uw	(W/m ² K)	0,41	1		· · · ·	
	U _{av}		(W/m^2K)	0,85	T _{si,min}		(°C)	12,30
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,3	1,91	0,16
-	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barrie	0,002	0,17	0,01
8	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,01	1,4	0,01
PIL	Polyurethan insulation	0,05	0,028	1,79	External plaster	0,005	1,4	0,00
2	External plaster	0,005	1,4	0,00		U₽	(W/m^2K)	2,55
		11	$\left(\frac{1}{2}\right)$	0.35		- 1	(W /III K)	_,
		0	(W/III K)	0,55	-			
			$\left(\frac{1}{2}\right)$	0.80	Tatanta		l'CI	12.40
	W/ALL	L. (m)	$\lambda_{\rm c}$ (W/mK)	R. (m ² K/W/)	PILLAR (S==40cm)	1. (m)	<u>(</u>) λ. () W//mK)	R. (m ² K/W)
		0.015	0.35	0.04		0.015	035	0.04
	Brick (25x30cm)	0.25	0.288	0.87	Armed concrete	0.35	1.91	0.18
_	Concrete plaster	0.01	1.4	0.01	Alluminium vapour barriei	0.002	0.17	0.01
8.	Alluminium vapour barriei	0,002	0,17	0,01	External plaster	0,005	1,4	0,00
ЫГ	EPS insulation	0,09	0,038	2,37		U₽	(W/m^2K)	2.43
Š	External plaster	0,005	1,4	0,00			(0)	
		Uw	(W/m^2K)	0,29	-			
	U _{av}		(₩/m²K)	0,73	T _{si,min}		(°C)	12,80
	WALL	L _i (m)	λ _i (W/mK)	R₁ (m²K/₩)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,35	1,91	0,18
	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barrie	0,002	0,17	0,01
ю Г	Alluminium vapour barriei	0,002	0,17	0,01	External plaster	0,005	1,4	0,00
H.PI	Polyurethan insulation	0,09	0,028	3,21		Up	(W/m²K)	2,43
Ž	External plaster	0,005	1,4	0,00				
		Uw	(W/m²K)	0,23				
	U _{av}		(₩/m²K)	0,69	T _{si,min}		(°C)	12,90
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =30cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,3	1,91	0,16
01	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barrie	0,002	0,17	0,01
IL.0	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,01	1,4	0,01
5.P	EPS insulation	0,05	0,038	1,32	External plaster	0,005	1,4	0,00
>	External plaster	0,005	1,4	0,00	╡	UP	(W/m ² K)	2,55
		Uw	(W/m²K)	0,41	4			
			-					
	U _{av}		(₩/m²K)	0,77	T _{si,min}		(°C)	12,70

