
 
 

POLITECNICO DI MILANO 

Faculty of Engineering 

Department of Electronics and Information (DEI) 

 

 

 

 

 

OPTIMIZATION TOOL BASED ON  

MEMORY ADAPTIVE HEURISTICS AND  

INTEGER LINEAR PROGRAMMING FOR 

HOME CARE SCHEDULING PROBLEMS 

 

 

 

 

 

Supervisor: Prof. Federico Malucelli 

 

 

 

M.Sc. Thesis by: 

Helio Tadashi OMOTO 

Matr. 734281 

 

 

 

 

 

Academic year: 2011/2012



2 
 

 

ABSTRACT 

 

 The project has the purpose of studying the viability of the use of a methodology 

based on genetic algorithms and local search on the resolution of Home Care scheduling 

problem; as well as the implementation of a system that solves the practical issue. Home 

Care is used in English as home-based care, and the main motivation to the use of Home 

Care is the reduction of the bottleneck faced in world´s big cities hospitals. This type of 

care allows certain patients to be treated at the comfort of home, along with their family 

and releasing a hospital bed. In contrast, the increasing use of this system has caused in 

developed countries problems in the assignment of human resources who are available to 

perform the visits at home. In this context, the project aims to apply artificial intelligence 

techniques to find good solutions to the problem nurses and health agents scheduling. The 

problem is described as a variant of the Vehicle Routing problem with Time Window. The 

final system is composed by a Web module for agents and patients management, an 

algorithm module responsible for the routes calculations and a mobile module ported by 

the agent during the visits. 

 

Key-words : Home Care, scheduling, genetic algorithms, local search, Android, Vehicle 

Routing problem with Time Window 

 



3 
 

RIASSUNTO 

 

 Il progetto ha lo scopo di studiare la fattibilità dell'utilizzo di una metodologia basata 

su algoritmi genetici e la ricerca locale in merito alla risoluzione del problema di scheduling 

Home Care, così come l'attuazione del sistema che risolve il problema pratico. Home Care 

è un termo usato in inglese per discrivere l'assistenza domiciliare, e la motivazione 

principale per l'uso di Home Care è la riduzione del collo di bottiglia affrontato negli 

ospedalidelle grandi città del mondo. Questo tipo di trattamenti permette ai pazienti di 

essere trattati alla comodità della casa, insieme a loro famiglie e liberando un letto 

d'ospedale. Al contrario, aumentando l'utilizzo di questo sistema ha causato nei paesi 

sviluppati problemi di assegnazione di risorse umane che sono disponibile ad effettuare le 

visite a casa. In questo contesto, si propone gli obiettivi del progetto di applicare tecniche 

di intelligenza artificiale per trovare buone soluzioni per i problemi di scheduling diagenti 

sanitari e infermieri. Il problema è descritto come una variante del problema di Routing 

Vehicule con finestra temporale. Il sistema finale è costituito da un modulo Web per i 

pazienti e gli agenti di gestione, un moduloAlgoritmo responsabile per i calcoli e un modulo 

Mobile portati dall'agente durante le visite. 

 

Parole chiave : Home Care, scheduling, algoritimi genetici, ricerca locale, Android, 

problem di Vehicle Routing con finestra temporale 

 

  



4 
 

LIST OF FIGURES 

 

Figure 2.1 – São Paulo: Illustration of a possible route for the Traveling Salesman Problem
 .......................................................................................................................................... 21 

Figure 2.2 – Illustration of a graph model to VRP example ............................................... 22 

Figure 2.3 – Spectrum of solutions illustrating local maximums ........................................ 27 

Figure 3.1 – Scenario for the solutions study for the routing problem ................................ 35 

Figure 3.2 – Possible solutions for the studied scenario of routing problem ...................... 36 

Figure 3.3 – Example of negative incompatibility, viable arch. .......................................... 37 

Figure 3.4 – Example of positive incompatibility, unviable arch ......................................... 38 

Figure 3.5 – Flowchartelucidatingthe viabilityof a node visit .............................................. 39 

Figure 3.6 – Complete flowchart elucidating the solution modeling ................................... 40 

Figure 3.7 – Structure of the Genetic Algorithm developed ............................................... 41 

Figure 3.8 – Proportional Selection, solutions s1 and s2 add up 50% of the probability of 
choice ................................................................................................................................ 45 

Figure 3.9 – Local search 2-Opt scheme ........................................................................... 51 

Figure 3.10 – Structure of the local search proposed ........................................................ 52 

Figure 3.11 – Comparison of the execution time between the genetic algorithm with and 
without local search varying the number of analyzed nodes, 1000 iterations .................... 55 

Figure 3.12–Comparison of the execution time for different population sizes, base of 50 
nodes and 1000 iterations ................................................................................................. 56 

Figure 3.13 – Number of agents/routes per iteration varying the population size used ..... 57 

Figure 3.14 – Average waiting time per iteration varying the population size used ........... 58 

Figure 3.15 – Average travelling time per iteration varying the population size used ........ 59 

Figure 3.16 – Evaluation of the solutions per iteration varying the population size used ... 60 

Figure 3.17 - Comparison of conversion of number of agents between genetic algorithm 
with and without local search in the 1000 initial iterations for 50 nodes ............................. 62 

Figure 3.18 - Comparison of conversion of number of agents between genetic algorithm 
with and without local search in different number of iterations ........................................... 62 

Figure 3.19 – Comparison of conversion of average waiting time per route between 
genetic algorithm with and without local search in the 1000 initial iterations for 50 nodes 63 

Figure 3.20 - Comparison of conversion of average waiting time per route between genetic 
algorithm with and without local search in different number of iterations ........................... 64 

Figure 3.21 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in the 1000 initial iterations for 50 nodes 65 

Figure 3.22 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in different number of iterations .............. 66 

Figure 3.23 – Comparison of the conversion for the different tournament sizes of the 
Tournament selection operator .......................................................................................... 69 

Figure 3.24–Comparison between selection operators, variable analyzed: number of 
agents used ....................................................................................................................... 71 

Figure 3.25 - Comparison between selection operators, variable analyzed: average waiting 
time per route .................................................................................................................... 72 

Figure 3.26 - Comparison between selection operators, variable analyzed: average 
traveling time per route ...................................................................................................... 74 

Figure 3.27 – Comparison between the crossover operators, variable analyzed: number of 
agents used ....................................................................................................................... 76 

Figure 3.28 - Comparison between the crossover operators, variable analyzed: average 
waiting time per route ........................................................................................................ 77 

Figure 3.29 – Spectrum of solutions illustrating the local maximums ................................ 78 

Figure 3.30 – Mutation operator – Inversion, variable analyzed: number of agents used .. 80 



5 
 

Figure 3.31 - Mutation operator – Removal-and-Reinsert, variable analyzed: number of 
agents used ....................................................................................................................... 81 

Figure 3.32 - Comparison between the mutation operators, variable analyzed: average 
waiting time per route for 10,000 iterations ........................................................................ 82 

Figure 3.33 - Comparison between the mutation operators, variable analyzed: average 
travelling time per route for 10,000 iterations ..................................................................... 83 

Figure 4.1 – Architecture of the Complete System ............................................................ 91 

Figure 4.2 – Classes diagram of the Web Sub-system ...................................................... 91 

Figure 4.3 – Classes diagram of the Mobile Sub-system .................................................. 92 

Figure 4.4 – Classes diagramof the Algorithm Sub-system ............................................... 93 

Figure 4.5 – Entity Relationship Diagram (ERD) of the project .......................................... 94 

Figure 4.6 – Scheme of the database of the project .......................................................... 94 

Figure 4.7 – Screen 001 – List of agents ........................................................................... 96 

Figure 4.8 – Screen 002 – Agent creation steps ................................................................ 96 

Figure 4.9 – Screen 003 – Agent edition steps .................................................................. 97 

Figure 4.10 – Screen 004 – Agent removal steps .............................................................. 98 

Figure 4.11 – Screen 005 – List of patients ....................................................................... 99 

Figure 4.12 – Screen 006 – Patient criation steps ............................................................. 99 

