
POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di Laurea Specialistica in
Ingegneria Aeronautica

Coupled Fluid-Structure Simulation
of Flapping Wings

Relatore: Prof. Marco MORANDINI

Tesi di Laurea di:
Mattia ALIOLI Matr. 735677

Anno Accademico 2010-2011

Θάλαττα, θάλαττα

Abstract

In this thesis, we adopted an adaptive finite element method to compute
incompressible viscous flows. In particular, we first tested the method,
implemented in FEniCS software library, for 2D turbulent flow problems,
then we computed 3D, fully coupled, time-dependent fluid–structure in-
teraction problems. We also presented the employment of a non linear
4-node shell element within the free multibody solver MBDyn, using a
boundary interfacing approach based on MLS with RBFs, to support
the modeling and the analysis of flexible wing oscillating in plunge.
The method we used to compute approximate solutions to the Navier-
Stokes equation is G2 method, in form of cG(1)cG(1), with friction
boundary conditions. The cG(1)cG(1) method is a stabilized Galerkin
finite element method using continues, piecewise linear trial functions in
time and space with continues piecewise linear test functions in space
and piecewise constant test functions in time. Instead of resolving the
turbulent boundary layer, the method uses a friction boundary condition
as a wall model. The adaptive cG(1)cG(1) method is based on “a pos-
teriori” error estimate, where space discretization is adaptively modified
based on the solution of an auxiliary linearized dual problem to control
the error in a given goal functional of interest. This because understand-
ing the mechanics of turbulent fluid flow is of key importance for industry
and society and the massive computational cost for resolving all turbu-
lent scales in a realistic problem makes direct numerical simulation of
the underlying Navier-Stokes equations impossible.

Keywords: Adaptive finite element method; fluid-structure interaction; flap-
ping wings.

i

Sommario

Durante questo lavoro di tesi è stato implementato un metodo ad ele-
menti finiti adattivo per il calcolo di flussi incomprimibili e viscosi. In
particolare tale metodo, sviluppato grazie all’ambiente di programmazio-
ne fornito dal progetto FEniCS, è stato dapprima applicato a problemi
di flusso turbolento bidimensionale, per poi procedere al calcolo dell’inte-
razione fluido-struttura per problemi tridimensionali nonstazionari. Per
l’analisi e la modellazione di ali flessibili, si è ricorso all’utizzo di un
elemento di piastra a 4 nodi non lineare all’interno del solutore libero
multicorpo MBDyn, usando un strategia per esplicitare il problema di
interfaccia basata su di uno schema di interpolazione ai minimi quadrati
mobili, con funzioni a supporto radiale compatto.
Il metodo utlizzato per risolvere le equazioni di N.S. è il cosidetto meto-
do G2, nella forma di cG(1)cG(1), con condizioni al contorno di attrito.
Il metodo cG(1)cG(1) è un metodo agli elementi finiti di Galerkin stabi-
lizzato che utilizza funzioni trial continue e lineari a tratti sia in spazio
che in tempo, mentre utilizza funzioni test continue e lineari a tratti in
spazio e costanti a tratti in tempo. In tale metodo è stata implementata
una condizione al contorno di attrito come modello di parete. Il metodo
adattivo cG(1)cG(1) è basato su di una stima “a posteriori” dell’errore,
in cui la discretizzazione spaziale è adattivamente modificata basandosi
sulla risoluzione di un problema linearizzato duale per controllare l’erro-
re rispetto ad una funzione obiettivo scelta. Questo perchè comprendere
bene i meccanismi che governano un flusso turbolento è un aspetto fon-
damentale per l’industria e la risoluzione di tutte le scale turbolente
presenti in un problema realistico rende impossibile una simulazione nu-
merica diretta anche per la potenza computazionale disponibile al giorno
d’oggi.

Keywords: Metodo ad elementi finiti adattivo; interazione fluido-struttura;
ali oscillanti.

iii

Acknowledgements

This work could not have been accomplished without the support, en-
couragement and enthusiasm of many people surrounding me.
First of all, I would like to express my sincere gratitude to my supervisor,
professor Marco Morandini, for his valuable assistance, motivation and
encouragement in my work. He helped me prepare numerical simulations
and I never hesitated to ask him any question.
I am also very grateful to professor Pierangelo Masarati for his sugges-
tions in understanding the multibody MBDyn code used throughout this
thesis.
After the academic credits, I would like to thank my present and former
colleagues: it is not possible to thank everyone individually, I would,
therefore, like to express my gratefulness to everybody who was there
for me. Their friendship and support helped me a lot in completing this
work.
Finally, I wish to extend my deepest thanks to my parents, brother and
relatives, for their love, support, encouragement and understanding.

Alioli Mattia
Politecnico di Milano, April 2012

v

Summary in Italian

Questo lavoro di tesi ha avuto come obiettivo quello di analizzare l’in-
terazione fluido-struttura per ali flessibili flappeggianti. Per raggiungere
tale scopo, ci si è concentrati dapprima sullo sviluppo di un metodo ad
elementi finiti per la risoluzione del flusso incomprimibile attorno ad un
profilo bidimensionale rigido oscillante, poi si è passato alla risoluzione
del flusso turbolento attorno ad un’ala rigida di apertura finita oscillante
ed, infine, a quello attorno ad un’ala flessibile.

Le motivazioni che sono alla base di tale lavoro sono da ricercarsi
nel grande interesse, sia in ambito civile che militare, che si è sviluppato
attorno a piccoli aerei radio-controllati, noti come Micro Air Vehicles
(MAVs). Per sfruttare su questi micro-aerei le prestazioni e l’efficienza
del volo tipico di uccelli e insetti, i quali hanno sviluppato l’arte del vo-
lo in milioni di anni di evoluzione, si può ricorrere ad un meccanismo
che permette all’ala di flappeggiare. Per queste ragioni è necessario com-
prendere bene l’aerodinamica che si sviluppa attorno a profili oscillanti
e sfruttare l’accoppiamento tra l’oscillazione dell’ala e il suo grado di
flessibilità.

Alla base di numerosi fenomeni aerodinamici ci sono le equazioni di
Navier-Stokes, che sono un’estensione delle equazioni di Eulero inclu-
dendo gli effetti della viscosità, e per una corrente incomprimibile sono
derivate dalle equazioni di conservazione della massa e della quantità di
moto. Considerando il moto di un fluido con densità costante ρ in un
dominio Ω ⊂ Rd (con d = 2, 3), queste equazioni si esprimono come:

∂u

∂t
+ (u · ∇)u− 2ν∇ · ε(u) +∇p = f , x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0.

(1)

dove p è la pressione scalata per la densità, ν = µ
ρ è la densità cinematica,

ε(u) = 1
2 (∇(u)+∇>(u)) il tensore di velocità di deformazione. Per risolvere

il sistema (1) occorre imporre delle opportune condizioni al contorno e
delle condizioni iniziali, come mostrato in seguito, indicando con ΓD e

vii

ΓN delle porzioni complementari di ∂Ω, contorno di Ω:

∂u

∂t
+ (u · ∇)u− 2ν∇ · ε(u) +∇p = f , x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

u(x, t) = g(x, t), x ∈ ΓD, t > 0,

n · σ = −pn+ 2νn · ε(u) = t, x ∈ ΓN, t > 0,

u(x, 0) = u(x), x ∈ Ω.

(2)

dove σ è il tensore di Cauchy “dinamico” o “scalato” (diviso per la
densità), i.d., σ = −pI + 2νε(u). Utilizzando un semplice modello di pa-
rete, come quello presentato in §Hoffman and Johnson [16], possiamo
implementare delle condizioni al contorno di strisciamento con attrito e
penetrazione con resistenza, per una porzione Γsfpr del contorno con ver-
sore normale n e due vettori tangenti ortogonali τ1 e τ2, semplicemente
variando i valori di α e β in:

u · n+ αn>σn = 0,

u · τk + β−1 n>στk = 0, k = 1, 2.
(3)

La formulazione debole di (2) si ottiene nel consueto modo, cioè mol-
tiplicando per una coppia di funzione test (v, q) ∈ (V0, Q) e integrando
per parti l’equazione di conservazione della quantità di moto, definendo
inoltre i seguenti spazi funzionali:

Vg :=

{
v ∈ (H1(Ω))d : v

∣∣
ΓD

= g

}
,

V0 :=

{
v ∈ (H1(Ω))d : v

∣∣
ΓD

= 0

}
,

Q := L2(Ω) =

{
f : Ω 7→ R :

∫
Ω
f(x)2 dΩ < +∞

}
.

dove H1(Ω) è il classico spazio di Hilbert di funzioni che sono quadrato
integrabili insieme con la loro derivata prima. Scomponendo inoltre la
funzione test v su Γsfpr in d componenti ortonormali, come suggerito
in §John [17], e indicando con (·, ·) il prodotto interno in (L2(Ω))d, d =

1, 2, 3, la formulazione variazionale risulta: trovare (u, p) ∈ (Vg, Q) tali che

viii

per ogni (v, q) ∈ (V0, Q)

(ut,v) + 2ν(ε(u), ε(v)) + ((u · ∇)u,v)− (p,∇ · v)+

+

∫
Γsfpr

α−1(u · n)(v · n) dS+

+

∫
Γsfpr

d−1∑
k=1

β(u · τk)(v · τk) dS = (f ,v),

(∇ · u, q) = 0

(4)

avendo usato ut per indicare ∂u
∂t .

Per trovare delle funzioni che soddisfino le equazioni di N.S. solo
in modo approssimato in forma debole, in questa tesi, viene utilizzato
un metodo agli elementi finiti alla Galerkin stabilizzato, qui indicato
come metodo G2, che può essere visto come una combinazione di un
metodo di Galerkin, che assicura che il residuo sia piccolo “in media”,
ed una stabilizzazione ai minimi quadrati pesati, che corrisponde ad un
certo controllo “forte” del residuo. In particolare, il metodo utilizzato è il
cG(1)cG(1), che è un tipo di metodo G2, e che usa funzioni trial continue
lineari a tratti sia in tempo che in spazio e funzioni test continue lineari
a tratti in spazio ma costanti a tratti in tempo. Sia 0 = t0 < t1 < · · · <
tN = T una sequenza discreta di istanti di tempo, con intervalli temporali
associati In = (tn−1, tn] di dimensione kn = tn−tn−1, e sia Wn ⊂ H1(Ω) uno
spazio di elementi finiti composto da funzioni continue lineari a tratti su
di una griglia Tn = {K } di dimensione hn(x) con Wn

0 le funzioni in Wn

che soddisfano delle condizioni di Dirichlet omogenee su di una porzione
ΓD del contorno di Ω. Allora il metodo cG(1)cG(1) per le equazioni di
N.S. (4) risulta: per n = 1, ..., N , trovare (Un, Pn) = (U(tn), P (tn)) con
Un ∈ V n0 ≡ [Wn

0]3 e Pn ∈Wn, tali che

((Un −Un−1)k−1
n + Ūn · ∇Ūn, v) + (2νε(Ūn), ε(v))− (Pn,∇ · v)+

+(∇ · Ūn, q) + α−1 〈(U · n), (v · n)〉
Γsfpr

+ β 〈U ⊗ v, I− n⊗ n〉
Γsfpr

+

+SDδ(Ū
n, Pn;v, q) = (f ,v) ∀ v̂ = (v, q) ∈ V no ×Wn

(5)

dove Ūn = 1
2 (Un + Un−1) e Pn sono costanti a tratti in tempo su In, e

con il termine di stabilizzazione dato da:

SDδ(Ū
n, Pn;v, q) = (δ1(Ūn · ∇Ūn +∇Pn − f), Ūn · ∇v +∇q)+

+ (δ2∇ · Ūn,∇ · v)
(6)

dove si è sfruttata la seguente proprietà per tre vettori unitari orto-
normali, per esprimere la condizione al contorno di strisciamento con

ix

attrito:
τ1 ⊗ τ1 + τ2 ⊗ τ2 + n⊗ n = I

I parametri di stabilizzazione sono espressi come: δ1 = κ1(k−2
n +|U |2h−2

n)−
1
2

e δ2 = κ2hn|U | nel caso di convezione dominante; cioè se ν < |U |hn. Nel
caso di diffusione dominante, i parametri sono dati da δ1 = κ1h

2
n/(|U |L) e

δ2 = κ2h
2
n|U |/L. Qui, κ1 e κ2 sono costanti positive di dimensione unitaria

ed L la lunghezza di riferimento. Inoltre:

(v,w) =
∑
K∈Tn

∫
K
v ·w dx,

(ε(v), ε(w)) =

3∑
i,j=1

(εij(v), εij(w)),

〈v,w〉
Γsfpr

=

∫
Γsfpr

(v : w) dS.

(7)

Il metodo cG(1)cG(1) può essere utilizzato per calcolare adattiva-
mente soluzioni approssimate con l’obiettivo di soddisfare una certa tol-
leranza rispetto ad un specifico output di interesse (solitamente la re-
sistenza o la portanza). Rispetto a questo quantità, il metodo adatta
automaticamente la griglia basandosi su di una stima “a posteriori” del-
l’errore e risolve le caratteristiche del flusso che hanno grande influenza
sull’output scelto, mentre le altre scale rimangono irrisolte con la sta-
bilizzazione che agisce come un modello numerico di turbolenza. Per
flussi turbolenti questo metodo può essere visto come una DNS/LES
adattiva, dove parte del flusso viene risolta come in una DNS, mentre
un’altra parte rimane irrisolta come in una LES. L’algoritmo adatti-
vo utilizzato è basato sul metodo presentato in §Rognes and Logg [24]
per cercare di ottenere un controllo automatizzato goal-oriented dell’er-
rore, basato sulla risoluzione automatizzata di un problema ausiliario
(duale), sulla derivazione e sulla valutazione automatizzata di un stima
“a posteriori” dell’errore, e sul raffinamento automatico adattivo della
griglia per controllare che l’errore in un funzionale scelto sia al di sotto
di una certa tolleranza. Ciò rende possibile la costruzione un algoritmo
per il raffinamento adattivo della griglia rispetto ad una certa quantità
di interesse.

In un problema di iterazione fluido-struttura le forze che agiscono sul-
la struttura deformabile causano la modifica delle condizioni al contorno
per il problema aerodinamico, allora l’approccio più semplice e corret-
to, ma anche computazionalmente più oneroso, consiste nel deformare la
griglia di calcolo aerodinamica e riformulare il problema aerodinamico

x

secondo una strategia Arbitrary Lagrangian-Eulerian (ALE). Conside-
rando quindi la velocità v̂ della griglia, le equazioni di N.S. (2) nella
descrizione ALE diventano:

ut + ((u− v̂) · ∇)u− 2ν∇ · ε(u) +∇p = f , x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

u(x, t) = g(x, t), x ∈ ΓD, t > 0,

n · σ = −pn+ 2νn · ε(u) = t, x ∈ ΓN, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(u− v̂) · n+ αn>σn = 0, x ∈ Γsfpr, t > 0,

(u− v̂) · τk + β−1 n>στk = 0, k = 1, 2 x ∈ Γsfpr, t > 0.

(8)

Per determinare la velocità v̂ dei nodi della griglia aerodinamica, noti
gli spostamenti e le velocità dei nodi aerodinamici appartenenti all’in-
terfaccia fluido-struttura, in questa tesi, si è ricorso alla soluzione di un
problema elastico “fittizio”, dove il modulo elastico di ogni elemento è
inversamente proporzionale al proprio volume (o area). Se lo spostamen-
to dei nodi appartenenti al contorno del corpo provoca la formazione
di alcuni elementi a volume negativo, a causa dell’eccessiva distorsione
subita, allora il modulo elastico di tali elementi viene incrementato e il
problema elastico viene riformulato.

Il compito di interpolare gli spostamenti e le velocità strutturali sui
nodi aerodinamici appartenenti al contorno del corpo è lasciato ad un
opportuno schema di interfaccia, il cui obbiettivo è quello di realizzare la
connessione ad anello chiuso tra il sistema strutturale e quello aerodina-
mico mediante un’opportuna procedura di interpolazione e garantire che
lo scambio di informazione avvenga nel modo più accurato ed efficiente
possibile. Ad esempio, è necessario sapere tradurre gli spostamenti e le
velocità strutturali in variazioni delle condizioni al contorno del sistema
aerodinamico ed analogamente le forze aerodinamiche in una condizio-
ne di carico agente sul sistema strutturale. Quindi occorre cercare un
operatore lineare che, noto il vettore degli spostamenti strutturali, re-
stituisca il vettore degli spostamenti interpolati sui nodi aerodinamici
appartenenti al contorno del corpo nel seguente modo:

ua = Hus

dove H è la matrice di interfaccia incognita. Per garantire la conserva-
zione del lavoro (virtuale) svolto nel sistema strutturale ed nel sistema
aerodinamico, l’operatore lineare che consente di riportare i carichi ae-
rodinamici sui nodi strutturali corrisponde alla matrice di interfaccia

xi

incognita trasposta:
F as = H>F aa

La strategia qui adoperata per esplicitare la matrice H, secondo un’ap-
proccio agli spostamenti, è quella proposta in §Quaranta [22], e consiste
nell’utilizzare uno schema di interpolazione ai minimi quadrati mobili o
Moving Least Squares (MLS), che consente di costruire un’approssima-
zione sufficientemente regolare ed accurata del campo degli spostamenti
e delle velocità strutturali in corrispondenza dei nodi aerodinamici ap-
partenenti al contorno del corpo conoscendo la soluzione solo all’interno
di una nuvola di nodi strutturali in generale irregolarmente distribuiti.
Il campo degli spostamenti e delle velocità strutturali è quindi approssi-
mato in corrispondenza dei nodi aerodinamici appartenenti al contorno
del corpo mediante uno seguente sviluppo polinomiale ad m termini del
tipo:

û(x) =

m∑
i=1

pi(x)ai(x) = p>a (9)

dove pi(x) è la i-esima funzione di di base polinomiale di ordine opportu-
no, generalmente lineare o quadratica per evitare problemi di instabilità
numerica, ed ai(x) è l’i-esimo coefficiente moltiplicativo incognito. Que-
sti ultimi possono essere determinati minimizzando un’opportuna nor-
ma dell’errore locale commesso utilizzando la funzione interpolante û(x)

mediante il metodo dei minimi quadrati pesati, ovvero minimizzando il
seguente funzionale scritto in forma variazionale:

J(x) =

∫
Ω

Φ(x)‖ε(x)‖2 dΩ (10)

dove Φ(x) è un’opportuna funzione peso e ε(x) l’errore locale.
Considerando ad esempio un supporto di Nj nodi strutturali xs,j , in ge-
nerale irregolarmente distribuiti ed in corrispondenza dei quali siano noti
gli spostamenti strutturali us,j , i coefficienti moltiplicativi incogniti ai(x)

possono essere determinati minimizzando il seguente funzionale scritto
in forma discretizzata:

J(x) =

Nj∑
j=1

Φ(x− xs,j)

∥∥∥∥∥
m∑
i=1

pi(xs,j)ai(x)− us,j

∥∥∥∥∥
2

.

Come funzioni peso sono utilizzate le Radial Basis Functions (RBFs) a
supporto compatto e di grado minimo espresse nella forma Φ(r/δ), do-
ve r = ‖x − xs,j‖ e δ è un fattore di scala che consente di modificare
localmente le dimensioni Nj del supporto dei nodi strutturali xs,j , con-
siderandone solo un numero minimo sufficiente di relativamente vicini e

xii

scartando viceversa quelli più distanti in modo tale da contenere il costo
computazionale.

Avendo come obiettivo ultimo quello di analizzare l’interazione fluido-
struttura per ali flessibili flappeggianti, in questa tesi, è stata utilizzata
una formulazione di elemento finito di piastra a 4 nodi, non lineare, svi-
luppata e validata in §Quaranta et al. [23], a cui si rimanda per ulterio-
ri chiarimenti, all’interno dell’ambiente multicorpo fornito dal solutore
(strutturale) libero multicorpo MBDyn, sviluppato al Dipartimento di
Ingegneria Aerospaziale del Politecnico di Milano, mentre per risolvere
il problema aerodinamico ci si è affidati all’uso di un ambiente di pro-
grammazione piuttosto recente (FEniCS/DOLFIN) ed a Python, la cui
combinazione permette la scrittura di codice compatto di “alto” livello,
molto vicino alla notazione matematica delle equazioni che devono essere
risolte, e da cui codice di “basso” livello è automaticamente generato.