			l	/alidatio	n cases			
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =50cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	Brick (25x30cm)	0,3	0,288	1,04	Armed concrete	0,35	1,91	0,18
5	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,002	0,17	0,01
Ľ.	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,01	1,4	0,01
I.	EPS insulation	0,05	0,038	1,32	External plaster	0,005	1,4	0,00
2	External plaster	0,005	1,4	0,00		UP	(W/m²K)	2,39
		Uw	(W/m²K)	0,39				
	U _{av}		(W/m²K)	0,86	T _{si,min}		(°C)	12,70
	WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (S _P =40cm)	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,015	0,35	0,04
	GASBETON bricks	0,25	0,096	2,60	Armed concrete	0,3	1,91	0,16
=	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,002	0,17	0,01
No i	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,01	1,4	0,01
II.	EPS insulation	0,05	0,038	1,32	External plaster	0,005	1,4	0,00
5	External plaster	0,005	1,4	0,00		UP	(W/m²K)	2,55
		Uw	(W/m^2K)	0,24	1 -			
	-				1			
	U _{av}		(W/m²K)	0,67	T _{si,min}		(°C)	11,90
	U _{av} WALL	L _i (m)	<u>(W/m²K)</u> λ _i (W/mK)	0,67 R _i (m²K/W)	T _{si,min} PILLAR (S _P =40cm)	L _i (m)	(°C) λ _i (W/mK)	11,90 R _i (m²K/W)
	U _{av} WALL Chalk plaster	L_i (m) 0,015	(W/m ² K) λ _i (W/mK) 0,35	0,67 R _i (m ² K/W) 0,04	T _{si,min} PILLAR (S _P =40cm) Chalk plaster	L_i (m) 0,015	(°C) λ _i (W/mK) 0,35	11,90 R_i (m²K/W) 0,04
	Uav WALL Chalk plaster Concrete bricks	L_i (m) 0,015 0,4	(W/m ² K) λ _i (W/mK) 0,35 0,45	0,67 R _i (m ² K/W) 0,04 0,89	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete	L _i (m) 0,015 0,45	(°C) λ _i (W/mK) 0,35 1,91	11,90 R _i (m ² K/W) 0,04 0,24
01	Uav WALL Chalk plaster Concrete bricks Concrete plaster	Li (m) 0,015 0,4 0,01	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4	0,67 R _i (m ² K/W) 0,04 0,89 0,01	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barriei	Li (m) 0,015 0,45 0,002	(°C) λ_i (W/mK) 0,35 1,91 0,17	11,90 R _i (m ² K/W) 0,04 0,24 0,01
L.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barriei	L, (m) 0,015 0,4 0,01 0,002	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,17	0,67 R _i (m ² K/W) 0,04 0,89 0,01 0,01	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster	Li (m) 0,015 0,45 0,002 0,01	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 1,4	11,90 R _i (m ² K/W) 0,04 0,24 0,01 0,01
8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barriei EPS insulation	 L_i (m) 0,015 0,4 0,01 0,01	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038	0,67 R _i (m ² K/W) 0,04 0,89 0,01 0,01 1,32	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster External plaster	Li (m) 0,015 0,45 0,002 0,001 0,005	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 1,4 1,4	11,90 R _i (m ² K/W) 0,04 0,24 0,01 0,01 0,00
V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barriei EPS insulation External plaster	L, (m) 0,015 0,4 0,01 0,002 0,005	(W/m ² K) λ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4	0,67 R _i (m ² K/W) 0,04 0,89 0,01 0,01 1,32 0,00	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster	L, (m) 0,015 0,45 0,002 0,001 0,005 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K)	11,90 R _i (m ² K/W) 0,04 0,24 0,01 0,01 0,00 2,12
V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster	L, (m) 0,015 0,4 0,01 0,002 0,005 0,005	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4 (W/m ² K)	0,67 R; (m ² K/W) 0,04 0,89 0,01 0,01 1,32 0,00 0,41	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster External plaster	L, (M) 0,015 0,45 0,002 0,01 0,005 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K)	11,90 R _i (m ² K/W) 0,04 0,24 0,01 0,01 0,00 2,12
V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barriei EPS insulation External plaster	L, (m) 0,015 0,4 0,01 0,002 0,005 0,005 UW	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4 (W/m ² K)	0,67 R _i (m ² K/W) 0,04 0,89 0,01 0,01 1,32 0,00 0,41	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster	L, (m) 0,015 0,45 0,002 0,005 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K)	11,90 R _i (m ² K/W) 0,04 0,24 0,01 0,01 0,00 2,12
V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav	L, (m) 0,015 0,4 0,01 0,002 0,005 UW	(W/m ² K) λ_i (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4 (W/m ² K) (W/m ² K)	0,67 R; (m ² K/W) 0,04 0,01 0,01 1,32 0,00 0,41 0,78	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster External plaster Tsi,min	L, (m) 0,015 0,45 0,002 0,01 0,005 UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K) (°C)	11,90 R _i (m ² K/W) 0,04 0,24 0,01 0,00 2,12 14,10
V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL	L, (m) 0,015 0,4 0,002 0,005 UW UW	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4 (W/m ² K) (W/m ² K) λ ₁ (W/mK)	0,67 R _i (m ² K/W) 0,04 0,89 0,01 1,32 0,00 0,41 0,78 R _i (m ² K/W)	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster External plaster External plaster Tsi,min PILLAR (Sp=40cm)	L, (m) 0,015 0,045 0,005 UP UP	(°C) λ ₁ (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K) (°C) λ ₁ (W/mK)	11,90 R _i (m ² K/W) 0,04 0,01 0,01 0,00 2,12 14,10 R _i (m ² K/W)
V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL Chalk plaster	L, (M) 0,015 0,02 0,005 0,005 Uw L, (M)	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35	0,67 R; (m²K/W) 0,04 0,01 0,01 1,32 0,00 0,41 0,78 R; (m²K/W) 0,04	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster Tsi,min PILLAR (Sp=40cm) Chalk plaster	L, (m) 0,015 0,02 0,005 UP UP	(°C) λ, (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K) (°C) λ, (W/mK) 0,35	11,90 R _i (m ² K/W) 0,04 0,01 0,00 2,12 14,10 R _i (m ² K/W) 0,04
V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL Chalk plaster Concrete bricks	L, (m) 0,015 0,04 0,002 0,005 0,005 Uw L, (m) 0,015	(W/m ² K) λ _i (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4 (W/m ² K) (W/m ² K) λ _i (W/m ² K) 0,35 0,45	0,67 R; (m ² K/W) 0,04 0,01 0,01 1,32 0,00 0,41 0,78 R; (m ² K/W) 0,04 0,04	Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster External plaster Tsi,min PILLAR (Sp=40cm) Chalk plaster Armed concrete	L, (m) 0,015 0,020 0,005 UP L, (m) 0,015	(°C) λ, (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K) (W/m ² K) Λ, (W/mK) 0,35 1,91	11,90 R; (m ² K/W) 0,04 0,01 0,01 0,00 2,12 14,10 R; (m ² K/W) 0,04 0,26
001 V8.PIL.001	Uav WALL Chalk plaster Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav Uav Chalk plaster Concrete pricks Concrete plaster	 L, (m) 0,015 0,04 0,005 0,055 Uw L, (m) 0,015 0,4 0,015 	 (W/m²K) λ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4 (W/m²K) (W/m²K) λ₁ (W/mK) 0,35 0,45 1,4 	 0,67 R; (m²K/W) 0,04 0,89 0,01 0,01 1,32 0,00 0,41 0,78 R; (m²K/W) 0,04 0,89 0,01 	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barriei	 Li (m) O,015 O,020 O,001 O,001 O,005 UP Li (m) O,015 O,55 O,002 	(°C) λ, (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K) (W/m ² K) Λ, (W/mK) 0,35 1,91 0,17	11,90 R; (m ² K/W) 0,04 0,01 0,01 0,00 2,12 14,10 R; (m ² K/W) 0,04 0,26 0,01
IL.001 V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barriei EPS insulation External plaster Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barriei	 L, (m) 0,015 0,4 0,002 0,005 0,005 Uw Uw 0,015 0,015 0,015 0,01 0,015 0,015 0,015 	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038 1,4 (W/m ² K) (W/m ² K) 0,35 0,45 1,4 0,17	 0,67 R_i (m²K/W) 0,04 0,89 0,01 0,01 0,01 0,00 0,41 0,78 R_i (m²K/W) 0,04 0,89 0,01 0,01 0,01 	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster External plaster PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Chalk plaster Armed concrete Alluminium vapour barriei External plaster	L, (m) 0,015 0,045 0,005 UP UP UP 0,015 0,015 0,002	(°C) λ, (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K) δ,1 δ,1 (W/mK) 0,35 1,91 0,17 1,4	11,90 R ₁ (m ² K/W) 0,04 0,01 0,01 0,00 2,12 14,10 R ₁ (m ² K/W) 0,04 0,26 0,01 0,00
9.PIL.001 V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav Uav Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barrier EPS insulation	 L, (m) 0,015 0,4 0,002 0,005 Uw Uw 0,015 Uw 0,015 0,4 0,015 0,4 0,015 0,4 0,015 <	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,038 1,4 (W/m ² K) (W/m ² K) Δ ₁ (W/mK) 0,35 0,45 1,4 0,17 0,038	0,67 R; (m²K/W) 0,04 0,01 0,01 1,32 0,00 0,41 0,78 R; (m²K/W) 0,04 0,04 0,89 0,01 0,01 0,01 0,01 0,01	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster External plaster External plaster Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier External plaster External plaster	 Li (m) 0,015 0,02 0,005 UP 0,005 UP 0,015 0,015 0,025 0,025 0,025 UP 	(°C) λ, (W/mK) 0,35 1,91 0,17 1,4 1,4 (W/m ² K) (°C) λ, (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	11,90 Ri (m²K/W) 0,04 0,24 0,01 0,00 2,12 14,10 Ri (m²K/W) 0,04 0,26 0,01 0,00 2,04
V9.PIL.001 V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barriei EPS insulation External plaster Uav WALL Chalk plaster Concrete plaster Alluminium vapour barriei EPS insulation External plaster	 L, (m) 0,015 0,04 0,005 0,005 Uw Uw Uw 0,015 Uw 0,015 0,005 0,005 0,005 0,005 0,005 0,005 	(W/m ² K) λ ₁ (W/mK) 0,35 0,45 1,4 0,038 1,4 (W/m ² K) (W/m ² K) 0,35 0,45 1,4 0,17 0,038 1,4 0,17 0,038 1,4 0,17 0,038 1,4	 0,67 R; (m²K/W) 0,04 0,89 0,01 0,01 1,32 0,00 0,41 0,78 R; (m²K/W) 0,04 0,89 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,00 0,00 0,00 	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Concrete plaster External plaster External plaster Chalk plaster PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barrier Chalk plaster Armed concrete Alluminium vapour barrier External plaster	 Li (m) 0,015 0,02 0,01 0,015 0,015 0,015 UP 0,015 0,015 0,015 0,025 0,025 0,025 0,025 UP UP 	(°C) λ, (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K) (°C) λ, (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	11,90 R ₁ (m ² K/W) 0,04 0,01 0,00 2,12 14,10 R ₁ (m ² K/W) 0,04 0,026 0,01 0,00 2,04
V9.PIL.001 V8.PIL.001	Uav WALL Chalk plaster Concrete bricks Concrete plaster Alluminium vapour barriei EPS insulation External plaster Uav WALL Chalk plaster Concrete plaster Alluminium vapour barriei EPS insulation External plaster EPS insulation External plaster	 L, (m) 0,015 0,41 0,005 0,005 Uw 0,015 0,015 0,015 0,025 0,025 Uw Uw 	(W/m ² K) λ _i (W/mK) 0,35 0,45 1,4 0,038 1,4 (W/m ² K) (W/m ² K) 0,35 0,45 1,4 0,17 0,038 1,4 0,17 0,038 1,4 (U/m ² K) 1,4 (U/m ² K) (W/m ² K)	 0,67 R_i (m²K/W) 0,04 0,89 0,01 0,01 0,00 0,41 0,78 R_i (m²K/W) 0,04 0,89 0,01 0,01 0,01 2,37 0,00 0,29 	Tsi,min PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster External plaster PILLAR (SP=40cm) Chalk plaster Armed concrete Alluminium vapour barriei External plaster External plaster Armed concrete Alluminium vapour barriei External plaster	L, (m) 0,015 0,045 0,002 UP UP 0,005 0,015 0,002 0,005 UP	(°C) λ, (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K) (°C) λ, (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	11,90 R _i (m ² K/W) 0,04 0,24 0,01 0,00 2,12 14,10 R _i (m ² K/W) 0,04 0,26 0,01 0,00 2,04