Figure 4.13 – Screen 007 – Patient edition steps ............................................................ 100 

Figure 4.14 – Screen 008 – List of patients services ....................................................... 101 

Figure 4.15 – Screen 009 - Service creation steps .......................................................... 102 

Figure 4.16 – Screen 010 – Service edition steps ........................................................... 103 

Figure 4.17 – Screen 011 – Service removal steps ......................................................... 104 

Figure 4.18 – Screen 012 – List of patients per agents ................................................... 105 

Figure 4.19 – Screen 013 – Service in route or not visualization ..................................... 106 

Figure 4.20 – Screen 014 – Visualization of route and legend ........................................ 107 

Figure 4.21 – Screen 015 – Description of location ......................................................... 107 

Figure 4.22 – Screen 016 – Authentication of the agent .................................................. 108 

Figure 4.23 – Screen 017 – Visualization of patient information ...................................... 108 

Figure 4.24 – Screen 018 – Notification of existence of new route information ............... 109 

Figure 4.25 – Screen 019 – Information of impossibility of agent to continue the visits ... 110 

Figure 4.26 – Screen 020 – Agent creates the report informing about the visit ............... 111 

 

 

 

  



6 
 

LIST OF TABLES 

 

Table 3.1 – Example of the base table used to the configuration of the genetic algorithm 
analyzed ............................................................................................................................ 54 

Table 3.2 – Genetic algorithms configuration for the analyses of population size ............. 55 

Table 3.3 – Comparison of the execution time between the genetic algorithm with and 
without local search varying the number of analyzed nodes, 1000 iterations .................... 55 

Table 3.4 - Comparison of the execution time for different population sizes, base of 50 
nodes and 1000 iterations ................................................................................................. 56 

Table 3.5 – Final conversion of agents for different population size .................................. 57 

Table 3.6 – Final conversion of the waiting traveling time per route for the different 
population sizes ................................................................................................................. 58 

Table 3.7 – Final conversion of the average traveling time per route for the 
differentpopulation sizes .................................................................................................... 59 

Table 3.8–Final conversion of the evaluation function for different population sizes ......... 60 

Table 3.9 – Genetic algorithm configuration for the conversion analyses in function of the 
stopping criteria ................................................................................................................. 61 

Table 3.10 – Number of maximum iterations per number of nodes ................................... 61 

Table 3.11 – Comparison of conversion of number of agents between genetic algorithm 
with and without local search in the 1000 initial iterations for 50 nodes ............................. 61 

Table 3.12 - Comparison of conversion of number of agents between genetic algorithm 
with and without local search in the 1000 initial iterations ................................................. 62 

Table 3.13 - Comparison of conversion of number of agents between genetic algorithm 
with and without local search in the number of maximum iteration .................................... 63 

Table 3.14- Comparison of conversion of average waiting time per route between genetic 
algorithm with and without local search in the 1000 initial iterations for 50 nodes ............. 63 

Table 3.15 - Comparison of conversion of average waiting time per route between genetic 
algorithm with and without local search in the 1000 initial iterations .................................. 64 

Table 3.16 - Comparison of conversion of average waiting time per route between genetic 
algorithm with and without local search in the number of maximum iterations .................. 65 

Table 3.17 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in the 1000 initial iterations for 50 nodes 65 

Table 3.18 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in the 1000 initial iterations ..................... 66 

Table 3.19 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in the number of maximum iterations ...... 67 

Table 3.20 – Genetic algorithm configuration for analyses of selection operators ............. 67 

Table 3.21 – Conversion values of agents number after 100 iterations for the tournament 
selection operator with different tournaments sizes for 50 nodes ...................................... 68 

Table 3.22 - Conversion values of agents number after 10,000 iterations for the 
tournament selection operator with different tournaments sizes for 50 nodes ................... 69 

Table 3.23 – Number of maximum iterations used per number of nodes for the comparison 
of selection operators ........................................................................................................ 70 

Table 3.24 - Comparison between selection operators, variable analyzed: number of 
agents used for 1,000 initial iterations ............................................................................... 71 

Table 3.25 - Comparison between selection operators, variable analyzed: number of 
agents used for maximum iterations .................................................................................. 72 

Table 3.26 - Comparison between selection operators, variable analyzed: average waiting 
time per route for 1,000 initial iterations ............................................................................. 73 

Table 3.27 - Comparison between selection operators, variable analyzed: average waiting 
time per route for maximum iterations ............................................................................... 73 



7 
 

Table 3.28 - Comparison between selection operators, variable analyzed: average 
traveling time per route for 1,000 initial iterations .............................................................. 74 

Table 3.29 - Comparison between selection operators, variable analyzed: average 
traveling time per route for maximum iterations ................................................................. 75 

Table 3.30 – Configuration of the genetic algorithm for the analyses of the crossover 
operator ............................................................................................................................. 75 

Table 3.31 – Number of maximum iterations used per number of nodes for the comparison 
of the crossover operator ................................................................................................... 76 

Table 3.32 - Comparison between the crossover operators, variable analyzed: number of 
agents used per maximum iterations ................................................................................. 77 

Table 3.33 - Comparison between the crossover operators, variable analyzed: average 
waiting time per route for maximum iterations ................................................................... 78 

Table 3.34 - Comparison between the crossover operators, variable analyzed: average 
travelling time per route for maximum iterations ................................................................ 79 

Table 3.35 – Genetic algorithm configuration for the analyses of mutation operators ....... 79 

Table 3.36 – Comparison between the mutation operators, variable analyzed: number of 
agents used for 10,000 iterations ...................................................................................... 81 

Table 3.37 - Comparison between the mutation operators, variable analyzed: average 
waiting time per route for 10,000 iterations ........................................................................ 82 

Table 3.38 - Comparison between the mutation operators, variable analyzed: average 
traveling time per route for 10,000 iterations ..................................................................... 83 

Table 3.39 – Final configuration to be used in the sub-system algorithm .......................... 85 

Table 4.1 – Functional tests of the Web module .............................................................. 112 

Table 4.2 – Functional tests of the Mobile Sub-system ................................................... 113 

Table 4.3 – Functional tests of iteration ........................................................................... 114 

 

 

 

 

  



8 
 

LIST OF ABREVIATIONS 

 

GA Genetic Algorithms 

LS Local Search 

TSP Traveling Salesman Problem 

VRP Vehicle Routing Problem 

VRPTW Vehicle Routing Problem with Time Window 

PMX Partially Mapped Crossover 

OX Ordered Crossover 

TSP Travelling Salesman Problem 

RaR Remove and Reinsert 

 

 

 

  



9 
 

CONTENTS 

 

 
INTRODUCTION ................................................................................................................................................ 12 

1 Introduction ............................................................................................................................................... 13 

1.1 Generic overview about the Brazilian and International Home Care scenario .................................. 13 

1.2 Understanding of the Home Care problem and motivation............................................................... 14 

1.3 Objective and scope of this work ....................................................................................................... 15 

1.4 Methodology used .............................................................................................................................. 17 

1.5 Execution of the project ..................................................................................................................... 17 

1.6 Structure of the thesis ........................................................................................................................ 18 

STUDY ............................................................................................................................................................... 19 

2 Vehicle Routing Problem with Time Window ............................................................................................ 20 

2.1 Traveling Salesman Problem – TSP ..................................................................................................... 20 

2.2 Vehicle Routing Problem – VRP .......................................................................................................... 21 

2.3 Vehicle Routing Problem with Time Widow – VRPTW ....................................................................... 23 

2.3.1 VRPTW Static ............................................................................................................................... 25 

2.3.2 VRPTW Dynamic .......................................................................................................................... 25 

2.4 Metaheuristics for VRPTW .................................................................................................................. 26 

2.4.1 Local Search ................................................................................................................................. 27 

2.4.2 Simulated Annealing .................................................................................................................... 27 

2.4.3 Tabu Search ................................................................................................................................. 28 

2.4.4 Ant colony .................................................................................................................................... 28 

2.4.5 Genetic Algorithms ...................................................................................................................... 29 

2.5 Summary ............................................................................................................................................. 31 

DEVELOPMENT ................................................................................................................................................. 33 

