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Abstract

The goal of rehabilitative robotics is to take advantage of the developments

in modern robotics in order to assist people affected by disabilities using

physical training; this way the rehabilitative exercises could be performed

autonomously by the patients, without the active involvement of the ther-

apist, making high-intensity rehabilitative therapy an affordable reality for

the masses.

Moreover high-precision sensors integrated in rehabilitation devices would

allow a quantitative evaluation of the progresses obtained, effectively com-

paring different training strategies. That would represent a huge scientific

achievement in a field where evaluations up to this day are performed only

by means of subjective observations.

Important results were obtained in rehabilitative robotics proving his effec-

tiveness; by the way results obtained in the field of the hand rehabilitation

are however poorer, especially if compared to the ones achieved with other

part of the body. This fact is due to the high complexity of the organ we are

dealing with, that makes extremely complex the design of a device suited

for its rehabilitation.

In Politecnico di Milano an attempt to design a rehabilitative exoskeleton

for the hand using inexpensive materials was made; however the result is a

device that was unable to detect the forces generated by the patient mak-

ing impossible an interactive behavior, which is crucial to obtain maximum

benefits from the training.

The main goal of this project is so to provide this device with the capabil-

ity of an interactive behavior by the mean of the detection of the muscular

activity, integrating it with a controller developed during a previous work

about prosthesis control, which was able to detect and identify up to seven

different movements analyzing the signal recorded using an external elec-

tromyograph. To achieve this goal, however, a substantial paradigm shift
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was needed: the previous controller wasn’t developed for real-time applica-

tions, and was basing its classification analyzing signals generated only by a

complete execution of each movement. This wasn’t suitable for an interac-

tive application, since this way the control variable is generated necessarily

after the completion of the very same movement the device is supposed to

assist.

The first step was then to achieve a reliable early recognition of the move-

ment: the classifier has been deeply tested to analyze how much classification

accuracy varies considering only the initial subsegments the bursts. Exper-

imental data suggest that is possible to obtain classification performances

similar to the one obtained with full bursts anticipating the analysis on the

initial phase of the movement where signal activity starts to build-up. This

is a significant result since it means that we are able to obtain a reliable

recognition even before the movement is complete.

The second step was then to re-implement the whole system minimizing

the time required for each step of the signal analysis. This was obtained

through a complete rewriting of the original code, modifying his architec-

ture to make it suitable for an interactive application and optimizing the

algorithm considering the underlying architecture in order to maximize the

overall performances of the analysis, maintaining at the same time the orig-

inal recognition rate.

Experimental results confirmed that the new system is able to recognize the

performed movement with just a limited delay: the first control variable is

generated only after 200ms, mainly due to the time needed to gather a min-

imum number of samples needed for a reliable classification, then producing

further variables every 25ms, a delay given exclusively by the analysis time.

The response time is below the commonly accepted delay of 300ms for in-

teractive applications, while at the same time the classification robustness

of the original algorithm has been maintained, since the logical subsiding

architecture was not changed in its core.

These results demonstrate that it is indeed possible to effectively use an

EMG classifier to obtain a responsive and reliable controller through early

analysis of the signal and that is possible to integrate it with a low-cost

rehabilitative device, giving to the device itself the capability to assist the

patient only after having detected his effort thus promoting his engagement,

a fundamental feature to obtain an effective rehabilitation.

To obtain a complete functional rehabilitative framework, however, more



work is needed, mainly concerning the design and the realization of a func-

tional device able to help the patient with the execution of movements that

are performed during the most common daily activities.





Sommario

Scopo principale della robotica riabilitativa è quello di sfruttare i recenti

sviluppi nel campo della robotica moderna con il fine di offrire assistenza a

quei pazienti affetti da disabilità fisiche che inficiano la corretta esecuzione

da parte loro di esercizi fisioterapici; tramite questa assistenza l’esercizio

riabilitativo può essere eseguito dal paziente in modo autonomo e senza in-

tervento da parte del fisioterapista, rendendo la terapia riabilitativa intensiva

accessibile a tutti, evitando gli alti costi imposti dalle tecniche al momen-

to disponibili. Un altro importante aspetto riguarda invece la possibilità

di ottenere una valutazione quantitativa dei progressi ottenuti dal pazien-

te utilizzando i sensori con cui solitamente sono equipaggiati i dispositivi.

Ciò permette un oggettivo confronto fra differenti strategie, rappresentando

un importante passo in avanti dal punto di vista scientifico in un campo

nel quale l’efficacia delle terapie è valutato solitamente tramite osservazioni

prevalentemente soggettive.

Nonostante siano stati raggiunti risultati importanti, che dimostrano l’ef-

ficacia della riabilitazione robotizzata, la riabilitazione rivolta alla mano

rimane ancora un argomento relativamente inesplorato: questo deriva dalla

complessità dell’organo in sé, elemento che rende estremamente difficile la

progettazione di un dispositivo in grado di sostenere il paziente nell’esecu-

zione della vasta gamma di movimenti che la mano è in grado di eseguire.

Presso il Politecnico di Milano si è cercato di sviluppare un prototipo di

esoscheletro atto alla riabilitazione della mano utilizzando materiali di bas-

so costo, il dispositivo realizzato è tuttavia incapace di rilevare forze dal

paziente usando i pochi sensori di cui è equipaggiato; questo rende impossi-

bile l’ottenimento di un comportamento interattivo da parte del dispositivo,

fattore invece indispensabile per stimolare l’impegno da parte dell’utente,

ottenendo cos̀ı migliori risultati durante la terapia.

L’obbiettivo principale di questo progetto è quello di fornire al suddetto

V



dispositivo una maggiore capacità interattiva, sfruttando il segnale elettro-

miografico come controllo ed integrando il dispositivo di riabilitazione con

un classificatore software sviluppato durante un precedente studio riguar-

dante gli arti prostetici. Tale classificatore è in grado di riconoscere fino a

sette differenti movimenti della mano analizzando il segnale grezzo acquisito

da un elettromiografo, qualità che lo rendeva integrabile nel sistema in via

di sviluppo. Per ottenere questo obbiettivo occorreva però un sostanziale

cambio di approccio: il precedente controllore non era stato sviluppato per

applicazioni interattive, e basava la propria robustezza nel riconoscimento

sull’analisi di segnali completi, acquisiti cioè fino alla completa esecuzione

del movimento. Questo particolare non è adatto alla realizzazione di un’ap-

plicazione interattiva, considerando che la variabile di controllo verrebbe

necessariamente generata solo dopo l’effettivo completamento del movimen-

to che il dispositivo dovrebbe invece assistere.

Il primo obbiettivo è stato dunque quello di ottenere un riconoscimento affi-

dabile già nella fase iniziale dell’esecuzione del movimento: il classificatore è

stato dunque testato per valutare la capacità di riconoscimento utilizzando

solamente i segmenti iniziali dei burst. I risultati sperimentali suggeriscono

che già nella fase iniziale del movimento, fase in cui l’attività del segnale

comincia ad incrementare, è possibile ottenere una percentuale di riconosci-

mento prossima a quella ottenuta usando burst completi. Il secondo passo

è stato quello di re-implementare il sistema rendendo la sua architettura

adatta ad applicazioni interattive, apportando diverse ottimizzazioni anche

più a basso livello in modo tale da minimizzare i tempi d’esecuzione del-

l’analisi, tutto senza però modificare l’algoritmo precedentemente proposto,

allo scopo di mantenerne intatta la capacità di riconoscimento.

I risultati sperimentali raccolti confermano come il sistema sviluppato sia

in grado di riconoscere il movimento realizzato con un ritardo inferiore al

limite comunemente accettato di 300ms: la prima variabile di controllo è

disponibile infatti dopo soli 200ms dall’inizio del movimento, intervallo tem-

porale principalmente dovuto al tempo necessario per raccogliere un numero

di campioni sufficienti per ottenere un’analisi significativa. Ulteriori varia-

bili di controllo vengono poi generate ogni 25ms fino al completamento del

movimento, rate dettato dunque esclusivamente dalle tempistiche d’analisi

del software stesso. La capacità di riconoscimento è rimasta invece sostan-

zialmente invariata come atteso, dal momento che l’algoritmo generale non

è stato modificato, ma solo ristrutturato.



I risultati ottenuti sono dunque confortanti, e mostrano come sia possibile

usare un classificatore di segnali elettromiografici per un controllo affidabile

e dal ritardo limitato tramite anticipazione dell’analisi del segnale elettro-

miografico, e come sia possibile integrarlo con un dispositivo riabilitativo a

basso costo in modo da guidare il movimento del paziente solo dopo aver

rilevato il suo sforzo, promuovendone un impegno attivo, utile ad una riabi-

litazione efficace.

Allo scopo però di ottenere un sistema funzionale e completo rivolto alla

riabilitazione della mano sono tuttavia necessari ulteriori sviluppi, princi-

palmente riguardanti la progettazione meccanica di un dispositivo più raf-

finato, realmente in grado di assistere il paziente nell’esecuzione almeno di

quei movimenti che sono alla base delle più comuni attività quotidiane.
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sponibilità e gentilezza dimostrata nel corso della realizzazione di questo

progetto di tesi.

Un ringraziamento va posto anche al Dott. Ing. Giuseppe Lisi, il cui studio
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Chapter 1

Introduction

1.1 Overview

Each year 800’000 people in the U.S. experience stroke attacks, with 50% of

the survivors left with some kind of hemiparesis and 26% unable to indepen-

dently perform daily living activities [1]. In Italy 200’000 cases are recorded

every year, leading to a total of 913’000 survivors left with inabilities [2].

These statistics make stroke the leading cause of physical impairment all

over the world, but other pathologies such as multiple sclerosis, cerebral

palsy, spinal cord injury, Parkinson disease or simple bones trauma and lig-

ament degradation are cause of poor quality of life.

Tests shows how significant improvement in movement ability can be achieved

through proper physical training, but this leads to a strong economic pres-

sure on the health care system ($34.3 billion in 2008 for U.S., with an es-

timated lifetime cost of $140’048 per patient [1]) which, combined with a

low ratio between patients and therapists, results in a qualitatively poor

assistance.

The idea behind rehabilitative robotics is to take advantage of modern robots

to assist patients through physical training: from the point of view of the

therapist, exercises are highly repetitive, time consuming and physically de-

manding, the kind of task robots are suited for; so in these last twenty years a

great effort was put in developing devices able to offer a (semi-)autonomous

training and in studying better methods to help patients to regain their

motor functionalities (robot-aided rehabilitation), or providing active assis-

tance with the most common daily activities (assistive exoskeletons). This

way the patient could autonomously perform the training, while the ther-

apist would assume the role of supervisor, monitoring multiple patients at



the same time; moreover with mass production the costs for rehabilitation

would dramatically drop.

Currently, robotic therapy programs are offered by several health care cen-

ters all over the world, and some devices are commercially available. The

ultimate goal is to make affordable domestic intensive therapy a reality in

the near future.

Tests conducted within the Veteran Affairs (VA) hospitals [3] show how pa-

tients who received high intensity therapy by the MIT robotic device for

thirty-six weeks achieved a significant gain in motor functionality, similar

to the control group which received a training of similar intensity from a

human therapist. Both groups benefited of a significantly greater gain if

compared to a second control group who received the traditional care. Over

all the study the robotic therapy cost an average of $17’831 per patient,

while usual care costs $19’098 per patient and $19’746 and intensive non-

robotic therapy.

This suggest that at the current state robotic therapy does not offer better

improvements per se, but with eventual drops in costs due to mass produc-

tion promises to make high-intensity rehabilitation available on a scale that

the traditional therapy can’t be afforded by the health-care system, both in

terms of costs and therapist-per-patient.

Another advantage offered by robotic therapy is the ability to compare dif-

ferent training approaches: in fact for several disorders is not yet clear which

treatments are objectively more effective [4], leaving the choice to subjec-

tive considerations of the therapist who will tailor the exercise case by case

(making this ad-hoc rehabilitation even more costly). This lack of a common

protocol and a quantitative evaluation of the patients make hard to scientif-

ically monitor the progresses of the subject and compare different strategies

on a cost/benefit basis [3] [5]. With robotic rehabilitation we would have

a common framework for different patients, promoting consistency and re-

producibility of the training; united to the ability of quantitatively measure

patients’ progresses using robot’s embedded sensors would allow us to ob-

jectively compare results obtained with different strategies.

1.2 Research focus

A key element in rehabilitation is interactivity: the patient must not be

simply dragged by the robot letting him do the work, or there won’t be
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an optimal improvement from the neuromotor point of view [6]. So, to

avoid slacking, the rehabilitative system must incentive user’s effort provid-

ing assistance-as-needed, meaning only after detecting a concrete effort and

providing no more than the force the patient needs to complete the task.

This approach also makes the training exercise naturally scale with the con-

dition of the patient, as the robot will gradually step aside as motion capa-

bilities are regained [7].

Another advantage in assist-on-need is that the patient is able to perform

the exercise at his own pace allowing him to better focus on a correct ex-

ecution, while a ‘blind’ device would impose an already programmed pace

regardless the status of the patient, possibly leading to demotivation and

ultimately slacking.

The problem arises when the patient is unable to perform even the slightest

movement, making force-triggered assist-on-need useless. For this reason

EMG-triggered therapy was introduced: even if muscular tone makes the

patient unable to perform any movement his intentions can still be detected

if he is able to generate a minimum amount of nervous activity.

