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Introduction 

 
In the last few years a great deal of effort has been put in studying periodic dielectric structures 

that can offer complete control over the propagation of light, called photonic crystals. Photonic 

crystals are composed of periodic dielectric or metallo-dielectric nanostructures that affect the 

propagation of electromagnetic waves in the same way as the periodic potential in a 

semiconductor crystal affects the electron motion by defining allowed and forbidden 

electronic energy bands. Essentially, photonic crystals contain regularly repeating internal regions 

of high and low dielectric constant. Photons (behaving as waves) propagate through this structure 

- or not - depending on their wavelength. Wavelengths of light that are allowed to travel are 

known as modes, and groups of allowed modes form bands. Disallowed bands of wavelengths are 

called photonic band gaps. This gives rise to distinct optical phenomena such as inhibition 

of spontaneous emission, high-reflecting omni-directional mirrors and low-loss-waveguiding. 

In my work I payed particular attention to omni-directional mirrors to be used in photovoltaic cells. 

The underlying  idea aims to integrate a Gretzel photovoltaic cell with a highly reflective mirror 

used as the substrate of the cell itself, in order to improve total efficiency. Designing such a mirror 

is crucial and that’s why I developed a new software that can simulate the behavior of 

monodimensional photonic crystals. For the sake of generality and flexibility I wanted to create a 

program able to handle completely non-periodic structures. Even though it’s possible to find other 

software which can perform similar calculations, those software are BLACK-BOX, i.e. non editable 

by the user. In most cases commercial software ignore complete non-periodicity or the presence of 

conducting and magnetic materials, making the BLACK-BOX structure even more limiting for non-

standard applications. The full accessibility to the source code was therefore required by the 

experimenters. With this in mind I configured the software as a core simulator which can be 

expended by other users with ease. 

This presentation has been divided into 8 chapters: 

Chapter 1 is an introduction of the  different numerical methods used to solve photonic problems.  

Chapter 2 describes the main features of dielectric mirrors and the process used to produce them. 

Chapter 3 summarizes the theoretical knowledge needed to understand the physical behavior of 
electromagnetic waves in matter. 

http://en.wikipedia.org/wiki/Waveguide
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Chapter 4 deals with the specific case of electromagnetic waves in multilayered structures and 
describes the mathematical approach used to develop the software.   

Chapter 5 is an in-depth discussion of the software designed to solve isotropic multilayered 
structures. 

Chapter 6 is dedicated to the design of an omni-directional mirror to be used with photovoltaic 
cells using the software described in chapter 5. 

Chapter 7 explains in detail the mathematical approach used to develop the software which solves 
propagation problems for anisotropic media. A brief overview of the difference between isotropic 
and anisotropic mirrors is also given in this chapter. 

Chapter 8 considers the propagation of electromagnetic waves by the photonic band approach and 
presents a possible evolution of the software for multidimensional analysis through the plane wave 
method and Fourier transform. 

Source codes of all realized software  are available in appendix. 



 
Chapter 1 
 
Computational Photonics 
 

Even as recently as twenty years ago, it would have been unusual to present solutions to the 
Maxwell equations without first describing the computational method in great detail. Since then, 
photonics research has undergone the same profound change that has swept through all areas of 
science and engineering in the last half century, catalyzed by the availability of  powerful 
computers. 
The situation in photonics is especially favorable for computation because the Maxwell equations 
are practically exact, the relevant material properties are well known, and the length scales are not 
too small. Therefore, an aspect of this field is that quantitative theoretical predictions can be made 
ab-initio (from first principles), without any questionable assumptions or simplifications. The 
results of such computations have consistently agreed with experiments. This makes it possible and 
preferable to optimize the design of photonic crystals on a computer, and then manufacture them. 
The computer becomes the pre-laboratory. 
Broadly speaking there are three different categories of problems in computational photonics: 

1. Frequency-domain responses 
2. Frequency-domain eigenproblems  
3. Time-domain simulations  

 

1.1    Frequency-domain responses 

We often want to know how electromagnetic waves emitted from a given source at a given 

frequency are transmitted  and reflected by a photonic [1]. Computational approach for such 

problems, called frequency-domain responses, consists in finding the values of the electric fields 

by solving a linear matrix equation of the form:  

𝐴𝑥 = 𝐵 

We obtains an N×N matrix equation for the unknown fields (column vector) x in terms of the 

known terms B. Solving such a set of equations directly requires 𝑂(𝑁2) storage and 𝑂(𝑁3) time. 

Transmission and scattering calculations typically require “open” boundaries. This means that the 

scattered fields must radiate to infinity instead of reflecting when they hit the edge of the (finite) 



computational region. This problem is typically handled by adding a perfectly matched layer1 

(PML) around the edges of the computational region. A PML is an artificial absorbing material 

designed so that there are (theoretically) no reflections from the edge of the material. 

 

1.2 Frequency-domain eigensolver 

A frequency-domain eigensolver solves the Maxwell eigenproblem for the frequencies of a 

periodic system (or nonperiodic), as given by equation: 
 

(i𝐤 + ∇) × � 1
𝜀(𝒓) (i𝐤 + ∇) × 𝐻(𝑟)� = �𝜔

𝑐
�
2
𝐻(𝑟)             (1.1) 

The solution to the previous equation  as a function of k yields the band structure of the system 

representing which frequencies are free to propagate and which are filtered by the crystal2.   
 

 
Figure 1 photonic bands structure in a multilayer, from [4]. 

 
On a computer, the eigenequation must be discretized into N degrees of freedom using numerical 

methods  such as : 

                                                            
1 PML was initially designed for time-domain methods (see, e.g., Taflove and Hagness, 2000 [2]; Chewet al., 2001 [3]), 
but in frequency domain the same idea applies (and, in fact, is even simpler becauseonly a single frequency ω need be 
handled). 
 
2 Instead of looking for eigenvalues 𝜔2 at a fixed k, it is possible to formulate the eigenproblem at a fixed ωfor the 
wave vector k at along a single periodic (or uniform) direction as a generalized Hermitian eigenproblem with eigenvalue 
k (Johnson et al., 2001b; Johnson et al., 2002b). 



 

• Finite differences: represent unknown functions 𝑓 (𝑥) by their values 𝑓𝑛 ≈  𝑓 (𝑛𝛥𝑥) at 

discrete points on a grid, and derivatives by differences on the grid. The most 

straightforward case is a uniform Cartesian grid,  e.g.   𝑑𝑓
𝑑𝑥

  ≈  𝑓𝑛+1 − 𝑓𝑛−1
2𝛥𝑥

 .  

• Finite Elements: divide space into a set of finite geometric elements (e.g., irregular 

triangles or tetrahedra), and represent unknown functions by simple approximations 

defined on each element (typically, low-degree polynomials). In a sense, this method is a 

generalization of finite differences.  

• Spectral methods: represent unknown functions as a series expansion ina complete basis 

set of smooth functions, truncating the series to have a finite number of terms.  

Usually, a Fourier series is used; this is also called a planewave method in two or three 

dimensions (where the terms in the Fourier series are plane waves).  

 

such a discretization yields a finite generalized eigenproblem 𝐴𝑥 =  𝜔2𝐵𝑥, where A and B are 

N×N matrices and x is the eigenvector.  

One difficulty is the transversality constraint, which we must somehow impose in addition to the 

eigenequation3. The simplest way to impose transversality is to choose a basis that is 

automatically transverse, such as the planewave basis. An efficient way to solve the eigenequation 

is by iterative methods, which compute a small number p of the eigenvalues and eigenvectors, 

such as the p smallest eigenvalues. They work by taking a starting guess for x (e.g., random 

numbers) and applying some process to iteratively improve the guess, converging quickly to the 

true eigenvector. In this way, any desired accuracy can be obtained in a small number of steps.  

Direct resolution of the eigenequation requires storage memory proportional to O(𝑁2)  and  

O(𝑁3) time to be computed. Iterative methods require O(Np) memory and O(𝑁2p) time, which 

make them preferable if  p<<N. 

 

 
1.3  Time-domain simulations 
 
Arguably the most general numerical methods for electromagnetism are those that simulate the 

full time-dependent Maxwell equations, propagating the fields in both space and time. Such time-

domain methods can easily support strongly nonlinear or active (time-varying) media. Frequency-

domain methods have more difficulty with those cases because frequency is no longer conserved. 

Software exists that solves Maxwell’s equations with this method, mostly based on finite 

differences, and I decided not to used it for my programs. 

 

                                                            
3 This fact can be derived by taking the divergence of both sides of the eigenequation (1.1). Since the divergence of the 
curl is zero, one is left with an expression 𝜔2(𝑖𝒌 +  𝛻)  ·  𝐻(𝒓)  =  0. That is, the eigenequation itself implies that 
transversality is satisfied if 𝜔 ≠  0. 
 



 



 

Chapter 2 

 

Bragg’s Mirror and PLD 
This chapter investigates the properties and the physical phenomena involved with Bragg’s mirror 
and offers an overview on pulsed laser deposition (PLD), a molecular deposition technique used to 
produce highly precise multilayered structures with thicknesses on nanometric scale.  

 

2.1 Bragg’s Mirror 

A dielectric mirror, also known as a Bragg mirror, is a type of a mirror composed of multiple thin 

layers of dielectric material, typically deposited on a substrate of glass or some other optical 

material. By careful choice of the type and thickness of the dielectric layers, one can design 

an optical coating with specified reflectivity at different wavelengths of light. Dielectric mirrors are 

also used to produce ultra-high reflectivity mirrors: values of 99.999% or better over a narrow 

range of wavelengths can be produced using special techniques. One of the most used techniques 

used to produce Bragg mirrors is molecular deposition via PLD (Pulsed Laser Deposition).  

Dielectric mirrors function based on the interference of light reflected from the different layers of 

dielectric stack. Simple dielectric mirrors function like one-dimensional photonic crystals, 

consisting of a stack of layers with a high refractive index interleaved with layers of a low 

refractive index (see figure 1). The thicknesses of the layers are chosen such that the path-length 

differences for reflections from different high-index layers are integer multiples of the wavelength 

for which the mirror is designed. The reflections from the low-index layers have exactly half a 

wavelength in path length difference, but there is a 180-degree difference in phase shift at a low-

to-high index boundary, compared to a high-to-low index boundary, which means that these 

reflections are also in phase. In the case of a mirror at normal incidence, the layers have a 

thickness of a quarter wavelength 
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. 

 

Figure 1: Diagram of a dielectric mirror. Thin layers with a high refractive index 𝑛1 are interleaved with thicker layers with a lower 
refractive index 𝑛2. The path lengths 𝑙𝐴 and 𝑙𝐵 differ by exactly one wavelength, which leads to constructive interference. 

 

2.2 Bragg’s Diffraction and Bragg’s Law 

Bragg diffraction occurs when electromagnetic radiation or subatomic particle waves with 

wavelength comparable to atomic spacings are incident upon a crystalline sample, are scattered in 

a specular fashion by the atoms in the system, and undergo constructive interference in 

accordance to Bragg's law. For a crystalline solid, the waves are scattered from lattice planes 

separated by the interplanar distance d (see figure 2). Where the scattered 

waves interfere constructively, they remain in phase since the path length of each wave is equal to 

an integer multiple of the wavelength. The path difference between two waves undergoing 

constructive interference is given by 2𝑑𝑠𝑖𝑛𝜃, where 𝜃 is the scattering angle. This leads to Bragg's 

law, which describes the condition for constructive interference from successive crystallographic 

planes  of the crystalline lattice: 

 

2𝑑 sin𝜃 = 𝑛𝜆  

 

where n is an integer determined by the order given, and λ is the wavelength.  

 

𝑛1 

 

𝑛2 

𝑑1    𝑑2 
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2.3 Pulsed Laser Deposition 

Pulsed laser deposition (PLD) is a thin film deposition (specifically a physical vapor deposition, 

PVD) technique where a high power pulsed laser beam is focused inside a vacuum chamber to 

strike a target of the material that is to be deposited. This material is vaporized from the target (in 

a plasma plume) which deposits it as a thin film on a substrate. This process can occur 

in vacuum or in the presence of a background gas, such as oxygen which is commonly used when 

depositing oxides to fully oxygenate the deposited films, i.e 𝑇𝑖𝑂2, titanium oxide, widely used). 

While the basic-setup is simple relative to many other deposition techniques, the physical 

phenomena of laser-target interaction and film growth are quite complex. When the laser pulse is 

absorbed by the target, energy is first converted to electronic excitation and then into thermal, 

chemical and mechanical energy resulting in evaporation, ablation, plasma formation and 

even exfoliation1.  

 

 

 

                                                            
1  Further information can be found in [5]  

1 

2 

Figure 2: Bragg diffraction. Two beams with identical wavelength and phase approach a crystalline solid and are scattered off two 
different atoms within it. The lower beam traverses an extra length of 2𝑑𝑠𝑖𝑛𝜃. Constructive interference occurs when this length is 

equal to an integer multiple of the wavelength of the radiation. 
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Figure 3: One possible configuration of a PLD deposition chamber. 

The detailed mechanisms of PLD are very complex including the ablation process of the target 

material by the laser irradiation, the development of a plasma plume with high energetic ions, 

electrons as well as neutrals and the crystalline growth of the film itself on the heated substrate. 

The process of PLD can generally be divided into four stages: 

• Laser ablation of the target material and creation of a plasma 

• Dynamic of the plasma 

• Deposition of the ablation material on the substrate 

• Nucleation and growth of the film on the substrate surface 

Each of these steps is crucial for the crystallinity and uniformity of the resulting film. 
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Laser ablation of the target material and creation of a plasma 

The ablation of the target material upon laser irradiation and the creation of plasma are very 

complex processes. The removal of atoms from the bulk material is done by vaporization of the 

bulk at the surface region in a state of non-equilibrium. In this the incident laser pulse penetrates 

into the surface of the material within the penetration depth. This dimension is dependent on the 

laser wavelength and the index of refraction of the target material at the applied laser wavelength 

and is typically in the region of 10 nm for most materials. The strong electrical field generated by 

the laser light is sufficiently strong to remove the electrons from the bulk material of the 

penetrated volume. This process occurs within 10 ps of a ns laser pulse and is caused by non-linear 

processes such as multiphoton ionization which are enhanced by microscopic cracks at the 

surface, voids, and nodules, which increase the electric field. The free electrons oscillate within the 

electromagnetic field of the laser light and can collide with the atoms of the bulk material thus 

transferring some of their energy to the lattice of the target material within the surface region. 

The surface of the target is then heated up and the material is vaporized. 

 
Dynamic of the plasma 

In the second stage the material expands in a plasma parallel to the normal vector of the target 

surface towards the substrate due to Coulomb repulsion and recoil from the target surface. The 

spatial distribution of the plume is dependent on the background pressure inside the PLD 

chamber. The density of the plume can be described by a law with a shape similar to a Gaussian 

curve. The dependency of the plume shape on the pressure can be described in three stages: 

• The vacuum stage, where the plume is very narrow and forward directed; almost no 

scattering occurs with the background gases. 

• The intermediate region where a splitting of the high energetic ions from the less 

energetic species can be observed. The time-of-flight (TOF) data can be fitted to a shock 

wave model; however, other models could also be possible. 

• High pressure region where we find a more diffusion-like expansion of the ablated 

material. Naturally this scattering is also dependent on the mass of the background gas 

and can influence the stoichiometry of the deposited film. 

The most important consequence of increasing the background pressure is the slowing down of 

the high energetic species in the expanding plasma plume. It has been shown that particles with 

kinetic energies around 50 eV can sputter the film already deposited on the substrate. This results 

in a lower deposition rate and can furthermore result in a change in the properties of the film.  
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Figure 3 A plume ejected from a 𝑆𝑟𝑅𝑢𝑂3 target during pulsed laser deposition. 

 
Deposition of the ablation material on the substrate 

The third stage is important to determine the quality of the deposited films. The high energetic 

species ablated from the target are bombarding the substrate surface and may cause damage to 

the surface by sputtering off atoms from the surface but also by causing defect formation in the 

deposited film. The sputtered species from the substrate and the particles emitted from the target 

form a collision region, which serves as a source for condensation of particles. When the 

condensation rate is high enough, a thermal equilibrium can be reached and the film grows on the 

substrate surface at the expense of the direct flow of ablation particles and the thermal 

equilibrium obtained. 

 
Nucleation and growth of the film on the substrate surface 

The nucleation process and growth kinetics, i.e. the aggregation of new atoms that reach specific 

position on the substrate, called nucleation sites where favorable conditions randomly arise 

(ablated atomic clusters are typical nucleation sites)  of the film depend on several growth 

parameters including: 

• Laser parameters – several factors such as the laser fluence [Joule/cm2], laser energy, and 

ionization degree of the ablated material will affect the film quality, the stoichiometry, and 

the deposition flux. Generally, the nucleation density increases when the deposition flux is 

increased. 

• Surface temperature – The surface temperature has a large effect on the nucleation 

density. Generally, the nucleation density decreases as the temperature is increased.  

http://en.wikipedia.org/wiki/Stoichiometry
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• Substrate surface – The nucleation and growth can be affected by the surface preparation, 

the miscut of the substrate, as well as the roughness of the substrate. 

• Background pressure – Common in oxide deposition, an oxygen background is needed to 

ensure stoichiometric transfer from the target to the film. If, for example, the oxygen 

background is too low, the film will grow off stoichiometry which will affect the nucleation 

density and film quality.  

 

. 
 

 

 

 

http://en.wikipedia.org/wiki/Stoichiometry


 

Chapter 3 

 

Electromagnetic waves in matter 
This chapter is an introduction to electrodynamics in isotropic dielectric and conducting media 
with particular attention to the laws ruling the propagation of electromagnetic waves1. Propagation 
in anisotropic media is considered in its general traits at the end of the chapter.   

 

3.1  Maxwell’s Equations in matter 

Maxwell’s equations  in terms of free charge and current are: 

∇ ∙ 𝐷 = 𝜌𝑓                                   ∇ ∙ 𝐵 = 0 

∇ × 𝐸 = −
𝜕𝐵
𝜕𝑡

                              ∇ × 𝐻 =
𝜕𝐷
𝜕𝑡

+ 𝐽𝑓 

Where D is the electric displacement and H is the magnetic field, defined as:  

𝐷 = 𝜀𝐸                                           𝐻 =
1
𝜇
𝐵 

𝜀 and 𝜇 are called electrical susceptibility and magnetic permeability, respectively, and depends on 

the medium. This formulation of Maxwell’s equations is particularly useful because divides the 

charge and the current in bound and free. The free charge and current are those we can control 

directly, the bound charge and current, on the contrary, always arise inside polarized matter, but 

we don’t have any control over them. 

 

3.2  Uniform plane waves in nonconducting media 

A basic feature of Maxwell’s equations for the electromagnetic fields is the existence of travelling 

wave solutions which represent the transport of energy from one point to another. The simplest, 
                                                            
1 For an in-depth discussion on electromagnetic waves in matter see [6] and [7]. 
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most foundamental electromagnetic waves are transverse, plane waves. Plane waves depend only 

on the direction of propagation. This imply the fields are uniform over every plane perpendicular  

to the direction of propagation. 

In the absence of source Maxwell’s equations in a medium are: 

∇ ∙ 𝐸 = 0                               ∇ ∙ 𝐵 = 0 

∇ × 𝐸 = −
1
𝑐
𝜕𝐵
𝜕𝑡

                             ∇ × 𝐵 =  
𝜇𝜀
𝑐
𝜕𝐸
𝜕𝑡

 

Where the medium is characterized by the constant parameters 𝜇 and 𝜀, the permeability and the 

susceptibility. By combining the curl equation and making use of the vanishing divergences we find 

that E and B satisfy the following partial second order differential equation for each cartesian 

component: 

∇2𝑢 − 1
𝑣2

𝜕2𝑢
𝜕𝑡2

= 0  (wave equation) 

 

Where 𝑣 is the phase velocity of the wave in the medium, which is given by: 

𝑣 =
𝜔
𝑘

 

The relation between phase speed,  and speed of light, c, is known as refractive index,               

𝑛 =  𝑐
𝑣

 =  𝑐𝑘
𝜔

. Taking the derivative of 𝜔 = 𝑐𝑘
𝑛

, we get the group speed: 

𝑑𝜔
𝑑𝑘

=
𝑐
𝑛
−
𝑐𝑘
𝑛2

∙
𝑑𝑛
𝑑𝑘

 

Noting that 
𝑐
𝑛

= 𝑣 , this shows that group speed is equal to phase speed only when the refractive 

index is a constant:  
𝑑𝑛
𝑑𝑘

 =  0. Otherwise, when the phase velocity varies with frequency, 

velocities differ and the medium is called dispersive2.   