3 Algorithm Sub-system ................................................................................................................................ 34 

3.1 Function requirements of the algorithm ............................................................................................ 34 

3.2 The genetic approach proposed ......................................................................................................... 34 

3.2.1 The chromosome ......................................................................................................................... 34 

3.2.2 Incompatibilities .......................................................................................................................... 36 

3.2.3 Application of concepts ............................................................................................................... 38 

3.2.4 Evaluation Function ..................................................................................................................... 42 

3.2.5 Selection ...................................................................................................................................... 43 



10 
 

3.2.6 Crossover ..................................................................................................................................... 46 

3.2.7 Mutation ...................................................................................................................................... 49 

3.2.8 Chromosomes duplications ......................................................................................................... 50 

3.2.9 Stopping criteria .......................................................................................................................... 50 

3.3 Local Search Proposed ........................................................................................................................ 51 

3.4 Procedure and Results ........................................................................................................................ 53 

3.4.1 Computer used for the tests ........................................................................................................ 53 

3.4.2 Methodology and Data ................................................................................................................ 53 

3.4.3 Analyses of the effect of the population size and execution time .............................................. 54 

3.4.4 Analyses of the stopping criteria by iteration number with and without the proposed Local 

Search 60 

3.4.5 Selection Operators ..................................................................................................................... 67 

3.4.6 Crossover Operators .................................................................................................................... 75 

3.4.7 Mutation Operators ..................................................................................................................... 79 

3.5 Dynamic Approach .............................................................................................................................. 84 

3.6 Summary ............................................................................................................................................. 84 

4 Web and Mobile Sub-systems ................................................................................................................... 86 

4.1 System objective ................................................................................................................................. 86 

4.2 Methodology adopted ........................................................................................................................ 86 

4.3 Scenarios of use of the system ........................................................................................................... 86 

4.3.1 Scenarios of Web sub-system ...................................................................................................... 86 

4.3.2 Scenarios of Mobile sub-system .................................................................................................. 87 

4.4 Function requirements ....................................................................................................................... 88 

4.4.1 Web sub-system .......................................................................................................................... 88 

4.4.2 Mobile sub-system ....................................................................................................................... 89 

4.5 Non-function requirements ................................................................................................................ 89 

4.5.1 Usability and Performance .......................................................................................................... 89 

4.5.2 Availability and Reliability ............................................................................................................ 90 

4.5.3 Security and Limitations .............................................................................................................. 90 

4.6 System specifications .......................................................................................................................... 90 

4.6.1 System architecture ..................................................................................................................... 90 

4.6.2 Classes diagram ........................................................................................................................... 90 

4.6.3 Database Model ........................................................................................................................... 93 

4.7 Implementation .................................................................................................................................. 95 

4.7.1 Infrastructure ............................................................................................................................... 95 

4.7.2 Technology ................................................................................................................................... 95 



11 
 

4.8 System screens ................................................................................................................................... 96 

4.8.1 Screen results – Web Sub-system ................................................................................................ 96 

4.8.2 Screen results – Mobile Sub-system .......................................................................................... 107 

4.9 Tests and Results .............................................................................................................................. 111 

4.9.1 Test cases – Web Sub-system .................................................................................................... 111 

4.9.2 Test cases – Algorithm Sub-system ........................................................................................... 113 

4.9.3 Test cases – Mobile Sub-system ................................................................................................ 113 

4.9.4 Integration Tests ........................................................................................................................ 114 

4.10 Difficulties faced ............................................................................................................................. 114 

4.11 Summary ......................................................................................................................................... 115 

FINAL CONSIDERATIONS................................................................................................................................. 116 

5 Final Considerations................................................................................................................................. 117 

5.1 Achieved objectives .......................................................................................................................... 117 

5.2 Future works ..................................................................................................................................... 117 

5.3 Conclusions ....................................................................................................................................... 118 

 
 

 

 

  



12 
 

 

 

 

 

 

 

 

 

 

 

PART I 

 

INTRODUCTION 
 

  



13 
 

1 Introduction 
 

1.1 Generic overview about the Brazilian and Intern ational Home Care 
scenario 

 

 Home Care is used in English as home-based care, being a specialization in the 

health field with a different vision from the average, i.e. instead of the patients going to the 

hospital to be treated, the health agents go to his residence to treat him. 

 The use of the Home Care is growing in Brazil, due to its advantages. First of all, 

the patient is treated outside of the hospital and in contact with his family, resulting in a 

cost reduction for the hospitals and health insurance, bed release and in an increase in the 

comfort of the patient, whom can be at his usual comfort. 

 Resting at home, the patient stays less expose to infections from the hospital 

environment and, at the comfort of his home, the patient has more autonomy and privacy. 

 Two big disadvantages of the Home Care are result of the structure, as probes, 

serotherapy, electronic equipment, and others, that must be kept in the patient residence; 

and from the management of the patient’s needs, that goes from routine activities, such as 

alimentation, shower, and others, until specific activities, that requires specific 

professionals, like doctors, physiotherapist, nutritionist, and more. It is clear, according to 

the second argument, that this is an interdisciplinary work of difficult management. 

 The treated patient profiles is the ones with stable pathologies, mostlythose with 

chronic diseases, neurologicaldegenerative diseases and skeletal-lower case diseases, 

other than the elderly. The Home Care should not be restricted to this profile, and should 

be faced as an alternative treatment for all profiles, according to the stability of the patient. 

 According to the IBGE research released on September 20101, the life time 

expectation for Brazilians is 73.1 years. The value reaches 81 years, matching the current 

value for developed countries such as France and Japan, in 2040. The increase of life 

expectation demonstrates the potential for Home Caring. Potential that can be observed in 

developed countries like Denmark, where Home Care receives government support, and 

estimations from 2008 indicate the investment in the sector of more than 29 billion of 

Danish crowns (approximately 3.9 billion of euros) (1). 

 Given this scenario, the use of Home Care will bring positive effects on the health 

services overcrowd and relief of the future pension scenario. The demand increase of the 

service results in the need of more professionals, such as generalist doctors and nurse 

                                            
1 http://www.ibge.gov.br 



14 
 

technicians trained for home care; and the need for area consolidation, with better studies, 

and the improvement of the management of the necessary information. 

 For the reasons previously described, the field of home care is growing in Brazil. 

The development is concentrated in the private area and, occurred first in an unorganized 

way, without the government support. However, on January 26th 2006, ANVISA launched 

the RDC 11 that provides the first polices on its practice in Brazil. 

 Nowadays, there are many private institutions and associations, like “Portal Home 

Care2, that are engaged on the growth of the field. Therefore, the scenario is promising for 

the development of web and mobile systems that assists the management of information, 

both patient and health agent. 

 

1.2 Understanding of the Home Care problem and moti vation 
 

The problem to be treated in this project is the one to calculate and distribute the best 

scheduling route of visits to patients among the registered health agents. It aims the 

reduction of agents needed and a better management of the collected information and the 

routes traced. 

On working days, the health agents and nurses collect in a Centre, which can be a 

hospital, the information of patients to be visited. This information concern the address and 

time of visit, the treatment that will be given to the patients during the service, i.e. 

necessary tasks and specialties, among other information that aren’t the focus of this 

project. 

 In possession of this information, the agents go out to the streets to treat the 

patients. On each visit, the agent collects information regarding the patient case using 

standard reports to facilitate the data consolidation by the management. By the end of the 

data collection, the agent returns to the starting point and gives the reports. 

 The data is consolidated and used to realize the remote and centralized monitoring 

of patients by doctors and specialized professionals. In case any anomaly is detected, the 

patient should be given a differentiated treatment or the tasks to him associated should be 

reevaluated. 

 Normally, during the initial phase, it is elected by the family an agent, whom will 

assess the patient from this family on his daily activities, such as alimentation, shower, 

transportation, toilet, and others. Each patient has different necessities, which may require 

more training, like insulin application, or less, like help the sick on his asepsis. Therefore, 
                                            
2 http://portalhomecare.com.br/ 



15 
 

the registered health agents and nurses should have differentiated trainings to best assist 

the associated patients. 