Even with users with better muscular conditions EMG analysis can be ex-

ploited to further anticipate their movements, or check if they are performing

correctly the movement monitoring which muscles are being activated.

Although this field is rapidly developing hand rehabilitation is relatively

less dealt with if compared with the arm or the leg. This is because we

are working on a very elaborate organ, composed by twenty-two degrees of

freedom and actuated by nineteen muscles, resulting in a structure which

is very hard to replicate. Moreover muscles are tightly packed in the fore-

arm, making signal analysis pretty complex to perform using non-invasive

techniques like surface EMG because of the high interference between mus-

cles (cross-talk). Such complexity makes the realization of a rehabilitative

device endowed with a comparable dexterity extremely challenging, since it

requires an extremely sophisticated mechanical design and a very advanced

control strategy.

1.3 Project objectives

The main goal of this project is to develop and test a hand rehabilitation

system able to detect the patient’s volition by analysing EMG activity, and

to assist him through the entire training, in order to regain the capability to

3



perform at least the most common movements recurring in daily activities.

The rehabilitative device employed was developed during previous projects

within Politecnico di Milano [8], but its lack of compliance makes impossible

the implementation of an assist-as-needed strategy using the equipped sen-

sors. So we decided to opt for EMG-based control, exploiting the know-how

developed in previous works concerning EMG prosthesis control [9].

Since the classification system already developed was unable to meet the

time performance requirements for a smooth interaction with the patient

(even in literature, while reports are never short of statistics on recognition

rates, the topic of real-time suitability is seldom covered), a key element for

the realization of this EMG-triggered rehabilitative device was to redesign

the software for signal analysis in order to make it suitable for real-time

applications while maintaining its recognition rate.

This control paradigm could be applied beyond hand rehabilitation, like as-

sistive exoskeletons, tele-operation or more generally to haptic interaction.

1.4 Structure of the work

Chapter 2 presents an overview of the hand from an anatomical point of

view, exploring detail how muscles work and how they are stimulated. An

explanation on how the EMG signal is generated and detected is then of-

fered. Finally, the last section describes the most common hand movements

in daily tasks.

Chapter 3 gives an overview of the works done in the field of technology

aided rehabilitation reported in literature. The first section explains the

most important requirements for an effective rehabilitation and the pro-

posed high-level strategies to achieve it. Then a summary of the algorithms

proposed for EMG analysis is presented, and finally an overview of the as-

pects that should guide the design of a rehabilitative or assistive device is

exposed, reviewing the most recent prototypes.

Chapter 4 discusses the design of the implemented system, highlighting how

recognition delay was reduced through a more thoughtful implementation

and how it interacts with the devices developed within Eracle and Polimanus

projects.

Chapter 5 evaluates the performances of the system, both in terms of reac-

tion delay and classification accuracy, discussing also the issues met.

Chapter 6 summarizes some final considerations, reviewing the results achieved

and the issues met. It also highlights the issues still open and proposes pos-

4



sible future developments.

Appendix A contains the diagram of the implemented classes and the logic

diagram of the flow of execution.

Appendix B contains the project documentation of the realized controller.

Appendix C presents more in-depth explanations of some of the mathemat-

ical concepts used within this work.
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Chapter 2

Physiology and anatomy of

the hand

This chapter presents an overview of the biologic system underlying the func-

tioning of the human hand and electromyographic signal’s acquisition, both

needed to understand the present work. The first section explores muscle

anatomy, while the second one describes them from a physiological point of

view, needed to understand the genesis and acquisition of the EMG signal

described in section three. Finally the classification of the most common

hand movements performed during daily activities is presented.

The sections about anatomy and physiology are taken from Human Biology

by Mader [10], Human Biology - Concepts and Current Issues by Johnson

[11] and Human Anatomy & Physiology by Marieb and Hoehn [12].

2.1 Anatomy

Muscles are organs that convert chemical energy in mechanical movement;

when stimulated they contract moving the bones through the tendons. The

force they exert is unidirectional, so to perform complex movements more

than one muscle is required, that are called synergic. Muscles transmitting

opposite movements on the same joint are called antagonists. In skeletal

muscles one extremity (origin) is connected to a fixed bone (with respect

to the muscle), while the other one (insertion) is connected to the actuated

bone.

If we consider the hand most of the muscles are located in the forearm,

moving fingers by means of a system of tendons running through sheaths



and leverages. This way is possible to transmit a large force to the fingers

relocating the bulky muscles in another area (so called extrinsic muscles)

thus without burdening the dexterity and weight of the hand.

Figure 2.1: Sagittal plane of the hand. The pulley system can be observed [13]

The extrinsic muscles located in the forearm are organized in two compart-

ments, anterior and posterior. The anterior compartment contains muscles

responsible for finger and wrist flexion:

� Flexor digitorum profundus: responsible for fingers and wrist flexion.

It fans out in four tendons, reaching the four fingers.

� Flexor pollicis longus: responsible for thumb opposition and wrist flex-

ion.

� Pronator quadratus: responsible for hand pronation.

� Pronator teres: responsible for hand pronation.

� Palmaris longus: responsible for wrist and fingers flexion.

� Flexor carpi radialis: responsible for wrist abduction and flexion.

� Flexor carpi ulnaris: responsible for wrist adduction and flexion.

� Flexor digitorum superficialis (flexor digitorum sublimis): responsible

for wrist and finger flexion.

The extensors muscles are located in the posterior compartment:
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Figure 2.2: Extrinsic flexion muscles, deep and superficial view [13]

� Extensor carpi radialis longus: responsible for wrist extension and

abduction.

� Extensor carpi radialis brevis: responsible for wrist extension and ab-

duction.

� Extensor carpi ulnaris: responsible for wrist extension and adduction.

� Extensor digitorum communis: responsible for wrist extension, main

muscle for finger extension.

� Extensor indicis profundus: responsible for wrist and index extension.

� Extensor digiti minimi : responsible for wrist and little finger exten-

sion.

� Abductor pollicis longus: responsible for thumb abduction and exten-

sion.

� Extensor pollicis brevis: responsible for thumb extension.
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� Extensor pollicis longus: responsible for thumb extension.

� Brachioradialis: situated in the lateral compartment, is responsible

for elbow flexion and both hand pronation and supination.

Figure 2.3: Extrinsic extension muscles, deep and superficial view [13]

In the hand there are several intrinsic muscles (being in proximity of the

very same joints they act on). They are divided in:

� Thenar eminence: composed by the abductor pollicis brevis, flexor

pollicis brevis and opponent pollicis. They originate from the flexor

retinaculum and insert at the proximal phalanx of the thumb.

� Hypotenar eminence: composed by the opponens digiti minimi, flexor

digiti minimi and abductor digiti minimi, controls the motion of the

little finger.

� Lumbrical : contributes to the flexion of the metacarpophalangeal joints

and to the extension of the interphalangeal joints.
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Figure 2.4: Intrinsic muscles of the hand [13]

� Interossei : group composed by three volar and four dorsal muscles;

contribute to fingers adduction and abduction.

Figure 2.5: Tendons’ insertion, volar and dorsal view [13]

The muscles we are mostly interested in this work are the flexor digitorum

profundus and flexor digitorum superficialis which, thanks to their size, exert

most of the force needed for wrist and metacarpophalangeal and interpha-

langeal flexion. They both originate in the proximal part of the forearm

(as the name suggests, the profundus muscles is located deeper) and fan

out in four tendons that run through the carpal tunnel and attach to the
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phalanxes (in the palmar base of the distal phalanxes for the first muscle,

in the palmar side of the intermediate phalanxes).

Figure 2.6: Flexor digitorum profundus (left) and superficialis (right), volar view

Another relevant muscle is the extensor digitorum communis, which is lo-

cated in the superficial part of the dorsal side of the forearm, originating

near the elbow and fanning out in four tendons which insert in the middle

and distal phalanxes, contributing to wrist and finger extension. The exten-

sor indicis profundus also contributes to index and flexion, but because of

his length and depth his activity is too hard to detect for the scope of the

present work.

Figure 2.7: Extensor digitorum communis, dorsal view

For thumb abduction and flexion the muscles we are most interested in are

the flexor pollicis longus and abductor pollicis longus and brevis. The first

one is deep in the dorsal side of the forearm, originating in the proximal

part of the forearm and inserting in the base of the base of the metacarpal
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bone of the thumb. The latter originates around 3/4 of the volar forearm

and inserts in the base of the distal phalanx of the thumb.

Figure 2.8: Flexor pollicis longus (left) and abductor pollicis longus and brevis (right),

volar and dorsal view
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2.2 Physiology

2.2.1 Neurons

Neurons are electrically excitable cells which transmit and process informa-

tion through chemical signaling. A neuron is composed by a body, called

soma, which projects the axon, an extension that travels and branches

through other cells (traveling even up to 1m in humans) and propagates

the electrical signal along his membrane. It is connected to the dendrites,

structures which arise from the soma and connect to other axons to gather

incoming signals; the connection between the axon and the dendrite is called

synapse.

Figure 2.9: Neuron schema

When the axon is not conducting an impulse a potential difference of -70mV

exists across the membrane (resting potential). This potential is maintained

by the sodium-potassium pump, a protein which transport Na+ out and K+

inside the axon. When the neuron is stimulated an action potential prop-

agates through the axon, opening sodium gates (allowing Na+ in, shifting

the potential difference to +40mV) and then opening potassium gates (al-

lowing K+ out, repolarizing the membrane to -70mV). This action potential

propagates along the length of the axon like a domino effect at the speed of

700 km/h. Short after the concentrations of Na+ and K+ are restored by
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the sodium-potassium pump activity.

Axon terminations store vesicles filled with neurotransmitters (acetylcholine).

When the impulse traveling down the axon branches reaches the axon bulb

calcium gates opens, allowing Ca2+ in. This causes the vesicles to merge

with the presynaptic membrane (exocytosis), diffusing the stored neuro-

transmitters within the synaptic cleft. Then the acetylcholine binds with

specific receptor proteins on the postsynaptic membrane (on the receptor’s

dendrites or, in our case, muscle’s motor end plate), stimulating his sodium-

potassium gates thus modifying his membrane potential and subsequently

stimulating/inhibiting an action potential in the receptor cell. Short after

to avoid continuous stimulation the acetylcholinesterase breaks down the

neurotransmitter, which will be reabsorbed within the axon bulb.

Figure 2.10: Synapse schema

2.2.2 Motor Units

Skeletal muscles are composed by several elementary units called motor units

(MU). Each MU is composed by a α-motor neuron and by all the muscle

fibres his axon innervates. The body of the neuron is located in the central

nervous system, and when activated propagates the action potential along

the axon running through the whole body. As the impulse reaches the axon’s

terminals directly stimulates the innervated fibres causing the contraction.

α-motor neurons involved in the contraction of the same muscle are grouped

in motor neuron pools, and their number depends on the level of finesse

needed to control the force the muscle applies.

When the neuron is stimulated the signal propagates along the axon to the

axon bulbs, releasing the acetylcholine stored in the synaptic vesicles. The
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Figure 2.11: Muscle innervation

neurotransmitter diffuses in the neuromuscular junction and binds to the re-

ceptors sites on the motor end plate, opening the sodium-potassium channels

on the membrane. As Na+ flows in and K+ flows out the plate depolar-

izes (end-plate potential, EEP), starting a domino effect which propagates

the electrical impulse into the inner part of the muscle fibre through the

T-tubules. The neurotransmitter is then split and reabsorbed by the axon,

while the propagation of the impulse runs through the T-tubules, triggering

the release of calcium ions from the sarcoplasmic reticulum into the muscle

cell cytoplasm. This causes the filaments within sarcomere to slide paste

each other, resulting in myofibril and finally muscle fibre contraction.

As nerve activity ends calcium is pumped back into the sarcoplasmic retic-

ulum.

Figure 2.12: Muscle activation
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2.2.3 Muscle contraction

At first the stimulus may be too weak to cause the contraction of the fibre,

but as soon it reaches the threshold value the fibre contracts and then re-

laxes. This contraction, called muscle twitch, lasts only a fraction of seconds

and is maximal (all-or-none). That means that a stronger stimulus won’t

cause a single stronger contraction, but will cause the fibre to contract more

frequently: additional stimuli will arrive before relaxation is complete, bring-

ing more calcium to what is left from previous contractions and leading to

a greater force (summation). When the fibre reaches the maximum possi-

ble contraction (tetanus) the muscle eventually depletes his energy reserves

(fatigue), relaxing even if still stimulated.

The global strength depends on the total number of activated fibres (recruit-

ment) in any instant.

Figure 2.13: Twitch, summation and tetanus patterns

2.3 The electromyogram

2.3.1 sEMG

Changes in muscle membrane potential during contractions vary from -90mV

to 50µV or 30mV (depending on the muscle), causing fluctuations in the

electro-magnetic field around the muscle. These changes are measured by

the electromyograph, which generates a time-mapping of these potentials

called electromyogram. These fluctuations are detected placing electrodes

over the skin surface or by means of more invasive techniques like intramus-

cular needle (more precise but less hygienic and comfortable).

The action potential generated by a single motor unit is called motor unit

action potential (MUAP), and is composed by the summation of the same

impulse travelling through different axon branches to the innervated fibres
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and recorded multiple times with different attenuations and delays (depend-

ing on the axon’s ramification length and distance of the fibre from the elec-

trode).

Figure 2.14: Surface and needle electrodes

A sequence of MUAPs by the same motor unit generates a stochastic signal

called MUAPTrain.

