
Politecnico di Milano

Facoltà di Ingegneria dei Sistemi

Corso di Studi in INGEGNERIA MATEMATICA

Tesi di Laurea Magistrale

Model-based clustering via Bayesian

nonparametric mixture models

Relatore: Prof. Alessandra GUGLIELMI

Correlatore: Dott. Ra�aele ARGIENTO

Candidato:

Andrea CREMASCHI Matr. 751137

Anno Accademico 2011-2012



Contents

1 Data Clustering 1

1.1 Heuristic Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Model-Based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Bayesian nonparametric model-based clustering 7

2.1 The Bayesian nonparametric approach . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Nonparametric priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 The Dirichlet process prior . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 The NGG process prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Product partition models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Dirichlet/NGG process mixture models . . . . . . . . . . . . . . . . . . . 16

2.3.3 Relationship between PPMs and mixture models . . . . . . . . . . . . . 17

2.4 Posterior choice of one single Bayesian estimate of the random partition . . . . . 19

2.4.1 Stochastic Search by Posterior Sampling of Partitions . . . . . . . . . . . 20

2.4.2 Bayesian Hierarchical Clustering Procedures . . . . . . . . . . . . . . . . 21

2.4.3 Loss-Function Minimization methods . . . . . . . . . . . . . . . . . . . . 22

2.5 A new class of Bayesian estimates for the random partition . . . . . . . . . . . . 24

3 Galaxy Data 28

3.1 Dirichlet process with �xed mass parameter . . . . . . . . . . . . . . . . . . . . 30

3.2 Dirichlet process with random mass parameter . . . . . . . . . . . . . . . . . . . 31

3.3 NGG process with �xed parameters . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 SS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



3.4.1 Dirichlet process with �xed mass parameter . . . . . . . . . . . . . . . . 34

3.4.2 Dirichlet process with random mass parameter . . . . . . . . . . . . . . . 35

3.4.3 NGG process with �xed hyperparameters . . . . . . . . . . . . . . . . . . 37

3.4.4 Final considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 BH method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Dirichlet process with �xed mass parameter . . . . . . . . . . . . . . . . 40

3.5.2 Dirichlet process with random mass parameter . . . . . . . . . . . . . . . 41

3.5.3 NGG process with �xed parameters . . . . . . . . . . . . . . . . . . . . . 41

3.6 Loss-function minimization method . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 A new loss-function method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Euclidean distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Kullback-Leibler I-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9.1 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Kevlar Data 47

4.1 Cluster analysis using the standard similarity matrix . . . . . . . . . . . . . . . 48

4.2 Cluster analysis using the new similarity matrix . . . . . . . . . . . . . . . . . . 49

4.2.1 Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Kullback-Leibler I-divergence . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Simulated bivariate dataset having a non-convex support 56

5.1 Loss-function minimization methods . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Kullback-Leibler I-divergence . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 L2 and Hellinger distance . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.3 Varying the value of K̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Dealing with misclassi�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Application of some heuristic techniques for clustering . . . . . . . . . . . . . . . 81

5.3.1 Agglomerative hierarchical clustering . . . . . . . . . . . . . . . . . . . . 81

5.3.2 K-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.3 DBSCAN algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ii



5.3.4 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Posterior sampling and density estimation 87

6.1 Polya Urn scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Dirichlet Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 Galaxy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.2 Bivariate Dataset with non-convex support . . . . . . . . . . . . . . . . . 92

6.3 NGG Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Galaxy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

iii



List of Figures

3.1 Prior expected number of clusters Kn, varying the value of the mass parameter

a of the Dirichlet process prior. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 (a) Surface and (b) contour plot of the mean values of the number of clusters

Kn, varying the value of the hyperparameters γ1 and γ2 of the mass parameter

distribution: a ∼ Gamma(γ1, γ2). In (b) the black lines represent those couples

(γ1, γ2) for which the mean of the number of clusters is equal to 1, 3 and 10

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Application of the SS method to the Galaxy dataset under Dirichlet process prior

with �xed mass parameter (E(Kn) = 3, a = 0.455). (a) and (b): (m0, k0, ν1,Ψ1) =

(0, 0.01, 2, 1); (c) and (d): (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20); (e) and (f): (m0, k0, ν1,Ψ1) =

(0, 0.001, 3, 0.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Application of the SS method to the Galaxy dataset under Dirichlet process

prior with random mass parameter (E(Kn) = 3, (γ1, γ2) = (2, 4)). (a) and (b):

(m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1); (c) and (d): (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20);

(e) and (f): (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2). . . . . . . . . . . . . . . . . . . . 37

3.5 Application of the SS method to the Galaxy dataset under NGG process prior

with �xed hyperparameters (E(Kn) = 3, (σ, κ) = (0.25, 0.05)). (a) and (b):

(m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1); (c) and (d): (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20);

(e) and (f): (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2). . . . . . . . . . . . . . . . . . . . 38

3.6 Examples of BH results. Dirichlet process prior with �xed mass parameter.

E(Kn) = 1, a = 0.001 and (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1). . . . . . . . . . . . . . 40

3.7 Estimate given by the application of the BH method to the Galaxy dataset. We

obtained this result for all the examined con�gurations of nonparametric priors

and hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



3.8 Application of the standard loss function minimization method to the Galaxy

dataset. Results holding for all the process prior choices (E(Kn) = 3). (a) and

(b): (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1); (c) and (d): (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20);

(e) and (f): (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2). . . . . . . . . . . . . . . . . . . . 42

3.9 Partitions resulting from applying the new loss function minimization method

(Euclidean distance). Dirichlet process prior with random mass parameter a ∼

Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1). . . . . . . . . . . . 44

3.10 Partitions resulting from applying the new loss function minimization method

(Euclidean distance). Dirichlet process prior with random mass parameter a ∼

Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20). . . . . . . . . . 44

3.11 Partitions resulting from applying the new loss function minimization method

(Euclidean distance). Dirichlet process prior with random mass parameter a ∼

Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2). . . . . . . . . . 44

3.12 Partitions resulting from applying the new loss function minimization method

(logarithm of Kullback-Leibler I-divergence). Dirichlet process prior with ran-

dom mass parameter a ∼ Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) =

(0, 0.01, 2, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.13 Partitions resulting from applying the new loss function minimization method

(logarithm of Kullback-Leibler I-divergence). Dirichlet process prior with ran-

dom mass parameter a ∼ Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) =

(0, 0.001, 20, 20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.14 Partitions resulting from applying the new loss function minimization method

(logarithm of Kullback-Leibler I-divergence). Dirichlet process prior with ran-

dom mass parameter a ∼ Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) =

(0, 0.001, 3, 0.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Application of the standard loss-function minimization method. (a, b, c, d) =

(1, 1, 1, 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Application of the standard loss-function minimization method. (a, b, c, d) =

(0.5, 0.04, 2, 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



4.3 Estimate given by the new loss-function minimization method (Euclidean Dis-

tance). N = 1, ε = 0.5 and (a, b, c, d) = (1, 1, 1, 1). . . . . . . . . . . . . . . . . . 51

4.4 Estimate given by the new loss-function minimization method (Euclidean Dis-

tance). N = 1, ε = 1 and (a, b, c, d) = (1, 1, 1, 1). . . . . . . . . . . . . . . . . . . 52

4.5 Estimate given by the new loss-function minimization method (Euclidean Dis-

tance). N = 1, ε = 1.5 and (a, b, c, d) = (1, 1, 1, 1). . . . . . . . . . . . . . . . . . 52

4.6 Estimate given by the new loss-function minimization method (Euclidean Dis-

tance). N = 1 and (a, b, c, d) = (0.5, 0.044, 2, 2). . . . . . . . . . . . . . . . . . . 52

4.7 Estimate given by the new loss-function minimization method (KL I-divergence).

N = 1, ε = 1 and (a, b, c, d) = (1, 1, 1, 1). . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Estimate given by the new loss-function minimization method (KL I-divergence).

N = 1, ε = 1.5 and (a, b, c, d) = (1, 1, 1, 1). . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Estimate given by the new loss-function minimization method (log(1 + KL)).

N = 1, ε = 1 and (a, b, c, d) = (1, 1, 1, 1). . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Estimate given by the new loss-function minimization method (log(1 + KL)).

N = 1, ε = 1.5 and (a, b, c, d) = (1, 1, 1, 1). . . . . . . . . . . . . . . . . . . . . . . 55

4.11 Estimate given by the new loss-function minimization method (KL I-divergence).

N = 1 and (a, b, c, d) = (0.5, 0.044, 2, 2). . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Incidence matrixes of the clustering estimates given by the new loss-function

minimization method with KL I-divergence, for N = 1 and di�erent values of ε.

n = 250, �rst set of hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Scatterplots of the clustering estimates given by the new loss-function minimiza-

tion method with KL I-divergence, for N = 1 and di�erent values of ε. n = 250,

�rst set of hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Incidence matrixes of the clustering estimates given by the new loss-function

minimization method with KL I-divergence, for N = 1 and di�erent values of ε.

n = 250, second set of hyperparameters. . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Scatterplots of the clustering estimates given by the new loss-function minimiza-

tion method with KL I-divergence, for N = 1 and di�erent values of ε. n = 250,

second set of hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



5.5 Incidence matrixes of the clustering estimates given by the new loss-function

minimization method with KL I-divergence, when n = 1000, for N = 1 and

di�erent values of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Scatterplots of the clustering estimates given by the new loss-function minimiza-

tion method with KL I-divergence, when n = 1000, for N = 1 and di�erent

values of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Clustering estimates provided by the new loss-function minimization method

using L2-norm or Hellinger distance. . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 Incidence matrixes of the clustering estimates given by the new loss-function

minimization method using L2 distance, obtained for di�erent values of ε. . . . . 68

5.9 Scatterplots of the clustering estimates provided by the new loss-function mini-

mization method using L2 distance, obtained for di�erent values of ε. . . . . . . 69

5.10 Incidence matrixes of the clustering estimates provided by the new loss-function

minimization method using Hellinger distance, obtained for di�erent values of ε. 70

5.11 Scatterplots of the clustering estimates given by the new loss-function minimiza-

tion method using Hellinger distance, obtained for di�erent values of ε. . . . . . 71

5.12 Clustering estimates provided by the new loss-function minimization method for

di�erent values of K̂, obtained for ε = 0 (standard similarity matrix) for the

simulated dataset with n = 1000 observations. . . . . . . . . . . . . . . . . . . . 73

5.13 Incidence matrixes of the clustering estimates provided by the loss-function min-

imization method for K̂ = 0.25, obtained for ε = q0.01 for the simulated dataset

with n = 1000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.14 Scatterplots of the clustering estimates given by the loss-function minimization

method for di�erent values of K̂ =, obtained for ε = q0.01 for the simulated

dataset with n = 1000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.15 Incidence matrixes of the clustering estimates provided by the loss-function min-

imization method for K̂ = 0.75, obtained for ε = q0.01 for the simulated dataset

with n = 1000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



5.16 Scatterplots of the clustering estimates provided by the loss-function minimiza-

tion method for K̂ = 0.75, obtained for ε = q0.01 for the simulated dataset with

n = 1000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.17 Incidence matrixes of the clustering estimates provided by the loss-function min-

imization method for K̂ = 0.25, obtained for ε = q0.99 for the simulated dataset

with n = 1000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.18 Scatterplots of the clustering estimates provided by the loss-function minimiza-

tion method for K̂ = 0.25, obtained for ε = q0.99 for the simulated dataset with

n = 1000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.19 Incidence matrixes of the clustering estimates provided by the loss-function min-

imization method for K̂ = 0.75, obtained for ε = q0.99 for the simulated dataset

with n = 1000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.20 Scatterplots of the clustering estimates provided by the loss-function minimiza-

tion method for K̂ = 0.75, obtained for ε = q0.99 for the simulated dataset with

n = 1000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.21 Misclassi�cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.22 Location of the misclassi�ed elements for which posterior probabilities are com-

puted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.23 Agglomerative hierarchical clustering applied to the dataset with n = 1000 ob-

servations (Complete Linkage). . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.24 Agglomerative hierarchical clustering applied to the dataset with n = 1000 ob-

servations (Average Linkage). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.25 K-Means clustering applied to the dataset with n = 1000 observations. . . . . . 83

5.26 Within clusters sum of squares for K-Means clustering. Dataset with n = 1000

observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.27 DBSCAN algorithm applied to the dataset with n = 1000 observations. . . . . . 85

6.1 Density estimation for Galaxy data. Dirichlet process with random mass param-

eters. E[Kn] = 3 and (γ1, γ2) = (2, 4). . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Prior (green) and estimated posterior (blue) number of clusters. Dirichlet process

with random mass parameters. E[Kn] = 3 and (γ1, γ2) = (2, 4). . . . . . . . . . . 93

viii



6.3 Prior (blue) and estimated posterior (red) distributions for the mass parameter

a. Dirichlet process with random mass parameters. E[Kn] = 3 and (γ1, γ2) = (2, 4). 93

6.4 Density estimation for the simulated dataset with n = 250 observations, for the

�rst set of hyperprameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Dataset with n = 250 observations, �rst set of hyperparameters. . . . . . . . . . 94

6.6 Density estimation for Galaxy dataset, using the NGG process prior. E[Kn] = 3

and (σ, κ) = (0.25, 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.7 Prior (green) and estimated posterior (blue) number of clusters. NGG process

prior. E[Kn] = 3 and (σ, κ) = (0.25, 0.05). . . . . . . . . . . . . . . . . . . . . . 96

ix



List of Tables

3.1 Values of the mass parameter a of the Dirichlet process prior, and corresponding

expected number of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Hyperparameters of the random mass parameter of the Dirichlet process prior

and corresponding prior expected number of clusters. The last two columns

report the values of the prior mean and variance of the mass parameter a. . . . . 32

3.3 Values of the hyperparameters σ and κ of the NGG process prior, and corre-

sponding prior expected number of clusters. . . . . . . . . . . . . . . . . . . . . 33

5.1 Summary of the true and estimated clusterings. . . . . . . . . . . . . . . . . . . 78

5.2 Posterior estimated expected values of the probability of being in the same cluster

of xxxi, for four selected values of i. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



Introduction

In this work we discuss Bayesian methods for data clustering, reviewing some of the most

popular ones in the literature, and propose some extensions. As an introduction to the work,

a brief general overview (i.e. not only Bayesian) of the main classes of clustering methods

is given, both from a heuristic and model-based clustering point of view. Heuristic methods

encompass the well known agglomerative hierarchical clustering, the K-Means algorithm and

the quite new "density-based" DBSCAN algorithm (Density-Based Spatial Clustering of Ap-

plications with Noise, Ester et al., 1996). On the other hand, as far as model-based clustering

is concerned, we give a parametric characterization in Chapter 1, in order to proceed with a

deeper discussion on Bayesian nonparametric models in the �rst part of Chapter 2. There, the

Bayesian nonparametric approach is presented, recalling some important mathematical aspects

of the approach. Furthermore, two nonparametric priors are introduced, that is the Dirichlet

process prior (Ferguson, 1973) and the Normalized Generalized Gamma process prior (Regazz-

ini, Lijoi and Prünster, 2003) which is a generalization of the former. In particular, we discuss

their mathematical de�nition, properties (such as the discreteness of their trajectories), and

relationships. The second part of Chapter 2 is focused on two popular models involving non-

parametric priors that will be used in the clustering later analysis: the Product Partition Model

(or PPM, see Hartigan, 1990) and the Dirichlet Process Mixtures model (or DPM model, see Lo,

1984). In DPM models, data are supposed to be generated from a mixture of kernel densities,

indexed by the vector of parameters θθθ = (θ1, ..., θn), which is a �nite sample from a realization

of the nonparametric prior used (Dirichlet or NGG process prior in this work). In this case,

each observation corresponds to a latent variable θi. Di�erently, the PPMs are nonparametric

models in which the random partition represents the parameter and hence a prior for it has to

be chosen. Usually the prior distribution of the random partition is called Exchangeable Par-

tition Probability Function (or brie�y EPPF). Moreover, we discuss the relationship between

xi



the PPMs and the DPM models, showing how every DPM model can be related to a PPM with

particular features (see Quintana and Iglesias, 2003). When we adopt a DPM model, thanks to

the a.s. discreteness of the trajectories of the nonparametric prior introduced, ties in the vector

θθθ will appear with positive probability, thus yielding a random partition of the dataset. The

index set {1, ..., n} of the data is partitioned into Π = {C1, . . . , CK}, which is random since θθθ

is. Each Cj in Π contains the labels of the latent variables in θθθ with the same value.

The last part of Chapter 2 presents the most popular Bayesian nonparametric clustering meth-

ods using PPM or DPM models: the Stochastic Search by Posterior Sampling of Partitions

(SS), the Bayesian Hierarchical Clustering Procedure (BH) and the Loss-Function Minimiza-

tion methods. As far as the last method is concerned, this consists in the minimization of the

posterior expected value of a loss function, where the parameter is the random partition; here

we consider the loss function proposed in Binder (1978) and Lau and Green (2007), which is the

sum of the costs of the misclassi�cation errors that could occur. After a detailed presentation of

these three methods, we propose a generalization of the last one, based on a di�erent clustering

criteria. We de�ne a new decision rule for clustering, which is not based on the ties of the

latent vector, but on the distance between its components. Instead of de�ning a n× n matrix

M = [mij] with mij = 1 when the two correspondent latent variables coincide [have the same

value] and mij = 0 otherwise, we de�ne mij = 1 if some distance between the kernel densities,

corresponding to θi and θj, is smaller then a �xed threshold ε. In practice, this de�nition would

not de�ne an equivalence relation among the elements of {1, ..., n}; to overcome this problem,

the DBSCAN is applied, de�ning a new equivalent relation among {1, ..., n} and providing the

correspondent partition. Thus, a matrix M is obtained, and then posterior expected value of

the loss function by Binder (1978) can be evaluated. As before, the posterior expected value of

the loss function is minimized with respect to the random partition, sampled using a MCMC

algorithm. Of course, new parameters must be introduced into the analysis, such as the thresh-

old ε, and N , which is the minimum number of elements in order to de�ne a group cluster, via

the DBSCAN algorithm. Additionally, the choice of the distance in the de�nition of the new

equivalence relation deeply in�uences the estimates. Hence, di�erent distances will be taken

into account in this work.

All the methods introduced so far (SS, BH, loss-minimization and the new one) will be tested
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on three di�erent datasets. The Galaxy dataset, analyzed in Chapter 3, is very popular in the

density estimation literature and contains observed velocities of n = 82 galaxies (univariate

observations). We adopt a conjugate DPM model with Gaussian kernels and compute the

Bayesian clustering (and density) estimates for all the proposed methods. In particular, we

assume both Dirichlet and NGG process priors as mixing measure for the mixture. As far

as the choice of the hyperparameters is concerned, a robustness analysis is carried on. As

a second example, in Chapter 4 we analyze the Kevlar dataset, which consists of n = 108

univariate lifetimes of Kevlar �bres under di�erent levels of stress. The stress levels represent the

covariates. We adopt in this dataset both DPM models and NGG-mixture with Weibull kernel

densities. Then we present the Bayesian clustering estimates resulting from the loss-function

minimization methods with the standard and the new matrices M . Concerning the choice of

the hyperparameters of this model, a vast robustness analysis has been performed, following

the work by Argiento et al. (2010). In Chapter 5, we analyze a simulated bivariate dataset

whose elements lie on a non-convex region. Tha analysis of this dataset is usually a di�cul

test for clustering methods in the literature. Therefore Chapter 5 shows comparisons between

some of the heuristic methods presented in Chapter 1 and the new loss-function minimization

method, applied to the test dataset.

Finally, in Chapter 6, some details on the algorithm used here for posterior sampling and

density estimation are discussed. In particular, a description of the Polya urn sampling scheme

for conjugate models is given, for both Dirichlet and NGG process prior. Furthermore, density

estimates for the Galaxy and the simulated bivariate datasets are provided.

The main original contributions of this thesis are:

• The proposal of the new model-based clustering procedure based on Bayesian nonpara-

metric mixture models and the DBSCAN algorithm. The proposed method seems to be

completely new in the literature.

• Original coding in R and C of all the algorithms to compute posterior distribution and

clustering estimates for all the application presented.