The wave equation has the well known solution: 

𝑢� =  �̃�𝑒𝑖𝒌𝒙−𝑖𝜔𝑡 

                                                            
2 Phase velocity can exceed the speed of light. Even group velocity in same special cases can exceed the speed of light. 

This happens for example in the vicinity of a region of anomalous dispersion, where 
𝑑𝜔
𝑑𝑘

 varies rapidly. Relativity isn’t 

violated because in this region group velocity is no longer a meaningful concept, as can be seen in [10] and [11]. 

http://en.wikipedia.org/wiki/Refractive_index
http://en.wikipedia.org/wiki/Dispersion_(optics)
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Which represent a sinusoidal wave. �̃� represent the complex amplitude which incorporates the 

phase constant 𝑒𝑖𝛿. The actual wave function is the real part of 𝑢� . We know that every function 

can be described by a linear combination of armonic functions using the Fourier Transformation. 

This is true if the principle of superposition holds, but the principle is always true for linear 

systems, such as those described by Maxwell’s equations. The frequency 𝜔 and the wave vector k 

are releted by: 

𝒌 = �𝜇𝜀
𝜔
𝑐

 

The requirments ∇ ∙ 𝐸 = 0 , ∇ ∙ 𝐵 = 0 imply that E and B  are both perpendicular to the direction 

of propagation k. Such a wave is called transverse. 

 

3.3  Polarization 

A plane wave of the form 𝑬𝟏(𝑥, 𝑡) = 𝝐𝟏𝐸1𝑒𝑖𝑘𝑥−𝑖𝜔𝑡 represent a wave with its electric field always in 

the direction 𝝐𝟏. Such a wave is said to be linearly polarized with polarization vector 𝝐𝟏 . To 

describe a general state of polarization we need another linearly polarized wave which is 

independent of the first. A general solution for a plane wave propagating in the direction k is then 

obtained by linear superposition of the 2 waves: 

𝑬(𝑥, 𝑡) = (𝝐𝟏𝐸1 + 𝝐𝟐𝐸2)𝑒𝑖𝑘𝑥−𝑖𝜔𝑡 

 

If 𝐸1and 𝐸2 have the same phase, 𝑬(𝑥, 𝑡), representig the sum, will be linearly polarized, 

otherwise 𝑬(𝑥, 𝑡) will be elliptically polarized. 

 

Figure 1 Electric and Magnetic fields for an elliptically polarized wave 
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3.4  Energy and momentum in electromagnetic waves 

The Energy per unit volume stored in electromagnetic fiels  is: 

𝑢 =
1
2
�𝜖𝐸2 +

1
𝜇
𝐵2� 

For a plane wave with a well defined wave vector k and a definite frequency 𝜔, also called a 

monochromatic wave, the electric and magnetic contribution to the energy are equal. In fact: 

𝐵2 = 𝜇𝜖𝐸2 

And the the energy density becomes: 

𝑢 = 𝜖𝐸2 

The energy flux density transported by the fields is given by the Poynting vector: 

𝑺 =
1
𝜇

(𝐸 × 𝐵) 

For monochromatic plane waves propagating in the �̂� direction:  

𝑺 = 𝑣𝑢𝒛� 

Electromagnetic waves not only carry energy, but also carry momentum. The momentum density 

stored in the fields is: 

℘ =  
1
𝑣
𝑢𝒛� 

Momentum and energy oscillate as a cosine squared. Tipically we’re interested in the average of 

those quantities, which means: 

〈𝑢〉 =
1
2
𝜖𝐸2 

〈𝑆〉 =
1
2
𝑣〈𝑢〉𝒛� 

〈℘〉 =
1

2𝑣
〈𝑢〉𝒛� 

The  
1
2
 term is exactly the average of a cosine squared over a cycle. The quantity 〈𝑆〉 represent the 

average power trasported per unit area by an EM wave, and it’s called Intensity. 
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3.5 Reflection and refraction of EM waves at a plane interface between dielectrics 

A monochromatic wave  

𝐸𝚤� (𝑟, 𝑡) = 𝐸0𝑒𝑖𝑘𝑥−𝑖𝜔𝑡 

𝐵�𝑖(𝑟, 𝑡) = �𝜇𝜖
𝒌 × 𝑬
𝑘

 

Incident on a plane interface between dielectrics, gives rise to a reflected and a transmitted wave 

of equations: 

𝐸�𝑟 = 𝐸0𝑟𝑒𝑖𝑘𝑟𝑥−𝑖𝜔𝑡  𝐵�𝑟(𝑟, 𝑡) = �𝜇𝑟𝜖𝑟
𝒌𝒓 × 𝑬𝒓
𝑘𝑟

 

𝐸�𝑡 = 𝐸0𝑡𝑒𝑖𝑘𝑡𝑥−𝑖𝜔𝑡  𝐵�𝑡(𝑟, 𝑡) = �𝜇𝑡𝜖𝑡
𝒌𝒕 × 𝑬𝒕
𝑘𝑡

 

At the interface between two different media the time and space variation of all fields must be the 

same, consequently we must have all phase factor equal, and all frequencies equal as well. This 

implies: 

𝒌𝒊 ∙ 𝒙 = 𝒌𝒓 ∙ 𝒙 = 𝒌𝒕 ∙ 𝒙 

Which means all three vectors must lie in a plane, called plane of incidence. Furthermore we have, 

considering fig.2:  

 

Figure 2: incident wave 𝒌 = 𝒌𝒊 strikes plane interface between different media, giving rise to refracted wave 𝒌’ = 𝒌𝒕 
and reflected wave 𝒌’’ = 𝒌𝒓 
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𝑘𝑖 sin 𝑖 = 𝑘𝑟 sin 𝑟 = 𝑘𝑡 sin 𝑡 

𝑘𝑖 = 𝑘𝑟 =
𝜔
𝑐 �

𝜇𝜖 

The reflection angle equals the incidence angle, while the transmission angle is give by Snell’s law: 

sin 𝑖
sin 𝑡

=
𝑛𝑡
𝑛𝑖

 

Where n is the index of refraction, defined as �
𝜇𝜖
𝜇0𝜖0

 , with 𝜇0 is the vacuum permeability and 

𝜖0is the vacuum susceptibility.   

The boundary conditions at the interface are: 

[𝜖(𝑬𝒊 − 𝑬𝒓) − 𝜖𝑡𝑬𝒕] ∙ 𝒏 = 0 

(𝒌𝒊 × 𝑬𝒊 + 𝒌𝒓 × 𝑬𝒓 − 𝒌𝒕 × 𝑬𝒕) ∙ 𝒏 = 0 

(𝑬𝑖 + 𝐸𝑟 − 𝐸𝑡) × 𝒏 = 𝟎 

�
1
𝜇

(𝒌𝑖 × 𝑬𝒊 + 𝒌𝒓 × 𝑬𝒓) −
1
𝜇𝑡

(𝒌𝒕 × 𝑬𝒕)� × 𝒏 = 0 

Those conditions means that normal components of fields D and B, and tangential components of 

E and H are continuous across the interface. In applying those boundary conditions it is convenient 

to consider two separate situations, one in which the incident plane wave is linearly polarized with 

its polarization vector perpendicular to the plane of incidence, and the other in which the 

polarization vector is parallel to the plane of incidence. The boundary conditions simplify as 

follows:  

For perpendicular polarization 

𝐸𝑖 + 𝐸𝑟 − 𝐸𝑡 = 0 

�
𝜖
𝜇

(𝐸𝑖 − 𝐸𝑟) cos 𝑖 − �
𝜖𝑡
𝜇𝑡
𝐸𝑡 cos 𝑡 = 0 
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Figure 3: Perpendicularly polarized (TE-transverse electric) wave 

 

And for parallel polarization 

cos 𝑖 (𝐸𝑖 − 𝐸𝑟) − cos 𝑡 𝐸𝑡 = 0 

�
𝜖
𝜇

(𝐸𝑖 + 𝐸𝑟) −�
𝜖𝑡
𝜇𝑡
𝐸𝑡 = 0 

  

Figure 4: Parallel polarized (TM-transverse magnetic) wave 
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3.6  Brewster’s angle and total internal reflection 

For polarization parallel to the plane of incidence there is an angle of incidence, called Brewster’s 

angle, at which there is no reflection. This angle is : 

𝑖𝐵 = tan−1 �
𝑛𝑡
𝑛
� 

The total internal reflection arise when the incident and reflected waves are in a medium of higher 

index of refraction then the refracted wave (𝑛𝑡 > 𝑛). If  (𝑛𝑡 > 𝑛), then the angle of refraction is 

larger then the angle of incidence. When the angle of refraction in equal to 
𝜋
2
 the refracted wave is 

propagated parallel to the surface and there is no energy flow across the interface. The angle of 

refraction is 
𝜋
2
 when the angle of incidence is equal to: 

𝑖𝑙 = sin−1 �
𝑛𝑡
𝑛
� 

For the value 𝑖𝑙  of the angle of incidence we have total internal reflection. For bigger values of 𝑖𝑙 
the refracted wave is still propageted parallel to the surface, but is also attenuated exponentially 

beyond the surface. The attenuation occurs within a very few wavelenghts from the surface. 

 

3.7  Electromagnetic waves in conductors3 

Maxwell’s equations for conductors are  

∇ ∙ 𝐸 =
1
𝜖
𝜌𝑓                                       ∇ ∙ 𝐵 = 0 

∇ × 𝐸 = −
𝜕𝐵
𝜕𝑡

                        ∇ × 𝐵 =  𝜇𝜎𝐸 + 𝜇𝜖
𝜕𝐸
𝜕𝑡

 

In a conductor the free current density 𝐽𝑓 is generally not zero and proportional to the electric 

field through the relation  

𝐽𝑓 = 𝜎𝐸 

where 𝜎 is the conductivity. Maxwell’s equations can further be simplified is we consider that free 

charge dissipates(flows out from the conductor) in a characteristic time4 𝜏 = 𝜖
𝜎

 , which could be 

                                                            
3 Incidentally, conductors are dispersive. 
4 N.Ashby [8] points out that for good conductors 𝜏 is absurdly short (10−19s for copper whereas the time between 
collision is 𝜏𝑐 = 10−14s). The problem is Ohm’s law breaks down on time scale shorter than 𝜏𝑐; actually the time it 
takes free charge to dissipate in a good conductor is 𝜏𝑐. [9] shows that fields and currents take even longer to 
equilibrate. 
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considered as a mesure of how good a conductor is. “Perfect” conductor have 𝜏 = 0, “good” 

conductors have very little values for 𝜏 while “poor” conductors have nonnegligible values for 𝜏.  

Simplified Maxwel’s equations are:  

∇ ∙ 𝐸 = 0                                             ∇ ∙ 𝐵 = 0 

∇ × 𝐸 = −
𝜕𝐵
𝜕𝑡

                         ∇ × 𝐵 =  𝜇𝜎𝐸 + 𝜇𝜖
𝜕𝐸
𝜕𝑡

 

This equations still admit plane wave solution of the form  

𝑬� =  𝐸�𝑒𝑖𝒌𝒙−𝑖𝜔𝑡                                   𝑩� =  𝐵�𝑒𝑖𝒌𝒙−𝑖𝜔𝑡 

But this time the wave vector k is complex. The real and imaginary part of k can be expressed by: 

𝑘𝑟 = 𝜔�
𝜇𝜖
2
��1 + �

𝜎
𝜔𝜖
�
2

+ 1�

1
2

                            𝑘𝑖 = 𝜔�
𝜇𝜖
2
��1 + �

𝜎
𝜔𝜖
�
2
− 1�

1
2

 

 

So that 𝑘 = 𝑘𝑟 + 𝑖𝑘𝑖  . The imaginary part results in an attenuation of the wave. The distance it 

takes to reduce the amplitude by a factor  
1
𝑒
  is called skin depth: 

𝑑 =
1
𝑘𝑖

 

The imaginary part is responsable for another interesting feature: the electric and magnetic fields 

are no longer in phase, the magnetic field lag behind the electric. In good conductors the energy 

field is almost entirely magnetic in nature. 

 

Figure 5: Electric and Magnetic fields in a conductor 
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3.7  Reflection at a conducting surface 

The boundary conditions we used to analyze reflection and refraction at an interface between two 

dielectrics do not hold in the presence of free charges and current. We have the more general 

relations: 

𝜖1𝐸1⊥ − 𝜖2𝐸2⊥ = 𝜎𝑓                               𝐸1
∥ − 𝐸2

∥ = 0 

𝐵1⊥ − 𝐵2⊥ = 0                     
1
𝜇1
𝐵1
∥ −

1
𝜇2
𝐵2
∥ = 𝐾𝑓 × 𝒏� 

Where 𝐾𝑓 is the free surface current, 𝜎𝑓  the free surface charge and 𝒏� is a unit vector 

perpendicular to the surface, pointing from medium (2) to medium (1). If we suppose medium (1) 

to be a dielectric and medium (2) to be a good conductor we obtain results that are formally 

identical to those we discovered for nonconductors. The relations between incident, reflected and 

refracted fields  for waves polarized parallel to the plane of incidence are:  

𝐸�𝑅 = �
𝛼 − 𝛽�

𝛼 + 𝛽�
�𝐸�𝐼  𝐸�𝑇 = �

2
𝛼 + 𝛽�

�𝐸�𝐼 

𝛼 and 𝛽 are called Fresnel coefficients and are equal to: 

𝛼 =
cos𝜃𝑇
cos𝜃𝐼

  𝛽� =
𝜇1𝑣1
𝜇2𝜔

𝑘�2 

The resemblance is only formal with dielectric case, because now 𝛽� is complex. 

 

3.8  Electromagnetic waves in anisotropic media  

The properties of an anisotropic medium with respect to electromagnetic waves are defined by 

the tensors 𝝐,𝝁, and by the relations  

𝑫 = 𝝐𝑬  𝑩 = 𝝁𝑯 

𝝐 and 𝝁 are second-order tensor completely determined by three mutually perpendicular vectors 

𝝐𝒊and 𝝁𝒊 whose directions are called principal axis.  

𝝐 = �
𝜖11 𝜖12 𝜖13
𝜖21 𝜖22 𝜖23
𝜖31 𝜖32 𝜖33

�    𝝁 = �
𝜇11 𝜇12 𝜇13
𝜇21 𝜇22 𝜇23
𝜇31 𝜇32 𝜇33

� 

Using the generalized principle of the symmetry of the kinetic coefficients it is easy to 

demonstrate that  𝜖𝑖𝑘 = 𝜖𝑘𝑖 and 𝜇𝑖𝑘 = 𝜇𝑘𝑖 . The tensor are therefore symmetric.  
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In anisotropic media the wave vector k, the fields D and H are all mutually perpendicular, and so 

are the fields H and E. The vectors D, k and E, being all perpendicular to H, are coplanar. With 

respect to k, D and H are always transverse, but E is not, in general. Similarly the Poynting vector, 

which describes the energy flux, has not, in general, the same direction of k as well. As a 

consequence the index of refraction n depends on the direction as well as on the frequency of 

incident waves. 

A detailed explanation on how the electromagnetic waves propagate and are reflected and 

refracted at the interface between two anisotropic media will be given in chapter 5, in relation 

with the program written to simulate them. 

 

3.9 Optical properties of Crystals 

Crystals cannot be considered isotropic, they must be analyzed using the theory for anisotropic 

media. The optical properties of crystals depends primarily upon the symmetry of their dielectric 

tensor 𝜖𝑖𝑘. All crystals fall under 3 types: cubic, uniaxial and biaxial. In a crystal of the cubic system 

𝜖𝑖𝑘 = 𝜖𝛿𝑖𝑘 , i.e the three principal values of the tensor are equal, and the direction of the principal 

axis are arbitrary. As regards their optical properties, cubic crystal are no different from isotropic 

bodies. The uniaxial crystal include those of the rhombohedral, tetragonal and hexagonal systems. 

The hexagonal system is particularly important because it can be demonstrated that any 

structures that has in-plane isotropy and out-of-plane anisotropy posses hexagonal symmetry. In 

uniaxial crystals one of the principal axes of the tensor 𝝐 is chosen to coincide with the threefold, 

fourfold or sixfold axis of symmetry of the crystal; this axis is called the optical axis of the crystal, 

and we shall take it as the z-axis in a Cartesian representation, denoting the corresponding 

principal value of  𝝐 by 𝝐∥. The direction of the other two principal axes, in a plane perpendicular 

to the optical axis, are arbitrary, and the corresponding principal values are equal and denote by 

𝝐⊥. 

In a uniaxial crystal two types of waves can propagate. With respect to one type, called ordinary 

waves, the crystal behaves like an isotropic medium with refractive index  𝑛 = �
𝜖⊥𝜇
𝜖0𝜇0

. The 

magnitude of the wave vector is 𝜔 𝑛
𝑐

  whatever its direction, and the direction of the ray vector is 

that of the wave vector.  

The ray vector is a quantity that characterizes the propagation of light in anisotropic medium (and 

in geometrical optics, of course). The direction of light rays is given by the group velocity  
𝜕𝜔
𝜕𝑘
𝒌� . In 

isotropic medium the direction of the wave vector is always the same as the direction of the ray 

vector, but in anisotropic medium the two in general do not coincide. The magnitude is given by 

𝒏 ∙ 𝒔 = 𝟏 where n is the refractive index vector, and s the ray vector. 
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The waves of the second type, called extraordinary waves, the index of refraction n depends upon 

the angle 𝜃 between the wave vector and the optical axis through the relation 

1
𝑛2

=
(sin𝜃)2

𝜖∥
+

(cos𝜃)2

𝜖⊥
 

For the wave vector and the ray vector are not on the same direction but lies in the same plane, 

along with the optical axis. In uniaxial crystals two refracted waves are formed, a phenomenon 

known as double refraction or birefringence. The ordinary refracted waves is entirely analogous to 

the refracted waves in isotropic bodies and lies in the plane of incidence with the incident and the 

reflected wave. The extraordinary wave still has its wave vector lying in the plane of incidence, but 

its ray vector generally does not. 

Biaxial crystals have the three principal values of the tensor 𝝐 all different. Crystals of the triclinic, 

monoclinic and orthorhombic systems are of this type. This type of crystals aren’t of interest in the 

simulation of multilayer produced by molecular deposition because it can occur only for layers 

which are not in-plane isotropic. 

 

 

 

 

 

 



 

Chapter 4 

 

Electromagnetic waves in multilayered 
structures 
This chapter is a detail explanation of the mathematical model used to simulate the propagation 
and the interaction of electromagnetic waves at the interface between two different isotropic media.  

 

4.1 Propagation and superposition of waves in a multilayer 

First we consider a plane, monochromatic electromagnetic wave P, incident with an angle 𝜃 with 

the surface of a multilayered structure made of n layers, separated by plane and parallel 

interfaces. At every interface two waves are generated, the transmitted wave, which travels to the 

next layer and the reflected wave which travels back, with direction given by Snell’s law. We also 

consider two different polarizations, parallel and perpendicular to the plane of incidence. 

 

 

 

 

Figure 1: Electromagnetic waves propagating in a multilayer 

A B 
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The fields in a generic layer n are: 

𝐸�𝑛(𝑟, 𝑡) = 𝐸�𝑇𝑛𝑒𝑖𝜔𝑡+𝑖𝑘𝑛𝒓 + 𝐸�𝑅𝑛𝑒𝑖𝜔𝑡−𝑖𝑘𝑛𝒓 

𝐸�𝑛𝑇 and 𝐸�𝑛𝑅  are the complex amplitudes of the waves  propagating  in direction +𝒌𝒙 + 𝒌𝒛 and 

+𝒌𝒙 − 𝒌𝒛, where r is the position vector. We can express the position vector r in terms of the 

Cartesian components x, y and z represented in the figure; z points in the direction perpendicular 

to the interface of two layers while x and y points in the parallel direction.  Depending on 

polarization the previous equation become 

𝐸�𝑛(𝑟, 𝑡) = 𝐸�𝑛𝑇𝑒𝑖𝜔𝑡+𝑖(𝒌𝒙𝒏𝒙+𝑘𝒛𝒏𝒛) + 𝐸�𝑛𝑅𝑒𝑖𝜔𝑡+𝑖(𝒌𝒙𝒏𝒙−𝒌𝒛𝒏𝒛) 

for parallel polarization and  

𝐸�𝑛(𝑟, 𝑡) = 𝐸�𝑛𝑇𝑒𝑖𝜔𝑡+𝑖(𝒌𝒙𝒏𝒚+𝑘𝒛𝒏𝒛) + 𝐸�𝑛𝑅𝑒𝑖𝜔𝑡+𝑖(𝒌𝒙𝒏𝒚−𝒌𝒛𝒏𝒛) 

For perpendicular. 