In the evaluation of the mean square error for the linear thermal transmittance in this case the V8.PIL.001 has been excluded because one of the parameters was outside of the validity field and the $\Delta\Psi$ is very different from the other one and so it hasn't been possible to extrapolate the correlation.

Refering to the reports based on five validation cases, it is possible to see that with five simulation the error is greater only of the 2% and so use a smaller number of simulations is more conservative and it doesn't change a lot the final results.

For the second case the reports are the following ones:

			l	/alidatio	n cases			
	WALL	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$	PILLAR (30x30cm)	L _i (m)	$\lambda_i (W/mK)$	R _i (m ² K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,424	1,91	0,22
=	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,003	0,17	0,02
8	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,014	1,4	0,01
P.	EPS insulation	0,05	0,038	1,32	External plaster	0,007	1,4	0,01
5	External plaster	0,005	1,4	0,00		Up	(W/m^2K)	2,06
		Uw	(W/m^2K)	0,41	1 .			
	U _{av}		(W/m ² K)	0,65	T _{si,min}		(°C)	10,70
	WALL	L _i (m)	λ _i (W/mK)	R₁ (m²K/₩)	PILLAR (30x30cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,424	1,91	0,22
-	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,003	0,17	0,02
8.	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,014	1,4	0,01
PC.	Polyurethan insulation	0,05	0,028	1,79	External plaster	0,007	1,4	0,01
22	External plaster	0,005	1,4	0,00		U₽	(W/m^2K)	2,06
		Uw	(W/m^2K)	0.35	-		(,,	
	-	••		0,00	-			
	Uav		(W/m^2K)	0.59	Tsi min		(°C)	10.80
	WALL	L _i (m)	$\lambda_i (W/mK)$	$R_i (m^2 K/W)$	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	$R_i (m^2 K/W)$
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,495	1,91	0,26
Ξ	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,003	0,17	0,02
8	Alluminium vapour barriei	0,002	0,17	0,01	External plaster	0,007	1,4	0,01
P.	EPS insulation	0,09	0,038	2,37		UP	(W/m ² K)	1,96
Š	External plaster	0,005	1,4	0,00				
		Uw	(W/m²K)	0,29				
	U _{av}		(W/m²K)	0,55	T _{si,min}		(°C)	11,00
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Brick (25x30cm)	0,25	0,288	0,87	Armed concrete	0,495	1,91	0,26
01	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,003	0,17	0,02
U U	Alluminium vapour barriei	0,002	0,17	0,01	External plaster	0,007	1,4	0,01
4.P	Polyurethan insulation	0,09	0,028	3,21		UP	(W/m²K)	1,96
>	External plaster	0,005	1,4	0,00	-			
		Uw	(W/m²K)	0,23	-			
		_	····· 7···		-	_		
	Uav		(W/m²K)	0,50	^I si,min		(°C)	11,10
	WALL	L _i (m)	λ _i (W/mK)	R _i (m²K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
	Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
	Lightened bricks	0,3	0,23	1,30	Armed concrete	0,495	1,91	0,26
100	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barrie	0,003	0,17	0,02
0.0	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,014	1,4	0,01
,5.F		0,05	0,038	1,32	External plaster	0,007	1,4	0,01
1	External plaster	0,005	1,4	0,00	4 .	UP	(W/m²K)	1,92
		Uw	(W/m²K)	0,35	4			
			1) Y ()	0.5/				11.00
	Uav		$(W/m^{-}K)$	0,56	si.min		(°C)	11,00