The clustering method presented in this work needs further developments; it seems interesting

to elicit a prior distribution for the threshold value ε, on the basis of eventual prior information,

and to design a MCMC algorithm for posterior sampling.
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Sommario

In questo lavoro vengono studiati metodi di clustering bayesiano, introducendo alcuni dei più

popolari in letteratura e proponendo alcune estensioni di questi. Come introduzione, viene

proposta una rassegna delle due principali classi di metodi di clustering (non necessariamente

bayesiani), ovvero della classe dei metodi euristici e di quelli "model-based". La prima di queste

classi comprende tecniche quali i metodi gerarchici, l'algoritmo K-Means e il recente algoritmo

"density-based" DBSCAN (Density-Based Spatial Clustering of Applications with Noise, Ester

et al., 1996). Per quanto riguarda la seconda classe di metodi, ovvero quelli model-based, nel

Capitolo 1 viene fornita una caratterizzazione di tipo parametrico, per poi procedere con una

più approfondita presentazione dei modelli bayesiani non parametrici, nel Capitolo 2, assieme

ad un'introduzione all'approccio bayesiano non parametrico. Inoltre, vengono introdotte le

due prior non parametriche: il processo di Dirichlet (Ferguson, 1973) e il processo Normal-

ized Generalized Gamma (Regazzini, Lijoi and Prünster, 2003), che è una generalizzazione del

primo. In particolare, vengono presentate le loro de�nizioni formali, alcune proprietà di rilievo

(quali la discretezza delle loro traiettorie) e le relazioni che li legano. La seconda parte del

Capitolo 2 si concentra su i due più famosi modelli di tipo non parametrico, che saranno usati

nella successiva cluster analysis : i Product Partition Models (o PPMs - Hartigan, 1990) e i

Dirichlet Process Mixture models (o DPM - Lo, 1984). Nei modelli DPM, i dati sono generati

da una mistura di densità, indicizzate da un vettore di parametri θθθ = (θ1, ..., θn), il quale, a

sua volta, è un campione �nito da una realizzazione della prior non parametrica inserita nel

modello (in questo lavoro, o processo di Dirichlet, o processo NGG). In questo caso, ogni osser-

vazione corrisponde ad una variabile latente θi. Invece, i PPMs sono modelli nonparametrici

in cui la partizione aleatoria rappresenta il parametro, e alla quale quindi va assegnata una

distribuzione a priori. Solitamente, la distribuzione a priori per le partizioni aleatorie è chia-

mata Exchangeable Partition Probability Function (o brevemente EPPF). Inoltre, sempre nel
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Capitolo 2, viene presentata la relazione che lega le due classi di modelli, illustrando come un

modello DPM può essere associato ad un PPM con particolari caratteristiche (vedi Quintana e

Iglesias, 2003). Quando utilizziamo un modello DPM, grazie alla proprietà di discretezza delle

traiettorie della prior non parametrica, il vettore θθθ ha probabilità positiva di contenere delle

coincidenze, inducendo una partizione aleatoria sul nostro dataset. L'insieme di indici {1, ..., n}

dei dati è partizionato attraverso Π = {C1, . . . , CK}, che è anch'essa aleatoria, poichè lo è il

vettore θθθ. Ogni Cj in Π contiene le etichette delle variabili latenti presenti in θθθ che hanno lo

stesso valore numerico. L'ultima parte del Capitolo 2 presenta i principali metodi di clustering

bayesiano non parametrico che utilizzano PPMs o modelli DPM, e che sono: il metodo Stochas-

tic Search by Posterior Sampling of Partitions (SS), il metodo Bayesian Hierarchical Clustering

Procedure (BH) e i metodi di minimizzazione di funzionali di costo. L'ultimo di questi metodi

consiste nella minimizzazione del valore atteso a posteriori di una funzione di costo della par-

tizione aleatoria. Qui consideriamo quella proposta da Binder (1978) e Lau e Green (2007),

che è de�nita come la somma dei costi associati alle misclassi�cazioni. Dopo un'esposizione

dettagliata dei tre metodi, viene proposta una generalizzazione dell'ultimo, basata su un di-

verso criterio di clustering. De�niamo una nuova regola per classi�care i dati, che non è basata

sulle coincidenze nel vettore di variabili latenti, ma sulla loro distanza. Invece di de�nire una

matrice n × n M = [mij], dove mij = 1 se le due corrispondenti variabili latenti coincidono e

mij = 0 altrimenti, de�niamo mij = 1 se un'opportuna distanza tra le corrispondenti densità

parametriche è minore di una soglia �ssata ε. Questa de�nizione non de�nisce una relazione

di equivalenza sull'insieme {1, ..., n} perchè la proprietà di transitività non è veri�cata; per su-

perare questa limitazione, applichiamo l'algoritmo DBSCAN, che de�nisce una nuova relazione

di equivalenza su {1, ..., n} e utilizziamo la partizione così generata. Dunque, otteniamo una

matriceM con la quale è possibile valutare il valore atteso a posteriori della funzione di costo di

Binder (1978). Come per la vecchia relazione di equivalenza, il valore atteso a posteriori della

funzione di costo viene minimizzato rispetto alla partizione aleatoria, campionata attraverso

un algoritmo MCMC. Ovviamente, devono essere introdotti nuovi parametri in questa analisi,

come la soglia ε o il valore N , che rappresenta il minimo numero di elementi necessari per poter

de�nire un cluster nell'algortimo DBSCAN. Inoltre, la scelta della distanza nella de�nizione

della nuova relazione di equivalenza in�uenza molto le stime fornite dal metodo. Per questo
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verranno considerate diverse distanze.

Tutti i metodi introdotti �nora (SS, BH, minmizzazione di un funzionale di costo) sonostati

veri�cati su tre diversi dataset. Il dataset Galaxy, analizzato nel Capitolo 3, è molto utilizzato

nella letterature sulla stima di densità e contiene i valori (univariati) di n = 82 velocità di

galassie. Abbiamo adottati un modello DPM di tipo coniugato con kernel Gaussiani e abbiamo

calcolato le stime di clustering bayesiano e di densità per tutti i metodi proposti. In particolare,

utilizzeremo sia il processo di Dirichlet che il processo NGG come misure misturanti. Per quanto

riguarda la scelta degli iperparametri del modello, è stata svolta un'analisi di robustezza. Come

secondo esempio, nel Capitolo 4, abbiamo analizzato il dataset Kevlar che consiste di n = 108

tempi di vita (univariati) di altrettante �bre Kevlar, sottoposte a di�erenti livelli di stress,

che rappresentano le covariate in questo modello. Abbiamo adottato un modello DPM con

misturante data da un processo NGG e kernel Weibull. Dunque, abbiamo calcolato le stime

bayesiane risultanti dall'applicazione dei metodi di minimizzazione della funzione di costo.

L'analisi di robustezza per la scelta degli iperparametri è stata svolta seguendo il lavoro di

Argiento et al. (2010). Nel Capitolo 5, abbiamo presentato l'esempio di un dataset bivariato i

cui elementi sono disposti in una regione non convessa. L'analisi di questo dataset è solitamente

un test di�cile per i metodi di clustering che si trovano in letteratura. Per questo motivo

mostriamo in questo capitolo alcuni confronti tra i metodi euristici presentati nel Capitolo 1 e

il nuovo metodo di minimizzazione della funzione di costo. Il capitolo si conclude con alcuni

commenti.

In�ne, nel Capitolo 6, vengono forniti alcuni dettagli sul campionamento a posteriori e dei

risultati di stime di densità. In particolare, viene descritto il funzionamento dell'algoritmo

di campionamento ad urna di Polya, sia per il processo di Dirichlet che per il processo NGG,

accompagnato dai risultati di stima di densità ottenuti per il caso del dataset univariato Galaxy

e del dataset simulato bivariato.

I principali contributi originali che si trovano in questo lavoro sono:

• La proposta di un nuovo metodo di clustering bayesiano di tipo model-based, basato su

modelli non parametrici di tipo mistura e sull'algoritmo DBSCAN. Il metodo sembra

essere completamente nuovo in letteratura.

• La programmazione in R e in C degli algoritmi per il campionamento a posteriori e per
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l'implementazione dei metodi di clustering per le applicazioni presentate.

Il metodo di clustering presentato in questo lavoro necessità di ulteriore lavoro; ci sembra

promettente l'idea di assumere una prior per la soglia ε, sulle basi di eventuali informazioni

a priori, e di calcolare le corrispondenti stime a posteriori, disegnando un algoritmo di tipo

MCMC.
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Chapter 1

Data Clustering

One of the most important issues in modern Data Analysis is to get knowledge of the inner

structure of the data which are going to be analyzed. This would be a solid starting point

from which to describe the composition of the data-set, making the comprehension of the

problem much easier, as well as the development of the analysis itself. Unfortunately, it is often

impossible to describe the relationships which stand between the data precisely, making very

hard to get the information needed to treat them in the proper manner.

To overcome this problem, many explorative methods have been proposed and studied, to form

the well known Data Mining techniques. The name Data Mining refers to the explorative

processes that are executed by analysts to get a better knowledge of the problem, in the sense

of data representation and meaning. These theories and methods include Discriminant Analysis

and Principal Components Analysis, as well as Clustering Techniques, which are what concern

this work.

Cluster analysis is the statistical �eld involving all the theories, methods, algorithms and tech-

niques whose goal is to re-organize the data-set, exploiting its peculiar features. From the word

cluster it is clear that the aim of cluster analysis is to gather the data into distinct groups

(or clusters), according to some similarity measure, or following a particular statistical model.

What we need is to characterize the data assigning a label to each observation, aiming at en-

lightening the "true" representation of the entire data-set (or the most close to that). To do so,

a lot of techniques have been presented in the last decades, yielding to many di�erent results,

as a proof of the importance of cluster analysis in Applied Statistics. One of the consequences

of this fast growth is the necessity of �nding a proper classi�cation of these methods, based on
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their functional, mathematical or methodological aspects.

As far as this work concerns, it is useful to start presenting a classi�cation of the clustering

techniques based on the statistical de�nition of the problem. To do so, it is useful to distinguish

between model-based and heuristic clustering techniques. The �rst class refers to those methods

that require a mathematical model describing the problem; the latter includes those algorithms

de�ned from a given starting point, and carried on following some heuristic scheme (such as

hierarchical or greedy scheme). It is useful to point out that the discriminant factor between

these two classes of methods is not the usage of mathematical tools, but the presence of a valid

statistical model underneath the analysis of the data. In fact, heuristic techniques use a lot

of mathematical instruments to face cluster analysis, and often the process itself is based on

some mathematical results (i.e., de�nitions and properties of particular metrics, minimization

of some functionals...). Another aspect to mention concerns the existence of some methods

which combine these two main characteristics, in which a statistical valid model is de�ned

and, starting from it, a heuristic algorithm is used to perform the clustering. In this work,

the attention is focused on model-based clustering techniques, in particular using a Bayesian

nonparametric approach.

1.1 Heuristic Clustering

As mentioned before, many clustering techniques have been proposed in recent decades, and

most of them are heuristic-based. So, it would be too onerous to describe them in details. For

this reason the methods presented in this section are those of any relevance in this work, having

connections with the statistical analysis presented or being used to o�er a comparison of the

results. For further details on heuristics clustering algorithms see Jain and Dubes (1988).

Heuristic methods can be seen as algorithms which take as an input the data-set and an

initialization of interesting variables (sometimes also a terminal condition is given, such as a

threshold condition upon some parameters), and give as output the �nal "grouping" of the data.

The di�erent schemes of these algorithms lead to a further subdivision: hierarchial, partitive

and density-based clustering algorithms. The last class has been recently introduced by Ester,

Kriegel and Xu (1995), and takes its name from the disposition of the observed data (from here

the word density, not related with the density function of any random variable).
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Hierarchical algorithms have been �rstly proposed by Johnson (1967), and take their name

from the procedure followed to group the data. Starting as n distinct clusters (where n is the

size of the data-set), the objects are sequentially uni�ed into sub-clusters, in order to minimize

the dissimilarity between the data that are gathered in the same cluster. Step by step, always

bigger sub-clusters are created, until all the data-set represents a unique cluster. The evaluation

criterion of this algorithm is the dissimilarity between the data. It is important to indicate that

to �nd a proper dissimilarity to describe the relationships between the data is often not easy,

especially because it depends on problem features and on data characterization. In most of

the cases, the measure of the dissimilarity is represented by the distances between the data

(Euclidean distance is the most used), or by some customer-de�ned function of the elements

(useful when working with categorical data).

Partitive algorithms �nd their most famous representative in the K-means (or K-centroids)

algorithm. The term "K-means" was �rst used by James MacQueen (1967). It is an iterative

process that, at each step, performs these two actions: 1) assigning the observations to the

closer among K given points, called centroids; 2) �nding the new set of centroids, de�ned as

those points minimizing the sum of the distances in each of the clusters found at the previous

point (when working with the Euclidean distance, these points are the sample means). The

input of the algorithm consists of the number of clusters K and the relative centroids. Even

if this second information can be quite general and with poor in�uence on the �nal result,

thanks to the convergence of the algorithm, the same cannot be said for the �rst one. In fact,

a di�erent �xed number of clusters lead to very di�erent partitioning of the data-set. Actually,

this represents a drawback of this algorithm, together with the strong dependence on the choice

of the distance to use.

The group of the density-based algorithms is the newest of the three, and �nds an example

in the DBSCAN method (Density-Based Spatial Clustering of Applications with Noise, Ester

et al. (1996)). This technique relies on a density-based notion of clusters which is designed

to discover clusters of arbitrary shape (an advantage with respect to a lot of methods). As

mentioned before, the term "density" is not related to any density function of some random

variable, but refers to the spatial disposition of the observations. DBSCAN requires only two

input parameters: the minimum number of points to de�ne a group to be a cluster, and the
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maximum distance ε between the elements of the same cluster. One of the advantages of

this method is to succeed in �nding those data for which is di�cult to decide a cluster label,

therefore classi�ed as "noise" (which can be seen as a cluster itself).

In many situations, lots of information are required to carry out a good heuristic cluster analysis,

such as the number of clusters, or the distance to use. Usually, in heuristic clustering, the choice

of the algorithm depends on the computational e�ort and on the purpose of the analysis.

1.2 Model-Based Clustering

Before introducing the main features of model-based clustering methods, it is useful to point

out some statistical issues, concerning not only this work, but also the statistical �eld in which

it is collocated. This is the reason why a sharp distinction between frequentist and Bayesian

framework is done. In this section, a short overview of parametric frequentist model-based

clustering techniques is given, with some recall to Bayesian parametric results, in order to

present, in details in the next chapter, the model-based clustering via Bayesian nonparametrics.

Model-based clustering di�ers from heuristic clustering for the starting mathematical spec-

i�cation: the mathematical model for the problem is speci�ed, instead of initializing some

parameters according to available information about the problem or the data. This is a crucial

di�erence in the way of explaining the data and the �nal results.

In frequentist model-based clustering, the data are often modelled through a �nite mixture of

kernel densities, in order to represent the partition into clusters as the sum of K distinct distri-

butions. In case of real data vectors, these kernel densities are often chosen to be Gaussian, to

approximate the real model structure in the smoother possible way. Similarly to heuristics, the

number of clusters (i.e., the number of densities in the mixture) has to be �xed. Nevertheless,

in this case, this number is treated as a parameter, and then an estimate for it is given. As

presented by Fraley and Raftery (1998, 2002), the model in case of Gaussian mixture is the

4



following:

XXX1, ...,XXXn
i.i.d.∼

K∑
j=1

τjN(·;µµµj,Σj)

τj = IP(XXX i ∈ Cj), for i = 1, ..., n

K∑
j=1

τj = 1,

where K stands for the number of clusters, Cj is the j-th cluster, and N(·;µµµj,Σj) refers to the

j-th normal density with mean vector µµµj and covariance matrix Σj.

From a frequentist point of view, the determination of the model structure can be performed

by model selection techniques and parameter estimation using maximum likelihood algorithms,

such as the EM algorithm (Dempster et al., 1977): this consists of a two-steps iterative algo-

rithm used to �nd the ML estimates of parametric models involving a latent set of variables,

in this case the group labels. Despite the EM algorithm converges to a local optimum under

proper conditions, estimation for mixture models has a number of limitations. First, the rate

of convergence can be slow. Second, the EM algorithm for multivariate normal mixtures breaks

down when the covariance matrix associated with one or more components is ill-conditioned.

An example of the application of the EM algorithm for clustering purposes has been proposed

by Fraley and Raftery (1998, 2002), where a proper likelihood ratio is used in order to chose be-

tween di�erent models, not only as far as the number of components of the mixture is concerned,

but also for the parameters of the underling normal densities of the various components.

A possible variation in the model above is achieved by assuming a Bayesian approach, consisting

in �xing a prior distribution for the model's parameters, such as kernel densities' parameters

(µµµ,Σ), the vector τττ and the number of clusters. An example is given in Heard, Holmes and
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Stephens (2006), which present the following parametric Bayesian model :

XXX(j)|µµµj,Σj, nj, K
i.i.d.∼ Nnj(µµµj,Σj), for j = 1 : K

µµµj|Σj, nj, K ∼ Nnj(mmm,
Σj

k0

), for j = 1 : K

Σj|nnn,K ∼ IW (ν1,Ψ1), for j = 1 : K

nnn = (n1, ..., nK)|K,τττ ∼Multinomial(τ1, ..., τK)

τττ = (τ1, ..., τK)|K ∼ Dir(α1, ..., αK)

K ∼ U({1, ..., n})

In this model, the vector nnn = (n1, ..., nK) is the vector containing the number of elements for

each cluster. The j-th group of data is represented by the multivariate random variable XXX(j),

having a multivariate normal kernel density.

The analysis in Bayesian model-based clustering techniques is performed by evaluating the

posterior estimates of the interesting parameters (such as the number of clusters). For this

purpose, a wide range of models have been studied, in order to �nd the best result for many

clustering problems, providing better solutions with respect to the frequentist methods. This

is the reason why, in this work, the Bayesian approach is adopted.

So far, only parametric models have been presented, both form a frequentist and Bayesian

point of view. Nevertheless, the main approach adopted in this work is the nonparametric one,

allowing more �exibility and robustness to the parameter estimation. To introduce Bayesian

nonparametric models, some mathematical instruments are required, such as the de�nition of

nonparametric priors, presented in the next chapter.
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Chapter 2

Bayesian nonparametric model-based

clustering

2.1 The Bayesian nonparametric approach

Usually, in classical statistics, the term nonparametric refers to those techniques that do not

rely on the hypothesis that the data belong to some particular distribution, the probability

model chosen to describe the observations being totally general. This means to assume that

the data are distributed according to an element of a family of distributions, which cannot

be put into a bijection with a �nite-dimensional parameter. In this sense, the distribution

itself becomes the parameter of the model, and the classical nonparametric inference aims at

estimating it.

The same generalization can be achieved in a Bayesian fashion, where the parameter of the

model is the unknown distribution. The random variable representing the unknown distribution

in the model is called random probability measure (or brie�y r.p.m.). In order to introduce the

most common r.p.m.'s, the de�nition of probability measures on a collection of distribution

functions is required, together with some notation.

Let P(X) be the space of all probability measures on X, where (X,B(X)) is a Polish space

(B(X) indicates the Borel σ-algebra on X). In order to de�ne a σ-�eld of subsets of P(X), it is

necessary to introduce the de�nition of weak convergence.

A sequence {Pn} of probability measures on X is said to converge weakly to a probability

measure P , written as Pn
w→ P , if

∫
fdPn →

∫
fdP,∀f ∈ C(X), where C(X) is the set of all
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bounded continuous functions on X.

Under the topology of weak convergence, the space P(X) is metrizable, complete and separable

(i.e., Polish) (for further details see Ghosh and Ramamoorthy, 2003). After this speci�cation,

the notion of random probability measure (r.p.m.) can be introduced.

De�nition 1. Let (Ω,F ,P) be a probability space. A random probability measure is a mea-

surable function P : (Ω,F)→ (P(X),B(P(X))).

Thus, P is a random variable with values in the space of all probability measures, and, for each

ω ∈ Ω, P (ω) is a probability measure on (X,B(X)).

Any random probability measure can be seen as the parameter for the model or, equivalently,

as a random variable taking values in the space of all probability measures, following its law

Π; therefore it can be introduced in the model as done in the parametric case. In this case,

the random vectors representing the observations are (conditionally) independent and identi-

cally distributed according to the unknown probability distribution P which is random, with

distribution Π, i.e.

XXX1, ...,XXXn|PPP = P
i.i.d.∼ P

PPP ∼ Π.

This approach is equivalent to assume only that the sequence {XXXn} is exchangeable.

De�nition 2. Let {X1, ..., Xn} be a �nite set of random variables taking values in the space

(X,B(X)). The set is said to be exchangeable if, for every permutation σ of the indices

{1, ..., n}, the joint probability distribution of the permuted sequence (Xσ(1), ..., Xσ(n)) is the same

of the original sequence. An in�nite collection (Xn)n≥1 of random variables is exchangeable if

every �nite sub-sequence is exchangeable.

Provided this fundamental de�nition, we can now state the theorem allowing the formalization

of the nonparametric model, called the de Finetti's representation theorem.

