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Abstract

In the last twenty years, Mobile Robotics has been trying to study and build
autonomous agents, able to operate within an environment without any ex-
ternal human help. One of the keystones to make robots really autonomous
is the ability of a robot moving and localizing itself in unknown environ-
ments, in real time, using exclusively information gathered by the on board
sensors. The techniques which allow such ability are commonly called SLAM
(Simultaneous Localization and Mapping).

This thesis purpose is to design and build a library within the Moon-
SLAM framework, allowing to implement software for SLAM based on the
use of visual markers as artificial landmarks, as opposite to environment
natural landmarks.

Experimental tests were conducted in order to verify markers image de-
tection through computer vision algorithms, after which it was possible to
integrate such markers as features in an extended Kalman filter for SLAM
algorithms execution.
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Sommario

Il presente lavoro di tesi si colloca nell’ambito della robotica mobile, disci-
plina che, negli ultimi venti anni, si occupa di studiare e progettare agenti
fisici realmente autonomi, cioè dotati di funzionalità intelligenti che li ren-
dono in grado di agire senza bisogno dell’intervento esterno da parte dell’uo-
mo. In questa tesi ci siamo focalizzati sulla capacità di inferire, tramite una
telecamera, informazioni metriche dall’ambiente in cui si opera, di localiz-
zarsi al suo interno senza alcuna conoscenza a priori e di costruire allo stesso
tempo in modo incrementale una mappa delle regioni esplorate. L’insieme
delle tecniche che permettono di implementare tali abilità viene comune-
mente denominato SLAM (Simultaneous Localization and Mapping).

L’obiettivo del lavoro di tesi è la progettazione e la realizzazione di una
libreria per il framework MoonSLAM che consenta lo sviluppo di software
per lo SLAM basato su marker visuali utilizzati come landmark artificiali,
in aggiunta ai classici landmark naturali dell’ambiente.

Sono stati effettuati esperimenti per verificare il riconoscimento dei marker
tramite algoritmi di computer vision, dopodichè è stata resa possibile l’inte-
grazione di tali marker come feature di un filtro di Kalman esteso per l’esecu-
zione di algoritmi di SLAM.
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Chapter 1

Introduction

“Theory is when we know everything but nothing works. Praxis is when
everything works but we do not know why. We always end up by combining
theory with praxis: nothing works and we do not know why”

Albert Einstein

One of the keystones to make robots really autonomous is the ability of
moving in unknown environments in real time using exclusively information
gathered by the on board sensors. The techniques which allow such ability
are commonly called SLAM (Simultaneous Localization and Mapping).

This thesis presents how SLAM is used employing a single pinhole camera
and visual markers in indoor environments. SLAM is a technique to build
and update a map with relative measurements and control inputs while the
robot navigates an unknown environment. The solution to the SLAM is
considered a key prerequisite for making a robot fully autonomous, being
able to navigate in a general environment without any help from humans.

In the past years, many different algorithms have been developed to solve
the SLAM problem: one that has been proved to give excellent results is
based on the extended Kalman filter (EKF) [20, 42], a technique for filtering
and prediction in linear Gaussian systems, extended to non linear system us-
ing Taylor linearisation or unscented transform and adapted for autonomous
robots. The EKF-SLAM [10, 11] is considered by now a solved problem,
and it is the method employed in this thesis within the existing framework
MoonSLAM, developed at the Artificial Intelligence & Robotics laboratory
of Politecnico di Milano.

The recent trends in visual SLAM has been towards the use of natural
landmarks, that is intrinsic relevant features of the environment. However,
one of the most critical limitation to the SLAM based on natural landmarks
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is the data association problem. Several techniques have been applied to
this problem, but the natural-landmark-based SLAM methods are vulnerable
to dynamic and moving objects located in a captured scene, because such
objects may cause incorrect landmark association. This crucial ability has
been for long an obstacle for natural features-based SLAM. For this reason,
researchers thought to employ a new type of landmarks.

Artificial landmarks can guarantee better localization and map building
than natural landmarks, thanks to the fact that they are easily distinguish-
able. Lot of work has been already done in pure robot localization field
using fiducial markers as artificial landmarks [28, 31], where the world map
is known “a priori”. The general idea behind these methods is that modify-
ing the environment at a minor cost (visual markers can just be printed on
sheets of paper), in order to give to the robot important information about
the world, is an acceptable trade-off.

In recent years, the use of visual markers has been extended to SLAM
applications as well [24, 43]. This expedient can give the robot useful in-
formation about its pose in the world and the environment map, because
they facilitate data association. Markers generally used as landmarks are
ARToolKitPlus [21] or new designed markers [39], because they are easily
detectable.

Other visual markers are available, but they have been employed for other
applications [34]. Between them we find Data Matrix barcodes [14]. These
markers have been widely used in the past decade mostly for information
purposes, e.g., identifying raw products inside industries or labelling mail
parcels.

In this thesis we present a library for visual markers integration in a sin-
gle camera EKF-SLAM using Data Matrix barcodes. Although Data Matrix
markers are mainly used for other applications, because of their capacity to
encode a high quantity of information within a very small area, we thought
to extend their purposes also to robotics applications as SLAM, taking ad-
vantage of their encoding power. With the integration of visual markers in
SLAM, we aimed at improving the robot localization and the map build-
ing, giving to the system information about where a marker is situated with
respect to the camera.

The major advantages of this work can be summarized as follows: first,
we use a cost-effective SLAM method since the system requires a single
camera and visual markers easily generated using a desktop printer. Sec-
ond, landmarks can be installed flexibly and randomly in the environment
without any a priori knowledge. This means that it is not necessary to know
the global landmark poses in world coordinates, because EKF-SLAM itself
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provides a way to compute those. Third, the proposed method can help
data association, since visual markers are more easily identified than natural
landmarks; moreover it facilitates robot localization, being these markers a
source of information regarding their relative pose in camera reference frame.

The thesis is structured as follow.

• In Chapter 2 we describe Kalman filter and SLAM in details and how
they work. Then we show the background about SLAM techniques,
their applications and their results.

• In Chapter 3 we talk about visual markers, describing their main ap-
plications. We analyse in particular Data Matrix barcodes, the ones
we use in this thesis, explaining the current standard, their encoding
power and their structure.

• In Chapter 4 we talk about Data Matrix recognition and different com-
puter vision techniques used to improve the marker detection within
camera images. We then describe how to estimate the marker posi-
tion and orientation in camera reference frame and we inspect how the
chosen vision techniques can affect this phase.

• In Chapter 5 we talk about our library for marker recognition and
integration in SLAM application, describing how we included it in
MoonSLAM framework. We show some experiments we led for camera
localization and mapping and we present the correspondent results.

• In Chapter 6 we summarize the conclusions about our thesis and we
discuss possible future works in the presented field.

• In Appendix A we give an overview of the mathematical notation we
used in the thesis about system rototranslations.
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Chapter 2

Monocular EKF-SLAM with
visual markers

“Quando un uomo viene scaricato diventa più forte, se non hai abbastanza
esperienza da poterci ridere su o da poterne trarre ispirazione... beh allora
hai fallito come uomo!”

Jiraya

The issue of Simultaneous Localization and Mapping (SLAM) has received
quite a lot of attention in the last decades because of its relevance for many
mobility-related applications such as service robotics and intelligent trans-
portation. In this chapter we describe first, SLAM with EKF and briefly
how it works. We focus at first on SLAM with natural landmarks and then
with different visual markers.

2.1 Simultaneous Localization And Mapping

The SLAM problem has been well defined by Durrant-Whyte, see e.g., [10].

The simultaneous localization and mapping (SLAM) asks if it
is possible for a robot to be placed at an unknown location in an
unknown environment and for the robot to incrementally build a
consistent map of this environment while simultaneously deter-
mining its location within this map.

It is therefore required, in SLAM, that both the trajectory of the mobile
robot and the position of all scene features, i.e., the map, to be estimated
online during the exploration. Pure localization can be seen as the case
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where the map is known, while pure mapping as the case where the observer
pose is known at all time instants. Consider a mobile robot moving in a
scene and activating its sensing apparatus a discrete number of times. Each
sensor activation allows to measure some of the scene features, in a reference
frame relative to the robot. At each time t, we have the following relevant
quantities:

- Γt : the pose of the robot, which changes with time;

- Y: the location of the yi scene features, i.e., the map, which are con-
sidered static;

- ut: the control applied, at previous time, to move the robot to the
current pose;

- zt: the observations of the scene features, at the current time t.

The SLAM problem can be recursively expressed in terms of the joint
probability distribution of state Xt = [Γt, Y], as a function of the control
inputs and the data collected by the observer sensorial apparatus. Such
probability P(Γt, Y|z1:t, u1:t, Γ0) can be determined in a recursive form
and assuming a Markov property in the motion. The joint posterior, after
the application of the control ut, and the integration of the measure zt, can
be determined exploiting the Bayes rule as:

P(Γt,Y|z1:t,u1:t) ∝ P(zt|Γt,Y)

∫
P (Γt|Γt-1, ut)P(Γt−1,Y|z1:t−1,u1:t−1)dΓt−1 (2.1)

This recursive formulation requires a state transition equation, and a
measurement equation. The state transition equation, i.e., P(Γt|Γt−1,ut),
is also called motion model because it describes how the belief about the
robot pose changes after the application of the control. The measurement
equation, i.e., P (zt|Γt,Y), is also called sensor model, as it describes the
probability of obtaining a measure zt given the robot pose.

The most frequent representation of this recursive formulation is in the
form of a state-space model, with Gaussian noise. This representation allows
the usage of the Kalman filtering, in the so-called extended variant (EKF), to
solve the SLAM problem. The need for the extended version of the Kalman
filter is due to the non-linear nature of the dynamic part of the state tran-
sition relationship, with respect to the state variables, and also to the same
non linearity in the measurement equation.

In order to understand the particularities of the SLAM problem, it is
important to notice that the uncertainty in the estimates of any two scene
features, observed from the same pose, is not uncorrelated, as one might
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expect, because the pose where the observations have been gathered is not
known. After the robot moves to a new pose and it again observes the
scene, it might collect just a subset of the features previously observed. The
latter observed scene features, and also the robot pose, can be updated by
integrating the new measures; this in turn updates also the scene features
that were seen previously, but not in the last sensor activation. Moreover,
the correlations between the estimates of the features grow with subsequent
observations. After some time the features will be highly correlated each
other and with the robot pose, and the correlation increases with the number
of observations performed [10].

The first successes with the SLAM problem were initially obtained by
systems exploiting mainly laser scanners as sensors [25], but some negative
aspects of such devices (cost, weight, power consumption) pushed research
towards less expensive, less power-hungry, less bulky sensors. The main
sensor satisfying these criteria (low cost, power, and weight) are cameras.
Although appreciable under these points of view, the cameras, i.e., the data
from cameras, suffer for a specific issue that made vision-based SLAM a
research area widely studied in recent years: the inherent impossibility to
recover both the range and the bearing of a scene feature, when using a
single image.

The case of using one single camera is known as the Monocular SLAM
problem. The case of using more than one camera, i.e., gathering measures
on the same scene feature from more than one point of view, at the same
time, is known as Stereo SLAM problem. A single camera actually allows
quite accurate measurement of bearing, but it only allows an uniform un-
certainty in the depth of the feature, being its position equally likely along
the entire viewing ray. For this reason, in Monocular SLAM, the observed
needs to gather data from different points of view, in order to develop a more
peaked belief about the scene features. After the seminal work by Davison
[8], we assisted to the diffusion of approaches trying to solve Monocular
SLAM, subsequent works showed quite impressive results also in fields such
as augmented reality [23] or 3D dense reconstruction [29].

In the realm of Bayesian filtering, Davison [8] used an Extended Kalman
Filter in combination with a delayed initialization of 3D features, repre-
senting 3D points with their Euclidean coordinates. Unfortunately, delayed
initialization makes difficult the data association at the beginning, i.e., when
the feature has been observed very few times, which is when it is more
important to get it right. To overcome the shortcomings of delayed initial-
ization, Solà [36] proposed a non parametric approach, based on a Mixture
of Gaussians. However, this solution requires the presence of multiple depth
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hypotheses in the EKF filter state, and this affects the performance of the
EKF. Differently from previous works, Montiel et al. [6] proposed the Unified
Inverse Depth (UID) parametrization, the first instance of inverse parame-
terization of features; they demonstrated that it is possible to represent in a
proper way the feature uncertainty, in an un-delayed fashion, using a single
Gaussian, by changing the representation of the scene feature.

2.2 Kalman Filter Algorithm

In the previous section we have shown how it is possible to cast the SLAM
problem in the realm of recursive Bayesian filtering. Here, in particular, we
focus on the use of the EKF to solve the Visual SLAM problem: i.e., a specific
application of the EKF to recursively estimate, from visual measurements,
the joint distribution of actual camera pose and 3D points in the environment
as a single multidimensional Gaussian distribution.

Next, we will briefly explain the base techniques that allow to treat
the EKF-SLAM problem in real time, taking advantage from the particular
structure of the problem; we will define the state vector, the prediction step
equations and the measurement equations in a general form. Here we only
remark two relevant concepts. Firstly, the EKF-SLAM was demonstrated
able to treat the Monocular SLAM problem, i.e., to solve the SLAM using
a single camera as source of information up to a non observable scale fac-
tor. This is done thanks to the usage of specific parameterizations for scene
features, which allow to represent, in a proper way, the unknown depth of a
point perceived from a single image. Secondly, it was shown in [38] that the
usage of these parameterizations simplify the treating of multi-camera sys-
tems (e.g., a stereo or trinocular camera rig) and it allows to build a modular
architecture for n-camera-SLAM systems.

2.2.1 State vector

In Monocular EKF-SLAM, the state of the filter Xt, at time t, is composed
by the actual camera pose Γt in a world reference frame and the map Yt

represented by a set of features Yt = yi. The camera pose Γt = [ttqt]
T

includes a translation term tt = [txt tyt tzt]T and an orientation term qt =

[qwt qxt qyt
qzt]

T , the latter being usually coded with quaternions. Other
parameters Λt, describing camera motion (e.g., tangential and rotational
speed or accelerations), could be present in the EKF state as well. They
could be represented with respect to the camera reference frame or the world
reference frame, in accordance with the motion model of the system. The
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complete state of the filter is thus represented as:

X = [ ΓT
t ΛT

t yT
1t yT

2t . . . yT
nt ]

T , (2.2)

and the EKF-SLAM algorithm follows the steps described in Algorithm 2.1
to update recursively the state estimate, together with its covariance matrix
Σt. In the following, this algorithm will be explained in detail.

2.2.2 Initialization

Unless we have some prior information, at t = 0 we start with an empty
map and the camera pose is usually considered the origin of the world (Γ0 =

[0, 0, 0, 1, 0, 0, 0]T ) with no uncertainty. Indeed, if we are considering some
parameters to describe the camera motion, we can initialize them at zero
(Λ0), but with a non zero initial covariance, to allow the estimation of the
motion of the camera in the first steps.

X0 = [ΓT
0 , ΛT

0 ], Σ0 =

[
0 0

0 ΣΛ0

]
(2.3)

2.2.3 Prediction step

At each iteration, we perform first the prediction step of the Kalman filter;
this step aims at the prediction of the next system state, using prior state
values and an optional control input u; we assume a non additive Gaussian
noise η ∼ N(0,Ση) perturbates the motion. To update the state covariance
matrix we use the Jacobian matrices FX = ∂f(X,u, η)/∂X and Fη =

∂f(X,u, η)/∂η evaluated at X̂t, ut, and ηt = 0. Odometric information are
usually used as control input ut, if available, otherwise we have a pure Visual
EKF-SLAM which uses the velocity motion model represented by Λt:

X̂t = f(Xt−1,ut, ηt = 0), (2.4)

Σ̂t = FXΣt−1F
T
X + F ηΣηF

T
η (2.5)

Since features are fixed elements in the environment the state prediction
equation is simplified:

[Γ̂T
t , Λ̂

T
t ] = f(Γ̂t−1,Λ

T
t−1,ut, ηt = 0),

Ŷ t = Ŷ t−1, (2.6)

and the uncertainty propagation can exploit sparse Jacobians:

FX =

[
∂f(... )
∂(Γ,Λ) 0

0 0

]
, F η =

[
∂f(... )
∂η

0

]
. (2.7)
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Algorithm 2.1 EKF-SLAM

1. {Initialization}
2. t ← 0,Xt ← [ΓT

0 ΛT
0 ]

T ,Σt ← diag(ΣΓ0 ,ΣΛ0)

3. loop
4. {Prediction step}
5. t ← t+ 1

6. X̂t ← f(Xt−1,ut, η = 0)

7. Σ̂t ← FXΣt−1FT
X + FηΣηFT

η

8. {Measurement step}
9. e ← ∅,H ← ∅,R ← ∅

10. for all yitdo
11. if ∃zi compatible with hi(X̂t) then
12. e ← [e; zi − hi(X̂t)]

13. H ← [H;H iX ];
14. R ← diag(R,H iν Σν H iν)

15. end if
16. end for
17. {Update step}
18. if e %= ∅ then
19. St ← HΣ̂tH

T +R

20. Kt ← Σ̂tH
TS−1

t

21. Xt ← X̂t +Ktet
22. Σt ← Σ̂−KtStK

T
t

23. else
24. Xt ← X̂t,Σt ← Σ̂t

25. endif
26. {New feature addition}
27. for all new_measurement s do
28. ynew ← g(Xt, s, ξ)

29. Xt ← [XT
t ynew]

T

30. Σt ←
[

I 0

GX 0

][
Σt 0

0 0

][
I 0

GX 0

]T

+

[
0 0

0 GξΣξG
T
ξ

]T

31. end for
32. end loop
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Taking in account this special structure allows to reduce the computational
complexity of the prediction step from O(n2.807) to O(n), being n the number
of features, also when the map, and thus the state vector, grows.

2.2.4 Feature addition

In SLAM we aim at the online construction of the environment map, thus
we need to enlarge the filter state each time a new landmark is perceived
(see steps 27-31 of Algorithm 2.1). When a new feature ynew is created,
its initialization is computed as a function of the actual state vector and
some information s that represents the first measure of the new landmark
perturbated by Gaussian noise ξ ∼ N(0,Σξ), in general non additive:

ynew = g(Xt, s, ξ = 0). (2.8)

This new feature is added to the filter

Xt = [XT
t ynew]

T , (2.9)

and its covariance updated through the use of its Jacobians evaluated at Xt

and ξ = 0

GX =
∂g(. . . )

∂X
, Gξ =

∂g(. . . )

∂ξ
(2.10)

Σt =

[
I 0

GX 0

][
Σt 0

0 0

][
I 0

GX 0

]T

+

[
0 0

0 GξΣξG
T
ξ

]T

(2.11)

2.2.5 Measurement

The standard equations of the EKF update step can be revisited in two
different steps in the realm of EKF-SLAM: the measurement step and the
update step. The measurement step (see steps 9-16 of Algorithm 2.1) allows,
for each feature yi, to predict the expected measure according to its mea-
surement model hi(X, ν), being ν ∼ N(0,Σν) the associated noise model.

The total innovation e is computed as the difference between the ex-
pected measures and the real ones. It is composed by iteratively appending
the difference between one expected measure hi(X̂t) and its individually
compatible real measure zi whenever it exists:

e ← [e; zi − hi(X̂t)]. (2.12)

The individual compatibility of measurements estimation is usually per-
formed by a Mahalanobis distance test on:

d = (zi − hi(X̂))TS−1
i (zi − hi(X̂t)), (2.13)
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with
Si = H iXΣ̂tH

T
iX +H iνΣ̂νH

T
iν , (2.14)

and
H iX =

∂hi(. . . )

∂X
, H iν =

∂hi(. . . )

∂ξ
, (2.15)

are the Jacobian matrices of hi(·) with respect to the state and noise. Alike
the innovation vector, Jacobian matrices are properly stacked to H and to
the block diagonal matrix R:

H = [H ;H iX ], (2.16)
R = diag(R,H iνH iνH

T
iν). (2.17)

2.2.6 Update step

Thanks to the measurement step, a set of observation was created and the
resuming innovation is stored in the e vector with the correspondent matrixes
H and R. The Kalman gain is calculates as

St = HX̂t
Σ̂tH

T
X̂t

+R, (2.18)

Kt = Σ̂tH
T
X̂t

S−1
t , (2.19)

and the filter state is updated accordingly to

Xt = X̂t +Ktzt, (2.20)

Σt = Σ̂t −KtStK
T
t (2.21)

Notice that, in case there are no measurements available (i.e., the innova-
tion vector is empty), the update step is skipped and the prediction state is
assumed as the new state. There might be alternatives way to perform EKF
update. For instance, it is possible to iterate the update step in the following
way: (1) sort the e vector in decreasing order of innovation (evaluated with
2.12); (2) integrate one measure at time recomputing the Jacobians at each
step. This procedure increases the complexity of the update step, but pro-
vides a better linearization of Jacobians. This approach is highly sensitive
to outliers, e.g., wrong data associations, so it is not practical on real data.
Indeed, in real cases the data association plays a key role to avoid wrong
results. Different techniques were developed to overcome this situation, in
particular one of the simplest and effective is the 1-Point RANSAC tech-
nique presented in [7] that executes two update steps on two disjoint set of
measurement characterized by low and high innovation after a selection of
outliers.
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2.3 Monocular SLAM with fiducial marker

Monocular SLAM is a method that uses as acquisition sensor only a single
camera, being camera cheap, light-weight, passive, low power requirements
and provide high-resolution images. The first SLAM systems were based
on the detection of natural landmarks, that is intrinsic relevant features of
the environment. One of the most critical limitation of the SLAM based on
natural landmarks is the data association problem. The data association is
the issue of matching current observations with previously obtained observa-
tions from a captured scene. Natural landmarks based SLAM methods are
vulnerable to moving objects, because the moving objects cause miss data
association.

An other issue with natural landmarks, is that in monocular SLAM is not
possible to evaluate correctly the depth of the objects in the image, this can
cause errors in the evaluation of the route of the robot and in the mapping
of the environment. These crucial problems have been an obstacle of indus-
trialization of SLAM into robots. To solve issues the natural landmarks, the
researchers started to solve SLAM problem with the use of fiducial markers.