The measured signal is the space-time summation of all the muscle fibre

action potentials nearby occurring at random intervals (plus some random

noise). The contribution of each signal will fall as the source-electrode dis-

tance increases (inversely proportional), so closer MUs will dominate the

EMG. Other factors affecting the strength of the signal are the diameter of

the stimulated fibre (which holds a proportional relation) and the intrinsic

filtering characteristics of the electrode.

Many sources in literature establish that the amplitude of the EMG sig-

nal has a stochastic nature with Gaussian distribution. It ranges from 0

to 10mV (peak-to-peak) or 0 to 1.5mV (RMS). The electrodes are placed

across the motor end plate in order to detect the electrical potential. The

signal is then usually amplified, filtered to remove frequencies out of the

range we are interested in and then digitally converted [14].

Signal frequency falls within 10-200Hz: 10-30Hz is the burst frequency of

the single motor unit, over 30Hz is the frequency of the superposition of

multiple MUs.

Several factors affect the measured signal:

� Noise caused by the movement of the electrode. This usually causes a

signal below 10Hz, which is out of the EMG range and can be filtered

out.
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Figure 2.15: Summation of action potentials

� When several muscles are packed in a small area (like in the forearm)

reading the signal of a specific muscle becomes hard because of the

activity of nearby muscles. This phenomenon is called cross-talk. This

interference cannot be filtered out, although is possible to improve

the signal using mathematical techniques like independent component

analysis.

� Muscle fatigue causes signals with lower frequency and higher ampli-

tude [15].

� External interference, caused by surroundings devices and, mainly, the

power supply of the electromyograph itself. Falling within the range

of the EMG (50-60Hz), this noise cannot be filtered since falls within

the natural frequencies of the signal.

2.4 Hand movements

The upper limb is divided in three regions: the arm, from the shoulder to the

elbow, the forearm, from the elbow to the wrist and the hand, composed by

wrist, palm, four fingers and the thumb. The hand is one of the most complex

organs we are provided, counting twenty-two degrees of freedom actuated

by nineteen muscles and able to perform very dexterous movements. As

we can observe in the cortical homunculus (figure 2.16), which is a pictorial

representation of the functionality division of the cerebral cortex, the hand
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covers most of both the motor and somatosensory cortex. This gives an

idea of the high complexity of the control needed to perform movements

with such a fine organ.

Figure 2.16: Cortical homunculus

It is important to define the taxonomy of the most important gestures ac-

cordingly to their function. The most widely referred to is the one proposed

in 1989 by Cutkosky after observing the most common grasp types recur-

ring in manufacturing tasks [16]: he highlighted sixteen different postures

divided in power and precision grasp from left to right, and by shape and

function down the tree.

This taxonomy provides an object-centric classification of the hand, and does

not completely describe the full range of possible gestures. More recently

a new taxonomy was proposed considering a more complete motion-centric

prospective [17] (see 2.18).
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Figure 2.17: Cutkosky’s taxonomy [16]

Figure 2.18: Functional taxonomy [17]
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These movements can be obtained combining the following basic movements.

Hand pronation and supination The neutral position is with the elbow

flexed ad 90°, with the axis of the palm perpendicular to the floor. From

this position, pronation is the rotation of the forearm that will make the

palm face down (axis perpendicular to the floor). Supination is the rotation

in the opposite direction, making the palm face up.

Figure 2.19: Hand pronation and supination

Wrist extension and flexion Starting from the neutral position (elbow

flexed at 90°), wrist extension (or dorsiflexion) is the upward rotation of the

wrist, while wrist flexion (or palmar flexion) is the downward rotation.

Figure 2.20: Wrist extension and flexion

Finger hyperextension and flexion The neutral position is the open

hand with all fingers extended lying on the same plane parallel to the floor.

Finger flexion consists in the bending of the fingertips toward the palm,

while finger hyperextension is a unusual movement where finger raises above

the palmar plane.

The flexion of all fingers will result in what is informally called hand closing,

while the motion from the close state to the neutral position is called hand

opening.
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Figure 2.21: Finger hyperextension and flexion

Thumb abduction and opposition The neutral position is with the

thumb extended alongside the hand, parallel to the other fingers. Abduction

is the movement that pulls the thumb away from the palmar midline, while

the opposition is the flexion on the palm.

Figure 2.22: Thumb adbuction and opposition
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Chapter 3

State of the art

This chapter gives an overview of the most recent achievement in the field

of rehabilitative robotics and exoskeletons, drawing also from fields sharing

some subjects such as prosthesis control.

The first section describes the most promising high-level strategies for reha-

bilitative exercises, explaining the principles they are based on. In particular

the importance to promote user participation to obtain real improvements is

highlighted, and several diametrical strategies to achieve this goal are con-

sidered.

The second section explores several control algorithms, classified into con-

tinuous control, used to control a limited number of actuators analysing the

muscular activity, and classifiers, able to identify more complex gestures us-

ing more sophisticated features. A description of the techniques proposed

in literature is provided, finally reviewing the performances of the discussed

systems.

The third part lists the most important features that should be taken into

account during the design of a rehabilitative or assistive device. Finally a

review of the most recent prototypes is offered.

3.1 Training

Is well known that is possible to improve motor conditions by repetitive

training: performing motions helps to improve joint plasticity, continuous

contraction and extension (even if passive) help to regain muscle tone. If

the patient is affected by a neurological disorder guiding him through the



exercise helps him ‘by example’ to associate alternative pathways to help

the damaged ones in performing the movement, unmasking redundant mo-

tor network and re-organizing around the lesion site [18].

However recent tests show how simply forcing the patient through a set

of movement results in suboptimal improvements from the neuro-muscular

point of view: better results are achieved when there is an active effort

from the user [7]. In fact human control model is able to adapt to new

dynamic environments optimizing his own effort, meaning that soon it will

naturally learn to exploit the therapist/robot letting him generate most of

the force, while the patient will simply be dragged through the exercise with

the minimum participation, leading to poor improvements (aka: guidance

hypothesis). So a key element in rehabilitation is the so called assistance

as needed (or faded guidance), meaning the robot must trigger help only

after detecting a concrete effort to complete the given task, thus forcing

user engagement and promoting motor learning while retaining the volun-

tary control of the limb; moreover it should provide only the minimum force

the patient needs to complete the task, promoting the maximum strain from

the user [7, 19, 20].

Another advantage in user-triggered assistance is that the pace of the ex-

ercise is determined by the patient itself: a ‘blind’ device can only execute

an exercise with a pre-defined speed, forcing the patient to the same pace

regardless his condition (fatigue, for example), putting him in a state of

discomfort since he would feel he’s not in control of the situation, leading to

frustration and potentially giving up to robot guidance. With assistance-as-

needed is the patient to determine the pace of the exercise, so the training

will naturally adapt to his conditions.

Assistive control algorithms are based on highly backdrivable devices, able

to quickly react to the force applied by the patient. Issues arise if the

condition of the patient does not allow him to execute even the slightest

movement, making the force-control paradigm useless. More recently new

approaches based on detecting user’s effort through surface EMG analysis

were explored: if the patient is still able to generate some nervous activity

his intentions could be detected, and some kinematic parameters could even

be estimated [19](see subsection 3.2).

An alternative paradigm, termed impedance based, consists in let the patient

independently move through the goal, and guide him applying mechanical

impedances when he deviates from the desired trajectory [4, 21]. This kind
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of strategy however can only be applied in a more advanced stage of the

therapy, since it requires the patient to be able to perform autonomously a

minimum amount of movement.

Other opposite approaches, termed challenge-based strategies, are meant to

achieve rehabilitation through making the task even more difficult: some ex-

amples are providing an increasing resistance to the movement of the limb

[7], applying disturbances along directions diagonal to the desired trajectory

or amplify the size of movement error, thus encouraging a higher effort [4].

These strategies are meant to prevent patients from slacking and forcing an

even greater involvement making the rehabilitative task harder.

Another commonly implemented strategy involves adding a sensory feedback

with images and sounds, stimulating the user with a simulated reality which

provides him more high-level and entertaining goals beside the mere com-

pletion of the movement, thus engaging his interest and motivation. These

virtual tasks usually consist in simple games or simulation of common daily

activities [4, 22, 23].

Several studies showed how these different strategies for robot-aided therapy

can lead to a significant improvement in motor skills [3, 24], however is yet

unclear which ones have the potential to produce greater benefits mostly

because tests are designed on ad hoc basis and performed over different

framework. A more rigorous study should be started, involving randomized

trials on a common framework with the goal to effectively compare different

strategies and identify the ones best suited for every type of injuries and

stage of recover, but that would be a very expensive and time-consuming

work [4, 21].

3.2 EMG analysis

Historically rehabilitation engineering has been the first field of application

of myoelectric control, initially used for arm prostheses by Wiener’s Cy-

bernetics in the late 1940s and more recently applied for tele-operation and

virtual reality. The field that so far promoted this research the most is active

prostheses, with the goal to use the remaining part of the muscles to control

an active artificial limb to perform the most common daily activities [19].

However there are some differences between rehabilitation and prosthesis

control: in the first one we must restore the very same pre-accident pattern,
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so we are interested in a control as natural as possible. In the latter instead

the level of amputation could force to map the control over other areas, so

what is really important is the repeatability of the signal [25].

Controlling the device using the EMG signal allows us to implement the

aforementioned assistance as needed when user’s conditions are not suitable

for a force control. Plus it offers the most natural control for assistive ex-

oskeletons or prostheses (mapping each actuator on the very same muscle it

is meant to assist).

Different approaches to signal analysis were proposed, each one with dif-

ferent features and applications. The simplest technique is based on signal

thresholding [19, 26]: the controller checks when the signal (or his linear

envelope, to cut most of the noise) exceeds a fixed value. An extension of

this technique is to use a hysteresis instead of the single-level threshold,

making it more robust against oscillations due to noise [27]. This control

paradigm is very easy to implement, but has limited capabilities since the

output is only a binary value. However it can be used to trigger help when

a minimum muscle activity is detected.

A more sophisticated approach is to output a continuous value roughly pro-

portional to muscle activity (computed as the linear envelope of the rectified

signal, to dim noise contribution). Being the signal a continuous variable

we have a finer control if compared with simple thresholding [27].

These algorithms are already commercially employed for prostheses control

(Otto Bock, Touch Bionics), but they permits to control only few hand pos-

tures with a coarse control if compared to the level of dexterity required

by most daily activities. This is due to the limited number of independent

signals we can register from the forearm: in this area of the body there is

a high number of muscles packed in a relatively small volume, making im-

possible to register the activity of a single muscle by means of non-invasive

techniques like sEMG; what we have instead is the summation of the activ-

ity of all the nearby muscles (cross-talk), making hard to precisely identify

the performed grasp type. This requires a classification architecture based

on the extraction of more complex features.

Machine learning gives us powerful tools for automatic classification that

can be used to train a system able to catch signal patterns and predict the

movement of the patient [28].

As preliminary step independent component analysis (ICA) over the ac-

quired channels can be applied: it is a mathematical technique to separate

two or more signal sources from a set of mixtures using multivariate sta-
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tistical data analysis. The idea is to use ICA algorithms for unsupervised

cross-talk removal before feature extraction in order to improve recognition

rate [29, 30]. As reported in [31] ICA can improve recognition rate up to

97% from the 60% obtained on the raw signal using simple features.

The first stage of the analysis consists in extracting the most significant

features from the burst. The most common time-domain features are the

mean absolute value (MAV) [32], integral absolute value (IAV), standard

deviation (SD) [33], signal power (SP), logRMS [25, 33, 34] and waveform

length. Frequency-domain features are zero crossing, power spectrum, spec-

trum centroid [33] and frequency ratio [34].

More recently time/frequency-domain features were introduced: being the

EMG a non-stationary signal, features based on the classical Fourier trans-

form can’t be effectively applied because of the shifting frequencies over

time. Short time Fourier Transform (STFT) consists in applying the FT on

a moving window, allowing the time-localizing of frequency features. The

downside of STFT is the resolution of the analysis is fixed by the size of

the window, allowing a limited flexibility. An alternative technique widely

employed is the novel wavelet analysis [32, 9, 35]: developed in the early

1980s, is a time-frequency representation of the signal obtained by means

of the convolution with a finite-energy function (wavelet) obtained scaling

and stretching by several coefficients the same a single basic wavelet (mother

wavelet) [36]. The main advantage if compared with STFT is we have a vari-

able time-frequency aspect ratio, with high frequency localisation at lower

frequencies (long time windows) and high time localisation for higher fre-

quencies (short time windows).

Various implementation can be used, like continuous wavelet transform (CWT),

the computationally faster discrete wavelet transform (DWT) or the discrete

wavelet pack transform (DWPT).

We can choose the mother wavelet from a large number of families, depend-

ing on the application (most notably considering the nature of the signal

and computational constrains). The Haar wavelet for example has the ad-

vantage of being simple and fast to compute. Wavelets from the Morlet

or Daubechies families instead are more complex to compute but can pick

more details from the signal [37, 38]. Since choosing a wavelet matching

closely the nature of the signal is of utmost importance, a trade-off between

resolution and speed must be considered.

The output matrix of wavelet analysis contains a large number of elements

(N × C for CWT for example, where N is the length of the signal and C
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Figure 3.1: Wavelet transform

is the number of wavelet scales), so a technique to reduce the number of

elements while preserving as much information as possible must be applied.