Theorem 1. Let (Ω,F ,P) be a probability space and (X,B(X)) a Polish space. For each

n ∈ N, consider the measurable functions Xn : (Ω,F) → (X,B(X)). A sequence (Xn)n≥1 is

exchangeable if and only if there exists a r.p.m. PPP on (X,B(X)) such that, conditionally on

PPP=P, (Xn)n≥1 are independent and identically-distributed (i.i.d.) according to P. Furthermore,
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if the sequence is exchangeable, then Π, the distribution of PPP, is unique, and the following

convergence result holds:

PPP n(B) =
1

n

n∑
i=1

IB(Xi)
a.s.→ PPP (B), ∀B ∈ B(X)

This result takes a central place into the Bayesian nonparametric approach, relating the random

probability measure to the data description and hence formalizing the model construction.

In Bayesian applications, the distribution of a r.p.m. represents the nonparametric prior. We

point out that, in this work, it is enough to consider X = Rk, where k is a positive integer.

2.2 Nonparametric priors

LetD be the class of nonparametric priors on P(X). According to Ferguson (1973) and Antoniak

(1974), three desirable properties of a nonparametric prior distribution can be highlighted:

1. The class D of random prior distributions on P(X) should be analytically tractable in

three respects:

(a) It should be reasonably easy to determine the posterior distribution on P(X) given

a "sample";

(b) It should be possible to express conveniently the expectations of simple loss functions;

(c) The class D should be closed, in the sense that if the prior is a member of D, then

the posterior is a member of D.

2. The class D should be "rich", so that there will exist a member of D capable of expressing

any prior information or belief.

3. The class D should be parameterized in a manner which can be readily interpreted in

relation to prior information and belief.

These requirements are not mutually exclusive, although they seem to be antagonist, in the

sense that some property may be reached in the expense of another. Furthermore, points 1(a)

and 1(b) do not represent a problem nowadays, thanks to application of MCMC techniques.

Ferguson (1973) presented a process (i.e., the Dirichlet process) which satis�es the above stated
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requirements. Another important process is the Normalized Generalized Gamma process, or

NGG, presented for the �rst time by Regazzini, Lijoi and Prünster (2003). This process can

be seen as a generalization of the Dirichlet process, tuned by an additional parameter.

In next two sections, de�nitions and properties of the two processes are given.

2.2.1 The Dirichlet process prior

In this section a very useful family of prior distributions on P(X) is developed: the Dirichlet

process priors. The Dirichlet process arises naturally as an in�nite-dimensional analogue of the

�nite-dimensional Dirichlet prior, which generalizes in more dimensions the beta distribution.

A review of the �nite-dimensional case is now given.

Finite Dimensional Dirichlet Distribution

Let X = {1, 2, ..., k} be a �nite set of elements. Then the space of all the probability distributions

on X is represented by the (k − 1)-dimensional simplex:

Sk = {ppp = (p1, ..., pk−1) : pi ≥ 0 for i = 1, 2, ..., k − 1,
k−1∑
i=1

pi ≤ 1}

where each ppp in Sk is a suitable prior probability vector for the elements of X. It is evident

that pk = 1 −
∑k−1

i=1 pi (from here the (k-1)-dimensionality of the simplex). A "natural" prior

distribution for the vector ppp is the k-dimensional Dirichlet distribution.

De�nition 3. Let ααα = (α1, ..., αk), with αi > 0 for i = 1, 2, ..., k. Then ppp = (p1, ..., pk) has

Dirichlet distribution with parameters (α1, ..., αk) if its density is:

f(p1, ..., pk−1) =
Γ(α1 + ...+ αk)

Γ(α1) · ... · Γ(αk)
(
k−1∏
j=1

p
αj−1
j )(1−

k−1∑
j=1

pj)
αk−1ISk(p1, ..., pk−1).

If any αi = 0, the Dirichlet distribution still exists, �xing the corresponding pi = 0, and

degenerating on a lower-dimensional set.

An equivalent de�nition of the �nite-dimensional Dirichlet distribution can be obtained starting

from the gamma one.

De�nition 4. Let X be a random variable, taking values on the positive real line. Let α, β be

two positive real numbers. X is said to have a gamma distribution with parameters (α, β),
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writing Gamma(α, β) if its density is of the form:

f(x) =
βα

Γ(α)
xα−1e−xβI(0,+∞)(x).

Let now consider the independent r.v.'s Z1, ..., Zk, each one distributed as Gamma(αj, β), for

j=1,...,k, given the set of real positive numbers ααα = (α1, ..., αk).

De�nition 5. The random vector YYY = (Y1, ..., Yk), where

Yj =
Zj∑k
i=1 Zi

j = 1, ...k

has k-dimensional Dirichlet distribution with parameter ααα = (α1, ..., αk). Furthermore, YYY is

independent of
∑k

i=1 Zi.

The Dirichlet process

As a �nal step, the in�nite-dimensional generalization of the Dirichlet distribution can be

presented. It is enough to replace the �nite space X with the real space Rk. Let (Rk,B(Rk))

be the real line with the Borel σ-algebra B and let P(Rk) be the set of probability measures

on Rk, equipped with the proper Borel σ-algebra B(P(Rk)). The de�nition of Dirichlet process

can now be given.

De�nition 6. Let α be a �nite measure on (Rk,B(Rk)). A r.p.m. P on Rk has a Dirichlet

process prior with parameter α if, for every �nite and measurable partition B1, B2, ..., Bm of

Rk, then (P (B1), P (B2), ..., P (Bm)) ∼ D(α(B1), α(B2), ..., α(Bm)).

In the following we will write Dα to denote the Dirichlet process with parameter α. Some

important results about the Dirichlet process are now presented:

1. Conditionally on P in P(Rk), let XXX1,XXX2, ...,XXXn be i.i.d. from P and let P itself be

distributed as Dα, where α is a �nite measure. Then, the posterior distribution of P

given XXX1,XXX2, ...,XXXn is Dα+
∑n
i=1 δXi

.

2. From simple computations, it is clear that XXX i ∼ α, where α(·) = α(·)
α(Rk)

. For simplicity of

notation, α will be denoted as P0. Clearly, this is a probability measure on the sample

space Rk. In the same way, E[P ] = P0, where P stands for the random vector originated
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from a given partition of the sample space. To see this, note that for each A ⊂ Rk, P (A)

is Beta(α(A), α(Ac)) and hence E[P (A)] = α(A)
(α(A)+α(Ac))

= α(A)
α(Rk)

. This parameter will be

included in the notation writing D(α, P0).

The aim of this work is to exploit the power and the �exibility of nonparametric priors to

support the cluster analysis. In order to do that, it is necessary to characterize the sample

from a Dirichlet process, that is, to specify what kind of probability measures are induced on

the space Rk by the Dirichlet process prior. The next theorem gives a discrete representation

of Dirichlet process' trajectories.

Theorem 2. Dα{P : P is discrete } = 1

This theorem yields that there is a non-zero probability to observe common values in a sample

(XXX1, ...,XXXn) from the Dirichlet process, which induces a subdivision (i.e., a clustering) of the

sample, based on the value of the observations. The coincidence of observed values can be

represented through a generalized Polya Urn scheme, which means that a sample from the

Dirichlet process can be viewed as one from a Polya Urn allowing a continuum set of colours

(see Blackwell and MacQueen, 1973). In other words, the joint law of the sample L(XXX1, ...,XXXn)

can be computed from the following full conditionals:

XXX1 ∼ P0

XXX i|XXX1, ...,XXX i−1 ∼
α +

∑i−1
j=1 δXXXj

α(Rk) + i− 1
for i = 1, ..., n,

(2.1)

Iterating, we have:

L(XXX1, ...,XXXn) = L(XXXn|XXXn−1, ...,XXX1)L(XXXn−1, ...,XXX1) = (...) = L(XXX1)
n−1∏
j=1

L(XXXj+1|XXXj, ...,XXX1)

(2.2)

With this scheme, it is easier to see how the Dirichlet process induces a partition on the

observations. Of course, the partition of the data itself represents a random variable, as well

as the number of clusters Kn. This is the key point of the Bayesian nonparametric clustering

via Dirichlet process, and represents the basis of this work. Referring to Antoniak (1974), the

density of the random variable Kn (i.e., the number of distinct values in (XXX1, ...,XXXn)) is the

following:
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P(Kn = k) = |S1(n, k)|ak Γ(n)

Γ(a+ n)
, for k ∈ {1, ..., n} (2.3)

where a stands for α(X), n is the data size, and Γ(·) is the Eurler's gamma function. S1(n, ·)

are the absolute values of the Stirling numbers of the �rst kind.

2.2.2 The NGG process prior

In this section, the NGG process is presented, following the de�nition given in Argiento,

Guglielmi and Pievatolo (2010).

Let µ be a random measure on (Θ,B(Θ)), let σ ∈ [0, 1], ω, κ be non-negative parameters, and

P0(·) a non-atomic probability measure on Θ; Θ can be any Polish space. According to the

notation in Brix (1999), we say that µ is a generalized gamma measure if

µ(B) =

∫
R+

yN(dy,B), B ∈ B(Θ),

where N is a Poisson random measure on R+ ×Θ with mean measure ν de�ned by

ν(A×B) = κP0(B)

∫
A

ρ(ds), A ∈ B(R+), B ∈ B(Θ),

and

ρ(ds) =
1

Γ(1− σ)
s−σ−1e−ωsds, s > 0.

By de�nition, µ is a random measure with independent increments, alternatively called com-

pletely random measure, i.e., µ(B1), ..., µ(Bk) are mutually independent if B1, ..., Bk are disjoint.

A random probability measure P can be built from a generalized gamma measure µ according

to a standard construction via normalization of completely random measures, which dates back

to Kingman (1975). In fact, it can be shown that P(0 < µ(Θ) =: T < +∞) = 1 (see Regazzini,

Lijoi and Prünster, 2003), so that P (·) := µ(·)/T de�nes a random probability measure on

Θ, which will be called normalized generalized gamma process, P ∼ NGG(σ, κ, ω, P0), with

parameters (σ, κ, ω, P0), where 0 ≤ σ ≤ 1, ω, κ ≥ 0. This parametrization is not unique, as the

scaling property in Pitman (2003) shows, since (σ, κ, ω, P0) and (σ, sσκ, ω/s, P0) (for any s > 0)

yield the same distribution for P .
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It is well known that the process P can be represented as

P =
+∞∑
i=1

Piδτi =
+∞∑
i=1

Ji
T
δτi (2.4)

where Pi := Ji
T
, (Ji)i are the ranked points of a Poisson process on R+ with mean density ρ(ds),

and T =
∑

i Ji; the sequences (Pi)i≥1 and (τi)i≥1 in (2.4) are independent, and τi are i.i.d. from

P0. Since the NGG process selects discrete distribution with probability one (similarly to the

Dirichlet process, as stated in Theorem 2), sampling from P induces an exchangeable random

partition on the positive integers; see, for instance, Pitman (2006).

Generally, the �nite-dimensional distributions of P are not available in closed analytic form,

but the �rts two moment measures of P are given (see James, Lijoi and Prünster, 2006) by

E[P (B)] = P0(B),

V ar[P (B)] = P0(B)(1− P0(B))I(σ, κ)

where

I(σ, κ) := (
1

σ
− 1)(

κ

σ
)

1
σ e

κ
σΓ(

1

σ
,
κ

σ
) = (

1

σ
− 1)

∫ +∞

1

e−
κ
σ

(y−1)y−
1
σ
−1dy

and Γ(a, x) :=
∫ +∞
x

e−tta−1dt denotes the incomplete gamma function. The factor I(σ, κ) is

decreasing as a function of each variable alone, and goes to 0 as σ → 1 or κ → +∞, so that

P (B) converges in distribution to P0(B) for any B ∈ B(Θ). On the other hand, it can be shown

that

lim
σ→0, κ→0

I(σ, κ) = 1,

P (B)
d→ δτ (B)

where τ is a random variable with distribution P0. If σ = 0 and κ > 0 we recover the Dirichlet

process with measure parameter α(·) = κP0(·).

2.3 Models

In order to deal with r.p.m.'s, various models have been proposed. Among the others, the

Product Partition model (PPM) and the Dirichlet process mixture (DPM) model are the most

14



popular, and result to be very useful in understanding the problem of clustering, allowing also

the implementation of the NGG process. At the same time, through the Polya Urn scheme

presented in the previous section, they make easier the sampling procedure and the implemen-

tation of MCMC techniques. The interesting feature of these models is that they induce a prior

distribution on random partitions, thanks to the discreteness property of Dirichlet and NGG's

trajectories.

In this section, the two models are presented, with an explanation of the relationship between

them.

2.3.1 Product partition models

A clustering of n objects into Kn groups can be represented by a set partition π = {C1, ..., CKn}

of a set C0 = {1, ..., n}, having the following properties:

1. Ci 6= ∅, for i = 1, ...Kn;

2. Ci ∩ Cj = ∅, for i 6= j;

3.
⋃Kn
j=1Cj = C0.

The sets {C1, ..., CKn} are referred to as partition components.

The number of all the possible partitions of n elements is the Bell number B(n) (see, for

instance, Bell, 1934), and represents the cardinality of the space of all possible partitions of the

integers {1, ..., n}, Pn.

The Product Partition model (PPM) is a particular model parameterized by the set partition,

introduced for the �rst time by Hartigan (1990). The likelihood and the prior for the model,

based on the random partition of the elements, are described as follows:

p(xxx|π) =
Kn∏
j=1

m(xxxCj)

p(π) = M
Kn∏
j=1

h(Cj)

M = 1/
∑
π∈Pn

Kn∏
j=1

h(Cj)

(2.5)
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wherem(xxxCj) stands for the marginal density of those data belonging to the j-th group identi�ed

by the partition, and h(Cj) are called cohesionfunctions and describe the prior of the random

partition. The prior distribution for the random partition is also called Exchangeable Partition

Probability Function (or brie�y EPPF ).

By Bayes theorem, the posterior distribution is proportional to a product over partition com-

ponents:

p(π|xxx) ∝ p(xxx|π)p(π) ∝ [
Kn∏
j=1

m(xxxCj)][
Kn∏
j=1

h(Cj)] =
Kn∏
j=1

m(xxxCj)h(Cj) (2.6)

All the inferences about π are made using this proportionality. In this model, the partition π

is the only parameter under consideration; all the other parameters have been integrated out

over their priors.

2.3.2 Dirichlet/NGG process mixture models

In parametric cluster analysis, mixture models are often used to describe the partition of the

data into K given clusters, represented by K kernel densities. Dirichlet (and then NGG)

process mixture model, introduced for the �rst time by Lo (1984), is a generalization along the

nonparametric direction. In this model indeed the data are supposed to be generated from a

mixture of kernel densities, indexed by the vector of parameters θθθ = (θ1, ..., θn), which is, in

turn, a �nite sample from the nonparametric prior. The model is the following:

XXX1, ...,XXXn|θ1, ..., θn
ind.∼ K(xxxi|θi)

θ1, ..., θn|P
i.i.d.∼ P

P ∼ q(α(·), P0)

(2.7)

where q stands for a proper nonparametric prior (in this work it will be either the Dirichlet

process prior, or the NGG process prior), depending on the measure α(·) and on the mean

distribution P0. It can be equivalently written as q(aP0), where a = α(Rk) is the total mass

parameter.

The tuning parameters θθθ are called latent variables, and follow a generalized Polya Urn scheme,
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as shown in (2.1) and (2.2). This scheme is of great relevance for posterior computations. In

fact, in a conjugate model case, it is rather simple to calculate the full conditionals and to

implement a posterior MCMC sampling algorithm. Of course, from the description above, the

sample θθθ could present some values in common; this is the clustering part of the model: the

mixture model induces a partition π of the data, based on the values of the parameters of

the kernel densities (i.e., the latent variables), though unobserving the speci�c values of those

parameters (from here the latent characterization). In order to classify the data, is enough to

know which latent variables are equal and which ones are not, avoiding the knowledge of their

speci�c values φφφ, called vector of unique values.

In the mixture models, to give the latent variables is equivalent to give the two vectors φφφ (unique

values) and ccc (con�gurations), the last one representing the labels of the n observations. From

these two vectors it is possible to reconstruct the partition of the data induced by the vector

of latent variables.

2.3.3 Relationship between PPMs and mixture models

As mentioned before, a relationship exists between PPM and mixture models, and has been

presented for the �rst time by Quintana and Iglesias (2003), regarding the Dirichlet process

prior, but can also be found in the work by Lijoi, Mena and Prünster (2007), dealing with the

NGG process.

Consider the nonparametric component of the DPM model (2.7):

θ1, ..., θn|P
i.i.d.∼ P

P ∼ D(aP0)

where D(aP0) stands for the Dirichlet process prior, depending on the mass parameter a and

the mean distribution P0. As mentioned before, the Polya Urn representation can be used to

obtain the joint law of a sample from the Dirichlet process prior. Substituting the predictive

densities in (2.1) into the equation (2.2), then the joint law can be obtained, and results:

p(θ1, ..., θn) =
n∏
i=1

{
aP0(θi) +

∑
j<i δθj(θi)

a+ i− 1
} (2.8)
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Thanks to the discreteness of the trajectories of the Dirichlet process (see Theorem 2), the

vector θθθ of latent variables has non-zero probability to contain equal elements, inducing a

partition of the data and the vector itself. Consider now a possible partition π = {C1, ..., CKn}

of the sample {θ1, ..., θn} into Kn clusters, and let φφφ = (φ1, ..., φKn) be the vectors of its unique

values (each di�erent value corresponds to a di�erent component in the mixture, i.e. to a

di�erent cluster). Similarly to what is done in Lo (1984) and in Quintana and Iglesias (2003),

the equation (2.8) can be expressed as:

p(θ1, ..., θn) =
∑
π∈Pn

aKn∏n
l=1(a+ l − 1)

Kn∏
j=1

(|Cj| − 1)!P0(φj)
∏
i∈Cj

δφj(θi)

= K
∑
π∈Pn

Kn∏
j=1

h(Cj)pCj(θCj)

(2.9)

where K =
∏n

i=1(a + i − 1)−1, h(Cj) = a(|Cj| − 1)! = aΓ(|Cj|) for j = 1, ..., Kn, the vectors

θθθC1 , ..., θθθCKn are independent and pCj(θθθCj) for j = 1, ..., Kn is de�ned as the distribution such

that all the elements in θθθCj are identical to the value φj drawn from P0.

It is easy to see the PPM description arising from this equivalent equation. In fact, the functions

h(Cj), for j = 1, ..., Kn, represent the cohesion functions of the prior in (2.5). Hence, it can be

argued that the DPM model is equivalent to a PPM with particular cohesion functions, equal

to h(Cj) = aΓ(|Cj|), for j = 1, ..., Kn.

As far as the NGG process mixture model concerns, it can be shown, as presented in Lijoi et

al. (2007) and in Gnedin and Pitman (2005), that, with a particular choice of the cohesion

functions, a PPM model can be obtained. In particular in this case the exchangeable random

partition π has distribution of the form:

p(π) ∝ Vn,Kn

Kn∏
j=1

h(Cj) (2.10)

if and only if

h(Cj) = [1− σ]|Cj |−1, for j = 1, ..., Kn (2.11)

for some σ ∈ [0, 1] and Vn,Kn = (n − σKn)Vn+1,Kn + Vn+1,Kn+1. Here, [x]n is the ascending

factorial given by [x]n = x(x + 1) · · · (x + n − 1). It is easy to see how, putting σ = 0, the

Dirichlet process is recovered, as mentioned before.
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The mixture models generalization made by the PPMs can be expressed through the following

model:

XXX1, ...,XXXn|φφφ, π
ind.∼

Kn∑
j=1

K(xxxi|φj)

φ1, ..., φk|π
i.i.d.∼ P0, for i = 1, ..., Kn

π ∼ p(π) ∝
Kn∏
j=1

h(Cj)

The model above can be seen as a mixture model involving the PPM description of the partition,

making easier to understand the relationship between the two model descriptions.

As stated before, these two models are used to describe the data and their partitioning, al-

lowing MCMC computations via the Polya Urn scheme, in order to sample from the posterior

distribution of the random partition. In this work, both conjugate and non-conjugate models

will be used, following the general pattern just presented.

2.4 Posterior choice of one single Bayesian estimate of the

random partition

As stated in the previous chapter, a prior over the data partition can be induced using PPMs

or mixtures models, allowing a more �exible analysis. All the inferences should be based on

the posterior distribution of the random partition. Furthermore, these models are quite easy to

handle, especially in the conjugate case, making the MCMC sampling a�ordable. A di�erent

problem is to �nd one single suitable posterior estimates of the partition of the data, in order

to summarize the posterior distribution. Of course, this depends on the random partition's

sampling space, which is the set of all possible partitions of n objects. The cardinality of this

space is the Bell number, B(n) (see Bell, 1934), and becomes very large as n increases. Notice

that this space is not a totally ordered set. Hence, it is hard to treat distributions on it in the

usual way.

To solve the problem of choosing a partition of the data, avoiding to deal directly with the

analytical form of its posterior density, many methods have been proposed. In this section

some of them are presented, in relation with the applications of this work. All the methods
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described will be implemented on di�erent data-sets in the following chapters.

