
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

Operating System Support for Adaptive Performance and

Thermal Management

Relatore: Prof. Marco Domenico SANTAMBROGIO

Correlatore: Dott. Ing. Filippo SIRONI

Tesi di Laurea di:

Riccardo Cattaneo

Matricola n. 755279

Anno Accademico 2011–2012

To my family, to my friends

Contents

1 Introduction 1

1.1 Introductory contextualization . 1

1.2 Contemporary computing: relevant trends and paradigms 3

1.2.1 Multicore computing . 3

1.2.2 Autonomic computing . 6

1.2.3 Power efficient computing . 10

1.3 Scheduler properties and goals . 13

1.3.1 Preliminary definitions . 13

1.3.2 Problem statement . 16

1.3.3 Batch, interactive and real-time scheduling 16

1.4 Conclusions . 19

2 Related works 20

2.1 Overview of major Free or Open Source schedulers 20

2.1.1 Linux schedulers . 21

2.1.2 FreeBSD schedulers . 24

2.2 Policies for energy efficiency . 26

2.3 Dynamic Thermal Management techniques 27

2.3.1 Hardware Dynamic Thermal Management 29

2.3.2 Software Dynamic Thermal Management 31

2.3.3 Thermal Aware Scheduling 33

2.4 Heart Rate Monitor . 37

2.4.1 Definitions . 38

iii

CONTENTS iv

3 Autonomic Operating Systems 40

3.1 High Level Vision . 40

3.1.1 Thesis contribution . 42

3.2 Autonomic Computing Model and Components 43

3.3 An Autonomic Operating System extension: ADAPTME 46

4 Proposed Methodology 49

4.1 Motivation . 49

4.2 Control Theoretical thermal and performance aware policies 52

4.2.1 Derivation of priority update equation 55

4.2.2 Derivation of idle-time injection equation 57

4.3 Autonomic policies . 59

4.3.1 Thermal-aware policy . 59

4.3.2 Performance-aware policy . 60

5 Implementation 61

5.1 FreeBSD Heart Rate Monitor porting 61

5.1.1 Heart Rate Monitor user space partition 62

5.1.2 Heart Rate Monitor kernel space partition 64

5.2 4.4BSD scheduler . 70

5.2.1 Multilevel feedback Run Queues 70

5.2.2 Computation of threads’ priority 71

5.3 ADAPTME implementation . 74

5.3.1 Performance-Aware Policy 74

5.3.2 Thermal-Aware Policy . 76

6 Results 78

6.1 Benchmarking in a multicore environment: PARSEC 78

6.1.1 Available Princeton Application Repository for Shared-Memory

Computers (PARSEC) workloads 80

6.2 Settings . 80

6.3 Experimental Results . 83

6.4 Concluding remarks about experimental results 92

CONTENTS v

7 Conclusions and future work 95

7.1 New monitors and adaptation policies: further developments . . . 96

7.2 Explicitly trading performance for temperature and vice-versa . . . 96

Bibliography 105

List of Figures

1.1 The Observe-Decide-Act loop. 9

1.2 Breakdown of total data center hardware and overheads costs of a

representative Google datacenter [1]. 12

1.3 The model for Power Usage Effectiveness (PUE) [2]. 12

3.1 The vision of an Autonomic System: Observe Decide Act (ODA)

loops are integrated in the system at various levels, so as to allow

each layer to act according to user’s needs with her direct inter-

vention (courtesy of Davide Basilio Bartolini, [3]) 44

3.2 The adaptation manager. This component interacts with different

monitors and adaptation policies in order to realize user’s high

level goals. (courtesy of Davide Basilio Bartolini, [3] 46

4.1 Race-to-idle versus thermal aware approach. In the graph it is eas-

ily seen how the execution under ADAPTME with a thermal con-

straint of 60°C of our benchmark application results in a longer

total run-time but lower average temperature. On the other hand,

pure 4.4BSD, race-to-idle execution completes more rapidly but in-

volves a not negligible difference in running peak temperature (in

this experiment more than 8°C). 51

4.2 The setting of the control problem 56

vi

LIST OF FIGURES vii

5.1 On the left, the linked-list of groups and the linked-list of produc-

ers and consumers (per group), set of pages to store per thread

counters, and single page to store both the performance measures

and the performance goal. On the right, the shared memory access

pattern realized by threads belonging to the same group accessing

their respective performance counters. 65

5.2 Multilevel feedback run queues: tasks are assigned a level in the

queue and are double linked for round robin scheduling purposes. 71

5.3 The relationship between some relevant scheduler functions 73

6.1 x264 run results. System’s temperature of both Dimetrodon and

FreeBSD/4.4BSD is consistently higher than that reached by ADAPTME.

Notice how under ADAPTME the execution time of the workload

is also reduced with respect to Dimetrodon. 83

6.2 ferret run results. Being a Central Processing Unit (CPU) intensive

workload, the temperature reached by FreeBSD/4.4BSD is high.

Both Dimetrodon and ADAPTME consistently reduce tempera-

ture during the execution of the system, even though the aver-

age temperature is lower for ADAPTME. Execution time is still

reduced in ADAPTME than it is in Dimetrodon. The vertical red

line indicates the time when FreeBSD/4.4BSD finishes executing

the benchmark application. 85

6.3 blackscholes run results. Again, the temperature reached by FreeB-

SD/4.4BSD is consistently higher than of both ADAPTME and

Dimetrodon. In this case, we observe a reduction in execution time

of ADAPTME with respect to Dimetrodon, which effectively shows

how the performance aware policy can favor the execution of some

tasks at the expense of others. The vertical red line indicates the

time when FreeBSD/4.4BSD finishes executing the benchmark ap-

plication. 86

LIST OF FIGURES viii

6.4 fluidanimate run results. Again, the temperature reached by FreeB-

SD/4.4BSD is consistently higher than of both ADAPTME and

Dimetrodon. In this case, it is observed a reduction in execution

time of ADAPTME with respect to Dimetrodon, which effectively

shows how the performance aware policy can favor the execution

of some tasks at the expense of others. The execution time over-

head imposed by both ADAPTME and Dimetrodon is not negli-

gible, being in the order of 3x – 5x. The vertical red line indicates

the time when FreeBSD/4.4BSD finishes executing the benchmark

application. 88

6.5 swaptions run results. Dimetrodon’s average running tempera-

ture is comparable to that of FreeBSD/4.4BSD at the cost of a sig-

nificantly higher execution time (∼ 2x). ADAPTME, on the other

hand, keeps the average temperature under the set point of 55° C

and imposes a small overhead on the execution of the workload.

The vertical red line indicates the time when FreeBSD/4.4BSD fin-

ishes executing the benchmark application. 90

6.6 Multiple runs f swaptions. Heart rate of the second group is plot-

ted as the blue line and is referred to the first y-axis (the left). It

stays mostly inside the specified goal (min and max, respectively,

are the dotted orange and green line). The temperature and the av-

erage temperature are plotted in black and referred to the second

y-axis (the right) . 91

List of Tables

5.1 libhrm API . 63

6.1 Qualitative comparison between PARSEC workloads [4] 80

6.2 Average measured temperature and standard deviation for appli-

cations from the PARSEC 2.1 Benchmark Suite expressed in Cel-

sius degrees and runtime overheads expressed with respect to the

4.4BSD scheduler runtimes . 93

ix

List of Algorithms

1 Heart Rate Monitor (HRM): application’s perspective (producer

and/or consumer) . 62

2 HRM: system’s perspective . 64

3 ADAPTME: performance-aware thread priority modification pseudo-

code . 76

4 ADAPTME: thermal-aware policy pseudo-code 77

x

List of Abbreviations

AC Autonomic Computing

AcOS Autonomic Operating System

AI Artificial Intelligence

API Application Programming Interface

AS Autonomic System

CFS Completely Fair Scheduler

CHANGE Computing in Heterogeneous, Autonomous ’N’ Goal-oriented

Environments

CMP Chip Multi Processing

CMPs Chip Multi Processors

CPU Central Processing Unit

CRAC computer room air conditioner

CT Control Theory

DTM Dynamic Thermal Management

DVFS Dynamic Voltage and Frequency Scaling

FLOSS Free, Libre or Open Source Software

GID Group IDentifier

xi

LIST OF ABBREVIATIONS xii

HRM Heart Rate Monitor

HT Hyper Threading

HVAC Heating, Ventilation and Air Conditioning

I-Cache Instruction-Cache

I/O Input/Output

ILP Instruction Level Parallelism

IT Information Technology

ML Machine Learning

MTTF Mean Time-To-Failure

ODA Observe Decide Act

OS Operating System

PARSEC Princeton Application Repository for Shared-Memory Computers

PID Process IDentifier

PUE Power Usage Effectiveness

QoS Quality of Service

RCSP Resource Constrained Scheduling Problem

RMS Recognition, Mining and Synthesis

SMP Simultaneous Multi Processor

SMT Simultaneous Multi Threading

TAS Thermal-aware scheduling

TDP Thermal Design Power

TID Thread IDentifier

TLP Thread Level Parallelism

Summary

Thermal constraints in high performance computing environments are be-

coming a major issue for systems’ designers which is tackled with different ap-

proaches. In addition, the skyrocketing complexity of computing systems of the

near future is sought to become unmanageable leaving the question open on how

to continue to improve the performance of the computing of tomorrow.

In this work it is proposed an advancement in the context of operating system-

based, local Dynamic Thermal Management (DTM) technique deeply rooted in

the Autonomic Computing (AC) initiative called ADAPTME, a simultaneously

performance and thermal aware scheduler aimed at server environments with

general purpose (both batch and interactive) workloads.

After implementing the system as a patch for a commodity open source Operating

System (OS), the work is compared to the state of art, resulting in lower average

running temperature and slowdowns.

xiii

Sommario

I vincoli di natura termica nei sistemi informatici ad alte prestazioni stanno

progressivamente diventando un problema per i progettisti di questi sistemi, che

cercano di affrontare il problema da diversi punti di vista ed a diversi livelli.

Oltretutto, è previsto che la crescita esponenziale della complessità dei sistemi

informatici previsti per i prossimi anni a venire diventi rapidamente ingestibile,

lasciando aperta la questione su come continuare a migliorare le performance dei

sistemi del futuro.

In questo lavoro, che è profondamente legato al mondo dell’Autonomic Com-

puting, proponiamo un miglioramento nel contesto delle tecniche per la gestio-

ne locale e dinamica della temperatura realizzata a livello di sistema operati-

vo per mezzo di uno scheduler simultaneamente thermal- e performance-aware

orientato a sistemi server con carichi di lavoro generici (sia interattivi che batch):

ADAPTME.

Dopo avere implementato il sistema come una patch per un sistema operativo

open source largamente disponibile, ci confrontiamo con lo stato dell’arte, risul-

tando migliori sia dal punto di vista della più bassa temperatura media ottenuta

che dei ridotti rallentamenti dovuti all’azione del controllo termico.

xiv

Chapter 1

Introduction

In this Chapter it is introduced the context and the notions required to moti-

vate the work done in this thesis. In Section 1.1 some major factors that are play-

ing a role in shifting the evolution of modern computing systems towards new

paradigms are introduced, and are briefly summarized in Section 1.2. In Section

1.3 some preliminary definitions about the scheduling problem are given, along

with the possible goals to reach and a link to the context in which this works is

developed.

1.1 Introductory contextualization

The way the semiconductor industry is keeping up in the recent years with

the pace of change set by Moore’s law [5] has seen a sharp drift from the path

that was followed until the early 2000s. As we reach the physical limits of silicon-

based transistors miniaturization, the increase of performance of integrated cir-

cuits can no longer be obtained by a mere increase of their clock speed, partly

due to thermal issues, partly due to issues related to the propagation of the clock

signal in the chip’s area [6]. The power density of nowadays’ microprocessors

is higher than ever, potentially causing thermal issues. Moreover, the amount of

Instruction Level Parallelism (ILP) that can be extracted from code after years of

processors evolution and optimization (deeper pipelines, multiple issues, spec-

ulative and out-of-order execution and branch prediction among the others) is

1

CHAPTER 1. INTRODUCTION 2

dramatically reduced [7].

In addition, for some years now we are experiencing the explosion of the mo-

bile computing era [6]. With it, we are seeing the exponential increase in the us-

age of Internet-based and/or social services for the most desperate means: from

mobile search and geolocation services to video streaming, from real-time news

sharing over social networks to file sharing. The epicenter of our computation is

rapidly shifting from the periphery (the terminals which we access the Internet

with) to the core of the network (the datacenters within which the largest amount

of our computation is actually performed and our data stored) [6]. In addition to

this trend, due to the increasing costs of running a datacenter (arisen in recent

years in particular due to a general boost of the cost of electricity) many small

and medium businesses have seen concrete opportunities in sharing both com-

puting resources and technical personnel among them.

As a result, in the near future we are going to deal with systems whose com-

plexity appears to be approaching the limits of human capability, yet the march

toward increased interconnectivity and integration rushes ahead unabated [8, 9].

The need to integrate several heterogeneous environments into corporate-wide

computing systems, and to extend that beyond company boundaries into the

Internet, introduces new levels of complexity. As systems become more inter-

connected and diverse, architects are less able to anticipate and design interac-

tions among components, leaving such issues to be dealt with at runtime. Soon

systems will become too massive and complex for even the most skilled system

integrators to install, configure , optimize, maintain, and merge [8, 9].

These considerations led to the conclusion that in order to improve the per-

formance of the computing systems of the future, it was necessary a radical shift

in the way they would be designed, both from the hardware and software point

of view. At the same time, the term “performance” itself has acquired a conno-

tation ever more frequently tied to the notion of performance with respect to its

cost and to the energy consumed to obtain that amount of computation [2].

This shift marked the beginning of era of the multicore, cloud and autonomic

computing (from a hardware and computer systems/software systems point of

CHAPTER 1. INTRODUCTION 3

view, respectively).

1.2 Contemporary computing: relevant trends and paradigms

In order to cope with the challenges posed by nowadays and future comput-

ing systems, new paradigms have been proposed and adopted by major actors in

the Information Technology (IT) field and semiconductor industry. In this Section

we shall explore two of them: multicore architectures [7] and autonomic comput-

ing [8].

1.2.1 Multicore computing

Up to the early 2000s, the increase in the performance of computing sys-

tems was mainly obtained by reducing the size of Central Processing Unit (CPU)

transistors and consequently by increasing their clock speed [7]. This approach

pushed the technology to its limits, in that many factors came into play to limit

the possibility to further this approach. The miniaturization process of silicon-

based transistors and the consequent increase in power density has reached a

point after which it is practically difficult, if not technically impossible, to go fur-

ther [7, 6]. The main consequences may be summarized as follows:

• the area a given amount of transistors occupy cannot be further reduced,

• a maximum working clock frequency can be identified after which there is

at least a critical path over which the signal cannot propagate in time for

the circuit to work properly. This is due to a phenomenon known as “clock

skew”.

• given the minimum area for that amount of transistors, a maximum amount

of thermal energy can be dissipated by the packaging using reasonable

cooling solutions (this aspect is of particular importance for mobile devices)

[6].

Current technological solutions may not drastically overcome these physical lim-

itations. Proposed solutions to improve the performance of computing devices

CHAPTER 1. INTRODUCTION 4

look at the micro architectural and software levels [6]. As already stated, archi-

tectural means to extract ILP have been implemented in the previous years [7].

These solutions yielded greater performance improvements in the past genera-

tions of microprocessors, but extracting the residual ILP would give lesser bene-

ficial effects nowadays than in the past [7].

These observations comes at the verge of the explosion of the mobile comput-

ing era, where the largest share of computing devices is going to be either embed-

ded or at least mobile (like smartphones or laptops) [6]. Energy efficient solutions

capable of providing plenty of computational power are required for the devices

of the future, given the gap between battery advancements and smartphones/-

mobile devices’ capabilities and available computational power [6]. Of particular

importance will be how technology will cool the electronics inside these devices,

and how to preventively and actively lower the operating temperature. In this con-

text, a single, general purpose processor rapidly becomes an inefficient solution

for delivering the required performances of future devices [6].

The most promising solution to do this set of problems has been identified

in the design of multicore systems, CPUs natively capable of running tasks in

parallel. These chips realize true parallel execution (in contrast to “perceived”

parallel execution typical of traditional single core processors) in that they have

multiple so-called cores , units capable of independently run the fetch-decode-

execute loop [7] (and all the more or less complex stages in the possibly deeply

pipelined variations of it). The architectural shift has a number of advantages:

we can make smaller, cooler, cheaper CPUs that can perform at least as much

as older chips, while using fewer resources, or we can build upon these cores

powerful multicore CPUs that can truly run in parallel the tasks of our system.

It is foreseen that future CPUs will continue to be focused on improving Thread

Level Parallelism (TLP), rather then ILP [7].

Of course, to harness the power offered by these devices, a shift in the pro-

gramming paradigm is required, too, along with adequate support by the op-

erating system. In the first case, the main problem is to rethink serial code in

order to decompose it into a set of parallel tasks, called threads [10]. Performance

CHAPTER 1. INTRODUCTION 5

improvement is obtained by running in parallel the various application threads.

From the point of view of the operating system, support should be implemented

at different levels, but one component stands among the others: the scheduler.

This component, which is responsible for scheduling the execution of tasks,

has been obviously rethought in recent years in the light of CPUs advancements

aimed at concurrent execution of multiple tasks. Modern schedulers must take

into account more factors than those of pre-multicore era Operating System (OS)s:

for example, in order to keep data and instruction cache warm (thus reducing the

misses), a modern scheduler is supposed to pin (i.e.: to assign to) a given thread

to a given core for as long as possible, so as to reduce the thread migration effect

and favoring data locality (both spatial and temporal) [10]. Simultaneous Multi

Threading (SMT) and fine grained multithreading technology, by which multiple

threads’ execution is interleaved in the same core [7], accentuates the need for an

informed and improved OS scheduler.

One peculiar weak point of nowadays multicore architectures is the traffic

induced by cache memories. With just a single core accessing cache memory, it

is relatively easy to maintain it up to date with main memory: write-back and

write-through policies are fairly easy to implement in hardware, and they scale

both with main and cache memory dimensions. A different problem arises when

considering multi core systems: since two threads of the same application may

be accessing shared data, and since these data may be cached, a synchronization

protocol must be in place to force coherence among the caches of the cores of the

processor [7] (unless adequate support from higher level components is obtained,

but this is still a research issue). Snooping based and directory protocols are in

place for this very reason, but the burden they impose on the architecture is by

no means negligible, as they typically require a communication channel whose

bandwidth grows with the number of cores (in the case of snooping based pro-

tocols) or significantly added logic to maintain the state of cache data across the

distributed memory [7] (in the case of directory-based caches).

Another important factor to take into account from the system designer’s

perspective is that nowadays computing device should be benchmarked hav-

CHAPTER 1. INTRODUCTION 6

ing Chip Multi Processing (CMP) and multi threading in mind. This raises the

question on how a benchmark should be designed for an effective and extensive

coverage of all the relevant factors concurring in a multicore/multi processor en-

vironment to yield better performances. Many relevant works in this field have

been carried out in the last years (such as Princeton Application Repository for

Shared-Memory Computers (PARSEC) [4] or SPLASH-2 [11]). As we will see in

Chapter 6, PARSEC 2.1 is a state of the art benchmarking suite typically used

in the field to validate both micro architectures (by means of – possibly cycle

accurate – simulation) and system software designs (for example, scheduler at

OS-level).

Summarizing, the shift is at the architectural, operating system and program-

ming paradigm level: we can obtain the same throughput with less performant

but increased number of actual processors, or we can speedup applications by a

maximum theoretical limit of the number of truly concurrent threads the proces-

sor can run at once. This of course requires the application to be decomposed in

parallel tasks, which requires a supplemental effort invested in developing ap-

plications. From the point of view of the operating system, we expect it to be

capable of efficiently scheduling threads on different cores to better exploit data

locality and reduce latency of interactive applications.

1.2.2 Autonomic computing

With the term Autonomic Computing, IBM describes in [9] those systems “[...]

capable of running themselves, adjusting to varying circumstances, and prepar-

ing their resources to handle most efficiently the workloads we put upon them.

These autonomic systems must anticipate needs and allow users to concentrate

on what they want to accomplish rather than figuring how to rig the computing

systems to get them there. [...]”.

In [9, 12] the authors root the motivations behind Autonomic Computing

(AC) stating that “[...] The term autonomic computing is emblematic of a vast and

somewhat tangled hierarchy of natural self-governing systems, many of which

consist of myriad interacting, self-governing components that in turn comprise

CHAPTER 1. INTRODUCTION 7

large numbers of interacting, autonomous, self-governing components at the next

level down. The enormous range in scale, starting with molecular machines within

cells and extending to human markets, societies, and the entire world socioecon-

omy, mirrors that of computing systems, which run from individual devices to

the entire Internet. Thus, we believe it will be profitable to seek inspiration in the

self-governance of social and economic systems as well as purely biological ones

[...]”

In IBM projections for the near future, pervasive computing will drive an ex-

ponential growth of the complexity of overall computing systems infrastructure

[9, 12]. Their claim is that only if computer-based systems become more “auto-

nomic” – that is, to a large extent self-managing given high-level objectives from

administrators – we shall be able to deal with this growing complexity. In [8]

the authors identifies a number of sources of complexity in todays systems, and

underline the value of AC as a means for putting this complexity under admin-

istrator’s control.

Cloud computing, as a representative computing paradigm involving highly

complex systems, relies on many features of autonomic computing, including

many autonomic components. Cloud computing incorporates elements of auto-

nomic computing, since cloud providers would utilize multiple computers and

a self-regulating system. Without such measures in place, cloud providers could

not keep up with the maintenance costs and demands of the features they pro-

vide.

Properties of an Autonomic System (AS)

In IBM’s vision of AC, the system must be endowed with a number of char-

acteristics to be called “Autonomic” [8, 9, 12, 9].