Fiducial markers are objects placed within a scene to provide visual cues,
or reference points, such that a computer vision system can easily isolate the
object’s location. They are used to supply reliable position estimates for
robotic and image registration applications. Fiducial markers can contain
several informations that can be used from SLAM system. We report in the
following a set of example of monocular SLAM with fiducial markers.

2.3.1 Localization with Alphabet fiduciary marker

In project [22] the fiduciary marker consists of a black quadrilateral border
used as a marker recognition beacon, and an alphabet letter as shown in
Figure 2.1. There are 8 feature points, highlighted by the orange circles
in Figure 2.1, which are the corners of the two rectangles those points are
used for calculation of 6-DOF camera pose. The marker detection and letter
recognition process works as follows. First, an image is captured by the
vision sensor and the captured image is binarized with adaptive thresholding
method. Then, the binarized image is color-inverted and if a white blob is
bigger than certain pixels and has a proper ratio r(height/width), then
the area is labeled. As it is shown in Figure 2.1, since the markers are
composed of three blobs, the outer black border, the inner white rectangle,
and the alphabet letter, by doing blob labeling three times hierarchically,
the marker could be reliably detected even in a messy indoor environment.
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Figure 2.1: Fiduciary Marker with alphabet ‘K’and detected corners.

If the marker is detected, the 8 corners of the marker are found. By using
the planar homography transform technique with the 8 correspondences, the
rotation vector and the translation vector are calculated and the 6-DOF
pose of camera with respect to the marker coordinate is obtained. If the
world coordinate of each marker has been known, the world coordinate of the
camera can be deduced. The letter inside the black contour is then recognized
by an Artificial Neural Networks, that in this project could identify the
correct letter with percentage higher than 10%.

2.3.2 SLAM with ARToolKit Plus

Project [24] considers basic fiducial markers shown in Figure 2.2a. Fiducial
markers consists of four vertices and an identification code at the center of
a marker. The number of markers are bounded by the 10 bits of identifica-
tion code, so markers contain 10-bit binary number. The colours of fiducial
markers are black and white, in such a way that it is easy to distinguish
the binary code and the vertices can be easily extracted from line crossing
thanks to its square shape. The fiducial marker coordinates are shown in
Figure 2.2b, the position of a marker from camera center is computed from
transformation of coordinates between marker and camera.

Pi = [X,Y, Z]T is the variable that denotes vertices on the marker in the
global coordinates. If there are four points on a plane, it is assumed that
the 3D coordinates of known four points are on the Z=0 plane without lack
of generality. When a fiducial marker is captured from a camera, the four
vertices of a marker are projected to the 2D image. Without entering in
details, the steps to extract marker vertices and corners are the followings:

1. Thresholding of the image with threshold.
2. Get connected components from the thresholded image.
3. Get contours from the connected components image.
4. Extract four vertices from the contour image.

The coordinates that are extracted are used to add a new landmark into the
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(a) Example of AR-
ToolKitPlus

(b) Marker, Camera, Image coordinates system

Figure 2.2: ARToolKitPlus

SLAM EKF filter or just to update position about existing landmarks and
camera. For the experiments several markers have been positioned on a wall
of a corridor, the robot was able to recognize all the marker and to travel in
the corridor.

2.3.3 SLAM with ARTag

The goal of project [43] is to construct a 3D map of the landmarks in the
environment and estimate the path taken by an indoor blimp. ARTag, Figure
2.3, are used as visual markers. ARTag system can read 3D position and
attitude of a marker. When a camera detects ARTag markers, pose and
attitude between camera and marker is obtained.

The steps that are followed are similar to Algorithm 2.1. The environ-
ment (Figure 2.4b) is composed by 15 landmarks on the floor, five of whom
have known coordinates and IDs. A blimp, Figure 2.4a, flies over the floor
in order to see all the landmarks and to draw a map of the environment.
The experiment has verified that is possible to construct a 3D map of the
landmarks and the path taken by the indoor blimp by assuming that the
blimp at time t would move in the same way as time t− 1.
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Figure 2.3: Example of ARTag marker

(a) Indoor Blimp (b) ARTag on the floor

Figure 2.4: Experimental Environment



Chapter 3

Visual Markers

“Il fatto che a me o a tutti sembra che le cose stiano così non significa
necessariamente che stiano così; ma il vero interrogativo è se abbia senso
dubitarne”

Il teorema del Pappagallo - Denis Guedj

In this chapter we analyse the different types of visual markers and their most
typical applications. First, we introduce the two-dimensional barcodes’ tech-
nologies, which are the most common codes, what they are useful for and
how they encode information, in particular we talk about Data Matrix bar-
codes, which we used while building the library for robot localization and
mapping described in further chapters. Secondly we talk about the classical
fiducial markers used more often in robotics for indoor and outdoor local-
ization and augmented reality applications. Each of the markers described
in this chapter could potentially be used for robot SLAM in the library we
implemented, just by adding a function able to decode the chosen marker.

3.1 Two-dimensional barcodes

The first barcodes invented were represented in just one dimension: they
were composed of lots of vertical lines, more or less close to each other. This
means that an ordinary barcode is vertically redundant, meaning that the
same information is repeated vertically (since it is a one-dimensional code,
the information lays on the horizontal dimension). The heights of the bars
can be truncated without any lose of information. However, the vertical
redundancy allows a symbol with printing defects, such as spots or voids, to
still be read. The higher the bar heights, the more probability that at least
one path along the bar code will be readable.
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A two-dimensional code stores information along the height as well as
the length of the symbol, making possible to encode more data than the
correspondent one-dimensional codes. For example, all human alphabets are
considered two-dimensional codes. Since both dimensions contain informa-
tion, at least some of the vertical redundancy is gone, but other techniques
must be used to prevent misreads. However, misread prevention is rela-
tively easy: most two-dimensional codes use check words to insure accurate
reading.

Initially, two-dimensional symbologies were developed for applications
where only a small amount of space was available for an automatic ID sym-
bol. The first application for such symbols was unit-dose packages in the
healthcare industry. These packages were small and had little room to place
a barcode. The electronics industry also showed an early interest in very
high density barcodes and two-dimensional symbologies, since free space on
electronics assemblies was limited.

More recently, they can also be used to keep track of objects and people:
they are used to keep track of rental cars, airline luggage, nuclear waste,
registered mail, express mail and parcels. Barcoded tickets allow the holder
to enter sports arenas, cinemas, theatres and transportation (i.e. trains), and
are used to record the arrival and departure of vehicles from rental facilities
etc. This can allow proprietors to identify duplicate or fraudulent tickets
more easily. Barcodes are widely used in shop floor control applications
software where employees can scan work orders and track the time spent on
a job.

Nowadays, thanks to the smartphones technology, people is able to read
a wide variety of these codes directly from a cell phone: so these 2D barcodes
can contain advertisements, societies contact information, website addresses,
and so on, which can directly embed a hyperlink to the very internet page,
allowing the user to easily reach the information from the phone terminal.

Two Dimensional bar codes have been developed, placed in the public
domain, and published as AIM standards since 1987. These codes can be
classified into two groups:

• stacked codes, sometimes referred to as stacked linear, shown in Fig-
ure 3.1, which refer to those symbologies made up of a series of one-
dimensional bar codes;

• matrix codes, shown in Figure 3.2 , which code the data based on the
position of black spots within a matrix.

Briefly talking about the most popular stacked codes, Code 49, shown in
Figure 3.1a, was the first 2D stacked bar code invented by David Allais in
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(a) Code 49 (b) Code 16K

(c) PDF417

Figure 3.1: Different kinds of stacked codes, encoding the string “Politecnico
di Milano”

1987 at the Intermec Corporation to fill a need to pack a lot of information
into a very small symbol, followed by Code 16K, in Figure 3.1b, developed
by Ted Williams in 1989 at Laserlight Systems. PDF417, in Figure 3.1c,
developed by Ynjiun Wang in 1991 at Symbol Technologies, now owned by
Motorola, is also a stacked code, but it can accommodate a much higher
data capacity (over 1800 characters) than Code 49 or Code 16K, which can
encode around 50 characters given reasonable symbol density.

Matrix codes, on the other hand, also can hold large amounts of data,
but within a much smaller size. These codes require reading by a 2D imaging
device, like Charge Coupled Device(CCD) scanners and cameras.

Between the most popular code of this type, we can find Data Matrix
(Figure 3.2a), QR Code (Figure 3.2b), MaxiCode (Figure 3.2e), Aztec Code
(Figure 3.2c), and Code One (Figure 3.2d).

Reduced Quiet Zones, i.e. blank areas around markers, for matrix codes
(except for Aztec Code and Code One in which none is required) allow symbol
location in much closer proximity to surrounding text and/or graphics.

Each 2D matrix code has a unique finder pattern or recognition pat-
tern that references the symbol type for the scanner. MaxiCode has three
concentric circles or a “bulls-eye” pattern; Data Matrix uses an “L” pattern
bordering the left and bottom edge; Aztec Code uses a square bulls-eye; QR
Code uses three square patterns on the corners of the code; and Code One
uses a series of horizontal bars (from three to six depending on the version)
and from two to fourteen vertical recognition patterns.

We introduced only some of the matrix codes, since they can be used more
easily and efficiently for the robotics purposes discussed further in this thesis,
and in particular we described in detail the Data Matrix markers, because
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(a) Data Matrix (b) QR Code (c) Aztec code

(d) Code one (e) Maxi Code

Figure 3.2: Different kinds of matrix codes, encoding the string “Politecnico di
Milano”

we used them to develop our robot localization-and-mapping application.

3.1.1 Data Matrix

In its latest version, Data Matrix is a matrix (2D or two-dimensional) barcode
which may be printed as a square or rectangular symbol made up of a series
of equally spaced square dots. This representation is an ordered grid of dark
and light dots bordered by a finder pattern. The finder pattern is partly used
to specify the orientation and structure of the symbol. The data is encoded
using a series of dark or light dots based upon a pre-determined size. The
minimum size of these dots is known as the X-dimension.

Since the information is encoded by absolute dot position rather relative
dot position, this type of code is not as susceptible to printing defects as is
traditional bar code. The coding scheme has a high level of redundancy with
the data scattered throughout the symbol. According to the company, this
allows the symbol to be read correctly even if part of it is missing.

In general, a Data Matrix square symbol can store up to 3116 characters
from the entire ASCII character set (with extensions), up to 2335 alphanu-
meric characters and up to 1556 bytes. As more data is encoded in the
symbol, the number of cells (rows and columns) increases. Symbol sizes
vary from 10× 10 to 144× 144. Instead, a rectangular symbol can store up
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to 98 characters from the entire ASCII character set (with extensions),and
up to 72 alphanumeric character, with symbol sizes varying from 8 × 18 to
16× 48.

Applications

The most popular application for Data Matrix is marking small items, due
to the code’s ability to encode fifty characters in a symbol that is readable
at 2 or 3 mm2. The Data Matrix is scalable, with commercial applications
as small as 300 micrometres and as large as a 1 meter square.

Data Matrix codes are becoming common on printed media such as labels
and letters. The code can be read quickly by a barcode reader which allows
the media to be tracked, for example when a parcel has been dispatched to
the recipient.

For industrial engineering purposes, Data Matrix codes can be marked
directly onto components, ensuring that only the intended component is
identified with the Data Matrix encoded data. The codes can be marked
onto components with various methods, but within the aerospace industry
these are commonly industrial ink-jet, dot-peen marking, laser marking, and
electrolytic chemical etching (ECE). These methods give a permanent mark
which should last the lifetime of the component.

Data Matrix codes, along with other Open Source codes such as 1D
Barcodes can also now be read with mobile phones, simply by downloading
the application to compatible mobile phones. Although the majority of these
mobile readers are capable of reading Data Matrix, only a few can extend
the decoding to enable mobile access and interaction, whereupon the codes
can be used securely and across media; for example, in track and trace,
anti-counterfeit and banking solutions.

ISO standards

Data Matrix was invented in 1989 by International Data Matrix, Inc. (ID
Matrix) which was merged into RVSI/Acuity CiMatrix, who were acquired
by Siemens AG in October, 2005 and Microscan Systems in September 2008.
Data Matrix is covered today by several ISO/IEC standards and is in the
public domain for many applications, which means it can be used free of any
licensing or royalties:

• ISO/IEC 16022:2006 - Data Matrix bar code symbology specification.
This is the original standard, and it is available to the public under
payment;
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• ISO/IEC 15415 - 2D Print Quality Standard:

• ISO/IEC 15418:2009 - Symbol Data Format Semantics (GS1 Applica-
tion Identifiers and ASC MH10 Data Identifiers and maintenance) [14];

• ISO/IEC 15424:2008 - Data Carrier Identifiers (including Symbology
Identifiers) [IDs for distinguishing different bar code types];

• ISO/IEC 15434:2009 - Syntax for high-capacity ADC media (format
of data transferred from scanner to software, etc.);

• ISO/IEC 15459 - Unique Identifiers.

However, it must be said that although this is a free standard, there
are no free documents that explain the encoding process. All the technical
specifications about Data Matrix can be purchased at ISO/IEC 16022:2006’s
website1.

ECC 200 version

ECC (Error Checking and Correction) 200 is the newest version of Data
Matrix and supports advanced encoding error checking and correction algo-
rithms (such as Reed-Solomon). ECC 200 allows the routine reconstruction
of the entire encoded data string when the symbol has sustained 30 percent
damage, assuming the matrix can still be accurately located. Data Matrix
has an error rate of less than 1 in 10 million characters scanned.

In Figure 3.3 you can see different types of ECC 200 version Data Matrix
(the classical one in Figure 3.3a).

(a) ECC 200
square Data Matrix

(b) ECC 200
square Data Matrix
with multiple
regions

(c) ECC 200 rectangu-
lar Data Matrix

Figure 3.3: ECC 200 Data Matrix codes

1http://www.iso.org/iso/catalogue_detail.htm?csnumber=44230

http://www.iso.org/iso/catalogue_detail.htm?csnumber=44230
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Data Matrix ECC 200 is composed of two separate parts: the finder
pattern, which is used by the scanner to locate the symbol, and the encoded
data itself. The finder pattern defines the shape (square or rectangle), the
size, X-dimension and the number of rows and columns in the symbol and
allows the scanner to identify the symbol as a Data Matrix.

• The solid dark is called the L finder pattern (Figure 3.4a). It is pri-
marily used to determine the size, orientation and distortion of the
symbol.

• The other two sides of the finder pattern are alternating light and dark
elements, known as the Clock Track (Figure 3.4b). This defines the
basic structure of the symbol and can also help determine its size and
distortion.

The data is then encoded in a matrix within the Finder pattern, as you
can see in Figure 3.5. This is a translation into the binary Data Matrix
symbology characters (numeric or alphanumeric). As explained further in
this chapter, the encoding is done in two stages: first the data are converted
to 8 bits codeword (High level encoding), then those are converted to small
black and white squares (Low level encoding). Moreover an error correction
system is included, it allows to reconstitute badly printed, erased, fuzzy or
torn off data.

Just like linear (1D) bar codes Data Matrix has a mandatory Quiet Zone
(see Figure 3.6). This is a light area around the symbol which must not
contain any graphic element which may disrupt reading the bar code. It has

(a) L finder pattern (b) Clock track

Figure 3.4: ECC 200 Data Matrix finder pattern
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Figure 3.5: ECC 200 Data Matrix encoded data

a constant width equal to the X-dimension of the symbol on each of the 4
sides. Each Data Matrix symbol is made up of number of rows and columns.
In version ECC 200, the number of rows and columns is always an even
number. Most of the symbols are square with sizes from 10×10 to 144×144.
Some symbols however are rectangular with sizes from 8 × 18 to 16 × 48

(even values only, see Figure 3.3c). Larger square ECC 200 symbols, those
requiring at least 32 rows and 32 columns, will include alignment patterns
to separate the data regions, as it is visible in Figure 3.3b. Symbols with
more than 104 rows and columns have 36 data regions. All symbols utilizing
the ECC 200 error correction can be recognized by the upper right corner
module being the same as the background color (binary 0). Therefore ECC
200 always has a light “square” in the upper right hand right corner (circled
in the figure above). Obviously, this corner will be dark if the Data Matrix
symbol is printed in negative (complementary colors): in fact, Data Matrix
codes can be represented with black square dots and black finder pattern
on a white background (black-on-white polarity), or the other way round
(white-on-black polarity), like it is shown in Figure 3.7.

Figure 3.6: ECC 200 Data Matrix quiet zone
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(a) Black-on-white polarity (b) White-on-black polarity

Figure 3.7: ECC 200 Data Matrix polarities

ECC 000 - 140 version

Older versions of Data Matrix include ECC 000, ECC 050, ECC 080, ECC
100, ECC 140. Each of these varies in the amount of error correction they
offer, with ECC 000 offering none, and ECC 140 offering the greatest. Some
of the properties cited for the ECC 200 version still hold for these old ones,
like the presence of the finder pattern, of the quiet zone and the possibility
of colors swap, but there are some major differences: these older versions
always have an odd number of modules, and can be made in sizes ranging
from 9 × 9 to 49 × 49, which means that no rectangular shape is allowed.
Moreover, all symbols utilizing the ECC 000 through 140 error correction
can be recognized by the upper right corner module being the inverse of the
background color (binary 1), and do not use Reed-Solomon, but an algorithm
called Convolutional Coding for error correction.

According to ISO/IEC 16022, “ECC 000 - 140 should only be used in
closed applications where a single party controls both the production and
reading of the symbols and is responsible for overall system performance”.
In Figure 3.8 is shown an example of an old version of Data Matrix (ECC
100).

In this thesis we did not consider such older versions, but we described
in detail only the ECC 200 version, which is also the one we used in our
application for the SLAM algorithm cited further in this thesis.

High level encoding

The encoding is done in two stages: first the data are converted to 8 bits
codeword (High level encoding), then those are converted to small black and
white squares (Low level encoding). Moreover an error correction system is
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Figure 3.8: ECC 100 Data Matrix

included, it allows to reconstitute badly printed, erased, fuzzy or torn off
data.

The general version Data Matrix ECC 200 supports various encoding
structures, or modes, which can be used in the same symbol simultaneously.
Examples include: ASCII (divided in three sub-modes), C40, Text, X12, ED-
IFACT and Base 256. These structures provide an opportunity to maximize
efficiency of encoding the required data in a Data Matrix symbol.

Briefly, ASCII is used to encode data that mainly contains ASCII charac-
ters in the base version (0-127) or in the extended version (128-255), as well
as ASCII digits. It encodes approximately one alphanumeric or two numeric
characters per byte. As a general rule, ASCII mode is used to encode text
that includes upper-case and lower-case letters with or without numbers and
punctuation.

C40 is used to encode data that contains only numeric and upper-case
characters. C40 encodes approximately three alphanumeric data characters
into two bytes.

TEXT is used to encode data that mainly contains numeric and lower-
case characters. TEXT encodes approximately three alphanumeric data
characters into two bytes.

X12 is used to encode ANSI X12 characters. X12 encodes approximately
three alphanumeric data characters into two bytes.

EDIFACT mode uses six bits per character, with four characters packed
into three bytes. It can store digits, upper-case letters, and many punctu-
ation marks, but has no support for lower-case letters. EDIFACT encodes
approximately four data characters into three bytes.

BASE 256 is used to encode images, double-byte characters, binary data
and 8 bit values.

The default character encoding method is ASCII, but some special code-
words allow to switch between the other encoding methods. In Table 3.1 you
can see a summary of the cited encoding modes.
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Encoding mode Data to encode Encoding rate
ASCII ASCII character 0 to 127 1 character per codeword

ASCII extended ASCII character 128 to 255 0.5 character per codeword
ASCII numeric ASCII digits 00 to 99 2 character per codeword

C40 Upper-case alphanumeric 1.5 character per codeword
Text Lower-case alphanumeric 1.5 character per codeword
X12 ANSI X12 1.5 character per codeword

EDIFACT ASCII character 32 to 94 1.33 character per codeword
Base 256 ASCII character 0 to 255 1 character per codeword

Table 3.1: Data Matrix high level encoding modes

The result of such operations is to get an array of 8 bits codewords
directly from the data. So every codeword represents a non-negative integer
number, in the range [0, 255] (note that 28 = 256 in binary language), that
has some particular meaning, according to which of the encoding modes is
used.

ASCII mode In Table 3.2 is reported how to interpret the bytes in
the range [0, 255], i.e. the codewords, for the default ASCII mode, which is
divided into three sub-modes.

So it is straightforward to compute a codeword(CW) given a particular
data:

• ASCII character in the range 0 to 127

CW = “ASCII value”+1

• Extended ASCII character in the range 128 to 255
These characters are represented with two codewords:

CW1 = 235

CW2 = “ASCII value”−127

• Pair of digits in the range 00 to 99

CW = “Pair of digits numerical value”+130
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Codeword Data or function encoded
0 Not used

1 to 128 ASCII data
129 Padding - end of message

130 to 229 Pair of digits: 00 to 99
230 Switch to C40 encoding method
231 Switch to Base 256 encoding method
232 FNC1 character
233 Allows a message to be split across multiple symbols
234 Reader programming
235 Shift to extended ASCII encoding method for one character
236 05 Macro
237 06 Macro
238 Switch to ANSI X12 encoding method
239 Switch to TEXT encoding method
240 Switch to EDIFACT encoding method
241 Extended Channel Interpretation code

242 to 253 Not used
254 If ASCII method is in force: End of data, next CWs are

padding; If other method is in force: Switch back to ASCII
method or indicate end of data

255 Not used

Table 3.2: Codewords meaning in ASCII mode

Text modes: C40, TEXT, X12 The C40, Text and X12 modes are
potentially more compact for storing text messages. They use character
codes in the range [0, 39], so totally just 40 character. C40 and TEXT
modes are similar: only upper-case and lower-case characters are inverted.
In these modes 3 data characters are compacted in two codewords. In C40
and TEXT modes 3 shift characters allow to indicate an other character set
for the next character.

The 16 bits value of a codeword pair is computed as following:

V alue = C1 ∗ 402 + C2 ∗ 401 + C3 ∗ 400

CW1 =

⌊
V alue

256

⌋

CW2 = V alue mod 256
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EDIFACT value ASCII value Comment
0 to 30 64 to 94 EDIFACT value = ASCII value - 64

31 End of data, return to ASCII mode
32 to 63 32 to 63 EDIFACT value = ASCII value

Table 3.3: EDIFACT characters

where C1, C2 and C3 are the 3 character values to compact.
The resulting value of CW2 is in the range [0, 249]. The special value

254 is used to return to ASCII encoding mode, except if this mode allows to
fill completely the symbol.