WALL L ₁ (m) λ ₁ (W/mK) R ₁ (m ² K/W) PILLAR (35x35cm) L ₁ (m) λ ₁ (W/mK) R ₁ (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Lightened bricks 0,3 0,23 1,30 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barrie 0,003 0,17 0,02 Polyurethan insulation 0,05 0,028 1,79 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m ² K) 1,92 Uw (W/m ² K) 0,32 Tsi,min (*C') 11,10 WALL L ₁ (m) λ ₁ (W/mK) R ₁ (m ² K/W) PILLAR (35x35cm) L ₁ (m) λ ₁ (W/mK) R ₁ (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,015 0,03 0,17 0,02 Chalk plaster 0,01 1,4<				l	/alidatio	n cases			
Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Lightened bricks 0,3 0,23 1,30 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,005 0,028 1,79 External plaster 0,007 1,4 0,01 Polyurethan insulation 0,05 0,028 1,79 External plaster 0,007 1,4 0,01 Lw (W/m ² K) 0,30 0,30 0,27 1,19 0,26 Uw (W/m ² K) 0,30 0,30 1,4 0,00 1,4 0,01 Watt Li (m) Ai (W/mK) Ri (m ² K/W) PILLAR (35x35cm) Li (m) Ai (W/mK/W) Ri (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04		WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
Walk Lightened bricks 0,3 0,23 1,30 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,005 0,028 1,79 External plaster 0,007 1,4 0,01 Polyurethan insulation 0,05 0,028 1,79 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 Uw (W/m²K) 0,30 0,30 0,30 1,192 1,192 Ketrnal plaster 0,015 0,32 0,64 Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,226 Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,01 1,4 0,01 <th></th> <td>Chalk plaster</td> <td>0,015</td> <td>0,35</td> <td>0,04</td> <td>Chalk plaster</td> <td>0,021</td> <td>0,35</td> <td>0,06</td>		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01 Polyurethan insulation 0,05 0,028 1,79 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m ² K) 1,92 Uw (W/m ² K) 0,30 U (°C) 11,10 WALL L ₁ (m) A ₁ (W/mK) R ₁ (m ² K/W) PILLAR (35x35cm) L ₁ (m) A ₁ (W/mK) R ₁ (m ² K/W) Chalk plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,023 0,017 0,026 Group tarriei 0,02 0,17 0,01 Concrete plaster 0,01 1,4 0,01 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,266 Concrete plaster 0,01 1,4 0,01		Lightened bricks	0,3	0,23	1,30	Armed concrete	0,495	1,91	0,26
No. Alluminium vapour barrier 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01 Polyurethan insulation 0,05 0,028 1,79 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 Uw (W/m²K) 0,52 Ts1,min (*C) 11,10 WALL L ₁ (m) λ ₁ (W/mK) R ₁ (m²K/W) PILLAR (35x35cm) L ₁ (m) λ ₁ (W/mK) R ₁ (m²K/W) Chalk plaster 0,015 0.35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barrier 0,003 0,17 0,02 Alluminium vapour barrier 0,005 1,4 0,01 Concrete plaster 0,01 1,4 0,01 Eternal plaster 0,005 1,4	5	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,003	0,17	0,02
Polyurethan insulation 0,05 0,028 1,79 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 Uw (W/m²K) 0,30 1,92 WALL Li (m) Åi (W/mK) Ri (m²K/W) PILLAR (35x35cm) Li (m) Åi (W/mK) Ri (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,226 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,005 1,4 0,00 Up (W/m²K) 1,92 Uw (W/m²K) 0,622 Tsi,min (*C) 10,90 External plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 <th>ŏ</th> <td>Alluminium vapour barriei</td> <td>0,002</td> <td>0,17</td> <td>0,01</td> <td>Concrete plaster</td> <td>0,014</td> <td>1,4</td> <td>0,01</td>	ŏ	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,014	1,4	0,01
V External plaster 0.005 1,4 0,00 Uw (W/m ² K) 0,30 Up (W/m ² K) 1,92 Uw (W/m ² K) 0,30 ('C) 11,10 WALL Li (m) Ai (W/mK) Ri (m ² K/W) PILLAR (35x35cm) Li (m) Ai (W/mK) Ri (m ² K/W) Chalk plaster 0,015 0,35 0.04 Chalk plaster 0,021 0.35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,226 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01 External plaster 0,005 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m ² K) 1,92 Uw (W/m ² K) 0,399 0.339 0.4 0.4 0.007 1,4 0,01	PC	Polyurethan insulation	0,05	0,028	1,79	External plaster	0,007	1,4	0,01
Uw (W/m ² K) 0,30 Uav (W/m ² K) 0,52 Tsi,min (*C) 11,10 WALL Li (m) Ai (W/mK) Ri (m ² K/W) PILLAR (35x35cm) Li (m) Ai (W/mK) Ri (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,01 1,4 0,01 EY insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m ² K) 1,92 Uw (W/m ² K) 0,62 Tsi,min (*C) 10,90 Uav (W/m ² K) 0,62 Tsi,min	Ž	External plaster	0,005	1,4	0,00		UP	(W/m ² K)	1,92
Uav (W/m²K) 0.52 T _{sl,min} (°C) 11,10 WALL L ₁ (m) Å ₁ (W/mK) R ₁ (m²K/W) PILLAR (35x35cm) L ₁ (m) Å ₁ (W/mK) R ₁ (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01 EV5 insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01 Evernal plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 Uav (W/m²K) 0,62 Tsi,min (°C) 10,90 Var (W/m²K) 0,62 Tsi,min (°C) 10,90 Uav			Uw	(W/m ² K)	0,30]			
Uav (W/m²K) 0,52 T _{s1,min} (*C) 11,10 WALL L ₁ (m) Å ₁ (W/mK) R ₁ (m²K/W) PILLAR (35x35cm) L ₁ (m) Å ₁ (W/mK) R ₁ (m²K/W) Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,005 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 Uw (W/m²K) 0,39 (*C) 10,90 Uw (W/m²K) 0,62 Tsi,min (*C) 10,90 Lightened bricks 0,01 0,42 Tsi,min (*C) 10,90 Uw (W/m²K)									
