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Abstract

This thesis deals with various applications to financial problems of the Stochastic Collocation

method on Smolyak-type sparse grids.

In the first part, after the description of the method, we present this method and define both

elliptic and parabolic Stochastic Partial Differential Equations (SPDEs) together with some

of the well-posedness and convergence results known so far that will be then tested on simple

cases.

In the second part we focus on financial models and apply the Stochastic Collocation to

well known Black-Scholes equation under the hypothesis of stochastic parameters. We then

analyze how this technique can be useful for Stochastic Differential Equations approximation

considering both weak and strong errors. A comparison with Monte Carlo method in terms

of computational cost is also performed. After deriving (in a heuristic way) a conditional

Black and Scholes equation which fits to Basket Options or option pricing under stochastic

volatility models we finally show the effectiveness of Stochastic Collocation in option pricing

which is much more evident for Basket Options.
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Chapter 1

Introduction

This thesis deals with Stochastic Partial Differential Equations (SPDEs) that have gained

a huge popularity in the last decade since one of the causes making simulations different

from physical phenomena observable in nature is the use of uncertain data. In addition to

coefficients, other sources of error are represented by forcing terms, boundary conditions and

geometry of the problem. Often these data can not be estimated exactly because of lack of ex-

perimental data or intrinsic variability of the phenomenon and thus a deterministic approach

would be unfulfilling.

After an appropriate modelization of the uncertainties, the simplest way to deal with them

would be a random sampling (just like the Monte Carlo method). Nowadays however more

efficient strategies have been proposed: the so called Stochastic Galerkin and Stochastic Col-

location techniques. The key idea of this work is to apply tha latter technique and the related

quadrature formulae to financial problems as proposed by the Quantitative Analysts from

UBS. During a three months internship in the Zurich base we moved the first steps consider-

ing standard elliptic and parabolic Partial Differential Equations with random coefficients to

evaluate the effectiveness of this method since these applications have been partially studied

and convergence estimates were available. We then focused on the Black and Scholes equa-

tion with random parameters such as volatility and interest rates, treated as single random

variables. Finally, we have focused on option pricing under Heston model of volatility where a

Black and Scholes equation is written conditional to the volatility process. In this first stage

we were able to obtain good results with the Black and Scholes equation and the Heston

model under the hypothesis of non correlation between the Brownian motions driving the

underlying and the volatility dynamics. In the case of non zero correlation we were not able

to get positive results, in particular the Black and Scholes equation conditional to the volatil-

ity realization appeared ”tricky” and difficult to approximate. For this reason our further

efforts focused on the analyses of the approximation of stochastic differential equations with

Stochastic Collocation. This investigation has led to substantial improvements with respect

to the initial implementation.
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In fact the main request from the UBS Quants was to find a different pricing method when

several processes are involved: for example in case of stochastic volatility models with one

underlying the pricing techniques consist in solving a bidimensional PDE or approximating

the two SDEs and the same holds for Basket Options. Their idea was to approximate one of

the SDEs with the Stochastic Collocation and then solving a conditional PDE. The results

that we have obtained obtained show that for Basket Options this strategy can be competitive

with those known so far, while in the Heston case the terms appearing in the conditional PDE

are too complex to be approximated in an efficient way although the PDE derived seems to

be the correct one.

We would like to point out that the PDE considered has an irregular drift and we can not

provide well posedness results or to justify the use of Galerkin methods so this work is just

one of the first attempts to implemente this new strategy. The numerical simulations however

seem very encouraging and should represent a starting point for further analyses on this topic.

Thesis structure

In Chapter 2 we review the main ideas and concepts behind the Stochastic Collocation method

and describe the construction of a sparse grid.

In Chapter 3 we will provide the mathematical formulation of an elliptic SPDE and its dis-

crete version obtained with a Galerkin space discretization (tipically Finite Elements) and

the Stochastic Galerkin or Stochastic Collocation probability approximation. We will not

investigate further the first approach, while for the latter we will recall the convergence re-

sults available for some types of (sparse) grids, since this topic is still under investigation. In

Section 3.2 we will then show on a couple of toy models the sharpness of these convergence

rates. The same analysis will be done for parabolic SPDEs as well.

The main goal of our work however is to test the effectivness of the Stochastic Collocation

method in financial applications. After recalling the Black-Scholes model and its extensions

to forex contingent claim (Garman-Kohlhagen model), in Chapter 4 we apply the Stochastic

Collocation technique assuming a uniform distribution for the volatility and/or the risk-free

interest rate. Sometimes we will use the Stochastic Collocation just through the quadrature

formulae involved (see Chapter 2) since closed-type pricing formulae are available; in more

complex cases (like Barrier Options) we will solve parabolic SPDEs. Furthermore in Section

4.3 and 4.4 we will make a comparison with the Monte Carlo method.

We will then focus on Stochastic Differential Equations (SDEs) approximations (Chapter 5):

in particular we will deal with some of the most famous SDEs that have been used to modelize

mostly the volatility e.g. Geometric Brownian Motion, Ornstein-Uhlenbeck and Square Root

process. We will show the efficacy of the Stochastic Collocation technique coupled with Euler

and Milstein schemes by computing both weak errors (through the above-mentioned quadra-
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ture formulae) and strong errors (through the interpolation procedure presented in Chapter

2). This represents a quite new approach and we will rely just on numerical simulations since

no theoretical results have been produced on this topic so far. Afterwards in Section 5.6 we

will compare the error-costs ratio involved in the probability approximation with Stochastic

Collocation and Monte Carlo method. We will take into account also the theoretical rates of

advanced methods as the Quasi-Monte Carlo or the Multi-level Monte Carlo, showing that

Stochastic Collocation can be comparable and often superior to them. In Section 5.7 we will

present a different discretization scheme for a Wiener path introduced by Caflisch [28] and

adopted also by Griebel [31]: the so called Brownian Bridge discretization that will be used

on anisotropic grids and in some cases provide really excellent convergence rate.

The last Chapter is dedicated to the pricing of contingent claims with the Heston volatility

model and also European vanilla Basket options. We will first derive a conditional Black and

Scholes PDE based on the arguments in [7] in a heuristhic way that will allow us to solve

one SDE and one monodimensional PDE as a pricing technique. In fact, we will compare

the prices of European vanilla Basket options written on two underlyings obtained by solving

two SDEs or one SDE and our monodimensional PDE which in this case can be considered

a non-standard SPDE with random drift and random boundary conditions. We will first

analyze two pricing strategies based on Monte Carlo method and show that the conditional

PDE approach leads to a mild variance reduction effect. We then explore the possibility

of combining the conditional PDE with a Stochastic Collocation discretization of the PDE,

relying on the results obtained in Chapter 5.

Then we will price vanilla and barrier options with the Heston volatility model under the

assumption of uncorrelation between the Brownian motions driving the dynamics of the un-

derlying and the volatility process: in this case the monodimensional PDE (which coincide

with the Black-Scholes PDE) can be considered somehow a non-standard SPDE with random

diffusion coefficient. With this assumption the Stochastic Collocation techique seems to be

really efficient. On the other hand, when removing the hypothesis of zero correlation the con-

ditional PDE strategy combined with Stochastic Collocation partially loses its effectiveness.

Finally a brief appendix recalls the Rannacher method that has been used to discretize in

time parabolic PDEs.
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Chapter 2

Stochastic Collocation

Let η be a random variable taking values in Γ with probability density function ρ : Γ→ R+.

We define the space of square integrable functions

L2
ρ(R) = {f : R→ R :< f, f >ρ=

∫
Γ
f(η)2ρ(η)dη <∞} (2.1)

which is a Hilbert space and consider a sequence of polynomials {Qn}∞n=0 of degree n = 0, 1, . . .

orthogonal with respect to the measure ρ(η)dη, i.e. < Qn, Qm >ρ= 0. Depending on the

distribution of η it is possible to introduce different basis for the space L2
ρ(R), in particular

• Legendre polynomials {Len}∞n=0 are an orthogonal basis with respect to the uniform

weight ρ(η) = 1
2 on [−1, 1] and they satisfy the following recurrence relation

Len+1(η) =
2n+ 1

n+ 1
ηLen(η)− n

n+ 1
Len−1(η) (2.2)

with Le0(η) = 1 and Le1(η) = η

• Hermite polynomials {Hn}∞n=0 are an orthogonal basis with respect to the weight func-

tion ρ(η) = 1√
2π
exp(−η2

2 ) on (−∞,+∞) and they satisfy the following relation

Hn+1(η) = ηHn(η)− nHn−1(η) (2.3)

with H0(η) = 1 and H1(η) = η

• Laguerre polynomials {Lan}∞n=0 are an orthogonal basis with respect to the weight

function ρ(η) = e−η on [0,∞) and they can be obtained through the following relation

Lan+1(η) =
1

n+ 1
[(2n+ 1− η)Lan(η)− nLan−1(η)] (2.4)

with La0(η) = 1 and La1(η) = −η + 1.
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We aim at approximating the function f in the polynomial subspace Σ ⊂ L2
ρ(R) that is a

space of polynomials up to degree w and we can do it in two different ways:

• L2
ρ projection on Σ: f(η) ' fw(η) =

∑w
i=0 fiQi(η) where fi = E[fQi]/E[Q2

i ] and Qi

are the orthogonal polynomials with respect to ρ (e.g. Legendre, Laguerre and Hermite

polynomials)

• interpolation on Gauss point: if ηi i = 0 . . . w are the roots of Qw+1 and li(η), i =

0, . . . , w the corresponding Lagrange polynomials (which represent an alternative basis

of Σ) then f(η) ' fw(η) =
∑w

i=0 f(ηi)li(η).

Given the coefficients of the second representation, it is possible to obtain those of the first one.

For both interpolation and L2-projection, assuming f analytic in Γ, we have the same

convergence rate depending on the support of the density ρ: if bounded then

||f − fw||L2
ρ
≤ Ce−τw (2.5)

for a suitable τ > 0. Otherwise, if Γ is unbounded and ρ(η) ∼ e−δη2
at infinity:

||f − fw||L2
ρ
≤ C
√
w + 1e−τδ

√
w (2.6)

for f analytic such that maxη(|f(η)|e−α|η|) <∞ for some α > 0. We will discuss an analogous

result in Section 3.1.3 .

Usually it is useful to evaluate first order moments, in particular the mean value, which

can be calculated with the corrisponding Gaussian quadrature formula:

Eρ[f ] =

∫
Γ
f(η)ρ(η)dη '

w+1∑
i=0

wif(ηi) (2.7)

with

wi =

∫
Γ
li(η)2ρ(η)dη. (2.8)

The monodimensional theory can be generalized to a function f depending on a vector

of independent random variables η = [η1, . . . , ηN ], each of them with corresponding image

set Γn = ηn(Ω), where Ω is the set of all possible outcomes. If we assume that ρ is the joint

distribution of these N independent random variables then ρ(η) =
∏N
n=1 ρn(ηn) and we define

Γ = Γ1 × . . . × ΓN . As in the mondimensional case we consider both a L2
ρ-projection and

an interpolation formula. Given a multi-index k = [k1, . . . , kN ] ∈ NN we introduce a generic
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basis function:

Qk(η) = Q1
k1

(η1) . . . QNkN (ηN ) (2.9)

where each Qki is a monodimensional orthogonal polynomial (previously defined in the L2
ρ

projection). Letting k vary in NN we get an orthogonal basis for L2
ρ(Γ). Obviously we aim

at approximating every function on a finite dimensional basis of L2
ρ(Γ) so a constraint on the

set of the multi-indeces k has to be introduced. As a first step, we will take into account

the set {k : ki ≤ pi}: this choice corresponds to the basis composed of all polynomials with

maximum degree pi in each variable. To every vector of indeces k = [k1, . . . , kN ] we associate

the global index

k = k1 + p1(k2 − 1) + p1p2(k3 − 1) . . . (2.10)

which allows to represent every function f as:

f(η) ' fp(η) =

Np∑
k=1

fkQk(η) where fk = E[fQk]/E[Q2
k] (2.11)

and p = [p1, . . . pN ] and Np =
∏N
n=1(pn + 1).

We will now focus on the approximation based on the Gauss interpolation. For each

dimension n = 1, . . . , N let ηn,kn , 1 ≤ kn ≤ pn + 1 be the pn + 1 roots of the one dimensional

orthogonal polynomial Qpn+1 with respect to the weight ρn. We introduce the global index

(2.10) and denote by ηk the point [η1,k1 , η2,k2 , . . . ηN,kN ] ∈ Γ. For each n = 1, . . . , N we also

introduce the Lagrange basis{ln,j}pn+1
j=1 such that ln,j(ηn,k) = δj,k, j, k = 1 . . . pn + 1 and we

set lk(η) =
∏N
n=1 ln,kn(ηn).

For any continuous function f : Γ→ R we have the following approximation:

f(η) ' Ipf(η) =

Np∑
k=1

f(ηk)lk(η) (2.12)

where Np =
∏N
n=1(pn + 1).

In this framework we can also derive a Gauss quadrature formula for the mean value of the

function f :

Eρ[f ] =

∫
Γ
f(η)ρ(η)dη '

Np∑
k=1

wkf(ηk) (2.13)

where

wk =

N∏
n=1

wkn wkn =

∫
Γn

l2kn(ηn)ρn(ηn)dηn. (2.14)

This formula is exact if the integrand is a polynomial with degree at most 2pn+1 with respect

to each random variable ηn.
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As in the multidimensional case an estimation of the rate of convergence of this polynomial

approximation can be obtained, but we will discuss it in details later (see Section 3.1.3).

In the next chapter we will apply this theory to elliptic and parabolic partial differential

equations.

2.1 Sparse grids approximation

The Collocation method presented so far consists in a tensor product approximation and in-

terpolates a function depending on a set of N random variables on a full tensor grid obtained

by tensorization of one-dimensional Gaussian abscissas. This strategy becomes computation-

ally expensive if the number of random variables increases significantly: this phenomenon is

usually referred to as curse of dimensionality (see [4]).

Furthermore, the main consequence is a strong decrease in the convergence rate with respect

to the number of collocation points. In fact let us consider a full tensor grid approximation

involving w+1 points for each variable. The convergence result available (discussed in Section

3.1.3) provides an exponential decay of the error with respect to the level w (the maximum

polynomial degree). However the number of collocation points is equal to Np = (1 + w)N so

we can recast the rate as err ≤ Cexp{−τN
1
N
p }. If N is sufficiently large than we can state

that N
1
N
p ' 1 + log(Np)/N and the effective rate of convergence, that takes into account the

number of points, is algebraic rather than exponential: in fact err ≤ CN−τ/Np .

In many cases a full tensor grid approximation is unnecessary and the number of evaluation

points can drastically be reduced. This approach yields to the Sparse grids collocation method

introduced by Smolyak ([23]), which is still based on a sequence of tensor grids, but allows to

alleviate the curse of dimensionality.

To define a polynomial approximation on a sparse grid, first of all we consider the one

dimensional interpolant operator I
m(i)
n with respect each random variable ηn. The index i ≥ 1

represents the level of approximation and m the number of collocation points defining the

interpolant at level i, under the assumptions that m(1) = 1, m(i) < m(i + 1) for i ≥ 1

and m(0) = 0, which means that I
m(0)
n = 0. The evaluating points {η(i)

n,j}, j = 1 . . .m(i)

for the one-dimensional operator I
m(i)
n are the roots of the orthogonal polynomials Qn,m(i)

with respect to the distribution of ηn. We then introduce the difference operators ∆
m(i)
n =

I
m(i)
n − Im(i−1)

n . Following [4], given an integer w and a multi-index i = (i1, . . . , iN ), i ≥ 1, we

introduce a function g : NN
+ → N strictly increasing in each argument and define a generalized
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sparse grid approximation of a function f as

Sm,gw [f ] =
∑

i≥1:g(i)≤w

N⊗
n=1

∆m(in)
n (f). (2.15)

Formula (2.15) can be recast in a more amenable way as

Sm,gw [f ] =
∑

i≥1:g(i)≤w

c(i)

N⊗
n=1

Im(in)
n (f) where c(i) =

∑
z∈{0,1}N :g(i+z)≤w

(−1)|z|. (2.16)

Formula (2.16) shows that sparse grid approximation is still given by the sum of tensor prod-

uct interpolations, but the constraint g(i) ≤ w avoids using high order interpolants in each

direction jointly. Furthermore the coefficients c(i) is often equal to 0 and this implies that

many tensor interpolations are not computed in practice. From formula (2.16) it follows that

every function f has to be evaluated in the set Hm,g
w ⊂ Γ, called the sparse grid, that consists

of the union of all full tensor grids in (2.15) that are multiplied by a coefficient c(i) 6= 0.

We have introduced the function g, which defines the set of admissible multi-indices i. The

requirement for g to be strictly increasing guarantees that if i is an admissible multi-index

than all z ≤ i are admissible as well.

We now want to define the polynomial space spanned by a sparse grid approximation of

level w. First of all, since m might not be surjective in N+ we introduce the left inverse:

m−1(k) = min{i ∈ N+ : m(i) ≥ k} (2.17)

m−1 is therefore a nondecreasing function. Let m(i) = (m(i1), . . . ,m(iN )) and consider the

set of polynomial multidegrees

Λm,g(w) = {p ∈ NN : g(m−1(p+1)) ≤ w}. (2.18)

We denote by PΛm,g(w)(Γ) the corresponding polynomial space spanned by the monomials

with multidegree in Λm,g(w)

PΛm,g(w)(Γ) = span
{ N∏
n=1

ηpnn : p ∈ Λm,g(w)
}
. (2.19)

As stated in [4], if f ∈ C0(Γ) then Sm,gw [f ] ∈ PΛm,g(w)(Γ).

Different definitions of the functions m and g lead to different approximating spaces: we will

consider in the following the choices Tensor Product (considered so far)(TP), Total Degree

(TD), Smolyak (SM) and Hyperbolic Cross (HC), summarized in Table 2.1.