EDIFACT mode In this mode four data characters are compacted
into three codewords. Each EDIFACT character is coded with 6 bits which
are the 6 last bits of the ASCII value. It can store digits, upper-case letters,
and many punctuation marks, but has no support for lower-case letters.
Table 3.3 shows the EDIFACT characters relation with the ASCII values.

The 24 bits value of the three codewords is computed as following:

V alue = C1 ∗ 643 + C2 ∗ 642 + C3 ∗ 641 + C4 ∗ 640

CW1 =

⌊
V alue

65536

⌋

CW2 =

⌊
V alue mod 65536

256

⌋

CW3 = V alue mod 256

where C1, C2, C3 and C4 are the 4 character values to compact.

BASE 256 mode This mode can encode any byte. After the 231
codeword which switches to Base 256 mode, there is a length field, build
with 1 or 2 bytes, followed by data bytes. Let N the number of data to
encode:

• if N < 250, a single byte is used, its value is N (from 0 to 249);

• if N >= 250, two bytes are used:

L1 =

⌊
N

250

⌋
+ 249

L2 = N mod 250
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It is desirable to avoid long strings of zeros in the coded message, because
they become large blank areas in the Data Matrix symbol, which may cause
a scanner to lose synchronization. (The default ASCII encoding does not
use zero for this reason.) In order to make that less likely, the length and
data bytes are obscured by adding a pseudo-random value R(n), where n is
the position in the byte stream, so that each bit bn is transformed in another
bit vn.

R(n) = (149 ∗ n) mod 255 + 1

vn = (bn −R(n)) mod 256

Low level encoding

Once data to encode have been turned into an array of bytes, the low level
encoding part allows to put these bytes in a graphical form, which will repre-
sent the final Data Matrix. This procedure is non-trivial and depends from
the code symbol size.

Before explaining how this procedure is carried on, we show the detailed
graphical properties of the Data Matrix codes in Table 3.4 and Table 3.5,
respectively for square and rectangular shapes.

In general, symbol size (including the finder pattern, but without con-
sidering the needed quiet zone around the code) can vary between 10 × 10

and 144 × 144 for the square form, and between 8 × 18 to 16 × 48 for the
rectangular form.

A symbol consists of one or several data regions, within the finder pattern,
depending on how many data are needed to encode. Each region has a one
module wide perimeter.

Independently of the number of regions, there is one, and only one, map-
ping matrix. The size of such matrix is:

“region size” per “number of regions”

Examples for 36× 36 and 16× 48 symbols:

“16× 16” multiplied by “2× 2” regions: matrix size is 32× 32

“14× 22” multiplied by “1× 2” regions: matrix size is 14× 44

The other fields of the tables are related to the error correction method used
(Reed-Solomon algorithm in ECC 200 version, using the Galois field F256),
indicating how many codewords are present in the matrix, how they are split
in “data” and “error” bytes, and which percentage of codewords is used the
error correction.

As we said, a codeword is a 8 bits word, which encode a part of the
original data, like a digit or an ASCII character. Inside a Data Matrix a
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Symbol
Size

Data Region Mapping
Matrix
Size

Total
Codewords

Max.
Data
Capacity

% of Code-
words used
for Error
Correction

Size Num. Data Error Num. Alphanum
10× 10 8× 8 1 8× 8 3 5 6 3 62.5
12× 12 10× 10 1 10× 10 5 7 10 6 58.3
14× 14 12× 12 1 12× 12 8 10 16 10 55.6
16× 16 14× 14 1 14× 14 12 12 24 16 50
18× 18 16× 16 1 16× 16 18 14 36 25 43.8
20× 20 18× 18 1 18× 18 22 18 44 31 45
22× 22 20× 20 1 20× 20 30 20 60 43 40
24× 24 22× 22 1 22× 22 36 24 72 52 40
26× 26 24× 24 1 24× 24 44 28 88 64 38.9
32× 32 14× 14 4 28× 28 62 36 124 91 36.7
36× 36 16× 16 4 32× 32 86 42 172 127 32.8
40× 40 18× 18 4 36× 36 114 48 228 169 29.6
44× 44 20× 20 4 40× 40 144 56 288 214 28
48× 48 22× 22 4 44× 44 174 68 348 259 28.1
52× 52 24× 24 4 48× 48 204 84 408 304 29.2
64× 64 14× 14 16 56× 56 280 112 560 418 28.6
72× 72 16× 16 16 64× 64 368 144 736 550 28.1
80× 80 18× 18 16 72× 72 456 192 912 682 29.6
88× 88 20× 20 16 80× 80 576 224 1152 862 28
96× 96 22× 22 16 88× 88 696 272 1392 1042 28.1

104× 104 24× 24 16 96× 96 816 336 1632 1222 29.2
120× 120 18× 18 36 108× 108 1050 408 2100 1573 28
132× 132 20× 20 36 120× 120 1304 496 2608 1954 27.6
144× 144 22× 22 36 132× 132 1558 620 3116 2335 28.5

Table 3.4: Table of Data Matrix ECC 200 Symbol Attributes (Square form)

codeword is placed in a 3 × 3 square with a corner taken out. Each bit
is referenced with a pixel (placed at the top-left corner). These pixels are
ordered right to left, bottom to top, and a colored pixel means that the
correspondent codeword bit is set to 1, otherwise is set to 0. The origin pixel
of a byte is at its lower right, corresponding to bit 0. In Figure 3.9 there is
an example of what we just explained: the codeword encoded is the string
10001101, which in decimal base is 128 + 8 + 4 + 1 = 141.

With the graphical representation described, each codeword is then placed
in the matrix on 45 degree parallel diagonal lines, starting at the upper left
of the matrix and then the rest spread out from there on the lattice spanned
by vectors [2, -2] and [3, 1]. The nominal layout resulting is shown in Fig-
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Symbol
Size

Data Region Mapping
Matrix
Size

Total
Codewords

Max.
Data
Capacity

% of Code-
words used
for Error
Correction

Size Num. Data Error Num. Alphanum
8× 18 6× 16 1 6× 16 5 7 10 6 58.3
8× 32 6× 14 2 6× 28 10 11 20 13 52.4
12× 26 10× 24 1 10× 24 16 14 32 22 46.7
12× 36 10× 16 2 10× 32 12 18 44 31 45.0
16× 36 14× 16 2 14× 32 32 24 64 46 42.9
16× 48 14× 22 2 14× 44 49 28 98 72 36.4

Table 3.5: Table of Data Matrix ECC 200 Symbol Attributes (Rectangular
form)

ure 3.10a.
Bytes that do not fit inside the symbol wrap around on the other side,

with a shift as indicated by arrows in Figure 3.10b (other shifts are possible).

It must be noted that the total number of codewords per symbol is equal
to the number of cells in the matrix divided by 8 (without decimal part):
this means that if the number of cells is not a multiple of 8, i.e., the number
of rows multiplied by the number of columns in the data region is not equal
to 0 mod 8, in the final graphical representation there will be some corners
not used during the encoding.

Moreover, referring again to Table 3.4, you should notice that also cor-
rection codewords are encoded in the symbol: for square codes of 48 × 48

and smaller, Reed-Solomon codewords are appended after the data; for other
symbols they are interleaved and data are divided in blocks.

If then, during the high level encoding, data do not cover all the region

(a) Byte ordering (b) Byte graphi-
cal representation

Figure 3.9: Codeword graphical representation
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(a) (b)

Figure 3.10: Data Matrix nominal layout and codeword shifts

size, some padding codewords are added. You can see a clear example of
what explained in the Data Matrix reported in Figure 3.11, which encodes
the string “wikipedia” according to the layout we described: the string is
visible in the top-left part of the symbol, and after its end, you can see
padding symbols (P), error correction symbols (E) and, in this case, some
unused bytes (X). Notice also that some letters are split and wrapped around
in the Data Matrix.

Figure 3.11: Layout of a Data Matrix encoding the string “wikipedia”
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3.1.2 QR Code

QR Code (Quick Response Code), shown in Figure 3.2b, is a matrix code
developed by Nippondenso ID Systems in 1994 and is in the public domain.
Although initially used to track parts in vehicle manufacturing, QR codes are
now (as of 2011) used over a much wider range of applications, including com-
mercial tracking, entertainment and transport ticketing, product marketing
and in-store product labeling. Many of these applications target mobile-
phone users (via mobile tagging). Users may receive text, add a vCard
contact to their device, open a Uniform Resource Identifier (URI), or com-
pose an e-mail or text message after scanning the codes. QR codes storing
addresses and Uniform Resource Locators (URLs) may appear in magazines,
on signs, on buses, on business cards, or on almost any object about which
users might need information. Users with a camera phone equipped with
the correct reader application can scan the image of the QR code to display
text, contact information, connect to a wireless network, or open a web page
in the telephone’s browser.

QR Code symbols are square in shape and can be identified by their
finder pattern of nested alternating dark and light squares at three corners
of the symbol. A quiet zone is required around the symbol. Maximum sym-
bol size is 177 modules square, capable of encoding 7366 numeric characters,
4464 alpha numeric characters,2,953 bytes or 1817 Kanji and Kana charac-
ters (i.e. the peculiar Japanese symbols). QR Code is designed for rapid
reading using CCD array cameras and image processing technology because
of the layout of the finder pattern.

Like with Data Matrix codes, codewords are 8 bits long and use the Reed-
Solomon error correction algorithm with four error correction levels. The
higher the error correction level, the less storage capacity. The following
table lists the approximate error correction capability at each of the four
levels:

• Level L 7% of codewords can be restored.

• Level M 15% of codewords can be restored.

• Level Q 25% of codewords can be restored.

• Level H 30% of codewords can be restored.

Due to the design of Reed-Solomon codes and the use of 8-bit codewords,
an individual code block cannot be more than 255 codewords in length. Since
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Figure 3.12: QR Code structure example

the larger QR symbols contain much more data than that, it is necessary to
break the message up into multiple blocks. The largest possible block size
is never used, though. The QR specification defines the block sizes so that
no more than 15 errors can be corrected within each block. This limits the
complexity of certain steps in the decoding algorithm. The code blocks are
then interleaved together, making it less likely that localized damage to a
QR symbol will overwhelm the capacity of any single block. We report in
Figure 3.12 an example of a QR Code structure.

We do not go further in detail for this kind of barcodes, because in our
application we used only Data Matrix codes, even if future developments
could include the implementation of the support for other 2D codes.

3.1.3 Other barcodes

Briefly, we just cite the other most important two-dimensional barcodes,
without going to much in detail

Aztec Code

Aztec Code (Figure 3.2c), invented and announced in 1995 by Welch Allyn,
has been characterized as a “second generation” 2D matrix code. Aztec Code
symbols are nominally square, with a square central bulls eye finder. They
are scalable, and can encode up to 3067 text characters, 3832 digits, or 1914
bytes. Symbols range in size from 15 x 15 modules up to 151×151 modules.
Error Correction is user selectable between amounts of Reed-Solomon error
encoding from 5% to 95% of data region. The symbology is made of square
modules with a square bulls-eye finder pattern in the center. No quiet zone
around the symbol is required.
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Code One

Code 1 (Figure 3.2d) was invented by Ted Williams in 1992 and is the earliest
public domain matrix symbology. It uses a finder pattern of horizontal and
vertical bars crossing the middle of the symbol. The symbol can encode
ASCII data, error correction data, function characters, and binary encoded
data. There are 8 sizes ranging from code 1A to code 1H. Code 1A can
hold 13 alphanumeric characters or 22 digits while code 1H can hold 2218
alphanumeric characters or 3550 digits. The largest symbol version measures
134 × 148. The code itself can be made into many shapes such as an L, U,
or T form.

Code 1 does not require a quiet zone, which saves space around the
symbol for labelling and direct marking applications.

Code 1 is currently used in the health care industry for medicine labels
and the recycling industry to encode container content for sorting. There
does not appear to be any US Patent.

MaxiCode

Maxicode (Figure 3.2e) is a matrix code developed by United Parcel Service
in 1992. However, rather than being made up of a series of square dots,
MaxiCode is made up of an a 28.14mm wide by 26.91mm high array of 866
interlocking hexagons arranged in 33 rows around a central finder pattern.
This allows the code to be at least 15 percent denser than a square dot code,
but requires higher resolution printers like thermal transfer or laser to print
the symbol.

A quiet zone of at least one cell borders the symbol. The symbol has
a maximum data capacity of 93 alphanumeric characters and 138 numeric
characters depending on the level of error correction. The symbol can still
be read even when up to 25 percent of the symbol has been destroyed and
can be read by CCD camera or scanner.

3.2 Fiducial markers

Beyond barcodes, there are other types of codes which are used for differ-
ent and various applications: we refer to these barcodes as fiducial markers.
There is plenty of applications which use these codes: one of the most com-
mon concerns augmented reality [1] [15], which consist in overlaying virtual
imagery on the real world objects. Markers accomplishing this result are for
example ARToolKit markers, where ARToolKit is a special computer vision
library for augmented reality.
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Also in robotics field these markers are widely used, for example for
robot navigation and localization: in these specific cases, the markers are
particular squared codes which contain some information that a robot can use
to help himself to navigate inside an environment and to localize his position
within such environment, in order to make the robot really autonomous
and not depending from humans, i.e. what is called an intelligent robot.
ARToolKitPlus and ARTag marker are mostly used in this task. In [13]
these two last marker detection systems are qualitatively compared. Their
advantages respect to 2D barcodes in these kind of applications is that these
markers can be detected also within a large field of view in the image, so
even if they are very distorted.

3.2.1 ARToolKit

ARToolKit [21] is a popular planar marker system for Augmented Reality
and Human Computer Interaction (HCI) systems due to its available source
code. The bi-tonal markers consist of a square black border and a pattern in
the interior. Some examples of ARToolKit markers are shown in Figure 3.13.

The first stage of the recognition process is finding the markers’ black
borders, that is finding connected groups of pixels below a certain gray value
threshold. Then the contour of each group is extracted, and finally those
groups surrounded by four straight lines are marked as potential markers.
The four corners of every potential marker are used to calculate a homogra-
phy in order to remove the perspective distortion. Once the internal pattern
of a marker is brought to a canonical front view one can sample a grid of
N×N (usually 16×16 or 32×32) gray values inside. These gray values form
a feature vector that is compared to a library of feature vectors of known
markers by correlation. The output of this template matching is a confi-
dence factor. If this confidence factor is greater than a threshold, a marker

Figure 3.13: Some ARToolKit visual markers
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has been found.
Although ARToolKit is useful for many applications, there are some

drawbacks. First of all the detection process is threshold based. A sin-
gle threshold can easily fail to detect markers under different illumination
conditions, even within the same image. For example, it can happen that
the white level at one marker edge is darker than the black level at the oppo-
site edge. Furthermore the marker verification and identification mechanism
using correlation causes high false positive and inter-marker confusion rates.
With increasing library size the marker uniqueness is reduced, which again
increases the inter-marker confusion rate. The processing time also depends
on the library size, since every feature vector must be correlated with ev-
ery prototype vector in the library. And for each marker there exist several
prototype vectors to cover the four possible rotations as well as different
lightning and distance conditions.

3.2.2 ARTag

ARTag [12] is another planar marker system for Augmented Reality and
Human Computer Interaction systems. ARTag also uses markers with a
square border (black or white), that you can see in Figure 3.14.

In contrast to ARToolKit, ARTag finds markers with an edge based ap-
proach, so one need not to deal with thresholds under different illumination
conditions. Edge pixels found by an edge detector serve as basis for the
marker detection process. They are linked into segments, which in turn are
grouped into quadrangles. As with ARToolKit the corners of a quadrangle
are used to calculate a homography so that the marker’s interior can be sam-
pled. In contrast to the patterns used in ARToolKit, the interior region of
an ARTag marker is filled with a 6x6 grid of black or white cells, represent-
ing 36 binary ‘0’ or ‘1’ symbols. This 36-bit word is then processed in the
digital domain. For each of the four possible marker orientations one 36-bit

Figure 3.14: Some ARTag visual markers
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sequence is obtained from the 36-bit word, with only one sequence ending
up being used in the decoding process. Every 36-bit sequence encodes a 10-
bit marker id, leaving 26 redundant bits for error detection, correction and
uniqueness over the four possible rotations of a marker.

The edge based approach of ARTag makes the system more robust to
changing illumination conditions than ARToolKit. ARTag can even cope
with occlusions, broken sides and missing corners to a certain extent. This
is possible because of heuristics of line segments that almost meet, so that
missing segments of a marker can be estimated. Furthermore ARTag’s id
based markers do not require image matching with a library and therefore
allow for a much faster identification than the template based markers used
in ARToolKit.

3.2.3 ARToolKitPlus

ARToolKitPlus is an evolution of ARToolKit: it uses the same recognition
algorithm to detect a marker borders, but it introduces a threshold auto-
calibration system that makes it more flexible to the light condition varia-
tions. It is possible to use both markers with generic information content
(i.e., an image to compare, like in the ARToolKit case) and with a digital
ID (i.e., a 2D barcode, like in the ARTag case).

The default markers with digital content are divided in two categories:
simple ID, with 512 available markers, and BCH ID, with 4096 available
markers. Examples of both categories are shown in Figure 3.15.

The main improvements introduced by ARToolKitPlus respect to AR-
ToolKit are:

• An automatic threshold mechanism for the creation of the black-and-
white image to analyse.

• Compensation of the vignetting phenomenon (dark zones in the image
corners), which improves the marker recognition chances, even if they
are close to the image borders.

• Simplification of the camera calibration process, which can be done
with any standard system (e.g., Camera Calibration Toolbox for Mat-
lab).

• Employment of an algorithm for the estimate stabilization of the roto-
translation matrix (Robust Planar Pose Tracking, RPP, which brings
from the camera coordinates system to the marker coordinate system.
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Figure 3.15: Some ARToolKitPlus with simple ID (upper) and BCH ID (lower)
visual markers

ARToolKitPlus is also portable on mobile devices, thanks to the availabil-
ity of fixed point operations, even if RPP algorithm cannot be implemented
on such devices, since it requires a deeper calculus precision.



Chapter 4

Data Matrix visual detection
and pose estimation

“Do you know what first interested me about Pythagoras? He invented the
word ‘friendship’. When someone asked him what a friend was, he replied
‘Someone who is another me, like the numbers 220 and 284.’ Two numbers
are ‘friends’ if each is the sum of everything that measures the other. The
most famous of these so-called ‘amicable numbers’ are 220 and 284. They’re
a fine couple. You should try checking them sometimes.”

Parrot’s theorem

In this chapter we describe the process of computing the marker pose with
respect to the camera coordinates system, i.e., we want to know how a marker
is orientated and translated in reference to the camera observing it. Then
we talk about the vision methods we used to detect a visual marker from an
image captured by the camera and we show how the these methods affect
the pose estimation process by comparing them numerically and analysing
their pros and cons.

4.1 Camera calibration

Camera calibration [44] is a necessary step in 3D computer vision in or-
der to extract intrinsic, extrinsic and distortion parameters from 2D image
observations.

4.1.1 Pinhole camera model

The pinhole camera model describes the mathematical relationship between
the coordinates of a 3D point and its projection onto the image plane of an



42 Chapter 4. Data Matrix visual detection and pose estimation

ideal pinhole camera, where the camera aperture is described as a point and
no lenses are used to focus light. This model represents a simplification of the
real model, since no radial lens distortion is modelled and this relationship
is called perspective projection.

We denote the center of the perspective projection (the point in which
all the rays intersect) as the optical center or camera center and the line
perpendicular to the image plane passing through the optical center as the
optical axis (see Figure 4.1). Additionally, the intersection point of the image
plane with the optical axis is called the principal point.

The projection of a 3D world point M = [X,Y, Z]T onto the image plane
at pixel position m = [u, v]T can be written as:

u = −f
X

Z
(4.1)

v = −f
Y

Z
(4.2)

where f is the focal length of the camera.
The previous relation can be reformulated in matrix notation, using ho-

mogeneous coordinates (M̃ = [X,Y, Z, 1]T and m̃ = [u, v, 1]T ) and a scaling
factor λ, as follows:

λ




u

v

1



 =




f 0 0 0

0 f 0 0

0 0 1 0









X

Y

Z

1




(4.3)

Camera intrinsic parameters

Unfortunately, the pinhole camera model is ideal, because it assumes per-
fect lenses and the principal point at the center of the image. In physical
cameras instead, the imaging projection are usually distorted, there is finite
resolution defined by the sensing device of a digital camera and there is an
offset between the image center and the optical center.

In order to model these characteristics, new parameters are introduced,
called camera intrinsic parameters. They characterize internal properties of
the camera, like optical, geometric, and digital characteristics:

• the focal length f

• the transformation between image plane coordinates and pixel coordi-
nates
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Figure 4.1: Pinhole camera model: perspective projection between a 3D point
[X,Y, Z]T and its corresponding 2D projection [u, v]T

• the geometric distortion introduced by the optics

First of all, the image coordinates are transformed into pixel coordinates:
[

up
vp

]
=

[
px 0

0 py

][
u

v

]
(4.4)

where px and py are the scale factors relating pixels to distance. Then the
image origin is translated, since most of the current imaging systems define
the origin of the pixel coordinate system at the top-left pixel of the image,
and not at its center, corresponding to the principal point:

u
′
= up + cx (4.5)

v
′
= vp + cy (4.6)

So in homogeneous coordinates we obtain:

m̃
′
=




u

′

v
′

1



 =




px 0 cy
0 py cy
0 0 1








u

v

1



 (4.7)
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which leads to the complete transformation from 3D to 2D pixel coordinates

λ




u

′

v
′

1



 =




px 0 cy
0 py cy
0 0 1








f 0 0 0

0 f 0 0

0 0 1 0






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X

Y

Z

1


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=

=


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1




(4.8)

where fx = f · px and fy = f · pv represent focal length in terms of pixels.
The matrix

A =




fx γ cx
0 fy cy
0 0 1



 (4.9)

is called matrix of intrinsic parameters, and γ represents the skew coefficient
between the x and the y axis, and is often 0.

The matrix

Π0 =




1 0 0 0

0 1 0 0

0 0 1 0



 (4.10)

is called initial projection matrix, when the camera and the world coordinate
system correspond.