FEniCS è una collezione di software liberi, in combinazione con un’e-
stesa lista di servizi, che permette la creazione e la risoluzione di proble-
mi retti da equazioni differenziali usando il metodo degli elementi finiti.
Alla base di FEniCS si trova DOLFIN, che oltre ad esserne un compo-
nente fondamentale, svolge il ruolo di interfaccia-utente. In FEniCS, la
scrittura di codice è combinata con il simbolismo matematico attraver-
so l’adozione di un linguaggio specifico (UFL) per la dichiarazione della
formulazione variazionale delle equazioni differenziali parziali o ordina-
rie, incorporato nel linguaggio di programmazione Python. Le equazioni
differenziali alle derivate parziali possono essere scritte in una notazione
molto simile a quella matematica (cos̀ı come i problemi variazionali ad
elementi finiti) e risolte automaticamente.

Come esperimenti numerici, per verificare la “bontà” del metodo
sviluppato, sono stati presi in considerazione i seguenti problemi:

� Flusso instazionario attorno ad un profilo NACA 0012, posto ad un’
incidenza di 34°, con Re = 1000, confrontando i risultati ottenuti con
quelli da §Guermond and Quartapelle [7].

� Flusso attorno ad un profilo NACA 0012 oscillante sinusoidalmente
in direzione verticale, a Re = 20000, confrontando i risultati ottenuti
con quelli da §Heathcote and Gursul [8]; Heathcote et al. [9]; Young
and Lai [26].

� Effetto della flessibilità in apertura sulle caratteristiche di trazio-
ne per un’ala rettangolare oscillante in direzione verticale ad un’e-
stremità, confrontando i risultati ottenuti con quelli da §Heathcote
et al. [9].

xiii

Contents

I Introductory Chapters 1

1 Introduction 3
1.1 Motivation . 4
1.2 Brief history of vehicles with flapping airfoils 6
1.3 Outline of the Thesis . 6

2 Incompressible Navier-Stokes equations 9
2.1 Stress tensor in Newtonian fluid 9
2.2 The incompressible Navier-Stokes equations 10

2.2.1 Conservation of mass 10
2.2.2 Conservation of momentum 11
2.2.3 N.S. Equations . 12

2.3 Boundary Condition . 15
2.3.1 Skin Friction Wall Model 15
2.3.2 Slip Boundary Condition 15
2.3.3 No Slip Boundary Condition 15
2.3.4 Outflow Boundary Condition 16

2.4 Weak Formulation . 16

3 G2 for Navier-Stokes equations 19
3.1 Introduction . 19
3.2 General Galerkin for Turbulent flow 20
3.3 Eulerian cG(1)cG(1) method 20
3.4 G2 as adaptive DNS/LES . 22

4 ALE Explained 25
4.1 Lagrangian and Eulerian viewpoints 25
4.2 ALE kinematic description 26
4.3 The foundamental ALE equation 28

xv

Contents

4.4 ALE form of conservation equations 29

4.4.1 Mesh moving . 30

5 Structural Multibody Modeling 35

5.1 Multibody Formulation . 35

5.2 Structural Model . 37

6 Interfacing the Structural and the Aerodynamic model 41

6.1 Introduction . 41

6.2 Fluid-Structure Interface . 42

6.3 Application to FSI problem 46

7 The FEniCS project 47

7.1 FEniCS . 47

7.1.1 DOLFIN . 47

7.1.2 FFC . 49

7.1.3 UFC . 50

7.1.4 UFL . 50

7.2 Implementation details . 51

7.2.1 Preliminaries . 51

7.2.2 Time discretization . 51

7.2.3 Mesh . 51

7.2.4 Solver . 52

7.2.5 ALE . 55

7.2.6 Adaptive G2 . 56

8 Mesh generation 59

8.1 TriTetMesh . 59

8.1.1 Triangle . 59

8.1.2 TetGen . 60

II Numerical Experiments 63

9 2D Unsteady Incompressible Viscous Flows 65

9.1 Adaptive G2 . 69

9.2 Conclusions . 73

10 Plunging Airfoil at Low Reynolds Numbers 75

10.1 Conclusion . 81

xvi

Contents

11 Effect of Spanwise Flexibility on flapping wing propul-
sion 85
11.1 Rigid Wing Results . 87
11.2 Flexible Wing Simulations . 89

11.2.1 Deformation - single case 93
11.2.2 Deformation - parametric study 93
11.2.3 Thrust force - single case 94
11.2.4 Thrust force - parametric studies 95

12 Conclusion 97
12.1 Future work . 97

References 101

xvii

List of Figures

1.1 Scheme of the structure of the toolbox for the FSI analysis. 4

3.1 Overview of an adaptive finite element framework. 23

4.1 Lagrangian, Eulerian and ALE domains. 27
4.2 Elastic problem for mesh moving. 32
4.3 Mesh distortion. 33

6.1 Fluid-structure interaction domain. 42

7.1 FEniCS map. 48
7.2 Implementation of variational forms for the G2 solver. . . 54
7.3 The lift and drag of an airfoil. 54
7.4 Computation of lift and drag in FEniCS. 55
7.5 Implementation of the adaptive version of G2 solver. . . . 57

8.1 Example of usage of boundary markers. 61

9.1 Mesh adopted for computation 65
9.2 NACA 0012 airfoil, streamlines at t = 1.6. 66
9.3 NACA 0012 airfoil, pressure fileds at t = 1.6. 67
9.4 NACA 0012 airfoil, streamlines at t = 2.6. 68
9.5 NACA 0012 airfoil, streamlines at t = 3.6. 68
9.6 Mesh before and after adaptive mesh refinements. 69
9.7 NACA 0012 airfoil, streamlines at t = 1.6. 70
9.8 NACA 0012 airfoil, pressure fields at t = 1.6. 71
9.9 NACA 0012 airfoil, streamlines at t = 2.6. 72
9.10 NACA 0012 airfoil, streamlines at t = 3.6. 72

10.1 Schematic of the airfoil heaving periodically. 75
10.2 2-D NACA 0012 airfoil in pure heave: thrust coefficient. . . 77
10.3 2-D NACA 0012 airfoil in pure heave: power-input coefficient. 78
10.4 2-D NACA 0012 airfoil in pure heave: propulsive efficiency. 78

xix

List of Figures

10.5 Coarse and refined mesh, LE zoom. 79
10.6 Coarse and refined mesh, TE zoom. 80
10.7 CT as a function of time; Re = 20000, kG = 5. 80
10.8 C̄T, 2-D NACA 0012 airfoil in pure heave. 81
10.9 C̄p, 2-D NACA 0012 airfoil in pure heave. 82
10.10η, 2-D NACA 0012 airfoil in pure heave. 82

11.1 Cross-sections of the three NACA 0012 wings. 86
11.2 Schematic of the spanwise flexible wing. 86
11.3 Computational grid. 87
11.4 C̄T as a function of Garrick frequency, Re = 30000. 88
11.5 Reference systems. 90
11.6 Disposition of MBDyn’s structural nodes. 90
11.7 Example of set of points rigidly offset from MBDyn’s

nodes and those used by the peer process. 92
11.8 Tip displacements as a function of time; Re = 30000, kG =

1.82. 93
11.9 Tip amplitude as a function of Garrick frequency; Re = 30000. 94
11.10Instantaneous thrust coefficient as a function of time; Re =

30000, kG = 1.82. 94
11.11Thrust coefficient as a function of Garrick frequency, Re =

30000. 95

xx

List of Tables

11.1 C̄T data, Re = 30000. 88
11.2 Flapping wing: structural properties. 89

xxi

Part I

Introductory Chapters

1

1 Introduction

Computer simulation is an important tool in many disciplines of science
and engineering since many of the problems that are being simulated
are computationally expensive and computer resources must therefore
be used wisely. One of these problems, e.g., is fluid–structure interac-
tion (FSI), which require the solution of the Navier-Stokes equations
in a time-dependent flow domain. In order to accurately represent the
solution of these problems, the numerical method requires the use of
moving and deforming meshes. Several numerical techniques can deal
with deforming meshes: in this thesis we focused on finite element meth-
ods since they provide an excellent framework for solving the Navier-
Stokes equations and make it possible to efficiently deal with complicated
geometry and to adapt the computational mesh to accurately capture
flow phenomena such as boundary layers, vortical structures, etc. In
particular, arbitrary Lagrangian-Eulerian finite element techniques have
been successfully used to deal with time-dependent fluid flow problems
with changing spatial configurations. A tremendous amount of comput-
ing power has been expended to solve N.S. equations, often for simple
geometries, far from engineering applications: for simulating turbulent
flow within a reasonable amount of time one can resort to adaptive finite
element methods, which are based on the idea that we want to compute
the solution with good accuracy to a minimal computational cost, or,
alternatively, compute a solution with as good accuracy as possible to
a given computational cost. The main part of this work thus concerned
the efficient simulation of fluid flow using adaptive methods based on
General Galerkin (G2) finite element methods. When applied to advec-
tion dominated problems, the Galerkin method lacks stability: a least-
squares operator is so added to the basic Galerkin formulation in order
to overcome these difficulties. When properly defined, these operators
guarantee stability without compromising accuracy. The Galerkin least-
squares method, in combination with a suitable stabilization operator,
is an excellent method to accurately compute the periodic shedding of
vortices and, in combination with the space-time formulation, it is well

3

Chapter 1. Introduction

suited for moving and deforming meshes.
In this thesis, analysis struments that are freely available on Inter-

net were adopted, where it was possible, not only for the solutions of
the structural and aerodynamic problems, but also for the pre/post-
processing phases. Referring to Figure 1.1, we adopted as structural
solver the Open Source multibody-multidisciplinary code MBDyn, in
which an interface scheme that provides to exchanges information be-
tween the structural and the aerodynamic models has been implemented;
we utilized some tools of the FEniCS project (a recent C++/Python
framework, where systems of PDEs and corresponding discretization and
iteration strategies can be defined in terms of a few high-level Python
statements which inherit the mathematical structure of the problem and
from which low level code is generated) to solve the aerodynamic prob-
lem. The choice of utilizing only freely available software extended also
on the elaboration and graphic presentation of the numeric results by
Octave, Gnuplot, and the post-processor ParaView. The only commer-
cial software we utilized is Abaqus to generate a 3D computational grid
for the computation in Chapter 11, while in 2D cases we exploited the
functionality of the Open Source TriTetMesh interface to Triangle/Tet-
gen packages to create meshes.

Structural Solver

MBDyn

Aerodynamic Solver

FEniCS

Interface Scheme

Post-processor

ParaView

Mesh generator

Abaqus/TriTetMesh

MLS using RBFs

Figure 1.1: Scheme of the
structure of the toolbox for
the FSI analysis.

1.1 Motivation

There is great interest in small radio-controlled aircraft known as Micro
Air Vehicles (MAVs): these crafts, whose size is less than 15 cm in length,
width, and height, represent an interesting means to provide reconnais-
sance and surveillance capabilities in dangerous environments, for both
military and civil tasks. Many applications, which require great maneu-
verability and demand the ability to hover, have been suggested for a
MAV carrying a miniature video camera or other sensing device.

It is thought that it may be possible to approach the agility and
endurance of birds and insects, which have perfected the art of flying

4

1.1. Motivation

through millions of years of evolution, by adopting a flapping wing mech-
anism, and for this reason there is a need to understand the aerodynamics
of oscillating airfoils. The flight of insects have stimulated a great deal
of interest as their flight seems improbable based on the conventional
theories of aerodynamics. To support the body weight and maneuver,
the wings of an insect must be able to produce two to three times more
lift than a conventional fixed wing flight: in most of the insects, the wing
stall during the flight has been observed to produce a leading edge vor-
tex which helps in the production of the required lift. This has resulted
in studies to find a way of harnessing the efficiency of the insect flight
and apply it to the development of MAVs.

Because the length scale of birds, insects, and MAVs is of the order of
the centimeter, the Reynolds number is very low, typically Re = 103÷105,
and an understanding of the nature and relative importance of inviscid
and viscous phenomena in this regime is sought. Minimum wing area for
ease of packing and launch handling are also require: fixed wings become
less efficient as the size and speed of the vehicle decreases. At the low
Reynolds numbers of birds, insects, fish, and MAVs, flow separation
tends to occur at the leading edge, especially at high angles of attack:
these effects can’t be predicted by inviscid methods and, for this reason,
Navier–Stokes codes have been developed. These methods are able to
predict leading-edge flow separation, vortex formation and shedding, and
the consequent merger of the leading-edge vortices into the trailing-edge
vortex system.

Birds and insects also exploit the coupling between the flapping wing
and the wing deformation to enhance their aerodynamic performance.
Flexibility is an interesting subject in the design of MAVs, because in
addition to any aerodynamic benefits it is noted that flexible wings are
inherently light. Despite the knowledge that flexibility is of importance
in bird and insect flight, and essential in fish swimming, the effect of
wing stiffness, in either the chordwise or spanwise direction, is relatively
unexplored: the majority of experimental studies present in literature
have focused on rigid airfoils. One of the first studies about the effect
of chordwise flexibility for an airfoil in heave at low Reynolds numbers
was made by §Heathcote and Gursul [8]. The progression to a study
of spanwise flexibility follows in §Heathcote et al. [9]: the phase of the
flexing motion relative to the heave was found to be a key parameter in
determining the thrust and efficiency characteristics of the wing/fin (in-
phase motions yielded a benefit in efficiency and a significant increase
in thrust, out of phase motions were found to be detrimental).

5

Chapter 1. Introduction

1.2 Brief history of vehicles with flapping airfoils

Studies trying to mimic the flight of birds and insects dates back to early
days: everyone knows the ancient Greek legend of Daedalus that was im-
prisoned, with his son Icarus, by King Minos but, mading wings of wax
and feathers, he could successfully fly away, instead of Icarus that fell
to his death in the ocean because he flew too high and too near the sun
causing “his” wing to melt down. Around 1490, Leonardo da Vinci be-
gan to study the flight of birds. He grasped that humans are too heavy,
and not strong enough, to fly using wings simply attached to their arms:
he made several drawings that illustrated his theories on flight and de-
signed a human-powered device, which, although this was not capable of
flight, showed a great deal of careful thought and engineering. The first
ornithopters (from Greek ornithos “bird” and pteron “wing”) capable
of flight were constructed in France in the 1870s for a demonstration for
the French Academy of Science: its wings were flapped by gunpowder
charges. Around 1890, several ornithopters powered by steam or com-
pressed air was built. In the 1930s, the piston internal combustion engine
was harnessed by some researchers in Germany. Human-powered birdlike
ornithopters that were towed into the air, and then released to perform
powered glides, were also built and tested in early 1900. In 1960s Percival
Spencer, of the United States, developed a remarkable series of engine-
powered free-flight ornithopter models, with various sizes and different
engine sizes. In 1990s the FAI recognized a Harris/DeLaurier engine-
powered model as the first successful engine-powered remotely-piloted
ornithopter. On this model is based the Project Ornithopter engine-
powered piloted aircraft that in 1999 self accelerated (flapping alone) on
level pavement to lift-off speed.

1.3 Outline of the Thesis

The structure of the present work is described in the following. Starting
in Chapter 2 by introducing the physical explanation of the model, we
present the Navier-Stokes equations for an incompressible flow of a fluid
that we shall assume Newtonian. In Chapter 3 we give a summary of the
history of turbulent flow and computational methods as well as an expla-
nation about the mathematical formulation we used to solve the problem.
We present the cG(1)cG(1) method for simulation of turbulent fluid flow,
and discuss its implementation to derive an adaptive mesh refinement
algorithm based on “a posteriori” error estimate. In Chapter 4 the rela-

6

1.3. Outline of the Thesis

tion between the arbitrary Lagrangian-Eulerian (ALE) and space-time
weak formulation of the incompressible N.S. equations is shown. After
presenting in Chapter 5 the Open Source multibody code MBDyn and
the basic elements of the multibody formulation here adopted for the
representation of the structural behavior, we describe in Chapter 6 the
problem of boundary conditions exchange between the structural and
the aerodynamic model and present a methodology to solve this aspect
in a very general and topology independent manner. In Chapter 7 we
describe our implementation in the Open Source project FEniCS, which
is also briefly explained, focusing on the parts that are used for the
present work. The features of this project that provide the production
of unstructured 2D or 3D meshes are presented in Chapter 8.

Chapter 9 reports the numeric results for a test problem in two di-
mension: the unsteady incompressible viscous flow past NACA 0012 at
incidence.

In Chapter 10 a study of a rigid airfoil heaving with constant ampli-
tude has been carried out.

Finally, in Chapter 11, a study of effect of spanwise flexibility on the
thrust and lift of a rectangular wing oscillating in pure wave has been
performed.

7

2 Incompressible Navier-Stokes equations

In this thesis, for our computations, we are going to use the Navier
Stokes (N.S.) equations, which were formulated 1825-45. These equations
are widely used in Computational Fluid Dynamics (CFD) for computing
both laminar and turbulent flow.

2.1 Stress tensor in Newtonian fluid

When a fluid is at rest, only normal stresses are present and the stress
tensor has the isotropic form:

σij = −pδij (2.1)

where p is the static fluid pressure and δij the Kronecker delta. In a fluid
in motion, tangential stresses are non-zero and the normal component
of the stress acting across a surface element depends on the direction of
the normal to the element. So, in order to define the pressure at a point
in a moving fluid, the quantity −1

3σii (index summation convection) is
used, which is invariant under rotation of the reference axes and reduces
to the static fluid pressure if fluid is at rest:

p = −1

3
σii. (2.2)

This is a purely mechanical definition of pressure, which is thus not con-
nected to the definition of pressure in thermodynamics. It’s convenient
to decompose the Cauchy stress tensor σij into the sum of an isotropic
part and a remaining non-isotropic part sij , the deviatoric stress tensor.

σij = −pδij + sij . (2.3)

The velocity gradient is a second order tensor: it may be decomposed
into its symmetric and skew-symmetric parts according to:

∇u = ∇Su+∇Wu, where

∇S := 1
2 (∇+∇>),

∇W := 1
2 (∇−∇>).

(2.4)

9

Chapter 2. Incompressible Navier-Stokes equations

The symmetric tensor ∇S is called the strain rate tensor, also indicated
with ε(u), while the skew-symmetric tensor ∇W is called the spin tensor.

For a Newtonian fluid, the stress tensor and the strain rate tensor
are linearly related, and the stress-strain rate relationship is given by:

σij = −pδij + sij = −pδij + µ

(
∂vi
∂xj

+
∂vj

∂xi

)
+ λ

∂vk
∂xk

δij

where µ is the fluid dynamic viscosity and λ the so-called second coef-
ficient of viscosity. For an incompressible flow ∇ · u = 0 (see 2.2.1), and
consequently the previous relationship reduces to Stokes’ law:

σij = −pδij + µ

(
∂vi
∂xj

+
∂vj

∂xi

)
= −pδij + 2µv(i,j)

which in a more compact form results:

σ(u, p) = −pI + 2µε(u) (2.5)

2.2 The incompressible Navier-Stokes equations

A number of important phenomena in fluid dynamics are described by
the Navier-Stokes equations. These equations, which are the extension of
the Euler equations to include viscous forces (and heat flow by conduc-
tion), are a statement of the dynamical effect of the externally applied
forces and the internal forces of a fluid that we shall assume Newtonian.
The Navier Stokes equations are derived from the conservation laws of
mass and momentum, as shown as follow. We consider the motion of a
fluid with density ρ in a domain Ω ⊂ Rd (with d = 2, 3).

2.2.1 Conservation of mass

If ρ(x, t) is the density of a fluid at time t, then the mass m of the fluid
is given by:

m =

∫
Ωt

ρ(x, t) dx (2.6)

Starting at time t = 0, we have some amount of fluid occupying the
domain Ω0. As time goes by, the same amount of fluid will occupy the
domain Ωt. Hence:∫

Ω0

ρ(x, 0) dx =

∫
Ωt

ρ(x, t) dx ∀ t ≥ 0. (2.7)

10

2.2. The incompressible Navier-Stokes equations

Since mass is constant in time, its derivative with respect to time must
vanish:

d

dt

∫
Ωt

ρ(x, t) dx = 0. (2.8)

Applying the transport theorem we have:∫
Ωt

(
∂ρ

∂t
+∇ · (ρu)

)
(x, t) dx = 0 ∀x ∈ Ωt, t ≥ 0. (2.9)

Since this is valid for arbitrary regions Ωt, the integrand vanishes. This
yields:

∂ρ

∂t
+∇ · (ρu) = 0. (2.10)

If the fluid is incompressible (its density is constant), the above equation
results in:

∇ · u = 0 (2.11)

which is the continuity equation for incompressible fluids.