 Every registered patient inform the best time for the visits. These times are 

represented as time windows during the day, that is, the patient has a proposed time for 

the initial of the treatment and a limit time for the treatment to be finished. Moreover, the 

tasks linked to the patient are estimated timeframes that represent the quantity of time 

needed to the realization of the task. 

 The scheduling of the visit should then take into consideration the suggested time 

windows, the service time associated, the dislocation time between visits, the waiting time 

to the start of the service (in case the agent arrives to the patient residence before the 

beginning of the window), the different specialties of the agents and the different 

necessities of the patients. 

 It is noticeable for a reasonable number of patients (more than 20) and agents; the 

manual realization of this task becomes hard, and could result in schedules and routes 

that do not attend the demands of the patients, other than incurring on the increase of 

expenses on the management of the service. 

 Associated to this problem, big challenges are faced, which easily become topic of 

researches, as an example, to find the best scheduling and routing solution for multiple 

agents with different specialties to targets that have determined time for treatment and 

specialized needs. 

 In order to understand the business model and context,it was used the work of (1), 

the homecare portal2 and talks realized to involved professionals on this service. 

 Themotivation was to gather computation resources and knowledge acquired during 

the academic path and put them into practice with intuit of providing an alternative solution 

that covers the mentioned points of the problem. 

 

1.3 Objective and scope of this work 
 

 The main objective of this project is to develop a system, which allows the 

automatic calculation of the scheduling and routing between health agents and nurses and 

patients using the genetic algorithm, enabling the cost reduction on the allocation of 

agents and the management in real time of collected information. 

 The project aimsto develop a system capable of receiving information from the 

agents and patients and distribute it in an optimal manner between the agents, giving the 

best possible route for the visit of these patients. 



16 
 

 The study has as goal: 

• The development of a web sub-system for the management of agent and patient 

information, and collected information; 

• The development of a mobile sub-system that will be used by the agents during the 

visits to facilitate the collection of information and dispatch in real time to the 

central; 

• The development of an algorithm sub-system that will be responsible for the 

generation of the scheduling and routing. For that, it was analyzed different 

combinations among the genetic algorithms. 

 In the context of this work, some restrictions were specified to the realization of the 

project. The specification and limitations of the goal are: 

• The working journey of the agents starts at 8a.m. and ends at 17p.m.; 

• The agents have as starting point to the visits a base, and by the end of the journey, 

they should return to the base; 

• For the calculation of the scheduling, it will be available as many agents as needed, 

in other words, if the algorithm needs more agents, they are available; 

• The considered agents are homogeneous, that is they all have only one specialty; 

• The agents move by foot during the visits; 

• The developed algorithm will not realize load balance, so one agent can be 

responsible for treating seven patients, while another will treat only tree patients; 

• The patients will also be considered as homogeneous and have only one necessity, 

that is all patients are the same and have equal service time; 

• Every patient is associated to only one service time during the working journey and 

that can vary from patient to patient; 

• The service time of all patients fit inside the time window and are the same; 

• There will be not associations between agents and patients, that is, it won’t be 

possible to choose an agent according to the patient preference, and over the 

different work journeys, the same patient can be treated by different agents; 

• There will be not treatment prioritize, so all patients have the same priority, and will 

be treated on the order that the algorithm suggests. 

 

 

 



17 
 

1.4 Methodology used 
 

 After the specification of the problem to be solved, the content of this project, the 

imposed limitations by the problem and the restrictions on the goal of the work, it was 

determined the methodology to be used for the study and realization of the project. 

 First of all, it was realized a deep understanding of the problem, in order to make it 

possible its modeling, fitting it on an existing model that best approaches the problem in 

hand. After that, it was done a technical research already used to solve the problem. 

Raised all the options, it was observed the most indicated techniques, combined to the 

technical knowledge previously possessed, and it was chosen the solution considered 

most adequate to the resolution of the problem. 

 To the execution of the project, this was divided into modules, each one related to 

an aspect to be treated on the solution of the problem: the algorithm to the optimization of 

patient distribution and the systems to be developed in order to make its use possible by 

the users involved. The modules were: the development of the routing algorithm of 

patients to the health agents, the development of the web sub-system to the management 

of scheduling activities of the Home Care and the development of the mobile sub-system 

to assist the health agents on the routine of patient treatment. 

 The development of the practical modules followed a methodology of structured 

development in studies of usage scenarios, specification of functional and non-functional 

requirements, implementation (using the Model-View-Controller – MVC – and relational 

database) and integration among sub-systems. 

 During and after the development of the algorithms, it was realized many 

performance tests. For those tests, it was used different parameters and techniques in 

relation to the possible aspects of the genetic algorithms (like crossover and mutation), 

and, from these tests, the definitive solution was finally chosen. 

 The tests of the modules Web and Mobile were done independently (functionality 

tests, based on the usage scenarios) and integrated (integration tests, consistence of data 

and consistence of interface). 

 

1.5 Execution of the project 
 

The project was divided into tree sub-systems: web, mobile and algorithm.  

To better develop the main system, the subject was divided into two big phases: the 

first extensive called the static part of the problem, that is, all the information of patients, 



18 
 

nurses and health agents are known before the execution of the algorithm; and the second 

regarding the dynamic part of the problem, that is, the treatment of information during the 

execution of the dynamic algorithm, having as base the proposed solution by the static 

algorithm. 

 

1.6 Structure of the thesis 
 

 The project is divided in the following chapters: Introduction, Routing Vehicle 

Problem with Time Window, Genetic Algorithm and Local Search, Developed System and 

Final Considerations. 

 The introduction has the objective to locate the reader on the scope of the project, 

clarifying the context of the project, the problem, the aim of the work and the motivation 

involved. 

 On Vehicle Routing Problem with Time Window the mathematic problems were 

described and served as a basis for the problem to be modeled and computationally 

developed. 

 On Genetic Algorithms and Local Search were elucidated the techniques and 

approaches to the drawn model be treated and the approximate solutions could be found, 

other than studies and results obtained. 

 The chapter of Developed System brings the product specification result of this 

project, tests and results, and has as objective understanding of the reader on how the 

system were implemented. 

 On the chapter of Final Considerations, the conclusions are presented and the 

space for future works is opened. 

 

  



19 
 

 

 

 

 

 

 

 

 

 

 

PART II 

 

STUDY 
 

  



20 
 

2 Vehicle Routing Problem with Time Window 
 

2.1 Traveling Salesman Problem – TSP 
 

 The Vehicle Routing Problem with Time Window is a derivation of the Traveling 

Salesman Problem (TSP) (2). The TSP is a problem considered NP-hard vey studied in 

Combinatorial Optimization in the area of Operational Research and Computer Science. 

 The TSP was initially defined by W. R. Hamilton and Thomas Kirkman, in the XIX 

century. Basically, the idea derivate from the fact that each salesman had to find the 

shortest route, allowing him to visit all the residences he was responsible for. The problem 

can be solved through attempts and comparison, however, the value of possible 

permutations increase in a factorial way in the number of nodes analyzed. This fact makes 

the system outdated for a big number of notes. 

 The Travelling Salesman Problem can be described for a graph� � ��, ��, 

composed by a set of vertices �, of size�, and edges �, of size m. Each vertex 	
 � �, � �

1. . �, represents one house to be visited, and each edge �� � �	
 , 	�� � �, � � 1 … �, � �

1 … �, � � 1 … � ��� � � �, represents the path that should be done to go from house 	
 to 

house 	�. In case the graph is completed� � ��� � 1�/2. 

 Associated to the edges can exist weights �� that symbolizes the cost of trace the 

edge �� � �. In that case, the graph can be asymmetric or symmetric. In the case of the 

symmetric graph, the weight �� associated to the edge �� � �	
, 	�� is unique, not 

regardless of the direction taken. In the case of the asymmetric graph, the weight 

�
�combined to the edge �
� � �	
, 	�� can be different from the weight ��
 associated to 

the edge ��
 � �	�, 	
�, � � �. 