Dimensionality reduction can be performed applying principal component

analysis, a techniques that projects the signal in a new space of orthogonal

vectors (principal component) thus compressing it in a vector of coefficients

associated with the PCs [35]. Another technique is to extract the singular

values vector obtained performing the singular values decomposition of the

matrix [32]. Self-organizing maps (SOM) uses a lattice of artificial neurons

to reduces features’ dimensionality and increases their separability mapping

the output on a two-dimensional map which preserve inputs’ neighbouring

[38].

The third and final part consists in inputting the selected features in a clas-

sifier to recognize the performed movement. This is achieved using artificial

neural network (non-linear function approximator) [31, 32, 39], support vec-
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tor machines (classification through maximization of boundaries between

separate classes) [9, 35] or fuzzy logic (inference using approximated values,

similar to human reasoning) [28].

Discrete signal approach gives us information about the final posture of the

device, but does not allow per se a continuous control of the movement. Thus

hybrid strategies could be implemented, using classification for gesture iden-

tification and the aforementioned proportional control to determine force or

speed of execution.

Classification performance depends on several system parameters. The most

important factor is the set of gesture under analysis: a simple set of few very

different gestures (involving only antagonistic muscles for example) will ob-

tain better recognition performances than a more exhaustive set. The reason

is as the number of gestures increases it becomes more difficult to separate

their features, especially if some have similar patterns: for example there

will be a great difference among the signal generated by hand opening and

closing since their movements differ significantly. Contrary, hand opening

and wrist extension will present a more similar pattern, making them harder

to distinguish.

Another parameter that affects recognition performances is the number of

acquired signals: it is intuitive how few channels provide only a limited num-

ber of features to work on, while a greater number of input signals allow a

better coverage of forearm activity.

Hudgins in 1993 was able classify four discretional1 movements for prosthe-

ses control with a 90% rate analysing time-domain features with ANNs over

a single channel [39]. More recent works achieved a 99% rate introducing

WT over four channels on a six-class problem [40, 41]. More trials were per-

formed to highlight the relation between number of channel and gestures:

with ten gestures a 94% rate was achieved over sixteen channels, dropping

to 93% and 87% respectively for eight and four channels [42].

In [35] a 97.5% rate was obtained over six gestures with RMS + DWT +

PCA + SVM on two channels only. Previous works within Politecnico di

Milano which inspired this project achieved a 96% rate over five gestures

with two electrodes [32], and later the same rate was obtained with seven

gestures over three channels using CWT+SVD+NN [9].

1With ‘common’ gestures we refer to the most recurrent able-bodied movement in daily

activities. With ‘discretional’ we mean an arbitrarily chosen set of contractions specifically

selected to increase class separability.
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As highlighted in [15] other physiological factors can affect classification

performances, such as the thickness of the skin under the electrode (which

attenuates the signal), sweating, muscle fatigue, muscular tone and patient’s

motivation.

3.3 Hardware

Hand rehabilitation isn’t very developed if compared with studies on the

arm or the leg: this is because the hand is a very complex organ, with a

lot of degrees of freedom independently actuated in a relatively small space,

and able to perform a wide set of movements. That makes the design of

a complete rehabilitative device or exoskeleton extremely complex from the

mechanical point of view.

The first thing we must consider in the design of a mechanical rehabilitative

or assistive device is the set of target movements: the device must be allow

the selected movements (usually the most recurrent in daily activities) tak-

ing in consideration the number and type of the variables that the control

strategy can actually provide (potentially leading to an under-actuation of

the device). Since the design become more complex as the dexterity level in-

crease, functionality requirements must be taken into consideration carefully.

Then the most important requisite all medical devices must satisfy is safety:

this is a key feature for robot that must interact with humans, especially if

we are dealing with patients whose disabilities could require extra-constrains

because of their peculiar conditions. The robot must move in a way to help

the patient executing the correct movement without forcing unnatural or

harmful positions, so safety constrains must be implemented on both control

and mechanical level [3, 43]:

� Joint’s range of motion should not exceed the ones of the hand.

� The controller should limit the controlled variable to safe positions

and speeds.

� Should be available a kill-switch which depowers the device or brings

it to a safe position.

Another key feature is ergonomics: this is a very important aspect since the

patient could be forced to interact with the device for a long period of time,

so an uncomfortable design could disincentivize his use. For assistive device
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there is the extra requirement of being lightweight as it must be carried over

and not be an obstacle in patient’s workspace (for example his structure

must not occlude the palm or it would make impossible gripping objects);

actuators should be located outside the device and transmit forces through

artificial tendons, since a self-contained design would result in a bulkier

structure whose inertia would lead to clumsy movements [44, 45]. Moreover

the device should present a fast setup process and must be adjustable in

order to fit different hand sizes.

A high backdrivability is very important for a natural interaction with the

device: this allows the ability to quickly respond to external forces, essential

for a smooth interaction with the patient, and to provide an apparent null

mass, critical to not encumber the already weakened limb with the inertia

of the device. This is obtained integrating the device sensors with enough

resolution to detect user generated forces.

A feature rehabilitative robot must provide is antigravity support: the device

must be designed to support the arm, since user’s condition could make his

weight an unsustainable burden. Thanks to antigravity support the robot

will make the arm virtually weightless, allowing the patient to focus on the

correct execution of the movement [4].

The device developed at Carnegie Mellon University [44] is a lightweight

prototype to assist the index with pinch movement. It was developed to

test different control strategies using impaired patients.

Figure 3.2: The exoskeleton developed by Carnegie Mellon University [44]

The Rutgers Master II-ND [46] consists in a set of low-friction pneumatic

actuators located in the palm connects to the fingertips, applying up to 16N

of force. Feedback is provided by a series of infrared and Hall-effect encoders
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(contactless sensors were specifically chosen to minimize disturbance force

due to friction).

Figure 3.3: Rutgers Master II-ND

The overall system is very light and comfortable, preserving user’s freedom

of motion. Although originally designed for haptic applications, it has been

successfully employed for VR rehabilitation [47]. Since his structure oc-

cludes the palm, it can’t be used to assist grasping movements.

The device developed at the Hong Kong Polytechnic University [24] is a

wearable device that can be used bot for training and daily assistance. It

was designed to potentially actuate all fingers independently, but the current

control system based on two-channel thresholding allows only performing

grasping and hand-opening movements. Test performed on stroke subject

showed how after a twenty sessions of twenty minutes exercise clinical as-

sessments highlighted significant motor improvements.
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Figure 3.4: The exoskeleton developed atHong Kong Polytechnic University [24]

The prototyped developed by Zheng Li in his master’s thesis for North Car-

olina State University [43] is able to independently actuate each finger using

custom-made McKibben actuators. Artificial muscles emulate the biological

ones, originating in the proximal forearm and inserting into the phalanxes

through a system of Velcro rings replicating hand’s sheaths system.

Figure 3.5: The prototype developed by Zheng Li [43]

The overall system is lightweight, low-cost and easily adapts to different

hand sizes. McKibben actuators have a high force-weight ratio, and are

easy to control thanks to the relation between force and pressure in the

pipe. Their natural compliance makes them safer for medical purposes, but

the high response time makes them unsuitable for applications which require

a fast interaction.
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Developed by UIC, J-Glove is a jointless exoskeleton able to assist the patient

in grasp/release exercises. It consists in a glove which uses the very same

hand as structure, while the force (up to 130N) is transmitted through a

system of Bowden cables, allowing to relocate actuators off hand thus making

it more comfortable [48].

This device can be controlled through a button, voice activation or surface

EMG. In particular EMG control is simply based on thresholding the activity

of the extensor digitorum communis and the flexor digitorum superficialis

[49].

Figure 3.6: J-Glove [48]

His design is very promising, since makes the device slim, comfortable and

easy to manufacture. It already inspired new prototypes [50].
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Chapter 4

Project

This project is based on the exoskeleton developed within the Artificial

Intelligence and Robotics Laboratory (AIRLab) of Politecnico di Milano.

It is a low-cost rehabilitative exoskeleton able to help patients performing

grasp, pinch and fingers extension [8]; it is an open-loop device, since the

high impedance of the actuators makes impossible to feedback the user-

generated forces using the two equipped potentiometers. The idea then is to

control it using a gesture classifier previously developed for EMG prosthesis

control [15]. It is able to identify seven different gestures (grasp, hand ex-

tension, wrist flexion and extension, thumb abduction and opposition, index

hyperextension) acquiring EMG activity from three channels placed on the

forearm.

According to empirical analysis the maximum tolerable delay between the

user command and the action of the prosthesis/exoskeleton is around 300ms

[51], so the main goal of this project is to make Polimanus usable for an in-

teractive rehabilitation, achieved modifying the architecture of the classifier

reducing the delay of the analysis in order to meet this time-performance

requirement.

The first issue was to determine the number of samples needed for a success-

ful classification: the previous version of the software acquires big batches

of data (way longer than the duration of an average movement) which are

later analysed to find complete movements to identify. With this approach

an online classifier is unfeasible, since it requires the movement to complete

before being able to recognize it (so the control variable for the mechanical

device will necessarily be available too late). The first goal was then to

determine if is possible to identify a movement before its completion, and

if so study how classification rate vary with the length of the analysed seg-



ment. The second step was then to rethink the architecture in a way to

allow continuous control, eventually modifying the algorithm to reduce the

computational delay without affecting the recognition rate and implement

it efficiently on the underlying system (Matlab in our case).

To simplify the architecture three modules where created:

� The first one provides an interface with the Eracle board and outputs

the parsed signal.

� The second module encapsulates and analyses the acquired signal. It is

designed to work with both continuous online and batch classification.

� The last module provides an interface to control Polimanus

Our system is based on the interaction of these modules.

Finally we have the delay brought by serial communication with the artifi-

cial limb and the reactivity of is mechanical components, even if this aspect

is out of the scope of this thesis.

The overall system consists in a USB electromyograph connected to a PC

(P4-2.4 GHz, 4GB RAM) where runs the classifier written in Matlab 7.11,

which controls the serial-connected rehabilitative exoskeleton.

4.1 Recognition anticipation

The previously developed classifier took into consideration only complete

bursts, which means we had to wait for the movement to complete before

his identification. This is unacceptable for an interactive device, since the

control signal would be necessarily late, so we investigated how recognition

rate vary using samples of an incomplete movement.

A test was set to observe the performances of the net over features extracted

from the initial segments of several recorded movements: five neural network

were trained using the bursts gathered during an acquisition performed fol-

lowing the protocol previously suggested [15]; the set was composed by thirty

bursts for seven gestures, with an average length of about 200 samples each

(as will be explained more in detail in section 4.3.1, 100 samples are the
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preamble kept to catch possible early dynamics whose amplitude is too low

to allow detection, while the others are the actually detected activity).

Finally the classification performances were computed over the testing sub-

set, feeding the networks with features extracted from the initial segments of

the bursts with increasing lengths. Figure 4.1 displays the recognition rate

over the percentage of the analyzed burst. As can be observed the classifier

Figure 4.1: Recognition rate over burst

is unable to identify the signal in the preamble; after 50% (on the initial seg-

ment of the wavefront) the recognition rate dramatically increases reaching

performances close the ones obtained analyzing a complete burst. It means

the features characterizing a gesture start to show in the early movement.

The test was repeated using networks trained using only half bursts. Recog-

nition rate as foreseeable reached his maximum with half burst and slightly

decreased for longer segments (see 4.2). The decreasing trend near full burst

is due to the fact that the network reaches the peak of his performances over

the very same burst length used for his training; as the percentage of the

analysed segment moves from 50% the extracted features slightly change,

thus scoring under 90% at the end of the graph.

Further tests were made training nets over segments even shorter, but no

significant result was achieved.

39



Figure 4.2: Recognition rate over burst percentage

These tests shows how we can already obtain in an early stage a recognition

rate close to the one obtained analyzing full bursts, using features extracted

from the preamble and few samples right after the detection of the move-

ment.

4.2 Signal acquisition

4.2.1 Eracle

The EMG board is a wearable device developed within the Department of

Mechanics of Politecnico di Milano [30], designed with the goal to interact

in virtual reality environments; it provides three bipolar channels plus a

common reference, which is used to remove the common noise between two

paired electrodes. Each electrode records the voltage with respect to the

common reference; each channel measures then the difference between two

coupled electrodes. The three resulting signal are then amplified using an

INA (whose gain can be set between 20 and 200dB), sent through a high-
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pass filter with cut-off frequency at 1.5Hz and a Sallen-Key anti-aliasing

filter (double pole at 150Hz). Finally a PIC16F688 microcontroller samples

the signal at 237Hz with his 10bit ADC and transfers the output to the com-

puter through a FT232RL interface (RS232 to USB converter) for further

processing.

Figure 4.3: Eracle board. Photo from [30]

The output of the board is an ASCII string where each rows contains the

data for each channel. The following is an example of the stream:

I:a b c

D:447 502 988

D:323 471 1011

D:220 666 567

D:438 519 530

D:327 834 816

...

I:a b c

where \rD: separates consecutive samples and \rI:a b c is repeated every

hundred samples for synchronizing purposes.

The device is extremely small and lightweight (29×45×9mm and weights

35g) and can fit in a pocket. His production cost is relatively low, making

it suitable for consumer electronics. Many sources in literature models the

signal as a stochastic Gaussian process between 0 and 500Hz, with the most

relevant frequencies between 50 and 150Hz ; having the board a sample rate

of 237Hz accordingly to the Nyquist sampling theorem we can catch fre-

quencies up to 118.5Hz.
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4.2.2 Gestures selection

The very first step was to select the movements we are interested in, since

it determines how electrodes will be placed.