2.2.2 Conservation of momentum

The momentum p of a solid body is given by the product of its mass m
and its velocity u.

p(t) =

∫
Ωt

ρ(x, t)u(x, t) dx. (2.12)

According to Newton’s second law, the time derivative of momentum
equals the total force applied on the body:

D

Dt
p(t) =

∑
i

Fi (2.13)

where D
Dt is the material derivative, defined by:

D

Dt
(♣) =

∂

∂t
(♣) + (u · ∇)(♣). (2.14)

The forces acting on the fluid are body forces and surface forces. The
first, e.g. gravity, can be expressed as:∫

Ωt

ρ(x, t)f(x, t) dx (2.15)

where f is a given force-density for unit volume. The latter, e.g. pressure
and internal friction, can be represented by:∫

∂Ωt

σ(x, t)ndS (2.16)

11

Chapter 2. Incompressible Navier-Stokes equations

where σ is a stress tensor which can be expressed as (2.17),

σ = −pI + 2µε

ε =
1

2

(
∇u+∇>u

) (2.17)

µ is the dynamic viscosity, n is the outward pointing unit normal vector
and ε is the strain rate tensor.

Using the divergence theorem, the expression for the surface forces
can be reformulated accordingly:∫

∂Ωt

σ(x, t)ndS =

∫
Ωt

∇ · σ(x, t) dx. (2.18)

Then, according to what we have just seen, the Newton’s second law can
be rewritten to:

D

Dt

∫
Ωt

ρu dx =

∫
Ωt

(ρf +∇ · σ) dx. (2.19)

Using the formula for the material derivative results in:∫
Ωt

(
∂

∂t
(ρu) + (u · ∇)(ρu)

)
dx =

∫
Ωt

(ρf +∇ · σ) dx. (2.20)

This applies for arbitrary Ωt so we can remove the integrals, and consid-
ering incompressible fluids we obtain:

∂u

∂t
+ (u · ∇)u− 1

ρ
(∇ · σ) = f (2.21)

which is the momentum equation for incompressible fluids.

2.2.3 N.S. Equations

The system (2.22) is the system of two equations governing incompress-
ible flow of a viscous (Newtonian) fluid with constant kinematic viscosity
ν > 0 , where the first equation is indicating the conservation of momen-
tum while the latter the conservation of mass.

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · σ + ρf , x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0.

(2.22)

Using Stokes’ law (2.5), introducing the fluid kinematic viscosity ν = µ
ρ

and indicating hereafter with p the kinematic pressure, that is the pres-
sure divided by density, and with σ the “dynamic” or “scaled” Cauchy

12

2.2. The incompressible Navier-Stokes equations

stress tensor (normalized by density), i.d., σ = −pI + 2ν∇Su, the first of
the above equation can be rewritten as:

∂u

∂t
+ (u · ∇)u− 2ν∇ · ε(u) +∇p = f . (2.23)

We can observe that:

2ν∇ · ε(u) = ν∇ · (∇u+∇>u) = ν∇2u+ ν∇(∇ · u)︸ ︷︷ ︸
=0

. (2.24)

and the quantity representing the total fluid force can be expressed as

∇ · σ(u, p) = ν∇2u−∇p

So, under the incompressibility condition the momentum equation can
be transformed to:

∂u

∂t
+ (u · ∇)u− ν∇2u+∇p = f . (2.25)

The system (2.22) is composed by two equation (one is scalar and the
other is vectorial) in two unknown functions u(x, t) and p(x, t), while ρ

is a given constant. So the system has many equations as unknowns
and it can be resolved once the required initial and boundary conditions
are given. Thus the problem must be completed with suitable initial
and boundary conditions to form a well-posed initial boundary value
problem. Typical boundary conditions consist of prescribing the value of
the velocity on a portion ΓD of the boundary:

u(x, t) = g(x, t), x ∈ ΓD, t > 0 (2.26)

and boundary traction t on the complementary portion ΓN. The latter
condition is a Neumann type boundary condition, and takes the form:

n · σ = −pn+ 2νn · ε(u) = t, x ∈ ΓN, t > 0. (2.27)

where n is the unit outward normal to the boundary.
In the case of a time-dependent problem, the value of velocity field

at the initial time t = 0 must be given in Ω:

u(x, 0) = u0(x), x ∈ Ω. (2.28)

Moreover, the initial velocity field must be divergence free.

13

Chapter 2. Incompressible Navier-Stokes equations

The problem (2.22) can so be rewritten as:

∂u

∂t
+ (u · ∇)u− ν∇2u+∇p = f , x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

u(x, t) = g(x, t), x ∈ ΓD, t > 0,

n · σ = −pn+ 2νn · ε(u) = t, x ∈ ΓN, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(2.29)

No initial condition must be specified for the fluid pressure, in fact
no time derivative of pressure appears in the governing equations. When
Dirichlet conditions are imposed everywhere (i.d., ΓN = ∅), pressure is
determined only up to an arbitrary constant. In this case it is usual to
impose the pressure average or its value at one point to uniquely define
the pressure filed. We can observe that in the particular case of incom-
pressible flows the two equations of mass and momentum conservation
are enough to formulate a complete math problem, even if there are
terms which represent viscous forces. Instead, for compressible flow, we
have to add the equation of energy conservation.

The incompressibility condition may be a possible source of numeri-
cal difficulty. It consists of a constrain on the velocity field, which must
be divergence free. Then, the pressure has to be considered as a variable
not related to any constitutive equation. Its presence in the momentum
equation has the purpose of introducing additional degree of freedom
needed to satisfy the incompressibility constrain. The role of pressure
variable is thus to adjust itself instantaneously in order to satisfy the
condition of divergence-free velocity. This fact implies that p(x, t) acts
as a Lagrangian multiplier of the incompressibility constrain ∇ · u = 0,
which must be satisfied by the velocity u(x, t) in any position x and in any
time t > 0, and thus there is a coupling between the velocity and pres-
sure unknowns. Various formulations have been proposed in literature
to deal with incompressible flow problems. The two main approaches
which address these issues are finite elements which satisfy the LBB or
inf-sup condition or the use of stabilized finite element formulations.
The first approach results in successful finite element methods. The sec-
ond approach uses stabilized finite element formulations and provides
more flexibility in the construction of finite element discretizations. This
technique requires, however, the design of a stabilization operator or the
enrichment of the finite element spaces with special functions, such as
bubble functions.

14

2.3. Boundary Condition

2.3 Boundary Condition

2.3.1 Skin Friction Wall Model

Using a simple wall model such as the skin friction model presented
in §Hoffman and Johnson [16] gives the chance to avoid resolving the
turbulent boundary layer fully. The boundary condition model for a
boundary Γsfpr with normal n and two orthogonal tangential vectors τ1,
τ2 takes the form:

u · n+ αn>σn = 0,

u · τk + β−1 n>στk = 0, k = 1, 2.
(2.30)

with the stress tensor σ and where we use matrix notation with all vectors
v being column vectors and the corresponding row vector is denoted v>.

The first equation of (2.30) is used to define the penetration of the
boundary by modifying α, which in our case is always approx zero since
the body is solid and the flow will not go through it. The second equation
implements friction by the β parameter which corresponds to slip b.c.
with β = 0 and nonslip b.c. with β → ∞. By increasing β we increase
the resistance at the boundary, and by increasing α we increase the
penetration of the boundary.

2.3.2 Slip Boundary Condition

A slip boundary condition is when there is no friction or resistance of
the boundary of the object against the flow moving on it. This condition
corresponds to setting the normal component of the velocity u · n = 0

at the boundary and models a boundary with negligible friction which
the flow cannot penetrate. A slip boundary condition corresponds to
(α, β)→ (0, 0) in formula (2.30).

2.3.3 No Slip Boundary Condition

The homogeneous Dirichlet velocity boundary condition u = 0 is referred
to as a no slip boundary condition expressing that the fluid adheres to
the boundary. A non homogeneous Dirichlet boundary condition can be
imposed to prescribe, e.g., a given inflow velocity. A no slip boundary
condition corresponds to (α, β)→ (0,∞) in formula (2.30).

15

Chapter 2. Incompressible Navier-Stokes equations

2.3.4 Outflow Boundary Condition

To simulate an outflow boundary condition we may use a Neumann con-
dition with t = 0 in (2.27) corresponding to zero force at outflow as in
outflow into a large empty reservoir. It acts as an approximate trans-
parent outflow boundary condition, attempting to let the flow leave the
domain with little obstruction (also referred to as a do nothing boundary
condition).

2.4 Weak Formulation

In order to obtain the weak formulation for problem (2.29), denoting with
H1(Ω) the standard Hilbert space of functions that are square integrable
together with their first order derivatives, let:

Vg :=

{
v ∈ (H1(Ω))d : v

∣∣
ΓD

= g

}
,

V0 :=

{
v ∈ (H1(Ω))d : v

∣∣
ΓD

= 0

}
,

Q := L2(Ω) =

{
f : Ω 7→ R :

∫
Ω
f(x)2 dΩ < +∞

}
.

The inner product in (L2(Ω))d, d = 1, 2, 3, is denoted by (·, ·) and the varia-
tional formulation is obtained in the usual way by multiplying (2.29) with
a pair of test functions (v, q) ∈ (V0, Q) and integrating momentum equa-
tion by parts. The presence of slip with linear friction and penetration
with resistance boundary conditions on a portion Γsfpr of the boundary
requires to use the deformation tensor formulation of the viscous term
for the momentum equation:

∂u

∂t
+ (u · ∇)u− 2ν∇ · ε(u) +∇p = f (2.31)

Thus:

∫
Ω

∂u

∂t
· v dΩ +

∫
Ω

(u · ∇)u · v dΩ− 2ν

F︷ ︸︸ ︷∫
Ω

(∇ · ε(u)) · v dΩ +

+

∫
Ω
∇p · v dΩ︸ ︷︷ ︸
♠

=

∫
Ω
f · v dΩ.

(2.32)

16

2.4. Weak Formulation

where, using the Green’s formula:

F = −
∫

Ω
ε(u) : ∇v dΩ +

∫
∂Ω

ε(u)v · ndS

♠ = −
∫

Ω
p∇ · v dΩ +

∫
∂Ω

pv · n dS

(2.33)

Using ut to indicate ∂u
∂t we can write:

(ut,v) + 2ν(ε(u),∇v) + ((u · ∇)u,v)− (p,∇ · v) =

=

∫
∂Ω

(2νε(u)− pI)︸ ︷︷ ︸
σ

n · v dS + (f ,v)
(2.34)

The symmetry of the deformation tensor yields:

(ε(u),∇v) =

(
ε(u),

∇v
2

)
+

(
ε>(u),

∇>v
2

)
=

=

(
ε(u),

∇v
2

)
+

(
ε(u),

∇>v
2

)
= (ε(u), ε(v))

(2.35)

Thus, the weak problem is to find (u, p) ∈ (Vg, Q) such that for all (v, q) ∈
(V0, Q):

(ut,v) + 2ν(ε(u), ε(v)) + ((u · ∇)u,v)− (p,∇ · v)+

−
∫

Γsfpr

σn · v dS = (f ,v),

(∇ · u, q) = 0

(2.36)

where the boundary term reduces from ∂Ω = ΓD ∪ ΓN ∪ Γsfpr to only Γsfpr

because v = 0 on ΓD and σn = 0 on ΓN.
The boundary integral in the variational problem (2.36) can be rewritten
by decomposing the test function v on Γsfpr into d orthonormal compo-
nents, see §John [17]:

v = (v · n)n+

d−1∑
k=1

(v · τk)τk (2.37)

This gives, using the definition of the slip with linear friction and pene-
tration with resistance boundary condition:∫

Γsfpr

σn · v dS =

=

∫
Γsfpr

(n>σn)v · ndS +

∫
Γsfpr

d−1∑
k=1

(n>στk)v · τk dS =

= −
∫

Γsfpr

α−1(u · n)(v · n) dS −
∫

Γsfpr

d−1∑
k=1

β(u · τk)(v · τk) dS

(2.38)

17

Chapter 2. Incompressible Navier-Stokes equations

Thus, the variational problem can be reformulated: find (u, p) ∈ (Vg, Q)

such that for all (v, q) ∈ (V0, Q)

(ut,v) + 2ν(ε(u), ε(v)) + ((u · ∇)u,v)− (p,∇ · v)+

+

∫
Γsfpr

α−1(u · n)(v · n) dS+

+

∫
Γsfpr

d−1∑
k=1

β(u · τk)(v · τk) dS = (f ,v),

(∇ · u, q) = 0

(2.39)

The boundary integrals which originate from the slip with friction and
penetration with resistance boundary condition give a positive semi-
definite contribution to the left-hand side of (2.39). The positivity fol-
lows from the positivity of and α and β. Since the boundary integrals be-
come zero for functions which vanish on Γsfpr, they define a semi-definite
operator.

18

3 G2 for Navier-Stokes equations

3.1 Introduction

To simulate turbulent flow one has to solve the Navier-Stokes equations.
These solutions are inherently expensive to compute and the state of
the art numerical methods can be divided into three different categories.
First, for the most accurate simulation one has to rely on a direct numer-
ical simulation (DNS), which solves the Navier-Stokes equations without
any turbulence model. Hence, the method needs to resolve all scales of
turbulent flow in order to be accurate, so it is too expensive for com-
plex domains for which we are interested in. Thereby different methods
has been proposed to get around the problem in which most of them
use turbulent modeling which will introduce a model usually using an
averaged N.S. equation. Two most common method used to get around
this problem are RANS, Reynolds Averaged Navier Stokes, and LES,
Large Eddy Simulations. In the first method, the effort is to solve a
modified (averaged) Navier Stokes equations, with some approximate
solution which will usually end up adding a term called Reynolds stress,
to the modified equation. Formulated in late 1960s, LES uses the idea to
only solve for large eddies of turbulent flow and using a subgrid model
to model the smaller eddies. The idea behind this method comes from
the self similarity theory formulated on 1941 by Andrey Kolmogorov.

An alternative approach is to seek functions that satisfy NSE only
in an approximate weak sense. Such functions are the so-called ε-weak
solutions to NSE, see §Hoffman and Johnson [16]. It is straight forward to
construct such ε-weak solutions using stabilized Galerkin finite element
methods, here referred to as General Galerkin G2 methods. A G2 method
is a combination of a Galerkin method, assuring the residual to be small
in average, and a weighted least squares stabilization, corresponding to
a certain strong control of the residual. In this method we don’t resolve
all physical scales as oppose to DNS. Also, we won’t resolve turbulent
boundary layer so there is no need for turbulence modeling based on
physics of unresolved scales as oppose to other turbulent modelings.

19

Chapter 3. G2 for Navier-Stokes equations

3.2 General Galerkin for Turbulent flow

The standard Galerkin finite element method is not stable for convection
dominated problems: a mesh-dependent consistent numerical stabiliza-
tion is thus added; the development of stabilization methods started in
the late 70’s. The simulation methodology used in this work for tur-
bulent flow computations uses a finite element method with piecewise
linear approximation in space and time, with numerical stabilization in
the form of a weighted least squares method based on the residual. We
refer to it as General Galerkin method (G2). The stabilization of G2 acts
as an automatic turbulence model in the form of a generalized artificial
viscosity model acting selectively on the smallest scales of the mesh.

3.3 Eulerian cG(1)cG(1) method

The stabilized cG(1)cG(1) method is a type of G2 method, with con-
tinuous piecewise linear trial functions both in time and space and con-
tinuous linear piecewise test functions in space and constant piecewise
test functions in time. The stabilization term in the discretized system
will introduce dissipation where the residual is large. This method has
been explained in §Hoffman and Johnson [16]. We start by introducing
the following notation: the scalar product over the finite element mesh
Tn is defined as

(v,w) =
∑
K∈Tn

∫
K
v ·w dx (3.1)

We are looking for approximate solutions for velocity, Un ≡ U(tn) and
pressure, Pn ≡ P (tn), which will satisfy N.S. equations with homogeneous
Dirichlet boundary conditions (without any loss in generality).

Let 0 = t0 < t1 < · · · < tN = T be a sequence of discrete time steps
with associated time intervals In = (tn−1, tn] of length kn = tn − tn−1.
Assuming the domain to be Sn = Ω× In, and let Wn ⊂ H1(Ω) be a finite
element space consisting of continuous piecewise linear functions on a
mesh Tn = {K } on Ω of mesh size hn(x) with Wn

0 the functions in Wn

satisfying the Dirichlet boundary condition v
∣∣
ΓD

= 0.

Choosing the test functions v ∈ V n0 ≡ [Wn
0]3 and q ∈ Wn, we can

formulate the numerical approximation of the discretized system. We
seek Û = (U , P), continuous piecewise linear in space and time, and G2
in form of cG(1)cG(1) for NSE with homogeneous Dirichlet boundary
conditions reads: for n = 1, ..., N , find (Un, Pn) = (U(tn), P (tn)) with Un ∈

20

3.3. Eulerian cG(1)cG(1) method

V n0 and Pn ∈Wn, such that

((Un −Un−1)k−1
n + Ūn · ∇Ūn, v) + (2νε(Ūn), ε(v))− (Pn,∇ · v)+

+(∇ · Ūn, q) + SDδ(Ū
n, Pn;v, q) = (f ,v) ∀ v̂ = (v, q) ∈ V no ×Wn

(3.2)

where Ūn = 1
2 (Un+Un−1) and Pn are piecewise constant in time over In,

with the stabilizing term

SDδ(Ū
n, Pn;v, q) = (δ1(Ūn · ∇Ūn +∇Pn − f), Ūn · ∇v +∇q)+

+ (δ2∇ · Ūn,∇ · v)
(3.3)

The stabilization parameters are set to δ1 = κ1(k−2
n + |U |2h−2

n)−
1
2 and

δ2 = κ2hn|U | in the convection-dominated case; that is, if ν < |U |hn. In
the diffusion dominated case, the parameters are set to δ1 = κ1h

2
n/(|U |L)

and δ2 = κ2h
2
n|U |/L. Here, κ1 and κ2 are positive constants of unit size

and L the reference length. Furthermore

(ε(v), ε(w)) =

3∑
i,j=1

(εij(v), εij(w)) (3.4)

This method corresponds to a second order accurate Crank-Nicolson
time-stepping. We note that in the stabilizing the time derivative U̇

doesn’t appear, which is a consequence of the piecewise constancy (in
time) of the test functions.

If we have Neumann boundary conditions, we use the standard tech-
nique to apply these boundary conditions weakly. Instead, to implement
the friction boundary conditions (2.30) we must add at the left hand
side of (3.2) the term:

α−1 〈(U · n), (v · n)〉
Γsfpr

+ β 〈U ⊗ v, I− n⊗ n〉
Γsfpr

where ⊗ stands for the outer product and

〈v,w〉
Γsfpr

=

∫
Γsfpr

(v : w) dS.

In fact, assuming an Euclidean space in d = 3 dimensions, recalling that
for three orthonormal unit vector (e.g., τ1, τ2 and n):

τ1 ⊗ τ1 + τ2 ⊗ τ2 + n⊗ n = I

the summatory in (2.39) can be expressed as:

2∑
k=1

(u · τk)(v · τk) = (u · τ1)(v · τ1) + (u · τ2)(v · τ2) =

= (u⊗ v) : (τ1 ⊗ τ1 + τ2 ⊗ τ2) = (u⊗ v) : (I− n⊗ n)

21

Chapter 3. G2 for Navier-Stokes equations

3.4 G2 as adaptive DNS/LES

Turbulent solutions fluctuate rapidly in restricted regions, so these re-
gions require a higher degree of resolution compared to the free stream
region, but an increased resolution will also raise the computational cost.
Therefore it seems natural to increase the resolution only in these re-
stricted regions.

We can use cG(1)cG(1) to adaptively compute approximate solutions
with the goal of satisfying a given tolerance with respect to the error in a
specified output of interest. With respect to this quantity of interest, G2
chooses the mesh automatically based on “a posteriori” error estimation
and resolves the flow features which has large influence on the quantity
of interest while other scales remain unresolved with the stabilization
acting as a numerical turbulence model. Therefore, adaptive G2 can be
characterized as a DNS/LES method, since a part of the flow is resolved
according to the quantity of interest as DNS and the rest of the flow is
left unresolved in a LES.