We have M layers, plus 2 semi infinite layers representing the air and the substrate called 

respectively material A and material B in figure 1. This means we have M+1 interfaces to which we 

impose the boundary conditions expressed in the previous chapter: 

𝜖1𝐸1⊥ = 𝜖2𝐸2⊥       𝐸1
∥ = 𝐸2

∥ 

𝐵1⊥ = 𝐵2⊥    
1
𝜇1
𝐵1
∥ =

1
𝜇2
𝐵2
∥ 

 

Using the relation 𝐵 = 𝐸
𝑣𝑛

 , with v speed of light in medium n, we can express the boundary 

conditions in terms of electric fields only.  

We want to find the amplitudes 𝐸�𝑖𝑘 of the fields in every layer in order to derive meaningful 

physical quantities like reflectivity and transmissivity. To do so we observe that the unknown 

waves are two for each layer, except for the last one where we don’t have any reflected wave 

because the layer is assumed to be infinite. The amplitude of the incident wave 𝐸�𝑇1  is given and 

therefore we have to calculate (2𝑀 + 1 + 1) = (2𝑀 + 2) unknowns. If we consider the waves as 

linearly polarized in direction perpendicular and parallel to the plane of incidence, as described 

before,  the independent boundary conditions reduce to 2, instead of 4. This is no problem, 

considered we have M+1 interfaces to where the conditions apply, 2(𝑀 + 1) = 2𝑀 + 2, and the 

number of unknown equal the number of equations.  

In the case of perpendicular polarization the meaningful conditions are, since the electric fields 

have no components perpendicular to the interface,  𝐸1
∥ = 𝐸2

∥ ,  𝐵1⊥ = 𝐵2⊥, 1
𝜇1
𝐵1
∥ = 1

𝜇2
𝐵2
∥ , but 

using Snell’s law the second replicates the third and the system becomes: 
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𝑒𝑖𝜔𝑡[𝐸�1𝑅𝑒+𝑖(𝒌𝒙𝟏𝒚𝟏−𝒌𝒛𝟏𝒛𝟏) − 𝐸�2𝑇𝑒𝑖(𝒌𝒙𝟐𝒚𝟏+𝑘𝒛𝟐𝒛𝟏) − 𝐸�2𝑅𝑒+𝑖(𝒌𝒙𝟐𝒚−𝒌𝒛𝟐𝒛𝟏)] = −𝑒𝑖𝜔𝑡𝐸�1𝑇𝑒𝑖(𝒌𝒙𝟏𝒚+𝒌𝒛𝟏𝒛𝟏) 

𝑒𝑖𝜔𝑡[−
1

𝜇1𝑣1
𝐸�1𝑅𝑒+𝑖(𝒌𝒙𝟏𝒚𝟏−𝒌𝒛𝟏𝒛𝟏) cos 𝑖1 −

1
𝜇2𝑣2

(𝐸�2𝑇𝑒𝑖(𝒌𝒙𝟐𝒚𝟏+𝑘𝒛𝟐𝒛𝟏) − 𝐸�2𝑅𝑒+𝑖(𝒌𝒙𝟐𝒚𝟏−𝒌𝒛𝟐𝒛𝟏)) cos 𝑡2] =

                                                                                                         −
1

𝜇1𝑣1
𝑒𝑖𝜔𝑡𝐸�1𝑇𝑒𝑖(𝒌𝒙𝟏𝒚𝟏+𝒌𝒛𝟏𝒛𝟏) cos 𝑖1  

𝑒𝑖𝜔𝑡[𝐸�2𝑇𝑒𝑖(𝒌𝒙𝟐𝒚+𝒌𝒛𝟐𝒛𝟐) + 𝐸�2𝑅𝑒+𝑖(𝒌𝒙𝟐𝒚𝟐−𝒌𝒛𝟐𝒛𝟐) − 𝐸�3𝑇𝑒𝑖(𝒌𝒙𝟑𝒚𝟐+𝑘𝒛𝟑𝒛𝟐) − 𝐸�3𝑅𝑒+𝑖(𝒌𝒙𝟑𝒚𝟐−𝒌𝒛𝟑𝒛𝟐)] = 0 

𝑒𝑖𝜔𝑡[
1

𝜇2𝑣2
(𝐸�2𝑇𝑒𝑖(𝒌𝒙𝟐𝒚𝟐+𝒌𝒛𝟐𝒛𝟐) − 𝐸�2𝑅𝑒+𝑖(𝒌𝒙𝟐𝒚𝟐−𝒌𝒛𝟐𝒛𝟐)) cos 𝑖2 −

1
𝜇2𝑣2

(𝐸�3𝑇𝑒𝑖(𝒌𝒙𝟑𝒚𝟐+𝑘𝒛𝟐𝒛𝟐) − 𝐸�3𝑅𝑒+𝑖(𝒌𝒙𝟑𝒚𝟐−𝒌𝒛𝟑𝒛𝟐)) cos 𝑡3] = 0 

⋮                                      ⋮                                       ⋮ 

𝑒𝑖𝜔𝑡[(𝐸�𝑀𝑇𝑒+𝑖(𝒌𝒙𝑴𝒚−𝒌𝒛𝑴𝒛𝑴+𝟏) + 𝐸�𝑀𝑇𝑒𝑖(𝒌𝒙𝑴𝒚𝑴+𝟏+𝑘𝒛𝑴 𝒛𝑴+𝟏)) − 𝐸�𝑀+1𝑇𝑒+𝑖(𝒌𝒙𝑴+𝟏𝒚𝑴+𝟏−𝒌𝒛𝑴+𝟏𝒛𝑴+𝟏)] = 0 

𝑒𝑖𝜔𝑡[
1

𝜇𝑀𝑣𝑀
(𝐸�𝑀𝑇𝑒+𝑖(𝒌𝒙𝑴𝒚𝑴+𝟏−𝒌𝒛𝑴𝒛𝑴+𝟏) − 𝐸�𝑀𝑇𝑒𝑖(𝒌𝒙𝑴𝒚𝑴+𝟏+𝑘𝒛𝑴 𝒛𝑴+𝟏)) cos 𝑖𝑀 −

1
𝜇𝑀+1𝑣𝑀+1

𝐸�𝑀+1𝑇𝑒+𝑖(𝒌𝒙𝑴+𝟏𝒚𝑴+𝟏−𝒌𝒛𝑴+𝟏𝒛𝑴+𝟏) cos 𝑡𝑀+1]

                                                                                                                                                                                                 = 0  

 

While for parallel polarization the meaningful conditions are 𝜖1𝐸1⊥ = 𝜖2𝐸2⊥ ,𝐵1⊥ = 𝐵2⊥    1
𝜇1
𝐵1
∥ =

1
𝜇2
𝐵2
∥ because now the fields are all perpendicular to the interface. Once again thanks to Snell’ law 

the second condition replicates the third and the system is: 

 

𝑒𝑖𝜔𝑡[−𝐸�1𝑅𝑒+𝑖(𝒌𝒙𝟏𝒙𝟏−𝒌𝒛𝟏𝒛𝟏) cos 𝑖1 − (𝐸�2𝑇𝑒𝑖(𝒌𝒙𝟐𝒙𝟏+𝑘𝒛𝟐𝒛𝟏) − 𝐸�2𝑅𝑒+𝑖(𝒌𝒙𝟐𝒙𝟏−𝒌𝒛𝟐𝒛𝟏)) cos 𝑡2] = −𝑒𝑖𝜔𝑡𝐸�1𝑇𝑒𝑖(𝒌𝒙𝟏𝒙𝟏+𝒌𝒛𝟏𝒛𝟏) cos 𝑖1

𝑒𝑖𝜔𝑡[
1

𝜇1𝑣1
𝐸�1𝑅𝑒+𝑖(𝒌𝒙𝟏𝒙𝟏−𝒌𝒛𝟏𝒛𝟏) −

1
𝜇2𝑣2

(𝐸�2𝑇𝑒𝑖(𝒌𝒙𝟐𝒙𝟏+𝑘𝒛𝟐𝒛𝟏) − 𝐸�2𝑅𝑒+𝑖(𝒌𝒙𝟐𝒙𝟏−𝒌𝒛𝟐𝒛𝟏))] = −
1

𝜇1𝑣1
𝑒𝑖𝜔𝑡𝐸�1𝑇𝑒𝑖(𝒌𝒙𝟏𝒙𝟏+𝒌𝒛𝟏𝒛𝟏) cos 𝑖1

𝑒𝑖𝜔𝑡[(𝐸�2𝑇𝑒𝑖(𝒌𝒙𝟐𝒙𝟐+𝒌𝒛𝟐𝒛𝟐) − 𝐸�2𝑅𝑒+𝑖(𝒌𝒙𝟐𝒙𝟐−𝒌𝒛𝟐𝒛𝟐) )cos 𝑖2 − (𝐸�3𝑇𝑒𝑖(𝒌𝒙𝟑𝒙𝟐+𝑘𝒛𝟑𝒛𝟐) − 𝐸�3𝑅𝑒+𝑖(𝒌𝒙𝟑𝒙𝟐−𝒌𝒛𝟑𝒛𝟐)) cos 𝑡3] = 0

𝑒𝑖𝜔𝑡[
1

𝜇2𝑣2
(𝐸�2𝑇𝑒𝑖(𝒌𝒙𝟐𝒙𝟐+𝒌𝒛𝟐𝒛𝟐) + 𝐸�2𝑅𝑒−𝑖(𝒌𝒙𝟐𝒙𝟐+𝒌𝒛𝟐𝒛𝟐)) −

1
𝜇2𝑣2

(𝐸�3𝑇𝑒𝑖(𝒌𝒙𝟑𝒙𝟐+𝑘𝒛𝟐𝒛𝟐) + 𝐸�3𝑅𝑒−𝑖(𝒌𝒙𝟑𝒙𝟐+𝒌𝒛𝟑𝒛𝟐))] = 0

⋮                                      ⋮                                       ⋮

𝑒𝑖𝜔𝑡[(𝐸�𝑀𝑇𝑒+𝑖(𝒌𝒙𝑴𝒙𝑴+𝟏−𝒌𝒛𝑴𝒛𝑴+𝟏) − 𝐸�𝑀𝑇𝑒𝑖(𝒌𝒙𝑴𝒙𝑴+𝟏+𝑘𝒛𝑴 𝒛𝑴+𝟏)) cos 𝑖𝑀 − 𝐸�𝑀+1𝑇𝑒+𝑖(𝒌𝒙𝑴+𝟏𝒙𝑴+𝟏−𝒌𝒛𝑴+𝟏𝒛𝑴+𝟏) cos 𝑡𝑀+1] = 0

𝑒𝑖𝜔𝑡[
1

𝜇𝑀𝑣𝑀
(𝐸�𝑀𝑇𝑒+𝑖(𝒌𝒙𝑴𝒙𝑴+𝟏−𝒌𝒛𝑴𝒛𝑴+𝟏) + 𝐸�𝑀𝑇𝑒𝑖(𝒌𝒙𝑴𝒙𝑴+𝟏+𝑘𝒛𝑴 𝒛𝑴+𝟏))−

1
𝜇𝑀+1𝑣𝑀+1

𝐸�𝑀+1𝑇𝑒+𝑖(𝒌𝒙𝑴+𝟏𝒙𝑴+𝟏−𝒌𝒛𝑴+𝟏𝒛𝑴+𝟏)] = 0  

 

The system could be rewritten using matrix representation in the form 

𝑪 ∙ 𝑨 = 𝑻 

Where C is the matrix holding the coefficients, A is the unknown vector and T is the vector holding 

the known values of the fields. 
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It’s possible to simplify the notation by considering that 𝑒𝑖𝜔𝑡 appears on both sides of every 

equation and by remembering that the parallel components of electric fields must be conserved at 

the interface, thus simplifying the exponential terms dependent on x: 

𝑒𝑖𝒌𝒚,𝒏−𝟏𝒚𝒏 = 𝑒𝑖𝒌𝒚,𝒏𝒚𝒏 

In the case of perpendicular polarization C becomes: 

𝑪 = 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑒−𝑖𝑘𝑧1𝑧1 −𝑒𝑖𝑘𝑧2𝑧1 −𝑒−𝑖𝑘𝑧2𝑧1 0 …

−
1

𝜇1𝑣1
𝑒−𝑖𝑘𝑧1𝑧1 cos 𝑖1 −

1
𝜇2𝑣2

𝑒𝑖𝑘𝑧2𝑧1 cos 𝑡2
1

𝜇2𝑣2
𝑒−𝑖𝑘𝑧2𝑧1 cos 𝑡2 0 ⋯

0 𝑒𝑖𝑘𝑧2𝑧2 𝑒−𝑖𝑘𝑧2𝑧2 −𝑒𝑖𝑘𝑧3𝑧2 −𝑒−𝑖𝑘𝑧3𝑧2   0 …

0
1

𝜇2𝑣2
𝑒𝑖𝑘𝑧2𝑧2 cos 𝑖2 −

1
𝜇2𝑣2

𝑒−𝑖𝑘𝑧2𝑧2 cos 𝑖2
1

𝜇3𝑣3
𝑒𝑖𝑘𝑧3𝑧2 cos 𝑡3

1
𝜇3𝑣3

𝑒−𝑖𝑘𝑧3𝑧2 cos 𝑡3  0 …

⋮
0 … 𝑒𝑖𝑘𝑧𝑀𝑧𝑀+1 𝑒𝑖𝑘𝑧𝑀𝑧𝑀+1 −𝑒−𝑖𝑘𝑧𝑀+1𝑧𝑀+1

0 …
1

𝜇𝑀𝑣𝑀
𝑒−𝑖𝑘𝑧𝑀𝑧𝑀+1 cos 𝑖𝑀 −

1
𝜇𝑀𝑣𝑀

𝑒−𝑖𝑘𝑧𝑀𝑧𝑀+1 cos 𝑖𝑀 −
1

𝜇𝑀+1𝑣𝑀+1
𝑒−𝑖𝑘𝑧𝑀+1𝑧𝑀+1 cos 𝑡𝑀+1⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 

𝑨 =

⎝

⎜
⎜
⎜
⎛

𝐸�𝑅1
𝐸�𝑇2
𝐸�𝑅2
𝐸�𝑇3
⋮

𝐸�𝑇𝑀+1⎠

⎟
⎟
⎟
⎞

 

 

𝑻 =

⎝

⎜
⎜
⎜
⎜
⎛

−
1

𝜇1𝑣1
𝑒−𝑖𝑘𝑧1𝑧1

−
1

𝜇1𝑣1
𝑒−𝑖𝑘𝑧1𝑧1 cos 𝑖1

0
⋮
0
0 ⎠

⎟
⎟
⎟
⎟
⎞

 

 

The same can be done with parallel polarization, leading to similar results. 

The easiest way to find solutions consists in multiply both sides of 𝑪 ∙ 𝑨 = 𝑻  by the inverse matrix 

𝑪−1 (𝑪−1 ∙ 𝑪 = 𝑰) and solving for A: 

𝑨 = 𝑪−𝟏 ∙ 𝑻 
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Chapter 5 

 

The isotropic programs 
This chapter shows in detail the structure of the software specifically designed to simulate the 
propagation of electromagnetic waves in isotropic multilayered media. The software has been 
designed using Matlab environment, a widespread mathematical software.   
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5.1 Matlab programs multidiel.m and multidielPar.m 

Matlab programs MultistratoPer.m and MultistratoPar.m are designed to solve the problem of 
reflection and transmission of electromagnetic waves in a multilayer structure using the procedure 

illustrated in chapter 3. Basically those programs solve the problem  𝑨 = 𝑪−𝟏𝑻  for the two 
possible linear polarization of the incident wave. Matrix C has (2𝑀 + 2) × (2𝑀 + 2) elements (M 
is the numbers of layers) which grow quadratically with the numbers of layers.  

It is important to understand that the programs do not simulate the propagations of waves as they 
move from one layer to the other and go through reflection or transmission, but gives the 
superposition of all the transmitted and all the reflected waves at a particular interface which 
satisfy the boundary conditions explained previously. That being said it is obvious the output for, 
let’s say, the first interface, which represent the boundary between air, chosen as the first layer by 
default, and the second layers, which is arbitrary, is the global reflectivity of the whole multilayer 
structure. 

The default streamline of the programs computes the response for a multilayer structure made by 
two different media, called medium A and medium B. Medium A and medium B periodically 
repeat in the structure, with material A coming on top of ,material B. Those media can be of any 
type: dielectrics, conductors, magnetic; they are defined by the index of refraction, the 
permeability and the conductivity and the programs will handle the different user defined 
configurations. There are no limitation to the nature of the media involved. In order to account for 
not perfectly transparent media the programs work with complex values of the properties, as 
explained in chapter 2. The number of layers is arbitrary and the thicknesses are given by their 
ratio to the wavelength of the incident wave, which represent the only intrinsic length scale of the 
problem. The problems are solved for a particular wavelength and this allows us to solve the 
equations for fixed values the dependence of the index of refraction, the conductivity and the 
permeability upon the frequency. If results are needed for different wavelengths the 
computations are simply repeated for the appropriate frequency dependent values of the material 
properties. The programs are designed to calculate the variation of the fields in the structure for 
an arbitrary angle of incidence, chosen by the user, thus dramatically increasing the generality of 
the simulation. 

The amplitude of the incident wave is required as input from the user, but of course changing it 
changes nothing for the reflectivity and represent a mere constant shift in the amplitudes of the 
waves obtained by superposition in every layer. It’s set by default to 1. 

In the programs I added a feature which let the user set any number of what in literature are 
called “defects”. A defect is an anomaly in the multilayer periodical structure which can manifest 
itself in a localized difference in thickness or material type or both. By means of this feature is 
possible to analyze the response of virtually endless configuration of multilayer and analyze also 
structures which don’t posses any periodical structure at all.  

 



5. The isotropic programs 27 
 

5.2 Data acquisition 

The default structure of the multilayer is implemented in Matlab programs and need rewriting in 
the source code to be changed. The user have to manually replace important parameters as: 

• Thickness  

• Index of refraction 

• Conductivity  

• Relative Permeability 

• Angle of Incidence 

• Wavelength  

This approach cannot be used for the implementation of defects data, because the defects can be 
so numerous to deem as infeasible such a design. For maximum portability and efficiency a C++ 
program has been created which acquire defects data and feed them directly to the main MatLab 
program. C++ acquire critical parameters such as: 

• Number of Layers 

• Number of Defects in the multilayered structure, which can even by equal to the number of layers 
itself, thus bypassing the default structure in MatLab 

• Position of the defects, because even position matters in the overall response 

• Index of refraction of defects 

• Conductivity 

• Relative Permeability (set by default to 1 is not explicitly requested by the user) 

• Thicknesses  

 

5.3  The generic matrix element 

I will point out in more detail how every element in the resolving matrix is obtained. The generic matrix 
element can be written as: 

{𝑎𝑟𝑐} = 𝒜 ∙ ℬ ∙ 𝒞𝒟𝑒ℰ∙𝑘ℱ𝑥𝒢 ∙ ℋ 

Where 𝒜  ℬ  𝒞  𝒟  ℰ  ℱ  𝒢  ℋ are coefficient chosen to give in the generic position (𝑟, 𝑐) , where 𝑟 
represents the rows in the solving matrix and c represents the columns, the right result. 

• 𝒜 indicates if the element is different from zero 

• ℬ  deontes the sign of the element 

• 𝒞  is the coefficient for the magnetic field 

• 𝒟 can be zero, if we’re considering rows where we compute electric fields, or one, if we’re 
considering rows where the magnetic field is involved. 

• ℰ  gives the sign of the exponential 

• ℱ is the index of 𝑘 

• 𝒢  is the index of 𝑥 

• ℋ  gives the angular dependence 
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𝓐 
 
This parameter tells us which element are different from zero in our matrix. Let’s focus on a 
20 × 20 matrix and let’s see in detail which elements are nonzero. 
 