12



Approx. space Sparse grid: m, g Polynomial space Λ(w)

Tensor Product m(i) = i, g(i) = maxn(in − 1) ≤
w

{p ∈ NN : maxnpn ≤ w}

Total Degree m(i) = i, g(i) =
∑

n(in− 1) ≤ w {p ∈ NN :
∑

n pn ≤ w}
Hyperbolic Cross m(i) = i, g(i) =

∏
n(in) ≤ w + 1 {p ∈ NN :

∏
n(pn + 1) ≤ w + 1}

Smolyak m(i) =

{
1, i = 1

2i−1 + 1, i > 1

g(i) =
∑

n(in − 1) ≤ w

{p ∈ NN :
∑

n f(pn) ≤ w}

f(p) =


0, p = 0

1, p = 1

dlog2(p)e, p ≥ 2

Table 2.1: Sparse approximation formulas and corresponding polynomial space

The next figures (Fig. 2.1, 2.2, 2.3, 2.4) show the grids obtained with the different rules

and a level w = 5 with respect to two random variables with uniform distribution over [−1, 1].

It should be noticed however that the Smolyak grid (Fig. 2.3) involves a greater number of

points since the level w = 5 corresponds to a maximum polynomial degree equal to 32 in this

case.

Figure 2.1: TP grid, N=2 w=5 Figure 2.2: TD grid, N=2 w=5

Just like for the tensor product approximation, it is possible to compute the first moment

of a function f on a sparse grid as:

Eρ[f ] '
∑

i≥1:g(i)≤w,c(i)6=0

c(i)

m(i1)∑
j1=1

. . .

m(iN )∑
jN=1

wijf(ηij) (2.20)

where wij = [w
(i1)
1,j1

, . . . , w
(iN )
N,jN

], ηij = [η
(i1)
1,j1

, . . . , η
(iN )
N,jN

] and c(i) defined as in 2.16.

In [1] is also provided a useful convergence estimation for the isotropic Smolyak sparse grid: if

u is a continuous function on Γ taking values in a function space V and analytic with respect
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Figure 2.3: SM grid, N=2 w=5 Figure 2.4: HC grid, N=2 w=5

to all random variables ηn then the Smolyak formula based on Gaussian abscissas satisfies

||u− Sm,gw [u]||L2
ρ(Γ;V ) ≤ C(N)N−µp (2.21)

where µ ' C1
C2+log(N) and Np still represents the total number of collocation points. As pre-

viously stated, if N � log(Np), then the isotropic full tensor product interpolation converges

as C(N)N
−τ/N
p . It is quite evident that the Smolyak grid is able to reduce the curse of di-

mensionality when N is large, since a faster rate of convergence with respect to the number

of collocation points has been proved.

Furthermore, if the function to be approximated shows a high dependence on some of the

random variables, it is possible to define anisotropic sparse grids. We first introduce the

weights α = (α1, . . . , αN ) and we then modify the construction of the sparse grid in order

to take into accounts the weights g(i;α) (for example in the Smolyak case we can consider

g(i;α) =
∑

n
αn
αmin

(in − 1)). Our anisotropic sparse grid approximation is given by formula

(2.15) where the sum is computed over all the multi-indeces i such that g(i;α) ≤ w (for

further details see [1]).

As a final remark that will be useful in our further discussions, we underline that if

we consider a function f depending on an N -dimensional random vector, given a certain

realization of it (η̄), we can approximate the value f(η̄) by formula (2.16). It will be sufficient

to sum up the values of the interpolant functions related to all the admissible multi-indices i

such that c(i) 6= 0. This will be advantageous whenever the direct evaluation of f(η) is very

expensive (e.g. in the case where evaluating f(η) implies the solution of a PDE, see next

chapter) whereas the evaluation of Sm,gw f(η) is in general quite cheap once the sparse grid

approximation has been formed1.

1In our codes for the HC rules we have considered the rule
∏
n(in) ≤ w, so the HC levels actually starts

from w = 1
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Chapter 3

Elliptic and Parabolic PDEs with

random coefficients

In this chapter we want to investigate the rate of convergence of the various grids presented

in Chapter 2 when used to approximate the solution of PDE with random coefficients, con-

sidering both elliptic and a parabolic SPDEs. In this chapter we will not deal with financial

problems but this analysis will be useful for applications to the Black and Scholes equation

in Chapter 4.

3.1 Elliptic SPDEs

We consider a physical domain D and a probability space given by (Ω,F , P ) where Ω is the

set of all possible outcomes ω, F is the σ-algebra of events and P : F → [0, 1] is a probability

measure. An elliptic stochastic partial differential equation is given by the following problem:

find u ∈ D̄ × Ω→ R such that almost surely the following equation holds:−div(a(x, ω)∇u(x, ω)) = f(x, ω) x ∈ D

u(x, ω) = 0 x ∈ ∂D × Ω
(3.1)

where we are considering deterministic boundary conditions, though the theory can be ex-

tended to the case of random boundary conditions as well. We assume that there exist

amin > 0 and amax <∞ such that:

P (amin ≤ a(x, ω) ≤ amax ∀x ∈ D̄) = 1 (3.2)

and f is square integrable with respect to P∫
D
E[f2]dx <∞. (3.3)
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This excludes the case of a ”white noise” forcing term. Moreover, we consider a diffusion

coefficient a(·, ω) and a forcing term f(·, ω) that can be parametrized by N random variables

η1, . . . , ηN (usually independent) and are analytic functions of η1, . . . , ηN . It follows that

u depends on ω ∈ Ω only through the value taken by the random vector η and we can

therefore replace the probability space (Ω,F , P ) with (Γ,B(Γ), ρ(η)dη) where B(Γ) is the

Borel σ-algebra on Γ.

We introduce the space H1(D) of the square integrable functions with square integrable

derivatives, the subspace H1
0 (D) of functions with vanishing trace at the boundary and the

space L2
ρ(Γ) of square integrable functions on Γ with respect to the weight ρ. The weak

formulation of (3.1) can be written as: find u ∈ H1
0 (D) ⊗ L2

ρ(Γ) such that for every v ∈
H1

0 (D)⊗ L2
ρ(Γ)

E
[ ∫

D
a(x,η)∇u(x,η)∇v(x,η)dx

]
= E

[ ∫
D
f(x,η)v(x,η)dx

]
. (3.4)

Under the assumption (3.2), from Lax-Milgram theorem we know that there exists a unique

solution of the weak problem. This solution then satisfies the stability condition

||∇u||L2(D)⊗L2
ρ(Γ) ≤

Cp
amin

( ∫
D
E[f2]dx

) 1
2 (3.5)

where Cp is the Poincaré constant. We recall here a regularity result given in [1]. Assume that

condition (3.2) is satisfied, a(x,η) is analytic in Γ ∀x ∈ D̄ and there exists a N-dimensional

vector γ : γn ≤ +∞ ∀n independent of η such that

||
∂kηna(x,η)

a(x,η)
||L∞(D) ≤ γknk! ∀n = 1, . . . , N

||∂kηnf(η)||L2(D)

1 + ||f(η)||L2(D)
≤ γknk! ∀n = 1 . . . N

(3.6)

We will further make some assumptions on f and ρ. We introduce a weight σ(η) =∏N
n=1 σn(ηn) ≤ 1 where

σn(ηn) =

1 if Γn is bounded

e−αn|ηn| for some αn > 0 if Γn is unbounded
(3.7)

and the functional space

C0
σ(Γ;V ) =

{
v : Γ→ V, v continuous in η,maxη∈Γ ||σ(η)v(η)||V <∞

}
(3.8)

where V is a Banach space of functions on D. In what follows we will consider functions
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f ∈ C0
σ(Γ;L2(D)) and probability density functions ρ such that

ρ(η) ≤ Cρe−
∑N
n=1(δnηn)2

(3.9)

for some constant Cρ > 0 and δn strictly positive if Γn is unbounded and 0 otherwise. So if Γ

is unbounded, we are focusing on continuous forcing term with at most exponential growth

at infinity and Gaussian-type probability distribution functions.

Under the latter assumptions and (3.6) it is proved in [1] that the solution u(x, ηn) as function

of ηn admits an analytic extension u(x, z), z ∈ C in the region of the complex plane

Ξ(Γn; τn) = {z ∈ C, dist(z,Γn) ≤ τn} (3.10)

whith 0 < τn < 1/(2γn).

This result justifies a polynomial interpolation in the probability space.

3.1.1 Semi-discrete formulation

We consider a triangulation Th in the physical domain D and a finite elements space Vh(D) ⊂
H1

0 (D), with dimension Nh. The semi-discrete problem (3.1) becomes: find uh ∈ Vh(D) ⊗
L2
ρ(Γ) such that for all vh ∈ Vh(D)∫

D
a(x,η)∇uh(x,η)∇vh(x)dx =

∫
D
f(x,η)vh(x)dx ρ a.e. in Γ. (3.11)

For every η ∈ Γ the latter problem admits a unique solution, which satisfies the same

regularity and stability results that hold for the solution of the continuous problem (3.1).

Let {φi(x)}Nhi=1 be a Lagrangian basis of Vh(D); we can represent the solution uh(x,η) =∑Nh
i=1 ui(η)φi(x) and then recast the semi-discrete problem (3.11) into its algebraic formula-

tion

K(η)U(η) = F (η) (3.12)

where U(η) = [u1(η), . . . , uNh(η)] is the random vector of nodal values, Kij =
∫
D a(x,η)∇φj(x)∇φi(x)dx

is the random stiffness matrix and Fi =
∫
D f(x,η)φi(x)dx, i = 1 . . . Nh is the random forcing

term. Obviously problem (3.12) is derived from (3.11) setting vh(x) = φi(x).

3.1.2 Fully discrete approximation

If we consider the basis of orthogonal polynomials Σ = span{Q1,Q2, . . .} and we want to

approximate the random vector of nodal values U(η) then ui(η) ' uwi (η) =
∑Np

j=1 uijQj(η)

and the discrete approximation of u(x,η) is then given by uwh =
∑Nh

i=1

∑Np
j=1 uijφi(x)Qj(η).

The fully discrete problem will then be: find uwh ∈ Vh(D)⊗Σ such that for every vh ∈ Vh(D)
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and every Z ∈ Σ:

E
[ ∫

D
a(x,η)∇uwh (x,η)∇vh(x)Z(η)

]
= E

[ ∫
D
f(x,η)vh(x)Z(η)

]
. (3.13)

Setting the vh(x) = φi(x), Z(η) = Ql(η) and considering the last expansion for uwh we

can derive an algebraic formulation which will lead to the Stochastic Galerkin method (see

[3],[2],[18]). This method entails the solution of a certain number of coupled deterministic

problems. We will not get into further details beacuse we aim at investigating another efficient

technique for solving the SPDE.

In the semi-discrete representation of the solution uh(x,η) =
∑Nh

i=1 ui(η)φi(x) we replace

each nodal value with its interpolant as in (2.12): ui(η) '
∑Np

j=1 ui(ηj)lj(η). We are con-

sidering here the TP rule in Table 2.1. Then the fully discrete solution has the following

expansion uwh (x,η) =
∑Nh

i=1

∑Np
j=1 ui(ηj)φi(x)lj(η) =

∑Np
j=1 uh(x,ηj)lj(η).

Therefore to obtain the fully discretized solution we have to evaluate the semi-discrete solu-

tion uh(x,η) in the Np collocation points ηj . It follows that we have to solve Np uncoupled

deterministic problems: ∀j = 1 . . . Np find uh(x,ηj) ∈ Vh(D) such that:∫
D
a(x,ηj)∇uh(x,ηj)∇vh(x)dx =

∫
D
f(x,ηj)vh(x)dx ∀vh(x) ∈ Vh(D). (3.14)

This technique is named Stochastic Collocation method ([1],[2]) since we are collocating a

certain SPDE in the probability knots used to build the interpolant function.

3.1.3 Rates of convergence

The convergence result for ||u − uwh ||L2
ρ(Γ)⊗H1

0 (D) is based on the triangular inequality since

u − uwh = (u − uh) + (uh − uwh ), so we can split the total error in two errors: one involving

the physical space approximation the other the probability approximation. It can be noticed

that uh is the orthogonal projection of u onto the subspace Vh ⊗ L2
ρ(Γ) with respect to the

inner product
∫

Γ×D ρa|∇ · |
2, so from Galerkin optimality it follows

||u− uh||L2
ρ(Γ)⊗H1

0 (D) ≤
1

√
amin

(∫
Γ×D

ρa∇|u− uh|2
)1/2

≤ 1
√
amin

inf
v∈Vh⊗L2

ρ(Γ)

(∫
Γ×D

ρa∇|u− v|2
)1/2

.

(3.15)

The term ||uh− uwh ||L2
ρ(Γ)⊗H1

0 (D) represents the approximation error in probability, which can

be estimated as well. In particular we quote the following result presented in ([1]) related to

the Tensor Product rule in Table 2.1.

Teorema 3.1.1.

If f ∈ C0
σ(Γ;L2(D)) and a satisfies the assumptions (3.6) and (3.9) then there exist positive
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constants rn, n = 1 . . . N independent of h and pn, such that

||u− uwh ||L2
ρ(Γ)⊗H1

0
≤ 1
√
amin

inf
v∈Vh⊗L2

ρ(Γ)

(∫
Γ×D

ρa∇|u− v|2
)1/2

+ C

N∑
n=1

βn(pn)exp{−rnpθnn }
(3.16)

where, if Γn is bounded θn = βn = 1

rn = log
[

2τn
|Γn|
(
1 +

√
1 + |Γn|2

4τn

2)] (3.17)

else θn = 1
2 , βn = O(

√
pn)

rn = τnδn
(3.18)

where τn as in (3.10) and δn as in (3.9).

In next section we will see how to apply (3.16). It has to be noticed that from (3.16) it is

possible to derive a convergence result for the error in the mean value measured in L2(D) or

H1(D) norms and for the error in the second moment measured in the L1(D) norm, since:

||E[u− uwh ]||V (D) ≤ ||u− uwh ||L2
ρ(Γ)⊗V (D)

||E[u2 − (uwh )2]||L1(D) ≤ C||u− uwh ||L2
ρ(Γ)⊗L2(D)

(3.19)

where V (D) = L2(D) or V (D) = H1(D).

3.1.4 Sparse grids and elliptic PDE

The results presented so far in this chapter are related to a full Tensor Product space but the

same considerations can be repeated for Sparse Grid approximations. In the latter case, using

the typical error splitting result, it has been shown in [5] that the probability approximation

error for the isotropic Smolyak grid is the one presented in the previous chapter (formula

2.21).
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3.2 Examples of Elliptic SPDEs

We examine an elliptic problem in one physical dimension:−(a(x,η)u(x,η)′)′ = f(x) x ∈ D = (0, 1), η ∈ Γ

u(0,η) = u(1,η) = 0 η ∈ Γ
(3.20)

where a(x,η) is a function of space x and random variables η.

If we consider a finite elements approximation with degree r in the physical space, we can

estimate the term infv∈Vh⊗L2
ρ

(∫
Γ×D ρa∇|u− v|

2

)1/2

in (3.16) with C1h
rE[||u||2Hr+1 ]1/2 under

the assumption (3.2). So if we are considering a vector of random variables with bounded

support and a Tensor Product approximation in probability our convergence result is

E[||u− uwh ||2H1
0 (D)]

1
2 ≤ C1h

rE[||u||2Hr+1 ]
1
2 + C2e

−C3w. (3.21)

Similarly, since the error splitting holds, we can derive a convergence rate in the norm

|| · ||L2(D)⊗L2
ρ(Γ):

E[||u− uwh ||2L2(D)]
1
2 ≤ C1h

r+1E[||u||2Hr+1 ]
1
2 + C2e

−C3w. (3.22)

Moreover, with respect to the number of collocation points we can derive an algebraic

convergence for the Smolyak grid and a sub exponential convergence for the Tensor Product

grid (as discussed in Section 2.1), coupled with the usual rate of convergence of the finite

elements method.

3.2.1 Numerical results

We consider problem (3.20) where a(x,η) = (1+0.1η1 +0.5η2) and η1,η2 are random variables

with uniform distribution over [-1,1]. If f(x) = 1 then the exact solution of the problem is

given by u(x,η) = x(1−x)
2a(x,η) .

Our objective is to estimate ||E[u] − E[uw]||L2(D); E[u] is known in every knot of the

physical space and is equal to x(1−x)
2 E[ 1

a(x,η) ]. We are also able to evaluate the right term

(E[uw]): given a level w and the corresponding probability grid, we can compute the expected

value of the solution in every physical knot. Considering a grid step equal to 1
10i i = 4, .., 8

and various levels w with the different rules we get the following graphs representing the L2

error (3.22)
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Figure 3.1: First moment convergence TP grid:
||E[u]− E[uw]||L2(D)

Figure 3.2: First moment convergence TD grid:
||E[u]− E[uw]||L2(D)

Figure 3.3: First moment convergence SM grid:
||E[u]− E[uw]||L2(D)

Figure 3.4: First moment convergence HC grid:
||E[u]− E[uw]||L2(D)

These graphs show that the probability convergence for the different grids flattens when

the space approximation error dominates. In order to eliminate the latter, since we are

using linear finite elements, it is possibile to consider a linear interpolation for the exact

solution to estimate E[||uh − uwh ||2L2(D)]
1
2 . The next two graphs represent this error plotted

against the number of collocation points involved in the computation (Fig. 3.5) and the

maximum polinomial degree (Fig. 3.6). It should be noticed that for TP, TD and HC rules

the maximum polynomial degree of the polynomial approximation coincides with the level w.

In case of SM grid the maximum polynomial degree is equal to 2w. A linear convergence (on

a semi-logarithmic scale) is observable just for the TP, TD and HC rules (almost linear in the

last case). In the Smolyak case the convergence seems to be algebric rather than exponential.

Fig. 3.5 shows a more than algebraic convergence with respect to the number of evaluation
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points for all the methods, which is faster for TP and SM methods. This is not surprising

since the sparse grid methods become effective if the number of variables is large.

Figure 3.5: First moment convergence vs num-
ber of points: ||E[u]− E[uw]||L2(D)

Figure 3.6: First moment convergence vs poly-
nomial degree: ||E[u]− E[uw]||L2(D)

3.2.2 Strong convergence

Let us consider the problem (3.20) where a(x,η) = ex(1 + 0.1η1 + 0.5η2) and η1, η2 are two

random variables with uniform distribution over [-1,1]. If we define f(x) = ex(x + 0.5), the

solution is given by u(x, η) = x(1−x)
2a(x,η) .