We based the adaptive mesh refinement algorithm on the approach
presented in §Rognes and Logg [24] to automated goal-oriented error
control in the solution of nonlinear finite element variational problems,
which is based on the automated solution of an auxiliary linearized ad-
joint (dual) problem, automated derivation and evaluation of “a posteri-
ori” error estimates, and automated adaptive mesh refinement to control
the error in a given goal functional to within a given tolerance. This al-
lows the construction of adaptive algorithms that target a simulation to
efficient computation of a specific quantity of interest. More precisely, a
general variational problem of the following form were considered: find
u ∈ V such that:

F (u;v) = 0 ∀v ∈ V̂ , (3.5)

where F : V × V̂ : → R is a semilinear form (linear in v) on a pair of trial
and test spaces (V, V̂). A general adaptive algorithm seeks to find an
approximate solution uh ≈ u of the variational problem (3.5) such that:∣∣M(u)−M(uh)

∣∣ < ε, (3.6)

where M : V → R is a given goal functional and ε > 0 is a given tolerance.
The input to adaptive algorithm is the semilinear form F , the functional
M , and the tolerance ε. Based on the given input, the adaptive algo-
rithm automatically generates the dual problem, the “a posteriori” error
estimate, and attempts to compute an approximate solution uh that
meets the given tolerance for the given functional. For a more detailed

22

3.4. G2 as adaptive DNS/LES

Scheme 1: Adaptive DNS/LES

1. Given an initial coarse mesh T0, start at n = 0, then do

2. Compute approximation to the primal problem using Tn.

3. Compute approximation to the dual problem using Tn.

4. If
∑

K∈Tn εK < TOL then stop, else:

5. Mark a fraction P of the elements in Tn with highest εK for
refinement.

6. Refine the mesh Tn using a standard mesh refinement algorithm,
which gives a new refined mes Tn+1.

7. Set n = n+ 1 and goto 2.

discussion how the derivation of an “a posteriori” error estimate and
corresponding error indicators from the error representation, and the
derivation of the dual problem can be automated we refer to §Rognes
and Logg [24].

An adaptive DNS/LES algorithm can then be stated as in Scheme 1;
for this adaptive algorithm we constructed an adaptive solver following
the framework illustrated in Figure 3.1.

Primal Solver Dual Solver Error Estimator Mesh Adaption

Figure 3.1: Overview of an adaptive finite element framework.

A key part for efficiency in the adaptive framework of cG(1)cG(1) is
the ability to optimize the mesh according to some chosen flow quantity,
represented by the data M(·) in the dual problem.

Finally, we have all the components we need to derive an adaptive
finite element solver. G2 with skin friction boundary conditions gives us
the ability to simulate turbulent flows with a simple wall layer model,
avoiding resolution of the boundary layer. Adaptivity is a powerful tool
that we can use to derive an efficient solver, that can be used to com-
pute a solution to a large scale problem, on workstations as well as on
massively parallel supercomputers.

23

Chapter 3. G2 for Navier-Stokes equations

Adaptive DNS/LES was developed and successfully applied to in-
compressible flow by §Hoffman [10, 11, 12, 13]; Hoffman and Johnson
[14, 15]. For a detailed analysis of G2 we refer to §Hoffman and Johnson
[16].

24

4 ALE Explained

The continuum mechanics usually make use of two classical descriptions
of motion: the Lagrangian description and the Eulerian description. The
arbitrary Lagrangian-Eulerian (in short ALE) description, which is the
subject of the present chapter, was developed in an attempt to com-
bine the advantages of the above cited classical kinematical descriptions,
while minimizing as far as possible their respective drawbacks.

The differences between the Eulerian and the Lagrangian description
are not significantly large. All that differentiates the two descriptions is
basically the position of the observer. In the Lagrange description, also
called the material coordinate system, the observer can be though of
as attached to a particle and moves with the material. He records the
changes of just this particle. For the Euler description, the point of obser-
vation is no longer fixed to the material, but fixed in space: the proper-
ties of not only one particle but of the whole material are now recorded.
What follows is a more formal discussion taken from §Donea and Huerta
[5]; Donea et al. [6], that provide an in-depth survey of ALE methods,
including both conceptual aspects and numerical implementation details
in view of applications in large deformation material response, fluid dy-
namics, nonlinear solid mechanics, and coupled fluid-structure problems.
The notation has intentionally not been changed to that from §Donea
et al. [6].

4.1 Lagrangian and Eulerian viewpoints

For the Lagrangian material description the domain RX is given with
spatial dimension made up of material particles X . For the Eulerian con-
figuration, Rx is the spatial domain consisting of spatial points x. When
deformation of the continuum occurs, the changes can be mapped to
the spatial coordinates, written as a function ϕ which takes into account

25

Chapter 4. ALE Explained

time t

ϕ : RX × [t0, tend[→ Rx × [t0, tend[

(X, t) 7→ ϕ(X, t) = (x, t)

and so x can be written as a function of X and time t:

x = x(X, t), t = t

which states that the spatial coordinates x depend both on the material
particle X and time t, and that the physical time is measured by the
same variable t in both material and spatial domains. It’s convenient to
employ a matrix representation for the gradient of ϕ:

∂ϕ

∂(X, t)
=

 ∂x
∂X v

0> 1

where the material velocity v is

v(X, t) =
∂x

∂t

∣∣∣
X

(4.1)

with
∣∣
X

meaning holding the material coordinate X fixed.

Since ϕ must verify det(∂x∂X) > 0 (non zero to impose a one-to-one
correspondence and positive to avoid orientation change of the reference
axes) at each point X and instant t > t0, we are able to keep track of the
history of motion and, by the inverse transformation (X, t) = ϕ−1(x, t),
to identify at any instant the initial position of the material particle
occupying position x at time t.

In an Eulerian description the finite element mesh is thus fixed and
the continuum moves and deforms with respect to the computational
grid. The velocity v is consequently expressed with respect to the fixed
element mesh without any reference to the initial configuration of the
continuum and the material coordinates X : v = v(x, t).

4.2 ALE kinematic description

ALE, as its name suggests, is a combination of the Lagrangian and Eu-
lerian descriptions. It provides a means to do calculations using both
descriptions with the use of a third coordinate system, the referential
coordinate system denoted Rχ where reference coordinates χ are intro-
duced to identify the grid points. For a more thorough understanding, we

26

4.2. ALE kinematic description

will once again refer to §Donea et al. [6]. Figure 4.1 shows these domains
and the one-to-one transformations relating the configurations. The ref-
erential domain Rχ is mapped into the material and spatial domains by
Ψ and Φ respectively. The particle motion ϕ may then be expressed as
ϕ = Φ ◦Ψ−1, clearly showing that, of course, the three mappings Ψ, Φ

and ϕ are not independent.

Figure 4.1: Lagrangian, Eu-
lerian and ALE domains:
illustration of the differ-
ent configurations. Taken
from §Donea et al. [6]

The mapping Φ from the referential domain to the spatial domain,
which can be understood as the motion of the grid points in the spatial
domain, is represented by

Φ : Rχ × [t0, tend[→ Rx × [t0, tend[

(χ, t) 7→ Φ(χ, t) = (x, t)

and its gradient is

∂Φ

∂(χ, t)
=

∂x
∂χ v̂

0> 1

 , v̂(χ, t) =
∂x

∂t

∣∣∣
χ

(4.2)

where v̂ is the mesh velocity.
Finally, regarding Ψ, it is convenient to represent directly its inverse

Ψ−1,

Ψ−1 : RX × [t0, tend[→ Rχ × [t0, tend[

(X, t) 7→ Ψ−1(X, t) = (χ, t)

and its gradient is

∂Ψ−1

∂(X, t)
=

 ∂χ
∂X w

0> 1

 , w(χ, t) =
∂χ

∂t

∣∣∣
X

(4.3)

27

Chapter 4. ALE Explained

where w is the material particle velocity in the referential domain, since
it measures the time variation of referential coordinates χ holding the
material particle fixed.

The relation between velocities v, v̂ and w can be obtained by differ-
entiating ϕ = Φ ◦Ψ−1, in matrix format: ∂x

∂X v

0> 1

 =

∂x
∂χ v̂

0> 1

 ∂χ
∂X w

0> 1

which yields, after rearranging:

c = v − v̂ =
∂x

∂χ
·w

thus defining the convective velocity c, that is, the relative velocity be-
tween the material and the mesh. The convective velocity c should not
be confused with w, that is the particle velocity as seen from the ref-
erential domain Rχ , whereas c is the particle velocity relative to the
mesh as seen from the spatial domain Rx (both v and v̂ are variations
of coordinate x). In fact c = w if and only if ∂x

∂χ = I, that is, when the
mesh motion is purely translational, without rotations or deformations
of any kind.

With the choice Ψ = I we obtain X = χ and a Lagrangian description
results: the material and mesh velocities coincide and the convective ve-
locity c is null. If Φ = I we obtain x = χ implying an Eulerian description:
a null mesh velocity is obtain and the convective velocity c is identical
to the material velocity v.

4.3 The foundamental ALE equation

In order to relate the time derivative in the material, spatial and ref-
erential domains, let a scalar physical quantity be described by f(x, t),
f?(χ, t) and f??(X, t) in the spatial, referential and material domains, re-
spectively. Stars are employed to emphasize that the functional forms
are, in general, different.

Since f??(X, t) = f(ϕ(x, t), t), by taking the gradient of this expression,
we obtain the following equation

(
∂f??

∂X
∂f??

∂t

)
=
(
∂f
∂x

∂f
∂t

) ∂x
∂X v

0> 1

 or

∂f??

∂X
=
∂f

∂x

∂x

∂X
∂f??

∂t
=
∂f

∂t
+
∂f

∂x
· v

(4.4)

28

4.4. ALE form of conservation equations

Note that the second of (4.4) is the well known equation that relates
the material and the spatial time derivatives. Dropping the stars to ease
the notation, this relation is finally cast as

∂f

∂t

∣∣∣
X

=
∂f

∂t

∣∣∣
x

+ v · ∇f or
df

dt
=
∂f

∂t
+ v · ∇f

This states that the variation of a physical quantity for a given particle
X is the local variation plus a convective term taking into account the
relative motion between the material and spatial systems.

In a similar way, the relation between material and spatial time
derivatives can be extended to include the referential time derivative
and, considering that f?? = f? ◦Ψ−1, we obtain

(
∂f??

∂X
∂f??

∂t

)
=
(
∂f?

∂χ
∂f?

∂t

) ∂χ
∂X w

0> 1

 or

∂f??

∂X
=
∂f?

∂χ

∂χ

∂X

∂f??

∂t
=
∂f?

∂t
+
∂f?

∂χ
·w

(4.5)
Using the definition of w we can rearrange the second of (4.5) into

∂f??

∂t
=
∂f?

∂t
+
∂f

∂x
· c

The fundamental ALE relation between material time derivatives, ref-
erential time derivatives and spatial gradient is finally cast as (stars
dropped)

∂f

∂t

∣∣∣
X

=
∂f

∂t

∣∣∣
χ

+
∂f

∂x
· c =

∂f

∂t

∣∣∣
χ

+ c · ∇f

and shows that the time derivative of the physical quantity f for a given
particle X, that is, its material derivative, is its local derivative (with
the reference coordinate χ held fixed) plus a convective term taking into
account the relative velocity c between the material and the reference
system.

4.4 ALE form of conservation equations

The ALE differential form of the conservation equations for mass and
momentum are readily obtained from the corresponding well-known Eu-
lerian forms by replacing in the various convective terms the material
velocity v with the convective velocity c. The result is, for the equation
of conservation of mass

∂ρ

∂t

∣∣∣
χ

+ c · ∇ρ = −ρ∇ · v (4.6)

29

Chapter 4. ALE Explained

and for momentum

ρ

(
∂v

∂t

∣∣∣
χ

+ (c · ∇)v

)
= ∇ · σ + ρb (4.7)

The starting point for deriving the ALE integral form of the conser-
vation equations is Reynolds transport theorem applied to an arbitrary
volume Vt whose boundary St = ∂Vt moves with the mesh velocity v̂

∂

∂t

∣∣∣
χ

∫
Vt
f(x, t) dΩ =

∫
Vt

∂f(x, t)

∂t

∣∣∣
x

dΩ +

∫
St
f(x, t)v̂ · n dS (4.8)

We then successively replace the scalar f(x, t) by the fluid density ρ and
momentum ρv to obtain the ALE integral forms of conservation equation.

We can now implement ALE with Navier-Stokes equations by just
taking into account the mesh movement v̂ alongside the existing velocity
v from above, in this case u. To illustrate this small change, here are the
new ALE incompressible Navier-Stokes equations.{

ut + ((u− v̂) · ∇)u− ν∇2u+∇p = f , x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0
(4.9)

Since boundary conditions are related to the problem, not to the de-
scription employed, the same boundary conditions employed in Eulerian
or Lagrangian descriptions are implemented in the ALE formulation.
We may also model friction with respect to a non zero velocity v̂ at the
boundary simply by changing (2.30) into

(u− v̂) · n+ αn>σn = 0,

(u− v̂) · τk + β−1 n>στk = 0, k = 1, 2.
(4.10)

4.4.1 Mesh moving

While ALE allows a moving mesh, the velocity of the mesh still has to be
determined. In the case of FSI, in the structure part the mesh velocity
was known because it was just the calculated velocity of the material,
i.d., the Lagrangian description was used. For the rest of the domain,
i.d., the fluid part, the movement of the mesh was determined by some
mesh smoothing criterion: the mesh at the interface between the solid
and the fluid becomes deformed by the mesh movement. Therefore the
vertices of the mesh belonging to the fluid domain must be redistributed.
This is done by solving a “fictitious” elastic problem: we determinate
the displacement and velocity of the vertices of the fluid mesh, once we

30

4.4. ALE form of conservation equations

known the displacement and velocity of the vertices at the fluid-structure
interface, by creating an elastic problem as follow

a(u,v) = L(v) (4.11)

where

a(u,v) =

∫
Ω
σ(u) : ε(v) dΩ

L(v) =

∫
Ω
f · v dΩ

Here, ε(v) = (∇v + ∇>v)/2 denotes the symmetric gradient and σ(v) =

2µε(v) + λTr(ε(v))I is the stress tensor. To solve the linear elastic prob-
lem (4.11) for a specific choice of parameter values (the Lamé constants µ
and λ), we define an elastic module for each element proportional to the
inverse of the element volume and, by imposing homogeneous Dirichlet
boundary conditions at external boundaries and imposing on the inter-
nal boundary (interface), at first the known displacement and then the
velocity of its vertices, we can find the displacement and the velocity of
all fluid mesh vertices, assembling just once the variational forms.

The implemented code to solve the linear elastic problem is shown
in Figure 4.2 and it is now briefly explained: the FEniCS tools used
are imported from the dolfin package, which defines classes like Mesh,
DirichletBC, FunctionSpace, TrialFunction, TestFunction, and key
functions such as assemble and solve. See Chapter 7 for more details
of FEniCS project.
We first load a mesh and boundary indicators from files (see Chap-
ter 7.2.3). For brevity, the code for specifying Dirichlet conditions is
omitted (the boundary conditions are assumed to be available as lists in
the program: we imposed homogeneous Dirichlet boundary conditions
at external boundaries while at internal boundary of the fluid mesh,
i.d., interface, we imposed the displacements, bcs, and then the veloci-
ties, bscp, of the nodes). The type of discrete function space is defined
in terms of a mesh, a class of finite element (here CG means standard
continuous Lagrange finite elements, while DG means discontinuous La-
grange finite elements) and a polynomial degree. The variational prob-
lem is expressed in terms of the Unified Form Language (UFL), which is
another component of FEniCS, see Chapter 7.1.4. Terms multiplied by
dx correspond to volume integrals, while multiplication by ds implies a
boundary integral. Meshes may include several sub-domains and bound-
ary segments, each with its corresponding volume or boundary integral.
The Dirichlet boundary conditions may then be enforced as part of the

31

Chapter 4. ALE Explained

Python code

from dolfin import *

mesh=Mesh(’mesh.xml’)

bfc = mesh.data().mesh_function(’bfc’)

V = VectorFunctionSpace(mesh , "CG", 1)

u = TrialFunction(V)

v = TestFunction(V)

f = Constant ((0.0, 0.0, 0.0))

DG = FunctionSpace(mesh , "DG", 0)

E = Function(DG)

for c in cells(mesh):

E.vector ()[c.index ()]=1./c.volume ()

nu = 0.0

mu = E / (2.0*(1.0 + nu))

lmbda = E*nu / ((1.0 + nu)*(1.0 - 2.0*nu))

def sigma(v):

return 2.0*mu*sym(grad(v)) +

lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

a = inner(sigma(u), sym(grad(v)))*dx

L = inner(f, v)*dx

A = assemble(a)

b = assemble(L)

set Dirichlet conditions for displacements

[bc.apply(A, b) for bc in bcs]

u = Function(V)

solve(A, u.vector (), b, ’gmres ’, ’ilu’)

set Dirichlet conditions for velocities

u_p = Function(V)

[bc.apply(A,b) for bc in bcsp]

solve(A, u_p.vector (), b, ’gmres ’, ’ilu’)

Figure 4.2: Elastic problem for mesh moving.

32

4.4. ALE form of conservation equations

linear system AU = b by the call bc.apply(A, b). Finally, we solve the
linear system using the generalized minimal residual method (gmres)
with ILU preconditioning (ilu).

A control if negative volumes occur is also implemented: if the dis-
placement of the interface nodes causes some elements to become neg-
ative volume elements, then the elastic module of these element was
increased and the linear elastic problem was resolved again. As exam-
ple, we considered the computational domain given by the rectangle
[−2, 5] × [−3, 3], with an unit chord NACA 0012 airfoil (the airfoil center
is placed at the origin). This mesh has been used for computations in
Chapter 9, see Figure 9.1. The mesh distortion when the airfoil is rigidly
moved or rotated around its center is shown in Figure 4.3: as we can
see, since elastic module of a element is proportional to the inverse of
its volume (or area in 2D case), the coarser is the mesh, the larger is
the distortion of its elements. This method has been tested working for
large displacements and rotations.

X
-2.00 1.50 5.00

Y

3.00

0.00

-3.00

Z
0.00 0.00 0.00

X
-2.00 1.50 5.00

Y

3.00

0.00

-3.00

Z
0.00 0.00 0.00

Figure 4.3: Mesh distortion when airfoil is rigidly moved (left) or rotated
around its center (right).

33

5 Structural Multibody Modeling

This chapter briefly describes the multibody modeling technique adopted
in MBDyn (see http://www.aero.polimi.it/mbdyn/), an Open Source
multibody-multidisciplinary code developed at the “Dipartimento di In-
gegneria Aerospaziale” of Politecnico di Milano University, which has
been used as the core of the coupled simulation. For a more detailed
review of MBDyn see §Masarati [21].

We can use the principles of classical mechanics (i.d., Newton’s laws)
to describe the motion of a system of rigid/deformable bodies. They may
lead towards two different set approaches:

� a redundant coordinate set approach, in which the constraints be-
tween inertial bodies are explicitly expressed

� a minimal coordinate set approach where all the constraints are
eliminated

The redundant approach can be used to easily and automatically gener-
ate the equations that model complex systems by means of the multibody
formalism.

5.1 Multibody Formulation

A multibody system can be defined as a system of bodies, connected by
algebraic constraints and deformable elements, in arbitrary motion with
respect to each other. These bodies can also be subjected to interactional
forces (e.g., aerodynamic forces). The advantage of the redundant coor-
dinate set approach is a simple formulation, since it is possible to write
the free-body dynamics equations for each body in the global reference
frame with the addition of the constraint equations, which results in
a easy and versatile implementation. The drawback is a larger amount
of degrees of freedom, compared to that of the reduced coordinate set
formulation.

35

http://www.aero.polimi.it/mbdyn/

Chapter 5. Structural Multibody Modeling

Appropriate algebraic equations are used to impose algebraic con-
straints, which result in reaction forces as unknowns in a way that re-
sembles the Lagrangian Multipliers method. This solution was adopted
in order to simplify the writing of equations and reduce the computa-
tional efforts.

The system that describe the dynamics of the bodies is written by
coupling the definition of the momentum, β, and of the momenta mo-
ment, Γ, of each body to the force and moment equilibrium equations.
Denoting with S the static moments vector and with J the inertia mo-
ments matrix, the resulting equations for each body is

β = mẋ+ ω × S,

Γ = S × ẋ+ Jω,

β̇ = F (x, ẋ,R,ω,a, ȧ, . . . , t) + VF,

Γ̇ + ẋ× β = C(x, ẋ,R,ω,a, ȧ, . . . , t) + VC

(5.1)

where x represents the position vector, R the orientation matrix, a the in-
ternal states, ω the angular velocity, F the forces and C the couples. The
forces VF and VC are related to the Lagrangian multipliers that repre-
sent the actual reaction forces and couples generated by the constraints.
Kinematic constraints, as we said above, are added as algebraic/differ-
ential equations: i.d., Ψ(x,R, . . . , t) = 0.