“Knowing” itself the system must have detailed knowledge of its components,

status, capacity, connections and available resources, either in an exclusive

or shared way. This feature is known as “self-awareness”,

Self-(re)configuration an AC system must be capable of automatically setting

CHAPTER 1. INTRODUCTION 8

itself up, given high level administrator policies,

Continuous optimization that is, the system is continuously looking for ways

to exploit its resources in the most efficient possible way, monitoring its

constituent parts and fine-tune workflow to achieve predetermined system

goals,

Self-healing the system must be able to discover problems or potential prob-

lems, then find an alternate way of using resources or reconfiguring the

system to keep functioning smoothly,

Self-protection it must detect, identify and protect itself against various types of

attacks to maintain overall system security and integrity,

Environment knowledge an AS will find and generate rules for how best to in-

teract with neighboring systems. It will tap available resources, even nego-

tiate the use by other systems of its underutilized elements, changing both

itself and its environment in the process,

Open world while independent in its ability to manage itself, an autonomic com-

puting system must function in a heterogeneous world and implement

open standards,

Predict required resources this is the ultimate goal of autonomic computing:

the marshaling of IT resources to shrink the gap between the business or

personal goals of our customers, and the IT implementation necessary to

achieve those goals without involving the user in that implementation.

The Observe Decide Act (ODA) loop

A recurrent theme in the autonomic computing field is that of decentralized,

autonomous control. Self-adaptive systems (i.e., systems employing either self-

adaptive hardware or software) rely on control loops to adjust their behavior

to internal and environmental changes. Such systems are required to observe

themselves and the environment, decide on a sequence of actions to perform,

and apply them in order to optimize their operations. The process of observing,

CHAPTER 1. INTRODUCTION 9

deciding, and acting is customarily referred to as ODA [13]. ODA loop is rep-

Figure 1.1: The Observe-Decide-Act loop.

resented in Figure 1.1. This representation is the most general autonomic loop

scheme and, being the most generic, summarizes their essence. The steps of the

ODA loop are

• observation of the internal and environmental status,

• decision of what action (or whether no action at all) is to be taken, based on

the observations

• action, i.e. perturbation of the internal or external status in order to modify

it towards a better condition for the system.

The observation phase does typically rely on the presence and exploitation

of some kind of monitor (for instance, thermometers, throughput meters, latency

measures, ...) which is preposed to gather information about the environment

and/or the internals of the system. The decision phase takes into account the

data gathered through the monitors and an additional input representing the de-

cision policy(ies) implemented in the system, which can be based on different

techniques. The action phase is performed through actuators, which are devices

(virtual or physical) that allow the system to alter its internal status or the oper-

ating environment [3].

The ODA loop is the minimal representation for the class of control loops that

can be used to equip a system with self-adaptive properties; in an autonomic sys-

CHAPTER 1. INTRODUCTION 10

tem, the ODA control loop may appear at different levels, where each component

of the system is thusly controlled at a lower level and there is a higher-level con-

troller that orchestrates the modules towards the specified goals [3].

Summarizing, AC is an emerging field of IT aimed at increasing the degree of

automation and autonomy of tomorrows computing systems, elements of which

are already implemented in nowadays data centers. The claimed capability of

self-governance and self-optimization, in particular, are interesting in the light of

exponentially increasing complexity of tomorrows computing systems.

1.2.3 Power efficient computing

Power and energy are increasingly becoming prominent factor when design-

ing the full spectrum of computing solutions, from supercomputers and data

centers to handheld phones and other mobile or embedded computers [6]. Re-

search is currently focused on managing power and improving energy efficiency

of today and tomorrow computing devices. In fact, power density has become

one of the major constraints on attainable processor performance.

With respect to mobile and embedded devices, this translates directly into

how long the battery lasts under typical usage [6]. The battery is often the largest

and heaviest component of the system, so improved battery life implies smaller

and lighter devices [6] or added functionalities available in the device.

Power and energy considerations are at least as important for devices con-

nected to a power supply. The electricity consumption of computing equipment

in a typical U.S. household runs to several hundred dollars per year [6]. This cost

is vastly multiplied in business enterprises: an analysis made by IT analysis firm

IDC estimates the worldwide spending on power management for enterprises

was likely in the order of magnitude of 40 billion $ in 2009 [6].

Being efficient at consuming power has three main advantages. The most

obvious one is that reduced power consumption directly implies reduced run-

ning costs. Second, reduced power consumption leads to less complex designs

of power supplies, power distribution grids and backup units, that reduces the

costs to the whole infrastructure. Last, since reduced power consumption implies

CHAPTER 1. INTRODUCTION 11

reduced heat generation, those costs associated to heat management are reduced

[6].

Thermal management, in particular, is becoming increasingly important due

to the level of miniaturization of modern electronics and the increased blades

density typical of modern data centers. Increased compaction (such as in future

predicted blade servers) will increase power densities by an order of magnitude

within the next decade, and the increased densities will start hitting the phys-

ical limits of practical air-cooled solutions [6, 14]. Studies, most notably con-

cerning servers and hard-disk failures, have shown that running electronics at

temperatures that exceed their operational range can lead to significant degra-

dation of reliability, i.e. they experience exponentially reduced Mean Time-To-

Failure (MTTF) values [15]. The Uptime Institute, an industry organization that

tracks data-center trends, has identified a 50% increased chance of server failure

per each 10°C increase over the 20°C range [6, 16, 17]; similar statistics have also

been shown over hard-disk lifetimes [15, 18, 19, 17]. Temperature directly affects

also power consumption, clock latency and since processor leakage power in-

creases exponentially with temperature, also CPU power consumption [20, 21].

At 90-nm-process nodes, leakage accounts for 25 to 40% of total power consumed

[20]. At 65-nm-processes, leakage accounts for 50 to 70% of total power absorbed

[20]. Moreover, a 15°C increase in temperature might causes signal propagation

delay of approximately 10 to 15% [20]. Processor cooling is also a significant prob-

lem for mobile devices as thermal conditions can affect user experience through

both heat dissipation and potentially intrusive cooling [22].

For large computing systems like supercomputers and data centers, the costs

for running Heating, Ventilation and Air Conditioning (HVAC) systems for tem-

perature management can be estimated as more or less an additional dollar spent

for every dollar spent on electricity [6, 14]. Up to 80% of data center construc-

tion cost is attributable to power and cooling infrastructure [1, 14], and chiller

power, a historically dominant data center energy overhead, scales quadratically

with the amount of heat extracted [14]. Research is ongoing in alternate cooling

technologies (such as efficient liquid cooling), but it will still be important to be

CHAPTER 1. INTRODUCTION 12

10 THE DATACENTER AS A COMPUTER

A key challenge for architects of WSCs is to smooth out these discrepancies in a cost-
efficient manner. Conversely, a key challenge for software architects is to build cluster infrastructure
and services that hide most of this complexity from application developers.

1.6.5 Power Usage
Energy and power usage are also important concerns in the design of WSCs because, as discussed
in more detail in Chapter 5, energy-related costs have become an important component of the total
cost of ownership of this class of systems. Figure 1.4 provides some insight into how energy is used
in modern IT equipment by breaking down the peak power usage of one generation of WSCs de-
ployed at Google in 2007 categorized by main component group.

Although this breakdown can vary significantly depending on how systems are configured
for a given workload domain, the graph indicates that CPUs can no longer be the sole focus of en-
ergy efficiency improvements because no one subsystem dominates the overall energy usage profile.
Chapter 5 also discusses how overheads in power delivery and cooling can significantly increase the
actual energy usage in WSCs.

Networking
5%

Other (server)
22%

Disks
10%

DRAM
30%

CPUs
33%

FIGURE 1.4: Approximate distribution of peak power usage by hardware subsystem in one of Google’s
datacenters (circa 2007).

ENERGY AND POWER EFFICIENCY 49

load (mostly in fans), followed by the UPS system, consuming 7–12% of critical power through
AC–DC–AC conversion losses (relative losses are higher when the UPS is only lightly loaded).
Other facility elements [humidifiers, power distribution units (PDUs), lighting] further contribute
to higher PUE levels. Much of this poor efficiency is caused by a historical lack of attention to effi-
ciency not by inherent limitations imposed by physics. It is commonly accepted that a well-designed
and well-operated datacenter should have a PUE of less than 2, and the 2007 EPA report on data-
center power consumption states that in a “state-of-the-art” scenario a PUE of 1.4 is achievable by
2011 [26]. The most obvious improvements opportunities are the use of evaporative cooling towers,
more efficient air movement, and the elimination of unnecessary power conversion losses.

5.1.1 Sources of Efficiency Losses in Datacenters
For illustration, let us walk through the sources of efficiency losses in a typical datacenter [41]. The
transformers stepping down the incoming high-voltage power from 115 kV to the medium-voltage
distribution lines (typically at 13.2 kV in the United States) are fairly efficient, and so are the trans-
formers stepping it down further to 480 V. In both cases, transformation losses typically are below
half a percentage. The uninterruptible power supply (UPS) is the source of most conversion losses,
typically running at an efficiency of 88–94% in the best case (less, if they are lightly loaded). Rotary

FIGURE 5.2: Breakdown of datacenter energy overheads (ASHRAE).
Figure 1.2: Breakdown of total data center hardware and overheads costs of a representative
Google datacenter [1].

Figure 1.3: The model for PUE [2].

efficient about generating heat in the first place [6].

In order to capture these overheads in a metric, the Green Grid, a non-profit

IT organization that addresses power and cooling requirements for datacenters

and the entire information service delivery ecosystem, defined the Power Us-

age Effectiveness (PUE) [2]. PUE is defined as the total facility power/IT equip-

ment power, effectively measuring a form of overall data-center infrastructure

efficiency; refer to Figure 1.3.

Power management issues are only expected to be more and more predom-

inant in the foreseeable future [6]. On the mobile devices side, the gap between

advances in battery capacity and reliability and the ever growing increases in

mobile-devices functionalities will become a major limiting factor for the devel-

CHAPTER 1. INTRODUCTION 13

opment of the entire mobile/embedded industry [6]. New battery technologies

(such as fuel cells or graphene-based capacitors) might mitigate it, but designing

more power-efficient systems will still be the main driver for full battery capacity

exploitation. Tethered devices are affected, too: data from the U.S. Environment

Protection Agency points to steadily increasing costs for electricity [23]. For data

centers, recent reports highlight a growing concern with computer-energy con-

sumption and show how current trends could make energy a dominant factor in

the total cost of ownership [24] up to the point at which power and cooling cost

might overtake hardware costs [25, 24, 26].

In Chapter 2 we explore the techniques that have been developed in recent

years in order to deal with the problems just exposed, both at low- (micro archi-

tectural/electronics) and high-level (operating systems, scheduling algorithms,

datacenters management techniques).

1.3 Scheduler properties and goals

In modern, multiprogrammed computing environments, as well as larger

computing systems like data centers, it is frequent to have multiple running pro-

cesses or threads competing for CPU time. This situation occurs whenever two

or more processes or threads (tasks) are in ready state [10]. Depending on the

number of available processing elements (which is variable from one in a legacy

unicore machine to 4 in modern commodity desktops to tens of thousands on

contemporary data centers), the scheduling process must occur so as to decide

what task to run, where. The part of the OS that takes care of managing this pro-

cess is called scheduler [10].

1.3.1 Preliminary definitions

In order to better understand the following section, we shall give here some

preliminary definitions of interest for the scheduling problem [10].

The process is a basic concept for multiprogramming operating systems, as it

defines the basic structure for managing code in execution. A process is funda-

CHAPTER 1. INTRODUCTION 14

mentally a container that holds all the information needed to run a program [10].

Processes are one of the oldest and most important abstractions that operating

systems provide. They support the ability to have (pseudo) concurrent operation

even when there is only one CPU available [10].

Process. A process is an instance of a computer program that is being executed. It con-

tains the program code and its current activity. Depending on the OS, a process may be

made up of multiple threads of execution that execute instructions concurrently.

Multiprogramming. The OS characteristic to have several programs in memory at

once, each in its own memory partition, and the rapid switching back and forth between

them.

The switching between a program and the other is one important feature of

the scheduling algorithm. There are mainly two ways by which processes are

scheduled and de-scheduled on CPUs:

cooperative A nonpreemptive (cooperative) scheduling algorithm picks a pro-

cess to run and then just lets it run until it blocks (either on I/O or waiting

for another process) or until it voluntarily releases the CPU,

preemptive preemptive scheduling algorithm picks a process and lets it run for

a maximum of some fixed time. If it is still running at the end of the time

interval, it is suspended and the scheduler picks another process to run

(if one is available). Doing preemptive scheduling requires having a clock

interrupt occur at the end of the time interval to give control of the CPU

back to the scheduler [10].

The time that is assigned a process for running is called “quantum”. On most

systems this is a fixed amount of time (typically specified at compile-time) but in

others is a run-time variable (typically to improve the interactivity of the system).

Moreover, depending on the progress of the execution and on the current

request being serviced, processes can be in one of a number of states. Even if dif-

ferent operating systems have different states for representing (maybe slightly)

different processes’ situations, here are reported the three most commonly found

ones:

CHAPTER 1. INTRODUCTION 15

running the process in this state is currently running on one processing element

ready this state signals that the process is ready to be assigned to a CPU

blocked the process is waiting for some condition to happen before becoming

runnable

Depending on the finite state automaton that describes the states and transitions

of the scheduling algorithm, we may have a more fine-grained control over the

states of a process.

In traditional operating systems, each process has an address space and a sin-

gle thread of control (that is almost the definition of a process). Nevertheless,

there frequently are situations in which it is desirable to have multiple threads of

control in the same address space running in quasi-parallel, as though they were

(almost) separate processes (except for the shared address space). This ability is

essential for certain applications, which is why having multiple processes (with

their separate address spaces) will not work. Moreover, since creating and de-

stroying threads is much faster than it is for processes, applications that creates

and destroys a large number of threads during their execution will experience a

substantial speedup[10, 27]. Most importantly, threads are useful in systems with

multiple CPUs, so as to achieve true parallelism.

Depending on the threading model we may have different definitions of threads.

In particular, there are systems (such as Linux) that blur the line between pro-

cesses and threads, and others that don’t. This definition applies to the traditional

threading model where threads are different entities than processes.

Thread. A thread of execution (or, simply, thread) is a sub-entity within a process; it is

a specific part of the executing program in charge of doing some kind of elaboration. A

process contains several threads which share the address space, open files and, in general,

the resources assigned to the process.

Multithreading. The OS characteristic to have several threads running really in par-

allel. This of course requires hardware support.

CHAPTER 1. INTRODUCTION 16

1.3.2 Problem statement

As we already exposed in Section 1.3, scheduling is the activity of choosing

which process is going to be run in the next quantum of CPU time. This is a

matter of interest for this thesis since we are going to investigate an innovative

scheduling technique aimed at simultaneous optimization of both temperature

and applications’ performances.

We recall here one possible, and very general, definition of Resource Con-

strained Scheduling Problem (RCSP), given in [3, 28]. This definition refers to a

generic problem in which a set of activities must be completed by using a limited

set of available resources in order to optimize one or more objective function(s).

RCSP. Let J be a set of partially ordered activities and let j0, jn+1 ∈ J be a unique

dummy beginning activity and a unique dummy terminating activity, respectively (so

that always J6= ∅). Let T be a set of temporal steps. Let G(J, A) be an acyclic directed

precedence graph representing precedence relations among the activities; i.e. (j, j ′) ∈ A
if and only if the activity j needs to be performed before the activity j ′. Let R denote a set

of resources and let cjr be the processing time of the activity j over the resource r. Each

activity j is to be assigned to exactly one resource r for being processed and that resource

cannot process another activity j ′ 6= j until j has been processed (i.e. after cjr temporal

steps). Let also γ(J) be the objective function of the POSET J. Under the above setup, the

RCSP consists in minimizing or maximizing the objective function γ(J).

In the context of computing task scheduling, we may identify as resources,

for example, CPUs, Input/Output (I/O) devices and buses, activities as processes

and threads of processes and, as possible objective function, the minimization of

the total execution time of the activities.

1.3.3 Batch, interactive and real-time scheduling

With respect to the objective function that has to be minimized in the RCSP, a

brief introduction on the characterization of the typologies of workloads is nec-

essary. Depending on the kind of workload of the system, different scheduling

policies may be implemented in order to reach different goals [10, 27].

CHAPTER 1. INTRODUCTION 17

Traditionally, a suggested classification of the possible workloads environ-

ments is the following [10, 27]

Batch In batch systems, there are no users waiting for a quick response to a

short request. Consequently, nonpreemptive algorithms, or preemptive al-

gorithms with long time periods for each process, are often acceptable. This

approach reduces process switches and thus improves throughput, which

is a major goal of these systems.

Interactive these activities have a certain degree of interactivity with users. This

is the typical case of applications running in desktop computers. Preemp-

tion is essential to keep one process from hogging the CPU and denying

service to the others. Even if no process intentionally ran forever, one pro-

cess might shut out all the others indefinitely due to a program bug. Pre-

emption is needed to prevent this behavior.

Real-time These workloads are characterized by having to respect a specific

deadline for doing their job. In systems with real-time constraints, preemp-

tion is sometimes not needed because the processes know that they may not

run for long periods of time and usually do their work and block quickly.

This category is traditionally further divided up into:

Soft Real-time the deadlines of these loads are not strict, which means that

the system can tolerate that some tasks do not complete in time; the

system is said to be working in a best-effort manner.

Hard Real-time the deadlines for these activities are strict, which means

that in case the scheduler cannot guarantee their execution by the ex-

pressed deadline, the system should return an error.

Another classification useful for this context is that of scheduling goals, that

depend on the system’s workload and are obtained by appropriate policies [3,

10, 27].

fairness by fairness we mean the attitude of a scheduler to assign an equal amount

of resources to all the processes

CHAPTER 1. INTRODUCTION 18

balance a balanced system is one that exploits at its best the resources available;

it tries to keep all the resources as busy as possible

throughput maximization the scheduler tries to complete the maximum num-

ber of tasks per unit of time

turnaround time minimization by turnaround time we mean the total differ-

ence of time between the beginning of the job and its end; a scheduler may

try to minimize the average turnaround time for the set of scheduled jobs

response time minimization a scheduler may try to reduce the time between a

user request and its service

proportionality differing from fairness because the system tries to assign a fair

share to each user, instead of each activity

deadlines meeting the scheduler enforces the meeting of the deadlines

predictability/deterministic behavior the scheduler must say in advance if the

deadlines expressed may be met or not.

A recent development in the context of scheduling algorithms is the introduc-

tion of knowledge about the status of the system’s temperature in the scheduler

algorithm, in order to try to find jobs schedules and system settings compatible

with dynamic thermal constraints [29, 30, 31, 32]. This allows for a new goal to

be introduced, namely

thermally constrained by which it is indicated the property by which the sched-

uler computes a schedule of jobs that keeps temperature under a given set

point.

Those schedulers that aim at achieving this goal belong to the Thermal-aware

scheduling (TAS) category. As we will better described through Chapters 3 and

4, our work is a major development in the context of thermal-aware schedulers.

CHAPTER 1. INTRODUCTION 19

1.4 Conclusions

We have introduced a number of concepts and motivations that are rele-

vant to this thesis. A more thorough and comprehensive overview of Dynamic

Thermal Management (DTM) techniques will be given in Chapter 2, along with

the status of art of scheduling in mainstream Free, Libre or Open Source Soft-

ware (FLOSS) operating systems. In Chapter 3 the Autonomic Operating Sys-

tem (AcOS) vision is introduced. In Chapter 4 it is introduced the basic tech-

niques and the general ideas underlying the work. In Chapter 5, the system that

has been designed and implemented will be dedescribed in great detail, and its

experimental evaluation reported in Chapter 6.

Chapter 2

Related works

In this chapter it is explored the state of art of some major technologies, tech-

niques and systems which are relevant to this thesis. In Section 2.1 two important

Free, Libre or Open Source Software (FLOSS) Operating System (OS) are intro-

duced along with a brief history of schedulers implemented in the latest itera-

tions of their development. Focus is put in particular on the scheduler presented

in Section 2.1.2, since this is the basic work on which it will be developed part of

the thesis contribution. After this, some of the most relevant problems in terms

of power consumption in computing environments are introduced, along with

ways to reduce them. In particular, the focus is on Dynamic Thermal Manage-

ment (DTM) techniques, both at the hardware and at the software level. In the

conclusion it is described a state of art OS self-aware component, namely Heart

Rate Monitor (HRM), which will be the major means by which the envisioned

system acquire knowledge about itself.

2.1 Overview of major Free or Open Source schedulers

To date, there are many available FLOSS operating systems for the most dis-

parate usages. Keeping in mind the difference between the OS and its kernel (the

latter is a part of the former but there are parts of the OS that are not part of the

kernel), in this section focus is on the two most relevant works in this context,

GNU/Linux and FreeBSD.

20

CHAPTER 2. RELATED WORKS 21

2.1.1 Linux schedulers

Linux is a Unix-like monolithic kernel developed by the open source move-

ment since 1991 [33]. It is the kernel most widely installed in open source oper-

ating systems [33]. Nearly all major GNU distributions employ Linux as kernel.

At the moment, the guide of the development of Linux is directed by his first

developer, Linus Torvalds, and the Linux Foundation.

Early Linux Schedulers

The scheduler portions of the kernel has undergone a lot of development

since its inception, in 1991. Early Linux schedulers used minimal designs, not yet

focused on massive architectures with many processors or even Simultaneous

Multi Threading (SMT) capabilties [34]. The 1.2 Linux scheduler used a sim-

ple and fast circular queue for runnable task management that operated with

a round-robin scheduling policy [34].

Linux version 2.2 introduced the idea of scheduling classes which is now a

common feature of general purpose scheduling infrastructures, permitting dif-

fering scheduling policies for real-time tasks, non-preemptible tasks, and non-

real-time tasks. The 2.2 scheduler also included support for Simultaneous Multi

Processor (SMP) [34].

The 2.4 kernel included a relatively simple scheduler that operated in O(N)

time (as it iterated over every task during a scheduling event). The 2.4 scheduler

divided time into epochs, and within each epoch, every task was allowed to ex-

ecute up to its time slice. If a task did not use all of its time slice, then half of

the remaining time slice was added to the new time slice to allow it to execute

longer in the next epoch. The scheduler would simply iterate over the tasks, ap-

plying a goodness function (metric) to determine which task to execute next. The

weak points of this approach are the relatively inefficiency, limited scalability,

and overall weakness for real-time systems. It also lacked features to exploit new

hardware architectures such as multi-core processors [34].