With the aim of obtaining an estimation for E[||u−uwh ||2L2(D)]
1
2 , having set a level w, we solve

numerically the equation for every physical knot and for every quadrature knot. We then

create M = 2000 random samples with the same distribution of the two random variables and

evaluate the solution in every physical knot using an interpolation formula in the probability

space, because the solution is represented on an interpolatory basis as discussed in the previous

chapter. Since we know the analytical solution for every generated random sample, we are

able to get an estimation of the strong error:

E[||u− uwh ||2L2(D)]
1
2 '

[ 1

M

M∑
i=1

||ui − uwhi||2
] 1

2 . (3.23)

We get the following plots considering different grid sizes ( 1
10 ,

1
20 ,

1
40 ,

1
80):
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Figure 3.7: Strong error convergence TP grid: es-
timation of E[||u− uwh ||2L2(D)]

1
2

Figure 3.8: Strong error convergence TD grid: es-
timation of E[||u− uwh ||2L2(D)]

1
2

Figure 3.9: Strong error convergence SM grid: es-
timation of E[||u− uwh ||2L2(D)]

1
2

Figure 3.10: Strong error convergence HC grid:
estimation of E[||u− uwh ||2L2(D)]

1
2

Considering different values of level, we obtain an estimation of the convergence rate with

respect to the number of collocation points
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Figure 3.11: Strong error convergence vs number
of points TP grid: estimation of E[||u−uwh ||2L2(D)]

1
2

Figure 3.12: Strong error convergence vs number
of points TD grid: estimation of E[||u−uwh ||2L2(D)]

1
2

Figure 3.13: Strong error convergence vs number
of points SM grid: estimation of E[||u−uwh ||2L2(D)]

1
2

Figure 3.14: Strong error convergence vs number
of points HC grid: estimation of E[||u−uwh ||2L2(D)]

1
2

3.2.3 Finite Elements error

In a similar way, if we are interested in evaluating the space discretization error we set the

level w = 1 . . . 5 and vary the spacial step getting the trends shown in Fig. 3.15, Fig. 3.16,

Fig. 3.17 and Fig. 3.18.
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Figure 3.15: Finite Elements error TP grid: esti-
mation of E[||u− uwh ||2L2(D)]

1
2

Figure 3.16: Finite Elements error TD grid: esti-
mation of E[||u− uwh ||2L2(D)]

1
2

Figure 3.17: Finite Elements error SM grid: esti-
mation of E[||u− uwh ||2L2(D)]

1
2

Figure 3.18: Finite Elements error HC grid: esti-
mation of E[||u− uwh ||2L2(D)]

1
2

We observe exactly the theoretical convergence rate related to the finite elements approx-

imation until the probability error becomes dominant and the space error is constant.

After these analyses we can conclude that the TP rule represents the best choice since the

number of variables is very small. In particular from Fig. 3.5 and 3.7 the best convergence

rate with respect to the number of points is observable for the TP considering both the first

moment ||E[u]−E[uw]||L2(D) and the strong error E[||u−uwh ||2L2(D)]
1
2 . We just recall that the

sparse grids show their effectiveness in alleviating the curse of dimensionality, therefore for

high dimensional problems they are supposed to outperform the full tensioral grids.
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3.3 Parabolic SPDE

The well-posedness for parabolic SPDEs can be studied similarly to the elliptic case. Given a

physical domain D and a probability space (Ω,F , P ), a stochastic parabolic partial differential

equation is defined as: find u ∈ D̄ × [0, T ] × Ω → R such that almost surely the following

equation holds:
∂tu(x, t, ω)− div(a(x, ω)∇u(x, t, ω)) = f(x, t, ω) in D × (0, T ]× Ω

u(x, t, ω) = 0 on ∂D × [0, T ]× Ω

u(x, 0, ω) = u0 on ∂D × Ω

(3.24)

We make the assumption (3.2) on a and we also assume that f is square integrable:∫
Ω

∫
D×[0,T ]

f2(x, t, ω)dxdtdP <∞. (3.25)

Again this assumption rules out the case of space-time white noise. As in the previous section,

if a and f depend on a finite number of random variables, we can replace the probability

space (Ω,F , P ) with (Γ,B(Γ), ρ(η)dη). The weak formulation of problem (3.24) becomes:

find u ∈ L2([0, T ];H1
0 (D) ⊗ L2

ρ(Ω)) such that ∂tu ∈ L2([0, T ];H−1(D) ⊗ L2
ρ(Ω)), u = u0 for

t = 0 and ∀v ∈ H1
0 (D)⊗ L2

ρ(Ω) a.e. in (0, T ]:

E
[ ∫

D
∂tuvdx

]
+ E

[ ∫
D
a∇u∇vdx

]
= E

[ ∫
D
fvdx

]
. (3.26)

From assumptions (3.2) and (3.25) follows that there exists a unique solution u ∈ L2([0, T ];H1
0 (D)×

L2
ρ(Ω)) which satisfies the energy estimation:

||u(T )||2L2(D)⊗L2
ρ(Γ) + amin||u||2L2([0,T ];H1

0 (D))⊗L2
ρ(Ω) ≤

C2
p

amin
||f ||2L2([0,T ];L2(D))⊗L2

ρ(Ω) + ||u0||2L2(D)

(3.27)

where Cp is the Poincaré constant.

Just like in section (3.1), if we make the same assumptions on the diffusion coefficient a, it is

possible to prove that u(x, ·) admits an analytic extension in the complex plane u(z, ·), z ∈ C
with respect to each random variable (see [2]).

3.3.1 Stochastic Galerkin-FEM

If we consider a finite dimensional approximating space V w
h ⊂ H1

0 (D)⊗ L2
ρ(Γ) we can define

a semi-discrete formulation of (3.26): find uwh ∈ V w
h such that for every t ∈ [0, T ] and every

vwh ∈ V w
h

E
[ ∫

D
∂tu

w
h (t)vwh dx

]
+ E

[ ∫
D
a∇uwh (t)∇vwh dx

]
= E

[ ∫
D
f(t)vwh dx

]
(3.28)
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with initial condition uwh (0) = uw0,h where u0,h is the projection of u0 on V w
h . As a finite dimen-

sional space V w
h we will consider a finite elements space in the physical domain and a polyno-

mial space (Σ) given by the span of orthogonal polynomials Σ = span{Qi} for certain multi-

indeces i ∈ NN . Let {φj}Nhj=1 and {Qk} be the basis functions of the finite dimensional space

V w
h then every function u can be represented as uwh (x, t,η) =

∑Nh
j=1

∑Np
k=1 ujk(t)φj(x)Qk(η).

If we substitute the latter expansion in (3.28) and the basis functions of V w
h as test functions

in the semi-discrete formulation, we get that the ujk satisfy a sistem of ODEs.

We will not get into further details since this choice will lead to the Stochastic Galerkin

method while we will solve SPDEs with the Stochastic Collocation technique, instead.

3.3.2 Stochastic Collocation-FEM

In this framework our approximating space V w
h ⊂ H1

0 (D)⊗L2
ρ(Γ) consists in the finite element

space plus a polynomial space given by the interpolating functions lj , j = 1 . . . Np defined

in Chapter 2. Therefore the semi-discrete expansion for the solution u (since we have not

discretized the time dependence) is given by uwh (x, t,η) =
∑Nh

k=1

∑Np
j=1 uk(t,ηj)φi(x)lj(η) =∑Np

j=1 uh(x, t,ηj)lj(η) (we are considering the TP rule with level w).

As explained for elliptic SPDEs, Stochastic Collocation method entails the solution of a certain

number of deterministic uncoupled problems so we collocate the equation on each collocation

knot. Thus for every ηj we get a deterministic solution that we will call uh(x, t,ηj) =∑Nh
k=1 uk(t,ηj)φk(x), j = 1 . . . Np, where all the coefficients uk(t,ηj) satisfy a system of

ODEs:
Nh∑
k=1

u̇jk(t)

∫
D
φiφkdx +

Nh∑
k=1

ujk(t)a
j(φi, φk) = F (φi) i = 1 . . . Nh (3.29)

where F (φi) =
∫
D f(x, t,ηj)φi(x)dx and aj(φi, φk) =

∫
D a(x,ηj)φk(x)φi(x)dx or in a matri-

cial form

M u̇j(t) +Kjuj(t) = fj(t) (3.30)

where u is the vector of degrees of freedom, M is the mass matrix, Kj the stiffness matrix

computed in the collocation point ηj and f is the forcing term. Having discretized the time

interval [0, T ] into L subintervals [tz, tz+1], z = 0 . . . L− 1 of length ∆t, we can approximate

the time derivative in (3.30) with an incremental ratio depending on a parameter 0 ≤ θ ≤ 1

and obtain the θ-method

M
uj(tz+1)− uj(tz)

∆t
+Kj [θuj(tz+1) + (1− θ)uj(tz)] = θfj+1(tz+1) + (1− θ)fj(tz). (3.31)

Letting θ vary we get the usual methods of Backward Euler, Forward Euler and Crank-

Nicolson. In our simulations we will use the Crank-Nicolson scheme or Rannacher scheme

(see Appendix for further details) to get a fully-discrete approximation.
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3.3.3 Rates of convergence

Also in this case, the convergence rate estimation is based on an error splitting result. If

we call u the exact solution of (3.24), uwh,∆t the fully-discrete approximation and uh,∆t the

semi-discrete one involving a physical space and time approximation then ||u − uwh,∆t|| ≤
||u−uwh,∆t||+ ||uh,∆t−uwh,∆t||. In this section we present an estimation for ||uh,∆t−uwh,∆t|| (for

the sake of the simplicity we will denote u∗ = uwh,∆t). In particular as discussed in [2], if Γ is

bounded then the following probability approximation error with respect to w (the maximum

degree of the polynomial space) holds:

E[||(uh,∆t − u∗)||2L2(D)(tL)] + aminE[
L∑
z=1

∆t||uh,∆t(tz)− u∗(tz)||2H1
0 (D)] ≤ C(τmin)

N∑
n=1

e−τnw

(3.32)

where τn is still related to the distance of the analyticity region of u in the complex plane to

the nearest singularity.

3.3.4 Sparse grids and parabolic SPDEs

As for the elliptic SPDEs we can repeat the same construction also for sparse grids. In this

case some results have been derived for the Smolyak rule in [2])

E[||(uh,∆t − Sm,gw [uh,∆t])(tL)||2L2(D)] + aminE[

L∑
z=1

∆t||uh,∆t − Sm,gw [uh,∆t]||2H1
0 (D)(tz)] ≤

C(τmin, amin, amax, f, Cp, N)N
C̃

1+log(2N)
p

(3.33)

with Sm,gw defined as in (2.16).

3.4 Example of Parabolic SPDE

We consider the following parabolic equation in one physical dimension
ut − (a(x,η)u(x, t,η)′)′ = f(x, t,η) x ∈ D = (0, 1), η ∈ Γ t ∈ [0, T ]

u(0, t,η) = u(1, t,η) = 0 η ∈ Γ

u(x, 0,η) = sin(πx)
(1+0.1η1+0.5η2)2

(3.34)

where a(x,η) = 2(1+0.1η1 +0.5η2) and η1, η2 are random variables with uniform distribution

over [-1,1]. If we set f(x, t,η) = 2sin(πx)e−2t
[

π2

(1+0.1η1+0.5η2) −
1

(1+0.1η1+0.5η2)2

]
, then the

solution is given by u(x, t,η) = sin(x)e−2t

(1+0.1η1+0.5η2)2 .

The theoretical convergence estimate for a parabolic SPDEs is very similar to that presented

for elliptic ones and is based on an error splitting result. Having discretized the time interval
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[0, T ] into L intervals [tz, tz+1], z = 0 . . . L − 1 of length ∆t, we solve every deterministic

problem related to each collocation point using a θ−method scheme (3.31). If u is the solution

of problem (3.24) and uwh,∆t the solution of the fully discrete problem (3.30) then from (3.32)

and from the classical results involving finite elements and θ-method (see[19]) follows:

E[||u(T )− uwh,∆t(tL)||2L2(D)] + amin∆tE[
L∑
z=1

||u(tz)− uwh,∆t(tz)||2H1(D)] ≤

C1(h2r + ∆tq) + C2e
−τw

(3.35)

where q depends upon the time discretization scheme (q = 2 for Backward Euler, q = 4 for

Crank Nicolson). Formula (3.35) holds for a Tensor Product grid where w is the maximum

polynomial degree.

3.4.1 Numerical Results

To get an estimation of the left term of (3.35), having set a level w, we solve numerically the

equation in every knot of the physical and temporal grid and every collocation knot. After

generating M = 1000 random samples with the same distribution of η1 and η2, we evaluate

the solution in every physical and temporal knot using an interpolation in probability. Since

we know the exact solution for every random sample, we are able to get an estimation for the

convergence rate by replacing the mean values in (3.35) with sample means based on the M

samples. To perform our computation, we use linear finite elements with spatial steps equal

to 1
10 ,

1
20 ,

1
40 and the Crank Nicolson scheme with temporal steps 1

10 ,
1
15 ,

1
20 . With the different

rules we get the following results:

Figure 3.19: Strong error convergence TP
grid: estimation of E[||u(T ) − uwh,∆t(tL)||2L2(D)] +

amin∆tE[
∑L

k=1 ||u(tk)− uwh,∆t(tk)||2H1(D)]

Figure 3.20: Strong error convergence TD
grid: estimation of E[||u(T ) − uwh,∆t(tL)||2L2(D)] +

amin∆tE[
∑L

k=1 ||u(tk)− uwh,∆t(tk)||2H1(D)]

29



Figure 3.21: Strong error convergence SM
grid: estimation of E[||u(T ) − uwh,∆t(tL)||2L2(D)] +

amin∆tE[
∑L

k=1 ||u(tk)− uwh,∆t(tk)||2H1(D)]

Figure 3.22: Strong error convergence HC
grid: estimation of E[||u(T ) − uwh,∆t(tL)||2L2(D)] +

amin∆tE[
∑L

k=1 ||u(tk)− uwh,∆t(tk)||2H1(D)]

As for elliptic SPDEs, an almost exponential convergence with respect to w is observable until

the time/physical space approximation error becomes dominant.
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Chapter 4

Black and Scholes equation with

uncertain parameters

In this Chapter we will apply the results presented in the previous one to the parabolic Black

and Scholes PDE under the assumption of random parameters. This represents a classical

approach while the innovative part of this thesis consists in Chapter 5 and 6.

We will first present the Black and Scholes equation and its extension to forex contingent

claims (Section 4.1) and then analyze the price sensitivity to the parameters using the Stochas-

tic Collocation technique (Section 4.2). In Section 4.3 and 4.4 we will make a comparison

with Monte Carlo method.

4.1 Black and Scholes model

In the classical Black and Scholes model the market consists of two assets with dynamics

(under the objective probability P ) given by:

dB(t) = rB(t)dt

dS(t) = µS(t)dt+ σS(t)dW̄ (t)
(4.1)

where B is the price of a risk free asset, S is the price of an underlying asset and W̄ (t) denotes

a scalar Wiener process. r is the risk free interest rate, µ is the local mean rate of return of

S and σ is the volatility; in the original theory all these parameters are constant.

We now define a new probability measure Q (risk neutral probability measure) such that

under Q the dynamics of S is given by:

dS(t) = rS(t)dt+ σS(t)dW (t) (4.2)
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where W (t) is a brownian motion under Q. The price of a contingent claim (F (t, S(t)))

with exercise date T of the form Φ(S(T )), for example a European vanilla call option where

Φ(S(T )) = max(S(T )−K, 0) can be obtained by the following formula, under the assumption

that the market is free of arbitrage possibilities:

F (t, S(t)) = e−r(T−t)EQ[Φ(S(T ))|Ft] (4.3)

where Ft is the filtration at time t. By Feynman-Kac formula we derive that the price of the

contingent claim is the solution of the backward parabolic PDE:∂F
∂t + rS ∂F∂S + 1

2σ
2S2 ∂2F

∂S2 − rF = 0 in R× [0, T )

F (T, S(T )) = φ(S(T ))
(4.4)

In case of an European call option for example, a closed type formula has been derived:

C(t, S(t)) = S(t)N [d1]−Ke−r(T−t)N [d2] (4.5)

where N(x) is the cumulated probability distribution of a standard normal variable and

d1 =
1

σ
√
T − t

(
log

S(t)

K
+ (r +

σ2

2
)(T − t)

)
d2 = d1 − σ

√
T − t

(4.6)

Under the previous arbitrage assumption, the same results can be obtained defining a self

financing portfolio consisting of one unit of the contingent claim and a certain amount of the

underlying.

4.1.1 Garman-Kohlhagen extension

We now study a model involving not only the domestic market, but also a market for the

exchange rate between the domestic currency and a fixed foreign currency, as well as a foreign

market. We are interested in derivatives written directly on the exchange rate, which we still

call S for the sake of simplicity.

We take as given the following dynamics (under the objective probability measure P ):

dBd(t) = rdBd(t)dt

dBf (t) = rfBf (t)dt

dS(t) = µS(t)dt+ σS(t)dW̄ (t)

(4.7)

where W̄ (t) denotes a scalar Wiener process, µ, σ, rd and rf (domestic and foreign short rate

respectively) are constants.
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In this framework a usual risk neutral valuation formula holds:

F (t, S(t)) = e−rd(T−t)EQ[Φ(S(T ))|Ft] (4.8)

where Q is characterized by the property that every domestic asset has the short rate rd as

local rate of return under Q.

First of all we will assume that all holdings of the foreign currency are invested in the foreign

riskless asset, so they will evolve according to the second equation of (4.7).