By calling y, z and λ the kinematic unknowns, the momentum un-
knowns and the algebraic Lagrangian multipliers unknowns, respectively,
the resulting system becomes

M(y, t)ẏ = z

ż = Q(y, ẏ, t)−G>λ

Ψ(y, t) = 0

(5.2)

Here, M is a configuration dependent inertia matrix, Q are arbitrary
external forces and couples and G = ∇yΨ is the derivative of the (holo-
nomic) constraints with respect to the kinematic unknowns.

We emphasize again that the unknowns are x,R,β,Γ, VF, VC, and that
the overall system is solved without any further substitution, except
for the orthonormal matrix R (that describes the orientation of a local
frame since it maps vectors from the local to the global frame), which is
expressed in terms of the rotation parameters as detailed in §Quaranta
[22], where, in order to obtain an accurate as well as efficient solution,
an appropriate formulation for the rotations is discussed.

The parametrization of large rigid rotations, which are required be-
cause the formulation of a multibody problem is based on the kinematic

36

5.2. Structural Model

description of large displacements and rotations, requires at least three
unknowns, but in order to avoid singularities that arise when the sign of
the rotation cannot be uniquely determined, four parameters are needed.
If only incremental rotations, which is assumed to be small enough to
avoid any singularities, are considered, we can prevent the introduction
of further unknowns and the need to resort to the four parameter rota-
tion. The rotation matrix R is expressed in terms of the Gibbs-Rodriguez
parameters g, slightly modified with respect to the conventional nota-
tion, in order to make the linearized expressions of the rotational entities
match those related to the rotational vector ϕ (that describes a finite
rotation about an axis embodied by the vector itself, whose amplitude
is given by the modulus of the vector).

5.2 Structural Model

In order to analyze the fluid-structure coupling problem defined by flex-
ible flapping wings, a consistent geometrically nonlinear four-node shell
element formulation, implemented and validated in §Quaranta et al. [23],
within the multibody environment provided by the free general-purpose
multibody solver MBDyn, has been adopted for our computations. Here
the 4-node shell element formulation is briefly explained. It’s based on
a combination of the Enhanced Assumed Strain (EAS) and Assumed
Natural Strain (ANS) formulations.

Let y be the position of the shell reference surface, and define a local
orthogonal coordinate system on the undeformed shell surface. Let T
also be a local orthonormal triad defined on the surface. By comparing
the deformed and undeformed back-rotated derivatives of the position,
two Biot-like linear deformation vectors can be computed, i.d.,

ε̃k = T>y/k − T
>
0 y0/k (5.3)

where (·)/k indicates the partial derivative with respect to the arc length
coordinate k and the subscript (·)0 identifies the undeformed configu-
ration. Vectors ε̃k are work-conjugated with the force per unit length
vectors nk.
The Biot-like angular deformation is defined as

k̃k = T>k/k − T
>
0 k0/k (5.4)

where k is related to tensor T by kk× = T>
/k
T .

The angular strain vectors k̃k are work-conjugated with the internal
couple per unit length vectors mk.

37

Chapter 5. Structural Multibody Modeling

The vector ε = (ε̃1, ε̃2, k̃1, k̃2)> can be used to completely define the
straining of the shell. Since ε is work-conjugate to σ = (n1,n2,m1,m2)>,
the virtual internal work is thus expressed by

δLi =

∫
S
δε>σ dS (5.5)

In §Quaranta et al. [23], the angular strain vectors k̃k are computed di-
rectly from their definition (5.4), and not from the back-rotated gradient
of the rotation tensor Φ = TT>0 , as in many other works. Furthermore,
using eqs. (5.3) and (5.4) directly, together with their work-conjugated
forces/couples per unit length, we don’t need to resort to co-rotational
derivatives in the definition of the strain vectors.

After defining in the reference configuration a triad of unit orthogonal
vectors tn1, tn2, tn3 for each node n, with tn1 and tn2 tangent to the shell
surface and tn3 = tn1 × tn2, the interpolation of the orientation field can
be performed. If Rn denotes the orientation tensor of the node, and if
the local shell orientation is defined as

Tn = RnR
>
0n[tn1, tn2, tn3]

where R0n is the nodal orientation in the reference configuration, the
average orientation T̄ of the shell can be computed as

T̄ = exp

log

1

4

∑
i=1,4

Tn

where log(·) extracts a skew symmetric tensor, i.d., a×, and exp(a×) com-
putes the rotation tensor defined by the rotation vector a.

For each node n, in order to interpolate the relative rotation vectors
that define the relative nodal rotations R̃n = T̄>Tn, i.d.,

ϕ̃(ξ)× = log(R̃n) =
∑

Nn(ξ) log(T̄>Tn)

standard bi-linear interpolation shape functions Nn(ξ) are thus defined.
Finally, the interpolated orientation states as Ti = T̄ exp(ϕ̃i×).

Since we have to compute virtual internal work (5.5) and its lineariza-
tion, the computing of the first (δ) and second (∂δ) variations of the linear
and angular deformations vectors (eqs. (5.3) and (5.4)) is needed. Con-
sequently an explicit expressions for the interpolated virtual rotation
vector ϕiδ, defined by ϕiδ× = ∂TiT

>
i , is required.

The virtual rotation vector ϕδ can be computed from the virtual
variation of the rotation vector as ϕδ = Γ(ϕ)δϕ, with Γ(ϕ) a second order
tensor.

38

5.2. Structural Model

The interpolated virtual rotation vector thus is

ϕiδ =
∑
n

ΦinNinϕnδ

with
Φin = T̄ Γ̃iΓ̃

−1
n T̄>

Thus, the first and second variations of the linear strain vectors and of
the back-rotated curvature can be calculated.

The constitutive law of the shell must be computed beforehand: only
linear elastic constitutive properties can be currently modeled. They
consist in a 12× 12 matrix that expresses the force and moment fluxes as
functions of linear and angular strains according to:

n1

n2

m1

m2

 = D

ε̃1
ε̃2
k̃1

k̃2

39

6 Interfacing the Structural and the Aero-

dynamic model

In this work, an original general-purpose, consistent meshless approach
has been used to model Fluid-Structure Interaction (FSI). It is based on
Moving Least Squares (MLS) using Radial Basis Functions (RBF) and
represents a very efficient and reliable way to couple a multifield analysis
with possibly incompatible interface boundaries, see §Quaranta [22].

6.1 Introduction

Given an aeroelastic system, there are mainly two ways to solve it: one
can directly try to write down the system of PDE which govern the cou-
pled FSI problem, and then try to discretize it as a whole (this approach
is hardly ever used because each model has different mathematical and
numerical properties), otherwise one can develop specialized methods
to solve each model independently, or better can resort to existing and
well-established numerical techniques for each discipline (this approach
is widely followed in usual practice). Anyhow, to solve a coupled fluid
structure problem it is not sufficient to be able to compute the solution
of the structural and of the aerodynamic model, but it is also necessary
to exchange information between the two models: the modification of
boundary conditions must be transferred from the deformable structure
to the aerodynamic boundary, and conversely, the loads developed in the
aerodynamic field must be applied to the discretized structural model.
This task is left to a correct interface scheme, which must interpolate/ex-
trapolate data in an appropriate manner: by this interface scheme it’s
possible to interpolate the structural displacements and velocities at the
aerodynamic nodes lying on body’s boundary. To translate this informa-
tion in a variation of the boundary condition of the aerodynamic system,
the more simple and conceptually correct approach consists of deforming
the aerodynamic grid and reformulate the aerodynamic problem accord-
ing to ALE description.

41

Chapter 6. Interfacing the Structural and the Aerodynamic model

The problem of building a methodology to couple fluid and structure
has always been a key aspect of aeroelastic methods. In §Quaranta [22]
a novel interfacing methodology is presented: it is an attempt to develop
an accurate method capable of interfacing any possible structural or
aerodynamic discretization scheme.

6.2 Fluid-Structure Interface

This section describes the coupled fluid-structure interaction problem.
As a prototypical application, the configuration shown in Figure 6.1 has
to keep in mind:

Ωf (t)

Ωs(t)

Γ(t)

Figure 6.1: Fluid-structure in-
teraction domain: Ωf is the
fluid domain, Ωs is the structure
domain, Γ is the common inter-
face.

Any fluid dynamic model will compute the stresses applied on the
wet surfaces Γ of a body, given the dynamic state of the boundaries. On
the other hand there is the structural model: the loads developed in the
aerodynamic field must be applied to it and the consequently modifica-
tion of boundary conditions must be re-transferred to the aerodynamic
boundary. Coupling conditions must be added to complete the model. If
yf denotes the fluid boundary movement, so ẏf = uf = (u, v, w)>, ys the
structural boundary movement, p its pressure, σs the structure stress
tensor, σf = νf (∇uf +∇>uf)−pI the fluid stress tensor, and n the normal
vector to Γ, we can express these conditions (for a continuous system)
as

σs · n = σf · n,

ys = yn,

ẏs = ẏn

 on Γ. (6.1)

The interaction of the fluid with the solid is given by the continuity of
the velocity and by a balance of forces: the first of (6.1) expresses the
dynamic equilibrium between the stresses on the structure with those
on the fluid side. The other two are kinematic compatibility conditions.
If a moving grid is considered, the conditions on the kinematics of the
boundary must be reflected also on the moving grid, so x = ys, ẋ = ẏs

on Γ, where here ẋ is the velocity of the moving boundary of the mesh

42

6.2. Fluid-Structure Interface

elements (where possible the notation has intentionally not been changed
to that from §Quaranta [22], in order to allow an easier and quicker
comparison).

In order to derive the correct expression of (6.1) for the discretized
problem, since the fluid and structure fields are solved resorting to a dis-
crete approximation, the constraint of retaining the conservation proper-
ties of the original problem is fixed: the conservation of mass is satisfied
directly by the continuity equation for the fluid field (mass is not added
nor removed), the change of energy in the fluid-structure system equals
the energy supplied (or absorbed) by an external force (energy is not
added nor removed), and finally, the change of momentum of the fluid-
structure system is equivalent to the acting (external) forces.

When the fluid and structure domains have matching discrete in-
terfaces and compatible approximation spaces, the conservation is triv-
ially retained. In realistic applications, however, the fluid and structural
meshes are not compatible along the interface, either because discretized
with major geometric discrepancies or because each problem has differ-
ent resolution requirements: typically, the fluid grid, at the interface, is
finer than the structural mesh. In the following, Γf and Γs will respec-
tively indicate the discrete fluid/structure non-matching representation
of Γ.

In order to respect the conservation between the two models, the
coupling conditions was enforce only in a weak sense, through the use
of simple variation principles such as that of Virtual Works. Let δyf and
δys be two admissible virtual displacements for each field. Admissible
means that, for the viscous case, the trace of these two fields on Γ must
be equal

Tr(δyf)
∣∣
Γ

= Tr(δys)
∣∣
Γ

(6.2)

The relationship between the admissible virtual displacements can be
written, independently of the interpolation method chosen to enforce
the compatibility of the displacements, as:

(δyf)i =

js∑
j=1

hij(δys)j

where (δyf)i are the discrete values of δyf at the fluid nodes of the grid
on the wet surface, and hij are the coefficients of the displacements
interpolation matrix H. So, the resulting virtual displacement is

δyf =

if∑
i=1

Ni(δyf)i =

if∑
i=1

Ni

js∑
j=1

hij(δys)j

43

Chapter 6. Interfacing the Structural and the Aerodynamic model

where if is the number of nodes which belong to the interface surface
Γ and the functions Ni belong to the approximation space of the aero-
dynamic field discretization. The virtual work of the aerodynamic load
results in

δWf =

∫
Γf

(σf · n) · δyf dS =

=

∫
Γf

(σf · n) ·
if∑
i=1

Ni

js∑
j=1

hij(δys)j dS

On the other side, the virtual work of forces and moments acting on Γs

is equal to

δWs =

js∑
j=1

fj · (δys)j

Imposing the equality of the virtual works, the nodal loads applied to
the structure are

fj =

if∑
i=1

Fihij (6.3)

where
Fi =

∫
Γf

(σf · n)Ni dS

From equation (6.3) we can observe that, after computing the nodal
loads Fi for the aerodynamic boundary grid points, the loads fj on the
structural nodes can be obtained by simply multiplying Fi for the trans-
pose of the interpolation matrix H computed to connect the two grid
displacements. The problem of conservativeness1 is so shifted on the
definition of the correct interpolation matrix H.

To build a conservative interpolation matrix which enforces the com-
patibility, Eq. (6.2), a weak/variational formulation was used in §Quaranta
[22]. The problem is expressed in a weighted least-square form:

Minimize
∫

Γ
Φ
(
Tr(δyf)

∣∣
Γ
−Tr(δys)

∣∣
Γ

)2
dS (6.4)

where Φ(x) is a weight function. The adopted solution, which also is re-
quired to possess additional qualities such as smoothness of the resulting
interpolated field, computational efficiency and some control on the in-
terpolation error, was to resort to the Moving Least Square (MLS) tech-
nique. This technique allows to build a sufficiently regular and accurate

1Given a unitary vector 1, H is said to be conservative if H · 1 = 1. Since f =
H>F , resultants are thus conserved: 1> · f = 1> ·H>F = 1>F .

44

6.2. Fluid-Structure Interface

approximation of the field of structural displacements and velocities at
the aerodynamic nodes belonging to the boundary of the body, knowing
the solution only within a set of structural nodes, in general irregularly
distributed. The field of structural displacements and velocities is thus
approximated at the aerodynamic nodes lying on the body’s boundary
as a sum of monomial basis functions pi(x)

û(x) =

m∑
i=1

pi(x)ai(x) = p>a

where m in the number of basis functions, and ai are their coefficients.
Commonly adopted basis functions are linear or quadratic polynomials
to avoid numeric instability problems:

p>(x) = (1, x, y, z)> ∈ C1(R3)

p>(x) = (1, x, y, z, x2, xy, y2, yz, z2, zx)> ∈ C2(R3)

The coefficients ai(x) can be obtained performing a weighted least square
fit for an appropriate norm of the local error given by adopting the inter-
polating function û(x), i.d., minimizing the following functional, written
in a variational form:

J(x) =

∫
Ω

Φ(x)‖ε(x)‖2 dΩ (6.5)

where Φ(x) is an appropriate weight function and ε(x) the local error.
The equation (6.5) is equivalent to (6.4), which expresses the interface
problem (all the details may be found in §Quaranta [22]).

If we consider, as example, a set of Nj structural nodes xs,j , in general
irregularly distributed and in correspondence of which are known the
structural displacements us,j , then the unknown coefficient ai(x) can be
calculated minimizing the following functional written in a discrete form:

J(x) =

Nj∑
j=1

Φ(x− xs,j)

∥∥∥∥∥
m∑
i=1

pi(xs,j)ai(x)− us,j

∥∥∥∥∥
2

.

The regularity of the field of the interpolated displacements and veloc-
ities at the aerodynamic nodes belonging to body’s boundary depends
significantly on the choice of the weight function. The problem is thus
localized by choosing weight functions that are smooth non-negative
Radial Basis Functions (RBFs) with compact support. The adoption of
different RBF functions, together with the definition of the local support
dimension, allows to achieve the required regularity of the interpolated
function. The resulting interface matrix satisfies all the requirements:

45

Chapter 6. Interfacing the Structural and the Aerodynamic model

1. is effective, because the computational complexity can be accom-
plished in an efficient manner;

2. can produce surfaces with any prescribed smoothness;

3. allows a high control on the behavior for each local region.

The interface method is completely independent from the implemen-
tation details of the codes that are interfaced: as a consequence, the
implementation of the structural elements or the code used to solve the
aerodynamic field can be changed without affecting the interface code.

Usually the weight RBF are written as Φ(r/δ), where r = ‖x−xs,j‖ and
δ a scaling factor that allows the user to adapt the support dimension
Nj of the structural nodes xs,j . In this way, one can be sure that enough
points are covered and far away points have no influence.

6.3 Application to FSI problem

Since we are dealing with structures that can experience large changes
in orientation, a problem that requires special attention is related to
the treatment of rotations, which are complex tensorial entities that can
be subjected to singularity problems when parametrized. In §Quaranta
[22] a simple procedure has been developed to avoid the need to build
a specialized class of interpolation matrices for these entities, since the
updated position of an aerodynamic surface node is obtained by com-
bining the effect of linear displacements and rotations: the idea is to add
three rigid arms to each structural beam node, directed along the node
local reference axes, creating a sort of fish-bone structure. The effect of
the rotation is accounted for by the displacements of the added dummy
nodes at the end of each arm, and matrix H is computed using only
spatial displacements (of course, the length of the rigid arms needs to
be smaller than the distance between two structural beam nodes).

Using the transpose of matrix H, the loads computed at the aerody-
namics nodes can be transferred to the structural mesh. All the forces
and moments applied to the fictitious nodes must be transferred to the
structural node they are attached, exploiting the property that the fish-
bone arms are rigidly connected to the structural node.

46

7 The FEniCS project

A significant part of the work on this thesis has been carried out using
the software provided by the open source project FEniCS. The FEn-
iCS Project (http://fenicsproject.org) set out in 2003 with an idea
to automate the solution of mathematical models based on differen-
tial equations. At first, the FEniCS Project consisted of two libraries:
DOLFIN and FIAT. Since then, the project has grown and now consists
of the core components DOLFIN, FFC, FIAT, Instant, UFC and UFL.
This project is an international collaboration between many research in-
stitutions: University of Chicago, Argonne National Laboratory, Delft
University of Technology, Royal Institute of Technology KTH, Simula
Research Laboratory, Texas Tech University, and University of Cam-
bridge.

7.1 FEniCS

FEniCS is a platform for the creation and maintenance of tools used for
the solution of differential equations using the finite element method1.
FEniCS includes tools for working with computational meshes, linear
algebra and finite element variational formulations of PDEs. In addi-
tion, FEniCS provides a collection of ready-made solvers for a variety of
partial differential equations.

At the heart of FEniCS is DOLFIN which is a set of libraries that en-
able the user to create code in a consistent problem solving environment.
For more details see §Alnaes et al. [4]; Logg et al. [20].

7.1.1 DOLFIN

For a detailed discussion on the design and implementation of DOLFIN
(Dynamic Object-oriented Library for FINite element computation) we

1FEniCS supports finite element schemes, including discontinuous Galerkin meth-
ods, but not finite difference methods. Many finite volume methods can be con-
structed as low-order discontinuous Galerkin methods using FEniCS.

47

http://fenicsproject.org

Chapter 7. The FEniCS project

refer to §Logg and Wells [18, 19].
DOLFIN is a C++/Python library that functions as the main user

interface of FEniCS. It provides a problem solving environment for mod-
els based on ordinary or partial differential equations and implements
core parts of the functionally of FEniCS, including data structures and
algorithms for computational meshes and finite element assembly. In or-
der to provide a simple and consistent user interface, DOLFIN wraps
the functionality of other FEniCS components and external software,
and handles the communication between these components. Figure 7.1
presents an overview of the relationships between the components of
FEniCS and external software.

DOLFIN

FIAT FErariInstant

FEniCS Apps

UFC

ViperSyFi

PETSc uBLAS UMFPACK SCOTCHNumPy VTK

UFL

Application

Applications

Interfaces

Core components

External libraries

Trilinos GMP ParMETIS CGAL MPI SLEPc

FFC

Figure 7.1: DOLFIN
functions as the main
user interface of
FEniCS and handles
the communication
between the various
components of FEniCS
and external software.
Solid lines indicate de-
pendencies and dashed
lines indicate data
flow. Taken from §Logg
et al. [20]

DOLFIN itself functions as both a user interface and a core compo-
nent of FEniCS. All communication between a user program, other core
components of FEniCS and external software is routed through wrapper
layers that are implemented as part of DOLFIN user interface. It also
provides important classes for mesh generation, matrix and vector assem-
bly, and various finite element functions and operations. In particular,
as shown above, variational forms expressed in the UFL form language
are passed to the form compiler FFC to generate UFC code, which can
then be used by DOLFIN to evaluate (assemble) variational forms. This
code generation depends on the finite element back-end FIAT (FInite
element Automatic Tabulator), the just-in-time compilation utility In-

48

7.1. FEniCS

stant and the optional optimizing back-end FErari. Finally, the plotting
capabilities provided by DOLFIN are implemented by Viper. DOLFIN
also relies on external software for important functionality such as the
linear algebra back-end PETSc, Trilinos and the mesh partitioning li-
braries. As mentioned above, DOLFIN provides two user interface. One
interface is implemented as a traditional C++ library, and another in-
terface is implemented as a standard Python module. The two interfaces
are near-identical, but in some cases particular language features of ei-
ther C++ or Python require variations in the interface. In particular,
the Python interface adds an additional level of automation and offers
some functionality that is not available from the C++ interface: the
UFL form language is seamlessly integrated into the Python interface
and code generation is automatic handled at run-time.