 Also in relation to the weights, the problem can be metric or not. In the case of 

metric problem, the weights used will respect the triangular dissemblance, where �
� �

�
� � ���, and so all weights are restricted to follow that formula. The in the non-metric 

problem, however, the weights can have variable values, according to how the problem 

was modeled. An example of TSP can be seen in Figure 2.1. 

 

 



21 
 

 

Figure 2.1 – São Paulo: Illustration of a possible route for the Traveling Salesman 
Problem 

 

2.2 Vehicle Routing Problem – VRP 
 

 The Vehicle Routing Problem (3) regards the problems that involve the delivery or 

collection of goods. The delivery and collection of goods is related to the service provided 

by vehicles, in a determined period of time, to a series of consumers or deposits. In order 

to do so, the vehicle uses a transportation infra-structure that is sometimes modeled as a 

graph. The problem described on Chapter 1 will be modeled as a variant of the VRP, the 

Vehicle Routing Problem with Time Window, being part of a group of problems called 

Crew Scheduling Problems (1). 

 The graph � � ��, �� used to do the modeling, as an extension of the Travelling 

Salesman Problem, is composed by edges �
� � � which represent the streets that can be 

used to link the consumers 	
 and 	� � �, that are represented by the vertices of the 

graph. Each edge �
� is associated to a cost �
�to be used on the transport between the 

deposits 	
 and 	�. The following graph illustrates an example of the Vehicle Routing 

Problem modeling, where there is a central base from where the vehicles start the 

deposits visits and return after the end of it. The graph model, given a study of the 

business model treated, can be extended to real applications, such as garbage collection 

and ambulance routing. An example can be seen on Figure 2.2. 

 



22 
 

 

Figure 2.2 – Illustration of a graph model to VRP example 

 

 The key concepts of the problem are: the graph model, the infra-structure of the 

transportation network; the group of deposit, consumers that will be visited; the vehicles, 

drivers that will be used to do the visits; and all the restrictions imposed by the previous 

concepts, like the consumers should be served in pre-determined time of the day, or there 

is a minimum and maximum number of vehicles to be used. The role of the analyst behind 

the modeling of the problem is to attend all the restrictions imposed, relaxing it when 

needed, so that the solutions to be studied to this model can be approximated with a small 

margin of error, pre-determined and studied, close to the reality. 

 Given the characteristic of the variety of problems that can be modeled with VRP, 

studied in (3), normally the restrictions faced concern: the base to be used as a starting 

point, that can be unique or not; the capacity of the vehicles, how much load can they 

support; the heterogeneity of the fleet of vehicle, i.e. they can transport different goods, if 

so, it should be clear which vehicles can transport what; the cost involved in using the 

vehicle; the type of load existing; the costs involved on using a certain path, such as the 

travelling time and the wear of the vehicle; service time, imposed and also the minimum 

and maximum time of visit. 

 Besides the restrictions, the problems have goals that should be clear and well 

defined. The objective normally involves: minimization of costs; minimization of the number 

of vehicles used; maximization of the number of consumers visited; minimization of 

travelling time; minimization of waiting time; minimization of the penalties involved in the 

relaxation of the restrictions; balancing the traced routes; among others, direct related to 

the characteristics of the studies problem. 

 The relaxation of the restrictions refers to the fact of allowing restrictions not to be 

followed, in order to solutions to be traced. The non-fulfillment of these restrictions is 



23 
 

related to a penalty that is added to the quality of the solution, i.e. it would be ideal that 

penalties were avoided, however, the restrictions imposed can make the search for 

solutions impossible. 

 The aim of the minimization of the visits waiting time to the deposits is directly 

related to the model of the VRP used to the studied problem in the project. Each deposit is 

associated to a time window, regarding the period of the day that can be used for the visit 

of this consumer. Therefore, in case the vehicle arrives to the local before the opening of 

the time window, this difference of time will be added to the total waiting time of the traced 

route to the vehicle. The smaller the waiting time, better the quality of the solution. 

 

 

 

2.3 Vehicle Routing Problem with Time Widow – VRPTW  
 

 As mentioned before, the VRPTW (3) is a variant of the Vehicle Routing Problem, in 

which the variable time is of great importance in the analyses of the traced solutions. The 

study of VRPTW will be used for the modeling of the problem in this project due to the 

imposed characteristics of the business model, in which each patient will be treated as a 

vertex of the graph analyzed and each edge will be the path used to connect the two 

patients. The vehicles relate to the health agents and nurses, and the initial base point, 

unique in this analyses, will be the health unity from where the agents leaves at the 

beginning of the day and return after the work journey. 

 Each patient is associated to a visit service. The service has a minimum time for the 

visit to start and a maximum for the visit to be ended; this timeline refers to the time 

window analyzed in the VRPTW. Other than that, each service will have a service time 

pre-determined regarding the time needed to the visit to finish. The restrictions imposed 

immediately are that the service time should be smaller or equal to the time window, the 

difference in schedules, and that the initial time of the agent’s visit to the patient should 

respect the service time and maximum time of the visit. 

 The agents, on the other hand, have an initial time to the daily work routine and time 

to finish. The initial time corresponds to the time that they will depart from the initial base to 

visit the deposits and the final time corresponds to the time when they return to the base. 

Other than that, the number of agents used will be directly connected to the cost of the 

solution; better solution will be the n that uses the least number of agents. Moreover, the 

route traced for an agents, whom corresponds to a series of visits, has a total travelling 



24 
 

time and a total waiting time, both should be minimized so the better solutions can be 

found. 

 The model treated regards a VRP, in which the vehicles, the agents, do not have 

capability of transportation and should not carry loads among the nodes. To the model, it is 

the agent’s responsibility only the fulfillment of the restrictions imposed by the time window 

and service time. The mathematic model used as base to the analyses of the problem and 

development of the algorithms will be the classic model proposed by (4), described next. 

 Kohl’s Mathematic Model 

 Formulation – VRP 

� � � , !� graph (2.1) 

 � " # $%&, %'()*Nodes including departure and end (2.2) 

! � +,%-, %./: %-, %. �  , - � .1arches, passages (2.3) 

 Costs and Time 

! � +,%-, %./: %-, %. �  , - � .1 (2.4) 

  Transaction Cost: 2
� 

  Transaction Time: 3
� 

  Service Time: 4
 

  Service Window: |6
, 7
| 

 Consider the following variables: 

8-.
9 �

), :; <=> ?>=:@A> 9 <BC?>AD <=> CB@= �-, .�
&, E<=>BF:D>;

 H9 � I, H�-, .� � ! (2.5) 

J-
9 � <:K> ;EB <=> ?>=:@A> 9 <E D<CB< D>B?:LM <=> @A:>L< - H9 � I, H- � " # $%'()* (2.6) 

 The following mathematic model for the VRPTW was proposed by (4): objective 

1.  

N-' ∑ ∑ P-.8-.
9

�-,.��!9�I  (2.7) 

Restrictions 

2. 

∑ ∑ 8-.
9 � ), H- � ".�"#$%'Q)*,.R-9�I  (2.8) 

3. 

∑ 8&.
9 � ), H9 � I.�"#$%'Q)*  (2.9) 

4. 

∑ 8-S
9 � ∑ 8S.

9 � &, HS � ",.�"#$%'Q)*  H9 � I-�"#$%T*  (2.10) 

5. 



25 
 

∑ 8-,'()
9 � ), H9 �  -�"  (2.11) 

6. 

8-.
9 ,J-

9 � U-. � J.
9/ � &, H�-. .� � !, H9 � I (2.12) 

7. 

V- � J-
9 � W-, H- � " # $%'()*, H9 � I (2.13) 

8. 

8-.
9 � $&, )*, H�-, .� � !, H9 � I (2.14) 

 The function objective (2.7) searches to minimize the transition costs for the traced 

routes. The restriction (2.8) is related to the fact that one patient will be treated only by one 

agent. The restriction (2.9) imposes that the vehicles should start from the base and the 

restriction (2.11) imposes that the vehicles should come back to the base. The limitation 

(2.10) is regards the fact that everything that enters a node should leave the node 

(conservation). The restriction (2.12) correlates the concept of time window to the viability 

of realizing the visit to the node j by the vehicle k. The limitation (2.13) imposes that that 

the initial service time should be inside the time window. Finally, the restriction (2.14) 

imposes that the analyzed variable is binary. 