The possibility of buying foreign currency and investing it at the foreign short rate of interest,

is equivalent to the possibility of investing in a domestic asset with price process B̃f , where

B̃f = Bf (t)S(t). (4.9)

The dynamics of B̃f are given by:

dB̃f = B̃f (rf + µ)dt+ B̃fσdW̄ (t) (4.10)

From previous statements, it follows that the Q-dynamics of B̃f are:

dB̃f = B̃frddt+ B̃fσdW (t). (4.11)

Since by definition:

S(t) =
B̃f
Bf

(4.12)

applying Ito’s formula we get the Q-dynamics of S:

dS(t) = S(t)(rd − rf )dt+ S(t)σdW (4.13)

So from equation (4.8), we obtain that the price of the contingent claim is now the solution

of the PDE: ∂F
∂t + (rd − rf )S ∂F∂S + 1

2σ
2S2 ∂2F

∂S2 − rdF = 0

F (T, ST ) = φ(S(T ))
(4.14)

Also in this framework is possible to derive a closed type formula for the price of an

European vanilla call:

C(t, S(t)) = S(t)e−rf (T−t)N [d1]−Ke−rd(T−t)N [d2] (4.15)
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where N(x) is the cumulated probability distribution of a standard normal variable and

d1 =
1

σ
√
T − t

(
log

S(t)

K
+ (rd − rf +

σ2

2
)(T − t)

)
d2 = d1 − σ

√
T − t

(4.16)

4.2 Black and Scholes with random variables

In this section our objective is to investigate the use of Stochastic Collocation technique

applied to forex option pricing under the hypothesis that volatility and interest rates are

described by uniform random variables. For the sake of simplicity we will consider only

the BS equation with constant parameters, but the results can be easily extended to time

dependent parameters, as used in real life. In particular we have focused on European Vanilla

options (Section 4.2.1) and European Barrier options (Section 4.2.2). We finally underline

that the option value or price is given by the sum of the intrinsic and time value (IV and

TV respectively). The intrinsic value is the value of exercising the option now: e.g. for a

European vanilla Call Option is given by max(S(0) − K, 0). The time value of an option

instead is based on its potential to increase in value before expiring. Therefore for out-of-the

money and at-the-money options we will refer to the option value as the time value (TV)

since they coincide.

4.2.1 European Vanilla Call

As a first example we consider the price of an European vanilla forex call with the following

parameters: S0 = 100, K = 100, σ = 0.2, rd = 0.05, rf = 0.03, T = 1 (year). Using Garman

and Kohlhagen formula price is 8.6525.

We now suppose that the values of σ, rd and rf are not certain but have a uniform distribution

over [0.1,0.3], [0.005,0.095], [0.005,0.055] respectively. The variation of the prices with respect

to σ, rd and rf is given by the next graphs (Fig. 4.1,4.2,4.3):

34



Figure 4.1: TV vs σ Figure 4.2: TV vs rd

Figure 4.3: TV vs rf

The previous plots show that the dependence of TV on the parameters σ, rf , rd is almost

linear so the mean of the prices with respect to the uniform distribution is almost equal to

the price computed with the mean value of the parameters:

E[TV (θ)] ' TV (E[θ]) (4.17)

for θ = σ, rd, rf .

4.2.2 European Barrier Call

As a second example we consider the price of an European barrier call with the following

parameters: S0 = 100, K = 100, σ = 0.2, rd = 0.05, rf = 0.03, T = 1, L = 80 (low barrier),

U = 120 (up barrier). Using a PDE solver we get 1.0504.

We again suppose that the value of σ is not certain but has a uniform distribution over

[0.1,0.3]. The distribution of the prices with respect to σ is given by next graph (Fig. 4.4).
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In this case the mean of the prices is not equal to the price evaluated with the mean of σ. In

Figure 4.4: TV bar vs σ

fact considering a polynomial interpolation on Gauss-Legendre points with respect to σ with

different degree w we get the following mean prices:

w Mean Perc. of Variation

1 1.0504 0%
2 1.2764 21.52%
3 1.2738 21.27%
4 1.2709 20.99%
5 1.2707 20.97%
6 1.2707 20.97%
7 1.2707 20.97%

Table 4.1: Mean of TV (middle column) and percentage of variation from relation (4.17)
(right column) with random volatility σ ∼ U([0.1, 0.3])

In order to get informations on the distribution of the prices we consider the approximation

related to level 5 and we sample the polynomial interpolant in 10000 random i.i.d. samples

of σ uniformly distributed over [0.1, 0.3]. The next figure shows the histogram corresponding

to the probability of the prices using 100 bins (Fig. 4.5).
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Figure 4.5: Prices histogram

The graph suggests that the probability density might be a truncated exponential distri-

bution, so we use a logarithmic regression in Excel in order to estimate it. As shown in the

following graph, the trend seems to be well represented by this kind of regression (Fig. 4.6).

Figure 4.6: Probability distribution of TV as a function of σ ∼ U([0.1, 0.3]). Regression with
a truncated exponential distribution.

Conversely, prices have a linear (or almost linear) trend with respect to rd and rf even

with barrier options (Fig. 4.7,4.8), therefore any further analysis using uniform distribution

for these input parameters would be useless, because formula (4.17) is very accurate.
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Figure 4.7: TV bar vs rd Figure 4.8: TV bar vs rf

Actually, option prices seem to slightly diverge from a linear trend in (Fig. 4.7), in fact

using the Stochastic Collocation tecnique with different values of level w we notice just a

small bias in relation (4.17)

w Mean Perc. of Variation

1 1.0504 0%
2 1.0426 0.74%
3 1.0427 0.74%
4 1.0427 0.74%
5 1.0427 0.74%
6 1.0427 0.74%
7 1.0427 0.74%

Table 4.2: Mean of TV (middle column) and percentage of variation from relation (4.17)
(right column) with random domestic interest rate rd ∼ U([0.005, 0.095])

It follows that, in case of uniform distribution assumption on the parameters and consid-

ering European Vanilla and Barrier Options, the Stochastic Collocation method is useful just

in the case of the Barrier option, when (4.17) does not hold for θ = σ. Obviously, assuming

different and more complex distributions, the use of Stochastic Collocation technique would

be fully justified.

4.3 Black-Scholes equation with random volatility: Colloca-

tion vs Monte Carlo

Given an underlying asset whose dynamics is described by the usual GBM (Geometric Brown-

ian Motion) as in (4.2) we consider the Black-Scholes equation for the pricing of an European

Call.
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In this further example we assume that the volatility is constant over the time interval but

is a random variable with uniform distribution; in particular we want to compare the results

obtained with the Stochastic Collocation method with two types of Monte Carlo simulations.

The same assumption on volatility has been made by Pulch and von Emmerich for the evalu-

ation of an Asian Option (see [26]). Conversely to our work, they exploit a Polynomial Chaos

expansion which results in the above-mentioned Stochastic Galerkin method (Chap. 3).

In this framework η is a random variable with uniform distribution over the interval

[0.1, 0.5] which represents the underlying volatility. Instead, ηi are the volatility values with

respect to which we calculate the option price (f(ηi)) and they correspond to the collocation

points. All the prices can be computed solving the Black-Scholes PDE or using the Black-

Scholes formula (4.5), while the mean value will be given by (2.7). We now remark how

to define collocation points on the interval [−1, 1] related to the Legendre polynomials and

associated to a random variable with uniform distribution on [−1, 1] (see Chapter 2). We

can apply a linear transformation mapping the interval [−1, 1] into [0.1, 0.5] and recast the

problem to one depending on a uniform random variable in [0.1, 0.5]. Indeed if η is a random

variable with uniform distribution on [−1, 1] then V = 0.3 + 0.2η has a uniform distribution

on [0.1, 0.5]. It follows:

E[f ] =

∫ 0.5

0.1
f(v)

1

0.4
dv =

∫ 1

−1
f(0.3 + 0.2η)

1

2
dη. (4.18)

By the same linear transformation we can obtain the collocation points on [0.1, 0.5] from

those on [−1, 1]. We can both use the Gauss-Legendre formula (2.7) with weights given

by (2.8) for the integral defined on [−1, 1] or approximate the integral on [0.1, 0.5] with

appropriate weights.

We can also use the Monte Carlo method in two ways. In the first one we generate M

values of volatility with uniform distribution on [0.1, 0.5] and then we apply formula (4.5) M

times. The option price is simply approximated by the sample mean of these M prices. In

the second one, after simulating M samples of volatility, we simulate the underlying process

at time T by:

Si(T ) = S(0)exp((r − 0.5σ2
i )T + σi

√
TZi) (4.19)

where Zi i = 1..M are values generated from a standard normal distribution. The option

value is the mean of the discounted payoffs.

4.3.1 Numerical results

We decide to evaluate the option price by using the Matlab financial toolbox function blsprice

instead of solving the Black-Scholes PDE to reduce the computational time. We will call

MC bls the price given by the Monte Carlo method coupled with the blsprice function,
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MC payoffs the price obtained by formula (4.19) and Collocation the one computed with

the Collocation method. In the following table, M represents the number of collocation

points/Monte Carlo samples. The other parameters are S(0) = 100,K = 90, r = 0.03, T = 1.

M Collocation MC bls MC payoffs

5 18.7854668346 21.864798 7.502145
10 18.7854307168 18.710908 6.298455
15 18.7854290264 19.826537 41.926484
50 18.7854439741 18.936011 17.488151
100 18.7854439741 18.411561 21.62262
1000 18.746321 18.87440
10000 18.745300 18.774770

Table 4.3: Prices and Number of Points/MC Samples

We decide not to evalute the price for high numbers of collocation points because already

M=100 gives the price up to machine precision. In Fig. 4.9 and 4.10, we plot the value

reported in the previous table as well as the 95% confidence interval given by the Monte

Carlo method. Notice the different vertical scale in the two plots and the much larger variance

estimates.
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Figure 4.9: Prices with Collocation and MC bls methods with confidence interval as functions
of M
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Figure 4.10: Prices with Collocation and MC payoff methods with confidence interval as
functions of M

We can assume one of the collocation value for M=100 as highly accurate approximation

of the real option value and plot the errors of these 3 methods versus the number of points

M (Fig. 4.11).
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Figure 4.11: Log of the error vs log of evaluation points when σ is a uniform random variable
over [0.1, 0.5]

4.3.2 Greeks computation

As previously stated we use a polynomial approximation, that is

f(η) ' fw(η) =

w+1∑
i=1

f(ηi)li(η) (4.20)

where li(η) =
∏
j 6=i

η−ηj
ηi−ηj is i-th Lagrange polynomial and η is the stochastic parameter value.

In particular ηi are the Stochastic Collocation knots, that are the volatility values in which we
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have already computed the option prices (f(ηi)). We seek a price approximation with respect

to all volatility value η as well as the price derivative with respect to volatility evaluated in

η, known as vega. In fact to compute vega it is enough to differentiate (4.20) and we obtain

f ′(η) ' f ′w(η) =
w+1∑
i=1

f(ηi)l
′
i(x).

The last formula shows that we can compute vega (or any other derivative with respect to a

stochastic parameter) by a sum of polynomial derivatives.

We consider 5 or 10 Stochastic Collocation points and build the polynomial interpolant in

order to approximate the option prices and the vega on a uniform grid on [0.1,0.5] consisting

in 20 knots. We can also compare the vega values computed with the exact ones given by

the following formula: V ega(S(0), 0) = S(0)
√
Tφ(d1) where φ is the density function of the

standard normal distribution and d1 = 1
σ
√
T
{ln(S(0)

K ) + (r + 0.5σ2)T}.
Fig. 4.12 and 4.13 show the results obtained for the option price and the vega respectively.

It follows that the price curves are identical for 5 and 10 collocation points, while vega is better

approximated with 10 points.
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Figure 4.12: Price Curve with M=5,10 (the black knots represent the exact values)
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Figure 4.13: Vega with M=5,10 (the black knots represent the exact values)

4.4 Black-Scholes equation with random volatility and ran-

dom risk-free interest rate: Collocation vs Monte Carlo

In addition to the assumptions of the previous model, we consider a risk-free interest rate

with a uniform distribution over [0.01, 0.11].

As far as stochastic collocation is concerned we use Legendre knots in dimension 2, ob-

tained with the hyperbolic cross rule and different values of level w; we will therefore use

(2.20) to compute mean values.

For the Monte Carlo method we generate M couples (σi, ri) of volatility and risk-free

interest rate with the above-mentioned distributions and use the blsprice function (MC bls).

Another alternative is to simulate the path for each couple (σi, ri)

Si(T ) = S(0)exp((ri − 0.5σ2
i )T + σi

√
TZi) (4.21)

where Zi, i = 1, . . . ,M are values generated from a normal standard distribution. The option

value (OV) will be given by the mean value of the payoffs (MC payoffs)

E[OV ] ' exp(−riT )
1

M

M∑
i=1

max(Si(T )−K, 0). (4.22)

The next tables summarize the results obtained (Table 4.4 and 4.5).
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w M Prices

4 16 20.520477461011048
6 33 20.51913579695262
8 44 20.518882783165765
9 61 20.518898786999689

Table 4.4: Mean Prices (right column), levels (left column) and corresponding Number of
Points (middle column) with random volatility σ ∼ U([0.1, 0.5]) and random risk-free interest
rate r ∼ U([0.01, 0.11]), Collocation method

M Prices - MC bls Prices - MC payoff

5 18.90631268079 13.902687861092456
10 20.31652644405 34.188704500741416
15 19.61017709424 32.080885656803979
50 20.68906181798 19.221960125179837
100 20.31956232255 18.797934791542374
1000 20.57911553664 21.676892634061694
10000 20.51741068877 20.357372989470225

Table 4.5: Mean Prices and Number of Samples with random volatility σ ∼ U([0.1, 0.5]) and
random risk-free interest rate r ∼ U([0.01, 0.11]), Monte Carlo methods

The next graphs show the mean prices and the 95% confidence intervals related to Table

4.5 and the Collocation mean prices from Table 4.4 (Fig. 4.14 and 4.15).

1 2 3 4 5 6 7 8 9 10

16

17

18

19

20

21

22

Call value

logN

O
pt

io
n 

va
lu

e

 

 
Collocation
MC bls
CI

Figure 4.14: Prices MC bls method (middle column of Table 4.5) with related 95% CI and
Collocation mean values (right column of Table 4.4) vs log Number of Points/MC Samples,
σ ∼ U([0.1, 0.5]) and r ∼ U([0.01, 0.11])
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Figure 4.15: Prices MC payoff method (right column of Table 4.5) with related 95% CI and
Collocation mean values (right column of Table 4.4) vs log Number of Points/MC Samples,
σ ∼ U([0.1, 0.5]) and r ∼ U([0.01, 0.11])

The last graph (Fig. 4.16) instead shows the error vs number of points after assuming the

mean price obtained with level 9 in Table 4.4 as the exact one.

1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

4
Error

log N

lo
g 

ab
s(

Er
ro

r)

 

 
Collocation
MC bls
MC payoffs
1/sqrt(N)

Figure 4.16: Log Error as function of number of log samples when σ ∼ U([0.1, 0.5]) and
r ∼ U([0.01, 0.11])

In this framework we can conclude that the Collocation technique seems to be the best

one and we can fairly state the MC bls method provides more accurate results than the MC

payoff one.
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Chapter 5

Approximation of stochastic

processes

In the Section 5.1 we will justify the assumption of stochastic volatility and introduce some

of the best-known models. After presenting the Euler and Milstein scheme in Section 5.2,

we will investigate the effectiveness of the Stochastic Collocation coupled with these schemes

when applied to stochastic volatility models. Then we will make a comparison between

Stochastic Collocation and Monte Carlo method in terms of computational cost (Section 5.6)

and discuss a different discretization method to approximate Wiener paths called Brownian

Bridge construction (Section 5.7).

5.1 Stochastic volatility models

The Black and Scholes model has shown significant bias with respect to historical data. First

of all the logarithm of the price of the underlying does not show a normal distribution.

Moreover the assumption of constant parameters can be easily rejected.

We suppose to observe from the market the price of a given call option c with value of strike

K, today’s value of underlying S(t) and risk free interest rate r. Applying Black and Scholes

formula we can find the value of σ (called implied volatility) such that

c = C(t, S(t),K, T, r, σ) (5.1)

where C denotes the Black-Scholes formula; we repeat the same computation for different

values of K. If we plot implied volatility as a function of the exercise price we should obtain

an horizontal straight line. Conversely it is often observed that options far out of the money

and deep into the money are traded at higher implied volatility than options at the money.

This volatility curve is usually termed the volatility smile.

To overcome these discrepancies, new models have been proposed; among them we will focus
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on Heston model belonging to the set of stochastic volatility models [6].

Refusing the assumption of constant volatility it is possible to introduce a process for the

volatility σ (or the variance v = σ2) such that:

• v(t) is positive at every time

• v(t) is mean reverting: if the process diverges from a certain mean value v̄ then its

dynamics tends to move it closer to the mean value

We suppose that the stock price S and its variance v satisfy the following SDEs under the

objective probability measuredS(t) = µS(t)dt+
√
v(t)S(t)dW1(t)

dv(t) = α(S, v, t)dt+ β(S, v, t)
√
v(t)dW2(t)

(5.2)

where dW1(t)dW2(t) = ρdt. As presented in [24], in this framework, it is possible to derive a

pricing formula for a contingent claim defining a risk-free portfolio consisting in the contingent

claim, a certain amount of the underlying and another amount of an asset whose value depends

on volatility. Our pricing equation is given by:

∂F

∂t
+ rS

∂F

∂S
+

1

2

(
S2v

∂2F

∂S2
+ 2ρβ2S

∂2F

∂S∂v
+ β2v

∂2F

∂v2

)
− rF = −(α− φβ)

∂F

∂v
(5.3)

where φ = φ(S, v, t) is the market price of volatility risk that we will consider equal to 0.

While equation (4.4) can be recast in the classical heat equation using a change of variable,

equation (5.3) degenerates at the boundary: for v = 0 all the coefficients of the second order

derivatives vanish and the operator becomes hyperbolic. In this case however any change of

variables prevents the degeneration of the elliptic operator. A special theory is necessary to

examine the well posedness of this particular class of equations: parabolic equations degener-

ating at the boundary of the domain. As a further consequence, one source of uncertainty has

been added (W2) but not another underlying asset traded in the market. This implies that

the risk neutral probability measure is not unique anymore, but it is still possible to define a

measure Q such that the Q-dynamics of S are given by:

dS(t) = rS(t)dt+
√
v(t)S(t)dW1(t). (5.4)

5.1.1 Some examples

• Hull-White model

The first model we will analyze is the Hull-White model for volatility (see [20]):

dσ = σ(ξ̄dt+ ε̄dW2) (5.5)
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or applying Ito’s Lemma

dv = v(ξdt+ εdW2) (5.6)

where ξ = 2ξ̄ + ε̄2 and ε = 2ε̄. In his paper, Hull and White presented this Geometric

Brownian Motion model of volatility which is positive at every time but not mean re-

verting, under the assumption of zero correlation between the brownian motions driving

the underlying and the volatility processes.