7.1.2 FFC

The automated code generation, which is a key features of FEniCS,
relies on a form compiler for offline or just-in-time compilation of code
for individual forms. Two different form compilers are available as part
of FEniCS: here the form compiler FFC is described. The other form
compiler, SyFi/SFC, is not described.

The solution of finite element variational problems is based on the
assembly of linear or nonlinear system of equations and the solution of
these equations. As a result, many finite element codes are similar in
their design and implementation: a central part of most finite element
codes is the assembly of sparse matrices from finite element bi-linear
forms.

FFC takes as input a variational form specified in the UFL form lan-
guage (see 7.1.4) and generates as output C++ code that conforms to
the UFC interface (see 7.1.3). FFC provides three different interfaces a
Python interface, a command-line interface, and a “just-in-time” (JIT)
compilation interface. While Python users mostly rely on DOLFIN to
handle the communication with FFC, the command-line interface is fa-
miliar for DOLFIN C++ users, who must call FFC on the command-line
to generate code for inclusion in their C++ programs. The JIT interface
is rarely called directly by users, but it is the main interface between
DOLFIN and FFC, which allows DOLFIN to seamlessly generate and
compile code when running solver scripts implemented in Python. When
the JIT compiler is called, FFC generates internally UFC code for the
given form or finite element, compiles the generated code using a C++
compiler, and then wraps the result as a Python module using SWIG

49

Chapter 7. The FEniCS project

and Instant. The returned objects are ready to be used from Python.
The generated and wrapped code is cached by the JIT compiler, so if
the JIT compiler is called twice for the same form or finite element, the
cached version is used (the cache directory is created by Instant). The
Python interface of DOLFIN makes extensive use of JIT compilation.

7.1.3 UFC

The “Unified Form-assembly Code” (UFC, §Alnæs et al. [1]) is an inter-
face between problem-specific and general-purpose components of finite
element programs. In particular, the UFC interface defines the struc-
ture and signature of the code that is generated by the form compilers
FFC for DOLFIN. The UFC interface applies to a wide range of finite
element problems (including mixed finite elements and discontinuous
Galerkin methods) and may be used with libraries that differ widely in
their design. For this purpose, the interface does not depend on any other
FEniCS components (or other libraries) and consists only of a minimal
set of abstract C++ classes using plain C arrays for data transfer.

The implementation of solvers for the solution of partial differential
equations by the finite element method is much helped by the existence
of generic software libraries that provide data structures and algorithms
for computational meshes and linear algebra. This allows the implemen-
tation of a generic assembly algorithm that may be partly reused from
one application to another. However, since the inner loop of the assembly
algorithm inherently depends on the partial differential equation being
solved and the finite elements used to produce the discretization, the
writing of the inner loop (which is typically supplied by the user) is a
challenging task that is prone to errors, and which prohibits experimen-
tation with models and discretization methods.

The FEniCS tool-chain of FIAT-UFC-FFC/SFC-UFC-DOLFIN is
an attempt to solve this problem: it is able to provide a completely
generic implementation of the assembly algorithm as part of DOLFIN by
generating automatically the inner loop based on a high-level description
of the finite element variational problem (in the UFL form language).

7.1.4 UFL

DOLFIN relies on the “Unified Form Language” (UFL, §Alnæs and Logg
[2, 3]) for the expression of variational forms. The Unified Form Language
UFL is a domain specific language for the declaration of finite element
discretization of variational forms and functionals. More precisely, the

50

7.2. Implementation details

language defines a flexible user interface for defining finite element spaces
and expressions for weak forms in a notation close to mathematical no-
tation. Forms can involve integrals over cells, interior facets, and exterior
facets.

7.2 Implementation details

7.2.1 Preliminaries

We started from the definition of the stress tensor σ(u, p) = 2νε(u) − pI,
where the ε(u) = 1

2 (∇u+∇u>) is the symmetric velocity gradient.

Python code

def epsilon(u):

"Return symmetric gradient."

return 0.5*(grad(u) + grad(u).T)

def sigma(u, p, nu):

"Return stress tensor."

return 2*nu*epsilon(u) - p*Identity(u.cell().d)

7.2.2 Time discretization

When performing unsteady simulations it is important that flow infor-
mation is transferred correctly between time steps. The time step size is
limited to CFL number below one, i.e

CFL =
U∆t

∆x
≤ 1

Physically, this criteria states that a fluid particle, traveling at speed U

should not travel through more than one grid cell during on time step.
This applies in general but in order to compromise between accuracy
and simulation time it is acceptable that the CFL number exceeds unity
in few small areas in the flow field. This is possible since the solver used
in this study solves the flow equations implicitly whereas in an explicit
solver this criteria must be met.

7.2.3 Mesh

The mesh, that has been generated by an external mesh generator, is
read from file: a usefull class for storing data associated with a mesh, the
MeshFunction class, is used. This makes it simple to store, for exam-
ple, material parameters, subdomain indicators, refinement markers on

51

Chapter 7. The FEniCS project

the “Cells” of a mesh or boundary markers on the “Facets” of a mesh.
Then, the MeshData class provides a simple way to associate data with
a mesh. It allows arbitrary MeshFunctions (and other quantities) to be
associated with a mesh. The following code illustrates how to attach a
MeshFunction named “bfc” to a mesh:

Python code

Read mesh from file

mesh = Mesh("mesh.xml")

bfc = mesh.data().create_mesh_function("bfc")

Read meshfunction from file

file_in = File("mesh_function.xml")

file_in >> bfc

DOLFIN predefines the “measures” dx, ds and dS representing inte-
gration over cells, exterior facets (that is, facets on the boundary) and
interior facets, respectively. These measures can take an additional inte-
ger argument. In fact, dx defaults to dx(0), ds defaults to ds(0), and
dS defaults to dS(0). Integration over sub-regions can be specified by
measures with different integer labels as arguments. However, we also
need to map the geometry information stored in the mesh functions to
these measures. The easiest way of accomplishing this is to define new
measures with the mesh functions as additional input:

Python code

dss = Measure("ds")[bfc]

We can now define the variational forms corresponding to the variational
problem above using these measures and the tags for the different sub-
regions or sub-boundaries.

7.2.4 Solver

We next defined a pair of function spaces for the velocity and pressure,
and trial and test functions on these spaces. For the G2 scheme, contin-
uous piecewise linear polynomials are used for both the velocity and the
pressure.

Python code

V = VectorFunctionSpace(mesh , "CG", 1)

Q = FunctionSpace(mesh , "CG", 1)

W = V * Q

Test functions

v, q = TestFunctions(W)

Trial function

52

7.2. Implementation details

dw = TrialFunction(W)

Current solution

w = Function(W)

u, p = split(w)

Solution from previous converged step

w0 = Function(W)

u0 , p0 = split(w0)

In order to compute the stabilization parameters δ1 and δ2, we defined
an Expression using a more complicated logic with the “cppcode” ar-
gument. This argument should be a string of C++ code that implements
a class that inherits from DOLFIN Expression class.

Python code

DGe = FiniteElement("DG", mesh.ufl_cell (), 0)

delta1 = Expression(cppcode_d1 , element=DGe)

delta2 = Expression(cppcode_d2 , element=DGe)

The version of G2 studied in this thesis, explained in Chapter 3, is based
on the version presented in §Hoffman and Johnson [16], and its imple-
mentation in DOLFIN is shown in Figure 7.2. For brevity, the code for
specifying Dirichlet conditions is omitted (the boundary conditions are
assumed to be available as lists, bcs, in the program).

Lift and Drag

When solving the Navier-Stokes equations, it may be of interest to com-
pute the lift and drag of the object immersed in the fluid. The lift and
drag are given by the z- and x-components of the force generated on the
object (for a flow in the x-direction), as shown in Figure 7.3:

L(u, p) =

∫
Γ

(σ(u, p) · n) · ez dS,

D(u, p) =

∫
Γ

(σ(u, p) · n) · ex dS

Here, Γ is the boundary of the body and ex, ez are unit vectors in the x-
and z-directions respectively. Thus, the traction is T = σ · n, where n is
the inward-pointing unit normal. In the code, n is the outward-pointing
unit normal. Then, Figure 7.4 shows how to compute lift and drag in
FEniCS from a computed velocity field u and pressure field p. In the
code, [0] and [2] are the x- and z-directions, respectively, and dss(7)

is the boundary marker representing Γ.
In order to compute the forces acting on the nodes of the surface Γ,

we can “test” the product of the stress tensor σ and the unit normal

53

Chapter 7. The FEniCS project

Python code

knu = Constant(nu)

k = Constant(dt)

n = FacetNormal(mesh)

kappa1 = 1.0

kappa2 = 2.0

Update stabilization parameters

uu0 , pp0 = w0.split(True)

delta1.update(uu0 , nu , dt , kappa1)

delta2.update(uu0 , nu , dt , kappa2)

Solve nonlinear system

U = 0.5*(u + u0)

F = inner ((u - u0) / k, v) * dx +

inner(dot(grad(U), U), v)*dx +

2.*knu*inner(epsilon(U), epsilon(v))*dx -

p*div(v)*dx+div(U)*q*dx +

delta1*inner((dot(grad(U), U) + grad(p)),

dot(grad(v), U) + grad(q))*dx +

delta2*div(U)*div(v)*dx +

1./alfa*dot(u,n)*dot(v,n)*dss(7) +

beta*inner(outer(u,v),Identity(u.cell().d) -

outer(n,n))*dss(7)

Compute directional derivative about w in the

direction of dw (Jacobian)

J = derivative(F, w, dw)

Define variational problem

pde = NonlinearVariationalProblem(F, w, bcs , J)

solver = NonlinearVariationalSolver(pde)

solver.solve ()

Figure 7.2: Implementation of variational forms for the G2 solver.

z

x

σ · n
n

Figure 7.3: The lift and drag of an
airfoil, are the integrals of the verti-
cal and horizontal components, re-
spectively, of the stress σ · n over
the surface Γ of the airfoil. At each
point, the product of the stress ten-
sor σ and the outward unit normal
vector n gives the force per unit
area acting on the surface.

54

7.2. Implementation details

Python code

D = -dot(sigma(u,p,nu),n)[0]*dss(7)

L = -dot(sigma(u,p,nu),n)[2]*dss(7)

drag = assemble(D)

lift = assemble(L)

Cl = lift / (0.5*chord*span*flow_velocity**2)

Cd = drag / (0.5*chord*span*flow_velocity**2)

Figure 7.4: Computation of lift and drag in FEniCS.

vector n against piecewise linear vector test functions k: we thus obtain,
for each mesh node, the force acting on it (since the integrals are defined
over the surface Γ, the only non-zero forces are those of the nodes lying
on Γ).

Python code

V = VectorFunctionSpace(mesh ,’CG’,1)

k = TestFunction(V)

s_k = -inner(dot(sigma(u,p,nu), n), k)*dss(7)

forces = assemble(s_k)

If the adaptive version of the G2 method is use, to compute the
forces acting on the nodes on Γ after that the mesh has been adaptively
refined, one can “test” the product σ · n against piecewise linear vector
test functions k0, which are now defined on the initial mesh (mesh0): in
this way we obtain the forces acting on the vertices lying on the interface
surfaces of the initial mesh (bfc mesh0). This because the interpolation
matrix H is computed only once, using the “aerodynamic” nodes given
by the initial mesh, and, if the adaptive process adds some nodes on the
interface surface, we don’t have to re-compute matrix H.

Python code

V0 = VectorFunctionSpace(mesh0 ,’CG’,1)

k0 = TestFunction(V0)

bfc_mesh0 = mesh0.data().mesh_function(’bfc’)

ds_0 = ds[bfc_mesh0]

s_n = -inner(dot(sigma(u,p,nu), n), k0)*ds_0(7)

forces = assemble(s_n , mesh = mesh0)

7.2.5 ALE

If we want to be able to calculate a reliable solution whilst moving
the mesh, we have to implement the ALE description. As we have also

55

Chapter 7. The FEniCS project

learned in Chapter 4, this can quite easily be done by just taking into
account the mesh movement velocity vm alongside the existing velocity
u. To illustrate this small change, here is the implementation in DOLFIN
of the ALE friendly incompressible Navier-Stokes equations.

Python code

U = 0.5*(u + u0)

F = inner ((u - u0)/k, v)*dx +

inner(dot(grad(U), (U-V_m)), v)*dx +

2.*knu*inner(epsilon(U), epsilon(v))*dx -

p*div(v)*dx + div(U)*q*dx +

delta1*inner ((dot(grad(U), (U-V_m))+ grad(p)),

dot(grad(v),(U-V_m))+grad(q))*dx +

delta2*div(U)*div(v)*dx+

1./alfa *dot(u-v_m , n)*dot(v,n)*dss(7) +

beta*inner(outer(u-v_m ,v),

Identity(u.cell().d)-outer(n,n))*dss(7)

with Vm = 1
2 (vm + v0

m), where v0
m is the mesh movement velocity at pre-

vious converged step.

7.2.6 Adaptive G2

For our purpose we adopted the DOLFIN (“Goal-oriented”) ErrorControl
class. Once we created suitable ErrorControl object from our problem
and defined the goal of interest, we can estimate the error relative to the
goal M of the discrete approximation w relative to the variational formula-
tion. The dual approximation is defined by dual variational problem and
dual boundary conditions given by homogenized primal boundary condi-
tions. For more details, see §Rognes and Logg [24]. A number of optional
parameters may be specified to control the behavior of the adaptive al-
gorithm, including the choice of error estimate, the marking strategy,
and the refinement fraction. The marking strategy adopted is the so-
called Dörfler marking with a refinement fraction of α = 0.5, in which a
large enough subset T ′ of all cells (sorted by decreasing indicators) are
marked for refinement such that the sum of the corresponding indicators
constitute a given fraction α of the total error estimate. In Figure 7.5 is
shown the implementation of such a scheme.

56

7.2. Implementation details

Python code

Create suitable ErrorControl object from problem

and the goal

pde = NonlinearVariationalProblem(F, w, bcs , J)

EC = generate_error_control(pde , M)

solver = NonlinearVariationalSolver(pde)

solver.solve ()

Estimate the error relative to the goal M

estimated_error = abs(EC.estimate_error(w, bcs))

if (estimated_error <= error_tolerance):

break # do not need to refine

Compute error indicators

gamma=Vector(w.function_space ().mesh().num_cells ())

EC.compute_indicators(gamma , w)

Refine mesh and update meshfunction

cell_markers=CellFunction("bool",mesh ,

mesh.topology ().dim())

cell_markers.set_all(False)

cpp.mark(cell_markers , gamma , ’dorfler ’, 0.5)

bfc = mesh.data().mesh_function(’bfc’)

adapt(mesh , cell_markers)

adapt(bfc , mesh.child ())

newmesh = mesh.child()

newmesh.set_parent(Mesh())

mesh.set_child(Mesh())

mesh.set_parent(Mesh())

mesh = newmesh

bfcnew = mesh.data().create_mesh_function(’bfc’,

bfc.child().dim())

bfcnew.array ()[:] = bfc.child().array()

bfc = bfcnew

Figure 7.5: Implementation of the adaptive version of G2 solver.

57

8 Mesh generation

DOLFIN provides functionality for creating simple meshes, such as meshes
of unit squares and unit cubes, spheres, rectangles and boxes. Although
the built-in classes are useful for testing, a typical application will need to
read from file a mesh that has been generated by an external mesh gener-
ator. Meshes must be stored in the DOLFIN XML format. In this work,
a library named “TriTetMesh” is used to produce high quality meshes for
DOLFIN. TriTetMesh is a package that includes TriMesh and TetMesh,
which are wrappers of the Triangle and Tetgen libraries. These comes
as standalone C++ libraries and python modules. TriTetMesh is freely
available on Launchpad at https://launchpad.net/tritetmesh.

8.1 TriTetMesh

TriTetMesh provides an intuitive interface to Triangle and Tetgen. These
packages produces quality mesh in 2D and 3D based on triangles and
tetrahedrons. The interface is provided as a C++/Python (through
swig) wrapper. The output format is a DOLFIN mesh and a DOLFIN
MeshFunctions for markers (see Chapter 7.2.3). It is also possible to
output the native Tetgen and Triangle formats.

8.1.1 Triangle

Triangle is a C program for two-dimensional mesh generation. Trian-
gle is fast, memory-efficient, and robust; features include user-specified
constraints on angles and triangle areas, user-specified holes and concav-
ities, and the economical use of exact arithmetic to improve robustness.
Triangle is freely available on the Web at http://www.cs.cmu.edu/

~quake/triangle.html and from Netlib. More details are presented
in §Shewchuk [25].
Triangle reads a Planar Straight Line Graph1’s file, which can spec-

1A Planar Straight Line Graph (PSLG) is a collection of vertices and segments.
Segments are simply edges whose endpoints are vertices in the PSLG, and whose

59

https://launchpad.net/tritetmesh
http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.cmu.edu/~quake/triangle.html

Chapter 8. Mesh generation

ify vertices, segments, holes, regional attributes, and regional area con-
straints, and then generates a mesh. One can also define “boundary
markers” that are tags used mainly to identify which output vertices and
edges are associated with which PSLG segment, and to identify which
vertices and edges occur on a boundary of the triangulation. A common
use is to determine where boundary conditions should be applied to a
finite element mesh.

Triangle comes with a separate program named “Show Me”, whose
primary purpose is to draw meshes on the screen or in PostScript. Its
secondary purpose is to check the validity of input files, and do so more
thoroughly than Triangle does.

8.1.2 TetGen

TetGen creates tetrahedral meshes suitable for solving partial differen-
tial equations (PDEs) by finite element methods (FEM) and finite vol-
ume methods (FVM). The problem is to generate a tetrahedral mesh
conforming to a given (polyhedral or piecewise linear) domain together
with certain constraints for the size and shape of the mesh elements. It is
a typical problem of provably good mesh generation or quality mesh gen-
eration. The techniques of quality mesh generation provide the “shape”
and “size” guarantees on the meshes: all elements have a certain qual-
ity measure bounded, and the number of elements is within a constant
factor of the minimum number.

TetGen uses general input called Piecewise Linear Complex (PLC).
A PLC is a set of vertices, segments and facets. Each facet is a polygonal
region, it may have any number of sides and may be non-convex, possibly
with holes, segments and vertices in it. A facet can represent any planar
straight line graph (PSLG), which is a popular input model used by many
two-dimensional mesh algorithms. A facet is actually a PSLG embedded
in three dimensions.

One can assign a boundary marker (an integer) for each facet of a
PLC. In the final mesh, all boundary faces on that facet will have the
same boundary marker (as shown in Figure 8.1). A common use of the
boundary marker is to determine where boundary conditions should be
applied to a finite element or finite volume mesh. Also one can assign
different regions (separated by the internal facets) of the PLC with dif-
ferent region attributes (or number). Physically, they associate different

presence in any mesh generated from the PSLG is enforced. Segments may intersect
each other only at their endpoints.

60

8.1. TriTetMesh

materials to these regions. In the final mesh, all tetrahedra in the same
region will have the same region number.

TetView is a small graphic program for viewing tetrahedral meshes
and piecewise linear complexes. It is created specifically for viewing and
analyzing the input and output files of TetGen.

�

7 boundary markers

1

2

3

4

5

6

7

Figure 8.1: Example of usage of boundary markers, displayed by TetView.

61

Part II

Numerical Experiments

63

9 2D Unsteady Incompressible Viscous Flows

In aerodynamics, the investigation of the aerodynamic performance of a
wing is usually started from the corresponding airfoil, which is the key
factor of a wing’s aerodynamic characteristics. Using the code imple-
mented in this thesis, the unsteady flow past an unit chord NACA 0012

airfoil with an angle of incidence of 34° and at Re = 1000 has been cal-
culated. The computational domain is the rectangle [−2, 5] × [−3, 3], and
the airfoil center is placed at the origin. The results are then compared
to those presented in §Guermond and Quartapelle [7]. Figure 9.1 is the
unstructured triangular grids for the viscous flow around the considered
airfoil: 3800 nodes as well as 7500 triangular elements are contained, and
the mesh near the airfoil is refined. The mesh was generated when the
airfoil is a 0° of incidence, then the airfoil was rotated by an angle α =34°

around its center and the fluid mesh follows it according to that we
exposed in Chapter 4.4.1 (see Figure 4.3).