Camera extrinsic parameters

In general, the camera coordinate system and the world coordinate system
are different, since the camera might move inside the environment. The
camera extrinsic parameters denote the coordinate system transformations
from 3D world coordinates to 3D camera coordinates.

The previously defined projection matrix is thus composed by two ele-
ments (Figure 4.2), which relates the world coordinate system to the camera
coordinate system:

• R, a 3×3 rotation matrix that brings the corresponding axes of the
two frames into alignment (i.e., onto each other)

• t, a 3×1 translation vector between the relative positions of the origins
of the two reference frames
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Figure 4.2: Camera extrinsic parameters

so that we can define the projection matrix

Π =
[
R t

]
(4.11)

In this way, we obtained the complete pinhole camera model, defined by the
following relation:

λm̃
′
= AΠM (4.12)

where M̃ = [X,Y, Z, 1]T are the coordinates of a 3D object in the world
frame.

Distortion model

Real camera lenses typically suffer from non-linear lens distortion, typically
radial. In practice, radial lens distortion causes straight lines to be mapped
as curved lines. To model this behaviour, we re-write the Equation 4.12 in
an equivalent way (when z %= 0):




x

y

z



 = R




X

Y

Z



+ t (4.13)

Then we set
x

′
=

x

z

y
′
=

y

z

x
′′
= x

′ 1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′
y
′
+ p2(r

2 + 2x
′2
)
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y
′′
= y

′ 1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6
+ 2p2x

′
y
′
+ p1(r

2 + 2y
′2
)

u = fx · x
′′
+ cx

v = fy · y
′′
+ cy

where
r2 = x

′2
+ y

′2

k1, k2, k3, k4, k5, k6 are radial distortion coefficients, and p1, p2 are tangential
distortion coefficients.

4.1.2 Calibration experiments

The pinhole camera employed for our experiments is a GigE Prosilica, model
GC750C, with 4 mm focal length and a resolution of 752 × 480 [18]. We
decided to calibrate our camera using the MATLAB toolbox1.

We took 15 images of a chessboard in different poses to calibrate the
camera (see Figure 4.3). The toolbox allows to manually select the chess-
board grid corners for every image and then automatically computes camera
calibration.

The result of the calibration gave us the camera intrinsic parameters,
ready to use in our vision application. They are reported below.

Figure 4.3: Chessboard images for camera calibration

1http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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Calibration results after optimization (with uncertainties):
Focal Length:
fc = [ 687.18874 684.95763 ] ± [ 1.50973 1.64780 ]

Principal point:
cc = [ 413.62924 221.45226 ] ± [ 3.19102 2.69161 ]

Skew:
alpha_c = [ 0.00000 ] ± [ 0.00000 ] ⇒ angle of pixel axes = 90.00000 ± 0.00000
degrees

Distortion:
kc = [ -0.03600 0.05991 -0.00149 0.00321 0.00000 ] ± [ 0.00841 0.04336 0.00126
0.00154 0.00000 ]

Pixel error:
err = [ 0.08825 0.10541 ]

Note: The numerical errors are approximately three times the standard
deviations (for reference).

The MATLAB toolbox also computes the camera extrinsic parameters
for each sample image, showing the relative pose of the camera in world
coordinates system, or vice-versa. In Figure 4.4 and Figure 4.5 you can

Figure 4.4: MATLAB representation of camera extrinsic parameters (Camera
frame)
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Figure 4.5: MATLAB representation of camera extrinsic parameters

respectively see position and orientation of each chessboard in the camera
frame, and position and orientation of the camera in the world frame, which
is aligned with the chessboard.

4.2 Data Matrix encoding

We decided to use Data Matrix barcodes as visual markers instead of AR-
ToolkitPlus, usually used for localization problems, due to the availability of
a C/C++ open source library for marker detection, called libdmtx [19], and
to the encoding power that characterizes these barcodes. Moreover, there
is already a ROS package which implements Data Matrix recognition and
camera pose computation [17], so it can be useful for future development
works, as porting MoonSLAM to ROS framework.

Before describing the actual pose estimation process, we need to make
some preliminary remarks about the information we decided to encode in
each marker. As from Chapter 3, Data Matrix barcodes are able to store
alphanumeric symbols, giving the possibility to save inside them a high num-
ber of information: this was one of the main reasons we selected them as
visual markers for localization and mapping purposes.

We chose a unique pattern for information to be encoded, so to make
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all the markers standardized for our application. Our Data Matrix can only
encode a 5-symbols string, where each symbol is represented by an alphanu-
meric character: numbers (from 0 to 9), lower case letters (from “a” to “z”)
and upper case letters (from “A” to “Z”), for a total of 62 symbols. We de-
cided to use the first 3 values to be part of the marker ID, allowing us to
distinguish up to 623 = 238328 different Data Matrices: enough to cover
every kind of indoor environment. Surely only 2 ID symbols (622 = 3844

total markers) would also be enough, but the barcode internal density with
4 encoded symbols does not change, so even using only 2 characters for the
ID would not reduce the graphical complexity, without consequently helping
GFTT algorithm to find relevant features more accurately.

Regarding the remaining 2 characters, they represent the marker side
dimensions in millimetres (we always suppose to handle with squared Data
Matrix): we designed a simple function to convert a length size to the 2 al-
phanumeric symbols. First of all, since we can use 62 characters per symbol,
we can encode up to 622 = 3844 different values, that is from 0 to 3844 mm
(0 to 3.84 m). A marker cannot have a size of 0 m, usually the minimal
dimension is 10 × 10 cm, and also Data matrices more than 1 m large are
quite uncommon.

Given the dimension in millimetres, we computed the 2-symbols string
in the following way:

c1 =

⌊
dimension

62

⌋

c2 = dimension mod 62

and then we mapped the resulting integer values (value1 and value2, in the
range [0,61]) to the 62 alphanumeric symbols:

• numbers from 0 to 9 are mapped to themselves

• numbers from 10 to 35 are mapped to lower case letters “a-z”

• numbers from 36 to 61 are mapped to upper case letters “A-Z”

We report a simple example of information encoding: if we want to print
a Data Matrix with ID 9wJ and a dimension of 183 mm (18.3 cm), the two
remaining symbols are

c1 =

⌊
183

62

⌋
= 2 → value1 = 2

c2 = 183 mod 62 = 59 → value2 = X
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giving the final encoded string equal to 9wJ2X. The inverse function is also
straightforward: taken the two encoded symbols, first they are mapped fol-
lowing the previous schema in the inverse direction, obtaining the values c1

and c2, then the marker size in millimetres is computed as follows:

dimension = c1× 62 + c2

4.3 Perspective N-Point

The Perspective N-Point problem (PnP) [32] is a notable problem in com-
puter vision. Given a set of N correspondences between 3D reference points
and their projections onto an image, it consists in estimating the position
and orientation of the calibrated camera with respect to the known reference
points: in other words it solves the problem of finding the camera extrinsic
parameters, returning the rotation matrix and the translation vector of the
object with respect to the camera.

To obtain the marker pose in the camera frame, i.e. in the camera coor-
dinates system, we needed the following data:

• a camera image containing a Data Matrix, of course;

• camera intrinsic parameters;

• camera distortion coefficients;

• at least 4 two-dimensional projections of points belonging to the marker
on the image plane;

• at least 4 (and in any case the same number of the image points)
three-dimensional points belonging to the 3D object, each of them
corresponding to a 2D image point.

The camera intrinsic parameters were already obtained as explained in Sec-
tion 4.1, as well as the distortion coefficients.

As far as it concerns the choice of the plane points, we decided to use the
minimum needed number to compute the PnP problem. A natural choice
was obviously to pick the four Data Matrix corners. Since the precision of
the PnP solution depends on the 2D points, we show in the following sections
some vision methods to try to get the most accurate results in finding the
marker corners.

Regarding the object points in the 3D space, we chose the Data Matrix
corners, but considering them in 3D. We used an intuitive representation for
the three-dimensional coordinates systems: a Data Matrix, being a planar
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object, lays on a XY plane, with the X-axis corresponding to the bottom
black edge of the marker finder pattern, the Y-axis corresponds to the left
black edge of the finder pattern and the system origin coincides with the
bottom left corner; Z-axis is consequently directed toward up, starting from
the origin point. In Figure 4.6 a graphical explanation of what we just
described is given.

The four Data Matrix corners can be expressed in 3D coordinates [X,Y, Z]T

as it follows:

p0 = [0, 0, 0]T

p1 = [DIM, 0, 0]T

p2 = [DIM,DIM, 0]T

p3 = [0, DIM, 0]T (4.14)

where DIM is the actual marker edge length (usually expressed in metres).
Since we were able to encode the marker dimension inside each Data Ma-

trix, as explained in the previous section, our library does not need to know
in advance a fixed size for each 3D object: in fact, every time a Data Matrix
is detected by the camera, the information about the edge length encoded
inside the marker itself can be easily retrieved and used to set the 3D object

Figure 4.6: Marker coordinates system
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points coordinates within the marker frame. This expedient is very useful for
two main reasons: first, the 3D model points are set in automatic way by the
internal procedures, without the need for manual settings, and secondly, it
allows to use Data Matrices printed with different sizes, making them more
adaptable to every type of environment.

OpenCV provides an efficient function to compute the pose estimation
given the listed variables, called solvePnP. Of course it is necessary to specify
the image points and the object points in the same order, so that each 3D
point is mapped to its correspondent one on the image plane. Given the
elements listed above, this function returns two variables:

t =




tx
ty
tz



 (4.15)

v =




vx
vy
vz



 (4.16)

The variable t is called translation vector and it specifies how the coordinates
system of the object represented in the image plane (in our case a Data
Matrix) is shifted with respect to the camera coordinates system along x, y
and z-axis.

The variable v is a vector of a rotation axis represented as Rodrigues
angles and it specifies how the coordinates system of the object is rotated by
an angle θ =

√
vx2 + vy2 + vz2 about that axis with respect to the camera

frame. The rotation matrix ∈ R3 corresponding to Equation 4.16 can be
computed through the Rodrigues formula [2], obtaining:

RM
C = I+ sin(θ)r+ (1− cos(θ))rrT (4.17)

where I is a 3×3 identity matrix and r =




0 −v′z v′y
v′z 0 −v′x
−v′y v′x 0



, where v′x = vx
θ ,

v′y = vy
θ and v′z =

vz
θ .

A rotation matrix is not a minimal representation of a generic rotation,
because it uses 9 variables. For this reason we chose to use another way to
specify the marker attitude in the camera frame [9]: for graphical operations,
such as graphics MATLAB plots, some of which also reported later in this
thesis, we adopted the Euler angles, because they are simple and intuitive to
understand even at a first glance. They consist in 3 angles called roll, pitch
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and yaw (φ, θ, ψ) which correspond respectively to a rotation about the x, y
or z-axis by the given angle value. Instead, in order to calculate the marker
pose in the world coordinates system and to compute the image points mea-
surements in the Kalman filter during the SLAM algorithm (described in the
next chapter), we used a non-minimal representation given by quaternions: a
quaternion, q ∈ H, may be represented as a vector q = [a, b, c, d]T and if it is
a unit quaternion (i.e., ‖q‖ = 1) it can represent the attitude of a rigid body.

In Figure 4.7a, we show what are the results of solving the PnP problem.
On the right you can see a camera image where a Data Matrix is detected,
while on the left the camera and the marker coordinates systems are shown.
Since the function computes the marker position and attitude with reference
to the camera, the latter is considered as the world center and it is repre-
sented by the three axis on the bottom: for a generic camera they are usually
arranged with the z-axis pointing out of the camera, the x-axis pointing to
the right of the camera and the y-axis pointing downward. Marker axis,
instead, are depicted as explained earlier, with x-axis coloured in red, y-axis
in green and z-axis in blue.

In Figure 4.7b the same scene is reported, but from the camera point of
view: the marker is exactly rotated like in the reality, as you can see in the
near image.

In this example we got that the Data Matrix was translated of -0.0986 m
along the camera x-axis, 0.0407 m along the y-axis and 1.1664 m along the z-
axis (which is the distance from the camera), while it was rotated of 176.289
degrees about the x-axis (roll angle), 8.512 degrees about y-axis (pitch angle)
and 6.897 degrees about z-axis (yaw angle). As you can see, these values are
quite intuitive and can be easily used to analyse the results obtained during
the pose estimation process.

4.4 Data Matrix detection

After the necessary camera calibration step, we needed to introduce a fast
and precise way to detect Data Matrix markers from raw images captured
from the camera: this was needed in order to successively compute the
marker pose in the camera coordinate frame and feed such information to
an Extended Kalman Filter, needed to the SLAM algorithm to compute and
update the camera pose (and consequently the robot pose, since the cam-
era has hypothetically a rigid pose with reference to the robot) in the yet
unknown world frame.
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(a) Marker pose estimation in camera co-
ordinates system

(b) Marker pose from camera point of view

Figure 4.7: Marker pose estimation

This phase is very delicate, because from the precision and speed in
marker recognition and in camera extrinsic parameters estimation partially
depends the accuracy with which the EKF-SLAM algorithm can operate to
build the environment map and localize the camera. For this reason, we
dedicated lot of effort on this part, trying to get the best results in marker
recognition using different computer vision techniques[41] and performing
various recognition simulations, analysing and trying to minimize the errors
and the noise during the detection.

To work with camera images we made use of OpenCV2, a complete
C/C++ library [3] for Linux, Windows and Mac OS machines, which offers
an extensive set of computer vision functionalities, particularly indicated for
real-time and computationally efficient purposes.

Some of the most useful functions available with OpenCV are:

• geometric image transformations (rotations, resizing);

• feature detection (Canny, Harris, Hough, GFTT, FAST);

• camera calibration and 3D reconstruction;

• machine learning (k-nearest neighbours, support vector machines, lin-
ear regression).

4.4.1 libdmtx library

The first step in marker recognition is to detect in a fast and efficient way
whether or not in a camera image is present a Data Matrix, and in that
case what is encoded inside it. libdmtx library was created for this specific

2http://opencv.willowgarage.com/wiki/

http://opencv.willowgarage.com/wiki/
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purpose: it allows to find and decode any number of Data Matrix barcodes
inside an image in a relatively short time, depending on the size of the camera
image, on the number of barcodes present and on the Data Matrix dimension
relative to the image size (normal time can go from 1 ms to 400-500 ms, but,
in general, when the marker is clearly visible within a camera frame and not
too far from the camera, the average time can be 50-60 ms at most) it is
possible to specify a maximum searching time-out or a maximum number
of barcodes to detect. The library also allows to encode information and to
create a graphical marker, in the limits imposed by the Data Matrix standard
(see Chapter 3 for details).

It must be noticed that ambient light intensity is a fundamental factor
which affects the library performance: in fact, in order to capture an image
with good contrast value, the light intensity should be above certain level.
Absence of light could decrease the probability of marker detection. Also
sudden changes in light intensity could lower this probability. We report
in Table 4.1 the percentage of detected markers at different distances from
the camera and imposing different timeouts over a sample of 1000 static
frames. As you see, the library needs a minimal time search (as the average
times show), so setting a timeout higher than that value results in high
detection rates. However, detection rate depends on where the marker lays
in the image: markers very close to image borders can take more time than
shown to be recognized. Also Data Matrix very slanted need more time
to be detected. Moreover, camera motion can introduce image blurring,
potentially lowering shown detection percentages.

As we said in the previous chapter, Data Matrix barcodes were created
mostly to carry information about products during industrial processes or to
identify postal parcels: libdmtx library was developed considering this main
function for Data Matrix codes, so its accuracy is more oriented to the correct
information decoding, without optimizing the marker localization within the
image (in terms of pixels).

However, whenever the library finds a marker within an image, in addi-
tion to decoding the barcode content, it also stores some basic information
regarding Data Matrix pixel position in the image, which can be considered
to roughly localize the marker (i.e., to find the four barcode corners in pix-
els) and for further vision optimization. Between these data, the ones most
useful to initially calculate the four pixel corner points of the Data Matrix
are:

• the top-left corner on the L finder pattern;

• the bottom-right corner on the L finder pattern;
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Timeout
15 ms 30 ms 60 ms 120 ms

Approximate
distance from
camera

4.5 m
0 % 68.9 % 99.9 % 99.9 %
NA 29.41 ms 28.83 ms 27.92 ms

2.3 m
19.8 % 99.5 % 99.9 % 100 %

19.12 ms 22.83 ms 23.44 ms 22.61 ms

1 m
85.8 % 99.8 % 99.7 % 100 %

16.07 ms 16.08 ms 16.76 ms 16.42 ms

Table 4.1: Percentage of detected Data Matrix markers and average time search
over 1000 static frames

• the angle slope of every side of the marker, measured with respect to
the horizontal axis (in degrees, from 0 to 180): we referred to them as
bottom, right, top and left angle.

You can see the listed quantities in Figure 4.8.
As explained few lines before, libdmtx library is mostly used for infor-

mation decoding, minimizing the misclassification error during this process,
and not for computer vision refinements of the detected marker, so the infor-
mation data cited before are quite rough, and indeed their values are treated
with integer data structures at programming level, obviously loosing the
fundamental accuracy needed for a good marker pose estimation in camera
coordinates (i.e. computation of the camera extrinsic parameters), described
later in this chapter. What we really need, to effectively use Data Matrix
markers (or other visual markers) in a EKF-SLAM algorithm, are at least
4 points from the 2D camera image. The simplest choice of these points,
for a Data Matrix, is to consider the 4 marker corner points (of course the
top-right corner is a blank point in ECC 200 Data Matrix standard, so it is
just a geometric point not visible in the image). Since we do not directly
have the bottom-left and the top-right corners from the library decoding
information, we have to calculate them using the available information.

Here is a brief summary to obtain the remaining corners (for example
the bottom-left one):

• Starting from the bottom-right corner, lengthen the line passing through
this point with a slope given by the bottom angle.

• Find the point on the image border that belongs to such line (P2),
with some simple trigonometry operations.
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Figure 4.8: Data Matrix parameters returned by libdmtx

• Similarly, starting from the top-left corner, lengthen the line passing
through this point with a slope given by the left angle and find the
point on the image border that belongs to such line (P1).

• Given the four points, compute intersection between the lines passing
through them (by twos): the intersection point is the bottom-left corner
of the Data matrix.

In the same way it is possible to find the top-right corner, considering the
right and top slope angles. In Figure 4.9a and Figure 4.9b you can see the
graphical explanation of this process.

As we said, unfortunately the values of the corners and of the angle
slopes are reported as integers, so it is enough a simple movement, a light
variation or some other noises to change with discrete values these variables
(e.g., the library could skip from 68 to 70 degrees of marker slope, because
it does not consider decimal values, widening also the error in finding the
two corners not given by the library): this fact has a serious drawback in the
camera extrinsic parameters computation phase, since it could heavily affect
the correct marker pose estimation in the camera frame (and consequently
in the world frame), making less accurate the localization of the camera in
the world, after the EKF-SLAM phase.

Detecting a Data Matrix with libdmtx library, drawing its contour using
the four corners given by the library itself (two available and two obtained
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(a) Finding Data Matrix bottom-left
corner

(b) Finding Data Matrix top-right cor-
ner

Figure 4.9: Data Matrix missing corners

with the procedure just explained), can lead to a very inaccurate estimate of
the marker position within the camera image, as it is shown in Figure 4.10.
It is clearly visible that the four corners are way too inaccurate than they
should to be, even if the marker is correctly and quickly decoded. For this
reason, we did not considered a good solution to use data which may be
consistently wrong (in the average case, because not always the results are
as bad as in the figure, but they can be sometimes even worse) for our further
works within this thesis.

For this reason we decided to improve the corner detection process, mak-
ing use of some computer vision techniques: we took into consideration three
methods, the Good Features To Track (GFTT) and the FAST algorithms,
to find the best visible features inside a Data Matrix, and the Canny al-
gorithm together with Hough algorithm, to detect possible straight lines as
marker edges. However, in all the cases, we used the marker corner points
returned by libdmtx as starting points, in order to make then some further
refinements. Notice that from now on, when we talk about points “returned
by libdmtx ” we refer to all the four corners, both the ones directly available
and the ones retrieved with the operations reported before.

In the next sub-sections we describe the methods cited, comparing them
graphically and selecting the one which gave us better results. We used the
same camera frame (already shown in the previous figure) for every example,
in order to better analyse differences between the different techniques.
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Figure 4.10: Data Matrix detection with libdmtx corners

4.4.2 GFTT - Good Features To Track algorithm

A Data Matrix, due to its design, has a dense zone of black and white squares;
we can use them to find a more accurate estimate of the marker corners,
especially the ones that the library does not provide, i.e., the bottom-left
and the top-right, which are the ones more subject to noises.

Given a camera image, the Good Features To Track (GFTT) algorithm
[35] finds a set of relevant points in the frame, i.e., pixels with a high contrast
with respect to other surrounding pixels. The OpenCV function which com-
putes GFTT takes into consideration several parameters, like the number of
salient points to detect, the minimum possible Euclidean distance between
the returned corners, a parameter characterizing the minimal accepted qual-
ity of image corners and a mask which defines a subset of the camera image in
which look for relevant points. The general idea we had was to detect all the
possible corners on the external top and right borders, more specifically the
ones laying on the clock track of the marker finder pattern, and then, with
these points, through linear regression, fit two lines which should represent
exactly the top and the right edges of the Data Matrix. The intersection of
these two lines would be the correct top-right marker corner. We used GFTT
algorithm also to detect correctly the bottom-left Data Matrix corner, since
it stands out pretty clearly among the surrounding lighter pixels.

To gain even more accuracy during the detection of the top-right corner,
we decided to process these operations (explained further in details) in two
sweeps, the first one useful to get a more accurate estimate of the marker
top-right and bottom-left corners than the ones obtained through the libdmtx
library, the second one useful to further refine these estimates, in case of poor
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results after the first sweep, due to very wrong slope values calculated by
the library.

Unfortunately, there is a major drawback in the mentioned process:
GFTT is very inefficient in terms of time proportionally to the image size,
because it analyses the whole image to find the salient points, even if we
use a mask around the marker, since the algorithm searches anyway inside
the whole frame and then shows only the corners within the specified mask.
The average time of a GFTT function call is around 18-23 milliseconds, and
considering that we use it five times (three in the first sweep to find the
bottom-left corner and the two fragmented edges, and two in the second
sweep to refine the edges), the total time costs for corners refinement can be
excessive, in particular if the application should run in real time.