        

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

Tab.1: Elements that differ from zero are highlighted with different colours 

 

• Elements on the principal diagonal, in red, occupy positions (𝑟, 𝑐) 

• Elements in blue occupy positions (𝑟, 𝑐 + 1) 

• Elements in green occupy positions (𝑟 + 1, 𝑐) 

• Elements in yellow occupy positions (𝑟, 𝑐 + 2), with odd  𝑟 

• Elements in orange occupy positions (𝑟 + 2, 𝑐), with even c 

 

To tell Matlab which elements is different from zero has been designed the program delta.m, which 
behaves like the Kronecker Delta: 
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𝛿𝑖𝑗 = �
0       𝑤ℎ𝑒𝑛    𝑖 ≠ 𝑗  
1       𝑤ℎ𝑒𝑛    𝑖 = 𝑗 

� 

𝓐𝒓𝒆𝒅 = 𝜹𝒓,𝒄 and similarly for the other colors. In order to be nonzero only the elements on the “orange” 

diagonal (and same for the yellow) I’ve used the relation: 

 

𝓐𝒐𝒓𝒂𝒏𝒈𝒆 =
1 − (−1)𝑟

2
𝜹𝒐𝒓𝒂𝒏𝒈𝒆 

 

In the end  𝓐 = 𝓐𝒓𝒆𝒅 + 𝓐𝒈𝒓𝒆𝒆𝒏 + 𝓐𝒃𝒍𝒖𝒆 + 𝓐𝒚𝒆𝒍𝒍𝒐𝒘 + 𝓐𝒐𝒓𝒂𝒏𝒈𝒆 

 

𝓑 

𝓑  identifies the sign of the element in the matrix. Signs are distributed as follows: 

For Perpendicular polarization 

 

+ + - - 

+ - - + 
Tab.2: Signs of the element in the matrix for perpendicular polarization 

 

For parallel polarization  

+ - - + 

+ + - + 
Tab.3: Signs of the element in the matrix for parallel polarization 

 

This sign pattern, which is a 2 × 4 matrix, repeats periodically for every nonzero element. MatLab programs 
automatically assign every sign to the corresponding delta. 
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𝓔  

𝓔  identifies the sign of the exponential term. I’ve used the same function as  𝓑 to track down the sign for 
the corresponding matrix element, with the slight difference that the sign has been reversed for blue and 
red diagonals. Signs are equal for parallel and perpendicular polarizations. 

 

+ - + - 

+ - + - 
Tab.4: Signs of the exponentials 

 

𝓓 𝒂𝒏𝒅 𝓗 

𝓓 𝑎𝑛𝑑 𝓗  are responsible for the magnetic field coefficient and for the angular coefficient respectively. For 
parallel polarization those coefficients appear only in odd rows, thus 𝓓 𝑎𝑛𝑑 𝓗 have the form: 

𝓓 =  𝓗 =
1 − (−1)𝑟

2
 

  For perpendicular polarization, on the other side, they appear only for even rows: 

𝓓 =  𝓗 =
1 + (−1)𝑟

2
 

𝓒,𝓕,𝓖 

Those coefficients are assigned through nested for cycles. The idea behind the algorithm which assigns 
them their value is the following: 

For the 𝓕 𝑎𝑛𝑑 𝓒  coefficients: 

• Starting from column 2  (𝑐 = 2) 𝓕 𝑎𝑛𝑑 𝓒 must be the same for the column we’re considering and 
for the next (in this case column 2 and 3). This can be generalized for column n and column n+1. 

• The first and the last column have their 𝓕 𝑎𝑛𝑑 𝓒 values assigned outside the nested for. 

The first for cycles through every layer except the first and the last, while another for cycles through the 
columns. The first column have the default air values assigned, while the second and third are recognized 
by the matching counters of for cycles as belonging to material A, and consequently fourth and fifth are 
assigned to Material B and so on. The last layer is assigned by default to the material chosen to be the 
substrate, called Final material in the program. If defects are assigned for counters cycle through defect 
position and match them with the corresponding layer, overwriting default data with defect data acquired 
via C++. 
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For 𝓖  coefficients the algorithm is very similar, except now we consider the rows and not the columns.  

• Starting from row 2  (𝑟 = 2) 𝓖 must be the same for the row we’re considering and for the next (in 
this case row 2 and 3). This can be generalized for row m and row m+1. 

• The first and the last row have their 𝓖 values assigned outside the nested for 

The way the for act upon the rows and the layers is analogous to what explained before. 

 

5.3  Target: efficiency 

Let’s take a close look at matrix C: it’s squared 𝑛 × 𝑛. Let’s divide it in 4 squared sub matrix  
𝑛
2

× 𝑛
2

. Let’s call 

the matrix we obtain 𝐴11,𝐴12,𝐴21 and 𝐴22. The determinant of matrix C can be calculated using Laplace’s 
formula:  det(𝑪) = det(𝐴11) × det(𝐴22) − det (𝐴12) × det (𝐴21). For what we’ve seen before about the 
structure of matrix C,  det (𝐴12) and det (𝐴21) are zero because sub matrix 𝐴12 and 𝐴21 both have more 
than a row of zeros. This means  det(𝑪) = det(𝐴11) × det(𝐴22). Now we can take sub matrix 𝐴11 and 

divide it in four sub matrix  
𝑛
4

× 𝑛
4

  and do the same trick again. With this method calculations are made 

much faster. 

 

 

   
𝐴41 

 
 

𝐴31 

 
 
 
 
 

𝐴12 

  

 
𝐴42 

  

  

 
 

𝐴32 

   
𝐴51   

 
𝐴52 

  

  

 
 
 
 
 

𝐴21 

   
𝐴72 

 
 

𝐴61 
  

 
𝐴72 

  

  

 
 

𝐴62 

   
𝐴81   

 
𝐴82 

  

  

Tab.5: Block matrix 
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5.4  Validations 

The strategy followed to verify the results can be summarized in three steps: first the results have 
been checked to be in agreement with the conservation of energy principle, second the program 
was run in a configuration for which the results could have been computed analytically and third 
the numerical solutions for a configuration not solvable analytically have been validated by 
measurements available in literature. 

Verifying the conservation energy principle is an easy task once we recall the technique used to 
create the program. The fields, thanks to the Maxwell’s equations linearity, are nothing but the 
superposition of the fields coming from every layer of our body, satisfying the boundary conditions 
given in chapter 4.  |𝐸|2 , incident on the first interface, represents the total electric energy 

entering the system.  �𝐸𝑟,1�
2
 represents the total electric energy reflected by the system, and it’s a 

superposition of the contributions coming from all the layers. �𝐸𝑡,𝑀+1�
2

 is the electric energy in the 

last layer, and represents the total electric energy transmitted. The same can be said for magnetic 
energy. Thus to satisfy the energy conservation, considering conducting and magnetic media as 
well, the following equality must be verified: 

|𝑈|2 ≥ ��𝑈𝑟,1�
2 + �𝑈𝑡,𝑀+1�

2
 

Where U is the total (magnetic and electric) energy incident on the first interface, 𝑈𝑟,1 is the total 

energy reflected at the first interface and 𝑈𝑡,𝑀+1 is the total energy transmitted in the last layer. 

In order to verify the results analytically I decided to collapse the multilayered structure in a 
monolayer and then apply Fresnel’s coefficients to find the values of the fields. For perpendicular 
polarization Fresnel’s coefficients are: 

𝐸𝑡
𝐸

=
2 cos 𝑖 sin 𝑟
sin (𝑟 + 𝑖)

                                    
𝐸𝑟
𝐸

= −
sin(𝑖 − 𝑟)
sin (𝑖 + 𝑟)

 

While for parallel polarization are: 

           
𝐸𝑡
𝐸

=
2 cos 𝑖 sin 𝑟

sin(𝑖 + 𝑟) cos(𝑖 − 𝑟)
                   

𝐸𝑟
𝐸

=
tan(𝑖 − 𝑟)
tan (𝑖 + 𝑟)

               

 

𝑖 and r represent, as in chapter 4, the angle of incidence and the angle of refraction, respectively. 
𝐸𝑡 𝑎𝑛𝑑 𝐸𝑟 represent generic reflected and transmitted fields, while 𝐸 is the field incident on the 
first interface. 
 

Lastly, as expected from the law of interference, if a layer of a given homogeneous material of 
refractive index 𝑛1 is put between two layers of another homogeneous material of refractive index 
𝑛2, we obtain a reflectivity which varies sinusoidally with thickness.  
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The maxima are in:     𝑑 = (2𝐾+1)𝜆
4

       with  𝐾 = 0,1,2, … 

The minima are in:      𝑑 = 𝐾𝜆
2

          with  𝐾 = 0,1,2, …   

 
Where 𝑑 is the thickness and 𝜆 the wavelength. 
 

 
Figure 1.1 Reflectivity vs. thickness and angle of incidence for perpendicular (left) and parallel polarization. Notice the 

sinusoidal shape and the presence of Brewster’s angle for parallel polarization, in accordance with theory. Both 
reflectivity goes to 100% for 𝜃 = 90°, as expected. The material have refraction indices 𝑛1 = 1.5 (corresponding to 

glass) and 𝑛2 = 1 (corresponding to air) 
 



 

 

Chapter 6 

 

Designing an Omnidirectional mirror 
In this chapter Matlab software for isotropic multilayer will be used to design a mirror able to 
reflect with efficiency close to 90% the light incoming from all angles and from both polarizations. 
Defects will then be added to the layers and the response analyzed for non-periodic configurations. 

 

6.1 Omnidirectional mirrors 

Until recently it was generally thought  that it was impossible to have an omnidirectional dielectric 
mirror, that is a mirror which is perfectly reflecting  at all angle of incidence and for parallel and 
perpendicular polarizations. Let’s take a closer look to the prerequisite a multilayered structure 
must have to become an omnidirectional mirror. 

A necessary but not sufficient condition for omnidirectional reflection requires the maximum 
angle of refraction  𝜃𝐻,𝑚𝑎𝑥 inside the first layer to be less than the Brewster’s angle  𝜃𝐵 at the 

second interface, so that the Brewster’s angle can never be accessed.  If this condition is not 
satisfied , a TM wave would not be reflected, thus transmitting through the structure. With 
reference to figure 1 of chapter 3: 

𝜃𝐻,𝑚𝑎𝑥 = sin−1
𝑛𝑎
𝑛𝐻

  𝜃𝐵 = tan
𝑛𝐿
𝑛𝐻

 

𝜃𝐻,𝑚𝑎𝑥 < 𝜃𝐵  𝑛𝑎 <
𝑛𝐻𝑛𝐿

�𝑛𝐻2 + 𝑛𝐿2
 

Good omnidirectional mirror should have a broad range of wavelength over which they exibit 
perfect or almost perfect reflection for both polarizations and for every angle. We will see that as 
the angle and the wavelength grow, the bands of perfect reflection for the two polarization tend 
to shift away  from each other. A careful choice of parameters as thickness, index contrast and 
number of layers is needed to guarantee a sufficiently broad band of omnidirectional reflection 
around the nominal wavelength. 
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6.2 Designing the mirror using Matlab programs 

I decided to design a mirror made of non dispersive, non conducting and non magnetic media. This 
is due to the fact that I already have to deal with six variables, and the previous assumption allows 
me to drop three of them, even if the program, as mentioned before, can handle such a general 
case. Reflectance |Γ|2  depends, in my approximation, upon: 

• 𝐿𝐻 − 𝐿𝐿 = difference of thicknesses of the layers  

• 𝑛𝐻 − 𝑛𝐿 = difference of refraction indices  

• 𝑁 = number of layers 

• 𝜃 = angle of incidence 

• 𝜆 = wavelength of incident light 

• Polarization 

• 𝑛𝑎 refraction index of the outer medium 

• 𝑛𝑏 refraction index of the substrate  

Thus |Γ|2 = 𝑓(𝐿𝐻 − 𝐿𝐿,𝑛𝐻 − 𝑛𝐿,𝑁, 𝜃, 𝜆,𝑃𝑜𝑙,𝑛𝑎,𝑛𝑏). It’s clear that looking for a global maximum 
in such a multidimensional space is a complex and time consuming procedure, that’s why I 
decided to probe the space with cleverly chosen values until I reached a local maximum fit for the 
purpose. 

|𝚪|𝟐 = 𝒇(𝑳𝑯 − 𝑳𝑳,𝒏𝑯 − 𝒏𝑳) 

First let’s analyze the dependence of reflectance upon the difference of thicknesses for TE and TM 
polarizations. The other variables are set to: 

 𝑁 = 24, 𝜃 = 45°,  𝜆 = 500 𝑛𝑚 , 𝑛𝑎 = 1 , 𝑛𝑏 = 1.52, 𝑛𝐻 = 2.32, 𝑛𝐿 = 1.45 

 

 1.1  Reflectivity vs. Layer Thickness for TM pol.                      1.2 Reflectivity vs. Layer Thickness for TM pol. ,3D view                            
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  2.1  Reflectivity vs. Layer Thickness for TE pol.                       2.2 Reflectivity vs. Layer Thickness for TE pol.,3D view 

 From figure 1.1 and 2.1 we can see there is only one value of thickness equal for both layers 
which maximizes reflectance, and it’s 𝟎.𝟐𝟓 ∙ 𝝀 . There’s a physical resason for such a behaviour 
and lies in the fact that reflected waves are always in phase at the interface. On the other hand 
thickness value 𝟎.𝟓 ∙ 𝝀 corresponds to waves which interfere negatively at the interface and it’s 
easy to see from the graph we have a minimum. Thickness from now on will be set to 𝟎.𝟐𝟓 ∙ 𝝀 for 
both layers. There is also a technological reason behind this choice: layer production is a complex 
matter which requires precision of order of fraction of wavelength, thus it’s easier to work with a 
single thickness rather than two. 

Reflectance depends upon refractive indices as follows: 

  𝑁 = 24, 𝜃 = 45°,  𝜆 = 500 𝑛𝑚, and 𝐿𝐻 = 𝐿𝐿 = 0.25 ∙ 𝜆, 𝑛𝑎 = 1, 𝑛𝑏 = 1.5: 

 

                  3.1  Reflectivity vs Refraction index for TM pol.                        3.2  Reflectivity vs Refraction index for TM pol. 3D 
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                  4.1  Reflectivity vs Refraction index for TE pol.                          4.2  Reflectivity vs Refraction index for TE pol. 3D 

               

The slight asymmetry in the figures is due to the presence of the outer medium of index 𝑛𝑎 and 
the substrate of index 𝑛𝑏. Maximum reflectance it’s achievable by choosing 𝑛𝐿 = 1.5 and  
𝑛𝐻 = 2.3 thus justifying the values chosen for 𝑛𝐿 and 𝑛𝐻 in the simulation for the thickness. 
Anyway it’s unlikely we can obtain a contrast of 0.8 on the indices with PLD and more careful 
investigation must be made, i.e by varying other parameters such as 𝑁 , to obtain good values of 
reflectance with smaller index contrast. 

|𝚪|𝟐 = 𝒇(𝒏𝑳 − 𝒏𝑯,𝑵,𝜽) 

Let’s take a closer look on the dependence of  |Γ|2 from 𝑛𝐿 − 𝑛𝐻,𝑁 and 𝜃.  

𝐿𝐿 = 𝐿𝐻 = 0.25 ∙ 𝜆, 𝜆 = 500,𝑛𝑎 = 1,𝑛𝑏 = 1.52 and 𝑁 will be 10,24,104. 

 

 

       5.1  Reflectance dependence on 𝜽 and 𝚫𝒏, 10 layers, TM pol      5.2  Reflectance dependence on 𝜽 and 𝚫𝒏, 10 layers, TE pol 
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       6.1  Reflectance dependence on 𝜽 and 𝚫𝒏, 24 layers, TM pol      6.2  Reflectance dependence on 𝜽 and 𝚫𝒏, 24 layers, TE pol       

 

      7.1  Reflectance dependence on 𝜽 and 𝚫𝒏, 104 layers, TM pol    7.2  Reflectance dependence on 𝜽 and 𝚫𝒏, 104 layers, TE pol       

 

By increasing the layers is possible to achieve maximum reflectance with very little index contrast 

for incidence angles between 0° and 50°. For angles greater than 50° index contrast must be 

increased above 1 for any number of layers. Reflectance for TM waves depends more than for TE 

waves on index contrast. For TE polarization it’s possible to obtain maximum reflection with a 

contrast of 1 for any angle even with the 10 layers configuration. This is ultimately due to the 

presence of Brewster’s angle for TM waves. Increasing the numbers of layers comes at a price of 

more complex and time consuming construction procedures and increases the probability to add a 

defect in the multilayered body which can negatively affect performances. Anyway can be the sole 

solution to maximize reflection if it’s impossible to achieve good contrast between layers, if the 

angle of interest of incident waves lies between 0° and 50°. An in-depth study that relates costs, 

defect probability and reflection efficiency is recommended but beyond the scope of this 

presentation. 
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|𝚪|𝟐 = 𝒇(𝝀,𝜽) 

Wavelength has been set in all previous calculations to be 500nm and values of thickness and 
refraction index have been found which maximizes reflectance for this wavelength. 

 𝜆 = 500 𝑛𝑚 represent the peak value of sun’s emission spectrum. However It’s important to 
probe the properties of our mirror for different wavelengths, specifically over the visible light, as it 
will presumably be used in photovoltaic cells. A mirror fit for such an utilization should have good 
reflectance for a broad range of wavelength. 

Parameters are set to:  𝐿𝐿 = 𝐿𝐻 = 0.25 ∙ 𝜆,  𝑛𝑎 = 1,𝑛𝑏 = 1.52 𝑁 = 24, 𝑛𝐻 = 2.3, 𝑛𝐿 = 1.5. 

 

 

    8.1  Reflectance dependence on 𝜽 and 𝛌, 24 layers, TM pol    8.2  Reflectance dependence on 𝜽 and 𝛌, 24 layers, TM pol, 3D       

 

        9.1  Reflectance dependence on 𝜽 and 𝛌, 24 layers, TE pol      9.2  Reflectance dependence on 𝜽 and 𝛌, 24 layers, TE pol, 3D       
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From the graph it’s evident that reflectance is maximized for a range between 400nm and 600nm. 
For TE polarization the range where we have maximum reflectance increases as the angle 
increases. On the contrary for TM polarization the range shrinks and shift towards lower 
wavelengths as the angle increases, and reflection itself become lower and lower.  Anyway since 
the mirror it’s designed to be used for photovoltaic cells it’s important to maximize reflectance for 
angles between 0° and 60°, the angles from where the light is most likely to come. Chosen 
configuration perfectly meets this requirement. It’s possible to improve reflectance at high angles 
by increasing the number of layers. By doubling the layers (N=48) the response is as follows: 

 

     10.1  Reflectance dependence on 𝜽 and 𝛌, 48 layers, TM pol   10.2  Reflectance dependence on 𝜽 and 𝛌, 48 layers, TM pol, 3D       

  

      11.1  Reflectance dependence on 𝜽 and 𝛌, 48 layers, TE pol     11.2  Reflectance dependence on 𝜽 and 𝛌, 24 layers, TE pol, 3D       

      

By increasing the difference between the indices it’s possible to broaden the bandwidth of perfect 
reflection. Although it’s desirable, we have already seen it is difficult to obtain.  

The graphs that follow are calculated using 𝑁 = 48, 𝐿𝐻 = 𝐿𝐿 = 0.25𝜆,𝑁𝐻 = 3.3,𝑛𝐿 = 1.5,𝑛𝑎 =
1,𝑛𝑏 = 1.52. 
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12 Reflectance dependence on 𝜽 and 𝛌, 48 layers, 𝚫𝒏 = 𝟏.𝟑, TM polarization is on the left 

 

6.3 Localized Defects 

It’s time to take a look on how localized defects in periodicity can affect the performance of our 
mirror. This is an important question because it’s related directly with the feasibility of such a 
device. An in-depth analysis of how defects affects performance however requires to probe, once 
again, a multidimensional space. Number of defects, thickness, contrast, position, ratio of layers 
and defects, all dependences should be considered for a good optimization. I will consider only the 
influence of one defect for a low index layer and one defect for a high index layer at different 
position. Even in its simplicity, this analysis gives important information. Let’s see how a single low 
index defect can affect reflectance for different position in the layer.  