Using PPMs and the equation (2.6), the posterior density of the random partition can be eval-

uated (up to a positive constant) for any given partition. This will be the key point of the

�rst two procedures presented here, introduced in Lau and Green (2007), called the stochas-

tic search by posterior sampling of partitions (or brie�y SS) and the Bayesian hierarchical

clustering procedures (or brie�y BH).

Beyond methods based on the evaluation of the posterior density, there is a more "standard"

Bayesian estimate, that corresponds to the loss-function minimization method. In this ap-

proach, a particular function is de�ned, in order to account the relevance of the partition

examined, in terms of the loss resulting from choosing it among all the possibilities. The goal

of these techniques is to �nd the data con�guration minimizing the posterior expected value of

the proposed loss-function.

2.4.1 Stochastic Search by Posterior Sampling of Partitions

The SS method uses the partitions sampled from the posterior distribution of the random

partition, in order to �nd the Maximum a Posteriori (or MAP) among them. The density

evaluation is made by exploiting the formula (2.6) (in a �nite set, proportionality is enough to

establish which element is the maximum).

Of course, a drawback of the method is related to the sample size, which would unlikely contain

all the possible partitions of the objects, making di�cult to �nd the true MAP. Dahl (2009)

proposed an algorithm to �nd the exact MAP, but restricted only to a particular class of models,

satisfying two speci�c conditions; the �rst one is about the maximality of non-overlapping

components of the partition, while the second one assumes that the cohesion functions depend

only on the number of elements of each cluster. Another drawback is related to the spread of

the posterior density. As said before, the space of all possible partitions is a discrete space, with

cardinality B(n), the Bell number, which is considerably large, even for rather small values of

n. So, the frequencies over the possible outcomes of the posterior distribution could be very

low and therefore very similar from an element of the space to another, making very hard to

establish which one is "better". Furthermore, the absence of a total order relation excludes

the possibility of ranking the elements with the same mass, or with similar masses, in order to
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choose which one is more desirable.

2.4.2 Bayesian Hierarchical Clustering Procedures

The second method involving the evaluation of the posterior density of the random partition

is the BH method. The method was �rstly presented by Heard et al. (2006) into a Bayesian

parametric framework, and subsequently discussed by Lau and Green (2007) in a Bayesian

nonparametric fashion. The term "hierarchical" refers to hierarchical clustering methods used

in heuristic cluster analysis, as brie�y presented in Chapter 1. Of course, here the model-based

aspect of the analysis is not abandoned, leading to a method which is a combination of model-

based and heuristic features. The description of the data follows the product partition model

structure, presented in the previous chapter. The heuristic aspect, instead, is represented by

the hierarchical procedure used to gather the observations.

The BH method proceeds in the same way as the hierarchical one, starting with n singleton and

ending with a unique cluster, but with one fundamental di�erence: the choice of the similarity

matrix between the data. In order to implement the hierarchical clustering algorithm, a matrix

of similarities between clusters is needed, in order to evaluate, at each step, which elements to

merge. Thanks to the product partition model, this evaluation between di�erent partitions can

be made in terms of posterior densities. At each step of the algorithm, the ratio between the

posterior densities of two distinct partitions of the data is evaluated, using the equation (2.6),

in order to chose which one is "better" (in this case, most likely a posteriori). The denominator

of the ratio is the value of the posterior density at the current con�guration (i.e., no cluster is

moved), while the numerator is the value at the con�guration merging the two selected clusters.

This ratio R results:

Rl,h =
p(π

′ |xxx)

p(π|xxx)
∝
∏K

′
n

j=1 m(xxxCj)h(Cj)∏Kn
j=1 m(xxxCj)h(Cj)

=
h(Cl ∪ Ch)m(xxxCl∪Ch)

h(Cl)h(Ch)m(xxxCl)m(xxxCh)
, for l, h = 1, ..., Kn, (2.12)

where the π
′
represents the new con�guration, that is the one in which the two selected clusters

are merged. Of course, K
′
n = Kn− 1, because two clusters are going to be added. The letters l

and h represent the indexes of the clusters to merge (they are identi�ed by their unique values

φl and φh). The last equivalence follows from the independence of the elements in the clusters,
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as stated by the PPM, yielding to a useful simpli�cation of the ratio formula (only the decision

terms survive).

With this rede�nition of similarity, the hierarchical algorithm can be implemented, following

the usual path, starting with n singleton. At each step, the best merging is performed, among

all the possible choices, according to the ratios R. The algorithm has a O(n3) complexity,

which is rather high, but manageable. At the end (n− 1) di�erent con�gurations are provided,

representing the best choices at every step of the algorithm. The last thing to do is to choose

the most likely a posteriori among them, which surely exists because they represent a �nite set.

In terms of posterior density, many possible con�gurations are excluded (it is enough to think

about the di�erence between (n − 1) and the Bell number B(n)). This could be a serious

drawback, because some interesting con�gurations could be missed. At the same time, this

method provides an e�cient way to �nd an optimal partition, allowing little complexity in

computations.

2.4.3 Loss-Function Minimization methods

A popular method used to identify the optimal partition of the data consists in the minimization

of a loss-function representing the misclassi�cation cost generated by choosing a particular

partition π̂ instead of the "true" partition π. In particular, as proposed for the �rst time by

Binder (1978), the optimal partition is the one minimizing the total average cost, i.e. the

expected posterior value of the loss-function, computed with respect to the random partition π.

We introduce the label vectors ccc and ĉ̂ĉc, which, for a given partition, contain the label associated

with each observations. The general form of the loss-function is the following:

L(π, π̂) =
∑
i<j

(aI[ci=cj ,ĉi 6=ĉj ] + bI[ci 6=cj ,ĉi=ĉj ]) (2.13)

where π stands for the random partition, and π̂ for the estimated partition. The label vectors

ccc and ĉ̂ĉc can be used to de�ne the corresponding "incidence matrixes", that is matrixes whose

entries are binaries indicating whether two elements are in the same cluster or not. Thus,

the function above counts how many times a wrong labeling happens, and assigns a di�erent

weight to each kind of misclassi�cation. Being (2.13) a function of the random partition, it is a

random variable itself. Hence, because of the complexity of the posterior density of the random
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partition, it is impossible to provide any evaluation of it without integrating out the random

part of the function, i.e. to compute the expected value of this function.

l(π̂) = E[L(π, π̂)|xxx] =
∑
i<j

(aI[ĉi 6=ĉj ]P(ci = cj|xxx) + bI[ĉi=ĉj ]P(ci 6= cj|xxx)) (2.14)

where we used the fact that, given a r.v. Y , then E[I{Y ∈A}] = P(Y ∈ A). Now l is a function of

the proposed partition only, and then can be evaluated. Of course, the quantity P(ci = cj|xxx) is

supposed to be known, or , as in this work, estimated from previous sampling.

As reported in Lau and Green (2007), let ρij be the posterior coincidence probabilities P(ci =

cj|xxx) and K̂ = b
a+b
∈ [0, 1], then (2.15) can can be written as:

l = a
∑
i<j

ρij − (a+ b)
∑
i<j

I[ĉi=ĉj ](ρij − K̂) = a
∑
i<j

ρij − (a+ b)f(π̂)

Minimizing l(π̂) corresponds to maximizing f(π̂), with respect to π̂. In order to do so, two

samples from the posterior distribution of the random partition are used, one to estimate the

quantity ρij, which is a mean of incidence matrixes computed via MCMC methods, and the

other to evaluate the gain-function and �nding the partition maximizing it. Of course, the

goodness of the result is a�ected by the sample size and the choice of the parameter K̂, which

can be seen as the prior probability of putting together two elements, when they should be

separated.

As far as the choice of K̂ concerns, it is useful to refer another loss-function proposal by Dahl

(2006). This method suggests to choose that partition minimizing the sum of the squares

between the element of the incidence matrix and the correspondent posterior coincidence prob-

abilities. In this case, the loss function is of the form l(π̂) =
∑

i<j(I[ĉi=ĉj ] − ρij)2. As shown in

Fritsch and Ickstadt (2009), letting K̂ = 0.5 in (2.15) is the same as minimizing the function

proposed by Dahl (2006). In this work, K̂ will be often �xed at this value.
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2.5 A new class of Bayesian estimates for the random par-

tition

In the next chapters, the methods discussed so far will be implemented, using di�erent datasets.

Furthermore, extensions of such methods and algorithms towards a generalizing direction are

proposed. It is worth to specify that all of these new features are not proposed in the references

cited in this work, and therefore they represent the innovating part of the project.

First of all, in order to to robustify the analysis, a higher level of hierarchy is considered. In this

case, prior densities over the mass parameter a of the Dirichlet process are tested. Secondly,

not only the Dirichlet process prior will be used, but also one of its generalizations, the NGG

process prior, allowing more �exibility to the model.

Another important extension is made in relation with the choice of the loss-function to minimize.

Of course, the one presented by Binder (1978) and Lau and Green (2007) will be considered

(very often in the speci�c case of K̂ = 0.5, recalling Dahl (2006)). The classical speci�cation of

the loss-function involves a decision rule to establish whether two objects are in the same cluster

or not. This rule is represented by the equivalence relation "=", which means that two elements

are in the same group if and only if their latent variables θθθi and θθθj are equal (or their labels

ci and cj). In fact, in order to de�ne a partition of the observations, an equivalence relation is

needed, so that the induced partition can be used. The extension is made in this direction: a

new equivalent relation is found, based on the distance between two elements, and not only on

their peculiar values, relaxing the equality constraint. Of course, this new relation must include

the old one, in order to see it as a generalization. In terms of distances, it can be said that

xxxi will be in the same cluster of xxxj if and only if dij = d(θθθi, θθθj) ≤ ε, where d(·, ·) is a proper

distance between the two elements, and ε is a threshold parameter, used to tune the �exibility

of the new partition, de�ning the ε-neighborhood of a point p as Nε(p) = {q ∈ OOO|d(p, q) ≤ ε},

being OOO the set of objects considered. The problem in this case is that this relation is not

an equivalent relation (the transitivity is not holding), and then it cannot be used to de�ne

a new partition method, so it must be modi�ed in order to have an equivalent relation. To

do so, the connectivity relation de�ned by Ester et al. (1996) will be used, involving a new

parameter N , which represents the minimum number of elements required to de�ne a group
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cluster. This relation is exploited to de�ne the DBSCAN algorithm as in Ester et al. (1996),

presented brie�y in the �rst chapter, and can be achieved using three de�nitions:

De�nition 7. (Directly density-reachable)

A point p is directly density-reachable from a point q with respect to ε and N if

1. p ∈ Nε(q) and

2. |Nε(q)| ≥ N (core point condition).

Of course, the word density here is not used with a probabilistic accent, but only in the sense

of number of elements nearby a selected point. The second condition is called "core object

condition". If this condition holds for an object p, then p is called "core object".

De�nition 8. (Density-reachable)

A point p is density-reachable from a point q w.r.t. ε and N if there is a chain of points

p1, ..., pn with p1 = q and, pn = p such that pi+1 is directly density-reachable from pi.

Density reachability is the transitive hull of direct density-reachability. This relation is not

symmetric in general (only core objects can be mutually density-reachable).

De�nition 9. (Density-connected)

A point p is density-connected to a point q w.r.t. ε and N if there is a point s such that both,

p and q are density-reachable from s w.r.t. ε and N .

A �nal remark is about the parameter N . This is useful to �nd cluster of arbitrary shape, and to

calibrate the spatial density of the clusters, with respect to the threshold ε. In our case, though,

even a singleton would be considered a cluster, because we are working with the unique latent

vectors, which possibly identify groups of observations. So, it is enough to put N = 1. In this

special case density-reachable and density-connected de�nitions are equivalent. Furthermore,

it is important to notice that, in the case of N > 1, the density connectivity de�ned above does

not identify the partitions uniquely, possibly leading to situations of uncertainty about some

data (it is enough to consider an element equally distant from two di�erent core points of two

di�erent clusters). In fact, the density-connection is not a symmetric relation if N > 1.
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Now the new loss-function can be de�ned. Substituting the equivalence relation by dij(ε), where

dij(ε) = 1 if and only if xxxi and xxxj are density-connected with respect to ε (and N = 1), and 0

otherwise, we have:

L(π, π̂) =
∑
i<j

(aI[dij(ε)=1,d̂ij(ε)=0] + bI[dij(ε)=0,d̂ij(ε)=1]),

where the hat represents the deterministic part of the function. The mean value is:

l(π̂) = E[L(π, π̂)|xxx] =
∑
i<j

(aI[d̂ij(ε)=0]P(dij(ε) = 1|xxx) + bI[d̂ij(ε)=1]P(dij(ε) = 0|xxx)), (2.15)

and, reasoning as before:

l(π̂) = a
∑
i<j

ρij − (a+ b)
∑
i<j

I[d̂ij(ε)=1](ρij − K̂) = a
∑
i<j

ρij − (a+ b)f(π̂),

where ρij = P(dij(ε) = 1|xxx).

With this new equivalent relation, there is more �exibility in the choice of the partition, allowing

elements whose values are close to be in the same cluster.

Unfortunately, as happens in heuristic methods, the choice of the distance is of a great relevance

for the resulting estimates. In this work, various distances will be considered, such as the

Euclidean distance, Kullback-Leibler I-divergence (see, Csiszar 1975) and L2 metric. The �rst

is used to evaluate the distances between di�erent vectors of unique values of the latent variables,

while the others evaluate the distances between correspondent kernel densities. As far as the

Kullback-Leibler I-divergence concerns, the distance between two observed latent variables θθθi

and θθθj results:

KL(θθθi||θθθj) =

∫
k(xxx|θi) log

k(xxx|θi)
k(xxx|θj)

dxxx (2.16)

where k(·|θθθi) and k(·|θθθj) represent the two kernel densities associated with the two latent

variables θθθi and θθθj. Observe that KL(θθθi||θθθj) ≥ 0, and KL(θθθi||θθθj) = 0 if and only if k(·|θθθi) =

k(·|θθθj), that is if and only if θθθi = θθθj a.s. (i.e., they are in the same cluster according to the old

equivalence relation). Furthermore, KL(θθθi||θθθj) is not a symmetric function. In order to de�ne

a symmetric function, the sum KLij = KL(θθθi||θθθj) +KL(θθθj||θθθi) will be considered in this work.

Using the Kullback-Leibler I-divergence, elements belonging to a distribution which is "close"
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to another one will be considered in the same cluster. A similar result is achieved using other

distances, such as the L2 distance or the Mahalanobis distance, which are de�ned as follows:

dL2(θθθi, θθθj) =

√∫
(k(xxx|θθθi)− k(xxx|θθθj))2dxxx, (2.17)

dM(θθθi, θθθj) = (µµµi − µµµj)′Σ−1
i (µµµi − µµµj). (2.18)

L2 and Mahalanobis distances will be used in a bivariate example, involving Gaussian kernel

densities (for the last one a symmetric version is used). Furthermore, substituting k(xxx|θθθi) and

k(xxx|θθθj) in 2.17 with their square roots, we obtain the Hellinger distance, which will be used in

the bivariate example, too. An interested property of this last distance is the it ranges in the

�nite set [0,1], making it a feasible metric to express and understand the results. Kullback-

Leibler I-divergence will be used in all the examples.

27



Chapter 3

Galaxy Data

In this chapter, the models and procedures previously discussed are applied to the Galaxy

dataset, popular in literature (see, for instance, Roeder, 1990). These data are observed ve-

locities of n = 82 di�erent galaxies, belonging to six well-separated conic sections of space.

Values are expressed in [Km/s], scaled by a factor of 10−3, in order to deal with thousands of

kilometers. The error from sampling the velocities is estimated to be less than 50 Km/s.

The model chosen for the data is a DPM model, involving Gaussian kernel densities. As

far as the mean parameter of the nonparametric prior P0 concerns, a normal inverse-gamma

distribution is taken into account. Brie�y:

X1, ..., Xn|θ1θ1θ1, ..., θnθnθn
ind.∼ N(xi|θiθiθi), θiθiθi = (µi, σ

2
i )

θ1θ1θ1, ..., θnθnθn|P
i.i.d.∼ P

P ∼ D(a · P0) or NGG(σ, κ, P0)

(a ∼ Gamma(γ1, γ2))

P0(dµ, dσ2) = N(dµ|m0,
σ2

k0

)IG(dσ2|ν1,Ψ1)

(3.1)

where N(µ, σ2) represents the univariate normal distribution with mean µ and variance σ2;

Gamma(γ1, γ2) stands for the univariate gamma distribution having mean γ1
γ2

and variance

γ1
γ22

and IG(ν1,Ψ1) stands for the univariate inverse-gamma distributions with mean Ψ1

ν1−1
(for

ν1 > 1) and variance
Ψ2

1

(ν1−1)2(ν1−2)
(for ν1 > 2).

Notice that a prior on the mass parameter a can be given. Of course, we will consider this

case when the prior is a Dirichlet process. For the NGG case no priors are imposed on its
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hyperparameters. We considered the following cases:

• Dirichlet process - �xed mass parameter a

• Dirichlet process - random mass parameter: a ∼ Gamma(γ1, γ2)

• NGG process - �xed parameters σ and κ

Notice that each one of the three nonparametric priors taken into account in this work belongs

to the same nonparametric family, that is the one of the NGG process prior. As mentioned

in Section 2.2.2, when σ = 0, the NGG process prior recovers the Dirichlet process prior with

�xed mass parameter a = κ. Similar considerations can be made when dealing with a random

mass parameter. For each situation, the choice of the values of the hyperparameters is based

on the value of the prior mean of the number of clusters, denoted here by Kn. In particular, we

opted for those choice of hyperparameters leading to 1, 3 or 10 prior expected clusters. Finally,

we choose three sets of hyperparameters for the mean distribution P0, (m0, k0, ν1,Ψ1). The �rst

set is the one proposed by Escobar and West (1995), which is (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1),

while for the third and second second set we tried to incorporate our prior beliefs. We opted

for a prior distribution P0 imposing large variability on µ and a small variability on σ2, in

order to represent the prior information that many di�erent clusters are necessary to explain

the observations. In other words, we look for values of the hyperparameters such that V ar[µ]

results large, while E[σ2] and V ar[σ2] turn out to be small, leading to a combination of Gaussian

kernels with many di�erent locations and stretched shapes. Keeping in mind the relationship

stated in the model (3.1) between µ and σ, we have:

E[σ2] =
Ψ1

(ν1 − 1)
for ν1 > 1

V ar[σ2] =
Ψ2

1

(ν1 − 1)2(ν1 − 2)
for ν1 > 2

V ar[µ] = E[V ar[µ|σ2]] + V ar[E[µ|σ2]] = E[
σ2

k0

] + V ar[m0] =
Ψ1

(ν1 − 1)k0

for ν1 > 1

(3.2)

where the last equality holds thanks to the variance decomposition formula. Notice that the

hyperparameters from Escobar and West (1995) lead to a prior distribution for σ2 with in-

�nite variance (ν1 = 2). We �xed (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20) for the second set of

hyperparameters, which implies E[σ2] ≈ 1, V ar[σ2] ≈ 0.06 and V ar[µ] larger than 1000, and
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(m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2) for the third set of hyperparameters (this is equivalent to �x

both the prior mean and variance of σ2 equal to 0.1, and the prior variance of µ to 100). For

both these two sets of hyperparameters, we have that, a priori, the distribution of µ is rather

non-informative, while the distribution of σ2 is approximately degenerate on a constant value

(the variance is rather low). This assumption translates our prior belief that many clusters are

necessary in order to explain the observations. In this case, we let it �xed at the null value,

for simplicity of computations. A �nal remark concerns the correlation between the random

variables µ and σ2, which are the two components of the latent variable vector θθθ. If we compute

Cov(µ, σ2), we obtain:

Cov(µ, σ2) = E[µ · σ2]− E[µ]E[σ2] = E[E[µ · σ2|σ2]]− E[E[µ|σ2]]E[σ2] =

= E[σ2E[µ|σ2]]− E[E[µ|σ2]]E[σ2] = E[σ2 ·m0]−m0E[σ2] = 0,

i.e. µ and σ2 have zero prior correlation, but they are not a priori independent.

3.1 Dirichlet process with �xed mass parameter

In the case of Dirichlet process prior with �xed mass parameter, an analytical expression of

the density of the number of clusters is known (see, Antoniak 1974), and it is reported in the

formula (2.3). From this result, it is possible to evaluate the mean value of the number of

clusters, which results:

E[Kn] =
n∑
i=1

a

a+ i− 1

Figure 3.1 displays the plot of the prior expected number of clusters, as a function of the mass

parameter a on the x-axis, while Table 3.1 reports the values of the mass parameter which will

be used in the next analysis.