In precedent works were selected the most common gestures performed dur-

ing daily living activity: hand opening, hand closing, wrist flexion and ex-

tension, thumb abduction and opposition, index extension [15]. This set was

maintained with the goal to compare the new system with the old one. A

second set of gesture was then selected based on the movements the exo-

skeleton is able to perform: hand opening, hand closing and precision grasp

(alias: pinch) [8].

As seen from chapter 2.4 the muscles we are most interested in are the

flexor digitorum profundus and superficialis, since they are responsible of

most of the force generated for fingers and wrist flexion, the extensor digi-

torum communis, responsible for fingers and wrist extension, and the flexor

pollicis longus and the abductor pollicis brevis for thumb movement.

4.2.3 Electrodes

The choice for electrodes was intentionally limited to the ones commercially

available for electro-stimulation. The reason is they are easily available at

orthopaedic stores and their signal keeps an acceptable signal-to-noise ratio

(SNR) even if used multiple times (while medical-level electrodes are usually

mono-use). As the surface increases the electrode becomes more prone cross-

talk, while smaller surface we can read a cleaner signal and allows us to

place the electrodes nearer, decreasing the noise even more. We ultimately

opted for 32mm circular electrodes (the smallest model we could find) with

0.60eprice per piece.

The first channel was placed in the volar side of the forearm along the flexor

digitorum profundus and superficialis, with the aim to highlight the muscle

activity that leads to hand closing and wrist flexion. In a similar way the

second channel was placed over the extensor digitorum communis, to acquire

signal that characterizes finger and wrist extension.
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Figure 4.4: Electrodes placement, volar and dorsal view

In an initial attempt the third channel was placed over the flexor pollicis

longus and the abductor pollicis brevis in order to better read the features

that lead to thumb movement, but these muscles resulted to be too small

and deep to generate a measurable signal. We ultimately opted to place the

last channel in the internal dorsal part of the forearm, forming a triangle

configuration with the other two channels in order to acquire signals from

the entire organ, relying on the classifier’s generalization capability.

Figure 4.5: Electrdes placement, volar and dorsal view

The function of Eracle’s common reference is to detect the noise coming

from the body and subtract it from the other channels. It was then placed
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on the elbow since this under area is far from any involved muscle, so the

electrical activity recorded should be due to noise only.

Finally wires were fixed to the skin in proximity of the clip using adhesive

tape, preventing them from causing artifacts in the signal moving the elec-

trodes or, worse, tearing them out.

4.2.4 Parsing
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Figure 4.6: Signal parsed from the board

For an easy interaction with Eracle an appropriate interface was written: it

consists in a Matlab class which handles serial communication, logging and

output parsing. The signal is acquired from the board using Matlab’s Serial

Port Interface and converted from ASCII string to a N×3 matrix, where N

is the number of acquired samples and the values are unsigned integer rep-

resenting the 10bit encoding of the signal. The input buffer is set to contain

up to 1s of samples, so the computation time between two consecutive pools

to the board must be under this interval to guarantee signal continuity.

These are the step performed by the parser every time it is called between

two consecutive readings:

� Concatenate the incomplete sample from the previous acquisition and

the new string.
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� Search for D:s in the string.

� For each D: (except the last) convert into integers the three following

numbers.

� Save the substring starting from the last D, since it will contain an

incomplete sample. It will be forwarded to the next acquisition.

#read. prev. chunk serial read parsed signal

n D:519 4

96 326

D:515 513 576

. . .

D:499 515 647

D:504 49

519 496 326

515 513 576

. . .

499 515 647

n+ 1 D:504 49

6 324

D:524 504 408

. . .

D:512 518 612

D:49

504 496 324

524 504 408

. . .

512 518 612

n+ 2 D:49

2 524 601

D:496 509 473

. . .

D:524 497 526

D:504 520

492 524 601

496 509 473

. . .

524 497 526

Table 4.1: Example of parsed samples. The incomplete sample from the serial (in red)

is prefix to the successive read to guarantee signal continuity

4.3 Classification

The acquired EMG is analysed by the classification module. It consists in

a class that encapsulates the parsed signal and provides the methods for

extracting the features which will be used by the neural network for signal

recognition.
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Figure 4.7: Schema of the recognition system

The steps performed for burst detection and identification are listed in the

following subsections.

4.3.1 Segmentation

Before identifying a movement we must detect it and define his boundaries.

As we can see from figure 4.8 the forearm is idle all we read is random noise,

but when a movement is performed the features of the signal change, most

notably the amplitude. The first step for burst detection is to subtract sig-

nal mean and then rectify it.

rectc,i =
∣∣emgc,i − emgc

∣∣ (4.1)

where emgc,i is the i-th sample on the c-th channel.

This way we can perform a rough detection simply thresholding features

such as the moving average or the integral signal. The downside of these

methods is they are sensitive to high-frequency noise, so the next step is to

filter the signal applying a second-order low-pass Butterworth filter (cut-off

frequency at 2Hz) in order to smooth the signal.

This way we can determine the beginning of a movement (burst’s head) us-

ing lightweight techniques such as fixed thresholding (to ignore the residual

noise energy) and checking his derivative (to cut-off small oscillations due
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Figure 4.8: Segmentation over three hand closings on channel 1

to artifacts). Instead we can consider a movement ended (burst’s tail) when

the signal or his derivative drops under a fixed value. Fixed values were

found empirically and may vary depending on the gain set on acquisition

board.

A burst is considered open while activity in any of the channels is detected,

and closed when activity does not satisfy the parameters anymore in any of

the channels. The burst will be then further analysed starting fifty samples

before the first one detected: this preamble is added to catch possible early

low-amplitude dynamics that would otherwise be lost.

4.3.2 Independent component analysis

Independent component analysis is a technique that allows extracting N in-

dependent source signals from at least N samples containing linear mixtures

using multivariate statistical analysis. Given enough channels we could the-

oretically eliminate cross-talk separating the activity of every single muscle.

We used then the FastiICA package using Hyvarinen’s fixed-point algorithm1

with the goal to separate the activity of the most significant muscles, thus

leading to a better separability of the extracted features. The number of

1FastICA packages: http://www.cis.hut.fi/projects/ica/fastica/
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muscles however is much larger than the number of channels, so one of the

prerequisites of ICA is missing. We obtained results similar to [29], where

channels were not independent leading to a mixing matrix A far from being

dominant, which means we can’t associate a predominant signal to every

channel.

Since we could not successfully separate the sources we tried then to use

ICA for denoising: this was achieved rebuilding the acquired signal with

the most significant contributions, applying an adaptive thresholding to the

matrix of weights.

ai,j =

{
ai,j if |ai,j | ≥ αmaxj (|ai,j |) , α ∈ [0, 1]

0 otherwise
(4.2)

This way the reconstructed signal will contain the most relevant contribu-

tions, discarding the other sources as less significant.

ICA is performed when a burst is detected. Since the FastICA is a fixed-

point algorithm the weighting matrix is stored and used as initial value

during further ICA analyses, thus allowing the algorithm to reach the solu-

tion in fewer steps (an average of ten iterations against the around twenty

needed starting from random values). The matrix is then reset after the

closing of the burst.

4.3.3 Features extraction

Once the boundaries of the burst have been determined we must extract

some numerical parameters for gesture classification, creating a feature vec-

tor to feed the neural network.

Temporal features

In this work were maintained the features used in the previous work. First

are considered the mean absolute value (MAV) and his integral (iEMG):

they were chosen since they are closely related to signal energy and differ-

ent gestures generate very different activities on different channels caused

by different patterns in recruitments of MU, mostly in terms of number of

units and localization with respect to the electrodes. For example hand

closing will generate a strong signal on the channels placed on the volar side
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of the forearm, while fingers hyper-extension will generate more energy in

the dorsal channels. Only using these features we can obtain a classification

with an 80% success rate.

iEMGc =

N∑
i=1

emgc,i (4.3)

MAVc =
iEMGc

N
(4.4)

Wavelet transform

Gestures differ also in frequency patterns but, as discussed into chapter 3.2,

a pure frequency representation would lose too much information because

of the non-stationary nature of the EMG; a time-domain analysis was then

adopted using the Continuous Wavelet Transform, which is able to retain

the temporal localization of the shifting frequency features. This is obtained

by the convolution of the signal with several version of the same signal

(mother wavelet) scaled and stretched by different sizes: the more similar

the frequency of the stretched wavelet to the analysed signal segment, the

higher the result of the computed coefficient.

Figure 4.9: Example of CWT over two bursts

An important factor in wavelet analysis is the shape of the mother wavelet:

the more the shape matches the nature of the signal, the better the analysis
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performances. For some wavelet families must be also taken in consideration

the number of vanishing moments (or level): this parameter is related to

the order of polynomials the wavelet is able to represent; with this value

increases his regularity, but also his computational requirements.

We decided to choose the Daubechies wavelet family (while previously Mor-

let was used), since it has a wide application in biosignal analysis. To

determine the number of vanishing moments we evaluated empirically how

performances vary with this parameter, considering the mean reconstruc-

tion error applying wavelet compression (see C) on a set of bursts. The

computation time increased almost linearly with the moment, but at level

four (db4) the error stopped to decrease significantly, so this wavelet was

kept.

Figure 4.10: ’db4’ wavelet

The last parameters we need for the analysis are the scales of the wavelet:

these values determine which frequencies the analysis will be centred on,

and depend on the base frequency of the chosen mother wavelet and the

sample rate of the electromyograph. These values were then manually se-

lected using the tool offered by Matlab Wavelet Toolbox: we picked up only

five coefficients to limit computation time, chosen in a way to uniformly

scan the range of frequencies we are interested in. The resulting scales were

[1.5:6.5].
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Dimensionality reduction

The CWT for an N -samples signal generates a M ×N matrix, where M is

the number of scaling coefficients. For an average burst of 200 elements this

means 1000 features, so a dimensionality reduction is needed. As introduced

in[32], we exploited SVD decomposition, an algorithm widely used in many

fields for tasks such as signal processing, data compression, noise reduction

or PCA. It factors any M ×N matrix in three different matrices.

M = UΣV T (4.5)

where U is a M×M orthogonal matrix, Σ a diagonal rectangular matrix

with nonnegative values and V T is the conjugate transpose of an orthogonal

N ×N matrix V .

We decided to use as feature the Σ matrix, whose diagonal contains in de-

scending order the singular values of the transform: the resulting vector

still contains information related to the original coefficient matrix, but com-

pressed in a much smaller M × 1 vector (five values in our case).

Therefore the neural network classifier will receive as input the feature vec-

tor composed by seven elements: MAV, iEMG and the five singular values.

4.3.4 Neural network classification

The classifier is a model able to identify patterns found in samples of input-

output couples (in our case the output is a label associated to a class) and

use it to determine the output of new data (supervised learning).

Among all the techniques available we chose to use artificial neural networks

because of their ease in the setup process. An ANN is a bio-inspired math-

ematical model represented by an interconnected group of neurons. Each

neuron takes as input the weighted sum of the other neurons, and outputs a

value accordingly to a given activation function which will be forwarded as

input to other neurons. The universal approximation theorem states that,

given enough neurons, multilayer feed-forward networks can approximate

any continuous function with an arbitrarily small error (proved for several

types of activation functions).

Learning is obtained finding the optimal set of weights so that the network is

able to minimize the error between the target output and the current output;

this is obtained through different methods, such as gradient descent.Usually

a subset of the samples (validation set) is kept out the training procedure
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with the goal to use it to test the generalization capability of the trained

network. In our case we need to train a pattern recognition NN: it takes as

input the previously discussed feature vector and has as target the label of

the related gesture. The output of the network however is a real value, so

a method to encode the classes is needed: the net is designed to output a

number of values equal to the number of classes, and the training target is

a vector of zero values with the exception of the i-th element (associated to

the i-th gesture) which is set to one. This way the NN learns to assign a

value close to one to the element associated to the identified gestures, while

the remaining elements of the vector will have near-zero values.

The network has a feed-forward topology with one hidden layer composed

by thirty-five neurons (the number of neurons was limited to avoid over-

fitting) with a tan-sigmoid transfer function (a faster approximation of the

hyperbolic tangent). Training set was partitioned using 75% of the data for

the actual training, 15% of the samples for validation and the remaining

10% for external testing.As learning algorithm Levenberg-Marquardt (LM)

was selected, since it is the fastest back-propagation algorithm [52], with

early stopping (to avoid overfitting).

4.3.5 Training protocol

To make tests consistent a common protocol for gesture acquisition is re-

quired, so we inspired from the one proposed in [15]; to facilitate this process

a GUI was created to guide the user through the acquisition and automate

the training task (see appendix B).

Each gesture is acquired with three repetitions, each containing ten move-

ments. After each repetition the user must relax the arm for thirty seconds in

order to avoid fatigue, which is cause of signal degradation [15], eventually

slightly moving the electrodes to achieve greater cross-session robustness.

When a set of repetition is complete the user must relax for one minute,

and then proceed in the same way with the next gesture.

When the acquisition phase is complete the interface stores the raw data of

each repetition in a text file properly tagged. Each file has then to be parsed

and manually inspected to detect and remove unwanted artifacts that could

affect the training. Once the signals are clear the automatic training func-

tion is called: it automatically detects the bursts and extracts the related

features and trains the ANN as specified in subsection 4.3.4 using the built-

in Matlab functions.

The resulting network and the related training records are then stored in a
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file.