WALL L ₁ (m) λ_1 (W/mK) R ₁ (m ² K/W) PILLAR (35x35cm) L ₁ (m) λ_1 (W/mK) R ₁ (m ² K/W) Chalk plaster 0.015 0.35 0.04 Chalk plaster 0.021 0.35 0.06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,226 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barrie 0,003 0,17 0,02 Alluminium vapour barrie 0,002 0,17 0,01 Concrete plaster 0,01 1,4 0,01 EPS insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m ² K) 1,92 Uw (W/m ² K) 0,39 0,42 1,92 1,92 Uw (W/m ² K) 0,62 Tsi,min ('C) 10,90 Li (m) λ_1 (W/mK) R ₁ (m ² K/W) PILLAR (30x30cm) L ₁ (m) $\lambda_$		U _{av}		(W/m²K)	0,52	T _{si,min}		(°C)	11,10
Verticity Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01 EPS insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 Uw (W/m²K) 0,39 Up (W/m²K) 1,92 Uav (W/m²K) 0,39 Up (W/m²K) 1,92 Value Uav (W/m²K) 0,62 Tsi,min (°C) 10,90 Uav (W/m²K) 0,62 Tsi,min (°C) 10,90 0,192 Ightened bricks 0,2		WALL	L _i (m)	λ _i (W/mK)	R _i (m ² K/W)	PILLAR (35x35cm)	L _i (m)	λ _i (W/mK)	R _i (m²K/W)
Brick (25x30cm) 0,3 0,288 1,04 Armed concrete 0,495 1,91 0,26 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01 EPS insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m ² K) 1,92 Uw (W/m ² K) 0,39 1,92 1,92 1,92 Uw (W/m ² K) 0,39 1,92 1,92 1,92 Uw (W/m ² K) 0,62 Tsi,min (°C) 10,90 WALL Li (m) Ai (W/mK) Ri (m ² K/W) PILLAR (30x30cm) Li (m) Ai (W/mK) Ri (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06		Chalk plaster	0,015	0,35	0,04	Chalk plaster	0,021	0,35	0,06
Verticity Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01 EPS insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 Uw (W/m²K) 0,39 Up (W/m²K) 0,99 Value Uav (W/m²K) 0,62 Tsi,min (°C) 10,90 WALL Li (m) Ai (W/mK) Ri (m²K/W) PILLAR (30x30cm) Li (m) Ai (W/mK) Ri (m²K/W) Chalk plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,022 Optiminium vapour barriei 0,002 0,17 0,01 External plaster 0,007 1,4 0,01		Brick (25x30cm)	0,3	0,288	1,04	Armed concrete	0,495	1,91	0,26
Vi Alluminium vapour barrie 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01 EPS insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m²K) 1,92 Uw (W/m²K) 0,39 (W/m²K) 0,39 (°C) 10,90 Uav (W/m²K) 0,62 Tsi,min (°C) 10,90 WALL Li (m) Ai (W/mK) Ri (m²K/W) PILLAR (30x30cm) Li (m) Ai (W/mK) Ri (m²K/W) Chalk plaster 0,01 0,01 0,01 Alluminium vapour barrie 0,003 0,17 0,02 Goncrete plaster 0,01 1,4 0,01 Alluminium vapour barrie 0,003 0,17 0,02 Huminium vapour barrie 0,002 0,17 0,01 External plaster 0,007 1,4 0,01	=	Concrete plaster	0,01	1,4	0,01	Alluminium vapour barriei	0,003	0,17	0,02
Vi EPS insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01 External plaster 0,005 1,4 0,00 Up (W/m ² K) 1,92 Uw (W/m ² K) 0,39 (************************************	00	Alluminium vapour barriei	0,002	0,17	0,01	Concrete plaster	0,014	1,4	0,01
WALL Li (m) Ai (W/m²K) 0,00 Ulp (W/m²K) 1,92 WALL Li (m) Ai (W/m²K) 0,62 Tsi,min (°C) 10,90 Chalk plaster 0,015 0,35 0,62 Tsi,min (°C) 10,90 Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Lightened bricks 0,2 0,23 0,87 Armed concrete 0,424 1,91 0,222 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barrie 0,003 0,17 0,02 Alluminium vapour barrie 0,002 0,17 0,01 External plaster 0,007 1,4 0,01	PO-	EPS insulation	0,05	0,038	1,32	External plaster	0,007	1,4	0,01
Uw (W/m²K) 0,39 Uav (W/m²K) 0,62 T _{si,min} (°C) 10,90 WALL L _i (m) λ _i (W/mK) R _i (m²K/W) PILLAR (30x30cm) L _i (m) λ _i (W/mK) R _i (m²K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Lightened bricks 0,2 0,23 0,87 Armed concrete 0,424 1,91 0,22 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 External plaster 0,007 1,4 0,01	2	External plaster	0,005	1,4	0,00		Up	(W/m²K)	1,92
WALL L _i (m) λ _i (W/m ² K) 0,62 T _{si,min} (°C) 10,90 WALL L _i (m) λ _i (W/mK) R _i (m ² K/W) PILLAR (30x30cm) L _i (m) λ _i (W/mK) R _i (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Lightened bricks 0,2 0,23 0,87 Armed concrete 0,424 1,91 0,22 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 External plaster 0,007 1,4 0,01			Uw	(W/m^2K)	0,39	1 -			
Uav (W/m ² K) 0,62 T _{si,min} (°C) 10,90 WALL L _i (m) λ_i (W/mK) R _i (m ² K/W) PILLAR (30x30cm) L _i (m) λ_i (W/mK) R _i (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Lightened bricks 0,2 0,23 0,87 Armed concrete 0,424 1,91 0,222 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barrier 0,003 0,17 0,02 Alluminium vapour barrier 0,002 0,17 0,01 External plaster 0,007 1,4 0,01		-							
WALL L ₁ (m) λ_1 (W/mK) R_1 (m ² K/W) PILLAR (30x30cm) L ₁ (m) λ_1 (W/mK) R_1 (m ² K/W) Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Lightened bricks 0,2 0,23 0,87 Armed concrete 0,424 1,91 0,22 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 External plaster 0,007 1,4 0,01		U _{av}		(W/m²K)	0,62	T _{si,min}		(°C)	10,90
Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06 Lightened bricks 0,2 0,23 0,87 Armed concrete 0,424 1,91 0,22 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 External plaster 0,007 1,4 0,01		W/ALL	1. (m)) ()V/ (mal/)	D / 21/ () V/)	PILLAP (30x30cm)	1 (7