CHAPTER 2. RELATED WORKS 22

The O(1) scheduler

To overcome the limitations of the 2.4 scheduler, O(1) was designed and in-

troduced in 2.6. The scheduler was not required to iterate the entire task list to

identify the next task to schedule (resulting in its name, O(1), which means that

the scheduling decision takes constant time, however the number of tasks to it-

erate over). The O(1) scheduler kept track of runnable tasks in a run queue (ac-

tually, two run queues for each priority level-one for active and one for expired

tasks), which meant that to identify the task to execute next, the scheduler sim-

ply needed to dequeue the next task off the specific active per-priority run queue.

The O(1) scheduler was much more scalable and incorporated interactivity met-

rics with numerous heuristics to determine whether tasks were I/O-bound or

processor-bound [34].

On fundamental problem with O(1) scheduler became the large mass of code

needed to calculate heuristics, which was difficult to manage and lacked algo-

rithmic substance. the change came in the way of a kernel patch from Con Koli-

vas, with his Rotating Staircase Deadline Scheduler (RSDL), which included his

earlier work on the staircase scheduler. The result of this work was a simply

designed scheduler that incorporated fairness with bounded latency. Kolivas’

scheduler impressed many (with calls to incorporate it into the current 2.6.21

mainline kernel), so it was clear that a scheduler change was on the way [34].

The CFS scheduler

The main idea behind the Completely Fair Scheduler (CFS) is to maintain

balance (fairness) in providing processor time to running tasks [34]. This means

processes should be given a fair amount of the processor. When the time for tasks

is out of balance (meaning that one or more tasks are not given a fair amount of

time relative to others), then those out-of-balance tasks should be given time to

execute.

To determine the balance, the CFS maintains the amount of time provided

to a given task in what’s called the virtual runtime. When the virtual runtime is

“low” (relatively low) it means that the amount of time a task has been permitted

CHAPTER 2. RELATED WORKS 23

access to the processor has been “low”, and viceversa. The CFS also includes the

concept of sleeper fairness to ensure that tasks that are not currently runnable

(for example, waiting for I/O) receive a comparable share of the processor when

they eventually need it [34].

Rather than maintaining tasks in a run queue, CFS maintains a time-ordered

red-black tree. A red-black tree is a tree with two important properties. First, it’s

self-balancing, so no path in the tree will ever be more than twice as long as any

other [34]. Second, operations on the tree occur in O(log n) time in the number of

nodes in the tree. Insertion and deletion are quick and efficient [34].

With tasks stored in the time-ordered red-black tree, tasks with the lowest

virtual runtime are stored toward the left side of the tree, and tasks with the

highest virtual runtimes are stored toward the right side of the tree. The sched-

uler then, in order to achieve fairness, picks the left-most node of the red-black

tree to schedule next. The task accounts for its time with the Central Processing

Unit (CPU) by adding its execution time to the virtual runtime and is then in-

serted back into the tree if runnable. In this way, tasks on the left side of the tree

are given time to execute, and the contents of the tree migrate from the right to

the left to maintain fairness. Therefore, each runnable task chases the other to

maintain a balance of execution across the set of runnable tasks [34].

CFS doesn’t use priorities directly but instead uses them as a decay factor for

the time a task is permitted to execute. Lower-priority tasks have higher factors

of decay, where higher-priority tasks have lower factors of delay. The decay factor

states how fast the virtual runtime changes in time, allowing for more o less cpu

time to be accorded to tasks. That’s an elegant solution to avoid maintaining run

queues per priority [34].

Another interesting aspect of CFS is the concept of group scheduling, another

way to bring fairness to scheduling, in particular in the face of tasks that spawn

many other tasks. Also introduced with CFS is the idea of scheduling classes, by

which task belongs to a scheduling class, which determines how a task will be

scheduled. A scheduling class defines a common set of functions that define the

behavior of the scheduler [34].

CHAPTER 2. RELATED WORKS 24

To date, CFS is the default Linux scheduler.

2.1.2 FreeBSD schedulers

FreeBSD is one of the most fortunate descendant of BSD [35, 36] and, to date,

one of the major FLOSS kernels available. Many other kernels, notably Apple’s

Darwin, derive from this project.

The 4.4BSD scheduler

FreeBSD inherited the traditional BSD scheduler when it branched off from

4.3BSD. 4.4BSD is the default scheduler available in FreeBSD up to version 5.1,

included [35]. FreeBSD extended the original scheduler’s functionality, adding

scheduling classes and basic SMP support, without twisting its fundamental foun-

dation. Two new classes, real-time and idle, were added early on in FreeBSD. .

It was initially designed for uniprocessor systems, but with the advent of multi-

core architectures, it was adapted to support SMP and SMT technology (like Intel

Hyper Threading (HT)) [35].

The FreeBSD time-share-scheduling algorithm is based on multilevel feedback

queues. The system adjusts the priority of a thread dynamically to reflect resource

requirements (e.g., being blocked awaiting an event) and the amount of CPU

time consumed by the thread. Threads are moved between run queues based

on changes in their scheduling priority (hence the word “feedback” in the name

“multilevel feedback queue”). Whenever a thread other than the currently run-

ning one attains a higher priority and if the current thread is in user mode,

the system switches to that immediately. Otherwise, the system switches to the

higher-priority thread as soon as the current one exits the kernel citedesign-

freebsd. The system tailors this short-term scheduling algorithm to favor interac-

tive jobs by raising the scheduling priority of threads that are blocked waiting

for Input/Output (I/O) for one or more seconds and by lowering the priority of

threads that execute for a significant amounts of time.

The priority of a thread is determined by two values associated with its thread

structure: kg_estcpu and kg_nice. The value of kg_estcpu provides an estimate

CHAPTER 2. RELATED WORKS 25

of the recent CPU utilization of the thread by means of a so called exponential

decay filter. The value of kg_nice, instead, is a user-settable factor that ranges

between −20 and 20, so that it is possible to selectively allow some processes

more CPU time than others, based on administrator’s needs. The normal value

for kg_nice is 0. Negative values increase a thread’s priority, whereas positive

values decrease its priority [35]. A thread’s user-mode scheduling priority is cal-

culated after every four clock ticks (typically 40 milliseconds, this quantity being

defined at compile time) by running this equation:

kg_user_pri = PRI_MIN_TIMESHARE+

⌈
kg_estcpu

4

⌉
+ 2× kg_nice (2.1)

PRI_MIN_TIMESHARE indicates the minimum value attainable by a thread be-

fore going into kernel or real-time mode. Values lower than that and greater than

PRI_MAX_TIMESHARE.

Three positive terms are summed up to define the priority: the first is the low-

est priority value a thread in TIME_SHARE class can have, the second is the de-

cay factor, which depends on how long the thread has been running on the CPU,

and the last one is the user-settable value that helps administrators in biasing the

behavior of the scheduler [35].

kg_estcpu is the term that estimates the usage of the cpu by the thread [35].

It is computed by means of an exponential decay filter, a mechanism by which the

system forgets of about 90 percent of the CPU usage accumulated in a 1-second

interval over a period of time that is dependent on the system load average [35].

This quantity is computed via the equation

kg_estcpu =
2× load

2× load+ 1
× kg_estcpu+ kg_nice

where the load is a sampled average of the sum of the lengths of the run queue

and of the short-term sleep queue over the previous 1-minute interval of system

operation [35]. In case the thread was preempted and put to sleep waiting for an

CHAPTER 2. RELATED WORKS 26

event to occur, he decay filter value is computed only once at thread wakeup as:

kg_estcpu =

[
2× load

2× load+ 1

]kg_slptime

× kg_estcpu (2.2)

where kg_slptime is a value incremented by 1 for every second the thread is in

sleeping or stopped state.

Additionally, idle priority threads are only run when there are no time shar-

ing or real-time threads to run[35]. Real-time threads are allowed to run until

they block or until a higher priority task is placed onto the multilevel feedback

queue [35].

This scheduler has been later superseded by ULE in order to overcome its

limitations [35].

The ULE scheduler

ULE has been developed to overcome the main limitations of 4.4BSD, which

may be summarized as:

• being developed in the late 90s, support for SMP and SMT has not been

included in the scheduler at design time, but only as an incremental patch;

support to these micro architectural features is limited [35],

• for analogous reasons, no or very limited support for affinity is present [35],

• the algorithm is O(N) in the number of schedulable threads [35].

We refer to affinity to describe a scheduler that only migrates threads when nec-

essary to give an idle processor something to do.

2.2 Policies for energy efficiency

There is a wide spectrum of techniques that allow for power efficient com-

puting to take place [22]. In this section focus will be on local techniques only,

i.e. those that can improve power efficiency of a single machine, in contrast to

global techniques, which are aimed at cluster, data centers and, in general, groups

CHAPTER 2. RELATED WORKS 27

of cooperating machines. The latter differ from the formers because they typ-

ically take into account the spatial disposition of the machines (like the “hot

aisle/cold aisle” displacement [16]), the way Heating, Ventilation and Air Con-

ditioning (HVAC) and computer room air conditioner (CRAC)s installed and job

scheduling techniques that span across the entire data-center. Local techniques

are particularly interesting for the autonomic computing community, since de-

centralized optimization and control is one of the fundamental tenets of the Au-

tonomic Computing Manifesto [9].

Local techniques fall in two different and complementary categories: those

that are implemented at the microarchitectural level [21] and those implemented

at software level (either operating system level or programming language/paradigm

level) [37]. They belong to the first category techniques such as Dynamic Volt-

age and Frequency Scaling (DVFS), fetch throttling, and clock gating [38], which

are standard features of modern microprocessors [22]. These techniques are par-

ticularly suitable for reactively reducing cores temperature, and reduce the bur-

den of worst-case temperature management [39, 40, 41]. They don’t try to proac-

tively contrast the rise of the temperature. Software-level scheduling schemes

[29, 42, 43], instead, proactively take into account thermal management and the

temperature/performance trade-offs, and belong to the second class. Hybrids

techniques between the two categories, such as HybDTM [44], and program-

ming paradigms/models such as GREENSOFT [45], complete the overview of

currently available techniques. In the next section, focus will be put on software-

level techniques, being of primary interest for this work.

2.3 Dynamic Thermal Management techniques

In recent years, as technology for microprocessors is entering the nanome-

ter regime, the power densities of microprocessors have doubled every nearly

two years [46, 47]. This increase in power densities has led to two major prob-

lems. Firstly, high energy consumption is a limitation for mobile, battery oper-

ated devices. Secondly, higher temperatures directly affect reliability and cool-

CHAPTER 2. RELATED WORKS 28

ing costs, both for battery-operated and tethered devices. Unfortunately, cooling

techniques for these devices must be designed to cope with the maximum pos-

sible power dissipation of the microprocessor, even if it rarely occurs, in typical

applications, that critical temperatures (due to continuous maximum power us-

age) are reached. On one hand, worst-case dynamic thermal management avoids

performance degradation while failing to provide a proper control over temper-

ature; on the other hand, preventive dynamic thermal management introduces

performance degradation while providing a proper control. In addition to this,

failures may happen to CRAC unit, or CPU fans upsetting the thermal environ-

ment in a matter of minutes or even seconds. Rapid response strategies, often

faster than what is possible at a facilities level, are required to cope with these

(infrequent, yet not impossible) situations [43]. On average, cooling techniques

are an overkill solution, yet they are necessary to cope with critical temperature

spikes. This situation is only expected to be more and more of an issue, given

current and expected levels of transistors miniaturization and thermal packing

availability.

A lot of effort is being put into finding finding ways lo limit the negative side

effects that overheating has on computing devices. The main motivations behind

this are the growing power densities of current and foreseen computing systems,

the ever growing electricity costs (which impact on the air conditioning costs of

the computing environment) the consequently increasing direct costs of HVACs

and CRACs in modern data centers along with indirect costs occurring due to

reduced lifetime and reliability of computing electronics. For high-performance

Chip Multi Processing (CMP)s, thermal control has become an important issue

due to their high heat dissipation [29]. Thermal packaging, fans, CRACs and

HVACs are the primary solution, but suffer from high cost and complexity, apart

from their being designed for worst case thermal conditions. Therefore, DTM

techniques have been getting more popular for their low cost, flexibility [29] and

stated goal of allowing designers to focus on average case rather than worst-case

thermal conditions [39].

For these reasons, as already discussed, it is increasingly important to man-

CHAPTER 2. RELATED WORKS 29

age, if not limit, energy consumption and temperature in current and future com-

puting systems. Dynamic thermal management techniques have undergone a lot

of development in the recent years due to the need of limiting the ever growing

operating temperature of modern multicores processors.

Scientific research has been focused in the recent years on developing two

main lines of work: the first one studies DTM techniques aimed at micro architec-

tures and low-level electronics, while the second focuses on the operating system

and in particular on thermal-aware scheduling policies, both for multicore/mul-

tiprocessor machines and whole data centers.

In the next section is given a review some major DTM techniques that are

studied (and some are readily available in nowadays chips) in the context of

hardware based DTM. In section 2.3.2, instead, focus will be put on solutions

that rely on OS support for thermal control.

2.3.1 Hardware Dynamic Thermal Management

Under this category fall all those techniques that apply any form of ther-

mal/energy or power control at the architectural/electronics level.

The first DTM techniques that were put into play used to be simple mech-

anisms aimed at guaranteeing that a thermally overloaded system would not

break down due to insufficient cooling; they were simple hardware solutions to

solely limit peak temperatures. In recent years, these techniques evolved into en-

ergy and power saving, thermal control mechanisms commonly found in readily

available CPUs. These schemes do typically throttle performance to lower power

consumption when a preset temperature threshold is reached [29].

Microarchitecture-related DTM relevant researches are [39, 48, 49, 50, 51, 52,

21, 53, 54, 55].

Dynamic Voltage Frequency Scaling

One of the most common DTM technologies implemented in nowadays mi-

croprocessors is DVFS. As the name suggests, this mircoarchitectural-level DTM

technique dynamically varies the voltage and the operating frequency of the mi-

CHAPTER 2. RELATED WORKS 30

croprocessor so as to find a point in the configuration space that allows the sys-

tem to reach a suitable thermal and power saving condition [43].

DVFS dynamically chooses the best tradeoff between power consumption

and performance selecting a stable voltage supply/working frequency pair con-

figuration [39, 56, 57, 55]. Of course, since dynamic power dissipation is quadrat-

ically linked to switching frequency and linearly linked to voltage, lowering one

or the other or both directly reduces power consumption and heating [58, 48].

Research has traditionally focused on single core architectures [52, 21, 53],

even though in recent years we are assisting to a shift of interest towards mul-

ticore ones. One major limiting factor is that in nowadays architectures in not

always available a per-core possibility to select the set point [59].

Notably, in [60], this technique has been employed in combination with a

thermal-aware operating system, resulting in a hybrid solution between hard-

ware and software DTM where the resulting system can (thanks to a thermal

model of the cpu and power profiles of programs) maximize processor usage un-

der varying conditions, while implementing an optimal policy for DVFS usage.

DVFS has the major drawback of impacting in a non-discriminatory way on all

the applications running in the system [39].

Clock gating

This technique allows a processor in low power mode to disable some clock

propagation paths in large portions of the circuit. Switching off the clock elimi-

nates the dynamic power leaving only static power. During this time the core or

chip (depending on the number of voltage domains) is slowing down the total

processing time increases, but in return the temperature is dropping [61, 55, 39].

Speculative execution throttling

Speculative execution is a mechanism by which microprocessors try to keep

the pipeline as full as possible by issuing and executing instructions belonging

to parts of code that may execute in case the branches these instructions belong

to are effectively taken [7]. This implies that unless a perfect branch predictor is

CHAPTER 2. RELATED WORKS 31

in effect (which is of course an ideal, and not real, device) some instructions will

have to be issued and executed, but will not commit. All in all, this Instruction

Level Parallelism (ILP) mechanism increases the overall performance of the sys-

tem, but at the price of a waste of power that may not be negligible [49, 39].

Speculative execution throttling turns off this microprocessor’s feature so as

to limit to the strictly necessary the number of instructions that are going to be

executed (and committed), at the price of performance reduction [56].

Instruction-Cache (I-Cache) throttling

I-Cache throttling allows the processor’s fetch bandwidth to be reduced when

the CPU reaches a temperature limit [39]. Again, this kind of technique reduces

the number of instructions executed per second, limiting the number of instruc-

tions that may be issued, on average, every clock cycle,with obvious impacts on

performance.

2.3.2 Software Dynamic Thermal Management

In this category fall all those DTM techniques that are implemented at a

higher level than the micro architectural/electronics one.

The main motivation for the existence of a different class of mechanisms, is

that the main limit of hardware DTM is that is only suited to reactive responses,

that is, typical of emergency situations like those related to failure of cooling

systems and analogous situations where thermal loads, due to peak activity of

overloaded systems, are not effectively disposed of. Moreover, since at such low

level there is very limited if not at all knowledge about OS tasks, these techniques

affect in a non discriminatory way those tasks that are effectively heating the

system as well as those that are not. Finally, since the typical hardware response

is throttling, a severe performance degradation for a class of applications that

demand high performance is likely [29].

Software based techniques plays a fundamental roles in both these aspects.

First of all, they tend to be proactive, in that they try to prevent heating, in the first

place, to be generated in excess of the disposal capacity of the system. Moreover,

CHAPTER 2. RELATED WORKS 32

they can finely discriminate which tasks are effectively heating the systems and

which tasks are not. This allows for a sensible increase in average performance

with respect to the employment of purely hardware solutions

In this way, they successfully achieve an average reduction of temperature for

the entire runtime of the system at a reduced cost.

Idle cycle injection

Due to the dependence between leakage power and temperature, different

distributions of idle time will lead to different temperature distributions and,

consequentially, energy consumption. Idle cycle injection has been recently im-

plemented by [62, 22] as a means to lowering CPU temperatures. In [63], the au-

thors address the problem of distributing idle time among different tasks at dif-

ferent voltage and frequency levels for energy minimization. In their work, the

authors assume a processor model having two basic operational modes: active

and idle. Idling the processor activates the low power mode and obviously low-

ers the temperature, while keeping it active increases it. Since executing a nop

equivalent instruction results in putting the processor in idle mode, injecting a

varying number of these instructions in the processor results in an overall lower-

ing of the temperature (which can be adjusted according to a given goal). Inject-

ing idle instructions, obviously, involves a tradeoff between application perfor-

mance (intended as execution time) and maximum temperature reached. Apart

from this tradeoff, another major drawback is a low selectivity of the slowed

down processes.

Core migration

Core migration [42], is a multicore-aware strategy by which threads are run

on different cores in order not to incur in penalties due to idling while at the

same time distributing heat in a more homogeneous way on CPU’s die. As al-

ready pointed out in subsection 1.2.1, one of the major challenges for operating

systems schedulers aimed at multicore architectures is to find a way to achieve

maximum parallelism while preserving as possible data locality in caches; obvi-

CHAPTER 2. RELATED WORKS 33

ously, migrating threads is the worst way for obtaining locality, thus this tech-

nique is potentially associated with a low cache hit rate side effect.

2.3.3 Thermal Aware Scheduling

The main idea behind this kind of scheduling, which is operated at OS-level,

is to execute jobs in such a way to induce variations in CPU temperature [39].

Thermal-aware scheduling (TAS) realizes a kind of scheduling that has the ex-

plicit goal of keeping system’s temperature below a given threshold [43, 31]. By

means of an intelligent schedule, overall system temperature can be put under

control. The actual schedule may comprise a set of parallel actions to be taken

during schedule execution (like, for example, idle cycle injection or switching

DVFS set point).

This typically involves classifying running tasks as “hot” or “cold” , depend-

ing on their relative degree of CPU-boundedness, I/O-boundedness and inter-

activity level [64]. This classification allows the scheduler to choose when and

where (i.e.: on which core or socket, depending on the architecture) to physi-

cally execute that task. This decision can be based on a power/thermal predic-

tion model [43, 60, 30, 49, 64, 31], TAS-specific heuristics [43, 64], optimal policies

possibly obtained by means of approximate solutions [65, 30, 60, 66], task-related

performance counters [67, 64], physical location of the machine [68] or CPU [69].

Moreover, depending on the field of application, TAS may come as an online or

offline scheduler. In the first case, research is typically focused on everyday com-

puting or data centers which are subject to substantially varying, unpredictable

workloads [69, 68, 22], and the scheduling problem is analyzed in the light of

soft-real time scheduling problem. Offline TAS schedulers, instead, are typically

targeted at hard-real time platforms [70, 71], as they typically employ tasks sched-

ules which are known in advance of execution.

Since our work continues this direction of research, in the following para-

graphs it is given a description of these decision factors so as to better compare

our work to the state of art.

CHAPTER 2. RELATED WORKS 34

Power profiles of applications and thermal prediction models

Power is dissipated inside a processor in many different ways. From pure

code execution to memory access to static power leakage, energy may be em-

ployed for a number of different purposes. In recent years, due to the increasing

interest around the problem of workload characterization, many different tech-

niques and tools have been developed to model power profiles of applications

and thermal behavior of microprocessors. Applications’ power profiling becomes

an appealing feature to systems designers interested in developing DTM tech-

niques, and in particular TAS, when this knowledge is coupled with that of the

CPU micro architecture, since this allows for the development of thermal predic-

tive models based on task execution.

Authors in [64] use a simple thermal model for characterizing the application,

based on the work by [72] where each task is assumed to reach a steady state tem-

perature and maintain it until its ending. This simplification allows for a simple

representation of thermal contribution and simplifies the TAS problem.

In [43], authors consider a simplified thermal model for a single core proces-

sor (stating that this is easily scalable to chip multiprocessors devices) based on

[73] called “dynamic compact thermal model”. Even though they admit some

oversimplification, they claim to be able to predict a temperature violation for

the entire die in a timely fashion. At the same time, they find a good tradeoff

between accuracy and computational burden (in terms of memory and time) for

their online task power estimator, which they claim relies only on the last avail-

able reading of task power usage for prediction purposes. Accuracy for such an

estimator is in the order of 10%, which is comparable to other online power pro-

filers found in the literature.