 Distinct approaches for the described problem can be found in literature, for 

example, Set Partitioning Problem, Upper Bounds or Lower Bounds or Branch and Bound 

algorithms, which were detailed by (3). On this project will betreated onlymetaheuristics for 

the approximationsof solutions, as is the case of the proposed approach that involves the 

genetic algorithms, better described on Chapter 3. To better study and approach the 

VRPTW, the system to be developed will be treated according to the division of VRPTW in 

static and dynamic. 

 

2.3.1 VRPTW Static 
 

 The static VRPTW (3) regards the case which all the needed information to the 

search of solutions are previously known, before the algorithm execution. The majority of 

the problems involving vehicle routing analyzed on the literature (3)are static. 

 

2.3.2 VRPTW Dynamic 
 

 The dynamic VRPTW (5) is related to the problems that, throughout the algorithm 

execution, the information analyzed is modified, either by addition or removal of 



26 
 

data.Consequently, the routes previously defined should be redesigned in execution time, 

what can promote worst solutions, but that respect the restrictions involved. 

 Besides the problem of dealing with new entry, the dynamic routing should deal with 

the evaluation of the analyzed objects, because the insertion of new data can increase the 

total of penalties or reduce the quality of the service. The development of the algorithm 

should consider also the response time to the new entry, from the moment it is being insert 

to the moment that a new solution is given. A detailed and updated discussion about the 

problem can be found at (5). 

 In the problem treated in this project, a group of patients, service and agents is 

previously known, which is applied the static model, and new data will be added to the 

problem along the working day, with new service scheduling, cancel of service and agents 

that will not be able to realize the visit. Services incorporated that cannot be treated due to 

the restrictions imposed by the problem, will be delayed or will be signalized to be treated 

outside the scope of the algorithm. 

 

2.4 Metaheuristics for VRPTW 
 

 Metaheuristics are used as techniques for the approximation of solutions for 

combinatory problems since the principles of the operational research. During the 70s, 

with the evolution of the studies on algorithms complexity, many of these problems, among 

them the Travelling Salesman, were classified as NP-hard. With that, the existing hopes 

for the search of exact solutions for all instances, gave place for the search of, each time 

more sophisticated, techniques to solution approximation. 

 Each problem instance is related to a group of solutions, to which initially is 

collected the needed information so the search and the classification of solution can be 

executed.Figure 2.3 illustrates the spectrum of solutions possible for a given problem. It 

gets clear that the group of solutions will have local maximums that, according on how the 

search algorithm was developed, could represent points where the search can be ended. 

The ideal is that the developed algorithm minimizes the difference between the quality of 

the optimum solution, global maximum and the final solution founded, so it is interesting 

that the algorithm don’t get locked on the local maximums. It is the developer’s 

responsibility to study and balance the execution cost, directly related to the execution 

time, and the quality of the solution wanted. 

 



27 
 

2.4.1 Local Search 
 

 Basically, the Local Search (LS) techniques (6) consist of, iteratively, search for 

better solutions for the proposed problem. Each iteration starts with a solution and a new 

solution is looked for at the neighbors of the current solution. In case the new solution is 

better than the current one, a substitution is done and a new iteration is realized until the 

stop criteria, previously identified, is reached. It is clear, as can be seen on Figure 2.3, that 

the probability of finding local maximums is high. 

 Therefore, the LS techniques should be used carefully and, if possible, in cases 

where the expected quality is known, and so, it can be evaluated, verifying if it satisfies the 

needed minimum. Differently from a random search, the local search on combinatory 

optimization problems is based on the business modelapproachedto do the searchand 

comparesolutions throughobjective functions. Following, will be described some of this 

metaheuristics that use the concept of the local search as base. 

 

 

Figure 2.3 – Spectrum of solutions illustrating local maximums 

 

2.4.2 Simulated Annealing 
 

 The Simulated Annealing (SA) technique was described independently by (7) and 

by (8). Consists on a mechanism inspired on the metal hardening, where it is heated and 

controlled cooled down.  

 This algorithm, based on the local search techniques, provides a mechanism to the 

solutions that are being searched to exit the local maximums with a defined probability. At 



28 
 

each iteration, exists a probability that the search exits the local neighborhood and search 

for solutions in another neighborhood, chosen randomly. The algorithm initiates with a 

probability T, 0<T<1, of realize the jump and, at each iteration, the probability is reduced 

(the metal is cooled down slowly) until it gets to 0. 

 This probability increases the quality of the solution founded and, as demonstrated 

at (7), tends to the optimum solution in an infinite time of simulation. The description of the 

SA is important, because it was a mark on the search for algorithms of approximation of 

solutions for combinatory problems, raising the interest of the researchers to look for 

different ways of dealing with these problems. Emerged, then, other methods, for example, 

the described below. 

 

2.4.3 Tabu Search 
 

 This approach, named Tabu Search (TS), was proposed in (9) and is based on 

previous studies from the same author. The basic idea of the TS is to use the technique 

LS making possible also movements that do not improve the final solution. On the 

previous case, the movements were performed only when the solution was improved, 

otherwise, other solution was searched. 

 The TS manages to realize this search using memories, called tabu lists, that can 

store the movements already realized so that those searches do not take place again, as 

pointed out by (10) and (11). 

 

2.4.4 Ant colony 
 

 Inspired on the observation of the natural behavior of ants, which search for a path 

between her colony and the food source, the optimization of the ant colony algorithm was 

initially proposed by Marco Dorigo in 1992 in her doctorate thesis (12). This is a 

probabilistic technique that has as goal to find good, not necessarily optimum, paths on 

graphs. This metaheuristics can be used to the search of solutions for the travelling 

salesman problem, as mentioned in (13) and (14), where the initial base of each salesman 

corresponds to an ant colony and each city corresponds to a food source. Doing the 

parallel with the scheduling problem, this will be modeled through a graph where m ant 

colonies – each one for one cooperator – will compete on the search of n food sources, 

one for each task. More information can be found on (15) and (16). 

 



29 
 

2.4.5 Genetic Algorithms 
 

2.4.5.1 The evolutionary approach 
 

 The theoretical base of the evolutionary approach was presented to the world by 

Darwin in a book entitled On the Origin of Species (17). The theory proposes that 

individuals that have favorable characteristics have bigger chances of survival, given an 

environment, in comparison to other individuals, what makes them more suitable for 

reproduction and so to pass on their characteristics to their descendants. 

 Those characteristics are concentrated on the genetic load of the individuals, in the 

called chromosomes that are constituted of genes. These genes are responsible for the 

fact that individuals have certain features different from the others and for transmitting 

these features to their descendants. Darwin believed that, due to natural evolution, the 

species evolved gradually as the number of individuals carrying the favorable 

characteristics increased. 

 However, how to explain the fact that creatures so different are derived from the 

same ancestral? During the individual life or during the procreation, the chromosomes can 

suffer, with a low probability, from mutation. The effect changes the structure of the genes 

and causes the appearance of new features, favorable or not. 

 At the 70s, inspired by Darwin’s theory, John Holland et al. invented the concept of 

the Genetic Algorithm (18) on the book Adaptation in Natural and Artificial Systems. The 

idea is based on the evolutionary approach of Darwin, on the fact that a group of solutions 

can be treated as a group of individuals, on which each solution is represented by a 

chromosome and is target of natural solution based on the quality of the solution in relation 

to the others, given an evaluation function. 

 Therefore, the algorithm has the role of natural selection, acting on a population 

composed by solutions modeled as chromosomes and realizing the selection to the 

reproduction of the best solutions. The quality of the solution is measured by an evaluation 

function that is based on the characteristics of the problem to associate a quantitative 

factor to the chromosomes target of evaluation. 

 As mentioned before, the genetic algorithms are used to increase the efficiency on 

the search for solutions to a given problem. Therefore, it is necessary to realize the study 

of the problem approached, so that the possible solutions are modeled 

inchromosomesthat will be used on theexecutionof the algorithm. The better this modeling 

of the possible solutions, more reliable the solutions founded during the search are. 