Lightened bricks 0,2 0,23 0,87 Armed concrete 0,424 1,91 0,22 Concrete plaster 0,01 1,4 0,01 Alluminium vapour barrier 0,003 0,17 0,02 Alluminium vapour barrier 0,002 0,17 0,01 External plaster 0,007 1,4 0,01		W/(22	-i (iii)	Λ _i (w/mk)	R _i (m⁻K/W)		L _i (m)	λ _i (W/mK)	R _i (m ⁻ K/W)
Concrete plaster 0,01 1,4 0,01 Alluminium vapour barriei 0,003 0,17 0,02 Alluminium vapour barriei 0,002 0,17 0,01 External plaster 0,007 1,4 0,01		Chalk plaster	0,015	0,35	0,04	Chalk plaster	L_i (m) 0,021	λ _i (W/mK) 0,35	R _i (m ² K/W) 0,06
O Alluminium vapour barriei 0,002 0,17 0,01 External plaster 0,007 1,4 0,01		Chalk plaster Lightened bricks	0,015 0,2	0,35 0,23	0,04 0,87	Chalk plaster Armed concrete	0,021 0,424	λ _i (W/mK) 0,35 1,91	0,06 0,22
	01	Chalk plaster Lightened bricks Concrete plaster	0,015 0,2 0,01	0,35 0,23 1,4	0,04 0,04 0,01	Chalk plaster Armed concrete Alluminium vapour barriei	0,021 0,424 0,003	Ai (W/mK) 0,35 1,91 0,17 0,17	Ri (m ² K/W) 0,06 0,22 0,02
□ □	C.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barriei	0,015 0,2 0,01 0,002	Ai (w/mk) 0,35 0,23 1,4 0,17	0,04 0,07 0,01 0,01	Chalk plaster Armed concrete Alluminium vapour barriei External plaster	 L_i (m) 0,021 0,424 0,003 0,007 	Ai (W/mK) 0,35 1,91 0,17 1,4	R1 (m ⁻ K/W) 0,06 0,22 0,02 0,01
External plaster 0,005 1,4 0,00	8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barriei EPS insulation	0,015 0,2 0,01 0,002 0,002	x, (w/mk) 0,35 0,23 1,4 0,17 0,038	ki (m·k/w) 0,04 0,87 0,01 0,01 2,37	Chalk plaster Armed concrete Alluminium vapour barriei External plaster	 L, (m) 0,021 0,424 0,003 0,007 UP 	A _i (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	Ri (m ² K/W) 0,06 0,22 0,02 0,01 2,11
U _w (W/m ² K) 0,29	V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster	0,015 0,2 0,01 0,002 0,002 0,005	x, (w/mx) 0,35 0,23 1,4 0,17 0,038 1,4	Ri (m Ky W) 0,04 0,04 0,01 0,01 0,01 0,01 0,01 0,01 0,00 0,00	Chalk plaster Armed concrete Alluminium vapour barriei External plaster	0,021 0,424 0,003 0,007 U _P	λ _i (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	Ri (m*K/W) 0,06 0,22 0,02 0,01 2,11
	V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster	0,015 0,2 0,01 0,002 0,009 0,005 Uw	x, (W/ mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m²K)	ki (m·k/w) 0,04 0,87 0,01 0,01 0,01 0,01 0,02 0,00 0,29	Chalk plaster Armed concrete Alluminium vapour barriei External plaster	C, (m) 0,021 0,424 0,003 0,007 UP	λ _i (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	Ri (m*K/W) 0,06 0,22 0,02 0,01 2,11
U _{av} (W/m ² K) 0,51 T _{si,min} (°C) 10,90	V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barriei EPS insulation External plaster	0,015 0,2 0,01 0,002 0,009 0,005 Uw	x, (w/mk) 0,35 0,23 1,4 0,17 0,038 1,4	ki (m·k/w) 0,04 0,87 0,01 0,01 2,37 0,00 0,29	Chalk plaster Armed concrete Alluminium vapour barriei External plaster	 L, (M) 0,021 0,424 0,003 0,007 U_P 	λ _i (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	Ri (m*K/W) 0,06 0,22 0,02 0,01 2,11
$\label{eq:WALL} WALL \qquad L_i (m) \ \lambda_i (W/mK) \ R_i (m^2K/W) \ \ PILLAR (40x30cm) \ \ L_i (m) \ \lambda_i (W/mK) \ \ R_i (m^2K/W)$	V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster	0,015 0,2 0,01 0,002 0,009 0,005 Uw	x, (w/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m²K)	ki (m·k/w) 0,04 0,87 0,01 0,01 2,37 0,00 0,29 0,51	Chalk plaster Armed concrete Alluminium vapour barriei External plaster Tsi,min	L, (M) 0,021 0,424 0,003 0,007 UP	λ _i (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90
Chalk plaster 0,015 0,35 0,04 Chalk plaster 0,021 0,35 0,06	V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL	0,015 0,2 0,01 0,002 0,005 U _W	λ ₁ (W/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m ² K) λ ₁ (W/mK)	Ri (m K/W) 0,04 0,87 0,01 0,01 0,01 0,01 0,01 0,01 Ri (m²K/W)	Chalk plaster Armed concrete Alluminium vapour barriei External plaster T _{si,min} PILLAR (40x30cm)	L, (m) 0,021 0,424 0,003 0,007 UP	λ ₁ (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W)
Brick (25x30cm) 0,25 0,288 0,87 Armed concrete 0,424 1,91 0,22	V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL Chalk plaster	(,11) (,015 (,01 (,01 (,01 (01 (,01 (01 (01 (01 (01 (01 (01	λ ₁ (W/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m²K) (W/m²K) λ ₁ (W/mK) 0,35	Ri (m ⁻ K, W) 0,04 0,87 0,01 0,01 0,01 0,029 0,51 Ri (m ² K/W) 0,04	Chalk plaster Armed concrete Alluminium vapour barriei External plaster Tsi,min PILLAR (40x30cm) Chalk plaster	L, (m) 0,021 0,424 0,003 0,007 UP L, (m) 0,021	λ ₁ (W/mK) 0,35 1,91 0,17 1,4 (W/m ² K)	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W) 0,06
Concrete plaster 0,01 1,4 0,01 Alluminium vapour barrier 0,003 0,17 0,02	V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL Chalk plaster Brick (25x30cm)	(),015 (),02 (),002 (),002 (),005 (),005 (),005 (),015 (),25	λ ₁ (W/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m ² K) (W/m ² K) λ ₁ (W/mK) 0,35 0,288	ki (m·k/w) 0,04 0,87 0,01 0,01 2,37 0,00 0,29 0,51 Ri (m²K/W) 0,04 0,87	Chalk plaster Armed concrete Alluminium vapour barriei External plaster Tsi,min PILLAR (40x30cm) Chalk plaster Armed concrete	L, (m) 0,021 0,424 0,003 0,007 UP L, (m) 0,021 0,424	 λ_i (W/mK) 0,35 1,91 0,17 1,4 (W/m²K) (W/m²K) λ_i (W/mK) 0,35 1,91 	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W) 0,06 0,22