For this reason, we process with GFTT only a region of interest (ROI) of
the camera image, containing only the zone around the actual Data Matrix:
we established a fixed offset from the marker corners in order to “cut” the
frame and analyse only the sub-image, just like if it is a different new image.
In Figure 4.11 you can see an image with a marker and the ROI inside which
the GFTT algorithm operates. This expedient lowers the execution time
to about 5-8 milliseconds, depending on how big is the ROI with respect
to the actual frame size: the bigger it is, the longer it takes to GFTT to
execute, with the limit case in which the ROI is as big as the whole image.
After having specified a ROI, we can use the GFTT algorithm to find more
precisely the bottom-left and top-right marker corners.

Figure 4.11: Region-Of-Interest inside which compute GFTT algorithm
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Figure 4.12: GFTT mask for bottom-left point detection

Bottom-left point

Regarding the bottom-left point, we decided to keep its estimate after just
the first sweep, because in almost all the situations a second sweep would
not add any better refinement than it already got after the first sweep.

In Figure 4.12 it is graphically explained how GFTT finds the bottom-
left corner: first of all, we set a circular mask with center in the unstable
bottom-left point returned by the library and diameter proportional to the
Data Matrix length in the image (the smaller the marker appears inside the
frame, the smaller the circle is).

Secondly, we used GFTT to find the corner (coloured in red in the figure),
imposing to return only one point, that in most cases is the corner we were
looking for, since it is the only one present, even if it may rarely happen
that distortion or light variations affect the results and get GFTT to find a
close, but wrong, point. After the GFTT operation we computed a corner
sub-pixel refinement [40], to minimize possible errors and get a corner with
better accuracy.

In order to find the top-right corner we had to use alternative techniques,
because such corner in Data Matrix is actually a blank point, so it is not
possible to directly use GFTT to find it, as in the bottom-left point case. We
have to find the two lines corresponding to the top and right marker edges,
starting from the points present on such dashed borders, and then we have
to compute the intersection between these two lines. GFTT could help to
select the points we are talking about.
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Masks selection

Still considering only the ROI within the image, in order to find only the
relevant points laying on the Data Matrix top and right edges we use two
masks that extend along the mentioned marker borders. From the four raw
points obtained from library, we created two linear masks, for the top edge
(starting from the top-left to the top-right marker corner) and for the right
edge (starting from the bottom-right to the top-right corner), as shown in
Figure 4.13.

To handle cases in which the camera is very slanted with respect to the
visual marker, we set the top mask thickness to be proportional to the left
edge length, and the right mask thickness to be proportional to the bottom
edge length. For instance, if the Data Matrix is very stretched along its
height (so that it appears as a rectangle), the top mask would be shorter but
also thicker, to detect the stretched squares.

GFTT with white points deletion

Once we obtained our masks, we need to execute the GFTT algorithm.
For the first sweep, we set a very low level of quality for the features to
be detected and a relatively high number of maximum corners to detect
(about 30), so to be sure to find at least all the points laying on the external
borders. Since there is the possibility that GFTT finds also a large number
of useless dots, even laying on white zones, we processed the set of detected
points to a further refinement: we deleted from the set all the points above a

Figure 4.13: Linear masks for top and right edges in the first sweep
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specified color threshold (in grayscale terms), i.e., the points with a non-dark
colouring, to be sure to get rid of corners on white areas. The results before
and after this operation are shown in Figure 4.14.

Fit lines

Now that we obtained two sets of corners which represent in a quite accurate
way all the corners of the squares composing the top and right edges, we
used these points to fit two lines passing through them, using the OpenCV
function fitLine.

Computing the intersection bewteen these two lines, we found a new
top-right corner, more precise than the one directly calculated with libdmtx.

There is a major limit in this operation: in order to compute a linear
regression on a set of points with the OpenCV function, there must be at
least 4 such points, otherwise the algorithm fails to execute. For this reason,
if GFTT finds only 3 features or less, or after the points deletion we do not
have at least 4 points, the whole procedure stops and the top-right corner of
the barcode is not refined.

After the first phase, we executed again the same steps just described
(with the exception of the bottom-left point, which we explained was al-
ready accurate after just one GFTT execution), considering the new top-
right point found for all the operations. Even if in most cases the first sweep
would have been sufficient, we decided to execute twice the operations previ-
ously described to gain more accuracy in marker detection within the camera
image, in order to get a better barcode pose estimation in camera coordinates
system.

The operations executed are further refined: for example, the masks along
the dotted edges are built to be thinner than previously and we force GFTT
to search a smaller number of points (about 15), with a high quality value,
so that only salient corners could be recognized. In the end, we executed
again two linear regression operations to fit the straight lines passing through
the detected points, which in the optimal case are exactly the top and the
right borders of the Data Matrix: the intersection between them gave us
the correct top-right marker point, that could now replace the original one
provided by libdmtx.
After the two-sweep operations, we got as result an improved estimate of

two Data Matrix points: the top-right and the bottom-left ones. We are now
able to draw a precise contour around the marker edges, using the two new
corners and the ones initially provided by the library, i.e., the bottom-right
and the top-left points. These latter ones are in general precise, because



64 Chapter 4. Data Matrix visual detection and pose estimation

(a) GFTT points detected in the first
sweep before deletion

(b) GFTT points detected in the first
sweep after deletion

Figure 4.14: GFTT points detection and deletion

they are directly returned by libdmtx, without any supplementary operation,
but for this reason they still suffer of a slight inaccuracy: they are retrieved
with integer values. A further application of a sub-pixel corner refinement
generally helps to sharpen their precision in pixel terms. Figure 4.15 shows
the sought marker contour. It is clearly visible that it fits almost perfectly
with the effective marker perimeter, improving the pixel estimates with re-
spect to the case in which the original four corners without refinements were
used. Of course results are not always so perfect, because there can be still
some imprecisions due to image distortion and blurring or to changes in
light intensity, but in the general case the improvements using GFTT are

Figure 4.15: Data Matrix final contour with GFTT
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Figure 4.16: Data Matrix final contour with GFTT - far perspective

remarkable.
Using GFTT methods for marker corners polishing also gives good re-

sults when the marker is positioned far from the camera, like 5-6 m (see
Figure 4.16): of course we cannot expect a precision comparable to the case
in which the Data Matrix is very close, but on average we found it acceptable
(numerical results are proposed in the next chapter) and better than without
using GFTT, anyway.

It is important to point out that, as we said, this set of operations does
not always terminate correctly, because GFTT should find at least 4 features
on the marker edges in order to let the fitLine OpenCV function to fit the
two lines we were talking about. This can sometimes be an important limita-
tion, because it lowers the marker recognition rate: even if libdmtx correctly
detects a Data Matrix, whenever GFTT does not manage to find a sufficient
quantity of features along the barcode edges the marker it is considered lost,
like if there is none in the image, leading to a heavy information loss for
the EKF-SLAM algorithm. For this reason we decided to handle with the
original Data Matrix contour (with the points returned by libdmtx ) in case
of GFTT failure, in order to have good corner estimates in most situations,
but without loosing too many detections at the same time.

4.4.3 Canny edge detection and Hough algorithms

Beyond GFTT applications, we tried to use and analyse other computer
vision methods to see if we could get more accuracy in marker graphical
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detection. Since a Data Matrix has two clear black borders, we considered
to use an edge detector to find straight lines patterns within the image and
hopefully to precisely locate the marker on the two-dimensional plane.

A consolidate algorithm widely used for edge detection is the one created
by Canny [4], which, given a camera image, returns a black image with a
set of white curved and straight lines corresponding to the most outstanding
edges: this image is computed by finding all the luminosity gradients in the
original frame, where bigger gradients corresponds with higher probability
to edges. Given the output image with highlighted edges, a way to pick out
straight lines is to employ Hough algorithm [16], which, with the use of an
accumulator, manages to return a set of straight infinite lines equations that
characterize exactly all the edges available in the edge image (i.e., the one
resulting after Canny application).

There are some parameters to set while using these two algorithms, like
intensity threshold, maximum number of lines, accumulator threshold, that
may help to better spot the correct lines we are looking for, i.e., the four
Data Matrix borders.

Computing the algorithms just described over the whole camera frame
would be a nonsense, because in a full image the number of relevant edges
is huge. This fact makes highly improbable to locate correctly a small Data
Matrix within the image: even if setting the thresholds to be very restrictive
can reduce the number of edges, we could actually loose edges belonging to
the marker as well.

Like in the case of GFTT application, we decided to execute the two
algorithms on sub-areas of the whole image, trying to catch only the lines
on the marker borders, in order to operate only on them and not on a vast
number of lines. Starting from the classic points returned by libdmtx we are
able to build four little rectangular masks around each Data Matrix border,
in the way shown in Figure 4.17.

With this trick we were able to run the Canny edge detector only on the
specified ROIs, in order to find more accurately only the marker borders.
The result after Canny algorithm execution is shown in Figure 4.18, where
the Data Matrix borders are easily distinguishable in the four masks.

Now we can use each small image with relevant edges to execute Hough
algorithm, find linear patterns and pick out a set of candidate lines: setting
a proper value for the accumulator threshold, to avoid to detect too many
or too few lines, gave us a good result, like the one shown in Figure 4.19a.

Between all the retrieved lines, we had to find the ones corresponding
exactly to the marker edges. To do that we could only use the approximative
information we had from the Data Matrix library: the edge slope (in integer
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Figure 4.17: ROIs around the marker borders for Canny application

degrees) and the edge endpoints (i.e., the marker corners, taken two by two).
For each set of lines of a marker edge, we did the following: first of all, we
picked out the ones having a slope angle value the closest possible to the one
suggested by libdmtx (in case of multiple parallel candidates with such slope,
we chose all of them); then, among the remaining lines, we selected the only
one for which is minimal the distance from the two library edge corners. We
obtained with this method the four definitive candidate lines for the marker
borders, as shown in Figure 4.19b.

At this point, having four line equations, it was pretty straightforward

(a) Top edge

(b)
Left
edge

(c)
Right
edge

(d) Bottom edge

Figure 4.18: Data Matrix edges after Canny detection
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(a) Lines selected by Hough algorithm
for each Data Matrix border

(b) Candidate lines for Data Matrix bor-
ders

Figure 4.19: Hough algorithm lines selection

to calculate the four intersections, obtaining the final four Data Matrix cor-
ners, and consequently the whole marker contour. Also in this case, if the
algorithm does not return at least one line per ROI, we use the original Data
Matrix points for pose estimation.

In Figure 4.20 we reported the final result for the Data Matrix already
considered in the previous figures: since the marker is pretty close to the
camera (about 1 meter), Canny and Hough algorithm managed to perfectly
detect the barcode edges and locate it within the image, exactly like the case
in which we used GFTT.

This method has a huge drawback, though: the candidate lines selec-
tion after executing Canny and Hough algorithms is based on information
given from libdmtx, which are very inaccurate, because they are handled with
integer values, without using a better precision.

A slight external noise is enough to make the library think that the Data
Matrix is, for example, rotated of a wrong angle respect to its real inclination
or that the corner points are shifted of some pixels respect their real location,
especially when the marker is at a substantial distance from the camera, in
which case the library looses precision.

This can affect the lines selection in the described method in two ways:

• a line with a wrong slope is picked, so that it may not represent the
correct marker edge;

• a line parallel to the real edge is picked, because even if the slope is the
right one, the wrong estimates of the corner points may lead to choose
a line further than the correct border.
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Figure 4.20: Data Matrix final contour with Canny

Figure 4.21 is an example of the latter case, considering a Data Matrix far
from the camera: it is visible that the left edge is misclassified because a
near parallel line was chosen as edge candidate.

4.4.4 FAST algorithm

FAST (Features from Accelerated Segment Test) algorithm [33] is another
efficient corner detector. OpenCV provides a function to compute it over
an image with return as set of points corresponding to salient features. Un-
fortunately, the function does not provide the possibility to specify masks
where compute the search on. For this reason, and also to make the scan
much faster, we decided to run the algorithm over the four ROIs already
described talking about Canny algorithm (refer again to Figure 4.17). The
average time employed to detect features over a small ROI is about 1-3 ms,
so the algorithm time complexity can be ignored.

The only problem using this method is that OpenCV ROIs can have only
rectangular shape. If the Data Matrix is slanted (the worst case when it has a
45 degrees inclination), the regions of interest would cover also internal parts
of the marker, detecting points not laying on the marker edges, therefore
useless. In order to pass over this problem, we apply two corrections:

• like in the case of GFTT refinement, we delete all the points that have
a white colouration over a certain threshold: in this way we do not risk
to consider points falling out of the Data Matrix black corners;
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Figure 4.21: Data Matrix final contour with Canny - far perspective

• given the libdmtx corner points, we select the features whose orthogonal
distance from the segments joining the marker corners (considered by
twos) is under a certain threshold (i.e., 2 pixels).

In this way we aim to select only features laying on the marker edges and
then fit the lines passing through them, finding the four intersections which
hopefully correspond to the Data Matrix corners.

Figure 4.22 shows the results of the described corrections: as you can
see, the algorithm finds a very high number of salient points, even off Data
Matrix area, but after deleting the points according to what just explained,
we get a nice result.

Of course, it is more difficult for FAST algorithm to find features along
the marker straight edges, because there are no corners along them. In
this cases, we do not fit the corresponding line and we do not refine the
correspondent corners, keeping the ones returned by libdmtx. A generic result
of corners refinement using FAST algorithm is shown in Figure 4.23.

We briefly mention that the method just described for FAST algorithm
can be applied in the same way (which means executing exactly the same op-
erations) using GFTT algorithm for features detections. The results are very
similar to the ones here reported, but in this specific case FAST algorithm
is more desirable, because it is faster than GFTT. On the other hand, we
already specified the pros of GFTT, having the possibility to select precise
masks where to execute the search.
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(a) Fast points before deletion (b) FAST points after deletion

Figure 4.22: FAST points detection

4.5 Data Matrix pose quantitative analysis

In this section, we report the numerical analysis about marker pose esti-
mation with the vision techniques described in the previous section. We
compare the the marker pose values (translation and Euler angles) obtained
after pose estimation with marker detection using GFTT, FAST and Canny
together with Hough algorithms.

We did several trials, first to analyse the marker detection static error
on the six pose variables over a static scene, comparing their values with a
classic chessboard pose values (which can be calculated with high accuracy),
then we computed the marker pose error over a dynamic scene (which means

Figure 4.23: Data Matrix final contour with FAST algorithm
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with a moving camera), always analysing the difference between the marker
and the chessboard pose values.

4.5.1 Data Matrix detection - static error

In order to choose the best computer vision algorithm to refine the marker
image points, we run the detection process for marker recognition with a
specific refinement algorithm for a certain number of cycles under different
conditions, on a static scene; then we solved the perspective N-points prob-
lem obtaining how the marker is translated and rotated with respect to the
camera, i.e. translation coordinates and Euler angles (a total of 6 values, for
6 degrees of freedom) of the marker system. Similarly, we retrieved the same
pose values in camera reference frame for a 9 × 9 chessboard. Finally, for
each of the 6 variables, we compared the obtained results for the marker and
the chessboard: in fact, since the chessboard has a large number of internal
points (exactly 81 internal intersections) easily detectable with the help of
OpenCV because they follow a repetitive pattern, it is possible to calculate
almost perfectly its pose in camera coordinates, with a very low error rate.
The comparison gave us an indication of how good was the chosen corners
refinement algorithm.

We built a rigid composition of a marker with a chessboard, as depicted
in Figure 4.24: chessboard system origin is on the top-left corner (x-axis
points toward down and y-axis toward right), without considering the most
external squares, while Data Matrix origin is as usual its bottom-left corner
but it is rotated in this case to make the two coordinates systems equivalent,
except of a simple translation along x-axis. Notice that in both systems the
objects lay only on XY plane, with null values along z-axis.

With this configuration, it is possible to detect a Data Matrix and a
chessboard in the same frame, compute their pose with respect to the camera
system and compare the resulting poses. Of course, first it is necessary
to overlap the two coordinates systems, in order to have comparable pose
values. If we call RTC

Ch′ the new chessboard pose in camera system (i.e., the
chessboard system shifted), we get

RTC
Ch′ =

[
RC

Ch TC
Ch

0 1

][
RCh

Ch′ TCh
Ch′

0 1

]
=

=

[
RC

ChR
Ch
Ch′ RC
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Ch

0 1

]
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0 1

]

(4.18)
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Figure 4.24: Marker on chessboard

where RC
Ch and TC

Ch represent the original marker pose in camera frame,
RCh

Ch′ is an identity matrix (there is no rotation translating the chessboard
coordinates system on the marker) and TCh

Ch′ = [d, 0, 0]T is the chessboard
translation to overlap the marker coordinates (note that it is just a shift
along x-axis of a certain value d).

In order to analyse the static error, we processed the Data Matrix de-
tection with all the three described refinement algorithms for some known
marker-camera (and consequently chessboard-camera) configurations. In
particular:

• marker positioned close to the camera (about 1.5 m) and with a con-
sistent inclination (Figure 4.25a)

• marker positioned close (about 1.4 m) and frontal to the camera (Fig-
ure 4.25b)

• marker positioned far from the camera (about 2.55 m) and with a
consistent inclination (Figure 4.25c)

• marker positioned far (about 2.45 m) and frontal to the camera (Fig-
ure 4.25d)
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(a) (b)

(c) (d)

Figure 4.25: Marker-camera configurations for static error analysis

For each one of these static configurations we run the recognition process
over about 400 image frames and then we show the results obtained compar-
ing the estimated chessboard pose with the estimated marker pose, which
means calculating their errors as the difference between their position values
(X, Y and Z translations - in meters) and attitude values (roll (φ), pitch (θ)
and yaw (ψ) Euler angles - in degrees), considering all the vision algorithm
for corner refinement previously described (GFTT, FAST and Canny).

In the figures shown below we report the cited errors, with their mean
and median values. We expected to see errors values with zero mean, because
we assumed that the rototranslation between the chessboard and the marker
systems corresponded only to a simple translation along X-axis, as explained
before. This is an optimistic assumption, because minor rotations or trans-
lations may have occurred from human errors, which can cause a slightly
wrong rototranslation than the real one. For this reason, we obtained errors
with mean slightly different from zero. We report also the median values,
because it happens (especially when the marker is far from the camera) that
PnP problem is not solved correctly, so there may be outliers in error pose
values, and the median is more robust than the mean in these situations.

We need to say that the marker-chessboard composition we built can
influence the marker pose estimate, because when the marker is turned upside
down, libdmtx returns corners less precise than usual, and this can affect the
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pose estimate, in particular when we use GFTT algorithm, in which we refine
only two of the four marker corners. However, we present this composition
to show the possible errors in the worst case.

Notice that in the next set of figures all the graphics are reported with
the same axis range for each method in the same configuration, but the range
changes in every configuration, so refer to the values next to the chart axes.

Marker transversal and close to camera objective

The pose errors for this configuration using GFTT, FAST and Canny algo-
rithms are respectively reported in Figure 4.26, 4.27 and 4.28, and summa-
rized in Table 4.2.

Considering the errors on position values, we notice that for all the three
vision algorithms the mean and median values are very close to zero (for the
considerations previously explained), moved away of few millimetres for X
and Y coordinates and and few centimetres for Z coordinate. As you can see
in the mentioned figures, also the relative maximum error gap is very low,
with GFTT that has the lowest gaps (millimeters order) than the other two
algorithms (centimeters order).

As far as it concerns the error on attitudes, the same considerations
about means and medians hold. We notice that the errors are very contained
around the mean value for GFTT algorithm, while using FAST there is a
wider error gap on the angles (i.e., about 3.5 degrees on roll, comparing to
0.33 degrees in GFTT).

Canny method provides us a particular case: since the detected lines are
always the same around a Data Matrix (i.e., the algorithm chooses often the
right line or a very close parallel one), the error graphics mostly report dis-
crete values, so we see the errors to “jump” from two values (i.e., considering
roll angle, from -2 to 2 degrees). In this cases, we notice the difference be-
tween means and medians: for example, considering the error on pitch angle,
we see that the median value is -0.0245 degrees, but because of a consistent
number of outliers, the mean value is brought up to about 1.1 degrees. Un-
fortunately, this pattern is quite common using Canny algorithm, and as we
will show, it causes bad results on far distances.

To summarize, in this configuration we get the lowest errors using GFTT
method, because it is stable and keeps the error gaps very low, without
any visible outlier. FAST and Canny algorithms, instead, show wider error
ranges over all the pose values, with clearly visible wrong values which highly
increase the pose errors, especially using Canny, even though they are still
low, due to the small distance from marker to camera.
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Figure 4.26: Errors between chessboard and marker poses with mean (green)
and median (red) values using GFTT method in lateral close configuration
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Figure 4.27: Errors between chessboard and marker poses with mean (green)
and median (red) values using FAST method in lateral close configuration
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Figure 4.28: Errors between chessboard and marker poses with mean (green)
and median (red) values using Canny method in lateral close configuration
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Vision algorithm
GFTT FAST Canny

Mean value

φ (degrees) 0.4567 0.1065 -0.1598
θ (degrees) -0.4539 -0.9747 1.1043
ψ (degrees) 0.3684 0.2336 -0.7857

X (m) 0.0042 0.0045 -0.002
Y (m) 0.001 -0.003 -0.0037
Z (m) -0.0253 -0.0289 0.0096

Median value

φ (degrees) 0.4735 0.314 -0.19
θ (degrees) -0.4537 -0.9659 -0.0245
ψ (degrees) 0.368 0.219 -0.507

X (m) 0.0041 0.0055 -0.0002
Y (m) 0.0009 -0.0015 0.0005
Z (m) -0.025 -0.0331 -0.0047

Max error gap

φ (degrees) 0.336 3.547 5.894
θ (degrees) 0.0963 2.131 3.805
ψ (degrees) 0.116 1.321 1.393

X (m) 0.0013 0.0115 0.017
Y (m) 0.0012 0.0103 0.019
Z (m) 0.0066 0.062 0.117

Table 4.2: Lateral close marker-camera configuration - summary
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Marker frontal and close to camera objective

When a marker is frontal to the camera, the PnP problem is critic, using
a low number of image points. In fact, considering the plane where the
marker lays (XY plane in our convention), a change in its inclination of
few degrees around X or Y axis does not affect in a noticeable way the
position of the pixels in the image, from the point of view of the camera.
For this reason, a slight variation in pixel positions due to external noises
may result in consistent mistakes in marker orientation (and, in minor way,
position) estimates. This situation can happen even if the marker is not
frontal, because the noise can always shift pixel positions, but of course it
happens much less.