4.4 Polimanus

Polimanus3 [8] is the last of a series of hand rehabilitative prototypes devel-

oped within AIRLab. It consists in a polystyrene bracer ending with a glove.

A series of Bowden cables connects the fingertips to two Hitec servos HS-

805BB (position and speed controllable, 180°rotation, capable to produce a

force of 19.8 kg/cm) transmitting up to 105N of force, helping the patient to

perform hand opening, closing and pinch movement. The actuators are con-

trolled by an 8MHz Microchip PIC18F452 microcontroller, which reads also

from the two potentiometers placed to measure the position of the gears.

Communication is provided by a FTDI232RL which allows connecting Poli-

manus to the host computer via USB.

Figure 4.11: Polimanus (left) and the control board (right)

The communication protocol is based on the exchange of unsigned 8bit in-

tegers:

PC [x> PIC (byte sent from PC to PIC)

PC <x] PIC (byte sent form PIC to PC

------------------------------------------------------

PC [253> PIC (command new position)

PC <253] PIC (ACK, PIC ready to receive 16 bytes)

PC [pos0> PIC (new position servo 0)

PC [pos1> PIC (new position servo 1)

53



PC [pos2> PIC (new position servo 2, unused)

...

PC [pos7> PIC (new position servo 7, unused)

PC [vel0> PIC (speed servo 0)

PC [vel1> PIC (speed servo 1)

...

PC [vel7> PIC (speed servo 7, unused)

PC <ACK] PIC (checksum received bytes)

------------------------------------------------------

PC [251> PIC (command read voltage on analog port)

PC [port> PIC (analog port number)

PC <ADRESH] PIC (most significant byte)

PC <ADRESL] PIC (less significant byte)

------------------------------------------------------

+ PC [250> PIC (command read voltage analog port 0 and 1)

PC <ADRESH] PIC (most significant byte port 0)

PC <ADRESL] PIC (less significant byte port 0)

PC <ADRESH] PIC (most significant byte port 1)

PC <ADRESL] PIC (less significant byte port 1)

The device presents several flaws in his design, mostly due to the low-cost

hardware employed: the overall structure results uncomfortable and the

housing of the artificial tendons are anchored in a position which allows

only the half-closing of the hand. The high torque of the actuators makes

the device not compliant, and the type of sensor equipped does not allow

detecting user-generated forces.

To control this device an appropriate interface was created during this work:

it consists in a Matlab class which masks serial communication and pro-

vides high-level methods to control the movements of the exoskeleton (see

appendix B.5).

4.5 Online classification

Offline classification, used during the training phase, consists in acquiring

long batches of samples which will be stored and then analyzed. On the

contrary, in online classification the analysis is performed as soon as enough

data are acquired in order to provide an interactive behavior. Since only

the samples over a limited time-window are needed to achieve a continuous
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control, a policy to flush the sample buffer is needed.

During online classification the EMG board is periodically polled for new

samples, the new chunk is appended to the data already stored in the buffer

and the updated signal is then processed using the algorithms previously

described. If any burst is detected during the segmentation further anal-

ysis are executed: if the detected burst is at least 120 samples long then,

accordingly to the tests performed in section 4.1, is considered long enough

to produce a reliable output so features are extracted, classified and the re-

sulting command is forwarded to Polimanus; otherwise if the burst has less

than 120 samples only ICA is performed in order to compute the mixing

matrix A, which will be used by the ICA in the next iteration as starting

point, with the goal to converge to the solution with fewer steps (an average

of ten steps starting from a good matrix compared to the twenty needed to

converge from a random initial matrix).

Before proceeding with the acquisition of the next signal segment we need

to understand what we need to keep of the old signal.

� If no burst is detected only the last 100 samples are kept, since are

needed to fill the preamble of any potential new burst detected.

� If an incomplete movement was detected the signal is flushed only up

to the head of the burst.

� If an already completed movement was detected the buffer is flushed

up to the tail of the burst, in order to avoid it is analyzed again.

The signal buffer is implemented in Matlab using a dynamic array, able to

increase to accommodate the activity of the currently detected movement

in all his length and shrinking again as it ends. For the typical range of

the buffer (100-300 samples) Matlab is able to manage resizing without a

significant overhead.

4.6 Matlab implementation

The following subsections summarize how the algorithms presented in the

previous sections were implemented and organized in Matlab. A more de-

tailed description is provided in the appendix B.
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Profiling highlighted how the functions for continuous wavelet analysis and

neural network simulation, cwt and network.sim, were the bottleneck of

the online classifier. These functions were then optimized accordingly to

our needs, leading to a significant speedup (see tests in section 5.2.3 and

5.2.4).

4.6.1 Core modules

The following classes implement the functionalities of signal acquisition, clas-

sification and control of the external device. They were implemented in a

way to improve the modularity and reusability of the system, making the

development of the more high-level functions for training and online clas-

sification easier. Modularity allows interfacing the controller with possible

new devices (such as an alternative EMG board or another prototype of

exoskeleton) almost effortless.

Signal acquisition It is performed by the emgboard class which handles

serial communication with Eracle and provides the parser which takes as

input the ASCII stream and outputs a matrix containing the signal.

In the initial phase of the project an EMG board emulator, dummyboard,

was created extending emgboard: it provides a graphical interface which

allows the user to select a gesture, whose activity is simulated outputting

at the same rate of the original board the samples of a pre-recorded burst

loaded from file. The inactive state instead is simulated generating random

low-amplitude noise. This emulator allowed an interactive testing of the

online classifier in his early stage, thus limiting the waste of electrodes.

Features extraction It is performed by the emgsignal class, which en-

capsulates the signal and implements the previously discussed algorithms

for segmentation to detect the boundaries of the bursts and for features

extraction. It also provides the methods which automatically manages the

length of the analysis buffer during online classification.

Classification It is performed by the emgnet class, which extends the

built-in network and overrides the sim function: software profiling high-

lighted a series of computationally demanding instructions within the ini-

tialization phase whose execution time, for the size of the network we are

dealing with, was an order of magnitude greater than simulation itself. This

segment of code was then modified caching the results of redundant in-

structions and properly structuring the input parameters to avoid costly
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conversions; the final result is a function with almost no overhead whose

execution time is determined only by the activation functions (see section

for the achieved speedup).

Polimanus The class polimanus handles serial communication with the

rehabilitative exoskeleton, thus giving to the programmer a high-level in-

terface to control the movement of the device. It provides methods which

automatically perform the predefined movements, hand opening, closing and

pinch, plus the possibility to manually define the position and speed of the

actuators to execute custom movements.

4.6.2 Training

System training is performed in two stages, implemented by two different

functions.

The first stages is the acquisition of the training samples: the function

farmData guides the user through the acquisition protocol (proposed in

4.3.5) while acquires the signal using through emgboard; the samples are

then automatically stored and tagged, so the user can manually remove the

artifacts.

The second phase is the training itself: trainNN loads, parses and analyses

(through emgsig) the stored batch of signals. The features extracted from

the found bursts are then used to train a neural network for patter recog-

nition calling the built-in toolbox. The resulting nets are then stored to be

later used by the online classifier.

4.6.3 Online classification

Online classification is performed by the onlineRecognition function: in

the initialization phase loads the stored network and connects to the external

devices through the apposite interfaces.

Classification is then performed continuously polling the EMG board and

analyzing the acquired signal through emgsig. If any burst is found further

analysis are performed, extracting and classifying the features, using the

output label to determine the control variable to forward to Polimanus.

The signal buffer is finally flushed accordingly to the policy presented in

section 4.5.
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Chapter 5

Results

This chapter describes how the designed system is able to classify the per-

formed gestures within the specified time constrains. Profiling was initially

executed offline on a batch of data with the goal to estimate the delay

introduced by signal analysis only. Further tests were then performed to

determine the minimum signal length needed to obtain a reliable classifica-

tion.

Finally online classification was tested with the goal to determine the per-

formances of the overall system considering the classification rate over three

gestures (the ones performed by Polimanus) and the user perceived delay.

Tests were performed over a P4-2.4GHz PC with 4GB of ram and running

Matlab 7.11 for Windows. Execution times were profiled using the built-in

performance tools.

5.1 Recognition anticipation

This test was conceived to determine if is possible to have a reliable classi-

fication using only an incomplete burst and eventually which are the limits,

thus significantly reducing the response time of the exoskeleton.

The same batch of movements used for the previous profiling (using thirty

repetitions over seven gestures) was used to train five neural networks with a

recognition rate between 95% and 97.5%. Classification was then performed

using the testing set containing the 10% of the bursts. Bursts had an average

length of 197 samples (28 std), where, as already pointed out, the effectively

detected burst start from the hundredth sample, and the previous ones are

kept to catch possible early low-amplitude dynamics that would otherwise

be lost.



Features where extracted from the initial segments with increasing lengths

and classified using the five nets. Recognition rate over burst percentage are

displayed in figure 5.1.

Figure 5.1: Recognition rate over burst

We note that the system is unable to successfully identify the gesture in

the first half of the burst, which is right at the end of the preamble, where

the activity of the signal starts to build up. At 60% of the burst we obtain

a recognition rate near 90%, further increasing until reaching the nominal

rate at full burst. This test suggested that is possible to achieve a reliable

classification using only the 20-30 samples recorded right after the segmen-

tation algorithm detects the burst.

The test was then repeated over a set of networks trained following the same

procedure, but using only the first half of the bursts: the figure 5.2 displays

how the recognition rate reaches his peak around 50% of the length, then

slowly decreasing for longer segments. This was expected, since the network

performs best around the very same burst length used for his training, while

obtaining lower scores as the features slowly change as the signal length in-

crease.
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Figure 5.2: Recognition rate over burst percentage

Repeating the test training the burst over segment even shorter made no

sense, since that would mean using features that would show before the sys-

tem is able to detect the burst.

These tests showed how in a early stage we can already have a recognition

rate close to the one obtained analyzing full bursts, around 100ms after the

effective detection of the burst. This allows us to forward a control variable

to the exoskeleton before the movement is complete.

In a real interactive application however the delay introduced by the EMG

board, the serial communication overhead and the mechanical latency of the

exoskeleton should also be taken into account, but these aspects cannot be

precisely measured using the same tools used within this test. They will be

considered in section 5.3, providing a experimental measure observing the

system behaviour.
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5.2 Delay analysis

The goal of this set of tests is to determine the computation time required

by the several steps of the proposed algorithm during online classification,

with the goal to estimate elapsed time between gesture execution and the

command of the control of the exoskeleton. These preliminary tests were

executed using samples extracted from a batch of signals acquired during

the previous work [15], tagged as Subject A. It consists in sixty repetitions

for seven gestures (hand opening and closing, wrist extension and flexion,

thump abduction and opposition, index extension), with an average length

for the detected bursts of 200 samples (20 std).

5.2.1 Segmentation

As stated in section 4.5 the signal buffer length vary from 100 to up to

300 samples over three channels. To determine the delay introduced by

the segmentation algorithm we performed the analysis over 100 segments

randomly extracted from the acquisition batch, each one 300-sample long

(to consider the upper bound).

Function Calls Total time (s)

emgsig.findBursts 100 0.894

Table 5.1: Profiling of emgsig.findBursts

We can observe that the average execution time is under 100ms. Among all

segments 57 bursts were detected.

The same test was repeated over the complete batches of acquisition to see

how computation time vary over long signals (such as during the training

phase, where big batches are processed); they consist in 42 repetitions con-

taining 10 movements each, with an average length of 41642 (492.2) samples.

Function Calls Total time (s)

emgsig.findBursts 42 3.241

Table 5.2: Profiling of emgsig.findBursts
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5.2.2 Independent component analysis

To compute the performances of ICA the present test was performed profil-

ing the execution of this function over the burst extracted from the acquisi-

tion set. First for each burst were analysed only the first 120 samples saving

the computed mixing matrix, then ICA was performed over full burst start-

ing from both the computed A matrix and a random value. The average

length of a full burst is 197 (28 std) samples.

Function Calls Total time (s)

fastica (first 120 samples) 420 6.326

fastica (full burst, precomputed A) 420 2.138

fastica (full burst, random A) 420 4.351

Table 5.3: Profiling of ica

The results over full bursts result suggest that what really improves the

convergence is the greater amount of information given by a longer signal

rather than pre-computing the unmixing matrix, which leads nonetheless

to interesting improvements. The high execution time of ICA on short

signals brings anyway into question the real utility of having an initial guess

of A: if the signal is too short for a meaningful classification the system

would then proceed polling the EMG board for new samples, but that would

mean an average of 10ms (for emgsig.findBurst, as showed the previous

test) are past from the last access to the board, thus obtaining only two

new samples; thus the new signal won’t be very different from the previous

one, so computing an initial guess for the unmixing matrix helps to slightly

increase time between acquisitions and have more new samples (a mild delay

balanced by a speed-up in further iterations).

5.2.3 Feature extraction

The set of data obtained from the last test was used to measure the computa-

tion time of the steps performed for feature extraction. emgsig.extractFeatures

performs the analysis over three different channels (so the subfunctions are

called three times as much). cwt was also included in the test with the goal

to determine the speed-up of the customized myCwt.