Alluminium vapour barriei 0,002 0,17 0,01 Concrete plaster 0,014 1,4 0,01	01 V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav Uav Chalk plaster Brick (25x30cm) Concrete plaster	(),015 (),02 (),002 (),002 (),005 (),005 (),005 (),005 (),015 (),015 (),015	λ ₁ (W/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m ² K) λ ₁ (W/m ² K) 0,35 0,35 0,288 1,4	ki (m·k/w) 0,04 0,87 0,01 2,37 0,00 0,29 0,51 Ri (m²K/W) 0,04 0,87 0,01	Chalk plaster Armed concrete Alluminium vapour barriei External plaster Tsi,min PILLAR (40x30cm) Chalk plaster Armed concrete Alluminium vapour barriei	L, (m) 0,021 0,424 0,003 0,007 UP L, (m) 0,021 0,424 0,003	 λ_i (W/mK) 0,35 1,91 0,17 1,4 (W/m²K) (W/m²K) λ₁ (W/mK) 0,35 1,91 0,17 	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W) 0,06 0,22 0,06 0,22 0,06 0,22 0,02
Leps insulation 0,05 0,038 1,32 External plaster 0,007 1,4 0,01	C.001 V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrier	 L, (m) Q,015 Q,02 Q,005 Uw L, (m) Q,015 Q,25 Q,015 Q,002 	λ ₁ (W/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m²K) (W/m²K) 0,35 0,35 0,35 0,35 0,288 1,4 0,17	ki (m·k/w) 0,04 0,87 0,01 0,01 2,37 0,00 0,29 0,51 Ri (m²K/W) 0,04 0,87 0,01 0,01	Chalk plaster Armed concrete Alluminium vapour barriei External plaster Tsl,min PILLAR (40x30cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster	L, (m) 0,021 0,424 0,003 0,007 UP V V V V 0,007 0,021 0,424 0,003 0,014	 λ_i (W/mK) 0,35 1,91 0,17 1,4 (W/m²K) (W/m²K) λ_i (W/mK) 0,35 1,91 0,17 1,4 	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W) 0,06 0,22 0,06 0,20 0,01
External plaster 0,005 1,4 0,00 Up (W/m ² K) 2,06	9.PC.001 V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrier EPS insulation	 c, (11) c, (12) <lic, (12)<="" li=""> <lic, (12)<="" li=""> <lic, (12)<="" li=""> <li< td=""><td>λ₁ (W/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m²K) λ₁ (W/m²K) 0,35 0,35 0,35 0,35 0,35 0,288 1,4 0,17 0,038</td><td>Ri (m K/W) 0,04 0,87 0,01 0,01 0,00 0,29 0,51 Ri (m²K/W) 0,04 0,87 0,01 1,32</td><td>Chalk plaster Armed concrete Alluminium vapour barriei External plaster PILLAR (40x30cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster</td><td>L, (m) 0,021 0,424 0,003 0,007 UP V V V V V 0,007 0,021 0,021 0,023</td><td> λ_i (W/mK) 0,35 1,91 0,17 1,4 (W/m²K) δ[*]C) λ_i (W/mK) 0,35 1,91 0,17 1,4 1,4 1,4 </td><td>Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W) 0,06 0,22 0,01 0,02 0,01 0,02 0,01</td></li<></lic,></lic,></lic,>	λ ₁ (W/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m ² K) λ ₁ (W/m ² K) 0,35 0,35 0,35 0,35 0,35 0,288 1,4 0,17 0,038	Ri (m K/W) 0,04 0,87 0,01 0,01 0,00 0,29 0,51 Ri (m²K/W) 0,04 0,87 0,01 1,32	Chalk plaster Armed concrete Alluminium vapour barriei External plaster PILLAR (40x30cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster	L, (m) 0,021 0,424 0,003 0,007 UP V V V V V 0,007 0,021 0,021 0,023	 λ_i (W/mK) 0,35 1,91 0,17 1,4 (W/m²K) δ[*]C) λ_i (W/mK) 0,35 1,91 0,17 1,4 1,4 1,4 	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W) 0,06 0,22 0,01 0,02 0,01 0,02 0,01
U _w (W/m ² K) 0,41	V9.PC.001 V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barrier EPS insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barrier EPS insulation External plaster	 L, (m) Q,015 Q,02 Q,09 Q,09 Q,09 Uw Uw Us Q,015 Q,15 Q,15	 λ₁ (w/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m²K) 0,35 0,288 1,4 0,17 0,038 1,4 0,17 0,038 1,4 1,4 	ki (m K/w) 0,04 0,87 0,01 0,01 2,37 0,00 0,29 0,51 Ri (m²K/W) 0,04 0,87 0,01 0,01 0,02	Chalk plaster Armed concrete Alluminium vapour barriei External plaster Tsi,min PILLAR (40x30cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster	L, (m) 0,021 0,424 0,003 UP UP 0,007 0,021 0,021 0,021 0,023 0,014 0,007	 λ₁ (W/mK) 0,35 1,91 0,17 1,4 (W/m²K) Δ₁ (W/m²K) 0,35 1,91 0,17 1,4 1,4 (W/m²K) 	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W) 0,06 0,22 0,06 0,22 0,01 0,02 0,01 0,01 0,01 2,06
	V9.PC.001 V8.PC.001	Chalk plaster Lightened bricks Concrete plaster Alluminium vapour barriei EPS insulation External plaster Uav WALL Chalk plaster Brick (25x30cm) Concrete plaster Alluminium vapour barriei EPS insulation External plaster	 L, (m) Q,015 Q,02 Q,002 Q,005 Uw L, (m) Q,015 Q,25 Q,01 Q,005 Q,05 Q,05 Uw 	λ ₁ (W/mk) 0,35 0,23 1,4 0,17 0,038 1,4 (W/m ² K) λ ₁ (W/m ² K) 0,35 0,288 1,4 0,17 0,035 0,288 1,4 0,17 0,038 1,4 0,17 0,038 1,4 0,17	ki (m·k/w) 0,04 0,87 0,01 0,01 2,37 0,00 0,29 0,51 Ri (m²K/W) 0,01 0,01 0,03 0,04 0,05 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	Chalk plaster Armed concrete Alluminium vapour barriei External plaster PILLAR (40x30cm) Chalk plaster Armed concrete Alluminium vapour barriei Concrete plaster External plaster	L, (m) 0,021 0,424 0,003 0,007 UP L, (m) 0,021 0,424 0,003 0,014 0,007 UP	 λ_i (W/mK) 0,35 1,91 0,17 1,4 (W/m²K) 0,35 1,91 0,35 1,91 0,17 1,4 1,4 1,4 (W/m²K) 	Ri (m*K/W) 0,06 0,22 0,01 2,11 10,90 Ri (m²K/W) 0,06 0,22 0,06 0,22 0,06 0,22 0,01 0,01 0,01 2,06