30 
 

 Each step of the algorithm execution is constituted by operations that simulate the 

selection, reproduction and mutation of the individuals. The selection operation simulates 

the basic procedure of the natural selection that is to select the best solutions evaluated by 

the evaluation function that will be target of the reproduction procedure. This procedure is 

simulated by the operation of crossover that, as the genetic operation known on biology, is 

responsible for originate new child solutions through crossing mechanisms of the parents 

chromosomes structures. After the reproduction, the solutions are target of a mutation 

operation that, with a defined probability, can alter the structure of the chromosomes in 

question. To the end of each step of execution, the number of solutions belonging to the 

population is constant. 

 The concept of genetic algorithms is of easy assimilation. Its programming, based 

on a preliminary study of the problem so that the modeling of the possible solutions is 

successful, is simple and the algorithm execution converges, as the studies of (19), to 

approximate solutions that solve the approached problem in a satisfactory way. Different 

from other metaheuristics, such as Simulated Annealing and Tabu Search, which start 

from an initial solution seeking for other solutions through mechanisms that lead to state 

transaction, the genetic algorithms start from an initial population of solutions, which 

decrease the probability of the algorithm to end in an optimal local. However, a special 

attention should be given to the modeling of the solutions on chromosomes and to the 

composition of the evaluation function in order to guarantee the convergence of the 

algorithm. 

 

2.4.5.2 Applications of the genetic algorithm 
 

 Nowadays, the applications of the genetic algorithms can be seen in many scientific 

areas. On the field of the aircraft and automobile design, the use of the algorithms can be 

found on the analyses of the materials composition and on the analyses of the drawing 

format of the aircrafts, as pointed out by (20), with the objective of obtain vehicles more 

light, fast and that use less fuel. On the traditional procedure, several models are designed 

for tests on air tunnel, causing a high cost of process. However, using the evolutionary 

techniques, the different model can be simulated and virtually optimized. 

 In the field of robotics, the genetic algorithms are used, for example, to find 

combinations of the robot functionality that can be used for the resolution of a certain 

problem in an optimal manner. Besides that, the evolutionary aspect can result in robots 

capable of solving many tasks having a generalist role. 



31 
 

 Other two areas where the genetic algorithms have high potential for application are 

the electronic games and the information security. In the field of electronic games, the 

evolutionary techniques are used for the development of sophisticated games capable of 

simulating actions and human reactions and so provide a stronger sense of reality when 

applied against a human player. At this field, the games theory is strongly used on the 

search of solutions to different virtual problems, from reacting to the steps of the human 

player until hiding to an ambush. On the information security field, the genetic algorithms 

are used on the cryptanalysis, i.e. on the attempt to find a clear message from a 

ciphertext, different techniques were elucidated on (21) and (22). 

 Furthermore, applications can be found in the research of molecular design (23); on 

the gene analyses of living beings; financial engineering, on the development ofinvestment 

strategies and of algorithms that use historical data to preview the tendencies; in 

marketing and advertisement area; in the field of vehicle routing, well explored on (3) and 

scheduling; among others that can be found on (24) and (25). 

 On the routing applications, the genetic algorithms can be seen on applications 

related to the travelling salesman problem, on which a salesman visits a certain number of 

cities using the shortest path, and derivatives, such as the vehicle routing problem with 

time window, target of study on this project. Instead, on the field of scheduling, the genetic 

algorithms can be seen, for example, on the scheduling of manufacture production, as 

elucidated by (26). These applications are extended to the industry of fleets routing, 

commercial agents routing, aircraft scheduling, production scheduling, and others. 

 

2.5 Summary 
 

 At this chapter, the vehicle routing problem was discussed, and a variable of this 

problem was covered, the vehicle routing problem with time window. 

 On the vehicle routing problem with time window, a number of vehicles, one or 

more, should visit a group of consumers, each consumer should be visited on a specific 

time of the day and the visit has an estimated duration. 

 The objective of the problem is to minimize the number of vehicles needed to 

realize the visit to all consumers, satisfying the imposed conditions. 

 It was discussed how this problem can be used to model the Home Care 

scheduling, elucidated on Chapter 1. At this modeling, each patient is considered a 

consumer; the Basic Unit of Health (USB) or hospital is modeled as the deposit and the 

agents are represented by the vehicles that will be routed. 



32 
 

 Some simplifications were done in order to allow the realization of this project 

among the time limit, in special, it was not considered the specialties on the agents 

trainings and there is no memory of the realized visits. These two aspects have the same 

consequence: the agents have a uniform probability of visiting a specific patient. 

 At the end of the chapter, it was presented a series of methodologies found in 

literature for the resolution of the proposed problem. Today, it does not exist an optimum 

method to the problem of Home Care scheduling , but there is several methods that allow 

a good approximation of the ideal solution (1). 

 On the next chapter, it will be discussed the theory of the genetic algorithms and 

local searches that will be used on this project. These algorithms have enabled obtaining 

results above average, with sufficient performance to the treated application. It is 

interesting to point out that on the static case, that will consume the biggest part of the 

calculation time, the time restrictions are light, the algorithm can run during the night, for 

example. 

 

  



33 
 

 

 

 

 

 

 

 

 

 

 

PART III 

 

DEVELOPMENT 
 

  



34 
 

3 Algorithm Sub-system 
 

3.1 Function requirements of the algorithm 
 

 The Algorithm sub-system has the operational purpose only, being used by the 

Mobi and Web sub-systems, and it has the following functional requirements: 

1. To generate routes from the scheduled services information and active agents for 

the next day of execution; 

2. To deal with addition, removal and edition of services during the work journey 

reorganizing the already generated routes – dynamic part of the algorithm; 

3. To provide access layer to the database and entity models for the Web sub-system. 

 

3.2 The genetic approach proposed 
 

3.2.1 The chromosome 
 

 A chromosome is a structure that will store all the information that can suffer 

changes during the evolution of the beings. Therefore, for each type of problem that has to 

be solved, there will be a determined group of parameters (genes) to be inserted in a 

chromosome. 

 The vehicle routing problem with time window served as base to the composition of 

the chromosome model for the codification and decoding of viable solutions on the 

problem resolution. As mentioned before, the study of the chromosome model is of vital 

importance for the execution of the algorithm, since the quality of the solution is 

intrinsically related to how it is codified. 

 To better explain how these solutions will be modeled, the scenario on Figure 3.1 

will be used to illustrate the chromosomes. The central square symbolizes the starting and 

returning point, while the circles represent the points to be visited. 

 



35 
 

 

Figure 3.1 – Scenario for the solutions study for the routing problem 

 The scenario can be represented by a characters sequence: 

 

& � ) � X � Y � Z � [ � \ � ] � ^ � _ (3.1) 

 

 In other words, the scenario has the base node 0 and 9 more nodes that should be 

visited in an order to be determined. The order determination is related to the variables, 

already discussed, approached in this problem: 

 

• Initial time of service and final time of service, represented by the time window of 

the node; 

• Service time; 

• Travelling time between the nodes; 

• Number of agents available to realize the visits. 

 

 Therefore, given the service restrictions imposed by the variables, two possible 

solutions to the problem can be seen on Figure 3.2. 

 That can be also represented by the characters sequence: 

Solution to the left: 0 � 2 � 1 � 9 � 8 � 0 � 3 � 4 � 5 � 6 � 7 

Solution to the right: 0 � 3 � 2 � 1 � 9 � 0 � 4 � 5 � 6 � 7 � 8 

 



36 
 

 

Figure 3.2 – Possible solutions for the studied scenario of routing problem 

 

 Analyzing the solution to the right, it can be seen that it is composed by to routes, 

the first composed of four nodes and the second of five nodes. The agents always start 

from the base, node 0, and return to the same after the end of the visits, and so, the 

sequences start with 0 and finish with 0 – it is not necessary to represent the 0 to the end 

and start of the next route, it is enough one representation. At the sequence, can be seen 

that the first route should start from 0, follow to 2 and then to 1, 9 and 8 and return to 0; 

and the next route start from 0, pass through 3, 4, 5 and 7 and return, once more, to 0. 