E[Kn] a
1 0.001
3 0.455
10 2.755

Table 3.1: Values of the mass parameter a of the Dirichlet process prior, and corresponding
expected number of clusters.
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(a) a ∈ (0, 1000) (b) a ∈ (0, 10)

Figure 3.1: Prior expected number of clusters Kn, varying the value of the mass parameter a
of the Dirichlet process prior.

3.2 Dirichlet process with random mass parameter

Here, the mass parameter a is taken as a random variable, thus a probability distribution has to

be chosen for it. As often proposed in literature (see, for instance, Escobar and West, 1995), we

opted for the "standard" choice of a univariate gamma distribution Gamma(γ1, γ2). Arguing

as before, values for the hyperparameters γ1 and γ2 have to be found, in order to have 1, 3 or

10 expected number of clusters, which can be written as follows:

E[Kn] = E[E[Kn|a]] = E[
n∑
i=1

a

a+ i− 1
]

where the �rst equality holds for the double mean property of expected values, and the last mean

is evaluated with respect to the random variable a. This calculus can be executed numerically,

via a Monte Carlo simulation. Alternatively, the expected number of clusters can be written

in the following way:

E[Kn] =
n∑
k=1

k · P(Kn = k) =
n∑
k=1

k ·
∫
R+

P(Kn = k|a)p(da) (3.3)

where the expression of P(Kn = k|a) is known form the formula (2.3), and p(da) stands for

the prior distribution of a. The inner integrals can be calculated numerically using adaptive

quadrature methods, with a very low e�ort and high precision, and then summed to give the
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estimated expected value. Therefore, the value of the mean of the number of clusters depends

on two additional parameters, γ1 and γ2. In Figure 3.2(a) the evolution of the prior expected

number of clusters can be observed, together with its contour plot (lighter colours mean higher

values) in Figure 3.2(b). Of course, there will be in�nite couples (γ1, γ2) ∈ R+ × R+ such that

E[Kn]= 1, 3 or 10. We choose these values according to the corresponding mean and variance

of the prior distribution of the mass parameter. For the case of one expected cluster, a prior

with a low mean and variance has been chosen, in order to re�ect the same choice made in the

case of �xed mass parameter a (see values in Table (3.1)). In fact, in that case, the value of

the mass parameter is very low, leading to an approximatively parametric model, that is:

X1, ..., Xn|θ1θ1θ1, ..., θnθnθn
ind.∼ N(xi|θiθiθi), θiθiθi = (µi, σ

2
i )

θ1θ1θ1, ..., θnθnθn|X0
i.i.d.∼ δX0

X0 ∼ P0

P0(dµ, dσ2) = N(dµ|m0,
σ2

k0

)IG(dσ2|ν1,Ψ1)

(3.4)

where P0(·) is the mean distribution of the Dirichlet process prior. In the same way we want to

preserve the condition leading to a larger prior expected number of clusters (10 in this case),

imposing a quite large variance on the mass parameter (third line of Table 3.2). Finally, in

Table 3.2, the ultimate choices of the hyperparameters is summarized. The second couple of

hyperparameters has been assigned following the work of Escobar and West (1995).

E[Kn] γ1 γ2 E[a] V ar(a)
1 2 100 1/50 2e-04
3 2 4 0.5 0.125
10 3 1 3 3

Table 3.2: Hyperparameters of the random mass parameter of the Dirichlet process prior and
corresponding prior expected number of clusters. The last two columns report the values of the
prior mean and variance of the mass parameter a.

3.3 NGG process with �xed parameters

As far as the NGG process prior concerns, integrals (3.3) for the prior expectations of Kn

must be numerically evaluated. To choose the values of the hyperparameters, we considered
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(a) (b)

Figure 3.2: (a) Surface and (b) contour plot of the mean values of the number of clusters
Kn, varying the value of the hyperparameters γ1 and γ2 of the mass parameter distribution:
a ∼ Gamma(γ1, γ2). In (b) the black lines represent those couples (γ1, γ2) for which the mean
of the number of clusters is equal to 1, 3 and 10 respectively.

the lower bound existing for the expected number of clusters for a NGG process prior with

hyperparameters σ and κ, that is E0,σ[Kn] ≤ Eκ,σ[Kn]. At the same time, large values of σ lead

to very high computational e�orts. So, we choose not to exceed the value σ = 0.5, and to �x

it at 0.01, 0.25 and 0.5 (arbitrarily). Finally, we found those values for κ that allow us to have

the prior expected number of clusters equal to 1, 3 or 10. Table 3.3 reports the �nal choices

for the hyperparameters.

E[Kn] σ κ
1 0.01 0.01
3 0.25 0.05
10 0.5 0.01

Table 3.3: Values of the hyperparameters σ and κ of the NGG process prior, and corresponding
prior expected number of clusters.

After a deep analysis of the results of applying the methods here proposed to the Galaxy

dataset, we decided to show only those concerning the prior choice of E[Kn] = 3. In fact, all

the methods proposed in this work turned out to be very robust with respect to the choice of

the hyperparameters of the nonparametric priors, giving very similar outcomes. In particular,

in the case of Dirichlet process prior with random mass parameter, this choice of E[Kn] recalls
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the one made in Escobar and West (1995), often leading to a partition of the observations into

three di�erent clusters. Furthermore, the result of three clusters for Galaxy data is supported

in Roeder (1990), as a lower bound for the number of modes of the estimated distribution.

3.4 SS method

In this section, the stochastic search method (SS) will be applied to the Galaxy data. We recall

that this method searches for the best partition among those sampled by a MCMC algorithm,

evaluating the corresponding proportional posterior densities using (2.6). To do so, we need

to compute the values of the cohesion functions h(Cj) and of the marginal densities m(xxxCj),

for j = 1, ..., Kn. The cohesion function depends on the hyperparameters of the nonparametric

prior, while the densities m(xxxCj), for j = 1, ..., Kn, only depend on the hyperparameters of the

mean distribution P0, that is (m0, k0, ν1,Ψ1). An analytical expression of the marginal densities

is as follows:

m(xxxCj) =

∫
Θ

∏
i∈Cj

K(xi|φj)P0(dφj) =

∫
R

∫
R+

∏
i∈Cj

N(xi|µj, σ2
j )N(dµj|m0,

σ2
j

k0

)IG(dσ2
j |ν1,Ψ1)dµjdσ

2
j

(3.5)

This marginalization is computed with respect to the Dirichlet process prior throughout the

latent variables (or better, their unique values), preserving the dependency on the number of

clusters. The integral above is very common in literature, being the marginal distribution of

a normal inverse-gamma conjugate model, leading to a generalized nj-dimensional Student's

t-distribution density, being nj = |Cj|. In the next sections we will give expressions of the

cohesion functions, for particular speci�cations of the nonparametric priors involved in the

analysis.

3.4.1 Dirichlet process with �xed mass parameter

As mentioned before (see Section 2.3.3), a strong relationship between PPMs and DPM models

exists. Thanks to this relationship, it is possible to characterize the nonparametric process

priors via the de�nition of their corresponding cohesion functions h(Cj), for j = 1, ..., Kn. In

the case of the Dirichlet process prior with �xed mass parameter a we have h(Cj) = a ·Γ(|Cj|),
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for j = 1, ..., Kn. Notice that these functions only depend on the cardinality of each cluster,

not involving the values of the observations.

We are now able to perform the SS method for clustering Galaxy data, in the case of Dirichlet

process prior with �xed mass parameter. The estimated partitions are shown in Figure 3.3,

through their incidence matrixes and data representation. An incidence matrixM is a particular

matrix whose entries [mij]i,j=1,...,n are binaries indicating whether two observations are clustered

together (mij = 1) or not (mij = 0). Given a particular partition π̂, this matrix can be

calculated using the correspondent vector of labels for the observations. In order to obtain

plots such as the ones in Figure 3.3, we have to re-order the incidence matrixes into clusters,

and assign to them di�erent colours (only the elements corresponding to positive entries are

shown). This method represents an e�cient way to display a partition clearly, showing how

many clusters are identi�ed and their dimensions. Unfortunately, this kind of plot misses

the information about the assignment of the observations (i.e., which elements are grouped

together and which not). To avoid this problem, incidence matrixes will be always presented

accompanied by a plot of the Galaxy dataset, with the elements coloured according to the

partition taken into account. This kind of �gures will be often used during all this work, in

order to show the estimates found by the methods proposed.

As mentioned before, the SS method turns out to be very robust with respect to the choice of

the value of the mass parameter a. For this reason, we only show results concerning a = 0.455,

leading to 3 prior expected number of clusters. The hyperparameters (m0, k0, ν1,Ψ1) were

chosen as speci�ed at the beginning of this chapter.

As can be easily inferred from Figure 3.3, the SS method is not very robust with respect to

the choice of the set of hyperparameters of P ; in particular, the estimated partition in Figure

3.3 (c) and (d) shows lack of robustness. This could be explained since the second set of

hyperparameters leads to a very large variance a priori for µ, which would explain the highest

number of clusters found by the method.

3.4.2 Dirichlet process with random mass parameter

When a prior is assumed for the total mass parameter a of the Dirichlet process prior, compu-

tations of the posterior density of the random partition becomes more di�cult. In fact, starting
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(a) (b) (c) (d) (e) (f)

Figure 3.3: Application of the SS method to the Galaxy dataset under Dirichlet process prior
with �xed mass parameter (E(Kn) = 3, a = 0.455). (a) and (b): (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1);
(c) and (d): (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20); (e) and (f): (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2).

from the formula (2.6), we have:

p(π|xxx) ∝ p(xxx|π)p(π) =

∫
(0,+∞)

p(xxx|π, a)p(π|a)p(da)

Of course, p(xxx|π, a) =
∏Kn

j=1 m(xxxCj) in (3.5), not directly involving the mass parameter a.

Therefore, the integrand above contains only of the prior term of the mass parameter a, and the

term p(π|a). This last term is the EPPF (Exchangeable Partition Probability Function) of the

corresponding Dirichlet process prior with �xed mass parameter a, that is p(π|a) ∝
∏Kn

j=1 h(Cj).

So, the integral is proportional to:

∫
(0,+∞)

p(xxx|π, a)p(π|a)p(da) ∝
Kn∏
j=1

m(xxxCj)

∫
(0,+∞)

Kn∏
j=1

a

[a]n
Γ(|Cj|)Gamma(da|γ1, γ2) =

=
Kn∏
j=1

Γ(|Cj|)m(xxxCj)

∫
(0,+∞)

aKn

[a]n
Gamma(da|γ1, γ2) =

Kn∏
j=1

Γ(|Cj|)m(xxxCj)Ep(a)

[
aKn

[a]n

] (3.6)

where [a]n = Γ(a+n)
Γ(a+1)

is the rising factorial (here Γ(·) denotes the Euler's gamma function). The

computation of this integral is the same as the one necessary to compute the mean number of

clusters for the same DPM model, except for the Stirling number term. Once again, numerical

methods must be applied in order to evaluate this quantities.

In Figure 3.4 the results of the estimated partition provided by the SS method for (γ1, γ2) =

(2, 4) are shown (this choice of the hyperparameters of the Dirichlet process prior recalls the

one made in Escobar and West (1995), leading to three prior expected clusters). Once again,

the choice of the set of hyperparameters for the mean distribution P0 strongly in�uences the

results. Additionally, in this case, the choice of the �rst set of hyperparameters (i.e., the one
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proposed by Escobar and West, 1995) does not give the same estimate found in the case of

�xed mass parameter, leading to a partition with a larger number of clusters. This di�erence

is due to the choice of the hyperparameters for the prior distribution of the mass parameter a.

In the case of �xed mass parameter, the prior expected number of clusters was equal to 3 when

a = 0.455; with a prior distribution on a we have to set the values for the two hyperparameters

γ1 and γ2, and we choose only one of the in�nite couples available, respecting the fact that

E[Kn] = 3 (referring to Table 3.2, line two). This choice leads to a prior distribution with mean

E[a] = 0.5, which is close enough to the value of 0.455, and a variance of 0.125, that is probably

too high to emulate the situation of �xed mass parameter.

(a) (b) (c) (d) (e) (f)

Figure 3.4: Application of the SS method to the Galaxy dataset under Dirichlet process prior
with random mass parameter (E(Kn) = 3, (γ1, γ2) = (2, 4)). (a) and (b): (m0, k0, ν1,Ψ1) =
(0, 0.01, 2, 1); (c) and (d): (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20); (e) and (f): (m0, k0, ν1,Ψ1) =
(0, 0.001, 3, 0.2).

3.4.3 NGG process with �xed hyperparameters

As a �nal example, we consider the NGG process prior, with �xed hyperparameters σ and κ,

and show the resulting estimated partitions. In order to evaluate the posterior densities, we

need to know the values of the weights Vnk in the formulas (2.10) and (2.11). For this reason,

the evaluation of corresponding weights Ank is performed, and then exploited the following

relationship:

Vnk =
eκ/σσk−1

Γ(n)
exp(Ank) (3.7)

where k represents the current value of Kn. The logarithm of the weights is computed in order

to avoid computational problems. A very complex relation exists between the coe�cients of the

cohesion functions for a NGG process prior. To compute this values, we refer to the algorithms

used by Argiento et al. (2010).
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Figure 3.5 shows the results. The estimates resulting for the case of NGG process prior turn out

to be very similar to the ones in the case of Dirichlet process prior with �xed mass parameter,

though the value of σ is set to 0.25, which is not very low (we recall that, when σ = 0, a NGG

process prior recovers the Dirichlet process prior with �xed mass parameter a = κ). In this

case, in order to have E[Kn] = 1, 3, 10, we found low values for the hyperparameter κ, leading to

an approximately parametric model (see, for example, the model in (3.4)). This could explain

why, even with rather high values of σ, we still have results similar to the Dirichlet process

prior.

(a) (b) (c) (d) (e) (f)

Figure 3.5: Application of the SS method to the Galaxy dataset under NGG process prior
with �xed hyperparameters (E(Kn) = 3, (σ, κ) = (0.25, 0.05)). (a) and (b): (m0, k0, ν1,Ψ1) =
(0, 0.01, 2, 1); (c) and (d): (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20); (e) and (f): (m0, k0, ν1,Ψ1) =
(0, 0.001, 3, 0.2).

3.4.4 Final considerations

A �nal remark about the application of the SS method to the Galaxy data concerns the choice

of the estimate for the random partition. The method has proved to be very robust with respect

to the choice of the mass parameter, while slightly sensitive to the choice of the nonparametric

prior, mostly due to the di�culty of expressing the same prior beliefs in di�erent nonparametric

environments. Additionally, the choice of the set of hyperparameter for P0 strongly in�uences

the results, sometimes clearly overestimating the number of clusters. We believe that the 3-

clusters partition is the one better representing the "real" classi�cation of the data, supported

by the graphical characterization of the observations (sub-�gures (b), (d) and (f) next to the

incidence matrixes) and by prior belief. Finally, we recall that the SS method only explores

those partitions sampled by the Gibbs sampler algorithm, yielding to unreliable estimates due

to the dimension of the MCMC sample analyzed. We cannot exclude that greater MCMC

samples would have given di�erent results, though here we ran MCMC samples of 5.000 and
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10.000 iterations, with a thinning of 15 and a burn-in of 50.000, not encountering relevant

variations in the results. Furthermore, in terms of posterior density, two completely di�erent

partitions could have similar weights, leading to a not e�cient way to choose the partition.

3.5 BH method

To apply the BH method to the Galaxy data, we need to compute the ratios in formula (2.12).

To do so, we need to know the expression of the posterior densities we want to compare at each

step (or better, their proportional form). Keeping in mind (2.6), together with the results of

the previous chapter, we are able to give expressions of these ratios, for each nonparametric

prior we consider. The equation of such ratio between two di�erent partitions is:

Ri,j =
p(πi|xxx)

p(πj|xxx)
∝ p(πi)

p(πj)

p(xxx|πi)
p(xxx|πj)︸ ︷︷ ︸
BFij

It is important to point out that the ratio used to perform the algorithm does not represent a

Bayes Factor, though its expression could look very similar. This equation shows that the ratio

would equal the Bayes Factor if and only if the prior over the possible con�gurations of the

data (i.e., partitions) was uniformly distributed. Such a prior would clearly be counterintuitive,

assigning the same weight to all possible con�gurations, and will not be taken into account here.

Furthermore, Bayes Factor compares two hypothesis which are disjointed and exhaustive, while

the ratio used in the BH algorithm compares two data con�gurations for which clearly these

characteristics do not hold.

As mentioned in Section 2.4.2, at each step the BH algorithm looks for the two sub-clusters

which maximize the ratio and then joins them together. A plot of the maximal ratios observed

during a run of the algorithm is showed in (3.6)(a). At the end of the algorithm, n di�erent

partitions are provided, and we choose the one whose posterior density is the highest (up to a

positive constant). See �gure (3.6)(b) for an example.

We performed a vast analysis of this clustering method, for di�erent choices of priors and

hyperparameters, and the BH method for the Galaxy dataset leads always to the same estimate.

In particular, we implemented the method for all the three nonparametric prior examined

(Dirichlet process prior with �xed and random mass parameter and NGG process prior), varying
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(a) Logarithm of the maximal ratios. (b) Logarithm of the proportional pos-
terior densities. The red point spots the
maximum.

Figure 3.6: Examples of BH results. Dirichlet process prior with �xed mass parameter.
E(Kn) = 1, a = 0.001 and (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1).

their hyperparameters as discussed at the beginning of this chapter and according to Tables

3.1, 3.2 and 3.3. In Figure (3.7) an incidence matrix of one analysis is reported (in particular,

concerning the case of Dirichlet process prior with random mass parameter and prior expected

number of clusters equal to 3, for the third set of hyperparameters of the mean distribution

P0), which is the same as the partition often resulting by applying the SS method. This shows

how robust this method turned out to be, no matter what nonparametric prior is used, at least

for hyperparameters we �xed here.

In the following sections, formulas to compute the ratio used in the BH method are presented,

for di�erent nonparametric priors.

3.5.1 Dirichlet process with �xed mass parameter

In the case of the simple Dirichlet process prior, the ratio results:

Rl,h =
p(π

′|xxx)

p(π|xxx)
∝ Γ(|Cl|+ |Ch|)

Γ(|Cl|)Γ(Ch)

m(xxxl∪h)

m(xxx(l))m(xxx(h))

1

a

where letters l and h refer to the two sub-clusters evaluated at the current iteration of the BH

algorithm. Of course, the factor 1
a
can be avoided in the calculus, representing a proportionality

term.
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Figure 3.7: Estimate given by the application of the BH method to the Galaxy dataset. We
obtained this result for all the examined con�gurations of nonparametric priors and hyperpa-
rameters.

3.5.2 Dirichlet process with random mass parameter

A slightly di�erent formula has to be used when the mass parameter of the Dirichlet process

prior is random. In this case, referring to the calculations made for the SS method in (3.6), we

have:

Rl,h =
p(π

′ |xxx)

p(π|xxx)
∝ Γ(|Cl|+ |Ch|)

Γ(|Cl|)Γ(Ch)

m(xxxl∪h)

m(xxx(l))m(xxx(h))

Ep(a)

[
ak

′

[a]n

]
Ep(a)

[
ak

[a]n

]
where k and k

′
stand for the numbers of clusters in the two compared con�gurations. Notice

how the factor 1
a
has been replaced by the ratio of the two expected values, where k

′
= k − 1.

To evaluate the expected values, numerical methods have been exploited (the same as (3.3)).

3.5.3 NGG process with �xed parameters

Recalling the expression of the EPPF for a NGG process prior in (2.10) and (2.11), we can

compute the ratio Rl,h in the following way:

Rl,h =
p(π

′|xxx)

p(π|xxx)
∝ Vn,k−1

Vn,k

[1− σ]|Cl|+|Ch|−1

[1− σ]|Cl|−1[1− σ]|Ch|−1

m(xxxl∪h)

m(xxx(l))m(xxx(h))

where k stands for the number of clusters Kn in the con�guration examined, and [1 − σ]n is
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the rising factorial.

3.6 Loss-function minimization method

This section shows the Bayesian estimates of the random partition obtained by minimizing

the standard expected posterior loss-function in (2.13) (here standard refers to the case of

clusters identi�ed by the ties in the latent vectors), proposed by Binder (1978) and Lau and

Green (2007). Once again, to enlighten di�erent backgrounds and computations, we analyze

the situations of the three usual nonparametric priors, with di�erent sets of hyperparameters

of P0. Nevertheless, the outcomes of implementing this method turned out to be very robust

with respect to the choice of both the nonparametric priors and its hyperparameters. What

really in�uences the �nal estimates is the choice of the set of hyperparameters of P0.

Figure 3.8 shows the results of applying the standard loss function minimization method for

di�erent choices of the set of hyperparameters of P0. We will not present the results for each

nonparametric prior used, being all the estimates very similar. In particular, we obtained

similar estimates when varying both the nonparametric prior and the values of σ and κ (we

recall that the Dirichlet process prior is a particular case of the NGG one), re�ecting a high

robustness of the method. Figure 3.8 shows the estimates referring to E[Kn] = 3, when the

nonparametric prior is a Dirichlet process with random mass parameter. The estimates here

are very similar to those presented in Section 3.4 on the SS method, in particular for the case

of Dirichlet process prior with �xed mass parameter and NGG process prior (see Figures 3.3

and 3.5).