• Scott model

Another possible model is due to Scott [21] where y = log v

dy = (θ̄ − χy)dt+ εdW2 (5.7)

or

dv = v(θ − χ log v)dt+ εvdW2 (5.8)

where θ = θ̄+ ε2

2 . In this case, the log-variance is a classical Ornstein Uhlenbeck process,

thus the variance process is mean reverting and positive at every time. This model was

at first introduced by Scott without correlation in [21], but has been extended to a

correlated one by Scott and Chesney in [22].

• Heston model

The most famous model in this class is due to Heston [6]

dv(t) = χ(θ − v(t))dt+ ε
√
v(t)dW2(t). (5.9)

This is a Square Root Model where θ is the long term volatility, χ is the rate of mean

reversion and ε is the volatility of volatility.

If the condition 2χθ ≥ ε2 is satisfied, then the process is also strictly positive, otherwise

the origin is accessible and strongly reflecting (see [35]). Among the stochastic volatilty

models, it is also the most famous since Heston provided an analytical pricing formula

in [6].

5.2 Euler and Milstein discretization schemes

In the rest of chapter we will analyze time discrete approximation of the processes introduced

in Section 5.1, relying on weak and strong convergence results. In particular we shall focus

on the Euler and Milstein methods.

Let X = {Xt, 0 ≤ t ≤ T} be an Ito process satisfying the scalar stochastic differential

equation:

dXt = a(t,Xt)dt+ b(t,Xt)dWt (5.10)
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with initial value X(0) = X0. For a given discretization 0 = t0 < t1 < . . . < tn . . . < tN = T

of the time interval, an Euler approximation is a continuous time stochastic process Y =

{Y (t), t0 ≤ t ≤ T} satisfying the iterative scheme

Yn+1 = Yn + a(tn, Yn)(tn+1 − tn) + b(tn, Yn)(Wtn+1 −Wtn) (5.11)

for n = 0, 1, . . . N − 1 with initial value Y0 = X0 where Yn = Y (tn). {W (t), t ≥ 0} is a

Wiener process and from theory we know that each increment ∆Wn = (Wtn+1 − Wtn) is

independent from all the others and is distribuited as a Gaussian random variable with mean

0 and variance tn+1 − tn. In the same way we can define the Milstein approximation as a

continuous time stochastic process Y = {Y (t), t0 ≤ t ≤ T} satisfying the iterative scheme

Yn+1 = Yn+a(tn, Yn)(tn+1−tn)+b(tn, Yn)∆Wn+1+
1

2
b(tn, Yn)b′(tn, Yn){(∆Wn)2−(tn+1−tn)}

(5.12)

for n = 0, 1, . . . N − 1 with initial value Y0 = X0.

We define δ = maxn∆n = maxn(tn+1 − tn) and introduce two kinds of convergence for the

approximated process (Y δ) with respect to the maximum step size (δ).

We shall say that a time discrete approximation Y δ converges weakly with order β to X at

time T as δ → 0 if for each g ∈ C2(β+1) there exists a positive constant C, which does not

depend on δ, and a finite δ0 > 0 such that

|E[g(X(T ))]− E[g(Y δ(T ))]| ≤ Cδβ (5.13)

for each δ ∈ (0, δ0). This kind of convergence requires an approximation of the probability

distribution of X(T ). It can be proved (see [10]) that under regularity conditions on a and b

both Euler and Milstein scheme converge weakly with order β = 1.

We shall say that a time discrete approximation Y δ converges strongly with order γ > 0

at time T if there exists a positive constant C, which does not depend on δ, and a δ0 > 0

such that

E[|X(T )− Y δ(T )|] ≤ Cδγ (5.14)

for each δ ∈ (0, δ0). Conversely to the weak convergence, formula (5.14) is the expectation of

the absolute value of the difference between the Ito process and the approximation at time

T : it requires a pathwise approximation of the Ito process.

Also in this case the convergence orders are provided in [10]. In particular

Teorema 5.2.1.
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Suppose the initial condition X0 to be deterministic and

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K1|x− y|

|a(t, x)|+ |b(t, x)| ≤ K2(1 + |x|)

|a(s, x)− a(t, x)|+ |b(s, x)− b(t, x)| ≤ K3(1 + |x|)|s− t|1/2
(5.15)

for all s, t ∈ [0, T ] and x, y ∈ R, where the constants K1,K2,K3 do not depend on δ. Then

for the Euler approximation Y δ the estimate

E[|X(T )− Y δ(T )]|] ≤ K4δ
1/2 (5.16)

holds where the constant K4 doed not depend on δ.

So if a and b satisfy a linear growth and a Lipschitz condition then the Euler approxima-

tion has strong convergence order 0.5.

Similarly for Milstein scheme if we define a = a− 1
2bb
′ then the following result holds:

Teorema 5.2.2.

Suppose the initial condition X0 to be deterministic and

|a(t, x)− a(t, y)| ≤ K1|x− y|

|b(t, x)− b(t, y)| ≤ K1|x− y|

|b′(t, x)− b′(t, y)| ≤ K1|x− y|

|a(t, x)|+ |a′(t, x)| ≤ K2(1 + |x|)

|b(t, x)|+ |b′(t, x)| ≤ K2(1 + |x|)

|a(s, x)− a(t, x)| ≤ K3(1 + |x|)|s− t|1/2

|b(s, x)− b(t, x)| ≤ K3(1 + |x|)|s− t|1/2

|b′(s, x)− b′(t, x)| ≤ K3(1 + |x|)|s− t|1/2

(5.17)

for all s, t ∈ [0, T ] and x, y ∈ R, where the constants K1,K2,K3 do not depend on δ. Then

for the Milstein approximation Y δ the estimate

E[|X(T )− Y δ(T )]|] ≤ K4δ (5.18)

holds where the constant K4 doed not depend on δ.

As in [10] (see Theorem 10.6.3) we can recast the strong convergence orders for both our
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schemes with respect to the following norms

E[sup0≤t≤T |X(t)− Y δ(t)|] or
(
E[sup0≤t≤T |X(t)− Y δ(t)|p]

)1/p
(5.19)

for any p ≤ 2. Recently Higham, Mao and Stuart (see [17]) have proved a convergence result

for the Euler scheme in the strong mean square sense (p = 2). In particular they have shown

that the Euler scheme has strong convergence order 0.5 even if the coefficient a and b are

locally Lipschitz and r-th moment of the exact and numerical solution are bounded for some

r > 2.

In the following sections, we aim at approximating common volatility processes and derive

a convergence rate for the stochastic differential equations (5.5), (5.7) and (5.9).

The key idea is that, at final time, approximated processes (just like in (5.11) and (5.12))

can be thought of as functions of N independent random variables η1 . . . ηN representing the

increments of the brownian motion (scaled by the time step ∆t). In a general framework we

could use the Monte-Carlo method possibly coupled with usual variance reduction techniques

(e.g. antithetic variables or control variables). From our point of view we shall focus on the

Stochastic Collocation technique to test the convergence result. In particular our random

knots will be given by the collocation points defined in Chapter 2, so the objective is to

evaluate the weak and strong error and obtain a convergence rate with respect to ∆t and

the level w, which determines the number of evaluation knots. This estimation is necessary

to choose optimally the two discretization parameters ∆t and w in order to balance the two

error contributions.

5.3 Hull-White model

We will now focus on equation (5.5) with the following parameters σ0 = 0.2, ξ̄ = 0.2 e ε̄ = 0.1.

We solve the equation with the Euler scheme:

σn+1 = σn[1 + ξ̄∆t+ ε̄
√

∆tηn+1] (5.20)

where ηn+1 ∼ N(0, 1), n = 1 . . . N − 1 or with the Milstein scheme

σn+1 = σn[1 + ξ̄∆t+ ε̄
√

∆tηn+1 +
1

2
ε̄2∆t(η2

n+1 − 1)]. (5.21)

We want to evaluate the weak error (5.13) with g(x) = x2. In particular, having set a level

w and letting ∆t vary, we compute |E[σ(T )2]− E[(σw∆t(T ))2]|, which means that we compare

the exact mean E[σ(T )2] = σ2
0 exp{2ξ̄T + ε̄2T} with that obtained solving the SDE (5.5) on

a sparse grid of level w and evaluating the mean value at the final time step through (2.20).
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For all of our simulations we shall rely on the hyperbolic cross rule. With schemes (5.20) and

(5.21) we get It is evident that when the time discretization error is dominant (w ≥ 4) the

Figure 5.1: Hull-White, Weak error for Stochastic Collocation method coupled with Euler scheme:
the error is given by |E[σ(T )2]− E[(σw

∆t(T ))2]|

Figure 5.2: Hull-White, Weak error for Stochastic Collocation method coupled with Milstein scheme:
the error is given by |E[σ(T )2]− E[(σw

∆t(T ))2]|

usual linear convergence with respect to the time step is observable.
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For the strong convergence we evaluate
(
E
[
(σ(T )−σw∆t(T ))2

]) 1
2 by generating M = 20000

samples with standard normal distribution, that is we generateM Wiener paths using different

time steps (∆t) or equivalently a different number of random variables N . For each N -

dimensional sample we sum all the components, obtaining therefore a Wiener path vj , j =

1 . . .M ; we then evaluate the related volatility trajectory by σ(T ;ωj) = σ0e
(ξ̄−ε̄2/2)T+ε̄vj

√
∆t.

At the same time, for each N , we generate a sparse grid of level w with N variables and

approximate the process over the collocation knots with the Euler/Milstein scheme. So we

are able to interpolate the M samples over the sparse grid and obtain the related values at

the final time T . To estimate the strong error we use the following formula

(
E
[
(σ(T )− σw∆t(T ))2

]) 1
2 '

√√√√ M∑
j=1

1

M
(σ(T ;ωj)− σw∆t(T ;ωj))2. (5.22)

The next figures show the results obtained for Euler and Milstein scheme (Fig. 5.3 and 5.4).

Figure 5.3: Hull-White, Strong error for Stochastic Collocation method coupled with Euler scheme:

the error is given by
(
E
[
(σ(T )− σw

∆t(T ))2
]) 1

2 '
√∑M

j=1
1
M (σ(T ;ωj)− σw

∆t(T ;ωj))2

From the figures, it follows that if the level is sufficiently high (w = 8), the usual conver-

gence rates (0.5 for Euler and 1 for Milstein) are observable.
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Figure 5.4: Hull-White, Strong error for Stochastic Collocation method coupled with Milstein scheme:

the error is given by
(
E
[
(σ(T )− σw

∆t(T ))2
]) 1

2 '
√∑M

j=1
1
M (σ(T ;ωj)− σw

∆t(T ;ωj))2

From Fig. 5.1 and 5.2, it emerges that the Stochastic Collocation method with Hyperbolic

Cross rule perferms well using a level w = 4. In fact in this case both for Euler and Milstein

schemes the usual rates of convergence related to the weak error are observable and this im-

plies that the time discretization error is dominant. Moreover with our choice of parameters

E[σ(T )2] ' 6.0210−2 and using a value N = 20 the weak error is close to 1%. It has to be

noticed although that all the bias between level 2 and 4 have maximum magnitude of order

10−5, so also the level w = 2 has to be taken into account for further simulations.

From Fig. 5.3 and 5.4 it follows that the level w = 4 is still the best choice since higher levels

do not decrease the approximation error (which is dominated by the time discretization error).

In order to compute an estimation of the probability approximation error, we consider the

exact mean of the discrete process at the N -th time step, which is given by E[σ2
∆t(T )] =

σ2
0(1 + ξ̄2∆t2 + ε̄2∆t+ 2ξ̄∆t)N for Euler scheme. We compare this value with the mean of the

square values computed by solving the SDE over the sparse grid of level w. We thus get a new

type of weak convergence error shown in the next graphs. We remark that conversely for Mil-

stein scheme the discrete mean is given by E[σ2
∆t(T )] = σ2

0(1+ξ̄2∆t2+ε̄2∆t+2ξ̄∆t+ 1
2 ε̄

4∆t2)N .
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Figure 5.5: Hull-White, Weak probability error for Stochastic Collocation method coupled with Euler
scheme with respect to the exact discrete mean: the error is given by |E[σ2

∆t(T )]− E[(σw
∆t(T ))2]|

Figure 5.6: Hull-White, Weak probability error for Stochastic Collocation method coupled with
Milstein scheme with respect to the exact discrete mean: the error is given by |E[σ2

∆t(T )]−E[(σw
∆t(T ))2]|

It is also possible to evaluate a different kind of strong convergence. In fact we generate

M samples and solve (5.5) with a time discrete scheme. At the same time we evaluate the

discrete process over a grid of level w and then interpolate the M samples over it. Applying

formula (5.22) we get an estimation of strong error for both schemes shown in the next figures.

55



Figure 5.7: Hull-White, Strong probability error for Stochastic Collocation method coupled with Euler

scheme: the error is given by
(
E
[
(σ∆t(T )− σw

∆t(T ))2
]) 1

2 '
√∑M

j=1
1
M (σ∆t(T )(ωj)− σw

∆t(T ;ωj))2

Figure 5.8: Hull-White, Strong probability error for Stochastic Collocation method coupled with Mil-

stein scheme: the error is given by
(
E
[
(σ∆t(T )−σw

∆t(T ))2
]) 1

2 '
√∑M

j=1
1
M (σ∆t(T )(ωj)− σw

∆t(T ;ωj))2

From Fig. 5.5, 5.6, 5.7 and 5.8 it follows that the probability error increases with the

number of variables involved, therefore as the latter grows, a higher value of level w is required

to keep the error low. The best choice however is still w = 4 since the level w = 6 is

basically equivalent while the level w = 8 involves a much greater number of points and is

thus computationally more expensive: for example for N = 10 the sparse grid with level

w = 8 is composed of 5951 points while the level w = 4 only 511.
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5.4 Scott model

We now consider equation (5.7) with the following parameters: y0 = −2.4, ε = 0.4, ξ = 0.1 e

θ̄ = −0.12. Firstly we observe that in this case, since the diffusion coefficient doesn’t depend

on the process that we aim at approximating, Euler and Milstein scheme coincide and are

equal to

yn+1 = yn + (θ̄ − χyn)∆t+ ε
√

∆tηn+1 (5.23)

where ηn+1 ∼ N(0, 1), n = 0 . . . N − 1.

We estimate the weak convergence (5.13) with g(x) = ex. The exact mean is given by

E[ey(T )] = exp{e−ξT y0 + θ̄
ξ (1− e−ξT ) + 1

4ξ ε
2(1− e−2ξT )} and we compare it with the mean of

the exponential values obtained by solving (5.23) over a sparse grid of level w. The next figure

shows these results for different values of N and w: for high values of w a linear convergence

is observable.

Figure 5.9: Scott, Weak error for Stochastic Collocation method: the error is given by |E[exp(y(T ))]−
E[exp(yw∆t(T )]|

In order to estimate the strong error, we know that the solution at time T of (5.7) is given

by y(T ) = e−ξT y0 + θ̄
ξ (1 − e−ξT ) + ε

∫ T
0 e−ξ(T−s)dW (s). The first problem consists in com-

puting the Ito integral
∫ T

0 e−ξ(T−s)dW (s) accurately. For this purpose we divide the interval

[0, T ] into N ′ = 1000 sub-interval of equal length ∆t′ and generate M N ′-dimensional ran-

dom samples (Zj , j = 1 . . .M) with standard normal distribution. For each N ′-dimensional

knot we are able to approximate the integral in the Ito way as
∑N ′−1

k=0 e−ξ(T−t
′
k)
√

∆t′ηk+1 and

obtain y(T ;ωj), j = 1 . . .M . At the same time we generate a sparse grid with level w with

respect to N � N ′ random variables and apply scheme (5.23) over the collocation knots. For

each N , let us define n = N ′/N and a N -dimensional vector vi with components defined as

vji = 1√
n

∑n
k=1 Z

j
in+k, i = 0 . . . N − 1, j = 1 . . .M . It is now possible to obtain the values

yw∆t(T ;ωj) evaluating the vectors vi over the interpolating functions related to the sparse
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grid. The strong error is the one defined in (5.22). This figure shows a linear convergence

Figure 5.10: Scott, Strong error for Stochastic Collocation method: the error is given by
(
E
[
(y(T )−

yw∆t(T ))2
]) 1

2 '
√∑M

j=1
1
M (y(T ;ωj)− yw∆t(T ;ωj))2 and is based on an approximation for the stochastic

integral appearing in y(T )

for the strong error for every value of w ≥ 2, since from (5.23) it follows that the process

y = y(T, η1, . . . , ηN ) is a linear function of the random vector η = [η1, . . . , ηN ] and therefore

it is interpolated exactly by a sparse grid of level w ≥ 1.

Also in this case we can compute an estimation of the probability approximation error, con-

sidering the exact mean of the discrete process at the N -th time step, which is given by

E[ey∆t(T )] = em+ d
2 , wherem =

∑N
n=1 (1−∆t)N−nθ̄∆t+(1−∆t)Ny0 and d = ε2∆t

∑N
n=1 (1−∆t)2(N−n).

We compare this value with the mean of the square values computed by solving the SDE over

the sparse grid of level w. We thus get a new type of weak convergence error shown in the

next graph (Fig. 5.11) which is analogous to Fig. 5.5, 5.6.

Also for this model the level w = 4 provides a good trade-off between accurancy and com-

putational cost: the level w = 8 seems to perform better in Fig. 5.11 but involves too many

evaluation knots, the level w = 2 is equivalent for the strong error in Fig. 5.10 since we are

approximating a multi-linear function, but Fig. 5.9 represents a sure sign that the level w = 4

is the best choice. In particular for our choice of parameters the mean value E[ey(T )] is equal

to 0.1093: in order to approximate this mean value with a precision close to 1% only ten

variables/time intervals are necessary (N = 10).
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Figure 5.11: Scott, Weak probability error for Stochastic Collocation method with exact discrete
mean: the error is given by |E[exp(y∆t(T ))]− E[(exp(yw∆t(T ))]|

5.5 Heston model

In this section we shall discuss the approximation techniques for a square root process (5.9).

As previously stated the condition 2χθ > ε2 guarantees that 0 is an unattainable barrier for

the continuous time process. However if we discretize it with an Euler scheme we get

vn+1 = vn + χ(θ − vn)∆t+ ε
√
vn
√

∆tηn+1 (5.24)

for i = 0 . . . N − 1 where each ηn+1 ∼ N(0, 1), while with the Milstein scheme

vn+1 = vn + χ(θ − vn)∆t+ ε
√
vn
√

∆tηn+1 +
1

4
ε2∆t(η2

n+1 − 1) (5.25)

where each ηn+1 ∼ N(0, 1). This means that the approximated process can become negative,

so we will consider modified Euler and Milstein schemes. We shall focus on Euler scheme first.