The pose errors for the considered configuration using GFTT, FAST and
Canny algorithms are respectively reported in Figure 4.29, 4.30 and 4.31,
and summarized in Table 4.3.

Also in this configuration, we notice that for the position values, they
same considerations mentioned before hold. That is, we have mean and
median values very close to zero for each refinement algorithm, and in general
very low error gaps (in the order of centimeters using FAST and Canny,
and millimeters usign GFTT), even if we notice some unbalanced peaks,
especially for Canny algorithm. Such peaks are due to the fact just explained,
but on position errors are still limited, while if we look at orientation errors
we see that the peaks heavily affect the error gaps, because they show that the
marker attitude was wrongly estimated (and this is clearly visible looking
at Canny, where the go out from the reported graphics, and, less clearly,
looking at FAST algorithms), even if it is not a frequent case.

GFTT seems to work in good way, because errors are contained around
mean values. However, looking carefully at mean and median values, we can
notice that the average error on pitch angle using GFTT is very far from zero,
in fact it is about 14-15 degrees. Since only GFTT presents this oddity, we
understand that it represents an exception. Even though the algorithm itself
returns stable results (as we said, low error gaps), a high mean value like the
one reported means that the marker is detected with a wrong orientation
most of the times. This is a huge flaw for detection using GFTT, as we will
see again later talking about dynamic errors. We have to say that this fact
is not a common pattern, because it depends much on how the Data Matrix
is rotated: when its orientation is straight, this problem does not occur. We
reported anyway the worst case, to show every possible flaw.
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Figure 4.29: Errors between chessboard and marker poses with mean (green)
and median (red) values usin GFTT method in frontal close configuration
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Figure 4.30: Errors between chessboard and marker poses with mean (green)
and median (red) values using FAST method in frontal close configuration
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Figure 4.31: Errors between chessboard and marker poses with mean (green)
and median (red) values using Canny method in frontal close configuration
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Vision algorithm
GFTT FAST Canny

Mean value

φ (degrees) 4.3962 -0.57 -1.98
θ (degrees) 14.7852 3.1695 1.859
ψ (degrees) -2.0962 -0.4181 -0.4529

X (m) 0.0001 0.0003 -0.0008
Y (m) -0.0061 -0.0015 -0.0012
Z (m) 0.0148 -0.0234 0.0091

Median value

φ (degrees) 4.3165 0.267 -3.128
θ (degrees) 15.1734 3.996 2.2097
ψ (degrees) -2.078 -0.473 -0.707

X (m) 0.0000 0.0004 -0.0014
Y (m) -0.006 -0.0014 -0.0016
Z (m) 0.015 -0.0248 0.0104

Max error gap

φ (degrees) 6.837 27.849 27.344
θ (degrees) 5.183 20.7841 44.2126
ψ (degrees) 0.99 2.312 6.838

X (m) 0.003 0.0083 0.0122
Y (m) 0.0024 0.011 0.0177
Z (m) 0.0176 0.0568 0.0753

Table 4.3: Frontal close marker-camera configuration - summary
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Marker transversal and far from camera objective

When the Data Matrix is positioned relatively far from the camera (over
2 metres), more uncertainty is introduced in the marker pose estimation
process, due to the fact that the marker has a very small size compared to
the whole image size. Therefore, we expect to see higher error values on
every pose value, but keeping the marker transversal to the camera, we hope
to see stable patterns respect to the case of frontal marker.

The pose errors for the considered configuration using GFTT, FAST
and Canny algorithms are respectively reported in Figure 4.32, 4.33 and
4.34, and summarized in Table 4.4. We still notice precise values for X and
Y coordinates errors (few centimetres), with almost zero-mean, for all the
algorithms (Canny performs a little bit worse). Regarding Z coordinate, we
see that when the marker is far (about 2.5 m), the error is quite high for
GFTT and FAST, with an error gap of about 20 cm, while using Canny the
error gap is even 40 cm, with some outliers that increase the total gap (they
go out of the reported graphics). Also median values on Z show that the
marker distance is always slightly overestimated than the real one.

Talking about orientation values, we observe that GFTT still is quite
stable, since error gaps are relatively reduced and mean values close to zero.
Some outliers are present, but their value is restrained, anyway. We find
a different situation for the remaining algorithms. FAST shows some out-
liers (especially visible in roll and pitch angle errors), due to the wrongly
estimated pose, which highly increase the error gap, but they are very few
respect to the whole dataset. In fact, in the figure you can see that the
median value is drawn along the correct error distribution, because it is less
sensible to said outliers. Canny algorithm instead, performs quite poorly
because there is a larger number of outliers, and in general we do not have
zero-median errors, because it is likely that the marker pose was estimated
wrongly. This was due to the fact that Canny algorithm could be sensibly
wrong in detecting marker edges from large distances, because of the parallel
lines near the Data Matrix borders and the low accuracy granted by libdmtx
(refer again to Section 4.4).

As general results, we still confirm the stability given by GFTT algo-
rithm, but also FAST errors follow a quite linear pattern, even if the de-
tection process seldom suffers of wrong pose estimation. Canny algorithm
instead is much more sensible to noise and this results in high pose errors.
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Figure 4.32: Errors between chessboard and marker poses with mean (green)
and median (red) values using GFTT method in lateral far configuration
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Figure 4.33: Errors between chessboard and marker poses with mean (green)
and median (red) values using FAST method in lateral far configuration
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Figure 4.34: Errors between chessboard and marker poses with mean (green)
and median (red) values using Canny method in lateral far configuration
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Vision algorithm
GFTT FAST Canny

Mean value

φ (degrees) 0.157 -7.4024 4.5229
θ (degrees) -1.851 4.4572 10.9072
ψ (degrees) 0.2435 0.0232 -0.4232

X (m) 0.0234 0.0244 0.0216
Y (m) -0.0007 -0.001 -0.0012
Z (m) -0.1258 -0.1218 -0.2103

Median value

φ (degrees) 0.591 0.653 14.905
θ (degrees) -1.7326 -1.6653 8.8438
ψ (degrees) 0.384 0.442 0.1595

X (m) 0.0228 0.0238 0.0238
Y (m) -0.0011 -0.001 -0.0018
Z (m) -0.1298 -0.13 -0.2184

Max error gap

φ (degrees) 6.321 71.212 97.091
θ (degrees) 4.4145 58.1294 57.9923
ψ (degrees) 3.388 8.153 7.871

X (m) 0.0207 0.016 0.0616
Y (m) 0.0109 0.0191 0.0954
Z (m) 0.1906 0.2126 0.9571

Table 4.4: Lateral far marker-camera configuration - summary
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Marker frontal and far from camera objective

This last situation represents the worst case. It introduces errors due to
the high distances and to the fact that PnP has a high error rate in pose
estimation when the marker is frontal, because, as said, a little change in
pixel location due to noises can cause a wrong pose estimate.

The pose errors for the considered configuration using GFTT, FAST and
Canny algorithms are respectively reported in Figure 4.35, 4.36 and 4.37,
and summarized in Table 4.5.

As the other configurations, errors on X and Y coordinates are very
low, with average close to zero, for all the three algorithms. Also error
values on Z coordinate follow the same trend as in the other configuration
with the marker far from the camera. GFTT has an error with almost zero
mean ranging in 20 cm, FAST slightly overestimates the marker distance of
few centimeters but has an error range of about 15 cm, with some isolated
higher peaks, and finally Canny highly overestimates the marker distance
and presents an average error gap of about 30 cm, with some really high
peaks which increase the maximum error range (these peaks go out of the
reported graphics).

Unfortunately, all the algorithms do not perform very well over attitude
errors. GFTT suffers of the same drawback described earlier, when the
marker is frontal to the camera. Consider, for example, the pitch angle er-
ror: along the median, the error is quite stable, but the high median means
that the pose was badly estimated. The high peaks are isolated, but they
represent the real angle value, because they are close to zero. The same
thing happens also using FAST algorithm, even though there are much more
peaks, which means that the pose estimation process gets the right results
more often. In general, anyway, errors on orientation angles are quite high,
especially using Canny algorithm, where we can notice very big gaps.

After analysing the marker pose estimation using the three vision algo-
rithms in all the described marker-camera configurations, we can draw some
conclusions. Canny algorithm does not fit as refinement algorithm for marker
corners, because it can cause very wrong pose estimates. As explained talk-
ing about this algorithm, this is due from the fact that often Canny chooses
the wrong marker edges (i.e., a parallel one very close to the real edge), like
the ones internal, making the marker appear smaller than it really is. The
static error using this algorithm is too high and as we will see, in dynamic
scenes it get worse. For this reason, till this point we have information to
discard Canny algorithm from the candidate refinement processes.
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Figure 4.35: Errors between chessboard and marker poses with mean (green)
and median (red) values using GFTT method in frontal far configuration
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(b) Roll error
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(d) Pitch error
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Figure 4.36: Errors between chessboard and marker poses with mean (green)
and median (red) values using FAST method in frontal far configuration
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Figure 4.37: Errors between chessboard and marker poses with mean (green)
and median (red) values using Canny method in frontal far configuration
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Vision algorithm
GFTT FAST Canny

Mean value

φ (degrees) -4.8348 -6.5459 -3.9904
θ (degrees) 23.7559 16.7176 11.2258
ψ (degrees) -0.7239 -0.4419 -0.6449

X (m) 0.0003 -0.0005 -0.0045
Y (m) -0.004 -0.0024 0.0036
Z (m) 0.0054 -0.0468 -0.1397

Median value

φ (degrees) -2.2485 -8.226 -2.563
θ (degrees) 26.0806 20.1131 13.4123
ψ (degrees) -0.8245 -0.587 -0.793

X (m) 0.0007 -0.0005 -0.0077
Y (m) -0.0034 -0.0022 0.0029
Z (m) -0.0013 -0.0545 -0.1316

Max error gap

φ (degrees) 56.56 52.801 99.601
θ (degrees) 44.0586 42.6147 89.3362
ψ (degrees) 8.734 7.379 6.372

X (m) 0.0144 0.014 0.0445
Y (m) 0.0212 0.0266 0.0908
Z (m) 0.2684 0.2805 0.9062

Table 4.5: Frontal far marker-camera configuration - summary
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The analysis between the other two algorithms is more complicated. We
saw that they behave similarly in almost all the presented cases, with GFTT
having on average lower error gaps, which confirms a better algorithm sta-
bility than FAST. This is due to the fact that using GFTT, we refine the
bottom-left and top-right Data Matrix corners in accurate way, defining se-
lected and thorough masks which help improving the overall stability. Unfor-
tunately, the remaining marker corners are the original returned by libdmtx,
with all the problems already widely described. This can cause wrong pose
estimates in certain marker configurations (like the one presented, where the
marker is turned upside down), because the points not refined are detected
in a slightly wrong location, but enough to misclassify the marker pose, and
since the algorithm itself is stable, the pose is continuously badly estimated.
As we showed, this fact was clearly visible in the configuration with the
marker close and frontal to the camera, looking at pitch rotation. Of course
this cannot be considered as a general case, because markers are more often
positioned in straight way within the environment, but showing a particular
case can dig out the possible flaws as the one just cited. FAST algorithm
instead presents higher errors over pose values, but since all the four marker
corners are refined, completely wrong estimates are less common than using
GFTT.

From these results, we can conclude that in a general situation in which
we do not know how markers can be positioned in the world, using FAST
algorithm would be more appropriate, even if less stable, because the Kalman
filter manages to handle the noises, but if the pose is always estimated in
the wrong way (like using GFTT), the filter does not handle it, thinking it
is the correct estimate.

4.5.2 Data Matrix detection - dynamic error

In the previous section, we described and analysed the errors between marker
and chessboard pose values in camera reference frame, on a static scene in
different marker-camera configurations. We assumed that chessboard pose
was very accurate to be chosen as the real pose in camera coordinates, having
in this way a comparison method with the marker pose.

We repeated the same processes described talking about static errors
also on a dynamic scene. We used the same marker-chessboard composition
presented before and we moved it following a certain trajectory. In Figure
4.38 we report the trajectory we followed. While moving the marker, we
took care to vary its orientation with respect to the camera, to cover all the
configurations mentioned in the previous section. So we rotated marker and
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Figure 4.38: Trajectory followed in the dynamic scene

chessboard along the tangent to the shown trajectory. This means that when
the marker is in the middle of the two bends, it is frontal to the camera, while
when it is at the trajectory sides, it is transversal respect to the camera.

The pose errors between chessboard and marker for the considered mo-
tion trajectory using GFTT, FAST and Canny algorithms are respectively
reported in Figure 4.39, 4.40 and 4.41.

In terms of frames, to better understand the next figures, the first trajec-
tory part (from point 1 to point 2) goes (approximatively) from frame 0 to
frame 200, the trajectory part from 2 to 3 goes from frame 250 to 300, then
from frame 300 to frame 450 we moved the marker from 3 to 4 and finally
we came back to the starting point till frame 520.

We notice that errors on Y and Z coordinates are more contained in
the first trajectory part, using all the three algorithms, and they increase
when the marker is far and goes along the trajectory part from 3 to 4. As we
expect after the results obtained analysing the static scenes, Canny algorithm
performs worse, having a higher error range, while GFTT and FAST behave
similarly.

Regarding orientation errors, we see that using Canny and FAST algo-
rithms, the rotation error values have almost zero-mean, with outliers when
the marker is far from the camera (trajectory part from 3 to 4) which mean
that the marker pose was wrongly estimated. Using Canny, these outliers
are much more frequent than using FAST, and also their value is higher, con-
firming that Canny algorithm should not be considered in our applications.

GFTT is a particular case: from the figure, we see that the orientation
error values are not limited to a straight bandwidth, but the are changing
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over time. In fact, the marker pose is correctly estimated in the trajectory
beginning (point 1), when the marker is transversal to the camera, but mov-
ing from point 1 to 2 and rotating the marker more and more frontal to
the camera force the error to slowly increase, because the pose is turning
wrong frame after frame. We can notice that the algorithm keeps its stabil-
ity, varying the error in a very low range, but we see that the pose is more
and more incorrectly estimated. In the last path, we notice many outliers,
which in this specific case are the correct values, because the motion helped
GFTT to vary the pixel locations and not to fall into a static wrong pose.
As we said, this fact may be due to the absolute Data Matrix orientation,
because libdmtx may calculate in wrong way the corners not refined, so the
marker pose is badly estimated and GFTT stability keeps the orientation
values incorrect, with correct outliers due to motion.

After these considerations, we can confirm the conclusion we drew after
our static analysis. All the considered algorithms give better results (i.e.,
less error ranges) when the marker is closer to the camera objective. Canny
algorithm for corners refinement is the worst when computing the marker
pose, because it gives very noisy results over the pose variables. GFTT and
FAST algorithms introduce less noise, indeed the error is mostly contained in
a low range, with exception of some outliers resulting from completely wrong
pose estimates. As already said, although GFTT works well if we consider its
stability, even with occasional mistakes in pose calculation, in some marker
configurations it can happen that the pose estimate is continuously com-
puted in wrong way, providing the Kalman filter incorrect information while
processing the SLAM algorithm.

For these reasons, in general FAST algorithm should be employed, be-
cause even though it does not provide as much stability as GFTT, it helps to
compute the right marker pose mostly of times. The error swings would be
partly corrected thanks to the Kalman filter during SLAM algorithm while
building the environment map, anyway.

Finally, in Figure 4.42 we plotted the resulting trajectories of both marker
(in red) and chessboard (in blue) for all the three vision algorithms, again
after translating marker coordinates system to overlap with the chessboard
pose, computing Equation 4.18. The trajectories are obviously almost iden-
tical in average, with the marker having a less fluid and more noisy motion
respect to the chessboard. The highest errors were retrieved on the dis-
tance along camera z-axis. We clearly see that Canny algorithm introduces
a huge amount of error, following the right trajectory, but with too many
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Figure 4.39: Errors between chessboard and marker poses using GFTT method
in dynamic scene
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Figure 4.40: Errors between chessboard and marker poses using FAST method
in dynamic scene
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Figure 4.41: Errors between chessboard and marker poses using Canny method
in dynamic scene
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fluctuations, especially over the distance from the camera. FAST and GFTT
algorithms, again, give similar results, with a clear trajectory affected by un-
avoidable errors, so from the point of view of the position errors only, the
choice between the two algorithms could be the same. In the figure we do
not see the orientation errors (even if we provided the correspondent plots
previously), but we already said that FAST algorithm generally is to prefer
from this point of view.
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Figure 4.42: Chessboard (blue) and marker (red) trajectories respectively using
GFTT, FAST and Canny methods



Chapter 5

AIRVisualMarker library for
MoonSLAM

“I am not discouraged, because every wrong attempt discarded is another step
forward.”

Thomas A. Edison

In this chapter we describe how we integrated our library for detecting visual
markers, called AIRVisualMarker, in a EKF-SLAM framework, developed at
Artificial Intelligence & Robotics laboratory of Politecnico di Milano. First,
we briefly introduce such framework and we talk about the library main
structure; then we describe the integration between these two. Finally, we
show our experiments and analyse in details most relevant results.

5.1 MoonSLAM

MoonSLAM 1 is a project started on June, 2010, at the Artificial Intelligence
& Robotics laboratory 2 (AIRLab) at Politecnico di Milano, with the purpose
to create a robust and efficient tool which allows to design, experiment and
develop techniques for mobile robots simultaneous localization and mapping
(SLAM) in a unique complete framework.

5.1.1 Main features

In the scientific community, there is plenty of projects built to realize SLAM
applications; however, many of them are developed to solve specific sub-

1http://airlab.elet.polimi.it/index.php/MoonSlam
2http://airlab.elet.polimi.it/index.php/AIRWiki

http://airlab.elet.polimi.it/index.php/MoonSlam
http://airlab.elet.polimi.it/index.php/AIRWiki
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problems or to implement specific algorithms, making use of development
environments oriented to easy computation, at the expense of efficiency and
real-time performances.

MoonSLAM was created in order to satisfy different characteristics:

• efficiency: MoonSLAM is entirely written in C++, this guarantees a
better hardware resources management, implementation of more per-
forming algorithms, a better integration with third-party libraries and
the possibility to interface the framework with other computation tools
(such as MATLAB3 and Octave4);

• flexibility: a feature that distinguishes MoonSLAM from other frame-
works is the possibility to implement SLAM algorithms without having
to specify constrains about the motion model type, the sensor number
and type employed, the data acquisition channels, the data association
method used and the type of landmark used inside the filter;

• extensibility: the modular structure employed in MoonSLAM allows
to extend the framework with new functionalities, without having to
modify the old ones. Moreover, within a single module it is possible to
extend existing classes to add new objects, e.g., feature parametriza-
tions or new motion and camera models;

• configurability: another feature of MoonSLAM is represented by the
possibility to build SLAM software using three different implementa-
tion ways: coded, configurated and hybrid.

In coded version, the program is not fed with external configurations,
every object is created within the code, which is then compiled and
executed: this implementation is rigid, though, and does not allow
run-time configuration.

Configurated implementation, instead, allows the specification of ob-
jects and actions to execute through an external configuration file. The
program only reads what is reported in such file and executes its in-
structions. As drawback, the high configurability level increases the
configuration file scripting in a significant way.

Hybrid method is a mix of the two just mentioned: it keeps the biggest
part of the algorithm inside the code, but it uses a configuration file to
choose the objects to use, joining in this way both configurability and
low complexity advantages.

3http://www.mathworks.com/products/matlab/index.html
4http://www.gnu.org/software/octave/

http://www.mathworks.com/products/matlab/index.html
http://www.gnu.org/software/octave/
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MoonSLAM can be used for implementing a variety of SLAM algorithms
and other useful functionalities:

• monocular, stereo and omnidiretional SLAM

• classic or sub-map based EKF-SLAM

• online SLAM, based on real dataset, and SLAM in simulated environ-
ments

• 2D and 3D image processing

• 2D and 3D geometric computations

• Bayesian inference, Kalman filters creation and multivariate Gaussian
probability density management

• Bundle Adjustment and Bundle Adjusted SLAM

Thanks to the framework extensibility, it is possible to combine two or
more of the cited functionalities to create new ones.

5.1.2 External libraries

MoonSLAM framework integrates third-party GNU GLP3 libraries inside its
structure (see Figure 5.1). Between them, the main ones are:

• OpenCV libraries5: used for 2D image visualization, camera frames
acquisition, image features identification and the most common image
processing functions.

• mrpt-gui, from Mobile Robot Programming Toolkit library6: used to
create 3D scenes and environment visualizations.

• Eigen library7: used for matrix computation and linear algebra oper-
ations.

• LibConfig library8: used for configuration files acquisition and decod-
ing.

5http://opencv.willowgarage.com/wiki/
6http://www.mrpt.org/
7http://eigen.tuxfamily.org/
8http://www.hyperrealm.com/libconfig/

http://opencv.willowgarage.com/wiki/
http://www.mrpt.org/
http://eigen.tuxfamily.org/
http://www.hyperrealm.com/libconfig/
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Figure 5.1: MoonSLAM main components and relations with third-party li-
braries

5.1.3 Framework architecture

MoonSLAM is composed by a collection of classes, which are grouped li-
braries according to their main functionalities. The main libraries belonging
to MoonSLAM and our AIRVisualMarker library are shown in Figure 5.2
with a UML package diagram, explicating dependency relations between
them (with oriented arcs). We present now an overview of these already
existing libraries, describing their most relevant classes and functionalities.

AIREkfSlam

AIREkfSlam library is one of the main elements of MoonSLAM framework:
it contains the main classes needed to build an extended Kalman filter, to
handle variables inside the filter itself and to execute the EKF-SLAM pre-
diction and update phases.

The primary class around which the whole library is built around is
called Ekf : it provides all the functionalities needed to create and manage an
extended Kalman filter. The class logic structure is composed by three parts:
one containing the dynamic elements (dynamics), one containing the static
elements (parameters) and one containing the observed features (landmarks).