Parameters are set to: 𝑁 = 24,𝜃 = 45°, 𝜆 = 500𝑛𝑚, 𝐿𝐻 = 𝐿𝐿 = 0.25𝜆,𝑛𝐻 = 2.3,𝑛𝐿 = 1.5,𝑛𝑎 =
1,𝑛𝑏 = 1.52. 

 

13 Reflectance as a function of  𝚫𝑳,𝚫𝒏 for a low index defect localized in position 2, TM polarization is on the left. 
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14 Reflectance as a function of  𝚫𝑳,𝚫𝒏 for a low index defect localized in position 8, TM polarization is on the left. 

 

 

15 Reflectance as a function of  𝚫𝑳,𝚫𝒏 for a low index defect localized in position 12, TMpolarization is on the left. 

 

The behavior repeats symmetrically as the defect move from layer 12 to layer 24. This means the 
worst position for a single defect is position 12. Reflectance is a very sensitive function of defect 
thickness and defect position, while depends weakly on defect index. The thickness of the band 
where reflectance experiences a drop becomes narrower as the defect move toward position 12, 
but the drop in reflectance increases from an acceptable 3% to a stunning 90%. Although precision 
is required to avoid those dangerous gaps, the mirror have a sufficiently broad  “safe” zone to be 
build in.  

If the defect is localized in a high index layer, reflectance depends on position in a very similar way, 
but the drop in reflectance is higher. Thus even more precision is needed when making high index 
layers.  
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16 Reflectance as a function of  𝚫𝑳,𝚫𝒏 for a high index defect localized in position 3, TM is on the left. 

 

The simulation also shows that once again the issue come from the TM polarization, while the TE 
is relatively untouched by defects.  

Let’s take a look on how defects act on light incident at different wavelength. By Using the same 
parameters as previous simulations, and by setting a high index defect in position 11, with 
𝑛𝑑 = 2.3 (since reflectance varies slightly with the index it’s more meaningful to vary the 
thickness), these are the results: 

 

17 Reflectance as a function of defect thickness and wavelength, with defect in position 11, TM polarization is on the left 

 

The bandwidth of maximum reflectance becomes narrower as the thickness of the defect grows, 
although a band of lower reflectance rise, shifted upward in wavelength, after a critical thickness 
of 0.05𝜆. 
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6.4 Non-periodic mirror 

It’s very interesting to see what happen if two mirror of different periodicity are put one on top of 
the other. We’ll consider the specific case of two mirrors with same index contrast but different 
thicknesses. The upper one has 12 layers of thickness 0.25𝜆, while the lower has 12 layers of 
variable thickness. This configuration can be used to investigate how to improve maximum 
reflectance bandwidth of our previously designed mirror without changing the contrast between 
indices. Physically we have an upper mirror with a thickness designed to reflect with high 
efficiency some wavelengths, and transmit the others. Under this mirror we have another mirror 
made of layers of different thickness with respect to the upper one, which is able to reflect the 
wavelengths transmitted by the first. There’s no reason to restrict the number of mirrors to two, 
as long as the response gets improved. Anyway for the purpose of this presentation only the case 
with two mirrors will be displayed. 

 

28  Reflectance as a function of wavelength and layer thickness of the lower mirror, both layers have the same thickness 

 

As we can see from the graph, a 24 layers 0.25𝜆 doesn’t maximize bandwidth. A 0.25𝜆 12 layers 
mirror followed by a 12 layers 0.3𝜆 mirror offer high reflectance over a broader range of 

wavelengths, without changing index contrast. 
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Chapter 7 

 

The anisotropic program 
This chapter dwells on the mathematical and physical description of propagation of 
electromagnetic waves in anisotropic media. 

 

7.1 In-depth analyses of anisotropic media 

In this chapter I will explain the underlying structure of the program which solves the anisotropic 

case. The program uses a different approach than the one used for the isotropic media discussed 

in previous chapters, yet similar in some aspects. 

First of all let’s set a xyz coordinate system which coincide with the principal dielectric axes (so 

that the permittivity tensor is diagonal), the x-y plane is the interface plane, the x-z is the plane of 

incidence and let’s take the wave vector k to lie in the x-z plane at an angle  𝜃 from the z-axis. 

Although this case is still not the most general one with a completely arbitrary direction for k, it 

does contain most of the essential features of propagation in birefringent media.  

 
 

 
 
 
 
The constitutive relations are assumed to be  𝑩 =  𝜇0𝑯  and a diagonal permittivity tensor for D.                 

Let  𝜖1, 𝜖2, 𝜖3 be the permittivity values along the three principal axes and define the 

corresponding refractive indices  𝑛𝑖 = �𝜖𝑖𝜖0,  𝑖 = 1,2,3, the D-E relation become: 

 

 

Figure 1 Uniform plane waves in a birefringent medium 
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For a biaxial medium the three 𝑛𝑖 are all different, while for a uniaxial we take the xy axis to be 

ordinary, with  𝑛1 = 𝑛2 = 𝑛𝑜 and the z-axis to be extraordinary with  𝑛3 = 𝑛𝑒. The wave vector k 

can be resolved along the z and x directions as follows: 

 

𝒌 = 𝑘𝒌� = 𝑘(𝒙� cos 𝜃 + 𝒛� sin𝜃) = 𝒙�𝑘𝑥 + 𝒛�𝑘𝑧 
 

By analogy with the isotropic case we may define an effective refractive index  𝑁 such that: 

 

𝑘 = 𝑁𝑘0 = 𝑁
𝜔
𝑐

 

In order to find N we should once again solve the Maxwell’s equations. To do this let’s consider 

incident waves of the form: 

𝑬(𝒓) = 𝑬𝑒−𝒊𝒌∙𝒓  𝑯(𝑟) = 𝑯𝑒−𝑖𝒌∙𝒓 
 

Replacing the gradient operator ∇ by  −𝑖𝒌 and with a little algebra Maxwell’s equations become: 

 

𝒌 × 𝑬 =  𝜔𝜇0𝑯     𝒌 × 𝑯 = −𝜔𝑫 
𝒌 ∙ 𝑫 = 0      𝒌 ∙ 𝑯 = 0 

 

Replacing 𝒌 with 𝑁𝜔
𝑐
𝒌� as seen before we have:  

 

𝑯 =
𝑁
𝑐𝜇0

𝒌� × 𝑬  𝑫 = −
1
𝜔
𝑁
𝜔
𝑐
𝒌� × 𝐻  

 

The equation for D can be further elaborated to give: 

 

𝒌� × (𝑬 × 𝒌�) =
1

𝜖0𝑁2 𝑫 

 

With  𝑐2𝜇0 = 1
𝜖0

 . The  𝒌� × (𝑬 × 𝒌�)  represent the component of E that is transverse to the 

propagation unit vector  𝒌�. Using the identity  𝒌� × �𝑬 × 𝒌�� = 𝑬 − 𝒌�(𝒌� ∙ 𝑬) we obtain: 

 

𝑬 − 1
𝜖0𝑁2

𝑫 = 𝒌�(𝒌� ∙ 𝑬)                                                                  (1) 
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Because D is linear in E, the equation above is a homogeneous linear equation. In order to have a 

nonzero solution its determinant must be zero. This provides a condition from which N can be 

determined. To obtain both the TM and TE solution first we suppose E has all three components 

and rewrite equation (1) component-wise: 

 

�1 −
𝑛12

𝑁2�𝐸𝑥 = (𝐸𝑥 sin𝜃 + 𝐸𝑧 cos𝜃) sin𝜃 

�1 −
𝑛22

𝑁2 �𝐸𝑦 = 0 

�1 −
𝑛32

𝑁2�𝐸𝑧 = (𝐸𝑥 sin𝜃 + 𝐸𝑧 cos 𝜃) cos𝜃 

 

The TE case has 𝐸𝑦 ≠ 0 and 𝐸𝑥 = 𝐸𝑧 = 0 , whereas the TM case has 𝐸𝑥 ≠ , 𝐸𝑧 ≠ 0 and  𝐸𝑦 = 0. 

In the TE case 𝑁 = 𝑛2, straightforwardly from the equations above and the fields are: 

 

𝑬(𝒓) = 𝐸𝑦𝒚�𝑒−𝑖𝑘0𝑥𝑛2 sin𝜃−𝑖𝑘0𝑧𝑛2 cos𝜃 

𝑯(𝒓) =
𝐸𝑦
𝜇0𝑐

𝑛2(−𝒙� cos𝜃 + 𝒛� sin𝜃)𝑒−𝑖𝑘0𝑥𝑛2 sin𝜃−𝑖𝑘0𝑧𝑛2 cos𝜃 

 

For the TM case we must solve the system: 

 

�1 −
𝑛12

𝑁2�𝐸𝑥 = (𝐸𝑥 sin𝜃 + 𝐸𝑧 cos𝜃) sin𝜃 

�1 −
𝑛32

𝑁2�𝐸𝑧 = (𝐸𝑥 sin𝜃 + 𝐸𝑧 cos 𝜃) cos𝜃 

 

By setting the determinant to zero we obtain the expression for 𝑁 in the TM case: 

 

𝑁 =
𝑛1𝑛2

�𝑛12(sin𝜃)2 + 𝑛32(cos𝜃)2
 

 

The field are therefore: 

 

𝑬(𝒓) = 𝐸𝑥(𝒙� − 𝒛�
𝑛12

𝑛32
tan𝜃)𝑒

−𝑖𝑘0𝑥
𝑛1𝑛2

�𝑛12(sin𝜃)2+𝑛32(cos𝜃)2
sin𝜃−𝑖𝑘0𝑧

𝑛1𝑛2
�𝑛12(sin𝜃)2+𝑛32(cos𝜃)2

cos𝜃
 

𝑯(𝒓) =
𝐸𝑥
𝑐𝜇0

𝑛12

cos𝜃
𝑦�𝑒

−𝑖𝑘0𝑥
𝑛1𝑛2

�𝑛12(sin𝜃)2+𝑛32(cos𝜃)2
sin𝜃−𝑖𝑘0𝑧

𝑛1𝑛2
�𝑛12(sin𝜃)2+𝑛32(cos𝜃)2

cos𝜃
 

 

Now we know the fields for every polarization in an anisotropic material, what we need is the 

reflectivity of the multilayered structure. As explained in chapter 2 and 3 the tangential 
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component of electric field must be conserved at the interface (the component 𝐸𝑥 for TM, and 𝐸𝑦 

for TE polarization).The presence of an interface between two different media implies further 

considerations; if the interface connects two anisotropic media we must assume the principal axes 

have the same orientation for both, i.e the materials have the same crystalline structure. Then we 

can write: 

 

𝑒−𝑖𝑘+𝑥 = 𝑒−𝑖𝑘−𝑥 = 𝑒−𝑖𝑘+
′𝑥 = 𝑒−𝑖𝑘−

′𝑥 
 

Again, as seen before, at the interface only the exponential part relative to propagation along the 

z-axis survives. Reflectivity is obtained through a propagation matrix of the form: 

 

 

�𝐸𝑇𝑖+𝐸𝑇𝑖−
� =

1
𝜏𝑇𝑖

� 𝑒𝑖𝛿𝑖
𝜌𝑇𝑖𝐸𝑖𝛿𝑖

𝜌𝑇𝑖𝐸−𝑖𝛿𝑖
𝑒−𝑖𝛿𝑖

� �
𝐸𝑇,𝑖+1,+
𝐸𝑇,𝑖+1,−

� 

 

With respect to the following picture: 

 
Figure 2: oblique incidence on multilayer dielectric structure 

 

• 𝐸𝑇𝑖+,𝐸𝑇𝑖− are the electric field incident and reflected left of interface i 

 

• 𝐸𝑇,𝑖+1,+,𝐸𝑇,𝑖+1,− are the electric fields incident and reflected right of interface i 

 

• 𝜌𝑇𝑖 = 𝑛2,𝑖−1 cos𝜃𝑖−1−𝑛2,𝑖 cos𝜃𝑖
𝑛2,𝑖−1 cos𝜃𝑖−1+𝑛2,𝑖 cos𝜃𝑖

  where 𝑁 is the effective index of refraction for Te   

 

• 𝜌𝑇𝑖 =
𝑛1,𝑖−1

2

𝑁𝑖−1 cos𝜃𝑖−1
−

𝑛1,𝑖
2

𝑁𝑖 cos𝜃𝑖
𝑛1,𝑖−12

𝑁𝑖−1 cos𝜃𝑖−1
+

𝑛1,𝑖2

𝑁𝑖 cos𝜃𝑖

 where 𝑁 is the effective index of refraction for TM  
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• 𝛿𝑖 = 𝑁𝑘0𝑙𝑖 cos 𝜃   where 𝑙𝑖 is the thickness of the layer 

 

 

• 𝜏𝑇𝑖 = 2𝑛2,𝑖−1 cos𝜃𝑖−1
𝑛2,𝑖−1 cos𝜃𝑖−1+𝑛2,𝑖 cos𝜃𝑖

  for TE polarization 

 

• 𝜏𝑇𝑖 =
2

𝑛1,𝑖−1
2

𝑁𝑖−1 cos𝜃𝑖−1
𝑛1,𝑖−12

𝑁𝑖−1 cos𝜃𝑖−1
+

𝑛1,𝑖2

𝑁𝑖 cos𝜃𝑖

  for TM polarization 

 

The reflection response Γ𝑖 , which is defined as 
𝐸𝑇𝑖−
𝐸𝑇𝑖+

 ,will therefore satisfy the recursion : 

 

Γ𝑇𝑖 =
𝜌𝑇𝑖 + Γ𝑇,𝑖+1𝑒−2𝛿𝑖

1 + 𝜌𝑇𝑖Γ𝑇,𝑖+1𝑒−2𝛿𝑖
 

 

initialized at  Γ𝑇,𝑀+1, the last interface, where there is only a wave propagating in medium M+1 

and no reflected wave, simplifying the conditions. 

 

The main difference between isotropic and anisotropic programs lies in the fact that, while the 

isotropic problem calculate transmitted and reflected fields for every layer at the same time, the 

anisotropic program handle the problem in a recursive way, calculating step by step the reflection 

response. It’s not possible, if someone is interested in reflection response at, let’s say interface 3, 

to have information about reflection of the body at interface 1 without running the program 

again. Anyhow that’s the price to pay to account for anisotropy, which greatly complicates the 

description of phenomena and the length of calculations. 

 
6.2 Anisotropic mirrors 
 
It’s possible to investigate the properties of an anisotropic multilayered structure with an 

approach similar to that used in chapter 6 for omnidirectional mirrors. Anyway the sheer number 

of variables involved would require a more rigorous approach which is beyond the scope of this 

work. In order to point out the differences between isotropic and anisotropic media I will give the 

results obtained for a particularly interesting configuration. This configuration has been chosen to 

have biaxial high/low layers refractive indices mismatched only in the x or the y direction, so that 

one can design a mirror structure that reflects only the TM or only the TE polarization, assumed   

x-z as the plane of incidence. 

Parameters are as follow: 

 

𝑁 = 20,𝑛𝑎 = [1; 1; 1], 𝑛𝑏[1; 1; 1],  𝑛𝐻 = [1.86; 1.57; 1.57], 𝑛𝐿 = [1.57; 1.57; 1.57], 𝜃 = 0°, 
𝐿𝐻 = 𝐿𝐿 = 0.25𝜆  
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Figure 3: Reflectance vs. wavelength for an anisotropic mirror. The plane of incidence is the XZ plane. A 25% thickness 
gradient (the layer thicknesses LH, LL decrease linearly from quarter-wavelength to 25% less than that at the end.) 

This increases the effective bandwidth of the reflecting bands, as shown in the last paragraph of chapter 6.  
  

 
 



 

Chapter 8 

 

Photonic bands in multilayered 
dielectric structures 
Computing the photonic bands is a widespread method used to characterize the properties of 
photonic crystals with periodicities in two and three dimensions, but sometimes is used also for 
monodimensional crystals. In this chapter the theory needed to understand and calculate the band 
structure has been explained, and the core for a two-dimensional eigensolver software has been 
hinted. 

 

8.1  The Master Equation 

Electromagnetic waves propagation in a photonic crystal is ruled by Macroscopic Maxwell’s 

equations, which in SI are: 

∇ ∙ 𝐵 = 0         ∇ × 𝐸 +
𝜕𝐵
𝜕𝑡 

= 0  

∇ ∙ 𝐷 = 𝜌          ∇ × 𝐻 −
𝜕𝐷
𝜕𝑡

= 𝐽  

If 𝜌 e 𝐽 are equal to zero, i.e there are no electromagnetic radiation source inside the material, 

equations become: 

∇ ∙ 𝐵 = 0         ∇ × 𝐸 +
𝜕𝐵
𝜕𝑡 

= 0  

∇ ∙ 𝐷 = 0          ∇ × 𝐻 −
𝜕𝐷
𝜕𝑡

= 0  

We can link displacement field D with electric field E by: 

𝐷𝑖
𝜀0

= �𝜀𝑖𝑗
𝑗

𝐸𝑗 + �𝜒𝑖𝑗𝑘
𝑗,𝑘

𝐸𝑗𝐸𝑘 + 𝑂(𝐸3) 
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This relation accounts for anisotropy in the material by means of tensor 𝜀𝑖𝑗, and for deviation from 

linearity expressed by the second summation. If we assume fields are sufficiently weak to meet 

the linearity condition, we can neglect second order terms and write:   

𝐷𝑖
𝜀0

= �𝜀𝑖𝑗
𝑗

𝐸𝑗 

Which becomes  𝑫(𝑟) = 𝜀0𝜀(𝒓)𝑬(𝒓) in the isotropic case. Similarily 𝑩(𝑟) = 𝜇0𝜇(𝒓)𝑯(𝒓). 

Maxwell’s equations become: 

 

               ∇ × 𝐻(𝑟, 𝑡) − 𝜀0𝜀(𝑟) 𝜕𝐸(𝑟,𝑡)
𝜕𝑡

= 0     ∇ × 𝐸(𝑟, 𝑡) + 𝜇0𝜇(𝑟) 𝜕𝐻(𝑟,𝑡)
𝜕𝑡 

= 0          (1.1) 

                                  ∇ ∙ 𝜀(𝑟)𝐸(𝑟, 𝑡) = 0                ∇ ∙ 𝐻(𝑟, 𝑡) = 0                                 (1.2) 

 

 

We can further elaborate these equations by separate the spatial component of the fields from 

the time dependent component with Fourier. Separation is possible because Maxwell’s equations 

are linear: 

                               𝐸(𝑟, 𝑡) = 𝐸(𝑟)𝑒−𝑖𝜔𝑡                        (1.3) 

𝐻(𝑟, 𝑡) = 𝐻(𝑟)𝑒−𝑖𝜔𝑡 

 

Substituing  (1.3) in (1.1) we obtain: 

                                                  ∇ × � 1
𝜀(𝑟)

∇ × 𝐻(𝑟)� = �𝜔
𝑐
�
2
𝐻(𝑟)                                    (1.4) 

From now on this will be regarded as the Master Equation for photonic band computations. 

 

8.2   Stokes-Helmoltz decomposition and Coulomb’s Gauge  

Equations  ∇ ∙ 𝜀(𝑟)𝐸(𝑟) = 0  ,∇ ∙ 𝐻(𝑟) = 0   implies the lack of magnetic or electric sources in the 

medium. Equivalently we can say, if we consider the fields as plane waves of equation           

𝐻(𝑟) = 𝑎𝑒𝑖𝑘𝑟, that the waves are transverse, i.e they satisfy the condition 𝑎 ∙ 𝑘 = 0.  

We can write the generic vectorial field by using the Stokes-Helmoltz decomposition: 
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𝑢 = ∇𝜙 + ∇ × 𝐴 

Where 𝜙 e A are the scalar and vectorial potentials, respectively. The preceding relation links 

vector u= (𝑢1,𝑢2,𝑢3) to  (𝜙,𝐴1,𝐴2,𝐴3); We need one more relation to identify uniquely the 

quantities because there are three equations and for unknowns. We therefore use the Coulomb’s 

gauge:  

∇ ∙ 𝐴 = 0 

The scalar potential corresponds to the Coulomb’s potential due to charge density  𝜌; hence ther 

name Coulomb’s gauge: 

𝜙 = �
𝜌(𝑥′, 𝑡)
|𝑥 − 𝑥′|

𝑑3𝑥′ 

Coulomb’s gauge isn’t the only possible. For example Lorentz’s Gauge exists and is defined as: 

 ∇ ∙ 𝐴 +
1
𝑐
𝜕𝜙
𝜕𝑡

= 0 

However Coulomb’s gauge is often used in problems where there are no sources, while Lorentz’s 

gauge is used, because of the independence on the reference system, when special relatività is 

taken into account.  