Authors in [30] restrict their focus on the set of batch, lowly-interacting work-

loads in the context of soft real-time. They rely on readily available tools such as

Wattch [74] and SimpleScalar [75] for power profiling applications. After profil-

ing a set of batch jobs, they conclude that since the variance of the job’s tempera-

ture between different assigned quanta is low, three main phases can be identified

(start, steady state and shut down) and the central one (the steady state) is rep-

CHAPTER 2. RELATED WORKS 35

resentative of the thermal behavior of the application, i.e. the thermal effect that

a core is going to experience when the task is run. The current thermal profile is

given as input to the scheduler along with the set of runnable tasks, and their ex-

pected power consumption/thermal behavior. A look up on pre-computed look

up tables stored inside kernel memory allows the scheduler to efficiently take a

decision in order not to violate the thermal constraint. If the deadline of the task

is missed, the task is discarded.

In practically all works that are based upon a thermal model of the CPU,

the authors have used either ATMI [76] or HotSpot [77] as a thermal modeling

framework.

Heuristic, formal and approximate solution approach to TAS

Since multiprogrammed/multitasking operating systems continuously switch

between processes in order to give the illusion of parallelism, scheduling decision

must be taken in a timely fashion by the operating system. For example, FreeBSD

takes a scheduling decision every 40 ms [36]. It is clear how much important it is

to have an efficient scheduling algorithm, since it will be very frequently called

during the execution of the system.

As authors in [78] claim, under their definition of TAS, the policy to find an

optimal temperature-aware schedule has NP-Hard complexity. For this reason,

optimal TAS schedules may not be computed in those contexts where the arrival

of the tasks is not known in advance, since rescheduling of these tasks would

rapidly become infeasible.

Research has been focused on two different approaches. The first is the study

of optimal scheduling algorithms for hard real-time workloads, where it is sup-

posed that tasks are recurrent and known in advance, along with their strict

deadlines. The most relevant work in this line of research is reported in [78] and

in [60], where authors first define what an optimal thermal-aware policy does

and then derive the complexity for the algorithms required for that policy to be

optimal. After concluding that the complexity of the policy is NP-Hard, they pro-

pose two different approaches to TAS. The first is to implement an offline sched-

CHAPTER 2. RELATED WORKS 36

uler which solves a complex dynamic programming problem that finds the best

schedule for a set of hard real-time workloads given their deadlines, their recur-

ring arrival order and the thermal model of the CPU. The second is to implement

a heuristic used to approximately solve the scheduling problem, assuming that

the arrival order is not known in advance. Even if it is not optimal, a posteriori

simulations demonstrate that this heuristic provides good results anyway.

The second line of research is based on less formal approaches, based upon

the knowledge about the thermal model of the CPU and the power profiles of the

applications, and is more frequently found in the literature.

One such heuristic is Power Based Thread Migration [79], where the cores are

sorted by their current temperatures (increasing) and tasks are sorted by their

power dissipation numbers (decreasing). At the beginning of every migration in-

terval, task i is mapped to core i according to their respective lists, i.e. the highest

power dissipating task is assigned to the coldest core and the least power dissi-

pating task to the hottest core [60].

In another work, [43], the authors rely on power profiles of applications to

determine an ordering between tasks that is considered as an effective way to

keep temperature low. The heuristic that they use to order tasks is based upon

the observation that if we call x and y two tasks, and x is hotter than y, then if

we schedule y before x the final resulting temperature will be lower than if we

scheduled y and then x. This heuristic, which they called ThresHot [43], performs

better than MinTemp [32], another heuristic that schedules tasks in such a way

that the coolest and the hottest tasks are scheduled whenever temperature falls

outside of the specified thresholds (on a per-CPU basis). The claim is that both

performs better, i.e. better mitigate temperature, than a simpler heuristic which

simply lowers that priority of those processes that are causing more heating.

The idle cycle injection technique has been thoroughly explored in [22]. In that

work, the authors built a system based on a probabilistic model for injecting idle

cycles of variable length for controlling heating and providing responsive, inex-

pensive, fine-grained control, allowing individual threads to absorb substantial

portions of the burden of cooling. This work focuses on reducing average-case

CHAPTER 2. RELATED WORKS 37

processor operating temperatures, exploring the trade-offs between application

performance and long-term thermal behavior through preventive thermal man-

agement.

2.4 Heart Rate Monitor

In the context of Autonomic Computing (AC), many systems have been im-

plemented in order to realize the notion of “knowledge of self”. Computing in

Heterogeneous, Autonomous ’N’ Goal-oriented Environments (CHANGE) re-

search team has developed HRM a flexible and efficient monitoring infrastruc-

ture. The ideas behind Heart Rate Monitor (HRM) resemble those at the base

of Application Heartbeats and exploit the well-known idea of heartbeat, already

used in the past for measuring performance and signaling both progresses and

availability [80]. Application Heartbeats was born as a simple, usable, and portable

user-space active monitor. However, when it comes down to functionality, the

great portability of Application Heartbeats becomes a weak spot. The fact that

Application Heartbeats is a portable user-space active monitor prevents a portion

of commodity operating systems (i.e., the kernel) to easily share the information

it provides, making the development of kernel-space adaptation policies trou-

blesome. Moreover, Application Heartbeats only supports multi-threaded appli-

cations forgetting about multi-processed applications and makes use of synchro-

nization even for signaling progresses. HRM is an active monitor, integrated with

Linux and FreeBSD 7.2, supporting applications with multiple threads, multiple

processes, and any feasible mix of threads and processes, which avoids synchro-

nization to reduce its overhead as much as possible. HRM exposes a compact

API, allowing applications and system developers to instrument applications

and build both user- and kernel-space adaptation policies. This interaction model

between applications and adaptation policies, mediated by the API, can be seen

as a producer/consumer model in which applications work as producers and

adaptation policies work as consumers.

CHAPTER 2. RELATED WORKS 38

2.4.1 Definitions

In this section it is provided a set of general and specific definitions to better

understand the remainder of the section. The focus will be on the FreeBSD port-

ing of HRM, although the majority of the definitions still applies to both FreeBSD

and Linux.

A running instance of a program, including both the code and the data, is

called a process. In FreeBSD, a unique Process IDentifier (PID) identifies a pro-

cess. A thread conceptually exists within a process and shares both the code and

the data with the other threads of a given process. In FreeBSD, a unique Thread

IDentifier (TID) identifies a thread. A task is any unit of execution, being it either

a process or a thread. Given these definitions, an application can be defined as a

set of tasks pursuing a set of objectives (e.g., encoding an audio/video stream).

Being a set of tasks, an application can be either single-threaded, multi-threaded,

multi-processed, or any feasible combination of them; HRM accounts for any fea-

sible composition of these entities.

A heartbeat is a signal emitted by any of the application’s tasks at a certain

point in the code and is a metaphor for some kind of progress. For example, it

has been used as a measure of throughput, as a measure of latency and a measure

of contention. When heartbeats are employed for throughput means, a hotspot is

a performance-relevant portion of code executed by any of the applications tasks;

a hotspot usually abstracts the most time consuming portion of a program.

Since an application is a set of tasks pursuing a set of objectives, any of the

tasks working towards one of such objectives can emit heartbeats. For this reason,

it is useful to define the concept of group; a group is a subset of applications

tasks pursuing a common objective (e.g., encoding a video stream in audio/video

encoder). Groups are non-intersecting subsets; hence, a task belongs to only one

group at a time. It is important to notice how such a definition does not neglect

the existence of multi-grouped applications (e.g., a group encoding the audio

stream and a group encoding the video stream in an audio/video encoder), a case

Application Heartbeats completely neglects. The concept of group allows HRM

to support multi-programmed applications adopting multiple threads, multiple

CHAPTER 2. RELATED WORKS 39

processes, or a mix of both processes and threads: it is enough to attach each

of the applications tasks to the relevant group. Within HRM, a unique Group

IDentifier (GID) identifies a group.

Given the definitions of hotspot and group, it comes natural to define a rela-

tion n to 1 between such entities. Each of the tasks belonging to a group executes

the same hotspot, which is characterized by its heartbeats count, performance

measures, and performance goal. The heartbeats count is linked to the number

of times each task executed the hotspot. Performance measures are expressed in

heartbeats per second and capture the concept of heart rate, which is the fre-

quency at which tasks emit heartbeats. The performance goal is expressed as a

desired heart rate range, delimited by a minimum heart rate and a maximum heart

rate.

Chapter 3

Autonomic Operating Systems

In this Chapter the thesis proposal for the extension of an autonomic comput-

ing systems is presented, from a high level vision of the approach to the details

regarding the proposed methodology to extend a commodity operating system

with an autonomic layer. The high level vision is illustrated in Section 3.1, where

the goals, the model and the components comprising this vision are defined. The

focus is then moved, in subection 3.1.1, to the direct contributions of this the-

sis to the creation of an autonomic layer in a commodity Operating System (OS)

provided with a monitoring facility to which it is added a proof of concept of a

thermal and performance aware adaptation policy.

3.1 High Level Vision

The work proposed in this thesis builds upon the ideas expressed by the au-

tonomic computing community [8] in order to decline them into a feasible ap-

proach to the realization of that vision. The driving motivation for this effort

comes from the observations, in part already exposed in subsection1.2.2, regard-

ing current and foreseen complexity of computing systems, too prone at expos-

ing their complexity to software developers. Since computer architectures lack

a strong support for evolution (e.g., multi- and many-cores and heterogeneous

computing units) applications developers are required to take into account ever

lower-level details about the target architectures, making the software design

40

CHAPTER 3. AUTONOMIC OPERATING SYSTEMS 41

process more and more complex. This issue can be addressed with a neat dis-

tinction between system and applications developers, where the former are in

charge of supporting the computing architectures and offering suitable high level

interfaces to the latter.

Within this context, the overall research objective aims at the creation of self-

aware computing systems to deal with this complexity. Any kind of modern

computing device would benefit from this advancement: from mobile devices

and desktops to servers to mainframes and huge computing facilities. This vi-

sion is shared with the Computing in Heterogeneous, Autonomous ’N’ Goal-

oriented Environments (CHANGE) research group, whose work is deeply rooted

in the autonomic computing field, founded on the belief that system developers

should employ autonomic computing techniques for enabling computing sys-

tems to continuously adapt in face of evolution of systems. Within this context,

the concept of performance is extended beyond the mere idea that the faster, the

better, but it comes to include objectives such as minimization of power con-

sumption and thermal efficiency together with the goal of ensuring to the users

an experience as close as possible to their needs [3].

CHANGE team proposes an approach to the realization of this vision built

upon the fundamental concept of Observe Decide Act (ODA) control loop (see

Section 1.2.2), implemented at different levels within the envisioned system. Start-

ing from the architectural level, each component can benefit from the presence

of a local ODA loop to realize autonomic management “in the small”; then, to

higher levels, broader ODA loops should orchestrate the different subsystems

and, at the top level, a system-wide control loop, aware of the system as a whole,

should be in charge of pursuing maximum runtime performance, meant as in the

broader sense explained above.

A major role would be played by Artificial Intelligence (AI), Control The-

ory (CT) and Machine Learning (ML) techniques [3], since the orchestration of

autonomic components must be dealt with also (and most importantly) in the

context of dynamically changing environments – such as those foreseen for the

near future.

CHAPTER 3. AUTONOMIC OPERATING SYSTEMS 42

3.1.1 Thesis contribution

The long term goal of the CHANGE group [81] is the realization of a hetero-

geneous autonomic computing system such as that introduced in Section 1.2.2,

obtained by creating methodologies and designs for computing systems able to

adapt their behavior according to their internal and environmental status.

To achieve this goal, the group works on various aspects of computing sys-

tems, from architectures to operating systems and development tools. In order

to realize the vision where application developers must only focus on what their

applications have to do, leaving all the architecture-dependent details to the au-

tonomic features of the systems where they will be deployed, all of the compo-

nents of a computing system should be modified in order to create an autonomic

behavior in the system as a whole [3].

Given this premises, the first and most important computing system compo-

nent to be redesigned – possibly from scratch – in an autonomic direction is the

OS.

The claim is supported by at least three evidences:

• The only means for applications to interact with the external environment

and access resources in modern computing environments is by means of

requests directed towards the system layer which exposes the system re-

sources towards the applications which is part of the OS; hence, it has a

direct link with the applications, which are the entities that the autonomic

system must serve according to their performance requirements.

• on the other hand, the OS has direct access to the hardware resources and

it is in charge of managing them.

• Since the OS is a software system, it is possible to work at this level in

an agile way, without the need of requiring hardware modifications to the

architectures or to the components. This could be a further step to improve

the autonomic features once the autonomic base system in the OS layer will

be ready [3].

CHAPTER 3. AUTONOMIC OPERATING SYSTEMS 43

Being the glue between the hardware and the applications, the OS is the best

candidate for the introduction of a first autonomic layer inside the system. This

layer will serve as the basis and support for successive improvements both at

architectural and applicative level. Within this context, the contributions of this

thesis are:

• The theoretical definition of a set of autonomic policies implemented at OS

scheduler-level for simultaneous performance and thermal aware schedul-

ing.

• The porting of the Heart Rate Monitor (HRM) monitoring infrastructure to

a commodity operating system, namely FreeBSD, and the implementation

of both the thermal and the performance aware policies in the same sched-

uler.

• The evaluation and characterization of the implemented system with real

workloads

3.2 Autonomic Computing Model and Components

Most modern computing systems can be subdivided into three layers: Hard-

ware Components, Operating System and Applications [3]; the proposed model for

autonomic computing augments it:

• Within the hardware layer, each component should embed an integrated

autonomic ODA-based controller to autonomously manage its lower level

parameters in order to maintain a stable working status compatible with

global user’s goals.

• At the upper level, applications should embed similar software mecha-

nisms to tune their behavior, taking into account users’ preferences.

• Acting as a “glue” , the OS should be aware of the presence of autonomic

components both at the hardware and the application level. Hardware and

software should expose informations about their status towards the OS

CHAPTER 3. AUTONOMIC OPERATING SYSTEMS 44

which should in turn use these data to implement a number of ODA loops

aimed at altering the runtime status according to users’ needs.
CHAPTER 4. PROPOSED APPROACH 58

    









   

















Figure 4.1: Proposed model for an autonomic computing system

capabilities and health restrictions (such as maximum working temperature) are con-

sidered with respect to the current conditions.

• The components of the operating system are controlled (according to a certain policy)

in order to apply any needed modifications aimed at making the system fit into the

status space defined by the goals expressed by the applications and the runtime system

constraints. These components can then affect both the applications or the hardware

components, thus closing the control loop.

For instance, the ODA loop highlighted in the Figure gets information (i.e., status and goals)

from the running applications through a monitoring facility and is able to compare the status

with the goals, determining how to act on the process scheduler. This process has been com-

pletely implemented for this thesis as a proof of concept to illustrate the capabilities of this

enabling technology.

Figure 3.1: The vision of an Autonomic System: ODA loops are integrated in the system at vari-
ous levels, so as to allow each layer to act according to user’s needs with her direct intervention
(courtesy of Davide Basilio Bartolini, [3])

As argued in subsection 3.1.1, the first place where to act in realizing the au-

tonomic vision and extending the classic computing system is the OS; a pictorial

representation of this vision is given in Figure 3.1 which shows how ODA loops

are integrated in the form of local autonomic controllers between the autonomic

layer, the applications and the hardware. Here, the extension of the classic three-

layered structure of a computing system is represented by the autonomic layer

which has been added into the OS.

In this vision, the autonomic layer allows applications to explicitly commu-

nicate their performance goals (which can be specified by the developers or the

users) while is continuously monitoring them to capture any deviation from the

required performance. On the hardware side, components are monitored both in

terms of performance and in terms of health status (for instance, working tem-

perature, voltage, power consumption etc...) and their performance capabilities

and health status are considered with respect to the current and desired condi-

CHAPTER 3. AUTONOMIC OPERATING SYSTEMS 45

tions. Lastly, the OS components’ behavior is guided by user’s goals and runtime

system constraints.

This kind of control requires an actual ODA loop to be implemented. The

implementation of the following components is proposed

• monitors: these components realize the notion of Observe

• adaptation policies: these components realize the notion of Observation and

Act.

The monitor is in charge of collection informations between users on one

side and the autonomic layer on the other. It is characterized by what measure it

records (called the target measure) and must also provide a means of specifying

which are the desired values for its target measure. For example, talking about a

performance monitor, the expectation is to provide a means by which stating ap-

plications’ performance goals in terms of a range of desired values in the metric

used by the monitor that represent the desired runtime state for each application.

This range of desired values is the goal for that target measure.

The adaptation policies access the information provided by one or more mon-

itors and elaborate on them to act in one or more possibly contrasting ways on

the system. The decision mechanism may be based on different kinds of tech-

niques: from machine learning to control theory or any feasible heuristic. Adap-

tation policies determine whether any corrective action is needed whenever the

measures on their observed monitors do not match the goals specified by an ap-

plication. In this case, it can act on one or more actuation hooks within the system

where it can modify some parameters (e.g. the clock frequency of a processor or

the Central Processing Unit (CPU) time assigned to an application) to alter the

system status. These hooks are frequently referred to as “knobs”. In this way,

each adaptation policy, coupled with one or possibly more monitors, identifies a

separate ODA loop within the autonomic system.

Since within the same system different adaptation policies may coexist and

have contrasting goals or clash in the use of actuation hooks, there is the need for

an higher level component in charge of coordinating the operation of the adap-

CHAPTER 3. AUTONOMIC OPERATING SYSTEMS 46

tation policies. This component, called adaptation manager, has the role of co-

ordinating the autonomic action having access to all and the adaptation policies

and the monitoring informations in the system. The main task of the adaptation

manager is to selectively enable or disable adaptation policies with the aim of

reaching the global system goals. For instance, as it is in Figure 3.2, there could

be different adaptation policies working on the same target and using the same

monitoring information but different decision mechanisms (e.g., an heuristic ver-

sus a control theory-based policy); in this case, the adaptation manager would be

in charge of choosing the best policy according to the runtime context.

Observation

Monitor

Decision

Action

Adaptation
Manager

Adaptation
Policy

Monitor

Monitor

Adaptation
Policy

Adaptation
Policy

.goal

action

action

actiongoal

goal

Figure 3.2: The adaptation manager. This component interacts with different monitors and adap-
tation policies in order to realize user’s high level goals. (courtesy of Davide Basilio Bartolini, [3]

3.3 An Autonomic Operating System extension: ADAPTME

As explained in Section 3.1, for the autonomic vision to be materialized into

a working system the main needed component is the OS. The first choice faced

was whether it was better to design an OS from scratch or extend an existing one.

Due to the limited amount of time on one hand, and due to the amount of readily

available, high-quality OS code, it was decided to extend an existing commodity

operating system, FreeBSD. This particular choice is due to two factors

CHAPTER 3. AUTONOMIC OPERATING SYSTEMS 47

• [3] and [82] have already implemented some autonomic components and

functionalities into Linux; in their work, the authors develops a state of

art monitor called HRM of which it is made a porting to a different OS to

demonstrate its portability,

• [22] implements their system in FreeBSD; since one stated goal of this work

is to compare an autonomic system exposing similar functionalities to theirs,

the choice of the OS is constrained.

Their work is the base system that it is further extended in the sense of the

envisioned autonomic operating system: ADAPTME. In this thesis we focus on

the implementation of two different adaption policies and on the porting of a

state of art monitor in order to demonstrate the feasibility of the elaborated ap-

proach, leaving space for further incremental changes at the monitoring, at the

adaptation policies and the adaptation manager layers.

Our aim is to design, implement and validate a system in which two different

(and potentially adversary) goals are reached by the system based on high levels

indications of the user. In this work we assume a scenario in which the system

administrator is interested in reducing the average running temperature of the

system, while penalizing as little as possible applications while allowing them to

meet the expected Quality of Service (QoS). In order to do this, we assume that

the applications have been modified so as to signal ADAPTME about their cur-

rent progress and desired goal (in a similar manner to what has been described

in the vision proposed in this Chapter) and that the system can be configured to

specify the maximum average desired temperature, i.e. that temperature under

which that the system should stay under fully loaded conditions for a reasonably

long period of time.

Our first extension to the previous body of work related to Autonomic Oper-

ating System (AcOS) is the porting of HRM to FreeBSD, in order to give “self-

awareness” to the system. This allows us to introduce two adaptive policies,

namely the thermal-aware and the performance-aware policies. The first one is aimed

at scheduling management meant for putting a cap on average running temper-

ature by means of idle cycle injections. The second one is aimed at management

CHAPTER 3. AUTONOMIC OPERATING SYSTEMS 48

of performance of instrumented applications by means of priority recomputation

influenced by current and desired heart rates. Both policies are based upon a con-

trol theoretical framework that allows us to deduce some properties of these two

policies.

Chapter 4

Proposed Methodology

In the following Sections it is given a detailed descriptionn the theoretical

aspects of this work. In section 4.2, a brief dissertation about the control theoreti-

cal aspects of this work and its applications is given. Heart Rate Monitor (HRM)

is then described in section 2.4 as a means for the autonomic system to “know

itself”. The two concurring policies composing our Thermal-aware scheduling

(TAS) algorithm are presented in 4.3.1. A brief recall on the practical aspects of

this work is then given in 7.2.

4.1 Motivation

As we have seen in Chapter 2, Thermal Aware Scheduling (TAS) is an in-

teresting solution to the increasing problem of heat control in modern comput-

ing environments. After having explored a number of local TAS techniques it

was decided to further develop the state of art, implementing an advanced TAS

performance-aware policy in Computing in Heterogeneous, Autonomous ’N’ Goal-

oriented Environments (CHANGE)’s Autonomic Operating System (AcOS). By

TAS performance-aware policy it is meant the property by which the scheduler

does its best to guarantee that the temperature will stay under a given set point

under any workload, selectively penalizing the performance of those tasks that

are exceeding their heart rate (see 2.4) or those that have not expressed any goal.

In case it is not possible to satisfy the goal of all the HRM-enalbled tasks without

49

CHAPTER 4. PROPOSED METHODOLOGY 50

violation of the thermal constraint, the scheduler will inject idle time prevalently

during the quanta of non HRM-enabled processes but also during the quanta of

the others. This allows to selectively give more Central Processing Unit (CPU)

time (and the consequent possibility to generate heat) to those applications that

are of interest to the system administrator, while allowing him/her to satisfy the

temperature constraint.

This feature can be regarded as an autonomic feature, in that the adminis-

trator has to give only high level indications to the system about the expected

performance and maximum temperature allowed, and the the system employs a

form of self-regulation that realizes the expressed goals.