The “dynamics” part includes all the variables which estimate the robot
physical state, like its position, its attitude and its linear and angular velocity.
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Figure 5.2: MoonSLAM main modules graph and dependencies between them

The “parameters” parts covers all the elements assuming constant values, like
camera calibration variables or other values which are not modified during
the program execution. All the variables relative to the features observed
within the environment are included inside the “landmarks” part.

All the filter elements are represented with random multivariate gaussian
variables, whose means and covariances are described by vars_means and
vars_covs variables inside Ekf class (Fig. 5.3). It is important to notice
that every element in the filter is an instance of the class Variables, which
provides methods to access variable mean and covariance: by considering
every element as a generic variable makes it possible to include in the filter
heterogeneous elements, like landmarks, velocities and positions, and to add
to the filter landmarks with different parametrizations or even with different
nature (like visual markers). The filter handles in this way only variables
means and covariances values, without considering their nature.

Furthermore, Ekf class provides two methods which implements the Kalman
filter prediction phase, in which it estimates the robot next state, and the
update phase, in which the information about new measurements are used
to update the robot state and the landmarks.

In Figure 5.3, the library main components, their structure and their
variables are shown.
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Figure 5.3: AIREkfSlam library main components and variables

AIRImage

AIRImage library is composed by the classes needed to acquire and process
datasets for visual SLAM, to identify features within the image and to handle
landmarks and their 2D representation.

As explained for AIREkfSlam library, a landmark is just a generic “Vari-
able” inside the Extended Kalman Filter, like robot velocity and position.
Unlike these two elements, though, a landmark is an object having also
graphical properties and, in case of visual SLAM, is related to a feature in
an image through a measurement equation. A landmark is therefore built
by two parts, the first one composed by the multidimensional variable whose
mean and covariance values are inserted into the Kalman filter, the second
one composed by an object containing all the visual information regarding
the landmark itself, and stored in a special LandmarksContainer. AIRIm-
age library also contains interfaces and classes which allow to build visual
landmarks and describe their structure.

Landmarks are managed within the library thanks to special base classes,
which allow to create and add a landmark to the filter (LandmarksCre-
ator and LandmarksAdder), to match a landmark in an image (Landmarks-
Matcher), to delete a landmark from the filter (LandmarksDeleter) and to
handle the array containing all landmarks (LandmarksContainer).

AIRImage library is also composed by classes related to camera models
(omnidirectional and prospective), to landmark 2D visualization (Drawer-
Manager) and to landmark descriptors management (DescriptorInterface).

AIRVisualSlam

AIRVisualSlam library extends many classes from the AIRImage library,
giving them a concrete implementation, and contains all the elements needed
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to implement image-based SLAM algorithms. The library is composed in the
following way:

• a group of classes used to add new landmarks to the filter and another
one used to create landmarks measurements; among the supported
parametrizations we can cite IS [27] (Inverse Scaling), ISA (Inverse
Scaling Anchored), ISDA (Inverse Scaling Double Anchored), UID
[6] (Unified Inverse Depth), AHP [37] (Anchored Homogenous Point),
FHP [5] (Framed Homogenous Point), 3D (3D Euclidean Point) and
FID (Framed Inverse Depth);

• a group of classes sharedParametrization, used to adopt the shared ver-
sion (which means that if two landmarks contain the same information,
this is shared) of UID and FHP parametrizations;

• a collection of MotionModels, with or without information about robot
odometry;

• a group of classes and interfaces (MapManagement3dPoints and MapCre-
atorInterface) used to realize and handle 3D maps in a simulated en-
vironment.

Moreover, there is a set of support classes, useful for quaternions man-
agement, operations between matrices, gaussian variables rototranslations
and GPS measurements integrations.

AIRUserInterface

AIRUserInterface library contains all the classes used for 3D scenes represen-
tation, scene navigation, landmarks, robot and 3D trajectory visualization
and viewport creation of course. This library is a wrapper of the external
library mrpt-gui.

AIRConfig

AIRConfig library contains the classes needed to decode a given configuration
file and consequently create and handle global variables and the required
objects. New objects creation process, given a configuration file, is reported
in Figure 5.4.

A generic configuration file is divided into three sections: Global section
contains the file global variables (not code variables), Create section contains
a list of objects to create together with their initialization parameters, and
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Figure 5.4: Objects creations from external configuration file

the Application section which contains a set of parameters used inside the
program code.

LibConfig library takes care to read and parse the configuration file, while
a special object, called GlobalVariablesManager, receives the global variables
list and the application parameters and sends them to the CreatorByTypeM-
anager, which creates the objects according to what specified from the create
section.

5.1.4 EKF-SLAM in MoonSLAM

Here we describe briefly how MoonSLAM implements a classic EKF-SLAM
algorithm. The operation flow is shown in Figure 5.5.

1. An ImageManagerInterface object (from AIRImage library), given a
camera image list as input, returns a pointer to the next frame to
process;

2. a DynamicPredictorBase (from AIREkfSlam library) computes SLAM
prediction step. In particular, the predictor, according to the system
motion model, calculates the robot’s next state, together with posi-
tion and velocity uncertainties, and updates the related means and
covariances in the filter;

3. a LandmarksAnalyzer object belonging to the LandmarksContainer,
according to the prediction step results, predicts old landmarks posi-
tion within the map;
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Figure 5.5: Main steps of an EKF-SLAM algorithm in the MoonSLAM frame-
work

4. the LandmarksContainer, thanks to a LandmarksMatcher, searches for
associations between old landmarks and new detected features in the
current frame. This process is repeated for each camera available (i.e.,
one for mono SLAM and two for stereo SLAM);

5. a LandmarksUpdater object updates the landmarks positions for which
a match was found in the current frame;

6. a LandmarksAdder and a LandmarksCreator add to the landmarks con-
tainer (and to the extended Kalman filter) occasional new landmarks
detected in the current frame;

7. a LandmarksDeleter removes from the container and from the filter
potential unnecessary landmarks (i.e., the ones having negative depth
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in UID parametrization);

8. finally, map landmarks information related to execution steps are up-
dated.

If a frame is available after the current one, the process starts again from
prediction step, otherwise the algorithm terminates.

5.2 AIRVisualMarker library

The main purpose of this thesis was to build a library for visual markers
detection to be integrated into the MoonSLAM framework, using methods
and information described in previous chapters. We give an overview of the
resulting library general structure, describing the principal elements and the
dependencies between them; then we talk about markers integration inside
the Kalman filter.

5.2.1 Library structure

In Figure 5.6 we reported the library classes and their dependencies. Here
is a list with their description:

• Marker class: it is the class which represents a marker object. It
works as an interface, since it can implements different visual mark-
ers, like the ones cited in Chapter 3. In our work, we employed only
Data Matrix barcodes, but support for other 2D markers can be eas-
ily added. It has a few necessary attributes: imgPoints is a vector
of 2D float image points, which are the selected marker pixel points
(at least four) in the camera frame to compute a Perspective N-Point
operation; modelPoints is the correspondent vector of 3D float model
points; ID is a string which identifies in unique way a detected marker;
dim is a double variable containing the marker 3D size in meters (if
the marker allows to encode a large number of characters, being as a
Data Matrix, it is possible to store the barcode’s dimension inside it-
self, saving then the correspondent value in the encodedDim attribute);
two vectors containing the marker pose in camera coordinates system
(frameWRTCam) and in world coordinates system (frameWRTWorld)
through attitude quaternions representation; a MeasureMarkerImage-
Points object (described later) used to compute measurements of the
marker image points (i.e., it implements the Kalman filter measure-
ment equations for visual markers). In this class there’s also a method
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Figure 5.6: Dependencies between classes within AIRVisualMarker library

(findMarkerFrameWRTCamera) to compute the marker pose in cam-
era coordinates system, as described in Chapter 5.

• DatamatrixFinder class: it contains the specific methods to retrieve,
decode (id and dimension size) and refine a Data Matrix barcode, given
any camera image, according to the libdmtx library and the computer
vision techniques explained in details in Chapter 4. In order to add
support for other marker typologies, it is necessary to create a similar
class where to write specific code to recognize the new marker type,
with its specific library.

• MarkerAdderEKF class: it is the class that, given the camera pose
in world system and the marker pose in camera system, adds a new
marker coordinate system with respect to the world frame (i.e., a vec-
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tor containing the marker position and attitude) to the Kalman filter,
treating it as a generic Variables object (this confirms MoonSLAM
flexibility in handling heterogeneous objects inside the filter). Please
notice that we need to know where the camera is positioned in the
world, inferring it from the camera motion model (i.e., from odometry
information).

• MeasureMarkerImagePoints class: it contains attributes and methods
to measure where the marker image points are likely to be located
within an image and at which depth from the camera (filter measure-
ment step) after we forecast the camera trajectory according to odom-
etry information from the chosen motion model (filter prediction step).
Attributes regarding the camera and marker pose in world coordinates
system, marker size and camera intrinsic parameters are needed.

• MarkerContainer class: this is the main class in AIRVisualMarker li-
brary. Like the LandmarksContainer object in MoonSLAM, Marker-
Container deals with markers management. It takes care of detecting a
marker from a camera image, through DatamatrixFinder class or simi-
lar, store a pointer to it in a special vector, add it to the Kalman filter
(and consequently to the LandmarksContainer) through AdderMark-
erEKF class, delete it in case of misclassification and handle its image
points and depth measurements through MeasureMarkerImagePoints
class.

In the following sections we describe in more details the most important
marker container functions.

5.2.2 Marker detection

As we said, the pure marker detection system is handled by an object from
DatamatrixFinder class (in case of Data Matrix barcodes) employed in Mark-
erContainer, using the techniques already reported in previous chapters.
Specifically, MarkerContainer class implements two versions of the marker
search: the first one is used to scan the whole camera image in order to
find every new occasional marker inside it, exploiting a high searching time-
out to lower the probability to miss some Data Matrices. The second version
searches for a single marker in the image zone where such marker is expected
to be, after the filter predicts and measures its image points on the image
frame: in this way it is possible to speed-up the whole process setting a very
low time-out for every marker, since libdmtx has to scan a very restricted
area with respect to the entire image size.
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Using this choice, it is possible to plan a program execution calling the
first function for marker detection once every K image frames (where K is
up to the programmer), to find all the Data Matrix barcodes in the image
(and add the new ones to the filter) or to correct the position of a marker
within the image in case of wrong prediction, and calling the second version
of the scan function on all the frames, to detect in a fast way markers already
predicted (filter match step).

Every time a marker is recognized, a new Marker object is created, which
stores in its attributes all the information about the barcode: id, dimension
size, image points and pose in camera coordinates system.

5.2.3 Adding markers to the filter

The first time a Data Matrix is detected, MarkerContainer class takes care
of storing a pointer to its object structure inside a container vector, which
keeps track of every detected marker. Similarly, it must be added also to the
Kalman filter as landmark, so to the LandmarksContainer : adding a marker
to the filter means that we store inside it a 7-value vector, representing the
marker position (first three elements) and attitude (last four elements, in
quaternion representation) of the marker in world reference frame.

In order to do such operation we need two variables in the state vector:
the camera position in world reference frame, represented with three values
as TW

C , and the camera attitude in world reference frame, represented with
four quaternion values, but shown in the following after a transformation
to rotation matrix RW

C (attc), easier to understand. These quantities are
available from the camera (or robot) motion model, which can be based on
physical or visual odometry.

We can obtain the marker pose in world coordinates system (RTW
M ) by

composing the camera pose in the world frame with the marker pose in
the camera frame, computed by solving the PnP problem and shown as a
translation TC

M and a rotation matrix RC
M (attm) (for the same reason as

before).
The resulting equation is:

RTW
M =

[
RW

C (attc) TW
C

0 1

][
RC

M (attm) TC
M

0 1

]
=

=

[
RW

C (attc)RC
M (attm) RW

C (attc)TC
M +TW

C

0 1

]
(5.1)

So the new marker attitude is given by RW
C (attc)RC

M (attm), after another
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transformation from rotation matrix to quaternion representation, while the
new marker position is given by the 3-value vector RW

C (attc)TC
M +TW

C .
The filter needs Jacobians of the new marker pose with respect to the

state variables (camera position and attitude in world reference frame) and
also with respect to the input variables (marker pose in camera reference
frame).

5.2.4 Marker image points measurement

Every time the marker container adds a new maker to the filter as landmark,
a measurement object (described earlier) for such marker is created: in case
of Data Matrix barcodes, this means that we can use this object to measure
where the four corners will lay on the next image frame after we have pre-
dicted where the camera has moved thanks to motion model information.
In other words, we want to find the pose of each image point on the image
plane in camera reference frame, assuming we know the camera pose in world
coordinates, the marker pose in world coordinates and the selected model
points.

As we described in Equation 4.14, each of the four Data Matrix 3D
points is represented as Pi = [X,Y, 0]T , where X and Y are either equal to
zero or to the marker edge dimension, resulting in the four marker corners.
In order to represent these points in camera reference frame, as specified in
Equation 4.13, we need to compose the camera and the marker pose in world
coordinates, obtaining the marker pose in camera frame, and then apply the
resulting rototranslation to each model point. We dispose of the following
quantities:

• the camera attitude in world reference frame, from the motion model
and represented as a quaternion. For simpler calculations, we repre-
sents such quantity in terms of rotation matrix, indicated as RW

C (attc)

• the camera position in world reference frame, represented as a 3-value
translation vector TW

C

• the marker attitude in world reference frame represented as a quater-
nion qw

m = [wm, xm, ym, zm]T . This quantity must be normalized by
the factor

√
w2
m + x2m + y2m + z2m. As before, we use such quantity in

terms of rotation matrix, indicated as RW
M (attm)

• the marker position in world reference frame, represented as a 3-value
translation vector TW

M

• the four marker model points Pi = [X,Y, 0]T
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• the matrix of camera intrinsic parameters A and the camera distortion
coefficients k1, k2

Each marker point in camera coordinates system is then calculated com-
posing the inverse rototranslation of the camera in world coordinates with
the rototranslation of the marker in the camera coordinates and multiplying
the result for each model point, as it follows:

tpi =




xi
yi
zi



 =

[
RW

C (attc)T −RW
C (attc)TTW

C

0 1

][
RC

M (attm) TC
M

0 1

][
Pi

1

]
=

=

[
RW

C (attc)TRC
M (attm) RW

C (attc)TTC
M −RW

C (attc)TTW
C

0 1

][
Pi

1

]
=

= RW
C (attc)

TRC
M (attm)

[
Pi

1

]
+RW

C (attc)
TTC

M −RW
C (attc)

TTW
C =

= RW
C (attc)

T {RC
M (attm)

[
Pi

1

]
+TC

M −TW
C } (5.2)

Now, first it is necessary to project the resulting points tpi = [xi, yi, zi]T

to the image plane π, in camera frame, dividing such vector by the zi com-
ponent: we obtain the four projected points

piπ
C =




xi/zi
yi/zi
1



 . (5.3)

Secondly, we need to apply a distortion to the resulting points (through
a specific dist function, based on the distortion model, and the distortion
parameters) and compute a reprojection with the matrix of camera intrinsic
parameters A. The final measured 2D marker points on the image plane are
then represented by:

pi =




ui
vi
1



 = A× dist(piπ
C , k1, k2). (5.4)

In case, to obtain a more precise measure, we can add to the described
measure (the four image points) also the point distances from the camera,
which we retrieve calculating the norm of the vector tpi , for each of the four
points.

di =
√

x2i + y2i + z2i . (5.5)
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The Kalman filter needs the Jacobians of the new measured points vector
with respect to the variables in the state vector, i.e., camera pose and attitude
in world reference frame, and with respect to the input variable, i.e., the
measurement vector just obtained.

5.2.5 Deleting a marker from the container

MarkerContainer class is also responsible for deleting markers from the con-
tainer (and from the filter). This operation is due whenever libdmtx library
does not properly decode a Data Matrix, letting the container to add a po-
tentially wrong marker to the filter (with a wrong id or a wrong encoded
dimension, for instance). In this case, such marker should be deleted from
the container in order to avoid wrong map building estimates.

Marker class has two extra attributes which keep trace of how many
times we expect to see a known marker in the image (expectedCounter) after
a measurement, and how many time we effectively see the predicted marker
(matchedCounter). For every image frame, the container checks whether the
fraction of number of matched markers over the number of expected markers
is lower than a certain threshold. This is equivalent to say that

matchedCounter +K

expectedCounter +K
< X (5.6)

where K is a smoothing parameter adequately chosen in order to avoid im-
proper marker deletions, i.e, when a marker is expected but not detected by
libdmtx because of image blurring and not because it was previously misclas-
sified, while X is the selected threshold (0 < X ≤ 1).

Another policy for marker deletion is due to the fact that it can hap-
pen that a marker is added to the filter with a wrong pose, because of the
explained problems in marker recognition for certain marker configurations,
especially using GFTT algorithm to improve the marker corners precision.
For this reason, we decided to accept only marker measures under a certain
threshold error from the real measures. Since our measures are defined over a
multivariate Gaussian distribution, we took into consideration Mahalanobis
distance [26] between pixels and depths measured by the filter and ones de-
tected by our library at every frame. The distance of a multivariate vector
x = [x1, x2, . . . , xN ]T from a group of values with mean µ = [µ1, µ2, . . . , µN ]T

and covariance matris S is defined as:

DM (x) =
√

(x− µ)TS−1(x− µ) (5.7)
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Our Marker class needs another attribute, called mahalanobisCounter,
which keeps count of how many times the Mahalanobis distance was above
a certain value V . We delete a marker from the container when the fraction
between the number of times the Mahalanobis distance was higher than V

(smoothed by a parameter K) over the number of matched markers, is higher
than a threshold X (0 < X < 1).

mahalanobisCounter −K

matchedCounter
> X (5.8)

In this way, whenever a marker is added in wrong way to the filter, if
the following measures are closer to the real values, then at one point the
marker is deleted from the filter, and added again to the reference world,
hopefully with the right pose. Unfortunately, the presented method does
not work if the marker pose is very often computed incorrectly, for certain
marker configurations (refer to Section 4.5).

5.3 Experiments and results

We have performed several experiments to check how SLAM algorithm could
work using visual marker as landmarks. We present those experiments now,
explaining the policies we employed and the obtained results. The experi-
ments have been done in “batch mode”, which means that we used videos
to work on, and we did not try how the system works in real-time. Pa-
rameters and settings were passed to our program through configuration
files, according to AIRConfig library (see MoonSLAM architecture section
described earlier).

5.3.1 Motion model

AIRVisualMarker library was designed to work in MoonSLAM framework
with any motion model. Since we do not have odometry information from
the physical robot, we operate using camera images and visual odometry[30].
Visual odometry is a technique which consists in determining the position
and orientation of a robot by analysing the associated camera images. This
allows to track the camera (or the robot) trajectory in the world system
without using traditional odometry.

In general, visual odometry works as follows:

• acquire input images using a camera (in our application, we used a
single camera);
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(a) Visual odometry salient points (b) Camera 3D trajectory and
points representation

Figure 5.7: Visual odometry example

• apply image processing techniques for lens distortion removal and im-
age corrections

• detect salient features in the image and match them across frames using
correlation, and then construct optical flow field

• check flow field vectors for potential tracking errors and remove outliers

• estimate the camera motion from the optical flow, i.e., using Kalman
filter for state estimate distribution maintenance

• periodically repopulate trackpoints to maintain coverage across the
image.

In Figure 5.7 we reported an example of visual odometry application: on
the right you can see in blue the camera trajectory, based on the green points
detected as salient features (remember that the camera is usually oriented
following the Z-front, Y-down, X-right convention).

MoonSLAM framework uses all the green points in the image to retrieve
the camera motion, but when a point goes out of the frame and it is not
matched for a certain number of steps, it is deleted from the filter, so that
the algorithm does not store useless points in the filter (which increases the
computation time).

The problem of using image features to retrieve information about the
camera motion is that, with a single camera, we have no information about
the depth of points corresponding to such features. In this way, the features
and the camera (or robot) trajectory are computed up to a scale factor which
cannot be estimated without the use of a second camera or some knowledge
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about the environment. What we aim is to integrate the information given by
visual markers (which includes also the distance from the camera objective)
to help the Kalman filter to calculate a correct robot trajectory, including
the scale, while building a map of the environment containing such markers.

5.3.2 Management policies

We decided to apply certain policies to our application, some of which already
mentioned in this chapter, in order to get best results when including visual
markers in EKF-SLAM with visual odometry.

One of them concerns the marker detection phase. As explained, Marker-
Container class allows two functions for Data Matrix detection: one searches
for markers over the whole camera image with a long time-out, possibly re-
turning all the markers present before the time expires; the second searches
for a marker over the image sub-area where such marker is expected to be (af-
ter a filter measurement), with a very short time-out. As a general heuristic,
we decided to call the former function every 25 frames, which means every
second in our application, since our camera has a frame rate of 25 fps, both
to detect new Data Matrices entered in the camera view and to detect old
markers which were not correctly predicted within the image. We set a max-
imum time-out of 150 ms to improve chances of recognizing every marker in
the image. The latter, instead, runs during every frame: the marker con-
tainer calls such function for every Data Matrix expected inside the image,
setting a ROI based on the four marker measures points. In this way, we
can fix a very short time-out, like 20-30 ms, since the search is processed
over a very small area (notice that in most cases the recognition takes only
5-10 ms). With this approach, we managed to match every marker inside
the container expected in the image very fast, without missing occasional
new markers.

Moreover, we decided to stop searching for a marker whenever its mea-
sured points are too close (i.e., 5-10 pixels) to the image borders. In fact,
as explained in Chapter 3, Data Matrix barcodes need a white area around
them (the quiet zone) to be detected: if the filter measures the marker points
on the image edges, but still within the image, the container would go on
searching for a marker which cannot be detected, increasing the number of
times that such marker is expected in the image, with respect to the number
of times it is effectively matched. This can lead the container to delete the
marker from the filter, assuming it is a misclassified one.

In this sense, another management policy is about marker deletion from
the container according to the general policy in Equation 5.6. If we choose
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values like K = 10 and X = 0.5, we want to match at least 50% of the
expected markers, but we allow to miss at most the first 10 detections: if
the 11th time we do not match the marker, it is considered as misclassified,
because 0+10

11+10 = 0.476 < 0.5. With the fast search expedient described
above, libdmtx manages to match the markers present in the sub-frames
most of the times, so we set a threshold X = 0.7. As smoothing parameter,
we thought K = 10 could be a good trade-off: we accept to miss the first 4
detections at most (0+10

5+10 = 0.66 < 0.7), which likely means that the marker
was wrongly decoded.