Figure 9.1: Mesh adopted
for computation: it con-
sists of about 3800 nodes
and 7500 cells. The domain
is the rectangle [−2, 5] ×
[−3, 3], and the airfoil center
is placed at the origin. The
airfoil is rotated by an an-
gle α =34° around the ori-
gin after the mesh has been
generated.

X
-2.00 1.50 5.00

Y

3.00

0.00

-3.00

Z
0.00 0.00 0.00

At first, as in the above cited work, no attempt has been made to
refine the mesh according to the computed solution and we have used a
fixed dimensionless time step δt = 0.02. The boundary conditions for this
external problem are:

65

Chapter 9. 2D Unsteady Incompressible Viscous Flows

� slip with linear friction and penetration with resistance b.c. on the
airfoil,

� for x = −2: u = Ui,

� for y = ±3: uy = 0,

� for x = 5: p = 0

The results for the unsteady flow past a NACA 0012 airfoil at an
angle of incidence of 34° for Re = 1000 are reported in Figure 9.2. In
this figure, the streamlines obtained from the present method at t = 1.6

are compared with those calculated at the same time by means of a
fractional-step projection method (u − p solution, see §Guermond and
Quartapelle [7]). The contour lines of pressure at t = 1.6 provided by the
present method are compared in Figure 9.3 with those of the solution
calculated by means of the fractional-step projection method. Figures 9.4
and 9.5 contain the streamlines at times t = 2.8 and 3.6, respectively,
obtained by the present method and always compared with those of the
fractional-step projection method solution.

Figure 9.2: NACA 0012 airfoil at α = 34° and Re = 1000, solutions by G2
method (left) and by projection method (right) at t = 1.6, dimensionless
quantities. Figure on the right taken from §Guermond and Quartapelle [7].

66

Figure 9.3: NACA 0012 airfoil at α = 34° and Re = 1000, pressure fields
of the G2 method (up) and projection method solutions (down) at t = 1.6,
dimensionless quantities. Figure on the bottom taken from §Guermond and
Quartapelle [7].

67

Chapter 9. 2D Unsteady Incompressible Viscous Flows

Figure 9.4: NACA 0012 airfoil at α = 34° and Re = 1000, solutions by G2
method (left) and by projection method (right) at t = 2.6, dimensionless
quantities. Figure on the right taken from §Guermond and Quartapelle [7].

Figure 9.5: NACA 0012 airfoil at α = 34° and Re = 1000, solutions by G2
method (left) and by projection method (right) at t = 3.6, dimensionless
quantities. Figure on the right taken from §Guermond and Quartapelle [7].

68

9.1. Adaptive G2

9.1 Adaptive G2

The adaptive algorithm is designed to compute the correct drag using
a minimal number of degrees of freedom. Starting from the coarse mesh
shown in Figure 9.1, the mesh has been adaptively refined according to
the computed solution (with the goal of satisfying a given tolerance with
respect to the error in the specified output of interest) and it finally con-
sisted of about 9200 nodes and 17 600 cells. Since the adaptive algorithm
is designed to minimize computational work for the computation of drag,
the resulting computational mesh is optimized for the approximation of
drag, as we can seen in Figure 9.6.

Figure 9.6: Zoom of computational mesh before (left) and after (right) adap-
tive mesh refinements with respect to drag.

Figures 9.7, 9.9 and 9.10 give the streamlines, at the three previously
considered (dimensionless) times, obtained from the adaptive G2 method
with respect to drag, compared with those of the solution calculated
by §Guermond and Quartapelle [7]. Finally, the contour lines of pressure
at t = 1.6 provided by the adaptive method are compared in Figure 9.8
with those of the solution calculated by means of the fractional-step
projection method.

69

Chapter 9. 2D Unsteady Incompressible Viscous Flows

Figure 9.7: NACA 0012 airfoil at α = 34° and Re = 1000, solutions by adap-
tive G2 method (left) and by projection method (right) at t = 1.6, dimension-
less quantities. Figure on the right taken from §Guermond and Quartapelle
[7].

70

9.1. Adaptive G2

Figure 9.8: NACA 0012 airfoil at α = 34° and Re = 1000, pressure fields of the
adaptive G2 method (up) and projection method solutions (down) at t = 1.6,
dimensionless quantities. Figure on the bottom taken from §Guermond and
Quartapelle [7].

71

Chapter 9. 2D Unsteady Incompressible Viscous Flows

Figure 9.9: NACA 0012 airfoil at α = 34° and Re = 1000, solutions by adap-
tive G2 method (left) and by projection method (right) at t = 2.6, dimension-
less quantities. Figure on the right taken from §Guermond and Quartapelle
[7].

Figure 9.10: NACA 0012 airfoil at α = 34° and Re = 1000, solutions by adap-
tive G2 method (left) and by projection method (right) at t = 3.6, dimension-
less quantities. Figure on the right taken from §Guermond and Quartapelle
[7].

72

9.2. Conclusions

9.2 Conclusions

The comparison of the numerical results provided by the G2 method
with reference solutions is quite satisfactory, especially for the adaptive
version. The comparisons show that this method is capable of predicting
the dynamics of the flow field quite correctly, even in the presence of
sharp geometrical singularities of the boundary, like those at the trailing
edges of the considered airfoil.

The method is found to be capable of predicting incompressible flows
with re-circulations and separation accurately, without requiring any
tuning of the algorithm.

The streamlines of the solution provided by the adaptive algorithm,
which is displayed in Figure 9.7 show a re-circulatory region that is
not visible in Figure 9.2, but which is present in the reference solution.
Furthermore, the pressure fields displayed in Figure 9.3 and 9.8 are qual-
itatively similar, but that one provided by the adaptive method is more
accurate with respect to that of the reference solution. These discrep-
ancies can be explained, at least partly, by the lack of refinement of the
mesh employed.

73

10 Plunging Airfoil at Low Reynolds Num-

bers

The aim of the present chapter is to examine the thrust, lift and propul-
sive efficiency of an inflexible 2-D airfoil oscillating in heave at “low”
Reynolds numbers. The flow over a NACA 0012 airfoil, oscillated sinu-
soidally in plunge (Figure 10.1), is thus simulated numerically using a
two dimensional adaptive Navier-Stokes solver at Reynolds number of
2× 104 (see Chapter 3). The results are the compared with those pro-
posed in §Heathcote and Gursul [8]; Heathcote et al. [9]; Young and Lai
[26], where, in order to validate the force measurement system, a set
of thrust and power-input measurements were carried out for a 100 mm

chord, 400 mm span, NACA 0012 airfoil oscillating with constant ampli-
tude (h = 0.175) between two end plates in a free-surface closed-loop water
tunnel. Tests were carried out for Reynolds numbers of 10 000, 20 000 and
30 000, and for a frequency range of 0 < kG < 7.

Figure 10.1: Schematic of the
airfoil heaving periodically in
the vertical direction.

x

y

s = a cos(ωt)

The following appropriate parameters are introduced: Re, h, and kG.
The Reynolds number is based on the chord length of the airfoil. The
dimensionless heave amplitude is h =

aLE
c and the Garrick frequency can

be expressed as:

kG =
πfc

U
=
ωc

2U
since ω = 2πf.

The displacement of the leading-edge is given by s = a cos(ωt).
The forces applied to the wing in the x and y directions, Fx and

Fy, were measured in §Heathcote and Gursul [8]; Heathcote et al. [9].
The force Fx is equal to the drag (or thrust) on the wing. The force

75

Chapter 10. Plunging Airfoil at Low Reynolds Numbers

Fy is equal to the lift on the wing, plus a contribution arising from the
inertia of the wing. This contribution is proportional to the mass m of
the wing and the wing acceleration in the y-direction (dvdt), in which v is
the instantaneous plunging velocity. Hence, total force measured is

Fy = L+m
dv

dt

and the power input can be calculated as

Lv =

(
Fy −m

dv

dt

)
v

On integrating with time over a complete heave cycle, the term v dvdt
vanishes because the phases of v an dv

dt differ by 90°. Hence the inertia of
the airfoil does not contribute to the time-averaged power input. This
approach of using Fy for the input power calculations was validated
in §Heathcote et al. [9]. Thus, the period-averaged power input therefore
equals the period-averaged value of Fyv, where v is the instantaneous
velocity of the root.
Drive force and thrust force data were collected for a finite number of
oscillations for each test condition. The thrust coefficient, CT, is given
by:

CT =
T

1
2ρU

2c

where T is the thrust per unit span. The time-averaged thrust coef-
ficient is found by averaging over a complete number of cycles. The
time-averaged power input is given by:

C̄P =
Fyv

1
2ρU

3c

where Fyv is the instantaneous power input, and the overbar denotes an
average over time.

The thrust coefficient and power-input coefficient data obtained by
§Heathcote and Gursul [8]; Heathcote et al. [9] are plotted in Figure 10.2
and Figure 10.3, respectively, which also show, for comparison, the pre-
dictions of Garrick1, a panel method and a viscous Navier–Stokes code

1For a plunging flat plate, Garrick, using linearized potential flow theory, deter-
mines the time-averaged thrust coefficient per unit span CTmean

as a function of the
nondimensional plunge amplitude h and reduced frequency kG (valid in the limit
of small amplitude oscillations): CTmean = 4π(kGh)2(F 2 + G2), where F = F (kG)
and G = G(kG) are the real and imaginary components of the Theodorsen function
C(kG) = F (kG) + iG(kG).

76

(the panel method and Navier Stokes predictions are of §Young and Lai
[26], and the reader is referred to this source for details of the methods).
Propulsive efficiency, i.d., the ratio of time-average thrust coefficient to
the time-average power-input coefficient, is shown in Figure 10.4. Al-
though the panel method correctly predicts a decrease in efficiency with
increasing frequency, both inviscid methods are seen to significantly over-
estimate efficiency.

Figure 10.2: Comparison of the force validation experimental data (2-D
NACA 0012 airfoil in pure heave) with linear theory, panel method and Navier
Stokes solver. Thrust coefficient, taken from §Heathcote et al. [9]

It is seen from previous figures that both inviscid methods overes-
timate the experimentally measured thrust coefficient and that the ex-
perimental data shows the effect of Reynolds number to be very small
for the range 10000 < Re < 30000. Furthermore, Garrick theory and the
panel method are seen to underestimate the power-input coefficient,
due to the absence of a model of leading-edge vorticity shedding (in
the Navier–Stokes model the leading-edge vortices were shown to aug-
ment the surface pressures, leading to a greater power-input requirement,
see §Young and Lai [26]). Here again, the effect of Reynolds number is
observed to be small for the experimental data.

In order to show the difference between the adaptive version and the
non-adaptive version of the cG(1)cG(1) method implemented in this the-

77

Chapter 10. Plunging Airfoil at Low Reynolds Numbers

Figure 10.3: Comparison of the force validation experimental data (2-D
NACA 0012 airfoil in pure heave) with linear theory, panel method and Navier
Stokes solver. Power-input coefficient, taken from §Heathcote et al. [9]

Figure 10.4: Comparison of the force validation experimental data (2-D
NACA 0012 airfoil in pure heave) with linear theory, panel method and Navier
Stokes solver. Propulsive efficiency, taken from §Heathcote et al. [9]

78

sis, we reported in Figure 10.7 the instantaneous thrust coefficient as a
function of time over two heave cycles, calculated at the same Reynolds
number and Garrick frequency, using the same fixed (dimensionless) time
step for both methods. The adaptive algorithm is designed to compute
the correct drag using a minimal number of degrees of freedom. Starting
from a coarse mesh with ≈ 3800 nodes and 7500 cells (as computational
domain we considered the rectangle given by the dimensions of the wa-
ter tunnel test section), the mesh has been adaptively refined according
to the computed solution until the error in the specified output, in this
case drag, is less than a given tolerance, and it finally consisted of about
4200 nodes and 8200 cells. Since the adaptive algorithm is designed to
minimize computational work for the computation of drag, the resulting
computational mesh is optimized for the approximation of drag, as we
can seen in Figure 10.5 and 10.6, which show some particulars of the
computational meshes before and after adaptive mesh refinements. Un-
neccessary refinement is avoided in parts of the domain not critical for
the approximation of drag. Instead, the mesh for solving the problem
with the non-adaptive method consisted of about 10 700 nodes and 21 200

cells.

Figure 10.5: Coarse mesh (left) and refined mesh (right), leading edge par-
ticular; Re = 20000, kG = 5.

Two peaks in thrust are consistent with symmetry of the geome-
try, and the shedding of two vortices per cycle. We also note two main
features of the adaptive method: a good approximation of the thrust co-
efficient is obtained using very few degrees of freedom, and the mesh is
automatically constructed from a coarse mesh, thus bypassing the cost
and challenge of ad hoc mesh design.

The adaptive algorithm is constructed for approximation of drag,
but it may be interesting to measure also other output from the re-
sulting solutions: for the frequency range of interest (0 < kG < 7), the
time-averaged thrust coefficient, the time-averaged power-input coef-

79

Chapter 10. Plunging Airfoil at Low Reynolds Numbers

Figure 10.6: Coarse mesh (left) and refined mesh (right), trailing edge par-
ticular; Re = 20000, kG = 5.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2

T
hr

us
t c

oe
ffi

ci
en

t

t/T

Adaptive G2
Non-Adaptive G2, 3800 nodes mesh

Non-Adaptive G2, 10700 nodes mesh

Figure 10.7: Instantaneous thrust coefficient as a function of time over two
heave cycles; Re = 20000, kG = 5.

80

10.1. Conclusion

ficient and the propulsive efficiency are calculated using the adaptive
G2 method with respect to drag, and they are plotted in Figures 10.8,
10.9 and 10.10 respectively. Also reported for comparison are the data
from §Heathcote et al. [9] (Figure 10.2).

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7

T
hr

us
t c

oe
ffi

ci
en

t

Reduced frequency

Young NS, Re=20000
Panel method

Garrick
Adaptive G2, Re=20000

Heathcote Experiment, Re=20000

Figure 10.8: Comparison of the time-averaged thrust coefficient (2-D
NACA 0012 airfoil in pure heave) with §Heathcote et al. [9]

10.1 Conclusion

It is seen from Figures 10.8, 10.9 and 10.10 that the Navier–Stokes pre-
dictions for thrust coefficient, power-input coefficient and propulsive effi-
ciency, provided by G2 method, are in agreement with the experimental
values in §Heathcote et al. [9] and with the predictions of §Young and
Lai [26], over the complete frequency range. In particular, close agree-
ment is found in the trend towards drag at low frequencies, the peak
efficiency (η ≈ 30%), and the optimum frequency (kG ≈ 1).

Even if the adaptive algorithm was designed to adaptively refine the
mesh according to the computed solution until the error in the specified
output, in this case drag, is less than a given tolerance, and so no attempt
to refine the mesh with respect to lift has been made, also the power-
input coefficient predictions (and consequently the propulsive efficiency)
seem to be in agreement with both Young’s predictions and Heathcote’s
experimental data. An adaptive algorithm with the goal of satisfying a
given tolerance with respect to the error in two specified output, i.d., lift

81

Chapter 10. Plunging Airfoil at Low Reynolds Numbers

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7

P
ow

er
-in

pu
t c

oe
ffi

ci
en

t

Reduced frequency

Young NS, Re=20000
Panel method

Garrick
Adaptive G2, Re=20000

Heathcote Experiment, Re=20000

Figure 10.9: Comparison of the time-averaged power-input coefficient (2-D
NACA 0012 airfoil in pure heave) with §Heathcote et al. [9]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

P
ro

pu
ls

iv
e

ef
fic

ie
nc

y

Reduced frequency

Young NS, Re=20000
Panel method

Garrick
Adaptive G2, Re=20000

Heathcote Experiment, Re=20000

Figure 10.10: Comparison of the propulsive efficiency (2-D NACA 0012 airfoil
in pure heave) with §Heathcote et al. [9]

82

10.1. Conclusion

and drag, was also implemented and tested: the mesh was so adaptively
refine with respect to lift and drag. The results don’t change significantly:
this can be explained, at least partly, by the level of refinement of the
mesh, which is optimized for the approximation of drag, that was enough
to approximate lift.

83

11 Effect of Spanwise Flexibility on flap-

ping wing propulsion

The purpose of this chapter, and that of the experimental study in §Heathcote
et al. [9], is to measure the effect of spanwise flexibility on the thrust
of a rectangular wing oscillated in heave at one end. The heave ampli-
tude, h = aroot/c = 0.175, is constant for all experiments. Three addi-
tional dimensionless parameters may be considered: the Reynolds num-
ber, Garrick frequency, and Strouhal number based on the amplitude of
the mid-span (z = b/2):

Re =
ρUc

µ
, kG =

πfc

U
, Sr =

2famid
U

.

The displacement of the root was given by s = aroot cos(ωt). Three wings
of 300 mm span, 100 mm chord, NACA 0012 cross-section, and rectangu-
lar platform were constructed for the experiment in §Heathcote et al.
[9]. The first, termed inflexible, which was constructed from nylon (E =

5 GPa) in a rapid prototyping machine, was designed to be as stiff as pos-
sible: a hollowed structure and two 8 mm diameter steel rods (E = 200 GPa)
spanning from root to tip ensure a high spanwise stiffness. The second,
termed flexible, which was stiffened with 1 mm stainless steel sheet, was
designed to be of intermediate flexibility. The third, termed highly flex-
ible, which was stiffened with 1 mm aluminum sheet, was designed to
be overly flexible. Each of the two flexible wings was constructed from
polydimethylsiloxane rubber (PDMS, E = 250 kPa) cast in a NACA 0012

mould. Cross-sections of the three wings are shown in Figure 11.1. All
wings were designed to be stiff in the chordwise direction.

In the present simulations, we substituted the inflexible wing with a
rigid one (see Chapter 11.1), so fluid-structure interaction can’t occur
and the aerodynamic solver was not coupled with MBDyn; instead, for
the two flexible wings, two MBDyn structural models were built (see
Chapter 11.2).

In the experimental studies of §Heathcote et al. [9], the forces applied
to the wing in the x and y directions, Fx and Fy, were measured. As shown

85

Chapter 11. Effect of Spanwise Flexibility on flapping wing propulsion

Figure 11.1: Cross-sections
of the three NACA 0012
wings: (i) inflexible, (ii) flex-
ible, (iii) highly flexible;
taken from §Heathcote et al.
[9].

in Chapter 10, the force Fx is equal to the drag (or thrust) on the wing
and the force Fy is equal to the lift on the wing, plus a contribution
arising from the inertia of the wing. This contribution is proportional
to the wing acceleration, and therefore does not contribute to the time-
averaged power-input. Thus, the period-averaged power input therefore
equals the period-averaged value of Fyv, where v is the instantaneous
velocity of the root. Drive force and thrust force data were collected
for a finite number of oscillations for each test condition. The thrust
coefficient, CT, is given by:

CT =
T

1
2ρU

2c

where T is the thrust per unit span. The time-averaged thrust coef-
ficient is found by averaging over a complete number of cycles. The
time-averaged power input is given by:

C̄P =
Fyv

1
2ρU

3c

where Fyv is the instantaneous power input, and the over-bar denotes an
average over time.

Figure 11.2: Schematic of
the spanwise flexible wing
heaving periodically, taken
from §Heathcote et al. [9].

86

11.1. Rigid Wing Results

For the following simulations, the computational grid has been gen-
erated in Abaqus, and it consists of about 238 200 nodes and 1 212 200

tetrahedrons. The dimensions of the domain was given by the dimen-
sions of the water tunnel test section adopted in §Heathcote et al. [9],
see Figure 11.3.

Since in this phase we were mainly interested in developing a pro-
cedure to study coupled fluid-structure problems, we didn’t utilize the
adaptive G2 method for our computations, and utilized its non adaptive
version, because, up to now, the developed adaptive algorithm for 3D
problems takes a long time in the calculations.

Figure 11.3: Computational grid. The dimensions of the domain are given by
the water tunnel test section dimensions in §Heathcote et al. [9].

11.1 Rigid Wing Results

Rigid wing simulations were used to test the aerodynamic model pre-
diction capabilities. In Figure 11.4 the values of time-averaged thrust
coefficient provided by the G2 method are plotted as a function of Gar-
rick frequency, for Re = 30000, together with the experimental data for
the inflexible wing from §Heathcote et al. [9].

The values of the time-average thrust coefficient obtained by G2
method for the rigid wing are summarized in Table 11.1, in which they
are also present the Heathcote’s experimental data for the inflexible
wing.

87

Chapter 11. Effect of Spanwise Flexibility on flapping wing propulsion

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
hr

us
t c

oe
ffi

ci
en

t

Reduced frequency

3D, Inflexible, Heathcote experiment
3D, Rigid, G2 method

Figure 11.4: Time-average thrust coefficient of the rigid and the inflexible
wing as a function of Garrick frequency, Re = 30000.