Among the different techniques that are employed at software level (and in

particular at scheduling level), it was decided to focus on idle cycle injection. Dif-

ferent reasons led us to this decision:

• this technique is practically agnostic to the underlying architecture, since

nop or hlt instructions are commonly implemented in nowadays proces-

sors

• this technique assumes no particular thermal model of the CPU, nor power

profiles of the applications; our scheduler can consequently re-compute pri-

orities based upon a relatively compact model and fast calculation. This is

to keep up with a possibly large amount of scheduling decisions, making

it an ideal choice for overloaded systems. Obtained results make us feel

confident about the quality of the performed control, since temperature is

effectively kept under control and performance objectives met.

• most recent TAS works (such as [22]) implemented with success this tech-

nique on commodity operating systems, making them a good benchmark

for comparing our solution to the state-of-art.

Typical scheduling infrastructures in commodity operating systems follow to

the race-to-idle principle: applications are run to completion in order to idle the

system as soon as possible, thus increasing applications’ throughput and decreas-

ing their latency. This is true for both interactive and batch workloads.

CHAPTER 4. PROPOSED METHODOLOGY 51

4.4BSD execution completion

ADAPTME execution completion

4.4BSD
ADAPTME60°C

te
m

pe
ra

tu
re

 [°
 C

]

30

40

50

60

70

80

time [seconds]
50 100 150 200 250 300

Figure 4.1: Race-to-idle versus thermal aware approach. In the graph it is easily seen how the ex-
ecution under ADAPTME with a thermal constraint of 60°C of our benchmark application results
in a longer total run-time but lower average temperature. On the other hand, pure 4.4BSD, race-
to-idle execution completes more rapidly but involves a not negligible difference in running peak
temperature (in this experiment more than 8°C).

While this behavior has been traditionally considered optimal, nowadays and

future computing environments benefit from added considerations regarding

thermal constraints. Our approach is based on the fact that, if applications can

afford a decrease in their throughput or increase in their latency, the schedul-

ing infrastructure may exploit policies to produce less heat and thus, on average,

to lower the average running temperature and power consumption. As already

pointed out in section 1.2.3, lowering the average temperature greatly reduces

spending on cooling infrastructure (e.g., fans, air-conditioners) and greatly im-

proves the mean average life of electronic devices. Figure 4.1 shows the difference

between the race-to-idle approach and the thermal-aware one.

Various state of the art approaches presented in Chapter 2 slow indiscrimi-

nately down processes in order to obtain temperature reduction, and whenever

they do not, they do not have an explicit mechanism by which applications can

signal what their minimum acceptable Quality of Service (QoS) level is. Even

though this allows to cool down the system, not all the applications can afford

a throughput decrease or latency increase. In soft real-time systems, applications

CHAPTER 4. PROPOSED METHODOLOGY 52

provide deadlines and quality of service to notify their goals and constraints;

it is believes that a similar approach can be applied to desktop and server sys-

tems, allowing users to provide applications performance goals and applications

to signal execution progresses or latencies.

Two different polices are implemented, one thermal-aware and one performance-

aware, the combination of which results in ADAPTME, a novel thermal and per-

formance aware scheduling infrastructure based on a popular general purpose

scheduler, the 4.4BSD scheduler, implemented in the FreeBSD Operating Sysem.

Although it was tried not to introduce significant changes in the scheduling in-

frastructure, it was observed that the performance-aware policy would have pos-

sible caused system instability (for example: task starvation): for this reason, it

was implemented the policy based on notions of Control Theory so as to tackle

this problem from a stability point of view. In the next section an outline of the

reasoning is given to the reader.

4.2 Control Theoretical thermal and performance aware poli-

cies

It is now introduced a thermal-aware and a performance-aware policy ex-

tending the scheduling infrastructure of a commodity operating system, FreeBSD

7.2.

These two policies execute during different times of the scheduler activity and

have different priorities. In fact, the thermal-aware policy is activated at each con-

text switch, while the effects of the performance-aware policy do so only during

priority recomputation (which occurs, by default, every 40 ms).

In Section 4.3 it is better described how the control theoretical models are

effectively translated into a working mechanism; for now, it is only introduced

the theoretical framework.

This work is inspired by the thermal-unaware scheduler by [22]. Conversely

to that work, it has been adopted a thermal-aware control-theoretical mechanism

in place of a thermal-unaware probabilistic mechanism to achieve temperature

CHAPTER 4. PROPOSED METHODOLOGY 53

control at scheduling level.

Here follows a formal definition of the activity of the scheduler.

The performance-aware policy makes use of applications’ performance goals

(i.e., user-specified throughput metrics) to adapt threads priorities by increasing

or decreasing the amount of CPU time threads have assigned. These performance

goals are expressed by means of a flexible performance goal infrastructure imple-

mented at Operating System (OS)-level called HRM. It will be more thoroughly

described the main features of this component in section 2.4. It also features a

control-theoretical mechanism to drive applications priority; the policy requires

users applications to signal performance goals and applications progresses. It is

to distinguish between legacy and non-legacy applications according to whether

they do or do not allow specifying performance goals and progresses by means

of HRM.

Denoting the performance of the i-th application measured at time k as ri(k)

(the “heart rate”), this time, the target of the controller is to take action so as the

performance of every application does not decrease under the performance goal

r0; as already stated, this is a “best-effort” policy, since there is no guarantee about

the outcome of the control. This is due to the fact that our model recomputes

priorities on a per-task basis, and does not take into account all running tasks at

once.

The model of the system is assumed to be the one reported in Equation 4.1.

ri(k+ 1) = ri(k) + ηi,j∆priorityi,j(k) (4.1)

Intuitively, the priority of the task at time instant k+ 1 depends on the prior-

ity given at the previous time instant and on a performance increase or decrease

dependent on the difference between the current goal and the current heart rate.

Even thought it was possible to take into account more variables to better de-

scribe system, it was found that under the conditions of the experiments we de-

scribe in Section 6 this model works well enough.

∆priorityi,j(k) is the priority of the j-th thread of the i-th application and

CHAPTER 4. PROPOSED METHODOLOGY 54

spans the interval between -50 and 50 while ηi,j is an unknown parameter. This

bound on the control action allows for a more fine grained control over tasks’ pri-

ority, as we will see in the description of the original 4.4BSD scheduler, in Section

2.1.2 . The control-theoretical system calculates ∆priorityi,j(k) per thread per

application at each sampling instant. Also in this case, the closed-loop system is

designed to be a pure delay, which means that after one step of the controller

execution, the set point r0 is transferred to the output rate. The priority will be

increased if and only if the performance risks to be too high, while it will be

lowered whenever the performance is lower than the performance goal. The ηi,j

value cannot be given a priori due to its dependence on the workload of the ma-

chine, therefore the regulator is coupled with an adaptive estimator that updates

the value of the expected ηi,j per thread per application.

The thermal-aware policy features another control-theoretical mechanism. De-

fined the temperature of the i-th processing core measured at time k as Ti(k), the

target of the controller is to act so as the temperature of the processing core does

not exceeds the value Tt; the model of the system is assumed to be the one re-

ported in Equation 4.2.

Ti(k+ 1) = Ti(k) + µi · idlei(k) (4.2)

Intuitively, the temperature of the i-th core at time instant k + 1 depends on

the temperature at the previous time instant and on the amount of time that the

system idles. Even thought it was possible to take into account more variables to

better describe system, we found that under the conditions of the experiments

we describe in Section 6 this model works well enough.

idlei(k) is the percentage of idle time injected in the i-th core in the time

interval between the k-th and k + 1-th sampling instant and spans in the inter-

val between 0% and 100% of sched_quantum, the quantum of time assigned to

tasks in execution. µi is an unknown parameter. The control-theoretical system,

designed as an adaptive deadbeat controller [83], computes idlei(k) per core at

each sampling instant. A deadbeat controller is a controller synthesized so as the

CHAPTER 4. PROPOSED METHODOLOGY 55

closed-loop transfer function equals a pure delay (z−1), which means that after

one step of the controller execution, the set point T is transferred to the output

temperature via the controller and the system transfer functions. It is possible

to analytically demonstrate that, if µi is known, then the set point signal will

be attained and the temperature will be kept below the reference level [83] [ma

questo e’ vero a prescindere dal sistema S di riferimento?]. The intuitive behavior

of this controller is that idle cycles will be injected if and only if the temperature

risks to be too high, while the control strategy will output 0 whenever there is

no possibility of exceeding the reference value. Whenever the µi value cannot be

given a priori, however, it needs to be estimated based on the current execution

on the machine, therefore the deadbeat controller is coupled with an adaptive

component that updates the value of the estimation of µi per core, based on the

last measurements, in an autoregressive modeling fashion. This is of course our

situation, since a fixed value for µi would imply knowledge about the dynamics

of the workloads, and is not an acceptable solution.

4.2.1 Derivation of priority update equation

Here it is derived the equation of the deadbeat controller governing the task’s

priority update.

The derivation assumes the presence of two components, namely the system

under control and its performance controller. This is the same theoretical frame-

work of 4.4BSD scheduler, where the system is the operating system with all the

running tasks and the scheduler is the priority update controller.

Here follows the derivation of the equations that yield the transfer function

of an adaptive deadbeat controller; i.e. a controller whose property is to enforce

the closed-loop transfer function to equal to a pure delay,meaning that after one

step of the controller execution, the set point P0 is transferred to the output per-

formance Pi.

First of all, let’s assume a model as in Figure 4.2.

It was decided to keep our model simple enough for the scheduler to keep up

with a large number of scheduling decisions per each decision phase, so a naïve

CHAPTER 4. PROPOSED METHODOLOGY 56

r(k)- SCr0
𝜺(k) Δp(k)

Figure 4.2: The setting of the control problem

representation of the priority of task P at step i, Pi, given target heart rate r0 and

current heart rateri will be

S : r(k+ 1) = r(k) + µ∆p(k) (4.3)

Now the delay operator is made explicit and is factored out

z · r(k) = r(k) + µ∆p(k)

(z− 1) · r(z) = µ∆p(k)

S :
r(z)

∆p(k)
=

µ

z− 1

Then, it is extracted the basic equation for the loop transfer function and con-

strained it to be the unitary delay operator:

loop :
C · S

1 + C · S =
1
z

C · µz−1

1 + C · µz−1
=

1
z

C · µ =
z− 1 + C · µ

z

C · µ · z− C · µ = z− 1

C · µ ·����(z− 1) = ���z− 1

C · µ = 1

C =
1
µ

Finally, the derivation of the equation for ∆p(k) from the previous steps:

∆p : ∆p(k) = C · ε(k)

CHAPTER 4. PROPOSED METHODOLOGY 57

ε(k) = r0 − r(k)

∆p(k) =
1
µ
· (r0 − r(k)) (4.4)

In this way, the transfer function from r0 to r(k) becomes:

r(k+ 1) = r(k) + µ · ∆p(k)

r(k+ 1) = r(k) +
�

�
�

µ · 1
µ
· (r0 − r(k))

r(k+ 1) = �
��r(k) + r0 −�

��r(k)

r(k+ 1) = r0

Which is exactly the definition of deadbeat controller. The ∆p(k) amount is to

be summed as the third term of the priority update equation reported in Equation

2.1; the resulting priority update equation results in:

kg_user_pri = PRI_MIN_TIMESHARE+

⌈
kg_estcpu

4

⌉
+ 2× kg_nice+ ∆p(k)

(4.5)

4.2.2 Derivation of idle-time injection equation

In an analogous fashion, here it is derived the equation for the percentage

amount of idle time of a given core:

S : t(k+ 1) = t(k) + µ · idle(k) (4.6)

Now the delay operator is explicited and factored out

z · t(k) = t(k) + µ · idle(k)

(z− 1) · t(z) = µ · idle(k)

S :
t(z)

idle(k)
=

µ

z− 1

CHAPTER 4. PROPOSED METHODOLOGY 58

Then, it is extracted the basic equation for the loop transfer function and con-

strained it to be the unitary delay operator:

loop :
C · S

1 + C · S =
1
z

C · µz−1

1 + C · µz−1
=

1
z

C · µ =
z− 1 + C · µ

z

C · µ · z− C · µ = z− 1

C · µ ·����(z− 1) = ���z− 1

C · µ = 1

C =
1
µ

Finally, the derivation of the equation for idle(k) from the previous steps:

idle(k) : idle(k) = C · ε(k)

ε(k) = t0 − t(k)

idle(k) =
1
µ
· (t0 − t(k))

In this way, the transfer function from t0 to t(k) becomes:

t(k+ 1) = t(k) + µ · idle(k)

t(k+ 1) = t(k) +
�

�
�

µ · 1
µ
· (t0 − t(k))

t(k+ 1) = ���t(k) + t0 −���t(k)

t(k+ 1) = t0

Since idle(k) has to be a percentage of the quantum of time, we rewrite it in

this way:

idle(k) =
idle(k)

quantum
· 100

CHAPTER 4. PROPOSED METHODOLOGY 59

4.3 Autonomic policies

In this section it is explored the relationships that incur between the two auto-

nomic policies so as to describe how do they accomplish thermal mitigation and

performance awareness.

4.3.1 Thermal-aware policy

The thermal aware policy is in charge of adjusting the amount of time a given

core idles during a quantum of time. After each iteration of the control loop,

it is indicated the system for how much of the following quantum of time the

processor should idle, and for how much it should run. Since the amount of idle

time is computed on a per-core basis, it is not yet discriminating which jobs are

allowed to run faster and which are instead slowed down, but it is only given and

advice to the scheduler on when to preempt the running task. Moreover, some

classes of threads may not be preempted at all in this way, for example threads

belonging to the kernel and realtime scheduling classes.

Two observations are in order here:

• the control action is a suggestion of ADAPTME to the scheduler, which

means that the goal may not be achieved. It is by all means a “best-effort”

policy. However, under normal conditions, i.e. when kernel threads and re-

altime threads do not consume too much CPU time, the policy, as we show

in Chapter 6, achieve its goal. This is further discussed after introducing

the second policy, since this behavior may be obtain by adjusting one of

ADAPTME parameters.

• the control policy is run asynchronously with respect to the scheduling main

loop, so that the quantum of time is not linked to any particular timeshare-

class thread (i.e. the kind of thread that may be spawned by a user space

program).

As it is described Chapter 5, it is implemented the control strategy in different

parts of the scheduler, in order to cope with all the possible transitions of state of

the processes.

CHAPTER 4. PROPOSED METHODOLOGY 60

4.3.2 Performance-aware policy

As already said, it was employed HRM as the monitoring infrastructure for

getting informations about the current status of system’s applications. Thanks to

the heart rate metaphor, it is possible to control the amount of CPU time allowed

to an application in order for it to reach its goals, compatibly with the other non-

legacy applications’ goals.

The controller described is capable of adjusting this amount of time by vary-

ing the priority of the application, as it will be thoroughly described in Chapter

5. Many different portions of the base scheduler’s code were modified in order

to cope with the various modalities in which the original module accounted for

priority updating.

Two observations are in order here:

• the control action is a suggestion of ADAPTME to the scheduler, which

means that the goal may not be achieved. It is by all means a “best-effort”

policy. As it is thoroughly described in [3], where the author implements

this policy on a commodity GNU/Linux operating system in a similar fash-

ion, this policy can effectively favor those applications that are currently not

yet reaching their goals. As we show in Chapter 6, the same kind of behav-

ior is observed with ADAPTME, confirming the feasibility of this approach.

• the control policy is run synchronously with respect to the scheduling main

loop, so that the priorities are modified in the same way as was done in the

original scheduler, only with a different update equation (which is that of

4.5).

Chapter 5

Implementation

In this chapter it is described the relevant portions of the implementation of

ADAPTME. In order to introduce the previously described self-awareness fea-

tures to FreeBSD, Heart Rate Monitor (HRM) has been ported from Linux (both

user space and kernel space) and its peculiarities are detailed in section 5.1. The

4.4BSD scheduler implementation is detailed in section 5.2, as a precondition for

the subsequent discussion about the implementation details of ADAPTME. The

implementation details required to introduce temperature- and performance-awareness

are detailed in section 5.3.

5.1 FreeBSD Heart Rate Monitor porting

As it happens in the Linux version of HRM, FreeBSD’s HRM porting consists

of two partitions, the user-space one and the kernel-space one [82].

The user-space partition of HRM is targeted at both software and system de-

velopers, who are required to access its functionalities by means of a library,

namely libhrm. This library exposes a compact C Application Programming In-

terface (API) that grants software and system developers the ability to instrument

applications, providing a way to specify performance goals, signal progresses,

retrieve applications performance measures and retrieve performance goals. The

basic API functions are reported in Table 5.1.

In the following two subsections, the focus is set on the internals of the user

61

CHAPTER 5. IMPLEMENTATION 62

space and the kernel space partitions of HRM.

5.1.1 Heart Rate Monitor user space partition

HRM can be accessed by userspace applications via libhrm. For the sake of

portability, libhrm interface is the same under both Linux and FreeBSD, even

though minor semantics differences exist in the current version of the implemen-

tation.

The typical usage workflow is summarized in pseudo algorithm 1.

Pseudocode 1 HRM: application’s perspective (producer and/or consumer)

init-attach: hrm_attach
init-goal: hrm_set_min_heart_rate and hrm_set_max_heart_rate

init-window: hrm_set_window_size
while (not done) do

if (producer) then
emit hartbeats: heatbeat or heartbeatN

end if
if (consumer) then

read heart rates: hrm_get_window_heart_rate or
hrm_get_global_rate

end if
end while
detach from group: hrm_detach

Observe that the behavior of the application is dependent on the mode it has

attached to the group; if it has attached in producer mode, the application will be

able to issue calls to any function of libhrm, else it will not be able to invoke

heartbeat and the various hrm_set_* functions.

In pseudo algorithm 1, the sample application attaches to a given numbered

group (as defined in 2.4.1) and, during execution, emits heartbeats to signal some

kind of progress, if it is a producer, and reads the current window or global heart

rate if it is a consumer. On exit, the application detaches from the group.

The proposed API exposes two functions, namely hrm_attach and hrm_detach,

the first to attach the issuing threads to the group identified by a Group IDenti-

fier (GID) in consumer or producer mode, and the latter to detach the caller from

the group it is assigned to, respectively.

CHAPTER 5. IMPLEMENTATION 63

Table 5.1: libhrm API

Function Description

hrm_attach(int gid, bool_t consumer) Attach the current task to the group identified by gid.
hrm_detach()1,2 Detach the current task from a given monitor instance

hrm_set_min_heart_rate(uint32_t min_heart_rate)1,2,3 Set the minimum heart rate in the user–defined performance goal
hrm_set_max_heart_rate(uint32_t max_heart_rate)1,2,3 Set the maximum heart rate in the user–defined performance goal
hrm_set_window_size(size_t window_size)1,2,3 Set the window size in the user–defined performance goal

hrm_get_min_heart_rate()1,2 Get the minimum of the target heart rate
hrm_get_max_heart_rate()1,2 Get the maximum of the target heart rate
hrm_get_window_size()1 Get the window size

hrm_get_global_heart_rate()1,2 Get the global heart rate
hrm_get_window_heart_rate()1,2 Get the window heart rate

heartbeat(uint64_t n)1,2,3 Emit n heartbeats
1Every function receive an additional parameter of type hrm_t * pointing to the underlying monitor data structure
2Every function return a value of type int containing either 0 or an error number
3Every task attached as a consumer is not allowed to call this function

Different applications may be concerned with either long- or short-term trends.

For example, a process that has a periodic behavior may be interested both at

the average heart rate reached during overall execution and short term heart

rate over, for example, the last tens of seconds. Therefore, the API exposes two

suitable functions, namely hrm_get_global_rate, to catch long-term trends

by averaging the heart rate over the whole application’s execution time, and

hrm_get_window_heart_rate, to catch its short-term trends (i.e., variable-

length trends) through the heart rate measured over a time window. The win-

dow size, which is expressed in timer periods, is used to control the amount of

past measures to account for; the timer period controls how often performance

measures are updated. The window size can be set through a call to a libhrm

function, namely hrm_set_window_size.

Two additional functions are exposed to adjust performance goals. The first is

hrm_set_min_heart_ratewhich allows to define the minimum desired heart

rate. The second is hrm_set_max_heart_rate, which allows to define the

maximum desired heart rate. Conversely, the two procedures hrm_get_min_heart_rate

and hrm_get_max_heart_rate allow the user to retrieve the current goal.

The most important API function is heartbeat. Calls to this function are

inserted within the hotspot of a program to signal progresses by incrementing

the summation of heartbeats by a generic integer value.

The complete set of libhrm functions belonging to the API is reported in

Table 5.1.

CHAPTER 5. IMPLEMENTATION 64

Due to the lack in FreeBSD of a well developed and stable procfs virtual

filesystem mechanism such as that offered by Linux, mapping memory pages

between kernel space and user space is implemented in a different way. While

in Linux this exchange of data is accomplished by reading and writing files be-

longing to the procfs filesystem following a protocol known by both the kernel

and libhrm, in FreeBSD we rely on the creation of virtual devices under /dev

that are suitably read and written to exchange information with the kernel. This

way, even though libhrm is implemented in different ways in FreeBSD and in

Linux, the interface remains the same, thus achieving to some degree the goal of

portability.

5.1.2 Heart Rate Monitor kernel space partition

Pseudocode 2 HRM: system’s perspective

loop
if (task attachment request) then

add task to existing group/create group if not existing:
hrm_add_task_to_group

end if
if (task emits heartbeat in userspace) then

recompute heart rate, global and window, of the associated group
end if
if (task detachment request) then

remove task from existing group/remove group if empty:
hrm_delete_task_from_group

end if
end loop

The pseudo algorithm 2 represents the usage of HRM, as seen from the point

of view of the kernel. Whenever a task requires to be added to a group, if it exist,

the performance counter of that group is attached to the address space of that

task, otherwise the group and the statistics page are created and then mapped to

that task’s address memory. After that, the system responds to incoming heart-

beats requests, i.e. it must add the requested amount of heartbeats to the perfor-

mance counter of the corresponding group. Whenever tasks request detachment,

the system takes care of the removal of the task from the corresponding group

CHAPTER 5. IMPLEMENTATION 65

and, in case it is empty, removes that group from the list of available groups.