 Using Coulomb’s gauge we get the well known homogeneous wave equations: 

 ∇2𝜙 +
1
𝑐2
𝜕2𝜙
𝜕𝑡2

= 0 

∇2𝐴 +
1
𝑐2
𝜕2𝐴
𝜕𝑡2

= 0 

Which are solved by: 

𝜙(𝑥, 𝑡) = 𝜙�𝑘 ∙ 𝑥 − 𝑐𝑝𝑡� 

𝐴(𝑥, 𝑡) = 𝐴(𝑘 ∙ 𝑥 − 𝑐𝑠𝑡) 

That represents two waves travelling in direction k with speed 𝑐𝑝𝑒 𝑐𝑠. 

 

8.3 Electromagnetic Energy and Variational Principle 

Let’s consider the Master equation  (1.4): 

∇ × �
1

𝜀(𝑟)∇ × 𝐻(𝑟)� = �
𝜔
𝑐
�
2
𝐻(𝑟) 
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Let’s characterize operator Φ�  as: 

Φ�𝐻(𝑟) ≜ ∇ × �
1

𝜀(𝑟)∇ × 𝐻(𝑟)� 

Φ�  is a linear and Hermitian operator. Hermitian means it’s valid the following relation: 

(𝐹,Φ�𝐺) = (Φ�𝐹,𝐺). 

In order for an operator to be Hermitian there must be no difference between applying it to one of 

the two function F or G before taking the inner product, the result will be the same. 

In dielectrics the energy is concentrated mainly in regions of high dielectric constant . We can see 

this by means of an analogous version for electromagnetic waves of the variational principle from 

quantum mechanics:  the lowest eigenvalue of the master equation (1.4) corresponds to the 

lowest frequency mode, and thus corresponds to the field pattern which minimizes the functional 

defined by: 

 

𝑈𝑓(𝐻) ≜
(𝐻,Φ�𝐻)
(𝐻,𝐻)

 

We can rewrite the functional 𝑈𝑓(𝐻) using the electric field and we can verify that: 

𝑈𝑓(𝐻) ≜
(∇ × 𝐸,∇ × 𝐸)

(𝐸, 𝜀(𝑟)𝐸)
 

And the inner products is: 

𝑈𝑓(𝐻) =
∫𝑑3𝑟|∇ × 𝐸(𝑟)|2

∫ 𝑑3𝑟 𝜀(𝑟)|𝐸(𝑟)|2 

We can see the functional is minimized for higher values of 𝜀(𝑟). What happens in dielectrics has a 

marked analogy to what happens in quantum mechanics with the wave function, which 

concentrates itself in low potential zones at the same time minimizing kinetic energy. 

Energy functional is a different concept from physical Energy stored within the fields. Physical 

energy, both magnetical and electrical, is proportional to the square of the strength of the field as 

described by the following relations: 

𝑈𝑚 =
𝜇0
4
�𝑑3𝑟𝜇(𝑟)|𝐻(𝑟)|2 

𝑈𝑒 =
𝜀0
4
�𝑑3𝑟𝜀(𝑟)|𝐸(𝑟)|2 
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Functional 𝑈𝑓 on the other hand is independent from fields strength because it has fields on both 

the numerator and the denominator. Thus multiplying the fields for a constant affects the physical 

energy, but not on the energy functional that can therefore act on normalized vibrational mode 

and return information about the profiles of the modes themselves but not about the amplitudes. 

 

8.4 Magnetic vs. Electric fields 

Why in previous paragraphs Maxwell’s equations have been formulated as an eigenvalue problem 

for magnetic instead of electric fields?  

The answer is simple: let’s consider the eigenvalue problem for the electric field: 

                ∇ × ∇ × E(r) = �𝜔
𝑐
�
2
𝜀(𝑟) 𝐸(𝑟)                       1.5 

This is a generalized eigenproblem of the form 𝐴𝑥 = 𝜔2𝐵𝑥. This means there are operators on 

both sides of the equation. We can convert it in an ordinary eigenproblem by dividing (1.5) for  

𝜀(𝑟) but we will have a non-Hermitian operator. 

However we could stick to the generalized eigenproblem both the operators , ∇ × ∇ × e 𝜀(𝑟),  are 

Hermitian, but now we would have a transversailty constraint ∇ ∙ 𝜀𝐸 = 0 dependent on 𝜀, which 

as negative effects on numerical . 

 

8.5  Scaling properties of Maxwell’s equations 

One interesting feature of electromagnetism in dielectric is that there is no fundamental length 

scale other then the assumption the system is macroscopic, as briefly introduced in chapter 1. The 

thickness of every layer cannot be pushed to the limit of a single atom for two reasons: first the 

media would lose the planarity of interfaces and second we couldn’t use macroscopic Maxwell’s 

equations anymore. Once pointed out this important aspect, we nevertheless can probe the 

behavior of system that have similar physical properties but differ in their overall spatial scale. The 

solution of the problem at one length scale determines the solutions at all other length scales. This 

simple fact is of considerable practical importance. For example, the micro fabrication of complex 

micron-scale photonic crystals can be quite difficult. But models can be easily made and tested in 

the microwave regime, at the much larger length scale of centimeters, if materials can be found 

that have nearly the same dielectric constant. The considerations in this section guarantee that 

the model will have the same electromagnetic properties. Scale-invariance can easily be 

demonstrated from the Master equation given in paragraph 7.1. Such a property doesn’t exist in, 

for example, atomic physics, where Schrödinger equation has a fundamental length scale, the 

Bohr radius. 
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8.6  Photonic Crystal spectra 

The spectrum of a photonic crystal is the totality of all of the eigenvalues 𝜔. Does this spectrum 

look  like a continuous range of values, or the frequencies form a discrete sequence 𝜔0,𝜔1, . ..?  

The answer depends on the spatial domain of the mode profiles H(r) (or E). If the fields are 

spatially bounded, either because they are localized around a particular point or because they are 

periodic in all three dimensions (and therefore represent a bounded profile repeated indefinitely), 

then the frequencies ω form a discrete set. Otherwise they can form a single continuous range, a 

set of continuous ranges, or a combination of continuous ranges and discrete sets (for a 

combination of localized and extended modes). 

This property is quite general for many Hermitian eigenproblems, it follows from the orthogonality 

of the modes.  This result, applied to photonic crystals, leads to the concepts of discrete frequency 

bands and of localized modes near crystal defects. 

 

8.7  Symmetries and Bloch Theorem 

If a dielectric structure has a certain symmetry, then the symmetry offers a convenient way to 

categorize the electromagnetic modes of that system. Symmetries of a system allow one to make 

general statements about that system’s behavior. Photonic crystals, like traditional crystals of 

atoms or molecules, have discrete translational symmetry. That is, they are not invariant under 

translations of any distance, but rather, only distances that are a multiple of some fixed step 

length. The simplest example of such a system is a structure that is repetitive in one direction, like 

the configuration in figure 1. 

 

 

 

 

Figure 1.  A dielectric configuration with discrete translational symmetry. If 
we imagine that the system continues forever in the y direction, then 
shifting the system by an integral multiple of a in the y direction leaves it 
unchanged. 
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For this system we have continuous translational symmetry in the x direction, but now we have 

discrete translational symmetry in the y direction.  

The basic step length is the lattice constant a, and the basic step vector is called the primitive 

lattice vector, which in this case is 𝒂 =  𝑎 𝒚�. Because of this discrete symmetry, 𝜀(𝒓)  =  𝜀(𝒓 ±
 𝒂). By repeating this translation, we see that 𝜀(𝒓)  =  𝜀(𝒓 +  𝑹) for any R that is an integral 

multiple of a; that is, 𝑹 =  𝑙𝒂, where 𝑙 is an integer. 

Because of the translational symmetries, 𝚽�  must commute with all of the translation operators in 

the x direction, as well as the translation operators for lattice vectors 𝑹 =  𝑙𝑎 𝒚� in the y direction. 

With this knowledge, we can identify the modes of  Φ�  as simultaneous eigenfunctions of both 

translation operators. These eigenfunctions are plane waves: 

𝑇�𝒙�𝑒𝑖𝑘𝑥𝑥 =  𝑒−𝑖𝑘𝑥𝑑𝑒𝑖𝑘𝑥𝑥 

𝑇�𝑅𝑒𝑖𝑘𝑦𝑦 =  𝑒−𝑖𝑘𝑦𝑙𝑎𝑒𝑖𝑘𝑦𝑦 

Where d is an arbitrary constant and 𝑻�𝒙�,𝑻�𝒚� are the translational operators for, respectively, 

continuus and descrete symmetry. We can begin to classify the modes by specifying kx and ky. 

However, not all values of ky yield different eigenvalues. Consider two modes, one with wave 

vector ky and the other with wave vector 𝑘𝑦 +  2𝜋
𝑎

  . Inserting in previous equations shows they 

have the same eigenvalues. In fact, all of the modes with wave vectors of the form 𝑘𝑦 +  𝑚2𝜋
𝑎

, 

where m is an integer, form a degenerate set; they all have the same 𝑇�𝑅 eigenvalue of 𝑒−𝑖𝑘𝑦𝑙𝑎. 

Augmenting ky by an integral multiple of 𝑏 =  2𝜋
𝑎

 leaves the state unchanged. We call 𝒃 =  𝑏 𝒚� 

the primitive reciprocal lattice vector. Since any linear combination of these degenerate 

eigenfunctions is itself an eigenfunction with the same eigenvalue, we can take linear 

combinations of our modes to put them in the form: 

𝐻𝑘𝑥,𝑘𝑦(𝑟) = 𝑒𝑖𝑘𝑥𝑥 ∙ 𝑒𝑖𝑘𝑦𝑦 ∙ 𝒖𝒌𝒚(𝑦, 𝑧) 

u(y, z) is a periodic function in y: we can verify that  𝒖(𝑦 + 𝑙𝑎, 𝑧)  =  𝒖(𝑦, 𝑧). The discrete 

periodicity in the y direction leads to a y dependence for H that is simply the product of a plane 

wave with a y-periodic function. We can think of it as a plane wave, as it would be in free space, 

but modulated by a periodic function because of the periodic lattice: 

𝑯(. . . ,𝑦, . . . )  ∝ ∙ 𝑒𝑖𝑘𝑦𝑦  ∙ 𝒖𝒌𝒚  (𝑦, . . . )  

This result is commonly known as Bloch’s theorem.  One key fact about Bloch states is that the 

Bloch state with wave vector 𝑘𝑦 and the Bloch state with wave vector 𝑘𝑦 +  𝑚𝑏 are identical. The 

𝑘𝑦’s that differ by integral multiples of 𝑏 =  2𝜋
𝑎

 are not different from a physical point of view. 

Thus, the mode frequencies must also be periodic in 𝑘𝑦: 𝜔(𝑘𝑦)  =  𝜔(𝑘𝑦 +  𝑚𝑏). In fact, we 
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need only consider ky to exist in the range −𝜋
𝑎

 <  𝑘𝑦 ≤ 𝜋
𝑎

 . This region of important, 

nonredundant values of ky is called the Brillouin zone. 

 

8.8  Brillouin zone 

The wave vector k serves to specify the phase relationship between the various cells that are 

described by u, following the representation with Bloch’s theorem we encountered in the previous 

paragraph. If k is incremented by a reciprocal lattice vector G, then the phase between cells is 

incremented by 𝑮 ∙ 𝑹 (𝑹 is a primitive lattice vector) which we know is 2πN and not really a phase 

difference at all. So incrementing k by G results in the same physical mode. 

This means that there is a lot of redundancy in the label k. We can restrict our attention to a finite 

zone in reciprocal space in which you cannot get from one part of the volume to another by 

adding any G. All values of k that lie outside of this zone, by definition, can be reached from within 

the zone by adding G, and are therefore redundant labels. There are actually many such zones, but 

we focus on the region that is closest to k = 0 

 

  

 

 

 

 

 

 

 

This zone is the (first) Brillouin zone. A more visual way to characterize it is the following: around 

any lattice point in reciprocal space, highlight the volume that is closer to that lattice point than to 

any other lattice point. If we call the original lattice point the origin, then the highlighted region is 

the Brillouin zone. Here are some two dimensional examples: 

 

Figure 2: Characterization of the Brillouin zone. any lattice vector (such as k’) that reaches an 
arbitrary point on the other side (red) can be expressed as the sum of a same-side vector 
(such as k) plus a reciprocal lattice vector G. 
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For three dimensional lattice the Brillouin zone can have very complex shape and won’t be 

considered in this discussion. If we focus our attention on the Brillouin zone for the square lattice 

(but the same holds for the triangular lattice) we can see that even inside the Brillouin zone itself 

has some redundancy. In fact we can highlight a triangular subzone, which is 
1
8
 of the entire zone, 

and realize the Brillouin zone is nothing but a repetition of this subzone, called irreducible 

Brillouin zone. 

 

 

 

 

 

 

 

Figure 3: Brillouin zone for square lattice 

Figure 4: Brillouin zone for triangular lattice 
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8.9  The Physical Origin of Photonic Band Gaps 

 

 

 

 

 

 

 

 

 

 

In figure 5, we plot 𝜔𝑛(𝑘)  for three different multilayer films. The left-hand plot is for a system in 

which all of the layers have the same dielectric constant; the medium is actually uniform in all 

three directions. The center plot is for a structure with alternating dielectric constants of 13 and 

12, and the right-hand plot is for a structure with a much higher dielectric contrast of 13 to 1.  

The left-hand plot is for a homogeneous dielectric medium for which we have arbitrarily assigned 

a periodicity of a. But we already know that in a homogeneous medium, the speed of light is 

reduced by the index of refraction. The modes lie along the light line, given by 𝜔(𝑘) = 𝑐𝑘
√𝜀

  because 

we have insisted that k repeat itself outside the Brillouin zone, the light line folds back into the 

zone when it reaches an edge. One can regard this as simply a way of relabeling the solutions, in 

which 𝑘 + 2𝜋
𝑎

  is replaced by k. The center plot, which is for a nearly-homogeneous medium, looks 

like the homogeneous case with one important difference: there is a gap in frequency between 

the upper and lower branches of the lines. There is no allowed mode in the crystal that has a 

frequency within this gap, regardless of k. We call such a gap a photonic band gap. The right-hand 

plot shows that the gap widens considerably as the dielectric contrast is increased. A crystal with a 

band gap might make a very good narrow-band filter, by rejecting all (and only) frequencies in the 

gap. A resonant cavity, carved out of a photonic crystal, would have perfectly reflecting walls for 

frequencies in the gap. We can understand the gap’s physical origin by considering the electric 

field mode profiles for the states immediately above and below the gap. The gap between bands   

n = 1 and n = 2 occurs at the edge of the Brillouin zone, at 𝑘 = 𝜋
𝑎

 .  For 𝑘 = 𝜋
𝑎

 , the modes have a 

Figure 5: The photonic band structures for three different multilayer films. In all three cases, each layer has a width 
0.5a. Left: every layer has the same dielectric constant 𝜀 = 13. Center: layers alternate between 𝜀 of 13 and 12. Right: 

layers alternate between 𝜀 of 13 and 1. 
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wavelength of 2a, twice the crystal’s spatial period (or lattice constant). There are two ways to 

center a mode of this type. We can position the nodes in each 𝑙𝑜𝑤 − 𝜀 layer, as in figure 3(a), or in 

each  ℎ𝑖𝑔ℎ − 𝜀  layer, as in figure 3(b). Any other position would violate the symmetry of the unit 

cell about its center. 

 

 

Using the electromagnetic variational theorem,  we found that the low frequency modes 

concentrate their energy in the ℎ𝑖𝑔ℎ − 𝜀 regions, and the high frequency modes have a larger 

fraction of their energy (although not necessarily a majority) in the 𝑙𝑜𝑤 − 𝜀 regions. With this in 

mind, it is understandable why there is a frequency difference between the two cases. The mode 

just under the gap has more of its energy concentrated in the 𝜀 = 13 regions as shown in figure 7, 

giving it a lower frequency than the next band, most of whose energy is in the 𝜀 =  12 regions. 

 

Figure 6: Electric fields of band 1 and 2 for the central configuration of figure 5 
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The bands above and below the gap can be distinguished by where the energy of their modes is 

concentrated: in the ℎ𝑖𝑔ℎ − 𝜀 regions, or in the 𝑙𝑜𝑤 − 𝜀 regions. The situation is analogous to the 

electronic band structure of semiconductors, in which the conduction band and the valence band 

bracket the fundamental gap. 

Let’s describe the configuration with a large dielectric contrast. In this case, we find that the field 

energy for both bands is primarily concentrated in the ℎ𝑖𝑔ℎ − 𝜀 layers, but in different ways, the 

first band being more concentrated than the second. These fields are shown in figure 8, 

corresponding to the right panel of figure 5. The gap arises from this difference in field energy 

location. 

  

 
Figure 8: Electric fields of band 1 and 2 for the configuration on the right of figure 5. 

Figure 7: Energy density of band 1 and 2 for the central configuration of figure 5 
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We conclude this section with the observation that in one dimension, a gap usually occurs 

between every set of bands, at either the Brillouin zone’s edge or its center.  Finally, we emphasize 

that band gaps always appear in a one-dimensional photonic crystal for any dielectric contrast. 

The smaller the contrast, the smaller the gaps, but the gaps open up as soon as  
𝜀1
𝜀2
≠  11.  

 

8.10 Evanescent Modes in Photonic Band Gaps 

The periodicity of the crystal induced a gap in its band structure. No electromagnetic modes are 

allowed to have frequencies in the gap. But what happens when we send a light wave (with a 

frequency in the photonic band gap) onto the face of the crystal from outside? No purely real 

wave vector exists for any mode at that frequency. Instead, the wave vector is complex. The wave 

amplitude decays exponentially into the crystal. When I say that there are no states in the 

photonic band gap, I mean that there are no extended states.  Instead, the modes are evanescent, 

decaying exponentially: 

𝑯(𝒓)  =  𝑒𝑖𝑘𝒓𝒖(𝒓)𝑒−𝜅𝒓 

They are just like the Bloch modes, but with a complex wave vector 𝑘 +  𝑖𝜅. The imaginary 

component of the wave vector causes the decay on a length scale of 
1
𝜅
. 

                                                            
1 There is a special exception for the quarter-wave stack described in the next section. In that case, while there is always 
a gap at the edge of the Brillouin zone, there is no gap at the center, because every successive pair of bands is 
degenerate at k = 0  

Figure 9: Energy density of band 1 and 2 for the configuration on the right of figure 5 
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It’s possible to see where the complex wave vector originates. For frequencies slightly higher than 

the top of the gap, 𝛥𝜔 >  0. In this case, 𝛥𝑘 is purely real, and we are within band 2. However, for 

𝛥𝜔 <  0, when we are within the gap, 𝛥𝑘 is purely imaginary. The states decay exponentially 

since 𝛥𝑘 =  𝑖𝜅. As we traverse the gap, the decay constant 𝜅 grows as the frequency reaches the 

gap’s center, then disappears again at the lower gap edge. Larger gaps usually result in a larger 𝜅 

at midgap, and thus less penetration of light into the crystal. Although evanescent modes are 

solutions of the eigenvalue problem, they diverge as r goes to ±∞ .Consequently, there is no 

physical way to excite them within a crystal. However, a defect or an edge in an otherwise perfect 

crystal can terminate this exponential growth and thereby sustain an evanescent mode. If one or 

more evanescent modes is compatible with the structure and symmetry of a given crystal defect, 

we can then excite a localized mode within the photonic band gap. It’s possible to localize states 

near the middle of the gap much more tightly than states near the gap’s edge. 

 

8.11 Planewave Eigensolver 

Bloch’s Theorem and Photonic bands represent a powerful tool to be exploited to design a 

program able to solve two and three dimensional problems. The programs I designed offer high 

flexibility but suffer a strong limitation: They can be used only for one dimensional photonic 

crystals. I will therefore present in this section a sketch on how to design a multidimensional 

electromagnetic eigensolver, using the concepts expressed above2.  