(a) (b) (c) (d) (e) (f)

Figure 3.8: Application of the standard loss function minimization method to the Galaxy
dataset. Results holding for all the process prior choices (E(Kn) = 3). (a) and (b):
(m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1); (c) and (d): (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20); (e) and (f):
(m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2).
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3.7 A new loss-function method

In this section we will show a �rst application of the extended loss-function minimization

method, proposed in this work. We will consider the Euclidean distance between vectors of

latent variables (means and variances of the kernel densities), and the Kullback-Leibler I-

divergence between kernel densities, and we apply such method to the model chosen for the

Galaxy data in (3.1). When the distance is the Kullback-Leibler I-divergence, simple calcula-

tions show that:

KLij =
((µi − µj)2(σ2

i + σ2
j ) + (σ2

i − σ2
j )

2)

2σ2
i σ

2
j

(3.8)

We will apply the new method in order to cluster the observations. We recall that, to perform

such an analysis, we need to chose values for the parametersN and ε for the DBSCAN algorithm.

While for the �rst parameter it is enough to set N = 1 (presence of "noise" is not allowed and

partitions are uniquely de�ned), more di�cult is to choose the second one. As expected,

little values of ε lead to a large number of clusters, with a few elements into; conversely,

large values of ε tend to gather all the observations in one group. Moreover, the threshold

between these di�erent behaviors is not easy to determine. Figures from 3.9 to 3.14 show

di�erent estimates provided by the new clustering method for various ε and for N = 1, for both

the Euclidean distance and the Kullback-Leibler I-divergence. Di�erently from the methods

previously presented in this chapter, we will only display the incidence matrixes of the resulting

estimates. This is due to the fact that the vector of latent variables θθθ cannot be identify by the

new method, because the new equivalent relation is based on distances and not on ties between

the values of θθθ.

3.8 Euclidean distance

In this section we will show the estimates of the new clustering method when the prior is

Dirichlet or NGG process and the distance is the Euclidean distance between vectors of latent

variables. We only present the results for the Dirichlet process prior with random mass param-

eter, being the estimates all very similar to each other. Furthermore, in all the estimates, we

only consider the case of E[Kn] = 3 (the other estimates are the same, showing high robustness
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of the method). As usual, we take into account the three di�erent sets of hyperparameters of

P0.

Values of the parameter ε have been chosen in order to show the di�erence of the resulting

partition when it increases. As expected, the number of clusters decreases. We choose ε =

10, 12, 15 for the �rst and third set of hyperparameters of P0 and ε = 5, 7, 10 for the second set.

(a) ε = 10 (b) (c) ε = 12 (d) (e) ε = 15 (f)

Figure 3.9: Partitions resulting from applying the new loss function minimization method
(Euclidean distance). Dirichlet process prior with random mass parameter a ∼ Gamma(2, 4),
E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1).

(a) ε = 5 (b) (c) ε = 7 (d) (e) ε = 10 (f)

Figure 3.10: Partitions resulting from applying the new loss function minimization method
(Euclidean distance). Dirichlet process prior with random mass parameter a ∼ Gamma(2, 4),
E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20).

(a) ε = 10 (b) (c) ε = 12 (d) (e) ε = 15 (f)

Figure 3.11: Partitions resulting from applying the new loss function minimization method
(Euclidean distance). Dirichlet process prior with random mass parameter a ∼ Gamma(2, 4),
E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2).
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3.9 Kullback-Leibler I-divergence

The estimates shown in this section refer to the application of the new method considering the

symmetrized Kullback-Leibler I-divergence, de�ned in formula (2.16). After further analysis,

we observed that the new method de�ned using the Kullback-Leibler I-divergence is barely

in�uenced by the choice of the nonparametric prior and its hyperparameters, this showing a

high robustness of the method. Hence, we decided to present only the estimates in case of

E[Kn] = 3, which are similar for both Dirichlet and NGG process priors. In particular, Figures

from 3.12 to 3.14 refer to the Dirichlet process prior with random mass parameter.

As far as the choice of ε is concerned, here we include analysis where the estimated partitions

are enough di�erent from each other, in order to show how the method works. In particular, we

choose to put ε = 2, 6, 8. We recall that, in the case of Kullback-Leibler I-divergence, we consider

its log-transformation, that is log(1 +KLij), and consider the inequality log(1 +KLij) ≤ ε to

de�ne the new equivalence relation.

The �gures of this section show that the estimates are more sensitive to the choice of the

hyperparameters of P0 with respect to the case of the Euclidean distance. Furthermore, the

estimated con�guration with 3 clusters is often found by the method.

(a) ε = 2 (b) (c) ε = 6 (d) (e) ε = 8 (f)

Figure 3.12: Partitions resulting from applying the new loss function minimization method (log-
arithm of Kullback-Leibler I-divergence). Dirichlet process prior with random mass parameter
a ∼ Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1).

3.9.1 Final Considerations

In this case, we need to �x the further hyperparameter ε to provide an estimate of the random

partition. From the de�nition of the method itself, and as shown in �gures above, when �xing

a value of ε > 0 , the method tends to �nd less clusters than the standard loss function method

(i.e., by setting ε = 0).

45



(a) ε = 2 (b) (c) ε = 6 (d) (e) ε = 8 (f)

Figure 3.13: Partitions resulting from applying the new loss function minimization method (log-
arithm of Kullback-Leibler I-divergence). Dirichlet process prior with random mass parameter
a ∼ Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.001, 20, 20).

(a) ε = 2 (b) (c) ε = 6 (d) (e) ε = 8 (f)

Figure 3.14: Partitions resulting from applying the new loss function minimization method (log-
arithm of Kullback-Leibler I-divergence). Dirichlet process prior with random mass parameter
a ∼ Gamma(2, 4), E(Kn) = 3 and (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2).

In all the results presented in this section, the method turned out to be very in�uenced by

the choice of the hyperparameters of P0. Nevertheless, we can argue that the method is very

robust with respect to the choice of the nonparametric prior used. In fact, we only displayed the

estimates concerning the case of Dirichlet process prior with random mass parameter. In order

to de�ne the new equivalent relation for the new clustering method we proposed two di�erent

choices of the distance to use: the Euclidean distance and the Kullback-Leibler I-divergence

between latent vectors θθθ. As Figures 3.9 to 3.14 show, the estimates in case of di�erent distances

are quite similar (an exception is made for the case presented in Figure 3.12 (a) and (b)).
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Chapter 4

Kevlar Data

The next dataset we will analyze consists of n = 108 lifetimes of pressure vessels, wrapped

with a Kevlar yarn, coming from 8 di�erent spools, at di�erent levels of pressure (23.4, 25.5,

27.6 and 29.7 MPa). Eleven lifetimes with the lowest level of pressure are right censored at the

time 41.000 hours. The model chosen to describe the observed lifetimes is the one proposed by

Argiento et al. (2010), consisting of a semiparametric Bayesian Weibull regression model, where

the random e�ect is not induced by the spool classi�cation, but is inferred via a nonparametric

component. In this model, the log-lifetimes are taken as the response, while the covariates are

represented by a proper function of the stress levels (xi = log Stressi
minStress

= log Stressi
23.4

). The model

is the following:

Ti = exiβ · Vi, for i = 1, ..., n

V1, ..., Vn|θ1θ1θ1, ..., θnθnθn
ind.∼ Weibull(vi|θi1, θi2)

θ1θ1θ1, ..., θnθnθn|P
i.i.d.∼ P

P ∼ NGG(σ, κP0)

P0(dθi1, dθi2) = Gamma(dθi1|a, b)×Gamma(dθi2|c, d)

β ∼ N(0, 103)

(4.1)

where by a Weibull(θ1, θ2) random variable we mean the variable with survival function

S(w) = exp{−
(
w

θ2

)θ1
}, w ≥ 0; (4.2)
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note that θ1 > 0 and θ2 > 0 represent the shape and the scale parameters, respectively.

Of course, on the log-scale the model can be expressed as:

log Ti = xiβ + log θi2 +
Wi

θi1
, for i = 1, ..., n,

where Wi represents the error in the regression model, and Wi ∼ Gumbel(0, 1), i.e. a random

variable having survival function e−e
w
, with E[Wi] = −γ (minus the Euler-Mascheroni constant)

and V ar(Wi) = π2

6
.

In this model, the nonparametric component induces a grouping criterion on the observations.

In fact, thanks to the discreteness of the trajectories of the nonparametric prior imposed on θθθ,

the sequence {log θi2} contains ties with positive probability, thus inducing a partition on the

observations. As seen before, the grouping of the lifetimes is not �xed, but random, as well as

the number of clusters.

In the next sections, we will show the estimates provided by the loss-function minimization

method using both the standard and the new similarity matrix.

Notice that the model presented here is very di�erent for the one in (3.1), used in Chapter 3

to describe the Galaxy data. First of all, the model in (4.1) is not a conjugate one, and so

we cannot apply clustering method involving analytical computations of the posterior density

of the random partition (such as SS and BH method presented in Sections 2.4.1 and 2.4.2).

Additionally, here we have the presence of covariates, di�erently from model (3.1).

4.1 Cluster analysis using the standard similarity matrix

In this section the Bayesian estimates under posterior loss-function minimization are presented,

considering the usual classi�cation based on the equality of the latent variables θθθ. Even if we

did the analysis for di�erent sets of values for the hyperparameters, here we only report the

estimates for two di�erent con�gurations of the hyperparameters of P0, (a, b, c, d). The �rst con-

�guration correspond to (a, b, c, d) = (1, 1, 1, 1); the second one to (a, b, c, d) = (0.5, 0.044, 2, 2).

For the other NGG hyperparameters, we set (σ, κ) = (0.1, 10). For further details about the

choice of these values, see Argiento et al. (2010). As mentioned in Section 2.4.3, we need to

�x a value for the parameter of the loss-function K̂ = b
a+b

, where a and b represent the two
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misclassi�cation costs. Here, it will be held equal to 0.5 (corresponding to the Dahl quadratic

loss-function (2006), i.e. equal misclassi�cation costs).

In Figures 4.1 and 4.2, the incidence matrixes of the clustering estimates are shown, together

with the posterior kernel density estimates of log θ2i, i = 1, ..., n. These quantities have a

random intercept interpretation into the log-scale model of the Kevlar lifetime �bres. Thus,

it is useful to see their posterior distributions, in order to better understand the performed

clustering. In particular, the plot of the estimated posterior densities of the quantities log θ2i on

the left of Figures 4.1 and 4.2 shows a very clear clustering of the observations into three di�erent

groups (i.e., each evident mode represents a cluster), which is coherent with both the Bayesian

analysis carried out by Argiento et al. (2012) and the frequentist study reported in Crowder et

al. (1991). The �rst set of hyperparaters of P0, (a, b, c, d) = (1, 1, 1, 1), leads to a more dispersive

partition of the data (see Figure 4.1 (b)), involving 9 di�erent clusters of di�erent shapes,

while from Figure 4.2 (b) (second set of hyperparameters of P0, (a, b, c, d) = (0.5, 0.044, 2, 2)),

the subdivision into three groups is more evident. Therefore we argue that the loss function

minimization method provided by the standard similarity matrix, based on the ties in the

vectors of latent variables, is not robust.

Figure 4.1: Application of the standard loss-function minimization method. (a, b, c, d) =
(1, 1, 1, 1).

4.2 Cluster analysis using the new similarity matrix

It is now possible to show the estimates from the new clustering method, described in Section

2.5. First of all, in order to introduce a new equivalence relation based on the distance between
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Figure 4.2: Application of the standard loss-function minimization method. (a, b, c, d) =
(0.5, 0.04, 2, 2).

the latent variables, it is necessary to specify which distance will be used. In this section,

Euclidean distance and Kullback-Leibler I-divergence in (2.16) are considered. As far as the

method based on the Euclidean distance is concerned, we will use the distance between means

and variances of the corresponding Weibull densities W (θ1, θ2). Regarding the choice of N , we

�xed it equal to 1.

4.2.1 Euclidean Distance

The expressions of the mean and variance of a random variable W ∼ Weibull(α, β) de�ned in

formula (4.2) are:

E[W ] = βΓ(1 +
1

α
)

V ar[W ] = β2(Γ(1 +
2

α
)− Γ(1 +

1

α
)2)

(4.3)

In order to apply the new equivalence relation, we had to choose values for the additional

parameters N and ε. In this case we �xed N = 1, and ε = 0.5, 1, 1.5. We recall that the

DBSCAN algorithm (the clustering algorithm associated with the new equivalence relation),

when the parameter N is grater than 1, is able to locate "noise" elements, i.e. those elements

not satisfying the equivalence relation with any other object. In our case, we do not allow the

existence of such elements and decided to put always N = 1 (even a singleton, when found

by the algorithm, is considered as a cluster). Furthermore, when N > 1, the partitions found

by the DBSCAN algorithm are not uniquely determined, and can verify some situations of
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labelling con�ict.

In Figures 4.3, 4.4 and 4.5, we report the estimates, with the Euclidean distance between means

and variances of the Weibull kernel densities to de�ne the new equivalence relation in (2.5),

applied to the model (4.1) with the hyperparameters (a, b, c, d) = (1, 1, 1, 1). On the other

hand, when hyperparameters are (a, b, c, d) = (0.5, 0.044, 2, 2), we found that the estimate is

about the same for all di�erent values of ε (the estimate is shown in Figure 4.6), showing a

high robustness with respect to the value of ε.

As one can immediately see from the incidence matrixes reported in Figures 4.3 - 4.6, the

estimated number of clusters is not far from 3 (sometimes 4 or 5 clusters are found, some of

them composed of a few elements; only Figure 4.3 shows a clear overestimation of the number

of clusters). This result not only supports the Bayesian analysis carried out by Argiento et al.

(2012), and the frequentist analysis of Crowder et al.(1991), but also shows how our new method

is more robust. Of course, the choice of the parameter ε is a key point of such an analysis,

though, in this case, the new method proves to be quite robust with respect to it (only Figure

4.3 is unsatisfactory, since it is not coherent with previous frequentist and Bayesian analysis).

Figure 4.3: Estimate given by the new loss-function minimization method (Euclidean Distance).
N = 1, ε = 0.5 and (a, b, c, d) = (1, 1, 1, 1).
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Figure 4.4: Estimate given by the new loss-function minimization method (Euclidean Distance).
N = 1, ε = 1 and (a, b, c, d) = (1, 1, 1, 1).

Figure 4.5: Estimate given by the new loss-function minimization method (Euclidean Distance).
N = 1, ε = 1.5 and (a, b, c, d) = (1, 1, 1, 1).

Figure 4.6: Estimate given by the new loss-function minimization method (Euclidean Distance).
N = 1 and (a, b, c, d) = (0.5, 0.044, 2, 2).
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4.2.2 Kullback-Leibler I-divergence

The other distance we consider here is the Kullback-Leibler I-divergence, de�ned in (2.16). In

the case of Kevlar data, following the model above, Weibull kernel densities are used to compute

the I-divergence. The Weibull(α, β) densities have the following expression:

fW (w|α, β) =
α

βα
wα−1e−(w

β
)αI(0,+∞)(w).

The symmetrized Kullback-Leibler I-divergence in (2.16) between two latent variables results:

KLij = (αi − αj)(log
βi
βj
− γ(

1

αi
− 1

αj
))− 2 +

βi
βj

αj

Γ(1 +
αj
αi

) +
βj
βi

αi

Γ(1 +
αi
αj

),

where γ is the Euler-Mascheroni constant. Figures 4.7 - 4.10 show the Bayesian clustering of

the Kevlar dataset using the Kullback-Leibler I-divergence to implement the minimization algo-

rithm described in section 2.5, when the hyperparameters of P0 are (a, b, c, d) = (1, 1, 1, 1) and

(a, b, c, d) = (0.5, 0.044, 2, 2). In particular, Figures 4.9 and 4.10 show the estimated clustering

using log(1 + KLij) to de�ne the clusters, for two di�erent values of ε. Once again, kernel

density estimates and incidence matrixes are reported. We show results with �xed N = 1.

Finally, in Figure 4.11, we report the estimate concerning the second set of hyperparameters of

P0, which gives always the same result, for all the di�erent values of ε (still using the logarithm

of the Kullback-Leibler I-divergence). This result is the same as in the case of the Euclidean

distance, showing that the method is robust even with respect to the choice of the distance

used to de�ne the DBSCAN algorithm leading to the groups.

4.2.3 Final Considerations

From the results shown in this chapter, it is evident that the new method is robust with

respect to the distance used to de�ne the new equivalence relation. In fact, varying from

Euclidean distance to Kullback-Leibler I-divergence does not seem to in�uence very much the

corresponding clustering estimates.

Di�erent considerations must be made concerning the choice of the hyperparameters of the

mean distribution P0. As usually, this choice strongly in�uences the resulting outcomes. In

this particular model, we observed that the �rst set of hyperparameters, in the case of Eu-
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Figure 4.7: Estimate given by the new loss-function minimization method (KL I-divergence).
N = 1, ε = 1 and (a, b, c, d) = (1, 1, 1, 1).

Figure 4.8: Estimate given by the new loss-function minimization method (KL I-divergence).
N = 1, ε = 1.5 and (a, b, c, d) = (1, 1, 1, 1).

clidean distance, leads to a di�erent estimate for the random partition, when compared with

the Bayesian study carried out by Argiento et al. (2012) and the frequentist analysis of Crow-

der et al. (1991). Nevertheless, in this sense, the second set of hyperparameters gives better

and more robust results. We point out that many other sets of such hyperparameters have

been studied, but we choose to present only the two most signi�cative, which carried di�erent

information and estimates.
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Figure 4.9: Estimate given by the new loss-function minimization method (log(1 + KL)).
N = 1, ε = 1 and (a, b, c, d) = (1, 1, 1, 1).

Figure 4.10: Estimate given by the new loss-function minimization method (log(1 + KL)).
N = 1, ε = 1.5 and (a, b, c, d) = (1, 1, 1, 1).

Figure 4.11: Estimate given by the new loss-function minimization method (KL I-divergence).
N = 1 and (a, b, c, d) = (0.5, 0.044, 2, 2).
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Chapter 5

Simulated bivariate dataset having a

non-convex support

In this chapter we present the clustering estimates given by the new loss-function minimization

methods presented in Section 2.4.3 and 2.5, applied to two bivariate datasets of n = 250 and

n = 1000 elements, respectively. In particular, we simulated the i.i.d. observations from a

mixture of bivariate normal densities, imposing a distribution for the mean parameters. The

density from which we sampled the two datasets is the following:

qN2(000, B) + (1− q)N2(βββ,B/5), where B = diag(0.1, 2),

ξ ∼ U[−π/2,+π/2](dξ), and β1 = cos ξ, β2 = sin ξ.

Here N2(βββ,B) and U[a,b](·) stand for the bivariate normal distribution with mean vector βββ

and covariance matrix B and the uniform distribution with mean a+b
2

and variance (b−a)2

12
,

respectively. We �xed the weight of the mixture q at the value 0.5 for the �rst dataset (n = 250)

and 0.35 for the second one (n = 1000); see Figure 5.2, 5.4 and 5.6. The resulting datasets are

composed of two main groups of observations due to the two contributes of the mixture density:

the �rst one has a sharp round shape and it is located around the value 000, while the second

group lays on a semicircular region on the right of the �rst group. This peculiar disposition

of the observations on a non-convex support is a popular choice when dealing with clustering

algorithms (see, for example http://en.wikipedia.org/wiki/DBSCAN), in order evaluate how

well they perform even in "unusual" situations.
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In order to provide clustering estimation, we model the observations via a DPM model, as de-

scribed in (2.7), using a Dirichlet process prior with randommass parameter a ∼ Gamma(γ1, γ2),

where θθθi = (µµµi,Σi), for i = 1, ..., n. In the case of dataset size n = 250 we choose two di�erent

sets of hyperparameters for the total mass parameter a, one such that E[a] = γ1
γ2

= 15 and

V ar(a) = γ1
γ22

= 2, and the other one such that (γ1, γ2) = (2, 0.01). When dealing with n = 1000

observations, we �xed only a set of values for this hyperparameters, such that E[a] = 11 and

V ar(a) = 4. Notice that this choice leads to a large prior expected number of clusters and to

quite non-informative prior distributions on a.