The kernel-space partition of HRM consists of all the data structures and man-

agement routines for realizing the performance monitoring. Excluding kernel-

specific types and data structures, the FreeBSD port of the kernel-space partition

of HRM overlaps that of the Linux implementation.

The basic data structure behind HRM is a linked-list of groups, shown in

Figure 5.1.

group

kthread x kthread z

measures
goal
page

counter
pages

thread n

thread 2

thread 1

0x…1FC0

0x…1040

0x…1000

0x…0FC0

0x…0040

0x…0000

Figure 5.1: On the left, the linked-list of groups and the linked-list of producers and consumers (per
group), set of pages to store per thread counters, and single page to store both the performance
measures and the performance goal. On the right, the shared memory access pattern realized by
threads belonging to the same group accessing their respective performance counters.

Since HRM data structures may be accessed in a multithreaded fashion, the

linked-list of groups is protected by a global mutex, which is needed to guarantee

consistency when modifying the linked-list during group addition or deletion.

One major difference with the Linux implementation of HRM data structures

is the absence of a second list of consumer-only threads. This is because of it was

not possible to conclude the implementation of this feature in time. From the

user’s point of view, what happens is that attaching to a group in consumer mode

is simply not possible; users can attach in producer mode only, which allows

them to exploit all of HRM exposed procedures. The difference between the two

is purely performance-related: whenever an adaptation policy is traversing the

CHAPTER 5. IMPLEMENTATION 66

list of group’s tasks, it may probably not be interested in accessing tasks which

are consumers-only. Apart from this minor difference, the behavior of the system

from the point of view of the user is fundamentally the same.

Each group allocates a set of pages to store per thread counters (i.e., default

1 page, but this may grow up to 16 pages) and a single page to store both the

performance measures and the performance goal as depicted in Figure 5.1. These

pages are shared across the kernel and the user address spaces via a shared mem-

ory mechanism; moreover, since HRM supports diverse parallelization models

through the concept of group, pages may be shared across multiple user address

spaces since each of the user thread may belong to a different process [82].

The right part of Figure 5.1 gives a more accurate view of the layout of the

pages storing the counters; as the least significant portion of the addresses high-

light, each counter is aligned to the size of the cache line. Cache line alignment re-

sults in a slightly less efficient use of the available memory; however, the claim is

the performance improvements due to cache line alignment on multi and many-

core processor and especially on multi-processor systems, which necessitate off-

chip communication to maintain cache coherency, is such that more memory can

be allocated, being an increasingly available resource in modern computing sys-

tems. The content of the pages devoted to store the counters is the most critical

to HRM since it can be concurrently accessed at a high rate by both the ker-

nel and user threads. Distribution avoid synchronization among user threads,

while heavy weight synchronizations between kernel and userspace are avoided

by adopting atomic operations; hence, a function call to heartbeat reduces to an

atomic increment of a per thread counter. Due to cache line alignment, the num-

ber of counters is architecture dependent; the reference implementation of HRM

allocates standard sized pages whose size is 4 kB, while the size of cache lines

of x86 and x86-64 processors is 64 bytes, with such parameters, each page can

contain up to 64 counters [82].

In addition, as the left part of Figure 5.1 shows, each group allocates a sin-

gle page to be shared with the group to store both the performance measures

and the performance goal; this is different with respect to what happens with

CHAPTER 5. IMPLEMENTATION 67

the counters, since they are distributed among the group’s tasks. As reported in

Section 2.4, HRM provides both a global heart rate (i.e., longterm performance

measure) and a window heart rate (i.e., short-term performance measure) com-

puted according to Equations 5.1 and 5.2 in which g indicates the group, t is the

current time stamp, t0 is the group creation time stamp, and tw is the time stamp

at which window started [82].

ghrg(t) =
∑
i

cnti(t)

t− t0
(5.1)

whrg(t) =
∑
i

cnti(t) − cnti(tw)

t− tw
(5.2)

The performance measures are asynchronously updated by the kernel in the

context of a HighResolution (HR) timer after acquiring the members read-write

lock in read mode; the adoption of asynchronous updates for performance mea-

sures avoids boundary crosses to retrieve the current time stamp. The period of

the HR timer can be tuned through a kernel compile time parameter. The per-

formance goal is made up of a lower and an upper bound defining a heart rate

range; moreover, the performance goal contains also the window size to compute

the window heart rate [82].

HRM implements a number of virtual device files to provide all the necessary

entry points to attach (detach) threads to (from) a group and mmap pages storing

per thread counters and both the performance measures and the performance

goal.

Some other portions of FreeBSD have been modified in order to flawlessly

integrate the monitoring system with the rest of the Operating System (OS):

• In order to allow applications to interface to kernel space data, virtual de-

vices are instantiated at run time. It was not possible to implement or reuti-

lize code from Linux, since it relies on the presence of a virtual filesystem

(procfs) to exchange informations to/from kernel space via procfs, a

feature not available in FreeBSD 7.2.

• the struct thread data structure, which is the fundamental data struc-

CHAPTER 5. IMPLEMENTATION 68

ture describing threads in FreeBSD, has been modified to contain a new

field holding all HRM-related informations, namely struct hrm_producer.

• a virtual device (/dev/hrm) has been implemented to easily report on the

overall current activity of all HRM groups: it is possible to open this de-

vice in read only mode to obtain a formatted string containing informations

about target, global and window heart rate, goals and tasks of all available

tasks of all available groups.

Listing 5.1 is an excerpt of code from hrm.h. Line 1 declares and instantiates

the list of hrm_groupmentioned above. At line 24 begins the declaration of what

a group is: it contains a (pointer to) performance counters, goals of the tasks, a

history of previous heart rates for computing the window heart rate value, the list

of producer tasks (consumers are going to be implemented in the next iteration of

ADAPTME). The producers are described by the data structure hrm_producer:

there is a pointer to the performance counter, the pointer to the window and

global heart rate and the goal of the task. Finally, a pointer to the group which

the thread belongs to.

1 LIST_HEAD(hrm_groups_list, hrm_group);

2
3 extern struct hrm_groups_list hrm_groups;

4 extern struct mtx hrm_groups_lock;

5
6 struct hrm_memory_map;

7 struct hrm_memory_map {

8 lwpid_t pid;

9 unsigned long user_address;

10 int references;

11 LIST_ENTRY(hrm_memory_map) link;

12 };

13
14 struct hrm_memory {

15 unsigned long kernel_address;

16 size_t size;

17 LIST_HEAD(hrm_memory_map_list, hrm_memory_map) maps;

18 };

19
20 struct hrm_group;

21 struct hrm_group {

22 int gid;

23 struct hrm_memory counters;

24 struct hrm_memory measures_goal;

25 struct {

26 int window_begin;

CHAPTER 5. IMPLEMENTATION 69

27 int window_end;

28
29 struct {

30 uint64_t counter;

31 struct timespec elapsed_time;

32 } window[HRM_WINDOW_SIZE];

33
34 uint64_t history;

35 } history;

36
37 struct callout timer;

38 struct timespec elapsed_time;

39 struct timespec timestamp;

40
41 LIST_HEAD(hrm_producers_list, hrm_producer) producers;

42 //LIST_HEAD(hrm_consumers_list, hrm_consumer) consumers; -- HRM v2.0, not yet implemented

43 struct mtx members_lock;

44
45 LIST_ENTRY(hrm_group) link;

46 };

47
48 struct hrm_counter {

49 lwpid_t tid;

50 int used;

51 uint64_t counter;

52 };

53
54 struct hrm_measures {

55 uint32_t global_heart_rate;

56 uint32_t window_heart_rate;

57 };

58
59 struct hrm_goal {

60 uint32_t min_heart_rate;

61 uint32_t max_heart_rate;

62 size_t window_size;

63 };

64
65 struct hrm_producer;

66 struct hrm_producer {

67 int counter_index;

68
69 struct hrm_counter *counter;

70 struct hrm_measures *measures;

71 struct hrm_goal *goal;

72 struct hrm_group *group;

73
74 unsigned long counter_user_address;

75 unsigned long measures_user_address;

76 unsigned long goal_user_address;

77
78 LIST_ENTRY(hrm_producer) link;

79 };

Listing 5.1: HRM relevant data structures

CHAPTER 5. IMPLEMENTATION 70

5.2 4.4BSD scheduler

The basic notions regarding the 4.4BSD scheduler were already given in Sec-

tion 2.1.2. Here follows a deeper overview of the implementation of the sched-

uler.

5.2.1 Multilevel feedback Run Queues

The most important data structure employed for the scheduling process is

the multilevel feedback run queue. This is a queueing scheme in which requests are

partitioned into multiple prioritized subqueues, with requests moving between

subqueues based on dynamically varying criteria [35].

The run queues contain all the runnable threads in main memory except the

currently running thread. They are organized as a doubly linked list of thread

structures. The head of each run queue is kept in an array of fixed (known at

compile-time) dimensions. The number of queues used to hold the collection of

all runnable threads in the system affects the cost of managing the queues. If

only a single (ordered) queue is maintained, then selecting the next runnable

thread becomes simple but other operations become expensive. Using 256 dif-

ferent queues can significantly increase the cost of identifying the next thread to

run. The system uses 64 run queues, selecting a run queue for a thread by divid-

ing the thread’s priority by 4. To save time, the threads on each queue are not

further sorted by their priorities [35].

Associated with this array is a bit vector, rq_status, that is used in identi-

fying the nonempty run queues, so as to speed up the process of task traversal.

Two routines, runq_add() and runq_remove(), are used to place a thread

at the tail of a run queue, and to take a thread off the head of a run queue.

In order to choose the next thread to run, the scheduling algorithm calls the

runq_choose() routine. The runq_choose() routine operates as follows [35]:

• Ensure that our caller acquired the sched_lock

• Locate a nonempty run queue by finding the location of the first nonzero

bit in the rq_status bit vector. If rq_status is zero, there are no threads

CHAPTER 5. IMPLEMENTATION 71

1

2

3

64

...

Mutilevel feedback
run queue

struct thread
To

 lo
w

er
 p

rio
rit

ie
s

To higher priorities

td_runq.tqe_next

td_runq.tqe_prev

struct thread

td_runq.tqe_next

td_runq.tqe_prev

struct thread

td_runq.tqe_next

td_runq.tqe_prev

struct thread

td_runq.tqe_next

td_runq.tqe_prev

struct thread

td_runq.tqe_next

td_runq.tqe_prev

struct thread

td_runq.tqe_next

td_runq.tqe_prev

struct thread

td_runq.tqe_next

td_runq.tqe_prev

Figure 5.2: Multilevel feedback run queues: tasks are assigned a level in the queue and are double
linked for round robin scheduling purposes.

to run (in this case select the idle loop thread)

• Given a nonempty run queue, remove the first thread on the queue.

• If this run queue is now empty as a result of removing the thread, reset the

appropriate bit in rq_status

• Return the selected thread and release the lock.

5.2.2 Computation of threads’ priority

After describing how the scheduler physically keeps threads ordered on the

basis of their priority, it is discussed how the scheduler recomputes priorities.

Different functions are responsible for priority calculations used in the short-term

scheduling algorithm.

CHAPTER 5. IMPLEMENTATION 72

The scheduler needs to carry out the following tasks:

• periodic recomputation of threads’ priority, based upon the effective run-

ning and sleeping time

• periodic preemption of tasks to allow others at same priority to run in a

round robin fashion

• statistics bookkeeping (system load, effective amount of quantum used by

process etc. . .)

• preemption whenever a task with higher priority is put in the ready queue

For the first tasks, two routines, schedcpu() and roundrobin(), run peri-

odically. schedcpu() is a high priority kthread that runs at a frequency of 1Hz;

the main loop of the thread locks processes and threads belonging to them one at

a time, and recomputes their priorities using Equation 2.1. Moreover, it updates

the value of kg_slptime for threads blocked by a call to sleep() [35].

The roundrobin() routine carries out the second task: it runs 10 times per

second and causes the system to choose the next thread to run in the highest-

priority (nonempty) run queue in a round-robin fashion, which allows each thread

a 100-millisecond time quantum [35].

The third tasks comprises Central Processing Unit (CPU) usage estimates,

which are updated in the system clock-processing module, hardclock(), ex-

ecuting 100 times per second. Each time that a thread accumulates four ticks in

its CPU usage estimate, kg_estcpu, the system recalculates the priority of the

thread. This recalculation uses Equation 2.1 and is done by the resetpriority()

routine [35].

In addition to issuing the call from hardclock(), each time setrunnable()

places a thread on a run queue, it also calls resetpriority() to recompute the

thread’s scheduling priority. This call from wakeup() to setrunnable() op-

erates on a thread other than the currently running thread. So setrunnable()

invokes updatepri() to recalculate the CPU usage estimate according to equa-

tion 2.2 before calling resetpriority(). The relationship between these func-

tions is shown in Figure 5.3.

CHAPTER 5. IMPLEMENTATION 73

hardclock() wakeup()

resetpriority()

statclock()

sched_clock()

setrunnable()

updatepri()

From wakeupEvery 4 cpu ticks
accumulated

sched_4bsd
kthread for priority recomputation

loop
 lock Process P
 forallThread T ∈ P
 lock T
 check T state
 compute T decay factor
 call resetpriority(T)
pause(1)

Run
Queues

Reorder
Run Queues

Figure 5.3: The relationship between some relevant scheduler functions

CHAPTER 5. IMPLEMENTATION 74

5.3 ADAPTME implementation

ADAPTME was implemented in the FreeBSD 7.2 kernel, modifying the oper-

ations of the 4.4BSD scheduler to make a fair comparison with Dimetrodon [22],

which was implemented on the same release of that OS. The 4.4BSD scheduler is

augmented with the thermal-aware policy and the performance-aware policy.

5.3.1 Performance-Aware Policy

Within the 4.4BSD scheduler, all threads that are runnable are assigned a

scheduling priority that determines in which run queue they are placed. Since

FreeBSD 6, run queues in Simultaneous Multi Processor (SMP) systems are as-

signed one per core. In selecting the new thread to run, the scheduling infrastruc-

ture scans the run queues from the highest to the lowest priority and chooses the

first thread on the first nonempty run queue. To speed up the search, an helper

bit array called rq_status is present, where each element is a 0 in case the cor-

responding run queue is empty and 1 otherwise. Multiple threads on the same

run queue are managed in a round robin fashion and are assigned a static quan-

tum of time, which is decided at compile time. The 4.4BSD scheduler is based on

the multilevel feedback queues infrastructure already introduced in subection

5.2.1; threads migrate among run queues according to their changing scheduling

priority. Higher priority threads preempt lower priority threads whenever they

are added on a run queue. Since it was being extended an existing scheduling

infrastructure it was put a lot of effort into preserving all the desirable properties

coming with the 4.4BSD scheduler (e.g., non-starvation, priority decay). Keeping

this in mind, it was decided, for example, to implement the performance aware

policy as a mechanism that variates the priority of threads, rather than the length

of the quantum, so as to preserve the semantic of this OS element.

The performance-aware policy is an extension of the scheduling infrastruc-

ture acting in a decoupled fashion. Threads priorities, which are updated at a

constant rate, are adjusted using an additive term priorityi,j for each thread j of

application i, where the application is a non-legacy one (i.e. instrumented with

CHAPTER 5. IMPLEMENTATION 75

HRM). This operation migrates threads from the current run queue to another

one, advantaging or disadvantaging threads according to their measured perfor-

mance and performance goals. If the application’s heart rate is higher than that

desired, the OS will just lower its priority, so as to favor the execution of other

tasks; on the contrary, in case the application’s heart rate is lower that the de-

sired one, the scheduler will try its best to increase the priority of that process

and favor its execution. This statement underlines the “best-effort” nature of this

mechanism: in fact, if multiple applications are not yet meeting their goals, it is

possible that they will never do so since not enough CPU time may be allowed

to any of them to satisfy their requirement.

In the 4.4BSD scheduler, the priority of a thread indicates also which schedul-

ing class it belongs to. There exist five scheduling classes: one for the bottom-

half kernel threads, one for the top-half kernel threads, one for the real-time

user threads, one for the time sharing user threads, and the last one for the idle

threads. Since the behavior of the scheduling infrastructure varies with respect

to the scheduling class the running thread belongs to, it is necessary to avoid

scheduling class changes. Such changes can happen whenever the performance-

aware policy, which is designed to work on time sharing user threads, adjusts

priorities. In our solution, proper controls on the priority values avoid class vari-

ations. Each thread is further marked with a force idle flag if it is over performing

or prevent idle flag if it is under performing in accordance with the output of

the control-theoretical system, allowing for a stricter control over performance to

take place. Notice, again, how this may imply that some tasks are never idled by

the thermal policy, thus contributing to heating the system. Again, this is a “best-

effort” approach that, as it will be seen in Chapter 6, under normal conditions

works well enough.

CHAPTER 5. IMPLEMENTATION 76

Pseudo-code for priority update policy

Pseudocode 3 ADAPTME: performance-aware thread priority modification
pseudo-code

loop
if (sched_perf is enabled) then

for all (p: process P) do
for all (t: thread ∈ p) do

compute delta performance/goal of t
if (over maximum desired heart rate) then

set t.TDF_FORCEIDLE to suggest to idle thread t
end if
if (under minimum desired heart rate) then

set t.TDF_PREVENTIDLE to suggest not to idle thread t
end if
if (100th run the update priority thread) then

update µ estimation
end if
compute delta performance as in eq. 4.4
assign∆pt to field hrm_delta_prio in struct thread, to be read
during actual priority update

end for
end for

end if
end loop

5.3.2 Thermal-Aware Policy

The thermal-aware policy acts in coordination with the 4.4BSD scheduler.

When the scheduler chooses the next thread to run, it decides whether to run it

or to run the idle thread preempting the selected thread. The idle thread is sched-

uled if the output of the control-theoretical system says to idle and the thread

that is going to be preempted is not system critical nor it is marked with the

prevent idle flag. The idle thread is also scheduled if the thread that is going to

be preempted is marked with the force idle flag. A thread is considered system

critical if it is a bottom-half kernel thread (e.g., interrupts) or a top-half kernel

threads (common kernel threads such as that of priorities recomputation); more-

over, since system critical kernel threads do not belong to non-legacy applica-

tions, they cannot be marked with either force idle or prevent idle.

CHAPTER 5. IMPLEMENTATION 77

The temperature-aware policy is a high priority kernel thread that realizes

the control loop explained in subsection 4.3.1. This thread sets an appropriate

field in the struct thread data structure of every thread which indicates the

amount of effective execution time that will be spent by the thread the next time

it is scheduled. After reading the temperature of all cores by accessing the appro-

priate processor register, it stores the value in an array that will be later used by

the rest of the scheduler to take its decisions.

Different points in code are updated to cope with the thermal-aware schedul-

ing mechanism. The relevant ones are reported here:

• in sched_4.bsd@sched_clock: if the thread has not yet used up its full

quantum of time, it may be that it is anyway descheduled and the idle

thread scheduled instead, depending on the thermal conditions of the sys-

tem and the applied control.

• in sched_4.bsd@sched_fork_thread: the child of current thread in-

herits the father’s thermal flags

• in sched_4.bsd@sched_choose: here the scheduler chooses the next

thread to run; in case we are out of temperature target and the current

thread may be idled, we return the idle thread as the next thread to run with

a probability that is computed by the Control Theory (CT) based mecha-

nism. This is the core of the thermal-aware policy.

Pseudo-code for temperature mitigation policy

Pseudocode 4 ADAPTME: thermal-aware policy pseudo-code

loop
read temperature of all cores
compute every 100 ms the amount of time that thread t has to spend idling
store value in struct thread data structure
during sched_clock and sched_choose decide whether to continue ex-
ecuting thread’s code or idle thread

end loop

Chapter 6

Results

After describing the motivation, the working methodology and the imple-

mentation of ADAPTME, a description of the experiments that were set up to

validate the thesis’ work is given in this Chapter. After introducing the bench-

mark suite that was employed for the tests in Section 6.1, a description of the

experimental settings for this work and Dimetrodon is given in Section 6.2. In or-

der to better understand the rationale behind the experiments, the workloads are

characterized in subsection Section 6.1.1. Finally, the results of the experiments

are illustrated and commented in Section 6.3.

6.1 Benchmarking in a multicore environment: PARSEC

In choosing the benchmark that most suitably fits our needs, we identified

the following requirements:

• As already explained in Section 3.2, it is required to implement a mecha-

nism that allows applications to signal their progress and state their goals.

Adding this capability to a software is called “instrumentation”. Being able

to instrument the benchmark is a major constraint, so a Free, Libre or Open

Source Software (FLOSS) benchmark is required.

• In our system the focus is put on systems under heavy load conditions,

where resources contention is particularly high. Under these conditions

78

CHAPTER 6. RESULTS 79

many phenomena arise that may impact on performance and temperature

(for example: added off-chip communication, uneven thermal maps etc. . .).

A proper way to take into account this from a benchmark’s point of view

is to give users the ability to explicitly specify the amount of parallelism

exposed by applications (for example: by requiring the user to state the

number of threads of the test application).

• Since the focus is not put onto a particular workload’s characteristic (like:

lock contention, amount of Input/Output (I/O), particular distribution of

assembly instructions etc. . .), the requirement is that our benchmark be as

diverse and representative as possible.

Among the available FLOSS benchmarks, it was decided to use Princeton

Application Repository for Shared-Memory Computers (PARSEC).

PARSEC is a state of art benchmark suite for studies of Chip Multi Proces-

sors (CMPs). Previous available benchmarks for multiprocessors have focused

on high-performance computing applications and used a limited number of syn-

chronization methods. PARSEC includes emerging applications in recognition,

mining and synthesis (RMS) as well as systems applications which mimic large-

scale multi-threaded commercial programs [4].

As the authors state in their reference work, [4], this benchmarking suite is

superior to previous works (for example: SPLASH-2 [84], SPEC CPU2006 [85]

and OMP2001) for the following reasons:

• All the applications belonging to the PARSEC suite have been parallelized,

meaning that all of them may be executed using a given amount of threads

to execute their job

• The PARSEC benchmark suite is not skewed towards HPC programs, which

are abundant but represent only a niche. It focuses on emerging workloads.

The algorithms these programs implement are usually considered useful,

but their computational demands are prohibitively high on contemporary

platforms. As more powerful processors become available in the near fu-

ture, they are likely to proliferate rapidly [4].