The program employs a spectral method with a planewave basis. In one dimension it corresponds 

to the familiar Fourier series. In particular, we are solving  

 

[(𝑖𝒌 + 𝛻) ×
1

𝜀(𝒓)
(𝑖𝒌 + 𝛻) × 𝒖𝒌(𝒓)] =  𝛩�𝒌𝒖𝒌(𝒓) =

𝜔(𝐤)2

𝑐2
𝐮𝐤(𝐫) 

 

for a periodic function 𝑢𝑘(𝑥)  =  𝑢𝑘(𝑥 +  𝑎) with period 𝑎.  

Any reasonable periodic function can be represented by an infinite sum of sines and cosines, or, in 

terms of complex exponentials: 

𝑢𝑘(𝑥)  = � 𝑐𝑛(𝑘)𝑒
𝑖2𝜋𝑛
𝑎 𝑥 

+∞

𝑛=−∞

 

For complex Fourier-series coefficients 𝑐𝑛(𝑘) = 1
𝑎 ∫ 𝑑𝑥𝑒

𝑖2𝜋𝑛
𝑎 𝑥𝑎

0 𝑢𝑘(𝑥). Each term in the sum is a 

periodic function with period a. To use this representation on a computer, we need to truncate 

the sum to have a finite number (N) of terms. This is feasible because the coefficients 𝑐𝑛 are 

                                                            
2 Further reading can be found in [15]. 
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decaying with |𝑛|, even though the rate of convergence depends on the smoothness of 𝑢𝑘(𝑥); if 

𝑢𝑘(𝑥) is 𝑙 − 𝑡𝑖𝑚𝑒𝑠 differentiable, then |𝑐𝑛| decreases faster than 
1

|𝑛|𝑙
 . Thus, we use the N 

lowest−|𝑛| terms (say, −𝑁
2

  to  
𝑁
2
−  1). We have transformed the problem from finding 𝑢𝑘(𝑥) to 

solving a set of linear equations for the N unknowns 𝑐𝑛. We can generalize the Fourier series to 

several dimensions by recognizing that the 
2𝜋𝑛
𝑎

 in the complex exponential is none other than a 

reciprocal lattice vector of the one-dimensional lattice with period a. By analogy, the 

multidimensional Fourier series is: 

𝒖𝒌(𝒓)  = �𝒄𝑮(𝒌)𝑒𝑖𝑮∙𝒓 
𝑮

 

where the sum is over all of the reciprocal lattice vectors G, and: 

𝒄𝑮 =
1
𝑉

 �𝑑3𝒓 𝑒−𝑖𝑮∙𝑟𝒖𝒌(𝒓) 

where V is the unit-cell volume. By construction, each term in the sum is periodic in r with respect 

to the lattice vectors R, since G· R is a multiple of 2π by definition. Note that, since 𝒖𝒌 is a vector 

field, our Fourier-series coefficients 𝒄𝑮 are now vectors as well. If we apply the transversality 

constraint to equation 𝒖𝒌(𝒓) = ∑ 𝒄𝑮(𝒌)𝑒𝑖𝑮∙𝒓 𝑮 we obtain a simple constraint on the coefficients: 

(𝒌 + 𝑮)  ·  𝒄𝑮  =  0 

It’s clear transversality is automatically obeyed if we build the field 𝑯 =  𝒖𝒌𝑒𝑖𝒌∙𝑟 out of plane waves 

that are themselves transverse. Therefore, for each G it’s possible to choose two perpendicular 

unit vectors 𝒆�𝑮
(1)  and 𝒆�𝑮2  orthogonal to 𝒌 + 𝑮, and write: 

𝒄𝑮 =  𝑐𝑮
(1)𝒆�𝑮

(1) + 𝑐𝑮
(2)𝒆�𝑮

(2) . 

We have thus reduced the problem to two unknowns 𝑐𝑮
(1) and 𝑐𝑮

(2)  per G, and we need not worry 

about transversality any more. Given the transverse Fourier-series representation, it’s time to 

derive a set of equations to determine the coefficients 𝒄𝑮 by substitution into the master 

equation. By Fourier transforming both sides of the master equation we obtain: 

��−𝜀𝑮′−𝑮
−1 ∙ (𝒌 + 𝑮′) × (𝒌 + 𝑮) ×�𝒄𝑮 =

𝜔2

𝑐2
𝒄𝑮′ 

in terms of the Fourier transform (series coefficients) 𝜀𝑮−𝟏 𝑜𝑓 𝜀−1(𝒓). 

Previous Equation is an infinite set of linear equations for the infinite set of unknowns represented 

by 𝒄𝑮. We can truncate this infinite set of equations using the discrete Fourier transform (DFT).  

The DFT essentially replaces the Fourier transform by a discrete sum. Once we have truncated to a 
finite set of G values, we obtain a finite matrix eigenequation of the form 𝐴𝑥 =  𝜔2𝑥, where x is 

the column-vector of our unknown 𝑐𝑮𝑙   and A is the matrix of the coefficients on the left-hand side. 



8. Photonic bands in multilayered dielectric structures 63 
 

The reason why we don’t get a generalized eigenproblem  𝐴𝑥 =  𝜔2𝐵𝑥, or rather why B here is 
the identity, is that the planewave basis functions are orthogonal to one another. 

The coefficients 𝜀𝑮′−𝑮
−1  are generally nonzero for all 𝑮′ and G, matrix A is dense (mostly nonzero), 

and multiplying Ax takes 𝑂(𝑁2) time. Fast Fourier transform (FFT) algorithms can compute the 

multidimensional DFT over N points in 𝑂(𝑁 𝑙𝑜𝑔 𝑁) time. This means we can multiply 𝑐𝑮 by the 

operator on the left-hand side of the equation via a three-step process. First, we take the 

crossproduct (𝒌 +  𝑮)  ×  𝒄𝑮 , which takes 𝑂(𝑁) time. Then, we compute the (inverse) 

FFT to transform into position (r) space, where we can multiply by 𝜀−1(𝒓) in 𝑂(𝑁) time. Finally, 
we FFT back to G coordinates to perform the final cross-product (𝒌 +  𝑮′) × . In all, this process 
takes 𝑂(𝑁 𝑙𝑜𝑔 𝑁) time and requires 𝑂(𝑁) storage, which is fast enough for iterative methods to 
be efficient. 

Another important technical advantage of the planewave representation for iterative eigensolvers 
are preconditioners. A preconditioner, in an iterative method, is essentially an approximate 
solution to the equation that is used to accelerate each step of the iteration. A good 
preconditioner can speed up the solution by orders of magnitude, from thousands of iterations to 
tens, but the development of such a preconditioner is a difficult and problem-dependent task. For 
the planewave method, however, efficient preconditioning is simple: one can precondition by 
considering only the diagonal entries of A, which are just |𝒌 +  𝑮|2, since these entries dominate 
the problem for large |G|. 

 

 

 

 

 

 

 

 

 



 

Summary and conclusion 

 
The software developed in this work has been used as a design tool for multilayered structures and 
the results have been verified and found to be in agreement with measurements. Designers and 
experimenters now have a highly flexible and very general tool which can simulate on a computer 
the behavior of monodimensional multilayered structure such as mirrors, filter, cavities, widely 
used in industrial or research applications.  Whether you decide to buy on the market the device 
which best fit for your purpose or to build such device by yourself, a few run of the software 
package will answer every question and give every parameter needed. The implementation of non 
periodic structure can be used to simulate the presence of production defect and to estimate the 
impact of said defects on overall performances. This can lead to process optimization studies which 
aim at minimize the onset of defects. Exotic and unusual behaviors can be studied using the 
anisotropic program in tandem with the complete non periodicity. 

The software is efficient, requiring a few minutes at maximum to give solutions and it’s portable 

thanks to the user friendly interface implemented via C++. It’s also possible for users familiar with 

Matlab to edit the routines or the functions themselves  in order to solve unpredicted or 

unimplemented problems . In the last chapter I gave some hints to what I consider the next step in 

developing the software, 2D and 3D lattice analyses. Photonic crystal have been mainly 

manufactured as monodimensional multilayer, but in the last few years researchers have started 

to focus their attention on bidimensional  crystal, which exhibit interesting properties thanks to 

particular configuration of their band-gaps. 3D crystals are still a mostly unexplored field, but they 

probably harbor the potential for major breakthrough in photonics and opto-electronics thanks to 

their complete band-gaps.     
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Isotropic Media, TM polarization 

 
% Risolutore multistrato 
  
function [Gamma]= 
multidieI(n,L,lambda,theta,Strati,muRel,sigma,Defect,position_Defect,sigma_defec
t,N_defect,x_Defect,mu_Defect) 
  
if nargin<8, 
Defect=1,position_Defect=0,sigma_defect=0,N_defect=0,x_Defect=0,mu_Defect=0;end 
if nargin<7, sigma=[0,0,0,0];end 
if nargin<6, muRel=[1,1,1]; end 
  
C_luce= 299.792458*10^6   % m/s 
%lambda= lambda                 % m 
%nu= C_luce/lambda 
omega=2*pi*(C_luce/lambda);             % cicli/sec 
  
mu_vuoto= 4*pi*10^(-7)                % H/m 
mu_matAria= mu_vuoto           
muRel_matA= muRel(1) 
muRel_matB= muRel(2) 
mu_matA= mu_vuoto*muRel_matA        
mu_matB=  mu_vuoto*muRel_matB  
muRel_FinalMat= muRel(3) 
mu_FinalMat= mu_vuoto*muRel_FinalMat 
  
epsilon_vuoto= 8.8541*10^(-12)                    % F/m 
epsilonRel_aria= 1.00059 
epsilon_matAria= epsilon_vuoto*epsilonRel_aria   
  
N_Aria= sqrt((mu_matAria*epsilon_matAria)/(mu_vuoto*epsilon_vuoto))  
N_matA= n(1) 
N_matB= n(2) 
N_FinalMat= n(3) 
  
  
epsilon_matA = (((N_matA)^2*mu_vuoto)/mu_matA)*epsilon_vuoto 
epsilon_matB = (((N_matB)^2*mu_vuoto)/mu_matB)*epsilon_vuoto 
epsilon_FinalMat = (((N_FinalMat)^2*mu_vuoto)/mu_FinalMat)*epsilon_vuoto 
  
sigma_matAria= sigma(1) 
sigma_matA=    sigma(2) 
sigma_matB=     sigma(3) %conduttivita' S/m 
sigma_FinalMat= sigma(4) 
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d_1= L(1)*lambda      % spessore dielettrico A in m 
  
d_2= L(2)*lambda  % spessore dielettrico B 
x_3 = d_1 + d_2  % spessori totali 
  
E_11p=  1   % ampiezza campo elettrico incidente polarizzato perpendicolarmente 
teta_11= theta*pi/180  % angolo di incidenza campo elettrico 
x_1=  L(1)*lambda;      % spessore strato d' aria 
  
%Strati=    load('C:\Dev-Cpp\Layers.dat')  % numero degli strati acquisito con 
C++ 
%Defect =   load('C:\Dev-Cpp\Difetti.dat') % Numero Strati "Difetto" acquisito 
via C++ 
%position_Defect = load('C:\Dev-Cpp\posizione_difetti.dat'); % posizione degli 
strati "difetto" acquisita via C++ 
%sigma_defect = load('C:\Dev-Cpp\sigma_difetti.dat') 
%N_defect = load('C:\Dev-Cpp\N_difetti.dat') 
%x_Defect = load('C:\Dev-Cpp\x_difetti.dat').*10^-9; 
%mu_Defect = load('C:\Dev-Cpp\mu_difetti.dat').*mu_vuoto 
  
disp('fine caricamento') 
  
r = 2*Strati+2   % numero di righe e di colonne 
c = 2*Strati+2  
  
if (Defect-1) == 0 
    epsilon_defect=0 
else 
for w = 1:Defect,  % permittività dei difetti 
     
    epsilon_defect(w)=(((N_defect(w))^2*mu_vuoto)/mu_Defect(w))*epsilon_vuoto 
end  
end 
if (Defect-1) == 0 
    K_defect=0 
else 
for w = 1:Defect,  % Vettori d' onda per i difetti 
     
    Kr_defect(w)= 
omega*sqrt((epsilon_defect(w).*mu_Defect(w))./2).*sqrt(sqrt(1+(sigma_defect(w)./
(epsilon_defect(w)*omega)).^2)+1); 
    Ki_defect(w) = 
omega*sqrt((epsilon_defect(w).*mu_Defect(w))./2).*sqrt(sqrt(1+(sigma_defect(w)./
(epsilon_defect(w)*omega)).^2)-1); 
    K_defect(w) = Kr_defect(w)+i.*Ki_defect(w); 
end 
end 
  
Kr_Aria = 
omega*sqrt((epsilon_matAria*mu_matAria)/2)*sqrt(sqrt(1+(sigma_matAria/(epsilon_m
atAria*omega))^2)+1)   % Vettori d' onda per gli strati 
Ki_Aria = 
omega*sqrt((epsilon_matAria*mu_matAria)/2)*sqrt(sqrt(1+(sigma_matAria/(epsilon_m
atAria*omega))^2)-1) 
Kr_matA = 
omega*sqrt((epsilon_matA*mu_matA)./2)*sqrt(sqrt(1+(sigma_matA/(epsilon_matA*omeg
a))^2)+1)     
Ki_matA = 
omega*sqrt((epsilon_matA*mu_matA)./2)*sqrt(sqrt(1+(sigma_matA/(epsilon_matA*omeg
a))^2)-1) 
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Kr_matB = 
omega*sqrt((epsilon_matB*mu_matB)./2)*sqrt(sqrt(1+(sigma_matB/(epsilon_matB*omeg
a))^2)+1) 
Ki_matB = 
omega*sqrt((epsilon_matB*mu_matB)./2)*sqrt(sqrt(1+(sigma_matB/(epsilon_matB*omeg
a))^2)-1) 
Kr_FinalMat = 
omega*sqrt((epsilon_FinalMat*mu_FinalMat)/2)*sqrt(sqrt(1+(sigma_FinalMat/(epsilo
n_FinalMat*omega))^2)+1) 
Ki_FinalMat = 
omega*sqrt((epsilon_FinalMat*mu_FinalMat)/2)*sqrt(sqrt(1+(sigma_FinalMat/(epsilo
n_FinalMat*omega))^2)-1) 
  
  
K_Aria = Kr_Aria+i.*Ki_Aria 
K_matA = Kr_matA+i.*Ki_matA 
K_matB = Kr_matB+i.*Ki_matB 
K_FinalMat = Kr_FinalMat+i.*Ki_FinalMat 
  
%disp('fine caricamento K') 
%N_Aria 
%teta_11 
sin11= N_Aria*sin(teta_11);   % angoli di rifrazione 
  
teta(1)= teta_11; %   Aria 
    disp('pre for w') 
for w = 2:(2*Strati)+1     
%for w = 2:(4)  
  
    %w% strati A e B piu' difetti 
  for cont_pos = 1:(Defect) 
       
%w_cont_pos=[w,cont_pos]     
    if  w == 2*position_Defect(cont_pos) || w == 2*position_Defect(cont_pos)+1, 
         
        teta(w) = asin(sin11/N_defect(cont_pos)); 
     
    else 
  
       for cont = 0:(2*Strati+1), 
         
           if w == (4*cont+2) || w == (4*cont+3), 
             
              teta(w) = asin(sin11/N_matA); 
     
           elseif w == (4*cont) || w == (4*cont+1) 
         
                teta(w) = asin(sin11/N_matB); 
     
     
           end 
       end 
    end 
 end 
 end 
teta  
pause  
 % strato finale di materiale  
  



A. Appendix A.4 
 
 teta(2*Strati+2)= asin(sin11/N_FinalMat); 
         
 % Colonne : w --> K 
          
         % strato 1 (Aria) 
        epsilon_matAria  
         k(1)= K_Aria 
        CM(1)= sqrt(epsilon_matAria/mu_matAria) 
         
          
         % coppie di materiali A e B ed eventuale difetto 
          disp('pre  2 for w') 
         for w=2:(2*Strati)+1, 
             for cont_pos=1:Defect, 
              
             if w == (2*position_Defect(cont_pos)) || w == 
(2*position_Defect(cont_pos))+1, 
                  
                 k(w)= K_defect(cont_pos); 
                 CM(w) = sqrt(epsilon_defect(cont_pos)/mu_Defect(cont_pos)); 
              
             else 
                  
             for cont=0:(2*Strati+1), 
                  
                 if w==(4*cont+2) || w==(4*cont+3), 
                      
                     k(w)= K_matA; 
                     CM(w)= sqrt(epsilon_matA/mu_matA); 
                  
                 elseif w==(4*cont) || w==(4*cont+1) 
                      
                     k(w)= K_matB; 
                     CM(w)= sqrt(epsilon_matB/mu_matB); 
                  
                  
                 end  
             end 
             end 
             end 
         end 
              
        % strato finale di materiale  
          
         k(2*Strati+2)= K_FinalMat 
         CM(2*Strati+2)= sqrt(epsilon_FinalMat/mu_FinalMat) 
          
         % Righe : v -- x 
          
         % strato1 (aria) 
          
         x(1) = x_1;  
         x(2) = x_1; 
          
         % coppie di materiali A e B ed eventuale difetto 
          disp('pre 3 for w') 
         for v = 2:2:(2*Strati), 
             for cont_pos = 1:(Defect), 
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                 if v == 2*position_Defect(cont_pos),  
                  
                     x(v+1) = x(v) + x_Defect(cont_pos); 
                     x(v+2) = x(v) + x_Defect(cont_pos); 
                      
                 elseif mod((v+2)/2,2)==0, 
                      
                     x(v+1) = x(v) + d_1; 
                     x(v+2) = x(v) + d_1; 
                      
                 else 
                          x(v+1) = x(v) + d_2; 
                          x(v+2) = x(v) + d_2; 
                         
                 end 
             end 
         end 
        
          
         x=x(1:r)  
         pause 
         disp('pre 4 for w') 
         for w=2:2:r, 
             for v=1:c, 
               %  w_cont_pos=[w,v] 
                 phi(w,v)= CM(v); 
             end  
         end 
          
         for w=1:2:r, 
             for v=1:c, 
                 phi(w,v)=1; 
             end 
         end 
         phi 
         % polarizzato perpendicolarmente 
          
         for w=2:2:r, 
         for v=1:c, 
              
           Angolo(w,v)= cos(teta(v)); 
         end 
         end 
          
         for w=1:2:r, 
             for v=1:c, 
                 Angolo(w,v) = 1; 
              
             end 
         end 
          
         Angolo 
         for w = 1:r, 
             for v= 1:c, 
                  
                 gamma(w,v) = i*x(w)*k(v) ;  
                 alpha(w,v) = ((-1)^(w+1))*delta(w,v) + ((-
1)^(w+1))*delta(w,v+1) + ((-1)^(w))*delta(w+1,v) - ((1-(-1)^(w))/2)*delta(w+2,v) 
+ ((1-(-1)^(w-1))/2)*delta(w,v+2) ; 
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                 beta(w,v) = ((-1)^(w))*(delta(w,v)) + ((-1)^(w+1))*delta(w,v+1) 
+ ((-1)^(w+1))*(delta(w+1,v)) - ((1-(-1)^(w))/2)*delta(w+2,v) + ((1-(-1)^(w-
1))/2)*delta(w,v+2) ; 
                  
                 ap(w,v) = phi(w,v)*Angolo(w,v)*alpha(w,v); 
                 bg(w,v)=beta(w,v)*gamma(w,v); 
                 ebg=exp(bg); 
                 C(w,v)=ap(w,v)*ebg(w,v); 
             end  
         end 
         gamma 
         alpha 
         beta 
         ap 
         bg 
         ebg 
         C 
         T(1)=-E_11p*exp(i*x_1*K_Aria); 
         T(2)=-
E_11p*sqrt(epsilon_matAria/mu_matAria)*cos(teta_11)*exp(i*x_1*K_Aria); 
          
         for v=3:c, 
               T(v)=0; 
         end 
         T 
         A=inv(C)*T.'; 
         A 
        for es=1:c 
            Mod_A(es)=abs(A(es)); 
        end 
        Mod_A 
        Summ=Mod_A(1)+Mod_A(c) 
          
         for es=1:c 
             Int_A(es)=(Mod_A(es))^2; 
         end 
          Int_A(1) 
         Gamma=Int_A(1) 
         clear A T C 
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Isotropic Media, TE polarization 