Intuitively the easiest way to fix the approximated scheme consists in setting the process

equal to zero whenever it attains a negative value or reflecting it in the origin: these strategies

are named absorption or reflection. We will present all the fixes proposed as well as some

related convergence results. First of all we can recast all these schemes as:

vn+1 = f1(vn) + χ(θ − f2(vn))∆t+ ε
√
f3(vn)

√
∆tηn+1 (5.26)

where the functions fi, i = 1, 2, 3 have to satisfy:

• fi(x) = x for x ≥ 0 and i = 1, 2, 3
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• f3(x) ≥ 0 for x ∈ R

These conditions guarantees that the scheme does not introduce bias: if the variance is

positive we don’t introduce any correction, otherwise we have to correct the square root term

(f3(x) ≥ 0).

In the absorption fix we consider f1(x) = f2(x) = f3(x) = x+ where x+ = max(x, 0). There

are no papers discussing this method so the expected rate of convergence is still unknown.

In the reflection fix we set f1(x) = f2(x) = f3(x) = |x|: the main results are due to Bossy

and Diop (see [13]) and Berkaoui (see[12]). In particular Bossi and Diop have proven that an

Euler discretization with the reflection fix converges weakly in time step with order given by

min{1, χθε−2} while Berkaoui et al. (see[12]) have proven a strong converge in the following

sense. Since in (5.9) the drift coefficient is globally Lipschitz with constant χ then if ∆t ≤
min{v0, 1/(2χ)} and

ε2

8

(2χθ

ε2
− 1
)
≥ K(4p) (5.27)

where K(4p) = max{K(4p−1), 2ε(2p−1)2} then the exact process v(t) and its approximation

vδ(t) satisfy (
E[sup0≤t≤T |v(t)− vδ(t)|2p]

)1/2p ≤ C(T, p)
√

∆t. (5.28)

Hingham and Mao in [11] have considered the following scheme f1(x) = f2(x) = x and

f3(x) = |x| proving strong convergence of order 0.5 for their discretization without restriction

on the parameters. The same result holds for the partial truncation scheme by Deelstra

and Delbaen ([14]) obtained by setting f1(x) = f2(x) = x and f3(x) = x+. In 2006 Lord,

Koekkoek and van Dijk (see [9]) proposed a new scheme called full truncation method, which

consists in choosing f1(x) = x and f2(x) = f3(x) = x+. In this framework they proved a

strong convergence with order 0.5 in L1 sense and 0.25 in L2 sense:

supt∈[0,T ]E
[
|v(t)− vδ(t)|

]
≤ C1

√
∆t

E
[
supt∈[0,T ]|v(t)− vδ(t)|2

]1/2
≤ C2(∆t)1/4.

(5.29)

Though no proof has been provided, the authors state that probably the true order of L2

convergence is higher.

As a final remark, in [9] is shown that if we want to simulate the underlying process as well

(with Euler or Milstein method) in order to price a European Call option, the absorption fix

seems to present the highest bias. The partial truncation and full truncation might be the

best approximation, the latter in particular seems to be the best one. The reflection fix and

Hingham-Mao method also show a quite high bias.

The Milstein scheme has positive probability of generating negative paths as well. We will
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rely on Milstein-type schemes, for example the implicit Milstein scheme:

vn+1 =
vn + χθ∆n + ε

√
vnηn+1

√
∆n + 0.25ε2∆n(η2

n+1 − 1)

1 + χ∆n
. (5.30)

This scheme generates strictly positive paths if 4χθ > ε2 (see[15]). Equation (5.30) can be

recast as a Balanced Milstein method presented in [16]:

vn+1 = vn + χ(θ − vn)∆n + ε
√
vnηn

√
∆n + 0.25ε2∆n(η2

n+1 − 1) + (vn − vn+1)Dn(vn) (5.31)

where Dn(vn) = d0(vn)∆n+d1(vn)∆n(η2
n+1−1). In order to obtain (5.30) it is sufficient to set

d0(vn) = χ and d1(vn) = 0. Milstein schemes have first order weak and strong convergence,

under the regularity conditions (5.17). From numerical tests however it emerges that these

schemes perform fairly well in certain parameter regimes but are typically less robust than

Euler scheme: in fact due to the presence of a square root in (5.9) the conditions (5.17) are

violated.

Kahl in [16] has shown a linear strong convergence in the L2 sense
(
E[|X(t)−Y δ(t)|2]

)1/2
for

this choice of parameters: χ = θ = 1, ε = 1.4.

Other important schemes are provided by Alfonsi in [25].

5.5.1 Further considerations

From standard theory (see [27]) we know that defining

d =
4χθ

ε2
; n(t, T ) =

4χe−χ(T−t)

ε2(1− e−χ(T−t))
(5.32)

v(T ), conditional on v(t), is distribuited as e−χ(T−t)/n(t, T ) times a non-central chi-square

distribution with d degrees of freedom and non-centrality parameter v(t)n(t, T ). In particular

the first two moments of this distribution are:

E[v(T )|v(t)] = θ + (v(t)− θ)e−χ(T−t)

V ar[v(T )|v(t)] =
v(t)ε2e−χ(T−t)

χ
(1− e−χ(T−t)) +

θε2

2χ
(1− e−χ(T−t))2.

(5.33)

Therefore vn+1 is proportional to a non-central chi-square distribution with non-centrality

parameter vnn(tn, tn+1) where n is independent of vn. In all Euler-type schemes (5.26) we

are approximating the distribution of vn+1 conditional to vn with a Gaussian variable. These

methods then provide good results if v(t) is sufficiently large since the non-central chi-square

distribution approaches a Gaussian distribution if the non-centrality parameter tends to ∞
(or also if ∆n → 0 and n(tn, tn+1) → ∞). Then the approximation of vn+1 with a Gaussian

variable is not accurate when vn is very small, tipically when the positivity condition is not
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satisfied.

In order to overcome this bias, more efficient schemes have been proposed (Truncated

Gaussian or Quadratic Exponential scheme, see [27]) but they are not consistent with the

Stochastic Collocation technique.

5.5.2 Numerical results

In this section we will consider scheme (5.30) and the reflection fix for Euler approximations.

Since an analytical solution for (5.9) does not exist for both, so we can only compute weak

convergence and strong probability errors (formula 5.22).

In the first case we evaluate |E[v(T )]−E[(vw∆t(T ))]|, which means that we compare the exact

mean E[v(T )] = θ + (v0 − θ)e−χT with that obtained solving the SDE (5.5) on a sparse grid

of level w and evaluating the mean value at the final time step through (2.20). If we choose

χ = 0.3, θ = 0.4, ε = 0.3 (the positivity condition is satisfied) we get the results in Fig. 5.12

and 5.13. For the Implicit Milstein scheme because we notice that the conditional mean value

Figure 5.12: Heston, Weak error for Stochastic Collocation method coupled with Implicit Milstein
scheme: the error is given by |E[v(T )]− E[(vw∆t(T ))]|. Positivity condition 2χθ > ε2 is satisfied

is computed exactly with every level w ≥ 1 and w ≥ 2 for the Euler scheme. The convergence

rate then is linear with the first scheme and (maybe) more than linear with the latter. With

our choice of parameters we get E[v(T )] = 0.251836, therefore a value of N at least equal to

10 guarantees a relative error equal to 1%.

If we increase ε from 0.3 to 0.5 and the positivity condition is slightly violated we get exactly

the same results.
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Figure 5.13: Heston, Weak error for Stochastic Collocation method coupled with Euler scheme and
reflection fix: the error is given by |E[v(T )]− E[(vw∆t(T ))]|. Positivity condition 2χθ > ε2 is satisfied

As previously stated, we will also focus on the strong probability errors (formula 5.22).

In particular if we choose χ = 0.3, θ = 0.4, ε = 0.3 (the positivity condition is satisfied) we

get the results shown in Fig. 5.14 and 5.15.

Figure 5.14: Heston, Strong probability error for Stochastic Collocation method cou-

pled with Implicit Milstein scheme: the error is given by
(
E
[
(v∆t(T ) − vw∆t(T ))2

]) 1
2 '√∑M

j=1
1
M (v∆t(T ;ωj)− vw∆t(T ;ωj))2. Positivity condition 2χθ > ε2 is satisfied

The Implicit Milstein scheme provides results similar to other stochastic processes. In the

Euler scheme with reflection fix we are introducing a non-smooth dependency of the process

with respect to the random variables which is due to the absolute value function. This may

cause an error rate decrease when increasing the number of the random variables involved

in the approximation. Also for this process, we can conclude that for the strong probability

error the best choice would be w = 4.
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Figure 5.15: Heston, Strong probability error for Stochastic Collocation method coupled

with Euler scheme and reflection fix: the error is given by
(
E
[
(v∆t(T ) − vw∆t(T ))2

]) 1
2 '√∑M

j=1
1
M (v∆t(T ;ωj)− vw∆t(T ;ωj))2.Positivity condition 2χθ > ε2 is satisfied

If we set χ = 0.3, θ = 0.4, ε = 0.5 (the positivity condition is not satisfied) we get similar

results (Fig. 5.16 and 5.17).

Figure 5.16: Heston, Strong probability error for Stochastic Collocation method cou-

pled with Implicit Milstein scheme: the error is given by
(
E
[
(v∆t(T ) − vw∆t(T ))2

]) 1
2 '√∑M

j=1
1
M (v∆t(T ;ωj)− vw∆t(T ;ωj))2. Positivity condition 2χθ > ε2 is not satisfied
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Figure 5.17: Heston, Strong probability error for Stochastic Collocation method coupled

with Euler scheme and reflection fix: the error is given by
(
E
[
(v∆t(T ) − vw∆t(T ))2

]) 1
2 '√∑M

j=1
1
M (v∆t(T ;ωj)− vw∆t(T ;ωj))2. Positivity condition 2χθ > ε2 is not satisfied

5.6 A comparison with Monte Carlo method

In this section we want to compare the two possible probability approximation techniques:

Monte Carlo and Stochastic Collocation method. From the well known Central Limit Theorem

we know that the first method converges with order 1/
√
M , where M is the number of

realizations of the random variables the approximating function depends on and this rate

does not depend on the number of random variables N . The latter technique instead has

a convergence rate which is still unknown: the convergence results provided in Chapter 2

are not related to Stochastic Differential Equations so we shall try to derivate a convergence

result from our simulations.

For the Monte Carlo method we can define the total weak error (ε) as the sum of the weak

error (5.13) and the probability approximation error, which is thus given by ε ∼ 1
N + 1√

M
. In

particular for a given value of N (number of variables/time discretization intervals) in order

to have the same magnitude of the two contributions, we have to set M = C∗N
2, where C∗

is a constant, and obtain ε ∼ 1
N . We now define the cost of one simulation as C = MN ,

where C represents the number of function evaluations (and the total number of samples of

normal random variables generated). From our choice of M it follows C ∼ N3 and therefore

C ∼ 1
ε3

(or equivalently ε ∼ C−
1
3 ). From this theoretical estimation we know how to choose

optimally the value of M given N but we have also been able to define a relationship between

the global error and the total cost: if we get an error ε1 with a certain cost C1, in order to

halve ε1 we expect the cost C2 to be at least eight times C1.

For the stochastic collocation technique these results are unknown and we will try to derive

an estimation for the three volatility models we have dealt with so far.

Since the Monte Carlo method has been gradually improved we will compare our convergence
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rates with the theoretical rates of more efficient techniques: the Multi-level Monte Carlo and

the Quasi-Monte Carlo methods. The first one consists in using a geometric sequence of

grids, each twice as fine as its predecessor; the relationship between error and computional

cost is given by C = (log(ε))2/ε2 (see [29]). The second technique consists in generating

quasi-random sequences of numbers instead of random ones (also known as low-discrepancy

sequences). For Quasi-Monte Carlo methods we know that ε ∼ (logM)k/M for some k related

to N [28]: in particular when integrating a function it has been proved that Quasi-Monte Carlo

methods lose their effectiveness if the function has a non-smooth dependence from the random

variables or the number of variables becomes too large.

5.6.1 Hull-White model

As a first equation we shall consider the Geometric Brownian motion which represents the

Hull-White model of volatility. For different values of N we will evaluate the weak error

|E[σ(T )2] − E[(σw∆t(T ))2]| (just like in Section 5.3) as a function of the above-mentioned

computational cost C (see the Fig. 5.18). We will use the usual Hyperbolic Cross rule and

the Euler scheme with the same parameters of Section 5.3.

Figure 5.18: Hull-White, Weak error for Stochastic Collocation method coupled with Euler scheme:
the error is given by |E[σ(T )2]− E[(σw

∆t(T ))2]|

The probability approximation convergence is observable until the time discretization error

related to the Euler scheme becomes dominant. We can fairly state that for every value of N

the cost corrisponding to the level w = 2 saturates the probability error since the difference

between the level w = 2 and w = 4 has a magnitude of 10−6 (see Fig. 5.1).

For Monte Carlo simulations, given a value of N and M we repeat the same simulation 100

times and get thus a mean value of |E[σ(T )2]−E[(σw∆t(T ))2]| in order to obtain a more accurate

estimation and also a more meaningful graph. Fig. 5.19 shows the error versus cost curve

obtained.
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Figure 5.19: Hull-White, Weak error for Stochastic Collocation method coupled with Euler scheme:
the error is given by |E[σ(T )2]− E[(σw

∆t(T ))2]|

Fig. 5.20 shows a direct comparison between Monte Carlo and Stochastic Collocation for

a fixed value N = 32. For a variable N , to compare the complexity of the two approaches

(error versus total cost), one has to choose optimally the level w (for Stochastic Collocation)

and the number of samples M in Monte Carlo. In Fig. 5.21 this is done in the following way:

for Stochastic Collocation, we rely on plot 5.18 and take the minimum among all curves for

N = 10, 30, 50, 70. This gives the blue line in Fig. 5.21. For Monte Carlo we have only plot

the theoretical rate ε ∼ C−
1
3 since the curves in Fig. 5.19 are too noisy. Furthermore we also

plot the function C = (log(ε))2/(ε)2 which represents the convergence rate of the Multi-level

Monte Carlo method.

Figure 5.20: Hull-White, Weak error for Stochastic Collocation and Monte Carlo methods coupled
with Euler scheme: the error is given by |E[σ(T )2]− E[(σw

∆t(T ))2]|, N=32

The line corresponding to Stochastic Collocation is perfectly approximated by a straight

line with angular coefficient ∼ −0.485 and has therefore a convergence rate similar to the
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Figure 5.21: Hull-White, A comparison of the costs for different approximation techniques

Quasi-Monte Carlo and Multi-level Monte Carlo methods on this model.

With Milstein scheme we get analogous results.

5.6.2 Scott model

We now focus on the Ornstein-Uhlenbeck process which represents the Scott model of volatil-

ity. For different values of N we will evaluate the weak error |E[exp(y(T ))]−E[exp(yw∆t(T ))]|
(just like in Section 5.4) as a function of the above-mentioned computational cost C (see Fig.

5.22). We will use the same parameters of Section 5.4.

Figure 5.22: Scott, Weak error for Stochastic Collocation method: the error is given by
|E[exp(y(T ))]− E[exp(yw∆t(T ))]|

The probability approximation convergence is observable until the time discretization error

related to the time discrete scheme becomes dominant. We can state that for every value of
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N ≥ 30 the cost corrisponding to the level w = 3 saturates the probability error (see also Fig.

5.9). In this case we will not provide the graph analogous to Fig. 5.19 since the convergence

curves are too noisy and no information can be extracted out of it. However in order to

compare the two methods, next figure shows the results for N = 32 where Monte Carlo errors

are computed on a single run just like in Fig. 5.20.

Figure 5.23: Scott, Weak error for Stochastic Collocation and Monte Carlo methods: the error is
given by |E[exp(y(T ))]− E[exp(yw∆t(T ))]|, N=32

If we extract the minimum of all curves in Fig. 5.22 for N = 10, 30, 50, 70 this will be

an estimate of the complexity of the algorithm. Such minimum is well interpolated by a

quadratic curve given by log(ε) = −0.064(log(C))2 + 0.237 ∗ log(C) − 4.09. In Fig. 5.24 the

blue line represents the minimum among all curves for N = 10, 30, 50, 70, while for Monte

Carlo we have only plot the theoretical rate ε ∼ C−
1
3 . In this case the Collocation rate seems

to be superior to the Monte Carlo one only asimptotically.

Figure 5.24: Scott, A comparison of the costs for different approximation techniques
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5.6.3 Heston model

We now focus on the square root process which represents the Heston model of volatility. For

different values of N we will evaluate the weak error |E[v(T )]−E[vw∆t(T )]| (just like in Section

5.5) as a function of the above-mentioned computational cost C (see Fig. 5.25).

We will consider the Implicit Milstein scheme (5.30) and the parameters that satisfy the

positivity condition of the continuous-time process (χ = 0.3, θ = 0.4, ε = 0.3).

Figure 5.25: Heston, Weak error for Stochastic Collocation method coupled with Implicit Milstein
scheme: the error is given by |E[v(T )]− E[vw∆t(T )]|

The probability approximation convergence is observable until the time discretization error

related to the Milstein scheme becomes dominant. We can fairly state that for every value of

N the cost corrisponding to the level w = 2 saturates the probability error (see Fig. 5.12).

For Monte Carlo simulations, given a value of N and M we repeat the same simulation 20

times and get thus a mean value of |E[v(T )] − E[vw∆t(T )]| (Fig. 5.26). In order to make a

Figure 5.26: Heston, Weak error for Stochastic Collocation method coupled with Implicit Milstein
scheme: the error is given by |E[v(T )]− E[vw∆t(T )]|
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comparison between Stochastic Collocation and Monte Carlo method, we also provide the

graph in Fig. 5.27 for the value N = 32 (Monte Carlo results are related to a single run). It

is evident that the first method outperforms the latter for almost all the values of M .

Figure 5.27: Heston, Weak error for Stochastic Collocation and Monte Carlo methods coupled with
Implicit Milstein scheme: the error is given by |E[v(T )]− E[vw∆t(T )]|, N=32

Also the minimum of all curves in Fig. 5.25 is well interpolated by a straight line of slope

−0.5 hence leading to an error versus cost relation ε ∼
√
C which is superior to Monte Carlo

and comparable to Quasi-Monte Carlo and Multi-level Monte Carlo.