CHAPTER 6. RESULTS 80

• The workloads are diverse and were chosen from many different areas such

as computer vision, media processing, computational finance, enterprise

servers and animation physic [4]. In short, they are both representative and

diverse.

6.1.1 Available PARSEC workloads

To date, the latest publicly available version of PARSEC is 2.1. The experimen-

tal results are all based on the workloads and data sets available in this version

of the suite.

PARSEC comprises 13 applications and a manager to run tests according to

user’s specifications. Each of those 13 applications has its own datasets: there are

4 of these datasets per application, differing only for their dimensions (and total

execution run time). These datasets allow for coarser and finer benchmarking, at

the price of reduced and increased execution times, respectively.

In Table 6.1 we report the qualitative summary of the inherent characteristics

of PARSEC benchmarks [4].

Table 6.1: Qualitative comparison between PARSEC workloads [4]

Program Application Domain Parallelization Working Set Data Usage
Model Granularity Sharing Exchange

blackscholes Financial Analysis data-parallel coarse small low low
bodytrack Computer Vision data-parallel medium medium high medium

canneal Engineering unstructured fine unbounded high high
dedup Enterprise Storage pipeline medium unbounded high high
facesim Animation data-parallel coarse large low medium
ferret Similarity Search pipeline medium unbounded high high

fluidanimate Animation data-parallel fine large low medium
freqmine Data Mining data-parallel medium unbounded high medium

streamcluster Data Mining data-parallel medium medium low medium
swaptions Financial Analysis data-parallel coarse medium low low

vips Media Processing data-parallel coarse medium low medium
x264 Media Processing pipeline coarse medium high high

raytrace Media Processing pipeline fine medium medium low

6.2 Settings

Now the focus is put on the experiments settings, describing the conditions

under which the system was validated. In particular, since the claim in the Sum-

CHAPTER 6. RESULTS 81

mary is that the implemented system performs better than the most similar work

that it was found in the state of art, Dimetrodon [22], while introducing addi-

tional performance-aware capabilities, it is described how we managed to com-

pare our work to it.

As it was described throughout Chapter 5, it was implemented ADAPTME

in a commodity operating system, namely FreeBSD 7.2. Our real-world parallel

workloads are those found in PARSEC 2.1. Before instrumenting the applications,

a port of the suite to FreeBSD was required. Not all applications were designed to

be portable, and others are parallelized by means of OpenMP and not pthreads

(which is our reference threading model).For these reasons, it could be possible to

instrument only a portion of the benchmark, namely blackscholes, fluidanimate,

swaptions, ferret and x264, since in the first place. As it can be seen from Table

6.1, these five applications are representative for both data-parallel and pipelined

parallelization models, fine, medium and coarse parallelization granularity, all

dimensions of the working set, both low and high data usage sharing patterns

and low, medium and high data usage exchange amounts. For this reason, the

chosen subset of benchmarks’ applications is nonetheless a representative one.

The tests of ADAPTME were done on an entry-level mid-tower server equipped

with a single Intel Core i7-990X six-core processor running at 3.46 GHz with a

nominal maximum Thermal Design Power (TDP) of 130 W, 6 GB of DDR3-1066

non-ECC RAM, and a 500 GB 7200 RPM SATA2 hard disk. Advanced features

such as Intel Hyper-Threading Technology and Intel Turbo Boost Technology

were disabled while Enhanced Intel SpeedStep Technology was enabled to allow

the processor to enter and exit low-power modes.

To fairly compare the work with Dimetrodon [22], their latest version of their

patch for FreeBSD 7.2 (which can be found here [86]) was obtained and the sys-

tem was patched and compiled with all optimizations on. As Dimetrodon re-

quires to set a number of parameters for it to work properly, they were empir-

ically determined in order to obtain the best tradeoff between temperature re-

duction and runtime execution slowdown for each workload used for testing

ADAPTME. When it had been possible, it was tried to make Dimetrodon obtain

CHAPTER 6. RESULTS 82

a temperature reduction compatible with that of ADAPTME’s, so as to favor this

objective when choosing the right set of parameters.

Moreover, ADAPTME’s thermal-policy was configured so that it would run

as high-priority kernel thread. Temperature sampling period is 100 ms.

It was evaluated the thermal-aware policy of ADAPTME under the subset

of the applications of PARSEC introduced at the beginning of this section. Each

run consisted of 5 consecutive executions of the same application registering

the machine thermal profile. The same experiments were repeated with FreeB-

SD/4.4BSD, Dimetrodon and ADAPTME. The thermal-aware policy of ADAPTME

was configured with a target temperature close to the average temperature mea-

sured when Dimetrodon was executed.

It was evaluated also the performance aware policy of ADPTME by signaling

inside the instrumented applications of the benchmark both a target and a cur-

rent heart rate, in line with what described in Section 2.4 when discussing Heart

Rate Monitor (HRM). In order to test whether the policy works as expected, we

first run the benchmark application alone, and record the peak heart rate hrpeak.

Then, we launched 4 instances of the same application; of course, the measured

heart rate of each instance is hrpeak/4. We than specified two different goals: for

the first group of three applications, we set a goal that is lower than hrpeak/4,

while we specified a goal which is higher than hrpeak/4 for the remaining one. In

this way, we are substantially favoring the execution time of one of the instances

at the expenses of the other. What we want to see is that in this case the perfor-

mance aware policy and the temperature aware policy work in pair giving higher

priority to the application for which a higher goal is specified while meeting the

temperature constraint.

Advanced features such as Intel Hyper-Threading Technology and Intel Turbo

Boost Technology were disabled while Enhanced Intel SpeedStep Technology

was enabled to allow the processor to enter and exit low-power modes.

CHAPTER 6. RESULTS 83

6.3 Experimental Results

They are now described the 6 experiments that have been carried out in this

work. The first five directly compare with Dimetrodon and the focus is put on

the thermal aspects of ADAPTME, for a fairer comparison. The last experiment

is focus on the capability to simultaneous control both performance and thermal

aspects of the runtime system.

6.3.1 x264

te
mp
er
at
ur
e
[°
 C
]

30

40

50

60

70

80

time [seconds]
20 40 60 80 100 120 140 160 180

4.4BSD
Dimetrodon 10% - 50 ms
ADAPTME 50° C

Figure 6.1: x264 run results. System’s temperature of both Dimetrodon and FreeBSD/4.4BSD is
consistently higher than that reached by ADAPTME. Notice how under ADAPTME the execution
time of the workload is also reduced with respect to Dimetrodon.

The first experiment is done by running an instance of x264 under FreeBSD

7.2/4.4BSD, Dimetrodon and ADAPTME. This application is an H.264/AVC (Ad-

vanced Video Coding) video encoder whose flexibility, wide range of applica-

tions and ubiquity in next generation video systems are the reasons for its inclu-

sion in the PARSEC benchmark suite. This workload has particular interdepen-

dences between data and a pipelined parallelization model that makes it partly

I/O-bound and partly Central Processing Unit (CPU)-bound

In the first case, the scheduler is compiled into the system with the default

CHAPTER 6. RESULTS 84

values for all the parameters, and the application benchmark is the only relevant

application run during the experiment. 6 threads were assigned to this applica-

tion for the test.

Dimetrodon was empirically configured so that the parameters would yield

a an average temperature near that of ADAPTME’s set point, without impact-

ing too much on execution time. In our experiments, Dimetrodon cannot achieve

both comparable execution time and average temperature, so it was decided to

consider as a viable choice for its parameters a set of values by which the temper-

ature was neither not too higher than ADAPTME’s nor execution time too longer

than ADAPTME’s.

ADAPTME was configured so that the set point of the thermal-aware policy

is 50° C. Being the only running application and being interested in focusing only

on the thermal aspects of the work, a goal is set for the application that would

be met anyway (min heart rate: 1 heartbeat per second; max: 108 heartbeats per

second) so that the performance-aware policy is actually ineffective.

In Figure 6.1 the obtained results are shown. As expected, FreeBSD/4.4BSD

has the lowest execution time at the expense of temperature, which reaches 60°C .

This is compatible with the notion of “run-to-idle” scheduler. Dimetrodon, in this

case, not only does not achieve its stated goal of lowering the temperature, but

since the system randomly injects idle cycles during execution, the system ex-

periences an overall slowdown by a factor of 1.8. On the other hand, ADAPTME

successfully lowers the average and peak temperature by 8° C, oscillating around

its goal, while slowing down the application by a smaller factor of 1.55.

6.3.2 ferret

The second experiment is carried out by running an instance of ferret under

FreeBSD 7.2/4.4BSD, Dimetrodon and ADAPTME. This application is based on

the Ferret toolkit which is used for content-based similarity search of feature-rich

data such as audio, images, video, 3D shapes and so on. The reason for the in-

clusion in the benchmark is that it represents emerging next generation desktop

and Internet search engines for non-text document data types [4]. This applica-

CHAPTER 6. RESULTS 85

te
mp

er
at

ur
e

[°
 C

]

30

40

50

60

70

80

time [seconds]
0 100 200 300 400 500 600 700

4.4BSD
Dimetrodon 20% - 50 ms
ADAPTME 55° C

Figure 6.2: ferret run results. Being a CPU intensive workload, the temperature reached by FreeB-
SD/4.4BSD is high. Both Dimetrodon and ADAPTME consistently reduce temperature during the
execution of the system, even though the average temperature is lower for ADAPTME. Execution
time is still reduced in ADAPTME than it is in Dimetrodon. The vertical red line indicates the time
when FreeBSD/4.4BSD finishes executing the benchmark application.

tion has a low amount of data interdependency between threads and reduced

amount of I/O, so it can be considered fully CPU-bound.

In the first case, the scheduler is compiled again into the system with the

default values for all the parameters, and the application benchmark is the only

relevant application run during the experiment. 6 threads were assigned to this

application for the test.

Dimetrodon was empirically configured so that the parameters would yield

a an average temperature near that of ADAPTME’s set point, without impacting

too much on execution time. It was decided again to consider as a viable choice

for its parameters a set of values by which the temperature was neither not too

higher than ADAPTME’s nor execution time too longer than ADAPTME’s.

ADAPTME was configured so that the set point of the thermal-aware policy

is 55° C. Being the only running application and being interested in focusing only

on the thermal aspects of the work, it is set a goal for the application that would

be met anyway (min heart rate: 1 heartbeat per second; max: 108 heartbeats per

second) so that the performance-aware policy is actually ineffective.

CHAPTER 6. RESULTS 86

In Figure 6.2 the obtained results are shown. As expected, FreeBSD/4.4BSD

has the lowest execution time at the expense of temperature, which reaches 78°C.

This is again compatible with the notion of “run-to-idle” scheduler. Dimetrodon,

in this case, achieves its stated goal of lowering the temperature (by 15°C), but

since the system randomly injects idle cycles during execution, the system expe-

riences an overall slowdown by a factor of 2.38. On the other hand, ADAPTME

successfully lowers the average and peak temperature by 22°C, oscillating around

its goal, while slowing down the application by a smaller factor of 2.07.

6.3.3 blackscholes

te
mp
er
at
ur
e
[°
 C
]

30

40

50

60

70

80

time [seconds]
50 100 150 200 250 300 350 400 450 500

4.4BSD
Dimetrodon 50% - 50 ms
ADAPTME 50° C

Figure 6.3: blackscholes run results. Again, the temperature reached by FreeBSD/4.4BSD is con-
sistently higher than of both ADAPTME and Dimetrodon. In this case, we observe a reduction in
execution time of ADAPTME with respect to Dimetrodon, which effectively shows how the per-
formance aware policy can favor the execution of some tasks at the expense of others. The vertical
red line indicates the time when FreeBSD/4.4BSD finishes executing the benchmark application.

The third experiment is done by running an instance of blackscholes under

FreeBSD 7.2/4.4BSD, Dimetrodon and ADAPTME. This application is an Intel

Recognition, Mining and Synthesis (RMS) benchmark. It calculates the prices for

a portfolio of European options analytically with the Black-Scholes partial dif-

ferential equation (PDE). This application has a low amount of data interdepen-

CHAPTER 6. RESULTS 87

dency between threads and reduced amount of I/O, so it can be considered fully

CPU-bound.

In the first case, the scheduler is compiled again into the system with the

default values for all the parameters, and the application benchmark is the only

relevant application run during the experiment. 6 threads were assigned to this

application for the test.

Dimetrodon was empirically configured so that the parameters would yield

a an average temperature near that of ADAPTME’s set point, without impacting

too much on execution time. It was decided again to consider as a viable choice

for its parameters a set of values by which the temperature was neither not too

higher than ADAPTME’s nor execution time too longer than ADAPTME’s.

ADAPTME was configured so that the set point of the thermal-aware policy

is 50° C. Being the only running application and being interested in focusing only

on the thermal aspects of the work, it is set a goal for the application that would

be met anyway (min heart rate: 1 heartbeat per second; max: 108 heartbeats per

second) so that the performance-aware policy is actually ineffective.

In Figure 6.3 the obtained results are shown. As expected, FreeBSD/4.4BSD

has the lowest execution time at the expense of temperature, which reaches 61°C.

Observe how the subsequent runs in FreeBSD/4.4BSD causes the system to quickly

heat and quickly cool down. During the spikes the system activates cooling mech-

anisms such as fans or air conditioners to lower the temperature and avoid elec-

tronics break down, with consequent waste of power. This is again compatible

with the notion of “run-to-idle” scheduler. Dimetrodon, in this case, achieves its

stated goal of lowering the temperature (by 7°C), but since the system randomly

injects idle cycles during execution, the system experiences an overall slowdown

by a factor of 2.03. On the other hand, ADAPTME successfully lowers the av-

erage and peak temperature by 10°C, oscillating around its goal, while slowing

down the application by a smaller factor of 1.58.

CHAPTER 6. RESULTS 88

te
mp
er
at
ur
e
[°
 C
]

30

40

50

60

70

80

time [seconds]
0 500 1000 1500 2000

4.4BSD
Dimetrodon 10% - 50 ms
ADAPTME 60° C

Figure 6.4: fluidanimate run results. Again, the temperature reached by FreeBSD/4.4BSD is consis-
tently higher than of both ADAPTME and Dimetrodon. In this case, it is observed a reduction in
execution time of ADAPTME with respect to Dimetrodon, which effectively shows how the perfor-
mance aware policy can favor the execution of some tasks at the expense of others. The execution
time overhead imposed by both ADAPTME and Dimetrodon is not negligible, being in the order
of 3x – 5x. The vertical red line indicates the time when FreeBSD/4.4BSD finishes executing the
benchmark application.

6.3.4 fluidanimate

The fourth experiment is carried out by running an instance of fluidanimate

under FreeBSD 7.2/4.4BSD, Dimetrodon and ADAPTME. This Intel RMS appli-

cation uses an extension of the Smoothed Particle Hydrodynamics (SPH) method

to simulate an incompressible fluid for interactive animation purposes. This ap-

plication has a low amount of data interdependency between threads and re-

duced amount of I/O, so it can be considered fully CPU-bound.

In the first case, the scheduler is compiled again into the system with the

default values for all the parameters, and the application benchmark is the only

relevant application run during the experiment. 8 threads were assigned to this

application for the test.

Dimetrodon was empirically configured this time so that the parameters would

yield the same temperature of ADAPTME’s set point, without taking into ac-

count execution time overhead.

CHAPTER 6. RESULTS 89

ADAPTME was configured so that the set point of the thermal-aware policy

is 60° C. Being the only running application and being interested in focusing only

on the thermal aspects of the work, a goal is set for the application that would

be met anyway (min heart rate: 1 heartbeat per second; max: 108 heartbeats per

second) so that the performance-aware policy is actually ineffective.

In Figure 6.4 the obtained results are shown. As expected, FreeBSD/4.4BSD

has the lowest execution time at the expense of temperature, which reaches 70°C.

Observe how the subsequent runs in FreeBSD/4.4BSD causes the system to quickly

heat and quickly cool down. During this spike the system activates cooling mech-

anisms such as fans to lower the temperature and avoid electronics break down,

with consequent waste of power due to increase in fan speed. This is again com-

patible with the notion of “run-to-idle” scheduler. Dimetrodon and ADAPTME

achieve their stated goal of lowering the temperature (by 8°C), but since in Dimetrodon

the system randomly injects idle cycles during execution, that system experiences

an overall slowdown by a factor of 4.34. On the other hand, ADAPTME slows

down the application by a smaller factor of 1.35.

6.3.5 swaptions

The fifth and last thermal oriented experiment is carried out by running an

instance of swaptions under FreeBSD 7.2/4.4BSD, Dimetrodon and ADAPTME.

The swaptions application is an Intel RMS workload which uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions. This application has

an average amount of data interdependency between threads and I/O, so it can

be considered partly CPU-bound and partly I/O-bound.

In the first case, the scheduler is compiled again into the system with the

default values for all the parameters, and the application benchmark is the only

relevant application run during the experiment. 6 threads were assigned to this

application for the test. Moreover, the parameters of this application were set so

that a single run would last long enough to make the warm up and wind down

of the processor’s temperature negligible with respect to the rest of the execution

time.

CHAPTER 6. RESULTS 90

4.4BSD
Dimetrodon 50% - 50 ms
ADAPTME 55° C

te
mp
er
at
ur
e
[°
 C
]

30

40

50

60

70

80

time [seconds]
50 100 150 200 250 300 350 400 450

Figure 6.5: swaptions run results. Dimetrodon’s average running temperature is comparable to
that of FreeBSD/4.4BSD at the cost of a significantly higher execution time (∼ 2x). ADAPTME,
on the other hand, keeps the average temperature under the set point of 55° C and imposes a
small overhead on the execution of the workload. The vertical red line indicates the time when
FreeBSD/4.4BSD finishes executing the benchmark application.

Dimetrodon was empirically configured so that the parameters would yield

a an average temperature near that of ADAPTME’s set point, without impacting

too much on execution time. It was decided again to consider as a viable choice

for its parameters a set of values by which the temperature was neither not too

higher than ADAPTME’s nor execution time too longer than ADAPTME’s.

ADAPTME was configured so that the set point of the thermal-aware policy

is 55° C. Being the only running application and being interested in focusing only

on the thermal aspects of the work, it is set a goal for the application that would

be met anyway (min heart rate: 1 heartbeat per second; max: 108 heartbeats per

second) so that the performance-aware policy is actually ineffective.

In Figure 6.4 the obtained results are shown. As expected, FreeBSD/4.4BSD

has the lowest execution time at the expense of temperature, which reaches 67°C.

Observe how the subsequent runs in FreeBSD/4.4BSD causes the system to quickly

heat and quickly cool down. During this spike the system activates cooling mech-

anisms such as fans to lower the temperature and avoid electronics break down,

with consequent waste of power due to increase in fan speed. This is again com-

CHAPTER 6. RESULTS 91

patible with the notion of “run-to-idle” scheduler. Dimetrodon, in this case, achieves

its stated goal of lowering the temperature (by only 3°C), but since the system

randomly injects idle cycles during execution, the system experiences an overall

slowdown by a factor of 2. On the other hand, ADAPTME successfully lowers the

average and peak temperature by 11°C, oscillating around its goal, while slowing

down the application by a smaller factor of 1.28.

6.3.6 swaptions, multiple instances

th
ro
ug
hp
ut
 [
si
ms
/s
ec
on
d]

15000

20000

25000

30000

35000

40000

45000

temperature [° C]

30

40

50

60

70

80

time [seconds]
50 100 150 200 250 300

Min. Throughput
Max. Throughput
ADAPTME 37K - 42K sims/second
ADAPTME 60° C

Figure 6.6: Multiple runs f swaptions. Heart rate of the second group is plotted as the blue line
and is referred to the first y-axis (the left). It stays mostly inside the specified goal (min and max,
respectively, are the dotted orange and green line). The temperature and the average temperature
are plotted in black and referred to the second y-axis (the right)

In this experiment we test the interaction of the coupled thermal and perfor-

mance aware policies.

In order to do so, we first run swaption application alone, and record the

peak heart rate hrpeak obtained by means of the HRM infrastructure. Then, we

launch 4 instances of the same application; of course, the measured heart rate

of each instance is hrpeak/4. We than specify two different goals: for the first

group (in the HRM sense: see 2.4.1) of three applications, we set a goal that is

lower than hrpeak/4, while we specify a goal which is higher than hrpeak/4 for

CHAPTER 6. RESULTS 92

the group made of the other application. In this way, it is substantially favored

the execution of one of the instances at the expenses of the others. Since s single

instance of swaptions emits heartbeats at a rate of 1.2× 105, it was decided to set

as goal for the second group of 3.7 × 104 – 4.2 × 104 (min and max desired heart

rate, respectively).

At the same time it was specified a temperature set point for the thermal-

aware policy, in order to try to obtain the stated performance goal without vi-

olating thermal constraints and triggering the cooling infrastructure. As it was

already saw (refer to Figure 6.5), the temperature reached by swaptions under

FreeBSD/4.4BSD (race-to-idle approach where the highest observed peak temper-

ature is obtained) is 67° C. So for the thermal-aware policy to be effective it must

be stated a lower set point. In this experiment the set point is at 60° C.

Now, let’s refer to Figure 6.6, where the heart rate of the second group is

plotted with temperature of the CPU versus the execution time. The heart rate

of the first group is not reported for the sake of readability; it suffices to say that

it was in line with our expectations (i.e.: lower than hrpeak/4). It is seen that

both the temperature and the performance goals are reached. Since it was seen

in previous experiments that this is not the natural situation under which the

system executes, the conclusion is that the two autonomic policies are effectively

working towards the achievement of user’s goals.

It is interesting to observe that the two sudden falls of hear rate in the graph

are due to the combined actions of the two policies: what is happening inside

the Operating System (OS) is that the performance policy is telling the thermal

aware policy that since the upper bound has been surpassed, there is no reason

to execute it again until the heart rate falls down again under that bound. This

results in a sudden fall in heart rate, which is followed by a more gradual return

to a normal condition.

6.4 Concluding remarks about experimental results

Table 6.2 summarizes the results of our experiments.