As far as the choice of the rest of the hyperparameters of the Dirichlet process concerns, that

is the values of the set (mmm0, k0, ν1,Ψ1), we �x them as in Chapter 3: we want a large prior

variance for µµµ and small prior mean and variance for Σ. Similarly to formulas in (3.2), we have:

V ar(µµµ) =
Ψ1

(ν1 − p− 1)k0

, for ν1 > p+ 1;

E[Σ] =
Ψ1

(ν1 − p− 1)
, for ν1 > p+ 1;

V ar(Σ)ij =
(ν1 − p+ 1)Ψ2

1ij + (ν1 − p− 1)Ψ1iiΨ1jj

(ν1 − p)(ν1 − p− 1)2(ν1 − p− 3)
, for ν1 > p+ 3.

where p = 2 represents the data dimension. Additionally, we imposed that Ψ1 is a diagonal

matrix. In order to obtain the �xed values of the hyperparameters we assumed:

mmm0 = 000, k0 = 0.001, ν1 = 10,Ψ1 =

 0.1 0

0 0.1

 .
We could have applied all the methods presented in Sections 2.4 and 2.5 to these two datasets,

since the model we assumed is once again a conjugate DPM model, as in Chapter 3, but we

decided to show only the estimates provided by the loss-function minimization methods, being

the ones of particular interest in this work. In particular, we will present the loss-function

minimization methods based on both the standard and the new similarity matrix (we recall

that the standard method from Binder (1978) and Lau and Green (2007) can be seen as a

particular case of the new proposed method, �xing the parameter ε of the DBSCAN algorithm
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equal to zero).

5.1 Loss-function minimization methods

In order to apply the new clustering method, we need to choose a distance between the latent

variables θθθi = (µµµi,Σi), for i = 1, ..., n, of the DPM model, in order to de�ne the new equivalent

relation, as reported in Section 2.5. We decided to use the following distances in R2:

• Euclidean Distance between mean vectors,

• Symmetrized Kullback-Leibler I-divergence,

• Hellinger Distance,

• L2 Distance,

• Symmetrized Mahalanobis Distance.

The clustering estimates provided through the �rst and the last distance will not be shown

here, being very similar to the ones from the other distances. Therefore, here we present only

their analytical expressions:

dE(θθθi, θθθj) =
√

(µi1 − µj1)2 + (µi2 − µj2)2, i, j = 1, ..., n;

dSymM(θθθi, θθθj) = 0.5(dM(θθθi, θθθj) + dM(θθθj, θθθi)) = 0.5(µµµi − µµµj)′(Σ−1
i + Σ−1

j )(µµµi − µµµj), i, j = 1, ..., n.

Before showing the clustering estimates, we recall that values for the parameter ε must be

chosen. We choose to relate the value of ε to the prior distribution of the distances above

introduced, estimated using samples from the prior distribution of the unique values φφφ of the

latent vectors. In fact, as functions of the latent variables θθθ, the distances that we use to de�ne

the new similarity matrix are random variables, as well. In particular, we let ε varies between 0

and the quantiles of order 0.01, 0.5 and 0.99, respectively, of the distances' prior distributions.

These choices are related to di�erent prior beliefs, re�ecting our information about the prior

distances of the latent vectors θθθ.
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5.1.1 Kullback-Leibler I-divergence

For the case of bivariate Gaussian kernel densities, the expression of the symmetrized Kullback-

Leibler I-divergence, de�ned in (2.16), is:

KLij = 0.5(−2p+ Tr(ΣiΣ
−1
j ) + Tr(ΣjΣ

−1
i ) + (µµµi − µµµj)′(Σ−1

i + Σ−1
j )(µµµi − µµµj)), i, j = 1, ..., n

where Tr(A) represents the trace of the square matrix A. Notice that the last term of this

expression is the symmetrized Mahalanobis. This is the reason why using these two distances

in the de�nition of the new equivalent relation leads to very similar clustering estimates.

Figures 5.1 to 5.6 show the estimates given by choosing ε equal to 0 or according to the values

of the quantiles of order 0.01, 0.5 and 0.99, in the case of n = 250 and n = 1000. The images

are grouped according to the dataset analyzed and the values chosen for (mmm0, k0, ν1,Ψ1). In

particular, the �rst of each group of �gures shows the case of ε = 0, representing the estimate

provided by the method proposed by Binder (1978) and Lau and Green (2007). As before,

incidence matrixes and scatterplots of the estimated partitions are displayed; each group has

the same colour in the two graphs.

As can be easily inferred from the �rst three plots in Figures from 5.1 to 5.6, the estimates given

by the new loss-function minimization method are the same for the �rst three values of ε, that is

0, q0.01 and q0.5. Furthermore, the di�erent number of observations or set of hyperparameters of

P0 have little in�uence on the resulting estimates. As expected, the number of clusters reduces

when ε increases. Di�erently, as indicated in the fourth plot of each group of �gures, when

ε = q0.99, we have estimated partitions composed of 2 or 3 clusters, which re�ect in a very good

way the original partition (we recall that the observations have been simulated from a mixture

of two bivariate Gaussian densities).
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(a) ε = 0. (b) ε = q0.01

(c) ε = q0.5. (d) ε = q0.99

Figure 5.1: Incidence matrixes of the clustering estimates given by the new loss-function mini-
mization method with KL I-divergence, for N = 1 and di�erent values of ε. n = 250, �rst set
of hyperparameters.

60



(a) ε = 0. (b) ε = q0.01

(c) ε = q0.5. (d) ε = q0.99

Figure 5.2: Scatterplots of the clustering estimates given by the new loss-function minimization
method with KL I-divergence, for N = 1 and di�erent values of ε. n = 250, �rst set of
hyperparameters.
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(a) ε = 0. (b) ε = q0.01

(c) ε = q0.5. (d) ε = q0.99

Figure 5.3: Incidence matrixes of the clustering estimates given by the new loss-function min-
imization method with KL I-divergence, for N = 1 and di�erent values of ε. n = 250, second
set of hyperparameters.
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(a) ε = 0. (b) ε = q0.01

(c) ε = q0.5. (d) ε = q0.99

Figure 5.4: Scatterplots of the clustering estimates given by the new loss-function minimization
method with KL I-divergence, for N = 1 and di�erent values of ε. n = 250, second set of
hyperparameters.
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(a) ε = 0. (b) ε = q0.01

(c) ε = q0.5. (d) ε = q0.99

Figure 5.5: Incidence matrixes of the clustering estimates given by the new loss-function min-
imization method with KL I-divergence, when n = 1000, for N = 1 and di�erent values of
ε.
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(a) ε = 0. (b) ε = q0.01

(c) ε = q0.5. (d) ε = q0.99

Figure 5.6: Scatterplots of the clustering estimates given by the new loss-function minimization
method with KL I-divergence, when n = 1000, for N = 1 and di�erent values of ε.
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5.1.2 L2 and Hellinger distance

In this section, we will present the estimates obtained by applying the clustering methods when

the distances used are the L2 metric and the Hellinger distance. The L2 distance between two

bivariate Gaussian kernels is:

L2
ij =

√
2−pπ−

p
2 (|Σi|−

1
2 + |Σj|−

1
2 )− 2(2π)−

p
2 |Σi + Σj|−

1
2 exp{−1

2
(µµµi − µµµj)′(Σi + Σj)−1(µµµi − µµµj)} =

=

√
2−pπ−

p
2 (|Σi|−

1
2 + |Σj|−

1
2 )− 2Np(000|µµµi − µµµj,Σi + Σj), i, j = 1, ..., n

where, once again, p = 2 represents the dimension of the data and Np the bivariate Gaussian

density. The Hellinger distance between two measurable functions is de�ned as the L2 norm of

the di�erence between their square roots. In the case of Gaussian densities we obtain:

Hij =

√
1.− |Σi|

1
4 |Σj|

1
4 2

p
2 |Σi + Σj|−

1
2 exp{−1

4
(µµµi − µµµj)′(Σi + Σj)−1(µµµi − µµµj)}, i, j = 1, ..., n

Due to the de�nition of the Hellinger distance and its relation to the L2 norm, we choose to

present the estimates provided by using these two distances together. In particular, for both

these distances and for every choice of ε greater than 0 and (mmm0, k0, ν1,Ψ1) among the ones

discussed at the beginning of this chapter, we obtained the same result, which is reported in

Figure 5.7, that is all the data are grouped into the same cluster. This situation is far di�erent

from the one depicted in the �rst plot of Figures from 5.1 to 5.6, referring to the standard

loss-function minimization method (ε = 0), in which a relevant number of clusters is identi�ed

(we recall that the standard similarity matrix is not in�uenced by the chosen distance). To

better understand how the method works, we let ε vary from 0 to the value of q0.01, on a grid of

length 20. The most relevant estimates are presented in Figures 5.8 and 5.9 for the L2 distance,

and in Figures 5.10 and 5.11 for the Hellinger distance, when n = 1000. In particular, we can

observe from Figures 5.8(a) and (b) and Figures 5.9(a) and (b) that, in the case of L2 distance,

there are no relevant changes until ε = 1.925, which is rather close to the value of q0.01 (which is

q0.01 = 2.75). On the contrary, Figure 5.10 and 5.11 suggests that values of ε quite lower than

q0.01 for the Hellinger distance give more interesting estimates (in Figures 5.10(d) and 5.11(d)

two clusters are found), this showing a signi�cant di�erence between L2 and Hellinger distance.
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Figure 5.7: Clustering estimates provided by the new loss-function minimization method using
L2-norm or Hellinger distance.
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(a) ε = 0 (b) ε = 1.925 (c) ε = 2.2

(d) ε = 2.475 (e) ε = q0.01 = 2.75

Figure 5.8: Incidence matrixes of the clustering estimates given by the new loss-function mini-
mization method using L2 distance, obtained for di�erent values of ε.
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(a) ε = 0 (b) ε = 1.925 (c) ε = 2.2

(d) ε = 2.475 (e) ε = q0.01 = 2.75

Figure 5.9: Scatterplots of the clustering estimates provided by the new loss-function mini-
mization method using L2 distance, obtained for di�erent values of ε.
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(a) ε = 0 (b) ε = 0.5 (c) ε = 0.8

(d) ε = 0.9 (e) ε = q0.01 = 0.99

Figure 5.10: Incidence matrixes of the clustering estimates provided by the new loss-function
minimization method using Hellinger distance, obtained for di�erent values of ε.
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(a) ε = 0 (b) ε = 0.5 (c) ε = 0.8

(d) ε = 0.9 (e) ε = q0.01 = 0.99

Figure 5.11: Scatterplots of the clustering estimates given by the new loss-function minimization
method using Hellinger distance, obtained for di�erent values of ε.
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5.1.3 Varying the value of K̂

So far, we only illustrated loss-function minimization methods involving a particular choice of

the misclassi�cation costs. In particular, we �xed the parameter K̂ = b
a+b

equal to 0.5. This

value corresponds to assign equal costs to the two kind of misclassi�cation errors that may

occur, and gives the same estimates provided by the quadratic loss-function method proposed

by Dahl (2006). To recover a wider range of possible interpretations of the costs, we present

in this section some estimates when the value of K̂ is slightly di�erent from 0.5, in particular

�xed to 0.25 or 0.75. These new values assign di�erent costs to the two misclassi�cation errors,

re�ecting many practical situations.

In Figures 5.12 to 5.20 the estimates provided by the application of the loss-function minimiza-

tion methods when n = 1000 are displayed. Plots are grouped according to the value of ε,

which is �xed equal to 0, q0.01 and q0.99, for the three distances analyzed in this section. Figures

5.13 to 5.20 are also grouped according to the value of K̂. We recall that, in the case of ε = 0,

the estimates are not in�uenced by the choice of the distance we use.

From the estimates presented in this section, we can argue that the method is very robust with

respect to the value assigned to the parameter K̂. In fact, all the estimates are very similar to

the ones presented in the previous sections (as an example, compare Figure 5.12 with Figures

5.5(a) and 5.6(a)).
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(a) K̂ = 0.25. (b) K̂ = 0.25.

(c) K̂ = 0.75. (d) K̂ = 0.75.

Figure 5.12: Clustering estimates provided by the new loss-function minimization method for
di�erent values of K̂, obtained for ε = 0 (standard similarity matrix) for the simulated dataset
with n = 1000 observations.
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(a) KL I-divergence. (b) L2 distance. (c) Hellinger distance.

Figure 5.13: Incidence matrixes of the clustering estimates provided by the loss-function mini-
mization method for K̂ = 0.25, obtained for ε = q0.01 for the simulated dataset with n = 1000
observations.

(a) KL I-divergence. (b) L2 distance. (c) Hellinger distance.

Figure 5.14: Scatterplots of the clustering estimates given by the loss-function minimization
method for di�erent values of K̂ =, obtained for ε = q0.01 for the simulated dataset with
n = 1000 observations.
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(a) KL I-divergence. (b) L2 distance. (c) Hellinger distance.

Figure 5.15: Incidence matrixes of the clustering estimates provided by the loss-function mini-
mization method for K̂ = 0.75, obtained for ε = q0.01 for the simulated dataset with n = 1000
observations.

(a) KL I-divergence. (b) L2 distance. (c) Hellinger distance.

Figure 5.16: Scatterplots of the clustering estimates provided by the loss-function minimiza-
tion method for K̂ = 0.75, obtained for ε = q0.01 for the simulated dataset with n = 1000
observations.
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(a) KL I-divergence. (b) L2 distance. (c) Hellinger distance.

Figure 5.17: Incidence matrixes of the clustering estimates provided by the loss-function mini-
mization method for K̂ = 0.25, obtained for ε = q0.99 for the simulated dataset with n = 1000
observations.

(a) KL I-divergence. (b) L2 distance. (c) Hellinger distance.

Figure 5.18: Scatterplots of the clustering estimates provided by the loss-function minimiza-
tion method for K̂ = 0.25, obtained for ε = q0.99 for the simulated dataset with n = 1000
observations.
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(a) KL I-divergence. (b) L2 distance. (c) Hellinger distance.

Figure 5.19: Incidence matrixes of the clustering estimates provided by the loss-function mini-
mization method for K̂ = 0.75, obtained for ε = q0.99 for the simulated dataset with n = 1000
observations.

(a) KL I-divergence. (b) L2 distance. (c) Hellinger distance.

Figure 5.20: Scatterplots of the clustering estimates provided by the loss-function minimiza-
tion method for K̂ = 0.75, obtained for ε = q0.99 for the simulated dataset with n = 1000
observations.
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5.2 Dealing with misclassi�cations

Since in this chapter we have considered simulated datasets, we know the true classi�cation

of the observations, i.e. corresponding to the data labelling from the data sampling scheme.

The dataset was simulated from a mixture of two bivariate Gaussian kernels, that means the

data come from two di�erent clusters. In order to compare this information with the clustering

estimates, we have to select those estimating the two clusters. In this sections we will consider

the dataset with size n = 1000. As far as the choice of the distance and the value of ε is

concerned, we refer to Figures 5.10(d) and 5.11(d) for the Hellinger distance (ε = 0.9) and

Figures 5.5(d) and 5.6(d) for the Kullback-Leibler I-divergence (ε = q0.99 = 3.25).

We observe that the elements being misclassi�ed by the estimate given by the new clustering

method are the same in both the situations taken into account here, i.e. for the two di�erent

distances involved. In Table 5.1 a summary of the misclassi�cation error is reported: we

found that 337 points in cluster 1 and 644 points in cluster 2 were correctly classi�ed; the

misclassi�cation rate is 1.9%. In Figure 5.21 the two classi�cations of the observations are

displayed, one according to two di�erent colours, and one described by di�erent points.

Estimated1 Estimated2
True 1 337 13
True 2 6 644

Table 5.1: Summary of the true and estimated clusterings.

As we can see, the misclassi�ed elements lie in the middle of the two main groups. In order

to better understand the relevance of the misclassi�ed elements in the estimated partition, we

should be able to evaluate the probability that these elements belong to the estimated cluster.

Such probability is not well de�ned because of the label switching problem. In fact, labels

continuously change during the Polya urn sampling algorithm, and therefore it is impossible

to identify a cluster in relation to a clustering estimate. Nevertheless, we can evaluate the

probability of a new observation falling into the same cluster of a given observation, say xxxi,

such as a misclassi�ed one, conditionally on the observations. In formulas, we have:

P(XXXn+1 ! xxxi,XXXn+1 ∈ dyyy|xxx)

P(XXXn+1 ∈ dyyy|xxx)
, (5.1)
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Figure 5.21: Misclassi�cation.

where ! denotes that two elements are in the same cluster and dyyy stands for an in�nitesimal

interval of the sample space (in this case R2). The term XXXn+1 ∈ dyyy gives more information

and help in better understanding the probability that is going to be evaluated. Moreover,

notice that the denominator is the predictive probability, and then, when dyyy → 0, we can write

P(XXXn+1 ∈ dyyy|xxx) ≈ fXXXn+1(yyy|xxx)dyyy. As far as the numerator is concerned, we can write:

P(XXXn+1 ! xxxi,XXXn+1 ∈ dyyy|xxx) =

∫
Θ×Θn

P(XXXn+1 ! xxxi,XXXn+1 ∈ dyyy|θθθn+1, θθθ,xxx)L(dθθθn+1|θθθ)L(dθθθ|xxx)

=

∫
Θ×Θn

P(XXXn+1 ! xxxi|XXXn+1 ∈ dyyy,θθθn+1, θθθ,xxx)︸ ︷︷ ︸
P1

P(XXXn+1 ∈ dyyy|θθθn+1, θθθ,xxx)︸ ︷︷ ︸
P2

L(dθθθn+1|θθθ)L(dθθθ|xxx).

Thanks to the independence, conditionally on the observations, between the new latent variable

and the vector θθθ, we have that the probability P2 is approximately the kernel density associated

with the new latent variable θθθn+1, in fact, when dyyy → 0, we have P2 = P(XXXn+1 ∈ dyyy|θθθn+1, θθθ,xxx) ≈

k(yyy|θθθn+1)dyyy. Concerning the probability P1, we have that it is equal to 1 in the case that the

two latent variables are in the same class according to the new equivalence relation, (referring
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to Section 2.5, dn+1,i(ε) = 1), and 0 otherwise. Thus, this probability can be written as

I{dn+1,i(ε)=1}(dθθθn+1). Finally, to compute the ratio in (5.1), we used Monte Carlo simulation.

In Table 5.2, the estimated probabilities for four selected misclassi�ed elements are presented,

whose position is shown in Figure 5.22. According to the true classi�cation of the elements,

points A and B are supposed to be in cluster 2 (light blue in Figure 5.21), while C and D should

be in cluster 1 (red in Figure 5.21). All these points are erroneously clustered in the estimated

partition. We recall that the misclassi�ed elements are the same in the case of Hellinger distance

or Kullback-Leibler I-divergence.

Figure 5.22: Location of the misclassi�ed elements for which posterior probabilities are com-
puted.

A B C D
Kullback-Leibler 0.8933 0.4844 0.5378 0.8415

Hellinger 0.9215 0.5613 0.5854 0.8662

Table 5.2: Posterior estimated expected values of the probability of being in the same cluster
of xxxi, for four selected values of i.

The mean values of the probability we are interested in are quite large for some elements,

indicating less uncertainty about their classi�cation.
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5.3 Application of some heuristic techniques for clustering

In this section we will show the cluster estimates provided by some of the heuristic clustering

methods presented in Section 1.1, applied to the bivariate simulated dataset, when n = 1000, as

the agglomerative hierarchical clustering, the K-means algorithm and the original formulation

of the DBSCAN algorithm, as presented in Ester et al. (1996).

5.3.1 Agglomerative hierarchical clustering

As mentioned in Section 1.1, the hierarchical clustering technique is one of the most popular

ones in the family of heuristic clustering. This method performs a sequential union of the

observations following a decision rule based on a matrix of dissimilarities between the data,

which in this case is represented by the matrix of Euclidean distances, and on a proper distance

between clusters (called linkage). The most popular linkages are the single linkage, the complete

linkage and the average linkage. After that a dendrogram is created (i.e., a scheme describing

all the iterations of the algorithm), a partition is chosen, cutting the dendrogram in order to

obtain a given number of clusters.

Figures 5.23 and 5.24 show the partitions resulting from cutting the dendrogram at 2 and 3

clusters, in the case of complete and average linkage. As we can see, the choice of the linkage

strongly in�uences the outcomes of the algorithm. In particular, the average linkage is the one

that better picks the subdivision between the central group and the semicircular region on the

right of it.
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(a) Kn = 2. (b) Kn = 3.

Figure 5.23: Agglomerative hierarchical clustering applied to the dataset with n = 1000 obser-
vations (Complete Linkage).

(a) Kn = 2. (b) Kn = 3.