We have thus proved that the Stochastic Collocation method provides excellent results at

least when the weak error is evaluated with simple functions (g(x) = x2 for Hull-White model

and g(x) = x for Heston model). In fact with both Euler and Milstein schemes the rela-

tionship between error and computational costs seems to be very similar to the well-known

Quasi-Monte Carlo and Multi-level Monte Carlo techniques. For Scott model where g(x) = ex

further analysis could be necessary.

5.7 Brownian Bridge discretization

We have considered so far a random walk discretization for the Wiener paths:

W (tn+1) = W (tn) +
√

∆tηn+1 (5.34)

where W (0) = 0 and ηn+1 ∼ N(0, 1), n = 0 . . . N − 1. With this scheme all the variables have

the same variances ∆t and the natural choice in Stochastic Collocation is represented by an

isotropic grid.

A different approach has been proposed by Caflish [28] and Griebel [31] and consists in

genereting the path using a present and a past value, typically using a value of N which is a
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power of 2. Under this assumption we first generate W (tN ) =
√
TηN and define m = log2(N).

For every i = 1 . . .m, we also define dti = N
2i

and then for every k = 1 . . . 2i such that k is

odd we generate:

W (kdti∆t) =
W ((k − 1)dti∆t) +W ((k + 1)dti∆t)

2
+

√
dti∆t

2
ηkdti . (5.35)

This is usually referred to as Brownian Bridge discretization and allows to use anisotropic

grids since the total variance is lumped into the first random variables: in fact the variance

of the random variables in (5.35) decreases with i.

This discretization is related to the Levy representation of the Brownian motion, based on cer-

tain polygonal functions (the Schauder functions, see [30]). We first define the Haar functions

Hn : [0, 1]→ R:

H0(t) = 1 (5.36)

H1(t) =

1 if t ∈ [0, 1/2]

−1 if t ∈ (1/2, 1]
(5.37)

Hn(t) =


2i/2 if t ∈

[
n−2i

2i
, n−2i+1/2

2i

]
−2i/2 if t ∈

(
n−2i+1/2

2i
, n−2i+1

2i

]
0 elsewhere

(5.38)

if i ∈ N, 2i ≤ n < 2i+1.

The system of Schauder functions is obtained integrating the Haar functions on [0, 1]

H̃n(t) =

∫ t

0
Hn(s)ds n = 1, 2 . . . (5.39)

A series representation for a Brownian sample path on [0, 1] is then given by

Wt =
∞∑
n=1

H̃n(t)ηn (5.40)

where the convergence of the series is uniform for t ∈ [0, t] and ηn are standard gaussian

variables.

Recent papers focus on dimension adaptive sparse grids integration (see [31],[33] and [34])

with Gauss-Hermite knots. These works are also based on the use of the effective dimension

(see [32]), which allows to consider not the nominal dimension N but a truncated dimension

Nt obtained through ANOVA decomposition.

We will use the Brownian Bridge construction more naively by anisotropic integration (see
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Section 2.1) with weights chosen a priori: for example if N = 64 we will give a weight equal

to 1 to the variable corresponding to W (N∆t), weight 2 to the variable corresponding to

W (N2 ∆t), weight 3 to the variables related to W (N4 ∆t) and W (3N
4 ∆t) and so on until weight

equal to 7.

In particular we will apply this construction to the Geometric Brownian Motion SDE with

Euler and Milstein approximation:

σn+1 = σn[1 + ξ̄∆t+ ε̄∆Wn]

σn+1 = σn[1 + ξ̄∆t+ ε̄∆Wn +
1

2
ε̄2(∆W 2

n −∆t)]
(5.41)

In Fig. 5.28 and 5.29 we compare the ”usual” isotropic TD sparse grid approximation based

on a random walk construction of the Brownian sample path with the new anisotropic sparse

grid approximation based on Brownian Bridge discretization and evaluate the weak error

on the second moment |E[σ(T )2] − E[(σw∆t(T ))2]| with isotropic TD plus usual random walk

construction and anisotropic TD with Brownian Bridge discretization (the parameters are

σ0 = 0.2, ξ̄ = 0.2 e ε̄ = 0.1:

Figure 5.28: GBM, Weak error for TD plus usual random walk construction and anisotropic TD with
Brownian Bridge discretization (Euler scheme): the error is given by |E[σ(T )2]−E[(σw

∆t(T ))2]|, N=64

It seems that the Brownian Bridge construction loses his effectiveness when the Euler

scheme is applied to the SDE whereas it is very efficient when combined to a Milstein method.

Alternatively, (as in [33]), we could consider the Euler scheme applied to the process for

y = log(σ) and evaluate the weak error |E[σ(T )2] − E[exp(2yw∆t(T ))]|. Fig 5.30 shows the

results obtained.

It is evident that this approach is far superior than the usual scheme based on an

anisotropic TD grid and a random walk discretization of the Brownian path. Similar re-

sults as those of Fig. 5.30 are obtained for the Ornstein-Uhlenbeck process (see Fig. 5.31).
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Figure 5.29: GBM, Weak error for TD plus usual random walk construction and anisotropic TD with
Brownian Bridge discretization (Milstein scheme): the error is given by |E[σ(T )2] − E[(σw

∆t(T ))2]|,
N=64

Figure 5.30: GBM, Weak error for TD plus usual random walk construction and anisotropic TD with
Brownian Bridge discretization: the error is given by |E[σ(T )2]− E[exp(2yw∆t(T ))]|, N=64

Considering the Heston model, the Euler scheme with reflection fix and the Implicit Mil-

stein scheme with the Brownian Bridge discretization show the same trends of Fig. 5.28 and

5.29 respectively.

It is still not clear the reason why the Euler scheme on the GBM equation provides such

bad results (Fig. 5.28): it seems to be due to the fact that the noise is multiplicative, although

for the Milstein scheme the convergence is good. Certainly if the time discrete SDE shows

only additive noise, just like in (5.23), then this new type of construction outperforms the

usual random walk one (Fig. 5.30 and Fig. 5.31). Further and more sophisticated analysis

are necessary since this new method seems to have great potentiality.
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Figure 5.31: GBM, Weak error for TD plus usual random walk construction and anisotropic TD with
Brownian Bridge discretization: the error is given by |E[exp(y(T ))]− E[exp(yw∆t(T )]|, N=64
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Chapter 6

Black and Scholes equation

conditional to stochastic processes

One of the motivating ideas of this thesis is to solve the option pricing problem by a condi-

tional Black and Scholes equation.

In the first part we will focus on Basket Options: the most known pricing strategies con-

sist in simulating the processes of the underlyings with Monte Carlo method or solving a

bidimensional PDE (presented in Section 6.1). With our new approach we introduce a new

pricing method based on the approximation of the SDE related to one of the underlying and

the solution of one monodimensional ”conditional Black and Scholes” equation, which will

depend on the simulated process (and the related Brownian motion). We will show that this

method can be competitive with respect to the traditional ones, in particular we will make

comparison with Monte Carlo methods.

In the second part we will focus instead on option pricing under Heston model of volatility: we

will mainly deal with the pricing of European and Barrier vanilla options under the hypothesis

of zero correlation between the underlying and the volatility processes using the Stochastic

Collocation technique to approximate Heston’s SDE. We will also provide a PDE for options

pricing in both the uncorrelated and correlated cases. In the latter case the Stochastic Col-

location technique might be unefficient compared to more traditional approaches and further

analyses or method improvements should be necessary.

Our conditional PDE is based on [7] but there are still theoretical aspects to be investigated,

although the numerical results are encouraging.

76



6.1 Basket Call

We will now focus on a European Basket Call written on two underlying whose dynamics are

described by two Geometric Brownian motions (under the risk-neutral probability):dS1(t) = rS1(t)dt+ σ1S1(t)dW1(t)

dS2(t) = rS2(t)dt+ σ2S2(t)dW2(t)
(6.1)

with dW1(t)dW2(t) = ρdt. The price of every contingent claim F (t, S1(t), S2(t)) with payoff

φ(S1(T ), S2(T )) written on these underlyings can be obtained as the solution of the following

PDE:∂F
∂t + rS1

∂F
∂S1

+ rS2
∂F
∂S2

+ 1
2

(
S2

1σ
2
1
∂2F
∂S1

2 + 2ρσ1σ2S1S2
∂2F

∂S1∂S2
+ S2

2σ
2
2
∂2F
∂S2

2

)
− rF = 0

F (T, S1(T ), S2(T )) = φ(S1(T ), S2(T ))

(6.2)

We will consider a Basket Call with payoff φ(S1(T ), S2(T )) = max(S1(T ) + S2(T )−K, 0).

6.1.1 Plain Monte Carlo method

In a classical Monte Carlo approach, one simulates the processes in (6.1) by generating M

trajectories discretized e.g. by Euler or Milstein method. In particular, one can decouple

the two correlated Wiener processes with W1(t) = ρW2(t) +
√

1− ρ2W̃1(t) and obtain the

following discrete approximations related to Euler methodS1,j(tn+1) = S1,j(tn) + rS1,j(tn)∆t+ σ1S1,j(tn)(ρηn+1,2,j +
√

1− ρ2ηn+1,1,j)

S2,j(tn+1) = S2,j(tn+1) + rS2,j(tn)∆t+ σ1S2,j(tn)ηn+1,2,j

(6.3)

where ηn+1,k,·, n = 0 . . . N − 1, k = 1, 2 are uncorrelated standard gaussian variables. The

price is given by the mean of the discounted payoff:

E[TV ] ' e−rT 1

M

M∑
j=1

max(S1,j(tN ) + S2,j(tN )−K, 0) (6.4)

In Table 6.1 we report the prices and the 95% confidence intervals (with the sample variance)

obtained with a pure Monte Carlo simulation on (6.1) and the following parameters: S1(0) =

100, S2(0) = 5,K = 105, T = 1, r = 0.05, σ1 = 0.2, σ2 = 0.15 and ρ = 0.8.
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N
M

105 2 105 3 105 5 105

100 [10.84,10.93,11.02] [10.71,10.78,10.85] [10.74,10.79,10.85] [10.72,10.77,10.81]

200 [10.80,10.89,10.99] [10.73,10.80,10.86] [10.76,10.81,10.87] [10.75,10.79,10.83]

Table 6.1: Prices and 95% confidence intervals solving two SDEs with Euler method

It is evident that in order to obtain a good result, a value of M at least equal to 200000

should be chosen and N = 100 is also a good choice which is not computationally too expen-

sive.

Instead of solving (6.3), since we are approximating the Geometric Brownian Motion we can

even speed up the simulations used in (6.4) by simulating the exact dynamics just like in

Chapter 4: S1,j(tN ) = S1(0) exp((r − 1
2σ

2
1)T + σ1T (ρ1η2,j +

√
1− ρ2η1,j))

S2,j(tN ) = S2(0) exp((r − 1
2σ

2
2)T + σ2Tη2,j)

(6.5)

With this scheme we get the prices in Table 6.4. In this way we have a faster pricing method,

M Prices and confidence intervals

30000 [10.55,10.72,10.89]
50000 [10.76,10.89,11.03]
100000 [10.73,10.82,10.92]
150000 [10.76,10.84,10.92]
200000 [10.76,10.83,10.89]
300000 [10.77,10.83,10.88]
500000 [10.80,10.84,10.88]

Table 6.2: Mean Prices and 95% confidence approximating the exact dynamics

while the variances in Table 6.2 vary with M just like in Table 6.1. Notice also that these

results indicate that the exact price is probably slightly higher than 10.80.

6.1.2 Conditional Black and Scholes with Monte Carlo

The alternative approach that we explore here consists in approximating M times only the

second equation of (6.1) with Euler or Milstein method by random samples (Monte Carlo)

or sparse grid samples (Stochastic Collocation). The dynamics of the first underlying is kept

continuous.

dS1(t) = rS1(t)dt+ ρσ1S1(t)dW2(t) +
√

1− ρ2σ1S1(t)dW̃1(t). (6.6)
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We can now recast equation (6.6) on a logarithmic variable x = log(S1) and obtain

dx(t) = rdt− 1

2
σ2

1dt+ ρσ1dW2(t) + σ1

√
1− ρ2dW̃1(t). (6.7)

Considering intervals [ti, ti+1] of length ∆t and having simulated a trajectory of the process

S2, the trajectory corresponding to W2(t) is known as well so we get:

dx(t) = (r − 1

2
σ2

1)dt+ ρσ1µtdt+ σ1

√
1− ρ2dW̃1(t) (6.8)

µt =
W2(ti+1)−W2(ti)

∆t
for t in [ti, ti+1) (6.9)

where we are considering dW2(t) = Ẇ2(t)dt and approximating the Gaussian white noise

Ẇ2(t) with (6.9). The Feynman-Kac equation for u(t, x) = F (t, x, S2)|S2 = E[φ(S1(T ), S2(T ))|S1(t) =

x, S2(τ), 0 ≤ τ ≤ T ] (the expected value of the payoff conditional to the knowledge of the

second underlying) related to (6.8) is given by the following PDE:∂u
∂t + (r − 1

2σ
2
1)∂u∂x + ρσ1µt

∂u
∂x + 1

2(1− ρ2)σ2
1
∂2u
∂x2 = ru

F (x, T ) = φ(x, S2(T ))
(6.10)

with payoff varying with each of the M realizations S2,j(tN ), j = 1 . . .M so equation (6.15)

can be thought of as a SPDE with random final time condition and random drift.

In (6.10) we have assumed that the brownian motion W2(t) or more precisely its discrete

version µt represents just a drift term1 as in [7]. We finally remark that we are not sure about

the well posedness of (6.10) since a white noise process appears as a drift term.

In our simulations we solve with Euler scheme and Monte Carlo sampling the SDE corre-

sponding to S2 and then solve with the Rannacher method PDE (6.10) on a physical space

grid with step ∼ 10−3. With this method we get the mean prices and 95% confidence intervals

(obtained with the sample variance) varying the values of N and M shown in Table 6.3.

Using Milstein scheme to solve the SDE we get analogous results (Table 6.4).

If we assume from Table 6.1 that the exact price is ∼ 10.80 all these simulations show a

relative error close to 1%.

1We are not able to provide a rigorous proof of the fact that the process µt does not contribute to the
diffusion but only to the drift. Therefore the derivation of PDE (6.15) has to be considered heuristic: it is
based mostly on numerical results rather than on a rigorous theoretical proof
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N,M Prices and confidence intervals

N = 20,M = 20000 [10.74,10.90,11.06]
N = 30,M = 20000 [10.77,10.93,11.10]
N = 30,M = 25000 [10.79,10.94,11.08]
N = 35,M = 15000 [10.62,10.81,11]
N = 35,M = 20000 [10.71,10.87,11.03]
N = 35,M = 25000 [10.74,10.88,11.02]

Table 6.3: Mean Prices and 95% confidence intervals solving one SDE with Euler scheme and one
PDE

N,M Prices and confidence intervals

N = 20,M = 20000 [10.78,10.95,11.11]
N = 30,M = 20000 [10.74,10.90,11.06]
N = 35,M = 20000 [10.77,10.93,11.09]
N = 35,M = 25000 [10.72,10.87,11.01]

Table 6.4: Mean Prices and 95% confidence intervals solving one SDE with Milstein scheme and one
PDE

From Table 6.1 we can also derive the sampling variances that vary between 195 and 255.

The sampling variances from Table 6.3 vary instead between 131 and 146, while the variances

from Table 6.4 are included in [133, 150]. Therefore we can certainly state that by solving

one SDE and one PDE instead of two SDEs we get a mild variance reduction effect.

This reduction however does not allow to enstablish that the PDE strategy is more efficient

than plain MC, since the computational time involved in a PDE solution is much higher

than a SDE solve. The choice of a spacial step h close to 10−3 might be too conservative

so we have also tried the choices h = 1/300, N = 35 and M = 25000 and got the following

price and confidence intervals [10.74, 10.88, 11.03] comparable to those in Tables 6.1 and 6.2.

This method in conclusion is still not competitive with the plain MC (Section 6.1.1) since,

conversely to these simulations, it takes just a few seconds to get the values in Table 6.2.

6.1.3 Conditional Black and Scholes with Stochastic Collocation

We now want to solve (6.10) relying on schemes and results presented in Chapter 5. In

particular we have observed a better convergence rate with respect to the weak error using

the Brownian Bridge discretization rather than the random walk one. We solve the SDE for

y = log(S2):

yn+1 = yn + (r − 1

2
σ2

2)∆t+ σ2∆W2,n (6.11)

then, on an anisotropic grid with the weights considered in Section 5.7 we plug the value

exp(y(tN )) into the payoff max(S1(T ) +S2(T )−K, 0). The increments of the Wiener process

in (6.11) will also appear in (6.10). With this method we get the results of Table 6.5 computed
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with h = 1/300:

w
N

16 32 64

0 6.77 6.77 6.77

1 11.36 11.36 11.36

2 10.68 10.66 10.66

3 10.92 10.89 10.88

4 10.89 10.83 10.81

5 11.01 10.88 10.85

6 10.94 10.93 10.87

7 10.98 10.90 10.93

8 10.96 10.92 10.90

9 10.97 10.91 N/A

Table 6.5: Mean Prices solving one SDE and one PDE with Stochastic Collocation (anisotropic TD
rule) and Brownian Bridge discretization

To give an idea of the computational costs involved in the simulations which is mainly repre-

sented by the number of PDE to be solved, we provide the number of N dimensional points

in the sparse grids corresponding to Table 6.5.

w
N

16 32 64

0 1 1 1

1 2 2 2

2 5 5 5

3 15 15 15

4 33 33 34

5 85 85 87

6 171 203 208

7 363 427 506

8 749 909 1076

9 1471 1951 N/A

Table 6.6: Number of Collocation Points (anisotropic TD rule) related to Table 6.5

Notice that considering N = 64 and w = 8 (1076 Collocation Points) we get an approxi-

mation comparable to the one obtained with M = 150000 in Table 6.2.
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6.2 Heston model of volatility: non correlated case

In this section we present the results obtained using the Stochastic Collocation method under

the assumption of independent Brownian motions driving the dynamics of the underlying and

the volatility for European Vanilla and Barrier Options. The dynamics are given by:dS(t) = rS(t)dt+
√
v(t)S(t)dW1(t)

dv(t) = χ(θ − v(t))dt+ ε
√
v(t)dW2(t)

(6.12)

with E[dW1(t)dW2(t)] = 0. A comparison between Euler and Milstein scheme is also pre-

sented.