Again about marker deletion, we had to set the parameters for deleting
a marker using Mahalanobis distance indicator (Equation 5.8). We accept
Mahalanobis distances under a value V , which represents the value of a
chi-square distribution with a number of degrees of freedom equal to the
considered vector length. With a vector with 12 elements (8 pixel points
plus 4 depths), if we want to accept 95% of the measurements we need to set
V = 21.026. As smoothing parameter, K = 10 is a good trade off to smooth
the first detections, as explained for the other deletion policy. We delete a
marker if the number of wrong estimates over the number of detected mark-
ers is over 50%, because this means that the measures are more often very
different from the real values than close to them.

One of the most important policies chosen to get the best results during
the integration of our library in MoonSLAM, was to help visual odometry
feature scaling even before the features were fed to Kalman filter. In fact, we
use graphical information from markers in the image to automatically set the
depth of new points detected by visual odometry, with a very low variance:
the general idea is that if the visual odometry algorithm chooses a point
internal to a Data Matrix as a salient feature, we can lower the uncertainty
about the depth of that point and set with much more precision its distance
from the camera (but represented with its inverse, since MoonSLAM operates
with Unified Inverse Depth parametrization). Unfortunately, this step can
be done only with new points, not with the ones already in the filter: for
this reason, we decided to start executing visual odometry algorithm only
after a first marker is detected, to avoid keeping useless information about
points inside a marker not yet recognized.

Given all the markers in the container (more specifically, the ones in the
image frame), checking if a visual odometry 2D point falls inside the marker
perimeter is trivial. More complex is setting its distance as the distance of
the marker from the camera. In fact, as we said, a marker is represented as
XYZ coordinates system: when we solve the PnP problem and retrieve the
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marker pose in camera reference frame, the distance from the camera (i.e.,
the marker position along z-axis) is just referred to the marker origin (which
is the bottom-left corner, in our convention). Instead, the right depth to
consider is the one from the visual odometry point to the plane where the
marker lays, defined by its X and Y axis.

Let us call ρ the inverse depth we want the visual point to have, RC
M the

rotation matrix which defines the orientation of a marker in camera frame,
TC

M the translation of the marker in camera frame (i.e., the bottom-left
point coordinates). We know that a geometric plane π in R3 is defined by
the equation

ax+ by + cz + d = 0 (5.9)

that is π = [a, b, c, d]T . Specifically, [a, b, c]T is the the vector orthogonal to
the plane, which considering the marker plane is represented by the third col-
umn of the rotation matrix RC

M (we call it &n = [nx, ny, nz]T ). Furthermore,
we know that the bottom-left marker point p = TC

M = [x, y, z]T belongs to
the plane:

p ∈ π ⇔ πTp = 0 ⇔
[
&n d

] [p
1

]
= 0 ⇔ &np+ d = 0 ⇔ d = −&np (5.10)

Now we have all the plane parameters and if we want to find the inverse
depth of a point q belonging to the marker plane π (inside the marker
contour) projected on the normalized image plane (i.e., with focal distance
equal to one) on the point q′ = [x′, y′, 1], first we find the the vector q′

direction (&d) in camera coordinates, secondly we calculate the inverse depth
ρ knowing that the point q = 1

ρ
&d belongs to the marker plane, with the

following:
&d =

q′

‖q′‖ (5.11)

[
&n d

] [q
1

]
= 0 ⇔

[
&n d

] [1
ρ
&d

1

]
= 0 ⇔ 1

ρ
&n&d+ d = 0 ⇔

⇔ 1

ρ
&n&d = −d ⇔ ρ = −&n&d

d
(5.12)

In Figure 5.8 we report a graphical explanation of what we just described.
π is the marker plane, πN is the normalized marker plane and πC is the
camera image plane.

Once we obtain the visual odometry point inverse depth from the marker,
we can force the filter to set it with very low standard deviation (we set
a standard deviation of 2mm−1, as opposed to the other points standard
deviation which can be up to 10cm−1).
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Figure 5.8: Inverse depth initialization

5.3.3 EKF-SLAM with visual markers

Here we describe briefly how EKF-SLAM algorithm is executed by Moon-
SLAM using a visual odometry motion model, after the integration of visual
markers. The algorithm follows the same basic structure already presented
in Figure 5.5 and it is graphically reported in Figure 5.9.

1. The ImageManagerInterface object, given a camera images list as in-
put, returns a pointer to the next frame to process;

2. the MarkerContainer searches for new markers in the image with the
“long search”, but no visual odometry is computed until a first marker
is detected in the scene. This expedient helps to set the new odometry
points detected inside markers at the right depth from the camera;

3. when the first marker is recognized, the MarkerContainer adds its pose
with respect to the world to the Kalman filter, the world reference
frame which in the first detection corresponds to the camera reference
frame, because the camera has not moved yet according to the motion
model;

4. visual odometry algorithm starts the execution, finding new salient
features and initializing the depth of the ones laying inside a marker
contour to the right value with low uncertainty, and the depth of the
other ones to a value preset in the configuration file.
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Figure 5.9: Main steps of an EKF-SLAM algorithm in the MoonSLAM frame-
work using visual markers

5. the DynamicPredictorBase computes SLAM prediction step and calcu-
lates the robot’s next state, together with position and velocity uncer-
tainties, and updates the related means and covariances in the filter;

6. the LandmarksAnalyzer object, according to the prediction step re-
sults, predicts old landmarks position within the map;

7. the LandmarksMatcher searches for associations between old land-
marks and new detected features in the current frame;

8. the MarkerContainer measures the image points and their depths of all
the old markers detected till that moment, according to the prediction
step results;

9. the MarkerContainer searches all the old markers in a sub-area of
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the image where the filter previously measured them, using the “short
search”, and match them if the search gives a positive result;

10. the MarkerContainer updates the image positions of the markers for
which a match was found in the current frame;

11. once every K frames (K decided a priori) the MarkerContainer calls
again the “long search”, in order to detect and add to the container and
the filter new markers not yet recognized, and, in case, to correct the
position of old markers wrongly measured during the algorithm;

12. the MarkerContainer removes from the filter potentially misclassified
markers, whenever their match rate is lower than a established thresh-
old;

13. the LandmarksUpdater object updates the landmarks positions for
which a match was found in the current frame;

14. the LandmarksAdder adds to the landmarks container (and to the ex-
tended Kalman filter) occasional new landmarks detected in the cur-
rent frame. If these new landmarks are positioned within an existing
marker contour in the image, their depth from the camera is properly
set according to the marker distance from the camera;

15. the LandmarksDeleter removes from the container and from the filter
potential unnecessary landmarks (i.e., the ones having negative depth
in a UID parametrization);

16. finally, map landmarks and markers information related to execution
steps are updated.

If a frame is available after the current one, the process starts again from
prediction step, otherwise the algorithm terminates.

5.3.4 Results - trajectory scaling

We tested how markers integration in visual odometry using EKF-SLAM
techniques would have affected the camera pose in world coordinates. In-
deed, as we said, visual odometry cannot provide information about points
depth, when a single camera is used, but it builds the camera trajectory and
environment map up to a scale factor. The use of visual markers should help
the filter to correct this based on their known pose values.

We recorded three videos:
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• in the first one we keep the camera in hand, following a trajectory as
much as possible linear, moving the camera horizontally toward right
(which means along positive values of x-axis) and slightly backward
(which means along negative values of z-coordinate); we used only two
Data Matrix markers in the scene, positioned at about 1.30 m;

• in the second video, we used a sliding truck on rails to force the camera
onto a linear movement. Also in this case, we moved the camera hori-
zontally toward right till the end of the rail (long about 1.21 m), then
all the way back to the beginning, using four Data Matrix positioned
at about 2.30 m from the camera;

• in the last video, we used the same scene of the second one, but keep-
ing the camera closer to the markers (at about 1.70 m) and moving
horizontally toward left (i.e., toward negative values of x-coordinate)
till the end of the rail, and then back to the beginning.

In Figure 5.10 you can see the camera trajectories along x, y and z-axis
using only visual odometry information (plotted in red) and integrating also
information about visual markers (plotted in blue) recorded in the first video.
Since we were moving the camera right along the x-axis, we see increasing
values of x-coordinate: we notice that while visual odometry estimates a
longer trajectory (about 1.90 m) than it was in reality (we moved of about
1 m), visual markers help the filter to scale the distances to the real value
(we see that the scaled trajectories is about 0.9 m). We can also clearly
see that trajectory along z-axis tends to decrease, due to the fact that we
were also moving the camera backward. Of course, holding the camera in
hand introduces a lot of noise (minimal unwanted movements), which are
clearly visible analysing trajectories along y-axis. Visual odometry tends
to amplify such movements because it is based only on image points, so
a sudden movement can badly affect the estimated position, while visual
markers make the trajectories more smoothed.

In Figure 5.11 we show the same quantities just described, referring to
the second scene. Also in this case we can notice that while visual odometry
overestimates the distance covered along x-axis (it says that the camera
moved about 1.5 m on the right), visual markers scale such distance to a
value closer to the real one (1.23 m, on a rail 1.21 m long), before coming
back to the initial point. The same thing happens with the trajectories
along y-axis and z-axis: there is a slight linear movement along those axis,
because the rail on which the truck was sliding was a little bit slanted and
not perfectly aligned to the ground, but visual markers correct the camera
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trajectory to the scaled value.
In Figure 5.12 the same results are presented, referred to the third scene,

i.e., the second setting but recorded from a closer distance. This time, visual
odometry works perfectly in estimating the movement of the camera along
x-axis, because it scales it almost equally to the one computed with markers
integration, but it can be considered a lucky case, not the general one, as we
saw earlier, and can depend from the algorithm initialization. We can draw
the same conclusions we made for the other two situations about scaling the
y and z-axis.

Results show that integrating visual markers in a visual odometry al-
gorithm adjusts the camera motion to more certain values, by giving more
visual information to the system through camera images, at a minor price
(essentially, just modifying the environment with the markers). Of course,
if we dispose of a physical robot with information about odometry from the
wheels, the camera (robot) trajectory could be estimated even more pre-
cisely. However, visual markers are still useful as landmarks for the SLAM
to build the environment map.

5.3.5 Results - landmarks scaling

Strictly connected to the previous problem, landmarks scaling, which means
scaling the features position in the 3D world, can be solved using visual
markers in the SLAM algorithm. In fact, like in estimating camera trajectory,
the salient features in the image are positioned at an unknown distance from
the camera, because it is not possible to compute the image points depth
with a single camera, as we said, but only estimate it with a scaling factor.
Using visual markers helps the Kalman filter to update the landmark points
position in the world, knowing that each marker is positioned at a certain
distance and with a certain orientation with respect to the camera. Moreover,
as we explained earlier talking about our management policies, we can force
the filter to set the depth of the visual odometry points laying inside a Data
Matrix to the right value, since we know how far is positioned that marker
from the camera.

In order to show the differences of SLAM algorithm in landmarks scaling
with and without using visual markers, we compare the two situations on the
same image frame of our videos (we show only the one with camera in hand
and the one with the truck close to the markers, since the scene is the same).
To understand the next figures, we remind that a Data Matrix is represented
with the x-axis (in red) corresponding to the marker bottom edge and the
y-axis (in green) corresponding to the marker left edge: consequently, when
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(a) Trajectory along x-axis
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(b) Trajectory along y-axis
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(c) Trajectory along z-axis

Figure 5.10: Camera trajectory using only visual odometry (in red) and with
markers information integration (in blue) - holding camera in hand (first scene)
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(b) Trajectory along y-axis
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(c) Trajectory along z-axis

Figure 5.11: Camera trajectory using only visual odometry (in red) and with
markers information integration (in blue) - camera far from the scene (second
scene)
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(b) Trajectory along y-axis
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(c) Trajectory along z-axis

Figure 5.12: Camera trajectory using only visual odometry (in red) and with
markers information integration (in blue) - camera close to the scene (third
scene)
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the z-axis (in blue) points downward, it means that the marker is faced down
and the camera points upward (along its z-axis).

In Figure 5.13 you can see that without visual markers integration, the
landmarks are coherently positioned in the world, but up to a scaling factor,
according to the frame we are considering: points close to the marker are
grouped together, while other further points are more distant. If we compare
this situation with the same one where a marker is detected, we notice that
the points laying inside the marker are set exactly on the marker XY plane
and all the others are adjusted accordingly to the marker metrics. In partic-
ular, the landmarks positioned further in the background would eventually
stretch and converge to their position in fast way: you can see that they are
computed with an high variance (the red ellipses around them) because they
actually are still too close to the camera, so they will be taken up to their
real position. Notice also in this figure the differences between the two cam-
era trajectories: it is more “contracted” using markers than with only visual
odometry points, confirming the earlier results that the trajectory computed
without the markers help is scaled.

In the same way, in Figure 5.14 you can see how all the points are grouped
together in the world, without using markers, more or less at the same height.
In the same frame (even though visual odometry points are different, because
they change from one algorithm execution to another), the visual markers
give to the filter more certain information about their position in the world
reference. So all the points that are aligned with the markers are compressed
on the marker XY planes and set to the right distance from the camera world
reference.

5.3.6 Results - map building

SLAM algorithm, as its name indicates, also takes care to build a map of the
environment from landmark observations. Therefore, visual markers repre-
sent both landmarks and map elements, which are easy to localize. So, after
a marker has been added to the filter it helps the algorithm to adjust the
camera trajectory together with all the other observed landmarks, and in the
meanwhile its absolute pose is corrected every time such marker is measured
and detected again. SLAM algorithm would eventually converge measuring
a very high number of times (potentially infinite) the same marker, building
in the end a complete map of the explored world, where the robot is able to
localize itself and its trajectory is the well defined.
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(a) Landmarks detected by visual odom-
etry without markers information

(b) Current frame without marker
recognition

(c) Landmarks detected by visual odom-
etry with markers information

(d) Current frame with marker recogni-
tion

Figure 5.13: Visual landmarks scaling - holding camera in hand (first scene)
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(a) Landmarks detected by visual odom-
etry without markers information

(b) Current frame without marker
recognition

(c) Landmarks detected by visual odom-
etry with markers information

(d) Current frame with marker recogni-
tion

Figure 5.14: Visual landmarks scaling - camera close to the scene (third scene)
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In Figure 5.15 and Figure 5.16 you can see the environment map com-
posed by visual markers, respectively for the first and third scene (which,
we repeat, is the same as the second one). The first map is composed only
by two markers, aligned between them because they are parallel. They are
a little bit slanted because the camera is following a tilted trajectory (the
camera was slightly rotated).

Regarding the second map, it is visible how all the markers are aligned
between them in the right positions: every time a marker is detected, such
map is refined until it converges to a nice result as the one in figure. As you
can see, the camera trajectory is well defined respect to the marker positions,
so that it is possible for a robot to localize itself within the map.

Figure 5.15: Map building - camera in hand (first scene)
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Figure 5.16: Map building - camera close to the scene (third scene)



Chapter 6

Conclusions and future works

“Just because something doesn’t do what you planned it to do doesn’t mean
it’s useless”

Thomas A. Edison

In this thesis, we proposed a library for Simultaneous Localization And Map-
ping (SLAM) algorithm using Data Matrix visual markers as landmarks,
within a framework for SLAM developed at Politecnico di Milano, called
MoonSLAM. In the presented method we showed how it is possible to detect
a Data Matrix, to refine it with computer vision techniques and to integrate
it in SLAM as artificial landmark.

First, we introduced Data Matrix markers, describing how to detect them
in a 2D image. We discussed three different vision algorithms useful to refine
the marker corners in order to retrieve the most possible accurate marker
pose estimate in camera coordinates system. We analysed and compared
Good Features To Track (GFTT), Features from Accelerated Segment Test
(FAST) and Canny with Hough methods, by comparing the marker pose
values with a chessboard pose values, for each vision algorithm, in different
static and dynamic scenes. We considered the chessboard pose as an accurate
estimate of the real pose in camera reference frame, and we based our choices
on this assumption. From the results, we discarded Canny algorithm and we
generally accepted FAST algorithm, because it estimates in a correct way
the marker pose most of times, even if sometimes it produces high errors.
GFTT algorithm, instead, is more stable and in general it works better than
the other two algorithms, but it may happen that it causes the wrong marker
pose to be estimated, for certain marker configurations.

Then, we described our library structure, explaining how it interfaces
with MoonSLAM framework, its main classes and functions. We showed
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how our library deals with the addition of a marker to the Kalman filter as
a landmark, how it is deleted and how the filter computes the measurements
on the marker attributes, discussing the management policies we chose to
execute the SLAM algorithm in a generic static indoor environment with
visual odometry as motion model.

Finally, we reported the main results we obtained thanks to the integra-
tion of visual markers in the filter, showing how the metric information given
by Data Matrix markers can help the filter to adjust the robot trajectory,
localize the camera with less uncertainty, and build a map of the environ-
ment in correct way, with the right metrics.

There are still some improvements that can be done to have a better
working system. In fact, to compute the perspective N-points process we
use only four image points from our Data Matrix marker (which is the mini-
mum number), that is the fastest and the most intuitive choice, because the
library for Data Matrix detection (libdmtx ) already provides data to roughly
obtain those points. However, using four points, as we discussed in the the-
sis, can sometimes lead to marker poses not always correctly estimated. We
adopted a series of techniques to smooth this behaviour, like employing com-
puter vision algorithms to refine the marker corners or the policy based on
Mahalanobis distance to delete wrong markers, but the base problem per-
sists. This could possibly prevent in some cases SLAM to work properly.

Considering what we said above, future works in this field follow several
directives. First of all, it is possible to improve the marker pose estimation
process by solving the base problem, which means to employ more than four
points to compute the PnP problem. In a Data Matrix, in fact, the internal
marker structure is known “a priori” in 3D coordinates, so a possible try-out
would be to design a vision detection method to match certain Data Matrix
internal corners in a 2D image and use them as image points to solve the
PnP problem. The more points are available as image points, the more ac-
curate the PnP function performs. This expedient may solve a big part of
the presented problem, because a precise marker pose estimate would avoid
the SLAM filter to build a possibly incorrect map of the environment. Along
this directive, it is also possible to analyse other different computer vision
algorithms or, in case, to improve the existing ones, to refine in a better way
the rough estimates of the marker corners returned by libdmtx and obtain
more accurate image points to compute the marker pose. Alternatively, it
is suggested to solve the pose estimation problem “a posteriori”, by identify-
ing wrong poses and not keeping them into consideration when computing
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the update phase in SLAM. We proposed a method based on Mahalanobis
distance, but other try-outs are plausible.

Another open improvement is to add the support for other visual mark-
ers to AIRVisualMarker library. In this thesis we presented Data Matrix
barcodes, but we cited other 2D markers, like QRCode and ARToolKitPlus,
which may be employed as alternative landmarks, making our library more
flexible. A good idea is to implement a detection system working simultane-
ously with different types of visual marker, maybe encoding heterogeneous
information for SLAM system.

The system we implemented was tested using a motion model based on
visual odometry. A possible research directive would be to test the func-
tioning employing a physical robot in large environments, using information
retrieved by wheels odometry to build a motion model and integrate it with
our library. Ground odometry provides more robust information to the sys-
tem than simple visual odometry, based only on camera images, so it is likely
that the SLAM algorithm with visual markers would work very well.

In conclusion, we showed that SLAM can be integrated with visual mark-
ers as artificial landmarks to improve the known data association problems
present with the use of natural landmarks, by providing the system filter
with certain information given by visual markers.
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Appendix A

Notation: 3D Rototraslations

This chapter is dedicated to the description of the rototranslation transfor-
mations used in this thesis.

A 3D rototranslation is a geometric transformation composed by a rota-
tion followed by a translation.

A.1 Rotation

The rotation is the first part of the rototranslation, and it is represented by
a rotation matrix or by a vector. The rotation matrix is used to perform
the rotations to the points and vectors in 3D space. The reason is that the
algebra is straightforward and linear, and that the number of computing op-
erations is minimized. RTA

B is the transformation between the two reference
frames A and B, which applied to a point p expressed in reference frame B
returns p in the reference frame A.

The generic rotation matrix is represented as:

RTA
B =




r1 r2 r3
r4 r5 r6
r7 r8 r9



 (A.1)

For instance, a rotation of θ around axis z is represented as:

Rz =




cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



 (A.2)

Two rotation matrices can be composed using the standard matrix prod-
uct:
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RA
B = RA

CR
B
A (A.3)

A rotation matrix has two properties, the first one is that:

det(A) = 1 (A.4)

and the second is that the transpose matrix is equal to the inverse matrix

RRT = RTR = RR−1 = R−1R = I (A.5)

The quaternion is used to store orientation information in the state vec-
tors. The time evolution equations based on quaternions are continuous and
continuously derivable, something that will be very important for further
automatic manipulations such as filtering. Because the quaternion q plays
such a central role, it will be convenient to use it by default in all frame
specifications. A quaternion Q is written in the form

q = [a, b, c, d]T ∈ R4 (A.6)

The conjugated of the quaternion is defined by q = [a,−b,−c,−d]T and its
norm, where the explicit writing of the multiplication doesn’t indicate the
use of quaternion algebra.

A.2 Translation

The translation is the second part of a rototranslation and is represented by
a vector of three elements. Each elements is the value that represent the
translation of each coordinate from the frame A to the frame B.

TA
B =




tx
ty
tz



 (A.7)

is the translation from frame B to frame A, and the inverse transforma-
tion is:

TB
A = −TA

B (A.8)



A.3. Rototranslation 147

A.3 Rototranslation

The rototranslation is the composition of a rotation RB
A and a translation

TB
A , and is represented by the following matrix:

RTB
A = [RB

A |TB
A ] =




r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz



 (A.9)

Two rototranslation matrices can not be composed like two rotation matrices
because they are not square matrices and is not possible to determine an
inverse matrix for a rototranslation matrix. Homogeneous coordinates are
used to solve these problems.

A.4 Homogeneous coordinates

Homogeneous coordinates allow several operation between rototranslation
matrices. A rototranslation matrix in homogeneous coordinates is written
like:

RT =





r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz
0 0 0 1




(A.10)

The last element of the matrix represents a scalar factor that in robotics
is always set at 1. This representation is really important because allows
composition between rototranslation matrices and also inversion, the deter-
minant of the rototranslation matrices is not equal to one as for rotation
matrices.
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