Figure 5.24: Agglomerative hierarchical clustering applied to the dataset with n = 1000 obser-
vations (Average Linkage).
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5.3.2 K-means clustering

The K-means clustering technique aims at �nding the partition that minimizes the sum of the

squares between observations and a given number of means. So, this algorithm takes as input

the number of clusters and the initial centers. We recall that, thanks to the convergence of the

algorithm, the location of the initial centers does not a�ect the result. Concerning the number

of clusters, we choose it according to a standard method based on the curve of the "within-

cluster sum of squares", de�ned as Wk =
∑k

j=1

∑
xxxi∈Cj ||xxxi − oooj||

2, where k is the number of

clusters, Cj, for j = 1, ..., k is a subset of {1, ..., n} such that
⋃k
j=1 Cj = {1, ..., n} and oj, for

j = 1, ..., k is the centroid associated with the cluster Cj. Notice that this function is the

same that is minimized during the K-Means algorithm, with respect to the possible partitions

of {1, ..., n}. The function Wk is shown in Figure 5.26. The standard method for choosing

the value of k proposes to identify an elbow in the graph of Wk, and to choose Kn as the

corresponding number of clusters, representing the optimal partition. From Figure 5.26, we

choose Kn = 2 and 3. Figure 5.25 displays the corresponding estimates, and it is clear that

the moethod divides the region into Kn parts, described by three lines, which do not recover

the original partition provided by the simulation of the data (for example, the central group of

observations is always divided into two parts).

(a) Kn = 2. (b) Kn = 3.

Figure 5.25: K-Means clustering applied to the dataset with n = 1000 observations.
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(a)

Figure 5.26: Within clusters sum of squares for K-Means clustering. Dataset with n = 1000
observations.

5.3.3 DBSCAN algorithm

As described in Section 1.1, the DBSCAN algorithm is a heuristic clustering method that uni�es

elements close to each other, and is able to locate dense group of observations. This algorithm

is the key point to de�ne the new loss-function minimization method proposed in this work

(see Section 2.5). In this section, we apply its original de�nition to the simulated bivariate

dataset, in order to compare the outcomes. Di�erently from the previous sections, here we

�x the value of N not only to 1, but also to 6. We recall that, when N > 1, the partitions

are not uniquely determined, because the de�nition used do not de�ne an equivalent relation.

Furthermore, when N > 1, noise elements can be identi�ed by the algorithm. In Figure 5.27

we report clustering estimates for di�erent values of N and ε. We tuned the value of ε in order

to �nd the subdivision of the data which better preserves the two main groups.

When N = 1 (Figure 5.27(a)), noise elements are not allowed, and every singleton could

represent a cluster. This is the reason why so many di�erent clusters are identi�ed by the

method (colours are repeated). Of course, this partition does not seem to be satisfying, if

compared with previous results.

Di�erently, when N = 6, less clusters are found, but many noise elements are located (black

points in Figure 5.27(b)). The main reason why this happens is that no model is adopted in

order to de�ne the DBSCAN algorithm, s points generated from the tails of the true distribution
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are not included into the clusters. This limitation is a serious drawback of the class of "density-

based" algorithms, which can exclude some elements that are "far" from a cluster in term of

distance. As an example of the non-uniqueness of the partition found by the method when

N > 1, takes the crossed blue cluster just above the red central group, which is composed of

only 3 elements. We recall that N is the minimum number of elements required to call a group

cluster, so this is clearly not a cluster. The ambiguity arises since, when N > 1, the symmetry

of the relation de�ned by the DBSCAN algorithm does not hold, not leading to an equivalence

relation, and therefore uncertainty situations can occur.

(a) N = 1, ε = 0.075. (b) N = 6, ε = 0.1.

Figure 5.27: DBSCAN algorithm applied to the dataset with n = 1000 observations.

5.3.4 Final Considerations

The cluster estimates presented in this chapter show that the method based on the new sim-

ilarity matrix is strongly in�uenced by the choice of the distance. In fact, when ε is �xed,

Kullback-Leibler I-divergence and L2 distance (or Hellinger distance) give very di�erent esti-

mates. Nevertheless, similar clustering estimates are given if we consider di�erent combinations

of ε values and distances (compare, for instance, Figures from 5.8 to 5.11).

Despite the strong in�uence of the choice of the distance, robust features of the method holds

with respect to the choice of the hyperparameters of P0 (above all, γ1 and γ2 in the prior

distribution of a) and of the parameter K̂ (the costs of misclassi�cation). In fact, varying these
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hyperparameters, clustering estimates turned out to be very similar.

As far as the choice of the value of ε concerns, we tried to �x it according to our prior beliefs,

that is to assign it according to the values of some quantiles of the prior distributions of the

distances between the parametric kernel densities associated with the prior latent vectors. Once

again, we obtained very di�erent estimates when di�erent distances are taken into account. In

particular, for the L2 and the Hellinger distances, we found that prior quantiles correspond to

very high values of the prior distances (for example, in the case of the Hellinger distance we

have q0.01 = 0.99, when its maximum is 1), and so the method provides estimates with only one

cluster. For this reason, we carried out further analysis, exploring a more vast range of values

for ε (see Figures 5.8 to 5.11). Di�erently, when dealing with the Kullback-Leibler I-divergence,

di�erent values of ε lead to estimates very di�erent from each other, and some of them seem to

explain fairly well the particular shape of the data disposition (see, for instance, Figures 5.5(d)

and 5.6(d)).

Finally, hierarchical and K-Means clustering do not provide estimates close to the true partition

(see Figures 5.23, 5.24 and 5.25). Furthermore, the standard DBSCAN method is not able to

determine a clear partition, even if no noise is allowed (see Figure 5.27(a)) since, when N = 1,

too many clusters are found. On the other hand, when N = 6, the DBSCAN partition is not

uniquely determined, as we discussed in Section 2.5. In contrast, the proposed new method

often gives the true partition, or at least a reasonable one.
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Chapter 6

Posterior sampling and density estimation

To apply the clustering methods presented in this work, we need to provide samples from the

posterior distribution of the random partition. To do so, exploiting the de�nition of DPM

models, proper algorithms to sample from the distribution of the latent variables p(θθθ|xxx) are

used. In the case of conjugate models (such as for Galaxy data in Chapter 3 and for the

bivariate normal simulated dataset in Chapter 5), a Polya Urn sampling scheme has been

adopted (see Neal, 2000), while, when non-conjugate priors are chosen (as in the Kevlar data),

the sampling algorithm is that proposed in Argiento et al. (2010).

In this chapter, we proceed with an introduction to the general Polya Urn scheme algorithm,

used to sample from the posterior distribution of the latent variables when the model is conju-

gate. We recall that all the algorithm for sampling have been coded using R (for the univariate

case, with Dirichlet or NGG process prior) and C (for the bivariate case, with Dirichlet process

prior having random mass parameter). After the �rst part concerning the sampling algorithm,

density estimates will be shown, for both the case of univariate (Galaxy dataset in Chapter 3)

and bivariate (simulated dataset in Chapter 5) Gaussian kernels.

6.1 Polya Urn scheme

As mentioned in (2.1), a sample from a Dirichlet process prior can be characterized as a gener-

alized Polya urn; this result can be easily extended to the case of NGG process prior, the details

will be reported in this chapter. Therefore, the same representation can be used to describe

the predictive laws of the latent variables in a Dirichlet or a NGG process mixtures model.
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Recalling the notation of the DPM model in (2.7), if θθθ1, ..., θθθn is a sample from a Dirichlet

process prior, the joint law of (θθθ1, ..., θθθn) can be described as:

θθθ1 ∼ P0

θθθi|θθθ1, ..., θθθi−1 ∼
a

a+ i− 1
P0 +

1

a+ i− 1

i−1∑
j=1

δθθθj for i = 1, ..., n,
(6.1)

where, as usual, P0(·) represents the mean distribution of the nonparametric prior, and a is the

total mass parameter (see Chapter 2 or Blackwell and MacQueen, 1973). This means that a

sample from a Dirichlet process can be described as a sequential extraction from a Polya Urn,

where the possible outcomes range in "a continuum of colours".

What we need in order to set up a Gibbs sampler algorithm is the expressions of the full

conditionals of the interested variables, that is, the distributions of θθθi|θθθ−i,xxx, where −i stand

for the vector of the latent variables excluding the i-th. Thanks to Bayes theorem and the

independence of each observation xxxi from θθθ−i, we obtain:

p(θθθi|θθθ−i,xxx) ∝ p(xxxi|θθθi)p(θθθi|θθθ−i) = k(xxxi|θθθi)(
a

a+ i− 1
P0 +

1

a+ i− 1

i−1∑
j=1

δθθθj).

The �rst term of the last expression is well known from the de�nition of the DPM model (see

Section 2.3.2), representing the kernel density associated with the i-th observation, while the

second part goes back to formula (6.1).

Finally, setting:

q0i =

∫
Θ

k(xxxi|θθθi)P0(dθθθi)

qi =

∫
Θ

∑
j 6=i

k(xxxi|θθθi)δj(dθθθi) =
∑
j 6=i

k(xxxi|θθθj)
(6.2)

we obtain:

p(θθθi|θθθ−i,xxxi) = ω0
k(xxxi|θθθi)P0(dθθθi)

q0i

+ ω1

∑
j 6=i k(xxxi|θθθi)δθθθj(dθθθi)

qi
, (6.3)

where ω0 and ω1 represent the weights of the normalized mixture, that is:
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ω0 =
aq0i

aq0i + qi
, ω1 =

qi
aq0i + qi

In the case of Gaussian kernel densities with normal inverse-gamma mean distribution P0, the

absolutely continuous part of the full conditional turns out to be a normal inverse-gamma

distribution as well. At the same time, the discrete part of the distribution represents the

possibility to assume values already sampled in the i−1-th previous extractions from the Polya

urn.

So, the Gibbs sampling algorithm proceeds as follows:

Step 1 for (i in 1:n) do:

Sampling from the full conditional θθθi|θθθ−i,xxx, using formula (6.3);

Step 2 for (iter in 1:number of iterations) do:

Sampling of additional parameters (such as random mass parameter a), conditionally on

θθθ and xxx;

This sampling scheme is of fundamental importance, not only to provide samples from the

posterior distribution of the latent variables θθθ, necessary to apply the proposed clustering

methods, but also to deal with density estimation. Of a particular interest is the computation

of the predictive density of a new observation, conditionally to the others, which can be written

as:

fXXXn+1|XXX(xxxn+1|xxx) = Eθθθ|xxx[f(xxx|θθθ)] =

∫
ΘΘΘ

f(xxxn+1|θθθ)p(dθθθ|xxx) =

∫
ΘΘΘ

∫
Θ

f(xxxn+1|θθθn+1)p(dθθθn+1|θθθ)p(dθθθ|xxx)

where Θ and ΘΘΘ represent the sampling spaces of the latent vectors θθθ and θθθn+1, respectively. The

outer integral can be computed through a Monte Carlo simulation, using the samples generated

from the Gibbs sampling algorithm above described. As far as the inner integral concerns, it

is of the same form of (6.2). Concluding, we can write:

fXXXn+1|XXX(xxxn+1|xxx) ≈ 1

G
(
G∑
g=1

a

a+ n
q

(g)
0n+1 +

1

a+ n
q

(g)
n+1)
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where q
(g)
0n+1 and q

(g)
n+1 stands for the same integrals as in (6.2), but referring to a sample of size

n rather than i− 1, and g = 1, ..., G represent the iterations of the Gibbs sampling algorithm.

This sampling scheme has been �rstly proposed by Escobar and West (1995). For all the choices

of nonparametric prior and hyperparameters we ran the Gibbs sampler with a burn-in of 50.000

iterations, saving samples having length of 5.000 iterations, with a thinning of 15. Concerning

the convergence analysis of the MCMC samples, we obtained very good results.

In the next sections, details about the di�erent sampling scheme and density estimations re-

sulting from choosing a di�erent nonparametric prior will be given.

6.2 Dirichlet Process

In order to implement the Gibbs sampling algorithm, we need to compute the values ω0 and

ω1, which directly depend on q0i and qi de�ned in (6.2). In this section, characterizations of

these quantities will be given, when the nonparametric prior is a Dirichlet process. To give a

general result, the p-variate case will be analyzed.

As far as the quantity qi concerns, it is very easy to compute, being the sum of (n−1) evaluation

of normal multivariate densities. Dealing with q0i is slightly more di�cult. In fact, we have to

compute the following multivariate integral:

q0i =

∫
Θ

k(xxxi|θθθi)P0(dθθθi) =

∫
Rp×Mp

Np(xxxi|µiµiµi,Σi)Np(dµiµiµi|mmm0,
Σi

k0

)IW (dΣi|ν1,Ψ1)

where Np(µµµ,Σ) represents the p-variate normal with mean vector µµµ and covariance matrix Σ,

and IW (ν1,Ψ1) represents the inverse-Wishart distribution with mean Ψ1

ν1−p−1
, for (ν1 > p+ 1).

We choose these densities to generalize the univariate model presented in (3.1). This integral

leads to a multivariate Student's t-density. According to the locate-scale representation, this

distribution has location mmm0, scale matrix 1+k0
k0(ν1−1)

Ψ1 and ν1 − 1 degrees of freedom.

A �nal remark is about the step 2 of the sampling algorithm, when the random mass parameter

a is sampled. In fact, before entering the cycle that samples the vector of latent variables, we

need to sample a new value of the mass parameter, conditionally on the observations and

the latent variables observed in the previous iteration. In other words, we are interested in

sampling from p(a|xxx,θθθ). Following Escobar and West (1995), we can exclude the dependency
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of this distribution from the observations, as from the latent variables. So, the only dependency

remaining is the one related to the number of observations n and the number of clusters Kn.

We can write:

p(da|xxx,θθθ) = p(da|Kn = k) ∝ p(Kn = k|a)p(da)

where we used the variable Kn to summarize the dependencies stated above and the expression

on the right side of the proportionality is obtained thanks to the Bayes theorem. All the terms

of this equation are completely known, and go back to formula (3.3), used to compute the prior

distribution of the number of clusters (in the case of random mass parameter). We can write

the formula above in the following way:

p(da|Kn = k) ∝ ak
Γ(a)

Γ(a+ n)
p(da)

recalling that Γ(a)
Γ(a+n)

= β(a,n)
Γ(n)

, where β(a, n) represents the normalization constant of a Beta

distribution with parameters a and n, with mean a
a+n

and variance an
(a+n)2(a+n+1)

. So, we are

able to perform an augmentation technique for sampling, including the new Beta random

variable, and we can see the formula above as the distribution resulting by integrating out the

random variable η ∼ Beta(a, n) from the joint distribution with the random mass parameter

a, conditionally on the number of clusters Kn.

Using the Bayes theorem, we can write the full conditionals of the two variables a and η,

that allow us to perform a separated Gibbs sampling algorithm. Notice that, in order to

avoid computational problems, in the following formulas, we will get the normalizing constant

β(a+ 1, n) rather than β(a, n), leading to an additional term a+n
a

in the equation (see Escobar

and West (1995) for further details).

η|a,Kn = k ∼ Beta(a+ 1, n)

a|η,Kn = k ∼ pηΓ(γ1 + k, γ2 − log η) + (1− pη)Γ(γ1 + k − 1, γ2 − log η)

where pη = γ1+k−1
n(γ2−log η)

. The presence of a mixture of two Gamma densities in the full conditional

of a is due to the presence of the term (a+ n).
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6.2.1 Galaxy Data

In this section, we tackle the density estimation problem for the Galaxy dataset, performed

using the sampling algorithm just described. All the MCMC samples used are of length 5.000

iterations, provided with a burn-in of 50.000 iterations and a thinning of 15.

In Figure 6.1 the case of Dirichlet process prior with random mass parameter is reported,

varying the set of hyperparameters of P0. In particular, we assume, as in Escobar and West

(1995), a ∼ Gamma(2, 4), where Gamma(α, β) represents the univariate gamma distribution.

In Figure 6.2, posterior distributions of the number of clusters are presented (blue), compared

with the correspondent prior distributions (green). Due to the fact that we are dealing with

a Dirichlet process prior with random mass parameter, it is important to show the estimated

posterior distribution of such mass parameter, displayed in Figure 6.3.

(a) (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1) (b) (m0, k0, ν1,Ψ1) = (0, 0.01, 20, 20) (c) (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2)

Figure 6.1: Density estimation for Galaxy data. Dirichlet process with random mass parame-
ters. E[Kn] = 3 and (γ1, γ2) = (2, 4).

6.2.2 Bivariate Dataset with non-convex support

We analyzed a simulated bivariate dataset. We sampled n = 250 and n = 1000 points from a

mixture of bi-variate normal densities in order to obtain points laying on a non-convex region.

In particular, we obtained a sharp cloud of points in the middle, and a semi-circular group

of elements on the right side (see Figure 6.4). The two sets of hyperparameters we used are

described at the beginning of Chapter 5.

To provide the Bayesian estimates, we sampled each MCMC chain for a total number of itera-
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(a) (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1) (b) (m0, k0, ν1,Ψ1) = (0, 0.01, 20, 20) (c) (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2)

Figure 6.2: Prior (green) and estimated posterior (blue) number of clusters. Dirichlet process
with random mass parameters. E[Kn] = 3 and (γ1, γ2) = (2, 4).

(a) (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1) (b) (m0, k0, ν1,Ψ1) = (0, 0.01, 20, 20) (c) (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2)

Figure 6.3: Prior (blue) and estimated posterior (red) distributions for the mass parameter a.
Dirichlet process with random mass parameters. E[Kn] = 3 and (γ1, γ2) = (2, 4).

tions equal to 5.000, with a burn-in of 50.000 and a thinning of 15. In Figure 6.4 we show the

density estimation for this dataset, given by the multivariate Polya urn sampling algorithm,

together with the estimation of the posterior density of the random mass parameter a and of the

number of clusters Kn in Figure 6.5. As expected, the density estimation provided by the Polya

urn sampling scheme tends to locate a dominant mode on the central group of observations,

while several more little modes disposed on the semi-circular region. This is due to the fact

that we choose hyperparameters for the Dirichlet process prior such that a large prior expected

number of clusters is obtained, leading to an estimation of the generating density composed of

multiple distinct contributes.
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(a) Contour plot. (b) Perspective plot

Figure 6.4: Density estimation for the simulated dataset with n = 250 observations, for the
�rst set of hyperprameters.

(a) Prior (blue - Gamma(2, 0.01)) and estimated
posterior (blue) distributions of the total mass pa-
rameter a.

(b) Prior (green) and estimated posterior (blue) dis-
tributions of the number of clusters Kn.

Figure 6.5: Dataset with n = 250 observations, �rst set of hyperparameters.
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6.3 NGG Process

In the case of NGG process prior, the predictive density for the latent variable, following the

Polya urn described in (6.1), is of the form:

θθθi|θθθ1, ..., θθθi−1 ∼ ω
(n)
0 P0 + ω

(n)
1

Kn∑
j=1

(nj − σ)δφφφj for i = 1, ..., n,

where Kn is the observed number of clusters, before the i-th extraction, and:

ω
(n)
0 =

σ

n

∑n
i=0

(
n
i

)
(−1)iβ

i
σΓ(Kn + 1− i/σ; β)∑n−1

i=0

(
n−1
i

)
(−1)iβ

i
σΓ(Kn − i/σ; β)

ω
(n)
1 =

1

n

∑n
i=0

(
n−1
i

)
(−1)iβ

i
σΓ(Kn − i/σ; β)∑n−1

i=0

(
n−1
i

)
(−1)iβ

i
σΓ(Kn − i/σ; β)

where Γ(a;x) =
∫ +∞
x

sa−1exp(−s)ds is the incomplete gamma function. Such weights are very

complex to compute, for further details see Argiento et al. (2010). To present the connection

between the DPM model involving the NGG process prior and the corresponding PPM, we

write the predictive density in the following way (see Lijoi et al., 2007):

θθθi|θθθ1, ..., θθθi−1 ∼
Vn+1,Kn+1

Vn,Kn
P0 +

Vn+1,Kn

Vn,Kn

Kn∑
j=1

(nj − σ)δφφφj for i = 1, ..., n,

Provided this form of the predictive density of the latent variables, together with the formula

(3.7), we can set up the Gibbs sampling algorithm, similarly to what has been done in the case

of the Dirichlet process prior.

6.3.1 Galaxy Data

We present in Figures 6.6 and 6.7 the density estimations and posterior number of clusters

obtained with the sampling from an NGG process prior, applied to the Galaxy dataset. The

case is the one with E[Kn] = 3. The samples are of 5.000 iterations, with a burn-in of 50.000

iterations and a thinning of 15.
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(a) (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1) (b) (m0, k0, ν1,Ψ1) = (0, 0.01, 20, 20) (c) (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2)

Figure 6.6: Density estimation for Galaxy dataset, using the NGG process prior. E[Kn] = 3
and (σ, κ) = (0.25, 0.05).

(a) (m0, k0, ν1,Ψ1) = (0, 0.01, 2, 1) (b) (m0, k0, ν1,Ψ1) = (0, 0.01, 20, 20) (c) (m0, k0, ν1,Ψ1) = (0, 0.001, 3, 0.2)

Figure 6.7: Prior (green) and estimated posterior (blue) number of clusters. NGG process
prior. E[Kn] = 3 and (σ, κ) = (0.25, 0.05).
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