In order to apply the Stochastic Collocation method we consider a discretization of the

second SDE with Implicit Milstein scheme (5.30): the maturity of the option T is divided

into N time steps of length ∆t and on each of them we consider this approximation

vn+1 =
vn + χθ∆t+ ε

√
vnηn+1

√
∆t+ 0.25ε2∆t(η2

n+1 − 1)

1 + χ∆t
(6.13)

where ηn+1 ∼ N(0, 1), ∀n = 0 . . . N − 1 is a standard normal variable. We can finally use

a PDE to evaluate the price of the option for each realization σmt = {
√
vmi }Ni=1: for each m

we solve numerically the BS PDE with respect to the variables S and t conditionally to the

volatility realization σmt
∂u

∂t
+ rS

∂u

∂S
+

1

2
(σmt )2 ∂

2u

∂S2
= ru (6.14)

where u(x, t) = F (x, t)|σmτ = E[φ(S(T ))|σmτ , 0 ≤ τ ≤ T ] is the expected value of the pay-

off conditional to the knowledge of the volatility realization. In this case we find exactly the

usual Black and Scholes equation and the Wiener paths related to W2 do not appear in (6.14).

6.2.1 Numerical results

We will now show the efficacy of the Stochastic Collocation under the assumption of zero

correlation considering a European and a Barrier Call.

6.2.2 European Vanilla

As a first example we consider the price of a European Vanilla call with the following param-

eters: S0 = 100, K = 100, r = 0.03, T = 1, while Heston parameters are: χ = 0.3, ε = 0.2,

θ = 0.4, v0 = 0.2. The analytical TV for this option is 19.968719. After dividing the maturity

in N intervals we get the prices in Table 6.7 with respect to different values of the level (w)

and different numbers of variables
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w
N

5 10 15 20 25

1 20.8948 19.5272 20.0067 19.8370 19.8903

2 21.0319 19.5784 20.0972 19.9049 19.9696

3 21.0325 19.5786 20.0973 19.9050 19.9697

4 21.0325 19.5798 20.0983 19.9063 19.9709

5 21.0325 19.5798 20.0983 N/A N/A

6 21.0325 19.5798 20.0983 N/A N/A

7 21.0325 19.5798 N/A N/A N/A

8 21.0325 19.5798 N/A N/A N/A

Table 6.7: European Vanilla prices with Stochastic Collocation and Implicit Milstein scheme,
ρ = 0

Fig. 6.1 and 6.2 show the error as a function of the number of variables and levels (6.1)

and the number of N dimensional probability points involved in the approximations (6.2).

Figure 6.1: TV error vs Number of variables
and Level

Figure 6.2: Number of probability points vs
Number of variables and Level

The charts in Fig. 6.1 and 6.2 show the convergence of Stochastic Collocation method

with respect to the number of variables used for the computation (N) and the level, which

is related to the number of knots corresponding to each variable. It also follows that one of

best choices is represented by N = 25 and w = 2, 3: for w = 3 in fact we have to solve just 51

BS equation with a time step equal to 1/25 in order to get a relative error close to 0.005%.

This conclusion is consistent with the results presented in Chapter 5 and Fig. 5.14, 5.15: in

particular from Fig. 5.14 we have been able to conclude that the level w = 4 was the right

choice, but we had not taken into account the level w = 3, which seems to be the best one.

To prove that the results do not depend on the particular value of S0 chosen, we evaluate

the price of four out-of-the money and four in-the-money options with level and number of
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intervals equal to 3 and 25 respectively (Fig. 6.3)

Figure 6.3: TV with Stochastic Collocation method and Implicit Milstein scheme vs spot,
N = 25, w = 3

The graph shows that the TV computed with these parameters for every spot value are

very close to the analytical solutions.

6.2.3 European Barrier

As a second example we consider the price of a European Barrier call with the same pa-

rameters of the first case and a lower and upper barrier equal to 80 and 160 respectively.

In this case a closed-form solution does not exist, so we assume as the exact value the one

computed with 200 space points, time step equal to 1/40 and level 4. For this choice of

parameters the TV is 1.64963. Using the Stochastic Collocation method, we get the prices

in Table 6.8 with respect to different values of the level (w) and different numbers of variables

w
N

5 10 15 20 25

1 1.5604 1.5409 1.53719 1.53681 1.53641

2 1.6876 1.6637 1.65873 1.65787 1.6572

3 1.6855 1.6627 1.65809 1.65739 1.65682

4 1.6799 1.6560 1.65108 1.65022 1.64956

5 1.6799 1.6560 1.65108 N/A N/A

6 1.6799 1.6560 1.65105 N/A N/A

7 1.6799 1.6560 N/A N/A N/A

8 1.6798 1.6559 N/A N/A N/A

Table 6.8: European Barrier prices with Stochastic Collocation and Implicit Milstein scheme
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The previous values have been obtained not with the standard Crank-Nicholson method

but with the Rannacher one [8] since the initial condition is discontinuous (see Appendix).

The following graphs show the precentage error as a function of the number of variables

and levels (Fig. 6.4) and the number of N dimensional probability points involved in the

approximations (Fig. 6.5).

Figure 6.4: TV error vs Number of variables
and Level

Figure 6.5: Number of probability points vs
Number of variables and Level

Also in this case the use of 25 variables and a level equal to 3 provides the right trade off

between number of problem to solve and accurancy of the solution (percentage error close to

0.5%).

The Stochastic Collocation method represents therefore an important tool when considering

options without an analytical pricing formula.

6.2.4 Euler scheme vs Milstein scheme

In Section 6.2, in order to approximate the second equation of (6.12) we have considered the

Milstein scheme and thus equation (5.30). In this subsection we make a comparison with

Euler scheme and reflection fix presented in the previous chapter. Using this scheme and

focusing on the case of the European Vanilla option, we would get the following prices:
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w
N

5 10 15 20 25

1 21.193563 19.71509 20.216852 20.02936 20.084921

2 21.097584 19.600228 20.115247 19.917502 19.980398

3 21.096663 19.599696 20.114948 19.917252 19.980204

4 21.096665 19.600041 20.115176 19.917644 19.98044

5 21.096663 19.600041 20.115176 N/A N/A

6 21.096671 19.600054 20.115182 N/A N/A

7 21.096671 19.600054 N/A N/A N/A

8 21.096681 19.600078 N/A N/A N/A

Table 6.9: European Vanilla prices with Stochastic Collocation and Euler scheme plus reflec-
tion fix, ρ = 0

It is evident that the two schemes provide the same TVs and at least for the purpose of

our analysis they are equivalent.

6.3 Heston model of volatility: correlated case

In this section we aim at deriving a PDE for the correlated case, which has already been

presented in [7] and is very similar to (6.10).

Thus we obtain an equation for u(x, t) = F (x, t)|σmτ = E[φ(S(T ))|σmτ , 0 ≤ τ ≤ T ], which is

given by
∂u

∂t
+ (r − 1

2
σ2
t )
∂u

∂x
+ ρσtµt

∂u

∂x
+

1

2
(1− ρ2)σ2

t

∂2u

∂x2
= ru (6.15)

where we are assuming a piecewise constant volatility over each time interval and µ defined

as in (6.9).

6.3.1 Numerical results

In this framework we will not use the random walk discretization on an isotropic grid that

would give erratic results. Most likely this kind of construction requires a huge value of w

to approximate properly the term ρσtµt in (6.15), since both the volatility process and the

options prices seem to be well approximated with a moderate value of w (see Section 5.5

and 6.2.1). We will therefore focus on the Brownian Bridge construction and the Implicit

Milstein scheme that fits to this kind of discretization more than the Euler schemes as stated

in Section 5.7.

With the same parameters of Section 6.2.2 and ρ = 0.8 we want to obtain the price of a

European Vanilla Call, whose exact price evaluated with Heston formula is 20.21. Solving
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(6.15) with a value of h = 1/300 we get the following prices

w
N

32 64 128

0 8.85 8.85 8.85

1 22.26 22.27 22.27

2 22.21 22.22 22.23

3 22.49 22.55 22.59

4 22.19 22.39 22.46

5 21.75 22.16 22.39

6 20.77 21.65 22.13

7 20.39 20.62 21.62

8 20.46 20.24 20.57

9 20.43 20.30 20.19

10 20.46 20.27 20.24

Table 6.10: Mean Prices with Stochastic Collocation (anisotropic TD rule) and Brownian Bridge
discretization, Implicit Milstein, ρ = 0.8

In this case a value of N = 64 seems to be necessary and also a level w ≥ 8: for example, for

ρ = −0.8 the exact price is given by 19.75 and with N = 64 and w = 7, 8, 9, 10 we get the

following mean prices respectively 19.60, 19.85, 19.79 and 19.82.

In this case for N = 64 and w = 10, for example, we have to solve 5124 PDEs and obtain

a mean price with a relative error < 0.5%. Conversely to the Basket Call where the drift

term ρσ1µt is given by a discretized white noise (multiplied by a constant), in this framework

the term ρσtµt consists in a white noise multiplied by a process and this term may require

a higher value of evaluation points. For the Heston models maybe solving the bidimensional

PDE (5.3) represents the most efficient strategy.
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Chapter 7

Conclusions and possible

developments

In this work we have presented many successful applications of the Stochastic Collocation

technique to financial problems. In the case of Black and Scholes PDE with random coeffi-

cients the results are positive as it was expected, since parabolic SPDEs have already been

studied and some convergence results are available.

As far as Stochastic Differential Equations are concerned the usual random walk discretization

coupled with sparse grids seems quite effective and the Stochastic Collocation is competitive

with the most recent probability approximation methods (e.g. Quasi-Monte Carlo and Multi-

level Monte Carlo). The Brownian Bridge discretization appears more trickier and some

questions have arised during the writing of this thesis, for example it is still not clear why

this new scheme works properly with the Milstein scheme but sometimes not with the Euler

one (see Section 5.7).

Furthermore, given N , we have been able to define log2(N)+1 orders of approximation (each

of them related to a different magnitude of the variance in (5.35)) and set the corresponding

weights as [1, . . . , N + 1]. Letting the level of the sparse grid vary w = 1, 2 . . . we are progres-

sively activating these orders. In recent papers as [32] and [33] through an ANOVA approach

the authors have been able to define an effective dimension of problem (which is related to

the value of N considered). With our choice of the weights, given N we might be able to

determine a sort of effective dimension as well. For example, for the GBM equation, sim-

ulating the exact dynamics and evaluating E[exp(2yw∆t(T ))] (see Section 5.7) we notice that

the effective dimension is actually 1 in this case (see Fig. 7.1): this is not surprising since

the exact solution for the GBM E[σ(T )] = σ0e
(ξ̄− 1

2
ε̄2)T+ε̄W (T ) can be actually parametrized

and simulated with just one variable. The interesting thing is that the error corresponding to

different values of N and same w are superimposed and this shows the progressive activation

process explained before (unless the machine error order is reached). Notice in fact that for

example the lines corresponding to N = 4 and N = 8 coincide up to w = 3, if w = 4 for
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N = 4 we are adding points in the same dimensions while for N = 8 we are taking into

account the variables related to a smaller approximation scale and the two lines diverge as

the line corresponding to N = 8 still coincides with those corresponding to N ≥ 8.

Figure 7.1: GBM, Weak error for anisotropic TD with Brownian Bridge discretization: the error is
given by |E[σ(T )2]− E[exp(2yw∆t(T ))]|, w = 0 . . . 8

Conversely evaluating the weak error on the Ornstein-Uhlenbeck SDE this effect is less

evident since the time discretization error plays an important role in this case (Fig. 7.2):

Figure 7.2: Scott, Weak error for anisotropic TD with Brownian Bridge discretization: the error is
given by |E[exp(y(T ))]− E[exp(yw∆t(T )]|,w = 0 . . . 8

The results obtained with the conditional PDE has to be considered also positive, in

particular for Basket Options but we want to underline once again that further efforts have

to be done in the direction of well posedness results. It is not even clear why the discretized

Gaussian White Noise does not contribute to the diffusion coefficient in (6.10) and (6.15).

As a further development we remark that the choice of N and w can be related when the

Brownian Bridge construction is used. As shown in Fig. 7.1, given N , increasing w there is
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a sort of progressive activation process of the smaller approximation scales; for this reason a

possible rule of thumb might consist in choosing w = log2(N) + 1, unless above this value the

time discretization error becomes dominant. Actually in Table 6.10 the right choice seems to

be w = log2(N) + 2, but obviously a more accurate analysis is necessary.
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Appendix A

Rannacher method

We consider a convection-diffusion equation:

∂u

∂t
+Au = f in Ω× [0, inf]

A = −div(α∇) + β · ∇+ γ

(A.1)

with initial condition

u|t=0 = u0 (A.2)

and boundary condition

u|Γ = d, α∂ν + δu = g (A.3)

If we assume that α > 0 on Ω, all coefficients are regular and the initial value is ”rough”

the initial-boundary value problem (A.1)-(A.3), has unique solution u which is regular for

all t > 0, while at t = 0 it exhibits a certain singular behavior. Bacause of this local

loss of regularity, a certain decrease of accurancy should be expected using the standard

discretization methods. We will focus on A-stable single step Padé schemes, combined with

a Galerkin scheme for the spatial variable. Using a finite elements discretization we get the

following finite dimensional problem

duh
dt

+Ahuh = Fh t ∈ (0,∞), uh(0) = u0
h (A.4)

If we consider the homogeneous problem, as in a classical Black and Scholes equation, we

can recast our problem into an initial value problem for a linear system of ODE with solution

given by:

uh(t) = e−tAhuh(0) (A.5)

which satisfies a two terms recurrence formula between the time tn, tn + k

uh(tn + k) = e−kAhuh(tn) (A.6)
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Tha main idea consists in approximating the exponential function between two time steps

with a rational function:

uh(tn+1) = R(kAh)uh(tn) (A.7)

where the functions R(kAh) are rational functions bounded on the spectrum of kAh, uni-

formly in k.

Many technicals details and possible choices of R are given in ([?]). We will focus on

(m,n)-Padé approximations of e−z. We define Rm,n(z) := Pm,n(z)/Qm,n(z) where

Pm,n(z) =
m∑
j=0

(m+ n− j)!m!

(m+ n)!j!(m− j)!
(−z)j

Qm,n(z) =
n∑
j=0

(m+ n− j)!n!

(m+ n)!j!(n− j)!
(−z)j

(A.8)

These schemes have the property that Rm,n(z) = ez +O(|z|m+n+1) as z → 0, z ∈ C which

means that the global discretization error has the order m+n. A classical choice is represented

by m = n but these schemes are just A-stable, while those with n < m are strongly A-stable.

Since A-stable schemes don’t always damp the error in the computation conversely to those

strongly A-stable, we expect that Padé schemes with n = m propagate the high frequency

errors generated by local irregularities of the data. The following Padé approximations are

the most used, though we will focus on the first two:

R01(z) = (1− z)−1 Backward Euler Scheme

R11(z) = (1− 1

2
z)−1(1 +

1

2
z) Crank Nicolson scheme

R12(z) = (1− 2

3
z +

1

6
z2)−1(1 +

1

3
z)

R22(z) = (1− 1

2
z +

1

12
z2)−1(1 +

1

2
z +

1

12
z2)

(A.9)

In the general case (f 6= 0), let Unh,k be the fully discretized solution, then the Padé

schemes with n = m = 1 or n = m = 2 can be written as follows:

(I +
k

2
Ah)Unh,k = (I − k

2
Ah)Un−1

h,k +
k

2
(Fnh + Fn−1

h ) (A.10)

(I+
k

2
Ah+

k2

12
A2
h)Unh,k = (I−k

2
Ah+

k2

12
A2
h)Un−1

h,k +
k

2
(Fnh +Fn−1

h )+
k2

12
(AhF

n
h−Fnht−AhFn−1

h +Fn−1
h )

(A.11)

where Fnh = Fh(tn), Fh is the L2 projection of F on the Galerkin space and Fnht = ∂tFh(tn).

If the data are all regular we expect the usual convergence rate with respect to the time step:
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a quadratic convergence for Crank-Nicolson method and a fourth order convergence for the

last presented scheme (plus the usual convergence rate with respect to the physical space

approximation). For rough data instead the convergence may dramatically decrease in the

extreme cases. It’s possible to recover the usual convergence rate thanks to the following

result:

Let U0
h,k be the L2-projection of the initial datum u0 onto the finite dimensional space and

suppose that, at t = 0, 2m of the diagonal (m,m)-Padé steps are replaced by subdiagonal

(m − 1,m)-Padé steps. Then the approximation Unh,k converges to the exact solution u(tn)

with the optimal order, for all times tn sufficiently far from t0.

The damping effect of the strongly A-stable (m − 1,m)-Padé schemes is able to counter

the high frequancy errors without diminishing the global order of the apporximation, since

the subdiagonal scheme is used just in a finite number of steps. Often the time advance-

ment is performed using an LU-factorization of the matrix related to the operator Qmn and

the dumping procedure would increase the computational cost. However applying a Crank-

Nicolson scheme we may use the subdiagonal scheme (backward Euler) for the first two steps

with half the time step k, thanks to the identity:

Q01(−k
2
Ah) = I +

k

2
Ah = Q11(−kAh) (A.12)

Therefore the above-mentioned increase can be avoided and the dumping procedure is

equivalent to computing the average:

Ū1
h,k =

1

4
(U0

h,k + 2U1
h,k + U2

h,k) (A.13)

for the Crank-Nicolson solution.

We can also consider non costant data in (A.1)-(A.3). In this case we assume that some of

the coefficients/boundary values are constant functions up to a finite number of jump times

at which they are discontinuous in time. The same optimality convergence result previously

stated holds, provided that the 2m dumping steps are applied after every jump time.

In the non autonomous case, A=A(t), the convergence result holds has been proven for at

least the Crank-Nicolson scheme. There are examples of non autonomous cases with α = α(t)

that violate the usual convergence result once a high order Padé scheme is applied (order

3 or higher). If just the convection or the reaction terms are time-dependent, higher order

schemes are still optimals. For further details see ([8]).
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