Also in this case one simulation has been excluded owing to the geometry into consideration: V9.PC.001 considers a rectangular pillar whereas of a quadratic one and so the $\Delta\Psi$ and the Δf_{Rsi} are different from the other one. Comparing the values of percentage of the mean square error of nine validation cases and of five ones, it is possible to see that there isn't any difference.

7 BIBLIOGRAPHY

7.1 NORMATIVE REFERENCES

7.1.1 International standards

- [N1]. UNI EN ISO 6946 (2008): Building components and building elements Thermal resistance and thermal transmittance Calculation method;
- [N2]. UNI EN ISO 9346 (2008): Hygrothermal performance of buildings and building materials – Physical quantities for mass transfer - Vocabulary;
- [N3]. UNI EN ISO 10077-1 (2007): Thermal performance of windows, doors and shutters Calculation of thermal transmittance General;
- [N4]. UNI EN ISO 10077-2 (2004): Thermal performance of windows, doors and shutters Calculation of thermal transmittance Numerical method for frames;
- [N5]. UNI EN ISO 10211 (2008): Thermal bridges in building construction Heat flows and surface temperatures Detailed calculations;
- [N6]. UNI EN ISO 10456 (2008): Building materials and products Hygrothermal properties -Tabulated design values and procedures for determining declared and design thermal values;
- [N7]. UNI EN ISO 13788 (2003): Hygrothermal performance of building components and building elements Internal surface temperature to avoid critical surface humidity and interstitial condensation Calculation methods;
- [N8]. UNI EN ISO 13789 (2008): Thermal performance of buildings Transmission and ventilation heat transfer coefficients Calculation method;
- [N9]. UNI EN ISO 14683 (2008): Thermal bridges in building construction Linear thermal transmittance Simplified methods and default values.

7.1.2 European directives

[N10]. Directives 2002/91/CE and 2010/31/UE: Energy performance of buildings.

7.1.3 National norms and laws

- [N11]. UNI 7357 FA-3 (1989): Calcolo del fabbisogno termico per il riscaldamento di edifici;
- [N12]. UNI 10351 (1994): Materiali da costruzione Conduttività termica e permeabilità al vapore;
- [N13]. UNI 10355 (1994): Murature e solai Valori della resistenza termica e metodo di calcolo;
- [N14]. Decreto Legislativo n.192 (2005): Attuazione della direttiva 2002/91/CE relativa al rendimento energetico in edilizia;
- [N15]. Decreto Legislativo n.311 (2006): Disposizioni correttive ed integrative al decreto legislativo 19 agosto 2005. n.192, recante attuazione della direttiva 2002/91/CE, relativa al rendimento energetico nell'edilizia;
- [N16]. Decreto n.5796 (2009): Aggiornamento della procedura di calcolo per la certificazione energetica degli edifici;
- [N17]. Decreto della Giunta Regionale n.VIII/8745 (2008): Determinazione in merito alle disposizioni per l'efficienza energetica in edilizia e per la certificazione energetica degli edifici;
- [N18]. Decreto del Presidente della Repubblica n.59 (2009): Regolamento di attuazione dell'articolo 4, comma 1, lettere a) e b), del decreto legislativo 19 agosto 2005, n. 192, concernente attuazione della direttiva 2002/91/CE sul rendimento energetico in edilizia.

7.2 BOOKS AND MAGAZINES

7.2.1 Books

- [B1]. M. R. Spiegel (1973), Statistica, McGraw-Hill, Milano, pp. 294-339;
- [B2]. C. Aghemo, C. Azzolino (1996), Progetto dell'elemento di involucro opaco: materiali e tecniche per l'isolamento termico, ponti termici e analisi termoigrometrica, Celid, Torino, pp. 106-194;
- [B3]. D. P. Gatley (2005), *Understanding Psychrometrics*, ASHRAE Inc., Atlanta, pp. 25-28;
- [B4]. M. E. Ripamonti, F. C. Dolce (2011), Ponti termici: analisi e ipotesi risolutive, Dario Flaccovio Editore, Palermo, pp.15-52;
- [B5]. Fluent Incorporated (2006), Fluent 6.3 User Guide;
- [B6]. Lawrence Berkeley National laboratory (LBNL) (1998); Therm 2.0 User Guide.

7.2.2 Journals

- [B7]. L. Socal (2011), "I ponti termici: le basi", Progetto 2000, Edilclima S.r.l., Borgomanero; n.40, pp. 12-15;
- [B8]. C. Salani (2009), "Calcolo e verifica dei ponti termici con il software IRIS", *neo-Eubios*, Milano, n.28, pp. 30-34.

7.3 WEB SITES

- [W1]. http://en.wikipedia.org/wiki/Finite_volume_method (consulted on 02-09-2012);
- [W2]. http://mathworld.wolfram.com/FiniteVolumeMethod.html (consulted on 02-09-2012);
- [W3]. http://www.springerlink.com/content/w42320p6qm803100/fulltext.pdf (consulted on 02-09-2012)
- [W4]. http://weberknecht.uni-muenster.de/num/publications/2004/BO04a/finvol_script.pdf (consulted on 02-09-2012);
- [W5]. http://www.dsa.unipr.it/soliani/capu16.pdf (consulted on 02-13-2012);
- [W6]. http://202.118.250.111:8080/fluent/Gambit13_help/users_guide/ug01.htm (consulted on 02-13-2012);
- [W7]. http://it.wikipedia.org/wiki/Ponte_termico (consulted on 02-17-2012);
- [W8]. http://www.architetturaecosostenibile.it/architettura/criteri-progettuali/ponti-termiciforma-struttura-ibridi-047.html (consulted on 02-17-2012);
- [W9]. http://building.dow.com/europe/it/applications/walls/term.htm (consulted on 02-17-2012);
- [W10]. http://www.unirc.it/documentazione/materiale_didattico/597_2008_83_3248.pdf (consulted on 02-17-2012);
- [W11]. http://www.certificatore-energetico.it/blog/certificazione-energetica/condensa-e-muffecolpa-dei-serramenti.html#.T0ljgPEf7P4 (consulted on 02-20-2012);
- [W12]. http://en.wikipedia.org/wiki/Finite_element_method (consulted on 02-21-2012);
- [W13]. http://en.wikipedia.org/wiki/Galerkin_method (consulted on 02-21-2012);
- [W14]. http://www.infn.it/thesis/PDF/getfile.php?filename=3304-Candolini-triennale.pdf (consulted on 02-21-2012);
- [W15]. http://www.adt.unipd.it/corsi/CalcoloNumerico/MetodoElementiFiniti.pdf (consulted on 02-21-2012);
- [W16]. http://en.wikipedia.org/wiki/Mean_squared_error (consulted on 03-19-2012).