We can see from table 5.4 how the customized wavelet analysis provides a

significant speed-up if compared to the built-in function (six time faster); it

increase considerably the performances of the system, since it is one of the

heaviest bottlenecks. myCwt takes the 88.5% of all extractFeatures time,
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Function Calls Total time (s)

cwt 1260 12.745

myCwt 1260 2.075

svd 1260 0.198

iEMG + MAV 1260 0.027
extractFeatures

(myCwt, svd, iEMG, MAV)
420 2.449

Table 5.4: Profiling of emgsig.extractFeatures

svd takes the 8.4% and the remaining features, iEMG + MAV, take the

1.1%. Over a full burst we have an average computation time of 5.8ms.

5.2.4 Classification

This test was performed to compare the execution time of the custom

emgnet.sim with the built-in network.sim. The features computed from

the last test were used as inputs.

Function Calls Total time (s)

network.sim 420 28.6962

emgnet.sim 420 3.3631

Table 5.5: Profiling of emgnet.sim

We obtained a speed-up of 8.5, with an average execution time of 8ms. This

is significant since the neural network is another bottleneck in the online

classifier.

5.2.5 Complete analysis

The following test was performed executing the complete analysis using 100

segment of signals containing a burst.

Table 5.7 shows how a complete burst classification takes an average of 35ms,

which leads to a frequency of 28 analyses per second. Should be noted that

in a real online application emgsig.extractFeatures and emgnet.sim are

not executed if no burst is detected, and if the length of the detected burst is

under 120 samples only ica is performed, thus making the following analysis

cycle faster; we can then consider the estimated frequency as a lower bound.
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Function Calls Total time (s)

emgsig.findBursts 100 1.14

emgsig.extractFeatures 100 1.470

emgnet.sim 100 0.861

ica 100 0.77

myCwt 300 0.62

Total 100 3.47

Table 5.6: Profiling of a complete analysis

H. open H. close Pinch Total

20/20 20/20 17/20 57/60

Table 5.7: Profiling of a complete analysis

In a real interactive application however the delay introduced by the EMG

board, the serial communication overhead and the mechanical latency of the

exoskeleton should taken into account. These aspects will be considered in

the tests reported in the next section.

5.3 Online classification

To test online performance on the target device a new acquisition set was

needed: following the procedure specified in section 4.3.5 new training sam-

ples were acquired. The recorded gestures were limited to the ones the device

is able to perform (meaning hand opening, hand closing and pinch), so a

total of ninety movements were recorded; the subject is a 26 years old male,

with a height of 1.83m and weighting 73kg. With this set a classifier was

trained, using cross-validation with 75% of the samples for training, 15% for

validation and 10% for external testing; training the net resulted quite easy

if compared to the previous set, due to the lower number of gestures and

the high separability of their features (being very different movements).

The online classifier was launched and the user was asked to perform a

sequence of randomly selected movements while recording the success rate.

The classifier scored an overall recognition rate of 95% on the performed

movements. Hand openings/closings scored a perfect recognition rate, while

the delay recorded between the beginning of the movement and the first
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response from the classifier was estimated to be around 200ms (including

the delay introduced by the EMG board, serial communication, the time

needed to gather enough samples for a reliable classification and finally the

analysis itself), while subsequent cycles produced a new output (confirming

the first one) every 20-30ms until movement completion.

Some issues were noticed with pinch: this movement generates a mild mus-

cular activity, hard to detect until tetanus is reached (meaning only after the

fingertips touch and start pushing against each other, generating a greater

muscular activity). It was also the only movement who did not achieve a

perfect recognition rate, mistaken for hand closing because of the relatively

similar activation during tetanus. Identification could be easily improved

with a more thoughtful choice of features, but the output would be in-

evitably too late if we are unable to detect it in his early stage.

A malfunction, probably located in the FTDI232RL, did not allow to add

Polimanus to the online tests. During the early developing stage however

the device was extensively tested to make sure his interface module is bug-

free and to have an preliminary estimation of the delay introduced by serial

communication and the response of his mechanical parts: the interaction

with the device was filmed using a 60fps camera, and the recording was

then analysed to determine the elapsed time between the instant the user

sends the command and the beginning of the movement of the actuators.

The delay was evaluated to be around 200ms, which in series with the online

classifier would bring the overall response time around 400ms, slightly above

the prefixed limit.

This delay however could be reduced through the development of a new

device, with a faster communication and reducing the mechanical response

time through a more lightweight structure.

66



Chapter 6

Discussion

6.1 Conclusions

In this work we demonstrated the feasibility of an interactive controller for

a rehabilitative device based on the classification of the electromyogram

through an early analysis of the burst. While the previous system relied his

accuracy on the information extracted over complete gestures, we showed

how is possible to obtain similar performances analyzing only a limited num-

ber of samples from the beginning of the detected movement; this way we

reduced the perceived delay under 200ms, an interval which is under the

commonly accepted limit for a smooth interaction.

Further increase in the time-performances were achieved by means of a

meticulous optimization, which significantly decreased the analysis time,

allowing to continuously generate further control variables every 20-30ms

until the end of the movement.

Thanks to its new interactive capabilities the classifier can be integrated

into a rehabilitative device, thus offering him the ability to implement an

assist-on-need strategy based on the residual muscle signal, without the need

of a force control that would make his design more complex and affect his

production cost.

What we achieved is to significantly improve the quality of the rehabilita-

tive training a cheap device like Polimanus can offer: from simple tool which

forces the patient through a set of preprogrammed movements, promoting

only joint plasticity, we obtained a device able to detect to user’s intentions,

quickly reacting to assist whatever movement is trying to perform. This new

capability has several implications: forcing an active effort helps to regain

muscle tone more quickly, while at the same time allows performing typolo-



gies of exercises aimed to the rehabilitation of the neuromuscular system;

it is also suitable for highly-impaired patients, whose inability to perform

any movement would not permit them to benefit from robotic rehabilitation

through force-controlled devices. The benefits are also from the psycholog-

ical point of view: putting the patient in a more active role helps him to

feel in control of the exercise, significantly boosting his motivation since he

would perceive the improvement as a result of his own effort, bringing a

greater sense of gratification; moreover with this kind of control is the pa-

tient himself to decide the pace of the exercise, accordingly to his conditions.

The new architecture of the system was also conceived to improve his modu-

larity, decoupling the core signal analysis from the specific implementations

of the used external devices. This allows to easily adapt to the introduction

of new devices, such as a new prototype of exoskeleton, or reusing the system

for applications even outside the field of rehabilitation, such as prosthesis

control, teleoperation or human computer interaction.

6.2 Further developments

The newly developed greatly enhanced the capabilities of Polimanus and the

effectiveness of the therapy it is able to offer. However several important

steps are needed to obtain a functional rehabilitative framework.

Computational speed

Matlab was used as environment because of his high performances and the

huge availability of functions and toolboxes for every application. However

better performances could be achieved porting the code on a microcon-

troller: a thorough optimization on the underlying architecture would allow

faster execution, while the overhead given by serial communication would be

significantly reduced; moreover the reduced size would make the controller

suitable for wearable application.

Design of the rehabilitative device

The most pressing matter anyway is the need of a new exoskeleton: Poli-

manus demonstrated that is possible to realize a rehabilitative device using

low cost materials, but with serious limitations. The structure is bulky and
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uncomfortable, it allows performing only few typologies of movements, some

in an incorrect way, the equipped sensors and actuators allow only gross con-

trol and some flaws in his design make him jam frequently.

A meticulous anatomical study must be performed with the goal to design a

possibly lightweight device able to fit the human hand follow his movements,

emulating his range of motion. Actuators must be dimensioned to generate

the correct forces without the risk to hurt the patient forcing incorrect po-

sitions, and sensor must embedded do have a feedback from user-generated

forces. A device with similar features would be far from being cheap at the

present time, but as showed in chapter 3.3 there are several designs which

can be used as inspiration for interesting trade-off.

Interaction with the medical field

Having a fully functionally rehabilitative or assisting device would allow to

proceed with the last stage which is the ultimate step of the project, mean-

ing the field test. This last phase however is not immediate since has serious

implications from the legal and ethical point of view: since the system has

to be tested on human beings, people hoping in a way to improve the quality

of their life, so a thigh cooperation with the health care system is needed,

allowing the synergy of medical and engineering competencies and guaran-

teeing the safety and dignity of the patients.

Rehabilitative robotics promises to bring significant improvements into the

quality of life of victims of impairing accidents offering high intensity training

and allowing to objectively compare the effectiveness of different therapies.

Significant results had been achieved, but a solid framework of both knowl-

edge and devices is yet to be established. More effort must be put into this

this field.
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Acronyms

DIP Distal InterPhalangeal joint

DOF Degree Of Freedom

EMG ElectroMyoGraphy

FPS Frames Per Second

HCI Human Computer Interaction

ICA Independent Component Analysis

iEMG Integral EMG

IP InterPhalangeal joint

LM Levenberg-Marquardt

MAV Mean Absolute Value

MCP MetaCarpal Phalangeal joint

MU Motor Unit

MUAP Motor Unit Action Potential

MVC Maximum Voluntary Contraction

NN Neural Network

PCA Principal Component Analysis

PIP Proximal InterPhalangeal joint

sEGM Surface ElectroMyography

SNR Signal to Noise Ratio

SVD Singular Value Decomposition
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SVM Support Vector Machine
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Appendix A

Diagrams

This appendix reports the diagrams of the realized systems. Figure A.1 dis-

plays the class diagram of the implemented classes using the classical UML

convention. Figure A.2 display the logical flow of the of sample acquisition,

network training and online classification. Figures A.3 and A.4 displays the

logical flow of the EMG board module and of the feature extraction function.
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Figure A.1: Diagram of the classes
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Figure A.2: Diagram of the logical flow of the functions in different stages
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Figure A.3: Diagram of emgboard

Figure A.4: Diagram of feature extraction



Appendix B

Software documentation

This appendix contains the documentation of the software realized within

this project.

For each class is provided an high level description of his functionalities, fol-

lowed by a list of the properties and the methods with a brief explanation.

For each function or method a detailed description is provided, following the

style of the official Matlab Documentation. These descriptions can also be

accessed through Matlab’s built-in help and doc.

The code is available on a online repository at the address http://code.

google.com/p/polimiemganalysis/

http://www.mathworks.com/help/techdoc/
http://code.google.com/p/polimiemganalysis/
http://code.google.com/p/polimiemganalysis/
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B.1 Emgnet

Pattern recognition neural network.

This class extends the built-in network, storing the struct converted class in

order to avoid the costly conversion every time the sim function is called.

This way the time required to produce an output is significantly reduced for

small networks.

Class Details

Superclasses: network

Constructor Summary

emgnet create a custom emg classifier

Property Summary

strNet network struct

Method Summary

sim simulate emgnet

Method Details

emgnet

Class constructor.

en = emgnet(net) receives a network class net and converts it in a emgnet

object.

sim

Simulates the neural network.

This method overrides the original sim method. It skips the conversion to

struct of the network class (since was already performed by the constructor)

thus significantly improving execution time.

http://www.mathworks.it/help/toolbox/nnet/ref/network.html
http://www.mathworks.it/help/toolbox/nnet/ref/network.html
http://www.mathworks.it/help/toolbox/nnet/ref/sim.html
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y = sim(en,x) takes the emgnet object en and the input vectors x and

returns the output vectors y generated by the network. For more details see

sim.

B.2 Emgboard

EMG board interface for signal acquisition.

emgboard handles the serial communication with the Eracle device, offering

a method which pools the board and parses the output, thus returning the

signal as a matrix of integers.

Class Details

Superclasses: handle

Constructor Summary

emgboard create Eracle interface

Property Summary

chunk incomplete sample from last acquisition

dump dump filename

dumpH dump file handler

port port name

Constant sRate serial sample rate

ser serial handler

Method Summary

close close serial communication

getEmg get parsed EMG signal from Eracle

getRaw get raw data output from the serial port

open open serial port communication

Static parser parse EMG board output

plotEmg real-time signal plot

http://www.mathworks.it/help/toolbox/nnet/ref/sim.html
http://www.mathworks.it/help/techdoc/ref/handle.html
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Method Details

emgboard

Class constructor.

eb = emgboard(port,dump) returns an object which will handle the Eracle

board. port is the serial port name, while dump (optional) is the name of

the file where the raw data is saved.

close

Close serial communication.

status = close() closes the serial port (and any dump file). Returns 1 on

success.

getEmg

Get parsed EMG signal from Eracle.

[ch data] = getEmg(w) gets and parses the signal from the EMG board

and returns the signal ch as N × 3 matrix, where N is the signal length and

3 the number of channels. If w is given and not zero the call will be blocking.

If specified, data is the raw output from the serial.

NOTE: too much time between two consecutive serial reading (ie: long

analysis time) could cause the input buffer to fill, thus losing data. This

way the parser could be unable to concatenate and parse the two readings.

getRaw

Get raw data input from serial port.

raw = eb.getRaw(w) returns the raw output string from the serial board.

If w is specified and not zero this call will be blocking.

open

Opens serial port communication.

status = eb.open() opens serial port communication, returning 1 on suc-

cess.
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parser

Parses EMG board output. [Static]

[ch,chunk] = emgboard.parser(raw,chunk) parses the EMG board out-

put raw, concatenating it with chunk if provided. Returns the N×C matrix

ch (with N number of samples, C number of channels) and the tail of the

last incomplete sample chunk.

plotEmg

Real-time signal plot.

f = eb.plotEmg(f) plots the signal from the EMG board. It takes as pa-

rameter (optional) and returns the handler f of the window where the signal

is drawn. The chunk from the latest acquisition is plotted in red.