 
% Risolutore multistrato 
  
function [Gamma]= 
multidieI(n,L,lambda,theta,Strati,muRel,sigma,Defect,position_Defect,sigma_defec
t,N_defect,x_Defect,mu_Defect) 
  
if nargin<8, 
Defect=1,position_Defect=0,sigma_defect=0,N_defect=0,x_Defect=0,mu_Defect=0;end 
if nargin<7, sigma=[0,0,0,0];end 
if nargin<6, muRel=[1,1,1]; end 
  
C_luce= 299.792458*10^6   % m/s 
%lambda= lambda                 % m 
%nu= C_luce/lambda 
omega=2*pi*(C_luce/lambda);             % cicli/sec 
  
mu_vuoto= 4*pi*10^(-7)                % H/m 
mu_matAria= mu_vuoto           
muRel_matA= muRel(1) 
muRel_matB= muRel(2) 
mu_matA= mu_vuoto*muRel_matA        
mu_matB=  mu_vuoto*muRel_matB  
muRel_FinalMat= muRel(3) 
mu_FinalMat= mu_vuoto*muRel_FinalMat 
  
epsilon_vuoto= 8.8541*10^(-12)                    % F/m 
epsilonRel_aria= 1.00059 
epsilon_matAria= epsilon_vuoto*epsilonRel_aria   
  
N_Aria= sqrt((mu_matAria*epsilon_matAria)/(mu_vuoto*epsilon_vuoto))  
N_matA= n(1) 
N_matB= n(2) 
N_FinalMat= n(3) 
  
  
epsilon_matA = (((N_matA)^2*mu_vuoto)/mu_matA)*epsilon_vuoto 
epsilon_matB = (((N_matB)^2*mu_vuoto)/mu_matB)*epsilon_vuoto 
epsilon_FinalMat = (((N_FinalMat)^2*mu_vuoto)/mu_FinalMat)*epsilon_vuoto 
  
sigma_matAria= sigma(1) 
sigma_matA=    sigma(2) 
sigma_matB=     sigma(3) %conduttivita' S/m 
sigma_FinalMat= sigma(4) 
  
d_1= L(1)*lambda      % spessore dielettrico A in m 
  
d_2= L(2)*lambda  % spessore dielettrico B 
x_3 = d_1 + d_2  % spessori totali 
  
E_11p=  1   % ampiezza campo elettrico incidente polarizzato perpendicolarmente 
teta_11= theta*pi/180  % angolo di incidenza campo elettrico 
x_1=  L(1)*lambda;      % spessore strato d' aria 
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%Strati=    load('C:\Dev-Cpp\Layers.dat')  % numero degli strati acquisito con 
C++ 
%Defect =   load('C:\Dev-Cpp\Difetti.dat') % Numero Strati "Difetto" acquisito 
via C++ 
%position_Defect = load('C:\Dev-Cpp\posizione_difetti.dat'); % posizione degli 
strati "difetto" acquisita via C++ 
%sigma_defect = load('C:\Dev-Cpp\sigma_difetti.dat') 
%N_defect = load('C:\Dev-Cpp\N_difetti.dat') 
%x_Defect = load('C:\Dev-Cpp\x_difetti.dat').*10^-9; 
%mu_Defect = load('C:\Dev-Cpp\mu_difetti.dat').*mu_vuoto 
  
disp('fine caricamento') 
  
r = 2*Strati+2   % numero di righe e di colonne 
c = 2*Strati+2  
  
if (Defect-1) == 0 
    epsilon_defect=0 
else 
for w = 1:Defect,  % permittività dei difetti 
     
    epsilon_defect(w)=(((N_defect(w))^2*mu_vuoto)/mu_Defect(w))*epsilon_vuoto 
end  
end 
if (Defect-1) == 0 
    K_defect=0 
else 
for w = 1:Defect,  % Vettori d' onda per i difetti 
     
    Kr_defect(w)= 
omega*sqrt((epsilon_defect(w).*mu_Defect(w))./2).*sqrt(sqrt(1+(sigma_defect(w)./
(epsilon_defect(w)*omega)).^2)+1); 
    Ki_defect(w) = 
omega*sqrt((epsilon_defect(w).*mu_Defect(w))./2).*sqrt(sqrt(1+(sigma_defect(w)./
(epsilon_defect(w)*omega)).^2)-1); 
    K_defect(w) = Kr_defect(w)+i.*Ki_defect(w); 
end 
end 
  
Kr_Aria = 
omega*sqrt((epsilon_matAria*mu_matAria)/2)*sqrt(sqrt(1+(sigma_matAria/(epsilon_m
atAria*omega))^2)+1)   % Vettori d' onda per gli strati 
Ki_Aria = 
omega*sqrt((epsilon_matAria*mu_matAria)/2)*sqrt(sqrt(1+(sigma_matAria/(epsilon_m
atAria*omega))^2)-1) 
Kr_matA = 
omega*sqrt((epsilon_matA*mu_matA)./2)*sqrt(sqrt(1+(sigma_matA/(epsilon_matA*omeg
a))^2)+1)     
Ki_matA = 
omega*sqrt((epsilon_matA*mu_matA)./2)*sqrt(sqrt(1+(sigma_matA/(epsilon_matA*omeg
a))^2)-1) 
Kr_matB = 
omega*sqrt((epsilon_matB*mu_matB)./2)*sqrt(sqrt(1+(sigma_matB/(epsilon_matB*omeg
a))^2)+1) 
Ki_matB = 
omega*sqrt((epsilon_matB*mu_matB)./2)*sqrt(sqrt(1+(sigma_matB/(epsilon_matB*omeg
a))^2)-1) 
Kr_FinalMat = 
omega*sqrt((epsilon_FinalMat*mu_FinalMat)/2)*sqrt(sqrt(1+(sigma_FinalMat/(epsilo
n_FinalMat*omega))^2)+1) 
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Ki_FinalMat = 
omega*sqrt((epsilon_FinalMat*mu_FinalMat)/2)*sqrt(sqrt(1+(sigma_FinalMat/(epsilo
n_FinalMat*omega))^2)-1) 
  
  
K_Aria = Kr_Aria+i.*Ki_Aria 
K_matA = Kr_matA+i.*Ki_matA 
K_matB = Kr_matB+i.*Ki_matB 
K_FinalMat = Kr_FinalMat+i.*Ki_FinalMat 
  
%disp('fine caricamento K') 
%N_Aria 
%teta_11 
sin11= N_Aria*sin(teta_11);   % angoli di rifrazione 
  
teta(1)= teta_11; %   Aria 
    disp('pre for w') 
for w = 2:(2*Strati)+1     
%for w = 2:(4)  
  
    %w% strati A e B piu' difetti 
  for cont_pos = 1:(Defect) 
       
%w_cont_pos=[w,cont_pos]     
    if  w == 2*position_Defect(cont_pos) || w == 2*position_Defect(cont_pos)+1, 
         
        teta(w) = asin(sin11/N_defect(cont_pos)); 
     
    else 
  
       for cont = 0:(2*Strati+1), 
         
           if w == (4*cont+2) || w == (4*cont+3), 
             
              teta(w) = asin(sin11/N_matA); 
     
           elseif w == (4*cont) || w == (4*cont+1) 
         
                teta(w) = asin(sin11/N_matB); 
     
     
           end 
       end 
    end 
 end 
 end 
teta  
pause  
 % strato finale di materiale  
  
 teta(2*Strati+2)= asin(sin11/N_FinalMat); 
         
 % Colonne : w --> K 
          
         % strato 1 (Aria) 
        epsilon_matAria  
         k(1)= K_Aria 
        CM(1)= sqrt(epsilon_matAria/mu_matAria) 
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         % coppie di materiali A e B ed eventuale difetto 
          disp('pre  2 for w') 
         for w=2:(2*Strati)+1, 
             for cont_pos=1:Defect, 
              
             if w == (2*position_Defect(cont_pos)) || w == 
(2*position_Defect(cont_pos))+1, 
                  
                 k(w)= K_defect(cont_pos); 
                 CM(w) = sqrt(epsilon_defect(cont_pos)/mu_Defect(cont_pos)); 
              
             else 
                  
             for cont=0:(2*Strati+1), 
                  
                 if w==(4*cont+2) || w==(4*cont+3), 
                      
                     k(w)= K_matA; 
                     CM(w)= sqrt(epsilon_matA/mu_matA); 
                  
                 elseif w==(4*cont) || w==(4*cont+1) 
                      
                     k(w)= K_matB; 
                     CM(w)= sqrt(epsilon_matB/mu_matB); 
                  
                  
                 end  
             end 
             end 
             end 
         end 
              
        % strato finale di materiale  
          
         k(2*Strati+2)= K_FinalMat 
         CM(2*Strati+2)= sqrt(epsilon_FinalMat/mu_FinalMat) 
          
         % Righe : v -- x 
          
         % strato1 (aria) 
          
         x(1) = x_1;  
         x(2) = x_1; 
          
         % coppie di materiali A e B ed eventuale difetto 
          disp('pre 3 for w') 
         for v = 2:2:(2*Strati), 
             for cont_pos = 1:(Defect), 
             
                 if v == 2*position_Defect(cont_pos),  
                  
                     x(v+1) = x(v) + x_Defect(cont_pos); 
                     x(v+2) = x(v) + x_Defect(cont_pos); 
                      
                 elseif mod((v+2)/2,2)==0, 
                      
                     x(v+1) = x(v) + d_1; 
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                     x(v+2) = x(v) + d_1; 
                      
                 else 
                          x(v+1) = x(v) + d_2; 
                          x(v+2) = x(v) + d_2; 
                         
                 end 
             end 
         end 
        
          
         x=x(1:r)  
         pause 
         disp('pre 4 for w') 
         for w=1:2:r, 
             for v=1:c, 
               %  w_cont_pos=[w,v] 
                 phi(w,v)= CM(v); 
             end  
         end 
          
         for w=2:2:r, 
             for v=1:c, 
                 phi(w,v)=1; 
             end 
         end 
         phi 
         % polarizzato perpendicolarmente 
          
         for w=1:2:r, 
         for v=1:c, 
              
           Angolo(w,v)= cos(teta(v)); 
         end 
         end 
          
         for w=2:2:r, 
             for v=1:c, 
                 Angolo(w,v) = 1; 
              
             end 
         end 
          
         Angolo 
         for w = 1:r, 
             for v= 1:c, 
                  
                 gamma(w,v) = i*x(w)*k(v) ;  
                 alpha(w,v) = ((-1)^(w+1))*delta(w,v) + ((-
1)^(w+1))*delta(w,v+1) + ((-1)^(w))*delta(w+1,v) - ((1-(-1)^(w))/2)*delta(w+2,v) 
+ ((1-(-1)^(w-1))/2)*delta(w,v+2) ; 
                 beta(w,v) = ((-1)^(w))*(delta(w,v)) + ((-1)^(w+1))*delta(w,v+1) 
+ ((-1)^(w+1))*(delta(w+1,v)) - ((1-(-1)^(w))/2)*delta(w+2,v) + ((1-(-1)^(w-
1))/2)*delta(w,v+2) ; 
                  
                 ap(w,v) = phi(w,v)*Angolo(w,v)*alpha(w,v); 
                 bg(w,v)=beta(w,v)*gamma(w,v); 
                 ebg=exp(bg); 
                 C(w,v)=ap(w,v)*ebg(w,v); 
             end  
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         end 
         gamma 
         alpha 
         beta 
         ap 
         bg 
         ebg 
         C 
         T(1)=-E_11p*exp(i*x_1*K_Aria) )*cos(teta_11); 
         T(2)=-E_11p*sqrt(epsilon_matAria/mu_matAria)*exp(i*x_1*K_Aria); 
          
         for v=3:c, 
               T(v)=0; 
         end 
         T 
         A=inv(C)*T.'; 
         A 
        for es=1:c 
            Mod_A(es)=abs(A(es)); 
        end 
        Mod_A 
        Summ=Mod_A(1)+Mod_A(c) 
          
         for es=1:c 
             Int_A(es)=(Mod_A(es))^2; 
         end 
          Int_A(1) 
         Gamma=Int_A(1) 
         clear A T C 
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Anisotropic media, both polarizations 

 
function [Gamma,Z] = anisotropo(n,L,lambda,theta,pol) 
  
  
if nargin<=4, pol='te'; end 
if nargin==3, theta=0; end 
  
if size(n,2)==1, n = n'; end                             
  
K = size(n,1);                                           
M = size(n,2)-2;                                         
  
if K==1, n = [n; n; n]; end                             
if K==2, n = [n(1,:); n]; end                            
  
if M==0, L = []; end                                     
  
theta = theta * pi/180; 
  
if pol=='te', 
    Nsin2 = (n(2,1)*sin(theta))^2;                                 
    c = sqrt(1 - Nsin2 ./ n(2,:).^2);                  
    nT = n(2,:) .* c;                                    
    r = n2r(nT);                                        
else 
    Nsin2 = (n(1,1)*n(3,1)*sin(theta))^2 / (n(3,1)^2*cos(theta)^2 + 
n(1,1)^2*sin(theta)^2); 
    c = sqrt(1 - Nsin2 ./ n(3,:).^2); 
    nTinv = c ./ n(1,:);                                 
    r = -n2r(nTinv);                                     
end 
  
if M>0, 
    L = L .* c(2:M+1);                                   
end 
  
Gamma = r(M+1) * ones(1,length(lambda));                 
  
for i = M:-1:1,                                           
    delta = 2*pi*L(i)./lambda;                           
    z = exp(-2*j*delta);                           
    Gamma = (r(i) + Gamma.*z) ./ (1 + r(i)*Gamma.*z); 
end 
  
Z = (1 + Gamma) ./ (1 - Gamma); 
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Routines for computations 
 

This routine computes reflectance dependence on angle and frequency and plots a 
corresponding 3D graphic. 

 
na = 1; nb = 1.52; nH = 2.42; nL = 1.45; 
LH = 0.25; LL = 0.25 ; 
la0 = 500; 
la = linspace(300,800,500); 
th = linspace(0,89,199); 
N = 5; 
for j=1:length(la) 
    for i=1:length(th) 
n = [na, nH, repmat([nL,nH], 1, N), nb]; 
L = [LH, repmat([LL,LH], 1, N)]; 
Ge(j,i) = 100*abs(multidiel(n,L,la(j)/la0, th(i), 'te')).^2; 
Gm(j,i) = 100*abs(multidiel(n,L,la(j)/la0, th(i), 'tm')).^2; 
G0(j,i) = 100*abs(multidiel(n,L,la(j)/la0)).^2; 
    end  
end 
  
figure;surf(th,la,Ge,'edgecolor','none') 
shading interp 
camlight right;  
lighting phong; 
figure;surf(th,la,Gm,'edgecolor','none') 
shading interp 
camlight right;  
lighting phong; 
figure;surf(LH,la,G0,'edgecolor','none') 
shading interp 
camlight right;  
lighting phong; 
xlabel 'L / \lambda'; 
ylabel '\lambda (\num)'; 
zlabel '|\Gamma|^2'; 
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This routines computes the reflectance for non-periodic mirrors and plots a 3D 
graphic. 

 
clear all 
  
na=1; 
nb=1.52;  
nH=2.32; 
nL= 1.45; 
LH1=0.25 
LL1=0.25 
LH=linspace(0,1,1000); 
LL=linspace(0,1,1000); 
la0=500; 
  
M=5 
N =5; 
  
th=45; 
  
la=linspace(300,800,1000); 
  
for i=1:length(la) 
for j=1:length(LL) 
n = [na, nH, repmat([nL,nH], 1, N),repmat([nL,nH], 1, M), nb]; 
L = [LH(j), repmat([LL(j),LH(j)], 1, N),repmat([LL1,LH1], 1, M)];   
Ga(j,i) = 100*abs(multidiel(n, L, la(i)/la0, th, 'tm')).^2; 
Gm(j,i) = 100*abs(multidiel(n, L, la(i)/la0, th, 'te')).^2; 
end     
end 
%plot(LH,Ga,LH,Gm); 
figure;surf(la,LL,Ga,'edgecolor','none') 
shading interp 
camlight left;  
lighting phong; 
material dull; 
ylabel 'LH'; 
xlabel 'LL'; 
zlabel '|\Gamma|^2'; 
figure;surf(la,LL,Gm,'edgecolor','none') 
shading interp 
camlight left;  
material dull; 
lighting phong; 
ylabel 'LH'; 
xlabel 'LL'; 
zlabel '|\Gamma|^2'; 
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Additional software 
Software for Brewster’s angles computations for isotropic and anisotropic media: 

 
function [thb,thcTE,thcTM] = brewster(na,nb) 
  
  

na = na(:); nb = nb(:);                                 % Trasformo in 
vettori colonna       

if length(na)==1, na=[na; na; na]; end                  % isotropico 
if length(na)==2, na=[na(1); na(1); na(2)]; end         % uniassiale 
if length(nb)==1, nb=[nb; nb; nb]; end 
if length(nb)==2, nb=[nb(1); nb(1); nb(2)]; end 
  
if na(3)==nb(3), 
    thb = [];                   % l' angolo di Brewster non esiste 
else 
    thb = atan(na(3) * nb(3) * sqrt((na(1)^2-nb(1)^2)/(na(3)^2-nb(3)^2)) / 
na(1)^2) * 180/pi; 
end 
  
if na(3)>nb(3), 
    thcTM = asin(na(3)*nb(3)/sqrt(na(3)^2*nb(3)^2 + na(1)^2*(na(3)^2-nb(3)^2))) 
* 180/pi; 
else 
    thcTM = asin(na(3)*nb(3)/sqrt(na(3)^2*nb(3)^2 + nb(1)^2*(nb(3)^2-na(3)^2))) 
* 180/pi; 
end 
  
if na(2)>nb(2),  
    thcTE = asin(nb(2)/na(2)) * 180/pi; 
else 
    thcTE = asin(na(2)/nb(2)) * 180/pi; 
end 
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Software for Fresnel’s coefficients computation for isotropic and anisotropic media: 

 
function [rte,rtm] = fresnel(na,nb,theta) 
  
na = na(:); nb = nb(:);                                 % trasformo in vettori 
colonna 
if length(na)==1, na=[na; na; na]; end                  % isotropo  
if length(na)==2, na=[na(1); na(1); na(2)]; end         % uniassiale 
if length(nb)==1, nb=[nb; nb; nb]; end 
if length(nb)==2, nb=[nb(1); nb(1); nb(2)]; end 
  
theta = pi*theta/180; 
  
Na = 1./sqrt(cos(theta).^2/na(1)^2 + sin(theta).^2/na(3)^2);        
  
xe = (na(2)*sin(theta)).^2;                                     % caso 
polarizzazione TE         
xm = (Na.*sin(theta)).^2;                                       % caso 
polarizzazione TM                     
  
rte = (na(2)*cos(theta) - sqrt(nb(2)^2 - xe)) ./ ... 
      (na(2)*cos(theta) + sqrt(nb(2)^2 - xe)); 
  
if na(3)==nb(3),                                                
    rtm = (na(1) - nb(1)) / (na(1) + nb(1)) * ones(1,length(theta)); 
else 
    rtm = (na(1)*na(3) * sqrt(nb(3)^2 - xm) - nb(1)*nb(3) * sqrt(na(3)^2 - xm)) 
./ ... 
          (na(1)*na(3) * sqrt(nb(3)^2 - xm) + nb(1)*nb(3) * sqrt(na(3)^2 - xm)); 
end 
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Software for computation of refraction angles in isotropic or anisotropic media: 

 

function thb = snell(na,nb,tha,pol) 
  
na = na(:); nb = nb(:); 
  
if length(na)==1, na=[na; na; na]; end                  % isotropo 
if length(na)==2, na=[na(1);na(1); na(2)]; end          % uniassiale 
if length(nb)==1, nb=[nb; nb; nb]; end                
if length(nb)==2, nb=[nb(1); nb(1); nb(2)]; end        
  
tha = tha * pi/180; 
  
if pol STRCMP 'tm', 
    A = nb(1)^2 * nb(3)^2 * (na(1)^2 - na(3)^2) - na(1)^2 * na(3)^2 * (nb(1)^2 - 
nb(3)^2); 
    B = nb(1)^2 * nb(3)^2 * na(3)^2; 
    thb = asin(na(1)*na(3)*nb(3)*sin(tha)./sqrt(A*sin(tha).^2 + B)); 
else 
    thb = asin(na(2)*sin(tha)/nb(2)); 
end 
  
thb = thb * 180/pi; 
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