Table 11.1: Time-average thrust coefficient (C̄T) data of the rigid and the
inflexible wing, Re = 30000.

Wing kG = 0.5 kG = 0.8 kG = 1.0 kG = 1.3 kG = 1.5 kG = 1.82

rigid −0.0035 0.014 0.034 0.072 0.1115 0.182

inflexible −0.005 0.02 0.04 0.085 0.12 0.21

88

11.2. Flexible Wing Simulations

The comparison of the numerical results provided by G2 method with
reference solutions is quite satisfactory: in particular, close agreement is
found at low Garrick frequencies, while a small inaccuracy is observed
towards high frequencies. These discrepancies can be explained, at least
partly, by the fact that, although the inflexible wing in §Heathcote et al.
[9] was designed to possess a high spanwise stiffness, it’s cannot be con-
sidered rigid (see Figure 11.8). Instead, for our computation, a rigid wing
was adopted. At the lowest frequencies the wings experience drag.

11.2 Flexible Wing Simulations

The MBDyn structural model, which was being correlated with experi-
mental results from §Heathcote et al. [9], consists of:

� 96 structural nodes,

� 96 rigid bodies,

� 6 joints,

� 75 shells (four-node shell, see Chapter 5.2).

The materials investigated are shown in Table 11.2.

Table 11.2: Flapping wing: structural properties.

Tensile modulus E Poisson’s modulus ν Density ρ

steel 2.1× 1011 Pa 0.3 7.8× 103 kg/m3

aluminum 7.0× 1010 Pa 0.3 2.7× 103 kg/m3

pdms 9.65× 102 kg/m3

Body elements are used to assign a mass to structural nodes. Two
masses were referred to each structural node by means of the keyword
condense: they are the fractions of the steel/aluminum sheet mass and
the pdms mass that are relative to that node.
Joint elements connect structural nodes: they allow to arbitrarily con-
strain specific component of the absolute position and orientation of a
node. The value of the constrained components of the absolute position
and orientation was imposed by means of drives. The drive essentially
represents a scalar function, whose value can change over time: in our
case we imposed a cosine excitation of the type:

f(t) = aroot(1− cos(ωt)), ω = 2πf.

89

Chapter 11. Effect of Spanwise Flexibility on flapping wing propulsion

We exploited the declaration and definition of some reference frames
to place entities around in the model more efficiently, as shown in Fig-
ure 11.5. They are the “global” reference system (which has position
[0, 0, 0], orientation matrix I and angular velocity [0, 0, 0]), the “wing” ref-
erence system (which has position [c/2,−b/2, 0], orientation matrix I and
angular velocity [0, 0, 0]) and the “peer” reference frame (which has posi-
tion [0,−b/2, 0], orientation matrix I and angular velocity [0, 0, 0]). These

x

yz

b/2

x

y
z

x

y
z

c/2

“global”

“wing’’

“peer”

Figure 11.5: Reference
systems. The global ref-
erence frame has posi-
tion [0, 0, 0], orientation
matrix I and angular
velocity [0, 0, 0].

reference frames are used only during the input phase, where they help
referring entities either absolute or relative to other entities. The output
results, however, are expressed in the global frame.

The disposition of the MBDyn’s nodes is shown in Figure 11.6: they
are distributed with respect to the “wing” reference frame.

0.3

0 x[m]

y[m]
z[m]

−0.05 0.05

Figure 11.6: Disposi-
tion of MBDyn’s struc-
tural nodes with re-
spect to the “wing” ref-
erence frame. The [•]
sign represents a struc-
tural node while the [©]
sign stands for a joint
element.

As seen in Chapter 6.3, the fish-bone structure is obtained by adding
two rigid arms at each node, in a direction perpendicular to the shell
reference plane. The two arms have opposite sign to obtain a final layout

90

11.2. Flexible Wing Simulations

which respects the symmetry. In this way all the possible rotation of
each node are correctly transmitted to the aerodynamic wet surface.
A set of points is thus generated by computing the kinematics of the
points originating from the rigid-body motion of the structural nodes
according to the specified offset (two offset blocks for each node). The
positions of those points was written in a file: this is useful to generate the
bulk data that is needed to compute the linear mapping matrix. After
generating the computational grid, shown in Figure 11.3, we wrote in
a file the coordinates of the peer’s points (those lying on the interface
surface, i.d., the internal boundary of the fluid mesh): since a reference
node is defined1, these points need to be expressed in a reference frame
coincident with that of the reference node (the “peer” reference system).

As mentioned in Chapter 6.2, the mapping consists in a constant ma-
trix that allows to compute the position and the velocity of the mapped
points (subscript “peer”) as functions of a set of points rigidly offset
from MBDyn’s nodes (subscript “mb”),

xpeer = Hxmb

ẋpeer = Hẋmb

The same matrix is used to map back the forces onto MBDyn’s nodes
based on the preservation of the work done in the two domains,

δx>mbfmb = δx>peerfpeer = δx>mbH
>fpeer

which implies
fmb = H>fpeer

so the loads computed at the aerodynamic nodes can be transferred to
the structural mesh. In Figure 11.7 are shown, as example, the set of
points rigidly offset (in z direction) from MBDyn’s nodes and the set of
points used by the peer process for the present wing.

Using Octave we computed the matrix H and stored it in a file:
when MBDyn is executed it loads the mapping matrix from this file
(using sparse storage since for usual problems the matrix is significantly
sparse). The interface method uses quadratic polynomial basis with C2

weight function and a local support of 12 points (see Chapter 6.2).
In order to communicate with the external software that computes

forces applied to the peer nodes and might depend on the kinematics
of those nodes through a linear mapping, the External structural

1In this case the kinematics of the points is formulated in the reference frame of
the reference node. The forces are expected in the same reference frame.

91

Chapter 11. Effect of Spanwise Flexibility on flapping wing propulsion

 0
 20

 40
 60

 80
 100

 120 0
 50

 100
 150

 200
 250

 300

-6

-4

-2

 0

 2

 4

 6

z [mm]

x [mm]

y [mm]

z [mm]

Figure 11.7: Example of set of points rigidly offset from MBDyn’s nodes and
those used by the peer process.

mapping element were used. As communication schemes we choose to
adopt the socket communicator: by an optional parameter we gave in-
structions to MBDyn to create the socket, to which the peer have to
connect to, and specified the type of coupling (we imposed a tight cou-
pling forcing MBDyn to communicate each iteration, as a consequence,
MBDyn solves the kinematics at the current time step, say k, at iteration
j, using forces evaluated for the kinematics at the same time step, k, but
at iteration j − 1). The communication pattern can be summarized as:

1. MBDyn sends the predicted kinematics for step k,

2. MBDyn receives a set of forces sent by the external peer each time
the residual is assembled; those forces are computed based on the
kinematics at iteration j,

3. as soon as, while reading the forces, MBDyn is informed that the
external peer converged, it jumps to the next time step k + 1; oth-
erwise, it continues iterating until convergence.

As a convergence criteria the fluid-dynamic code checks the relative
change of the fluid-dynamics resultant between two iterations. A rought
tolerance of 0.1 is adopted; it has been verified that this allows to dra-
matically reduce the computational time at the expense of a reduced
loss of precision.

92

11.2. Flexible Wing Simulations

The forces acting on peer nodes belonging to the boundary of the
body are calculated as shown in Chapter 7.2.4; they are then map back
onto MBDyn’s nodes using the transpose of matrix H.

11.2.1 Deformation - single case

The shape response of the flexible and inflexible/rigid wings for the
single case of Re = 30000, kG = 1.82 is represented in Figure 11.8. The tip
displacements of the wings are plotted over a period of one cycle. The
displacement of the wing tip may be considered to arise from the sum
of the root displacement and the deformation of the wing. The curve

-2

-1

 0

 1

 2

 3

 0 0.2 0.4 0.6 0.8 1

D
is

pl
ac

em
en

t,
s/

a r
oo

t

Time, t/T

Heathcote experiment, Inflexible tip
Heathcote experiment, Flexible tip

G2 method, Flexible tip
Root

Figure 11.8: Tip displacements as a function of time; Re = 30000, kG = 1.82.

labeled ’Root’ indicates the displacement of the root, and it coincides
with the displacement of the rigid wing’s tip.

11.2.2 Deformation - parametric study

The variation of tip amplitude response of the flexible wing with Garrick
frequency, for a single Reynolds number, i.d., Re = 30000, is presented in
Figure 11.9.

It is seen in Figure 11.9 that the normalized tip amplitude of both
wings tends to unity as the frequency approaches zero. It is also seen that
the tip amplitude of both wings increases with oscillation frequency over
the whole frequency range.

93

Chapter 11. Effect of Spanwise Flexibility on flapping wing propulsion

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 0.5 1 1.5 2

T
ip

 a
m

pl
itu

de
, a

tip
/a

ro
ot

Reduced frequency, kG

3D, Heathcote experiment, Flexible
3D, G2 method, Flexible

Figure 11.9: Tip amplitude as a function of Garrick frequency; Re = 30000.

11.2.3 Thrust force - single case

Instantaneous thrust coefficient curves for the case Re = 30000, kG =

1.82, are shown in Figure 11.10. Two peaks in thrust are consistent with
symmetry of the geometry, and the shedding of two vortices per cycle.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

T
hr

us
t c

oe
ffi

ci
en

t,
c T

Time, t/T

3D, G2 method, Rigid
3D, G2 method, Flexible

3D, G2 method, Highly Flexible

Figure 11.10: Instantaneous thrust coefficient as a function of time; Re =
30000, kG = 1.82.

It is seen that the thrust coefficient of the flexible wing is greater

94

11.2. Flexible Wing Simulations

than that of the inflexible wing, indicating that introducing a degree
of spanwise flexibility increases the thrust coefficient for this Reynolds
number and frequency. It is also seen that the thrust coefficient of the
highly flexible wing is the lowest of the three. Another interesting feature
is observed for the highly flexible wing: the instantaneous thrust coeffi-
cient is always positive. In summary, the flexibility of a wing is seen to
affect the thrust characteristics of the wing.

The small oscillations of the thrust coefficient curves of the flexible
and highly flexible wings, as seen in Figure 11.10, can be explained by
the tolerance we choose to specify the coupling between MBDyn and the
external aerodynamic solver.

11.2.4 Thrust force - parametric studies

In order to establish whether the flexible wing experiences greater thrust
over a range of frequencies, a parametric study was carried out. The
complete set of thrust coefficient data for Re = 30000 is plotted in Fig-
ure 11.11, where the experimental data from §Heathcote et al. [9] are also
present for comparison. The single case discussed above corresponds to
the highest frequency in Figure 11.11.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.5 1 1.5 2

T
hr

us
t c

oe
ffi

ci
en

t,
c T

Reduced frequency, kG

3D, Inflexible, Heathcote experiment
3D, Flexible, Heathcote experiment
3D, Highly Flexible, Heathcote experiment
3D, Rigid, G2 method
3D, Flexible, G2 method
3D, Highly Flexible, G2 method

Figure 11.11: Thrust coefficient as a function of Garrick frequency, Re =
30000.

It is seen that the benefit in thrust for the flexible wing over the in-
flexible wing doesn’t persist to lower frequencies, unlike the Heathcote’s
experimental data do. The discrepancy between the numerical values

95

Chapter 11. Effect of Spanwise Flexibility on flapping wing propulsion

of the thrust coefficient provided by G2 method and experimental data
can be probably explained by the somewhat coarse mesh for the Re at
hand; since it is not wise to uniformly refine the mesh, it would be neces-
sary to resort to the adaptive algorithm in order to selectively refine it.
Unfortunately, the procedure for the error estimation for 3D problems
takes a very long time, and this nullifies the benefit of a selectively mesh
refinement.

96

12 Conclusion

In this thesis we have presented our work on adaptive finite element
methods for incompressible turbulent fluid flow, and its implementation
in FEniCS has been demonstrated. The incompressible Navier-Stokes
equations are solved using a stabilized Galerkin finite element method.
Both the stopping criterion and the mesh refinement strategy are based
on “a posteriori” error estimates. There is no filtering of the equations,
and thus no Reynolds stresses are introduced. Instead the stabilization
in the numerical method is acting as a simple turbulence model.

This work also presented the employment of a nonlinear 4-node shell
element within the free multibody solver MBDyn to support the mod-
eling and the analysis of flexible wing oscillating in plunge. In order
to provide realistic aerodynamic forces and high-fidelity fluid-structure
coupling, the structural solver has been coupled with unsteady Navier-
Stokes. An original general-purpose, meshless boundary interfacing ap-
proach based on Moving Least Squares with Radial Basis Functions has
been used.

Using the G2 method, we were able to simulate the drag force of
a non-oscillating NACA 0012 airfoil traveling in air. Also, we computed
the drag and lift forces on an oscillating in heave NACA 0012 airfoil and
investigated the effect of spanwise flexibility on flapping wings.

Encouraging preliminary results have been obtained from the mod-
eling and analysis of the dynamics and aeroelasticity of a flexible oscil-
lating wing model.

12.1 Future work

Future activity will address to:

� model β as a function of velocity and even roughness of the wing
instead of a costant value (the β chosen here was to simplify the
problem and we can compute the flow around a wing/airfoil in a

97

Chapter 12. Conclusion

more realistic situation by choosing β as an accurate function of
velocity);

� extend the adaptive DNS/LES method to 3D fully coupled fluid-
structure problems;

� design of a parallel implementation of the developed finite element
method;

� add a flap hinge and/or a pitch hinge to the flexible wing models
to achieve a more realistic insect-like flight.

� extensive parametric investigation of the flexible wing models to
improve the understanding of the physics of the problem and sup-
port future designs.

98

Bibliography

[1] M. Alnæs, H. P. Langtangen, A. Logg, K.-A. Mardal, and
O. Skavhaug. UFC Specification and User Manual, 2007. URL
http://fenicsproject.org.

[2] M. S. Alnæs and A. Logg. UFL Specification and User Manual,
2009. URL http://fenicsproject.org.

[3] M. S. Alnæs and A. Logg. UFL User Manual, November 2010.

[4] M. S. Alnaes, A. Logg, Garth Wells, H. P. Langtangen, J. Hake,
and R. C. Kirby. FEniCS Manual, October 2011.

[5] J. Donea and A. Huerta. Finite Element Methods for Flow Prob-
lems. Wiley, 2003.

[6] J. Donea, A. Huerta, J. P. Ponthot, and A. Rodrıguez-Ferran. Arbi-
trary Lagrangian–Eulerian methods. In E. Stein, R. de Borst, and
T. J. R. Hughes, editors, Fundametals, volume 1 of Encyclopedia of
Computational Mechanics, pages 1–25. Wiley & sons, 2004.

[7] J.L. Guermond and L. Quartapelle. Calculation of incompressible
viscous flows by an unconditionally stable projection fem. Journal
of Computational Physics, 132(1):12–33, 1997.

[8] S. Heathcote and I. Gursul. Flexible flapping airfoil propulsion at
low reynolds numbers. AIAA Journal, 45:1066–1079, 2007.

[9] S. Heathcote, I. Gursul, and Z. Wang. Effect of spanwise flexibility
on flapping wing propulsion. Journal of Fluids and Structures, 24:
183–199, 2008.

[10] Johan Hoffman. Computation of mean drag for bluff body problems
using adaptive dns/les. SIAM J. Sci. Comput., 27(1):184–207, 2005.

99

http://fenicsproject.org
http://fenicsproject.org

Bibliography

[11] Johan Hoffman. Computation of turbulent flow past bluff bodies
using adaptive general Galerkin methods: drag crisis and turbulent
Euler solutions. Comput. Mech., 38:390–402, 2006.

[12] Johan Hoffman. Adaptive simulation of the sub-critical flow past a
sphere. J. Fluid Mech., 568:77–88, 2006.

[13] Johan Hoffman. Efficient computation of mean drag for the sub-
critical flow past a circular cylinder using general Galerkin G2. Int.
J. Numer. Meth. Fluids, 2009.

[14] Johan Hoffman and Claes Johnson. A new approach to computa-
tional turbulence modeling. Comput. Methods Appl. Mech. Engrg.,
195:2865–2880, 2006.

[15] Johan Hoffman and Claes Johnson. Stability of the dual navier-
stokes equations and efficient computation of mean output in tur-
bulent flow using adaptive DNS/LES. Comput. Meth. Appl. Mech.
Eng., 195:1709–1721, 2006.

[16] Johan Hoffman and Claes Johnson. Computational Turbulent
Incompressible Flow, volume 4 of Applied Mathematics: Body
and Soul. Springer, 2007. URL http://dx.doi.org/10.1007/

978-3-540-46533-1.

[17] Volker John. Slip with friction and penetration with resistance
boundary conditions for the navier stokes equations - numerical
tests and aspects of the implementation. Journal of Computational
and Applied Mathematics, 147:287–300, 2002.

[18] A. Logg and G. N. Wells. DOLFIN: Automated finite element com-
puting. ACM Transactions on Mathematical Software, 32(2):1–28,
2010. URL http://dx.doi.org/10.1145/1731022.1731030.

[19] Anders Logg and Garth Wells. DOLFIN User Manual, November
2010.

[20] Anders Logg, Garth N. Wells, and Kent-Andre Mardal. Automated
Solution of Differential Equations by the Finite Element Method,
April 2011.

[21] Pierangelo Masarati. MBDyn Input File Format, November 2011.

100

http://dx.doi.org/10.1007/978-3-540-46533-1
http://dx.doi.org/10.1007/978-3-540-46533-1
http://dx.doi.org/10.1145/1731022.1731030

Bibliography

[22] Giuseppe Quaranta. A Study of Fluid-Structure Interactions for
Rotorcraft Aeromechanics : Modeling and Analysis Methods. PhD
thesis, Politecnico di Milano, 2004.

[23] Giuseppe Quaranta, Marco Morandini, Pierangelo Masarati, and
Riccardo Vescovini. Multibody analysis of a micro-aerial vehicle
fapping wing. Multibody Dynamics 2011, ECCOMAS Thematic
Conference, July 2011.

[24] M. E. Rognes and A. Logg. Automated goal-oriented error con-
trol I: Stationary variational problems. SIAM Journal on Scientific
Computing, 2010.

[25] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Qual-
ity Mesh Generator and Delaunay Triangulator. In Ming C. Lin
and Dinesh Manocha, editors, Applied Computational Geometry:
Towards Geometric Engineering, volume 1148 of Lecture Notes in
Computer Science, pages 203–222. Springer-Verlag, May 1996. URL
http://www.cs.cmu.edu/~quake/triangle.html. From the First
ACM Workshop on Applied Computational Geometry.

[26] J. Young and J. C. S. Lai. Oscillation frequency and amplitude
effects on the wake of a plunging airfoil. AIAA Journal, 42(10):
2042–2052, October 2004.

101

http://www.cs.cmu.edu/~quake/triangle.html

	I Introductory Chapters
	Introduction
	Motivation
	Brief history of vehicles with flapping airfoils
	Outline of the Thesis

	Incompressible Navier-Stokes equations
	Stress tensor in Newtonian fluid
	The incompressible Navier-Stokes equations
	Conservation of mass
	Conservation of momentum
	N.S. Equations

	Boundary Condition
	Skin Friction Wall Model
	Slip Boundary Condition
	No Slip Boundary Condition
	Outflow Boundary Condition

	Weak Formulation

	G2 for Navier-Stokes equations
	Introduction
	General Galerkin for Turbulent flow
	Eulerian cG(1)cG(1) method
	G2 as adaptive DNS/LES

	ALE Explained
	Lagrangian and Eulerian viewpoints
	ALE kinematic description
	The foundamental ALE equation
	ALE form of conservation equations
	Mesh moving

	Structural Multibody Modeling
	Multibody Formulation
	Structural Model

	Interfacing the Structural and the Aerodynamic model
	Introduction
	Fluid-Structure Interface
	Application to FSI problem

	The FEniCS project
	FEniCS
	DOLFIN
	FFC
	UFC
	UFL

	Implementation details
	Preliminaries
	Time discretization
	Mesh
	Solver
	ALE
	Adaptive G2

	Mesh generation
	TriTetMesh
	Triangle
	TetGen

	II Numerical Experiments
	2D Unsteady Incompressible Viscous Flows
	Adaptive G2
	Conclusions

	Plunging Airfoil at Low Reynolds Numbers
	Conclusion

	Effect of Spanwise Flexibility on flapping wing propulsion
	Rigid Wing Results
	Flexible Wing Simulations
	Deformation - single case
	Deformation - parametric study
	Thrust force - single case
	Thrust force - parametric studies

	Conclusion
	Future work

	References