CHAPTER 6. RESULTS 93

Table 6.2: Average measured temperature and standard deviation for applications from the PAR-
SEC 2.1 Benchmark Suite expressed in Celsius degrees and runtime overheads expressed with
respect to the 4.4BSD scheduler runtimes

Application
Dimetrodon ADAPTME

Average [◦ C] Std. Dev. [◦ C] Overhead Average [◦ C] Std. Dev. [◦ C] Overhead

blackscholes 51.16 3.45 2.02× 49.96 2.98 1.59×
ferret 58.02 5.01 2.35× 56.36 2.97 2.10×

fluidanimate 60.48 2.36 4.38× 58.86 3.20 3.31×
swaptions 59.00 4.60 2.00× 54.03 3.33 1.27×

x264 56.47 3.42 1.94× 49.25 3.70 1.61×

The thermal-aware policy was able to achieve at least the same temperature

reduction measured with Dimetrodon, with the advantage of greatly reducing

the runtime. From a wider point of view, temperature awareness allows some

optimizations in the scheduling behavior and in the decision of where and when

to introduce idle cycles, improving the overall effectiveness. Notice, for example

in Figure 6.5, that ADAPTME allows to cap the temperature threshold faster;

the policy recognizes that, at the beginning, the temperature is not critical and

therefore it does not insert as many idle cycles as Dimetrodon does, effectively

reducing overall execution time.

Table 6.2 reports into more detail the average temperatures with the standard

deviations achieved with both Dimetrodon and the thermal-aware policy along-

side with the runtime overhead with respect to the execution time observed un-

der the 4.4BSD.

ADAPTME was evaluated with a workload combining four instances of the

swaptions benchmark, each one composed of four threads. Three instances of

swaptions were run freely while the fourth instance was run with a user-specified

performance goal. The non-legacy instance of swaptions performance stays mostly

within the user-specified performance window while the average temperature is

very close to the system-specified target. . Hence, the thermal- aware policy acts

on the remaining time sharing user threads to reach the system-specified temper-

ature target.

This is the result of the combined efforts of the performance-aware policy,

which adjusts the priorities of the four threads of the non-legacy instance, and of

CHAPTER 6. RESULTS 94

the thermal-aware policy, that forces and prevents idling these threads whenever

they are over-performing or under-performing

Chapter 7

Conclusions and future work

It was presented ADAPTME, a self-adaptive system able to tune both appli-

cations’ and overall system’s performance according to user-specified high-level

goals. At the same time, it successfully and properly control processing cores

temperatures, in compliance with a system-specified target. Our experimental re-

sults, based upon a state of art benchmark suite, and collected using a fully work-

ing extension of the FreeBSD 7.2 kernel running on contemporary hardware,

show a proper control of both processing cores temperatures and non-legacy

applications performance. Moreover, experimental results contain an extensive

comparison between ADAPTME and Dimetrodon, a state of the art extension of

the same operating system designed and implemented to preventively reduce

average-case processing cores temperatures. The comparison highlights the ad-

vantages of ADAPTME, that results more flexible and outperforms Dimetrodon

both in terms of average temperature and average throughput. This work also

validates concepts and ideas expressed by the autonomic computing community

regarding the efficacy of multiple Observe Decide Act (ODA) loops inserted at

various levels in the OS, as well as the viability of multiple autonomic policies

potentially concurring for opposite goals.

95

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 96

7.1 New monitors and adaptation policies: further devel-

opments

Further development on this work is already under its way. The first step is

the addition of the adaptation manager envisioned in Section 3.2, so as to account

for the presence of other autonomic policies in the system. One such policy is

a power-aware policy, which is a policy capable of intervening on the power

consumption of the system by means of intelligent scheduling and management

of power states.

In order to extend the “knowledge of self” of the system, it is also sought

the addition of improved thermal monitors, i.e. monitors capable of knowing the

thermal condition of portions of the die, so as to work towards a thermal-aware

policy that reduces the possible unbalances of thermal maps of the dies. Another

monitor sought in the context of Computing in Heterogeneous, Autonomous

’N’ Goal-oriented Environments (CHANGE) is the performance counter moni-

tor, which would be essential for power usage estimation and prediction.

Another major improvement would be the refinement of the model of the

control theoretical system underlying the performance aware policy, since it was

already known that it is a great simplification of the actual system.

7.2 Explicitly trading performance for temperature and vice-

versa

In ADAPTME, the thermal-aware policy and the performance-aware policy

are coupled together, and run asynchronously one with respect to the other. Since

both policies are “best-effort” ones, it is sought a user-settable parameter that in-

dicates how much the system should prefer the application of the former or of the

latter, i.e. how much the system should care about temperature mitigation (pos-

sibly worsening tasks’ performance) versus performance goal compliance (pos-

sibly worsening the thermal condition of the system). This way, an administrator

can explicitly state what kind of “high-level” behavior the system is expected to

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 97

expose, which is a stated goal of the Autonomic Computing (AC) initiative.

Bibliography

[1] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines. Synthesis Lectures on Computer Architec-

ture. Morgan and Claypool Publishers, 2009.

[2] Christian Belady. The green grid data center power efficiency metrics: Pue and dcie.

Technical report, teh green grid, October 2007.

[3] Davide B. Bartolini. Adaptive process scheduling through applications perfor-

mance monitoring. Master’s thesis, UIC - University of Illinois at Chicago, 2011.

[4] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-

versity, January 2011.

[5] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,

pages 114–117, April 1965.

[6] Parthasarathy Ranganathan. Recipe for efficiency: Principles of power-aware com-

puting, April 2010.

[7] J.L. Hennessy, D.A. Patterson, and D. Goldberg. Computer architecture: a quantita-

tive approach. The Morgan Kaufmann Series in Computer Architecture and Design.

Morgan Kaufmann Publishers, 2003.

[8] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era, 2003.

[9] Paul Horn. Autonomic computing: Ibm’s perspective on the state of information

technology, Oct 2001. [Online] Available: http://www.research.ibm.com/

autonomic/manifesto/autonomic_computing.pdf.

[10] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 2nd edition, 2001.

98

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

BIBLIOGRAPHY 99

[11] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The splash-2 programs: Characterization and methodological con-

siderations. In ISCA ’95: Proceedings of the 22nd annual international symposium on

Computer architecture, pages 24–36, New York, NY, USA, 1995. ACM.

[12] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Com-

puter, 36:41–50, January 2003.

[13] Filippo Sironi. Design and implementation of an hot-swap mechanism for adaptive

systems. Master’s thesis, Politecnico di Milano, 2010.

[14] Kiril Schröder, Daniel Schlitt, Marko Hoyer, and Wolfgang Nebel. Power and cost

aware distributed load management. In Proceedings of the 1st International Confer-

ence on Energy-Efficient Computing and Networking, e-Energy ’10, pages 123–126, New

York, NY, USA, 2010. ACM.

[15] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. The case for

lifetime reliability-aware microprocessors. Computer Architecture, International Sym-

posium on, 0:276, 2004.

[16] Robert F. Sullivan. Alternating cold and hot aisles provides more reliable cooling

for server farms.

[17] Sriram Sankar, Mark Shaw, and Kushagra Vaid. Impact of temperature on hard disk

drive reliability in large datacenters. In DSN, pages 530–537. IEEE, 2011.

[18] Dave Anderson, Jim Dykes, and Erik Riedel. More than an interface—scsi vs. ata.

In Proceedings of the 2nd USENIX Conference on File and Storage Technologies, FAST ’03,

pages 245–257, Berkeley, CA, USA, 2003. USENIX Association.

[19] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are disks

the dominant contributor for storage failures? a comprehensive study of storage

subsystem failure characteristics. In Proceedings of the 6th USENIX Conference on File

and Storage Technologies, FAST’08, pages 8:1–8:15, Berkeley, CA, USA, 2008. USENIX

Association.

[20] M. Santarini. Thermal integrity: A must for low-power ic digital design, Sept. 2005.

[21] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankara-

narayanan, and David Tarjan. Temperature-aware microarchitecture. In Proceedings

of the 30th annual international symposium on Computer architecture, ISCA ’03, pages

2–13, New York, NY, USA, 2003. ACM.

BIBLIOGRAPHY 100

[22] Peter Bailis, Vijay Janapa Reddi, Sanjay Gandhi, David Brooks, and Margo Seltzer.

Dimetrodon: processor-level preventive thermal management via idle cycle injec-

tion. In Proceedings of the 48th Design Automation Conference, DAC ’11, pages 89–94,

New York, NY, USA, 2011. ACM.

[23] US Environmental Protection Agency (EPA). Report to congress on server and data

center energy efficiency: Public law 109- 431.

[24] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing,

2007.

[25] Stephen Shankland. Power could cost more than servers, google warns. Web, zd-

net.com, December 2005.

[26] C. Belady. In the data center, power and cooling costs more than the it equipment it

supports. Electronics Cooling, February 2007.

[27] Harvey M. Deitel. An introduction to operating systems (2. ed.). Addison-Wesley, 1990.

[28] Marco Domenico Santambrogio. A scheduling problem with conditional jobs

solved by cutting planes and integer linear programming, 2007.

[29] Jeonghwan Choi, Chen-Yong Cher, Hubertus Franke, Hendrik F. Hamann, Alan J.

Weger, and Pradip Bose. Thermal-aware task scheduling at the system software

level. In Diana Marculescu, Anand Raghunathan, Ali Keshavarzi, and Vijaykrish-

nan Narayanan, editors, ISLPED, pages 213–218. ACM, 2007.

[30] Jin Cui and Douglas L. Maskell. Dynamic thermal-aware scheduling on chip mul-

tiprocessor for soft real-time system. In Fabrizio Lombardi, Sanjukta Bhanja, Yehia

Massoud, and R. Iris Bahar, editors, ACM Great Lakes Symposium on VLSI, pages

393–396. ACM, 2009.

[31] Wei-Lun Hung, Yuan Xie, Narayanan Vijaykrishnan, Mahmut T. Kandemir, and

Mary Jane Irwin. Thermal-aware task allocation and scheduling for embedded sys-

tems. CoRR, abs/0710.4660, 2007.

[32] Eren Kursun, Chen yong Cher, Alper Buyuktosunoglu, and Pradip Bose. Investi-

gating the effects of task scheduling on thermal behavior. In In Third Workshop on

Temperature-Aware Computer Systems (TACS’06, 2006.

[33] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd edition,

2010.

[34] M. Tim Jones. Inside the linux 2.6 completely fair scheduler. Technical report, 2009.

BIBLIOGRAPHY 101

[35] Marshall Kirk McKusick and George V. Neville-Neil. The Design and Implementation

of the FreeBSD Operating System. Addison Wesley, August 2004.

[36] The FreeBSD Project. Freebsd, 04 2012.

[37] Erven Rohou and Michael D. Smith. Dynamically managing processor temperature

and power. In IN 2ND WORKSHOP ON FEEDBACK-DIRECTED OPTIMIZATION,

1999.

[38] Jürgen Becker Michael Hübner. Multiprocessor System-on-Chip: Hardware Design and

Tool Integration. Springer-Verlag Gmbh, 1 edition, November 2010.

[39] David Brooks and Margaret Martonosi. Dynamic thermal management for high-

performance microprocessors. In Proceedings of the 7th International Symposium on

High-Performance Computer Architecture, HPCA ’01, pages 171–, Washington, DC,

USA, 2001. IEEE Computer Society.

[40] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and evaluation

of dynamic voltage scaling algorithms. In ISLPED ’98: Proceedings of the 1998 inter-

national symposium on Low power electronics and design, pages 76–81, New York, NY,

USA, 1998. ACM.

[41] Thomas D. Burd, Student Member, Trevor A. Pering, Anthony J. Stratakos, and

Robert W. Brodersen. A dynamic voltage scaled microprocessor system. IEEE Jour-

nal of Solid-State Circuits, 35:1571–1580, 2000.

[42] Mohamed Gomaa, Michael D. Powell, and T. N. Vijaykumar. Heat-and-run: lever-

aging smt and cmp to manage power density through the operating system. In

Shubu Mukherjee and Kathryn S. McKinley, editors, ASPLOS, pages 260–270. ACM,

2004.

[43] Jun Yang 0002, Xiuyi Zhou, Marek Chrobak, Youtao Zhang, and Lingling Jin. Dy-

namic thermal management through task scheduling. In ISPASS, pages 191–201.

IEEE, 2008.

[44] Amit Kumar, Li Shang, Li-Shiuan Peh, and Niraj K. Jha. Hybdtm: a coordinated

hardware-software approach for dynamic thermal management. In Proceedings of

the 43rd annual Design Automation Conference, DAC ’06, pages 548–553, New York,

NY, USA, 2006. ACM.

[45] Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. The greensoft model:

A reference model for green and sustainable software and its engineering. Sustain-

able Computing: Informatics and Systems, 1(4):294 – 304, 2011.

BIBLIOGRAPHY 102

[46] Shekhar Borkar. Design challenges for technology scaling, 1999.

[47] R Mahajan. Thermal management of cpus: A perspective on trends, needs and

opportunities. Keynote at 8th Int’l Workshop on Thermal Investigations of ICs and

Systems, 2002.

[48] Gunther et al. Managing the impact of increasing microprocessor power consump-

tion., 2001.

[49] Heo S., Barr K., and K. Asanovic. Reducing power density through activity migra-

tion. In In Proceedings of the International Symposium on Low-Power Electronics and

Design., pages 217–222, New York, NY, USA, 2003. ACM.

[50] Yingmin Li, David Brooks, Zhigang Hu, and Kevin Skadron. Performance, energy,

and thermal considerations for smt and cmp architectures. In HPCA, pages 71–82.

IEEE Computer Society, 2005.

[51] Pedro Chaparro, Grigorios Magklis, José González, and Antonio González. Dis-

tributing the frontend for temperature reduction. In HPCA, pages 61–70. IEEE Com-

puter Society, 2005.

[52] Kevin Skadron, Tarek F. Abdelzaher, and Mircea R. Stan. Control-theoretic tech-

niques and thermal-rc modeling for accurate and localized dynamic thermal man-

agement. In HPCA, pages 17–28. IEEE Computer Society, 2002.

[53] Jayanth Srinivasan and Sarita V. Adve. Predictive dynamic thermal management for

multimedia applications. In Utpal Banerjee, Kyle Gallivan, and Antonio González,

editors, ICS, pages 109–120. ACM, 2003.

[54] Joachim Gerhard Clabes et al. Performance throttling for temperature reduction in

a microprocessor. Patent, May 2006.

[55] James Donald and Margaret Martonosi. Techniques for multicore thermal manage-

ment: Classification and new exploration. In ISCA, pages 78–88, 2006.

[56] Massoud Pedram and Shahin Nazarian. Thermal modeling, analysis, and manage-

ment in vlsi circuits: principles and methods. In Proceedings of the IEEE, 2006.

[57] Thidapat Chantem, X. Sharon Hu, and Robert P. Dick. Online work maximization

under a peak temperature constraint. In Proceedings of the 14th ACM/IEEE interna-

tional symposium on Low power electronics and design, ISLPED ’09, pages 105–110, New

York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 103

[58] D Liu and C Svensson. Trading speed for low power by choice of supply and thresh-

old voltages. IEEE Journal of Solid State Circuits, 28(1):10–17, 1993.

[59] P. Bellasi, W. Fornaciari, and D. Siorpaes. Predictive models for multimedia ap-

plications power consumption based on use-case and os level analysis. In Design,

Automation Test in Europe Conference Exhibition, 2009. DATE ’09., pages 1446 –1451,

april 2009.

[60] Vinay Hanumaiah, Sarma Vrudhula, and Karam S. Chatha. Performance optimal

online dvfs and task migration techniques for thermally constrained multi-core

processors. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTE-

GRATED CIRCUITS AND SYSTEMS, 30(11):1677–1690, November 2011.

[61] Karin M. Abdalla and Robert J. Hasslen. Functional block level clock-gating within

a graphics processor. U.S. Patent, Dec 2006.

[62] Pratyush Kumar and Lothar Thiele. Cool shapers: shaping real-time tasks for im-

proved thermal guarantees. In Leon Stok, Nikil D. Dutt, and Soha Hassoun, editors,

DAC, pages 468–473. ACM, 2011.

[63] Min Bao, Alexandru Andrei, Petru Eles, and Zebo Peng. Temperature-aware idle

time distribution for energy optimization with dynamic voltage scaling. In DATE,

pages 21–26. IEEE, 2010.

[64] Inchoon Yeo and Eun Jung Kim. Temperature-aware scheduler based on thermal

behavior grouping in multicore systems. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’09, pages 946–951, 3001 Leuven, Belgium, Bel-

gium, 2009. European Design and Automation Association.

[65] Sushu Zhang and Karam S. Chatha. Approximation algorithm for the temperature-

aware scheduling problem. In Georges G. E. Gielen, editor, ICCAD, pages 281–288.

IEEE, 2007.

[66] Srinivasan Murali, Almir Mutapcic, David Atienza, Rajesh Gupta, Stephen P. Boyd,

and Giovanni De Micheli. Temperature-aware processor frequency assignment for

mpsocs using convex optimization. In Soonhoi Ha, Kiyoung Choi, Nikil D. Dutt,

and Jürgen Teich, editors, CODES+ISSS, pages 111–116. ACM, 2007.

[67] Frank Bellosa. Os-directed throttling of processor activity for dynamic power man-

agement. Technical report, 1999.

BIBLIOGRAPHY 104

[68] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling cool:

Temperature-aware workload placement in data centers. In Proceedings of the annual

conference on USENIX Annual Technical Conference, pages 5–5. USENIX Association,

2005.

[69] Raid Zuhair Ayoub, Krishnam Raju Indukuri, and Tajana Simunic Rosing. Temper-

ature aware dynamic workload scheduling in multisocket cpu servers. IEEE Trans.

on CAD of Integrated Circuits and Systems, 30(9):1359–1372, 2011.

[70] Nikhil Gupta and Rabi N. Mahapatra. Temperature aware energy management for

real-time scheduling. In ISQED, pages 91–96. IEEE, 2011.

[71] Thidapat Chantem, Xiaobo Sharon Hu, and Robert P. Dick. Temperature-aware

scheduling and assignment for hard real-time applications on mpsocs. IEEE Trans.

VLSI Syst., 19(10):1884–1897, 2011.

[72] Shengquan Wang and Riccardo Bettati. Reactive speed control in temperature-

constrained real-time systems. Real-Time Systems, 39(1-3):73–95, 2008.

[73] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithread-

ing: Maximizing on-chip parallelism. In ISCA, pages 392–403, 1995.

[74] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In In Proceedings of the 27th

Annual International Symposium on Computer Architecture, pages 83–94, 2000.

[75] Toshihiro Hanawa, Toshiya Minai, Yasuki Tanabe, and Hideharu Amano. Imple-

mentation of isis-simplescalar. In Hamid R. Arabnia, editor, PDPTA, pages 117–123.

CSREA Press, 2005.

[76] Pierre Michaud. Atmi 2.0 manual, 2009.

[77] Tom English, Ka Lok Man, Emanuel M. Popovici, and Michel P. Schellekens.

Hotspot: Visualizing dynamic power consumption in rtl designs. In EWDTS, pages

45–48. IEEE, 2008.

[78] Marek Chrobak, Christoph Dürr, Mathilde Hurand, and Julien Robert. Algorithms

for temperature-aware task scheduling in microprocessor systems. Sustainable Com-

puting: Informatics and Systems, 1:241–247, 2011.

[79] Pedro Chaparro, Jose Gonzalez, Grigorios Magklis, Qiong Cai, and Antonio Gon-

zalez. Understanding the thermal implications of multicore architectures.

BIBLIOGRAPHY 105

[80] Wei Chen, S. Toueg, and M.K. Aguilera. On the Quality of Service of Failure Detec-

tors. IEEE Transactions on Computers, 51(1), 2002.

[81] Change research group website - http://www.changegrp.org/, Apr 2012.

[82] Filippo Sironi, Davide Bartolini, Simone Campanoni, Fabio Cancaré, Henry Hoff-

mann, Donatella Sciuto, and Marco Domenico Santambrogio. Metronome: Operat-

ing system-level performance management via self-adaptive computing. DAC’12,

June 2012.

[83] W. S. Levine. The Control Handbook. CRC Press, 2nd edition, December 2010.

[84] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The splash-2 programs: characterization and methodological con-

siderations. In Proceedings of the 22nd annual international symposium on Computer

architecture, ISCA ’95, pages 24–36, New York, NY, USA, 1995. ACM.

[85] Venkatesan Packirisamy, Antonia Zhai, Wei-Chung Hsu, Pen-Chung Yew, and Tin-

Fook Ngai. Exploring speculative parallelism in spec2006. In ISPASS, pages 77–88.

IEEE, 2009.

[86] http://www.cs.berkeley.edu/ pbailis/projects/dimetrodon/.

April 2, 2012

Document typeset with LATEX

	Introduction
	Introductory contextualization
	Contemporary computing: relevant trends and paradigms
	Multicore computing
	Autonomic computing
	Power efficient computing

	Scheduler properties and goals
	Preliminary definitions
	Problem statement
	Batch, interactive and real-time scheduling

	Conclusions

	Related works
	Overview of major Free or Open Source schedulers
	Linux schedulers
	FreeBSD schedulers

	Policies for energy efficiency
	Dynamic Thermal Management techniques
	Hardware Dynamic Thermal Management
	Software Dynamic Thermal Management
	Thermal Aware Scheduling

	Heart Rate Monitor
	Definitions

	Autonomic Operating Systems
	High Level Vision
	Thesis contribution

	Autonomic Computing Model and Components
	An Autonomic Operating System extension: ADAPTME

	Proposed Methodology
	Motivation
	Control Theoretical thermal and performance aware policies
	Derivation of priority update equation
	Derivation of idle-time injection equation

	Autonomic policies
	Thermal-aware policy
	Performance-aware policy

	Implementation
	FreeBSD Heart Rate Monitor porting
	Heart Rate Monitor user space partition
	Heart Rate Monitor kernel space partition

	4.4BSD scheduler
	Multilevel feedback Run Queues
	Computation of threads' priority

	ADAPTME implementation
	Performance-Aware Policy
	Thermal-Aware Policy

	Results
	Benchmarking in a multicore environment: PARSEC
	Available PARSEC workloads

	Settings
	Experimental Results
	x264
	ferret
	blackscholes
	fluidanimate
	swaptions
	swaptions, multiple instances

	Concluding remarks about experimental results

	Conclusions and future work
	New monitors and adaptation policies: further developments
	Explicitly trading performance for temperature and vice-versa

	Bibliography