B.3 Dummyboard

EMG board emulator.

dummyboard This object will simulate the output of an EMG board: samples

from a pre-recorded burst are returned when a gesture is selected through the

GUI, and random noise is returned otherwise to simulate muscle’s inactive

state. The sample rate is the same of the original Eracle board.

Class Details

Superclasses: emgboard

Constructor Summary

dummyboard create EMG board emulator
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Property Summary

burst index of the selected burst

emg pre-recorded bursts

iBurst index of the last outputted sample

last timestamp last acquisition

move id of the selected movement

targets gesture associated to the pre-recorded bursts

Method Summary

dummyboardGUI gesture selection interface

getEmg get simulated EMG data

open load pre-recorded bursts

Method Details

dummyboard

Class constructor.

db = dummyboard(src) returns an object which simulates an Eracle board.

src is the path of the .mat file containing pre-recorded bursts.

dummyboardGUI

Gesture selection interface.

db.dummyboardGUI() opens a interactive user interface for gesture selection.

getEmg

Get simulated EMG data.

ch = db.getEmg() returns a N × 3 matrix ch containing the generated

samples, where 3 is the number of channels and N is the number of samples,

accordingly to the sample rate and the elapsed time from the last method

call. The output consists into samples of a pre-recorded burst when a gesture

is selected through the GUI, random noise otherwise.
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open

Load pre-recorded bursts.

db.open() loads the pre-recorded bursts from the file specified during ini-

tialization.

B.4 Emgsig

EMG signal analysis.

This class encapsulates the EMG signal and provides the methods for burst

detection and feature extraction

Class Details

Superclasses: handle

Constructor Summary

emgsig EMG signal analysis

Property Summary

a ica weights

ch detected bursts’ dominant channel

dHigh highpass poles

dLow lowpass poles

heads detected bursts’ head

low lowpass signal

nHigh highpass zeros

nLow lowpass zeros

sRate sampling frequency

scales wavelet scales

sig signal samples

tails detected bursts’ tail

xWAV integration limits (used by myCwt)

yWAV integral wavelet (used by myCwt)

http://www.mathworks.it/help/techdoc/ref/handle.html
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Method Summary

add add new signal samples

clearSignal flushes old signal samples

extractFeatures extract bursts’ features

findBursts detect muscular activity

getBursts returns EMG samples

plotSignal plots EMG signal

setSignal set EMG signal

Method Details

emgsig

Class constructor.

es = emgsig(rate) returns a emgsig object used for feature extraction.

The parameter rate is the sample rate of the EMG board.

add

Add new signal samples.

len = es.add(ch) appends the new signal chunk ch to es.sig. Returns

the final signal length len.

clearSignal

Flushes old signal samples.

feats = es.clearSignal() removes the signal samples no longer useful for

online recognition.

extractFeatures

Extract bursts’ features.

feats = es.extractFeatures(varargin) returns a cell-array where each

elements contains the features of the bursts detected by emgsig.findBursts.

If verb—’ica’— is specified among the optional values ICA denoising is pre-

formed before signal analysis.
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findBursts

Detect muscular activity.

n = es.findBursts() analyses the EMG activity to detect burst. Returns

the number of bursts found.

getBursts

Returns EMG samples.

bursts = es.getBursts() returns a cell-array where each elements con-

tains the samples of the bursts detected by emgsig.findBursts.

plotSignal

Plots EMG signal.

f = es.plotSignal(f) plots the signal, highlighting the bursts detected

with emgsig.findBursts. If provided, f is the handler of the window where

the method will plot.

setSignal

Set EMG signal.

len = es.setSignal(sig) replaces the EMG signal with the one provided

with sig. Returns signal’s length len.

B.5 Polimanus

Polimanus interface.

The class polimanus handles serial communication with Polimanus exoskel-

eton, providing high-level methods to control it. Drivers from FTDI site

may be needed.

Class Details

Superclasses: handle

http://www.ftdichip.com/Drivers/VCP.htm
http://www.mathworks.it/help/techdoc/ref/handle.html
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Constructor Summary

polimanus create Polimanus interface

Property Summary

lastSent last sent position

port port name

ser serial port handler

Method Summary

changePort changes polimanus port

close close serial port

move perform generic movement

moveClose perform close hand movement

moveOpen perform open hand movement

movePinch perform precision grasp

open open serial port

Method Details

polimanus

Class constructor.

pm = polimanus(port) creates an handler for the Polimanus exoskeleton

on port port.

changePort

Changes the port of Polimanus.

pm.changePort(port) sets the new port of Polimanus to port.

close

Close serial communication.

pm.close() closes the serial port communication.
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move

Perform generic movement.

pm.move(p1,p2,s1,s2) commands a generic movement, moving servo1 to

p1*180/256 degree and servo2 to p2*180/256 degree with speeds s1 and

s2. All parameters are values within 0 and 255.

moveClose

Perform close hand movement.

pm.moveClose(s) commands hand closing with speed s (within 0 an 255).

moveOpen

Perform open hand movement.

pm.moveOpen(s) commands hand opening with speed s (within 0 an 255).

movePinch

Perform precision grasp movement.

pm.movePinch(s) commands pinch movement with speed s (within 0 an

255).

open

Open serial communication.

status = pm.open(varargin) opens serial port communication, returning

success status. If the string log is within the optional arguments the serial

communication is dumped on disk.

B.6 Functions

B.6.1 Analysis

extractFeatures

Extract features from a signal segment.
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f = extractFeatures(sig, scales, yWAV, xWAV) returns the feature vec-

tor f (integral EMG, absolute mean value, wavelet coefficients after SVD) of

sig. yWAV and xWAV are the values of the selected mother wavelet obtained

with intwave, scales are the scaling coefficients.

ica

Performs ICA denoising.

[s, a] = ica(emg, aStart, aOnly) performs ica denoising, extracting the

independent sources and reconstructing the original signal after a dynamical

thresholding of the weights. It takes as input the L × 3 signal sig, where

L is the length of the signal, and the (optional) mixing matrix aStart as

initial value. Returns the denoised signal s and the computed matrix a. If

aOnly is provided and equal to 1 s is not computed and only a is returned.

myCwt

Real or Complex Continuous 1-D wavelet coefficients.

This is a customization of the original continuous wavelet transform func-

tion.

[coefs,varargout] = myCwt(sig,scales,yWAV,xWAV,plotmode,xlim) re-

ceives as input the signal sig, the scales scales and the already built

mother wavelet (using intwave) through the parameters yWAV and xWAV

(where [yWAV,xWAV] = intwave(’wname’)). Since the function does not

have to call intwave, execution time is significantly reduced. For more

details see cwt.

B.6.2 Training

farmData

Acquires training sets.

farmData(port) guides the patient through the acquisition of sample move-

ments, saving the data in a subfolder of the current path, plus a gest.mat

file containing gestures name, ID and #repetitions. If specified opens the

board on port (otherwise the default port is used).

http://www.mathworks.com/help/toolbox/wavelet/ref/intwave.html
http://www.mathworks.com/help/toolbox/wavelet/ref/cwt.html
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trainNN

Trains pattern recognitino nn.

[nets, trs] = trainNN(folder, nnn, burstRatio, varargin) loads the

samples stored into folder and trains a number of neural network equal to

nnn using only the initial segment of the detected burst whose length is ex-

pressed as percentage over the full burst (default: 100%). if ‘ica’ is specified

as optional parameter ICA denoising is performed before training.

Returns the trained nets and their training records trs.

B.6.3 Online recognition

onlineRecognition

Performs online recognition.

onlineRecognition(net, varargin) performs online gesture recognition.

It takes as input the network net (network or emgnet class) and uses it to

continuously classify the gestures acquired from the EMG board. If ’ica’ is

provided among the optional parameters ICA denoising is performed during

the analysis. ’plot’ enables the graphical feedback (otherwise only the

textual one is provided).

B.6.4 GUIs

acqGUI

Get gesture names.

[n, nrep, gests, name] = acqGUI() displays a graphical interface where

the user can select the number of gestures n, the number of repetitions nrep,

their name gests and the name of the patient.

burstGUI

Acquisition walkthrough GUI

port = burstGUI(gName,rep) launches a graphical interface which allows

the user to signal to the calling function the beginning and the stop of the

movement. Displays the gesture gName and repetition rep.
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portGUI()

Returns the selected serial port.

port = portGUI() launches a graphical interface for serial port selection.

Returns a string containing the name of the selected port.

B.6.5 Utilities

convertAll

Gets datas from folder.

c = convertAll(np) returns a cell-array containing the signals parsed from

the files in folder.

convertFile2MAT

Extrat emg data from file.

sig = convertFile2MAT(f) returns the data vector sig extracted from the

text file f.

parseRaw

Convert raw data file.

ch = parseRaw(folder) opens the files stored into folder, parses the con-

tained raw signal (as taken from the EMG board) and separates the channels

into separate files.

plotAll

Plot all acquisitions.

plotAll(folder, findB) plots all acquisitions stored in the files in folder.

If findburst exists and not null the signal is segmented too.

plotEmgFile

Plots EMG data from file.

f = plotEmgFile(patient, seq, gesID, gesName) plots EMG signal saved

in files folder/ch#/gesID-seq-gesName.txt and returns figure hadle f.
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remakeRaw

Rebuilds raw input from parsed channels.

remakeRaw(folder, file) rebuilds the raw input file (as outputted from

the EMG board) from the samples stored into ./patient/ch#/file

saveBursts

Save raw bursts or features on disk.

saveBursts(type, folder) extracts bursts from the files into folder/ch#,

performs segmentation and saves the raw data (type = ’raw’) or their fea-

tures (type = ’feats’) into folder type.mat. The file will contain a 2×N
cell matrix, on the first row the signals/features, on the second one the

gesture ID.
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Appendix C

Wavelet analysis

Principles of continuous wavelet transform

Many signals, such as the EMG, have a non-stationary nature, varying in

amplitude and frequency features over time. The classical approach based

on classical Fourier analysis consists into breaking the signal into sine waves

of different frequencies, producing a spectral representation unable to catch

the transient features and losing their temporal localization, in a result which

offers poor information.

An alternative technique developed in 1946 is the short-time Fourier trans-

form (STFT), which is obtained applying the FT over small intervals win-

dowing the signal.

F (ω, τ) =

∫
f (t)w (t− τ) e−jωtdt (C.1)

w (t) =

√
α

π
e−α(t−τ)

2

This way can we map f(t) over ω and τ , providing a bidimensional represen-

tation which gives us both spectral and temporal localization of the signal’s

features. The drawback is the fixed size of the window forces the same reso-

lution for all the time-frequency plane, while some applications may require

a more flexible approach which allows to determine more accurately either

time (shorter windows) or frequency (wider windows).

Continuous wavelet analysis is a technique developed in the early 1980s,

rapidly developed thanks to his flexibility and the wide range of application,

replacing the Fourier transform in many fields.

This technique analyses the signal measuring the similarity (by means of
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inner product) between the signal and a function Ψ called mother wavelet

(while in FT the analysing functions are complex exponentials and in STFT

are windowed complex exponentials) scaled and shifted by different val-

ues, thus obtaining a two-dimensional representation (time-scale) of a one-

dimensional signal.

C(a, b; f (t) , ψ (t)) =

∫ ∞
−∞

f (t)
1√
a
ψ∗
(
t− b
a

)
dt (C.2)

Frequency features are closely related to the scale of the wavelet: as the

coefficient a decrease the wavelet is compressed, thus showing more rapidly

changing features which will match high-frequency dynamics of the analysed

function leading to bigger values in the high-scale coefficients of the trans-

form. On the contrary higher scales will stretch the wavelet, matching low

frequency features. As we can note from equation C.2 the wavelet is also

multiplied by 1/
√
a, in order to obtain to have an analysing signal with the

same energy at every scale.
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Figure C.1: Example of a ’db8’ wavelet over a sinusoidal signal

Shifting is obtained delaying the analysing function. Since the wavelet has

finite energy this will naturally implement signal windowing, allowing us

to have a temporal localization of the features. Moreover scaling allows us

to modify the size of the window stretching or compressing the wavelet,
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giving us a flexible tools which allows a finer temporal localization of high-

frequency features (low scale) and a more precise frequency localization of

slowly changing dynamics (high scale). This is one of the most interesting

advantages of wavelets with respect to STFT, where the resolution if fixed.

Another important element in wavelet analysis is the shape of the mother

wavelet. There are different wavelet families, each one with different features

which make it more or less suitable give the nature of the signal and the

available computational power: a function with rapidly changing features

will be more suited to look discontinuities in the signal, while if you are

interested in smooth oscillations a wavelet closely matching this behaviour

may be appropriate. As a general rule the more a wavelet resembles the

signal the more effective the analysis.

Discrete wavelet transform

To reduce the amount of computation required by CWT a new method was

conceived based on performing the analysis only on dyadic positions and

scales, resulting in a much more efficient transform. This technique, called

discrete wavelet transform consist into applying two complementary filter to

the analysed signal, thus generating two different outputs: the first one will

contain the low frequency features (also called detail), while the second one

will contain the high frequencies (approximation).
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Figure C.2

To reduce the number samples, that otherwise will grow slowing the com-

putation, the signal is then downsampled. This process is then iterated

repeating the analysis on the approximation signal until downsampling re-

duces it to a length that make impossible further iterations.

Figure C.3

The advantage of DWT, if compared to CWT, is that halving the number

of samples after each iteration the complexity of the transform reduces sig-

nificantly while maintaining a similar analysis capabilities, making it more

suitable for applications such as signal (or image ) analysis, denoising and

compression.
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