 The representation of the solutions by a character sequence is simple, 

instantaneous and elucidates how the visits will be realized. Therefore, this representation 

will be the model for the chromosomes used on the genetic algorithms studied at this work 

and the population to be analyzed on the execution of the algorithm will be composed of 

those sequences. However, there is still the problem on how to maintain only the solutions 

that respect the imposed restrictions by the variable at the moment of analyzes of the 

generated chromosomes. For that, the concepts presented in (27) of positive and negative 

incompatibility can be used to the right structuration of solutions and are described on the 

next section. 

 

3.2.2 Incompatibilities 
 

 The concept of incompatibility expresses the viability of the analyzed arches to be 

traced in possible solutions. 

 



 

3.2.2.1 Negative Incompatibility
 

 The negative incompatibility, shown on 

analyzed can be traced and should be added to a solution at the moment of its modeling. 

In that case, the subsequence (…)

 

Figure 3.3 –

 

3.2.2.2 Positive Incompatibility
 

 On the other hand, the positive incompatibility, shown on 

the arch analyzed should not be traced, since it is not possible to fulfill the 

restrictions by the variables. In this case, the subsequence (…)

the generated solutions, i.e. generated solutions that contain the subsequence should be 

eliminated. Therefore, at the moment of analyzes, 

and the next node is 2, this route should be interrupted, i.e. the next node should be 0 and 

a new route should be initiated, starting from 0 and following to 2, that will be then 

analyzed. 

 

Service time at cliente 1 (s
 
Travel time from cliente 1 to 2 (t

time windowclient 1 

s1          t12

e1                   

shortestarrival time at 
cliente 2 

Negative Incompatibility  

The negative incompatibility, shown on Figure 3.3, represents that the arch 

analyzed can be traced and should be added to a solution at the moment of its modeling. 

sequence (…)-1-2-(…) can be visualized at the generated solutions.

– Example of negative incompatibility, viable arch.

Positive Incompatibility  

On the other hand, the positive incompatibility, shown on Figure 

the arch analyzed should not be traced, since it is not possible to fulfill the 

restrictions by the variables. In this case, the subsequence (…)-1-2-

the generated solutions, i.e. generated solutions that contain the subsequence should be 

eliminated. Therefore, at the moment of analyzes, in case the node i

and the next node is 2, this route should be interrupted, i.e. the next node should be 0 and 

a new route should be initiated, starting from 0 and following to 2, that will be then 

Service time at cliente 1 (s1 = 30 minutes): 

Travel time from cliente 1 to 2 (t12 = 2 hours): 

 time windowclient 2waiting 
time 

12 

                  l1                        e2                                   l2

shortestarrival time at 

incomp12< 0, 
thearc (v1, v2) isviable 

37 

, represents that the arch 

analyzed can be traced and should be added to a solution at the moment of its modeling. 

(…) can be visualized at the generated solutions. 

 

Example of negative incompatibility, viable arch. 

Figure 3.4, represents that 

the arch analyzed should not be traced, since it is not possible to fulfill the imposed 

-(…) cannot be seen at 

the generated solutions, i.e. generated solutions that contain the subsequence should be 

in case the node in question is the 1 

and the next node is 2, this route should be interrupted, i.e. the next node should be 0 and 

a new route should be initiated, starting from 0 and following to 2, that will be then 

time windowclient 2 

2 

time (hour) 



 

Figure 3.4 –  

 

3.2.3 Application of concepts
 

 The flowchart on Figure 

with the use of the variables of the problem, to express the viability of the visit to a node at 

the moment of the algorithm executio

 

Service time at cliente 1 (s
 
Travel time from cliente 1 to 2 (t

time windowclient 1 

s1                 

e1                

shortestarrival time at 
cliente 2

 Example of positive incompatibility, unviable arch

Application of concepts  

Figure 3.5 illustrates the application of these concepts, as well as 

with the use of the variables of the problem, to express the viability of the visit to a node at 

the moment of the algorithm execution. 

Service time at cliente 1 (s1 = 30 minutes): 

Travel time from cliente 1 to 2 (t12 = 4 hours): 

 time windowclient 2

                t12 

               l1          e2      l2 
time (hour)

shortestarrival time at 
cliente 2 

incomp12< 0, 
thearc (v1, v2) isunviable

38 

 

nviable arch 

illustrates the application of these concepts, as well as 

with the use of the variables of the problem, to express the viability of the visit to a node at 

time windowclient 2 

time (hour) 

) isunviable 



 

Figure 3.5  

 

 The flowchart on Figure 

treated during the algorithm exec

chromosome population. The flowchart was proposed so that all the evaluated solutions 

can be visualized by the algorithm, incurring on penalties on the evaluation function for the 

solutions that requires more agents, longer travelling time or longer waiting time.

 

sti + s

wti := 0 

no 

yes 

Viablevisit
Add node toroute
Evaluatesnext node

 – Flowchartelucidatingthe viabilityof a node visit

Figure 3.6 illustrates how all the concepts and variable will be 

treated during the algorithm execution to the modeling of the viable solutions given a 

chromosome population. The flowchart was proposed so that all the evaluated solutions 

can be visualized by the algorithm, incurring on penalties on the evaluation function for the 

s more agents, longer travelling time or longer waiting time.

sti := stj + sj + tji  
wti := oi - sti 

wti>= 0 

+ si<= ci 

sti := oi 

no 

yes 

 

Viablevisit 
Add node toroute 
Evaluatesnext node 

Unviablevisit 
Returnto base 
Addroutetosolution 
Starts new route 

[oi, ci] – time window
oi – initial time at i 
ci – final time at i 
 
sti – arrival time at node i
sj – service time at node i
wti – waiting time at node i
tji – travel time from node j to i

39 

 

Flowchartelucidatingthe viabilityof a node visit 

illustrates how all the concepts and variable will be 

ution to the modeling of the viable solutions given a 

chromosome population. The flowchart was proposed so that all the evaluated solutions 

can be visualized by the algorithm, incurring on penalties on the evaluation function for the 

s more agents, longer travelling time or longer waiting time. 

time window 

arrival time at node i 
service time at node i 

waiting time at node i 
travel time from node j to i 



 

Figure 3.6 – Complete flowchart elucidating the 

 

 The structure presented on 

the development of the genetic algorithms, based on the classic model that can be found 

on the book (6), that will be used as base for the development of the code. At each 

iteration, i.e. at each step of selection, application of crossover for reproduction and 

mutation, the population size should stay the same.

initially the population individuals and then applying the operator, but also can be 

maintained applying initially the operator and then selecting the individuals both from the 

initial population and the new generation. In both cases, in order to maintain the popul

size, the solutions should be disposed at each step of the algorithm.

 

no 

no

yesviable
visit

yes 

route = new route
route.add(basenode0)

i := 
sti := st

wt

wti := 0 

sti + si<= c

route.add(node i)

route.add(base end node)
routes.add(route)

istherenext node?

Complete flowchart elucidating the solution 

The structure presented on Figure 3.7 illustrates the model used on this project for 

the development of the genetic algorithms, based on the classic model that can be found 

that will be used as base for the development of the code. At each 

iteration, i.e. at each step of selection, application of crossover for reproduction and 

mutation, the population size should stay the same. This size can be maintained selecting 

the population individuals and then applying the operator, but also can be 

maintained applying initially the operator and then selecting the individuals both from the 

initial population and the new generation. In both cases, in order to maintain the popul

size, the solutions should be disposed at each step of the algorithm.

nounviablevisit 

no 

yes 

yesviable 
visit 

Unviablevisit
Returnto base
Addroutetosolution
Starts new route

solutionfound 

oute = new route 
route.add(basenode0) 

i := next node 
:= stj + sj + tji 

wti := oi - sti 

wti>= 0 

sti := oi 

<= ci 

route.add(node i) 

route.add(base end node) 
routes.add(route) 

route.add(base end node) 
routes.add(route) 

istherenext node? 

routes – listwithroutes
route – routewith nodes

 
[oi, ci] – time window

oi – initial time at i
ci – final time at i

 
sti – arrival time at node i
si – service time at node i

wti – waiting time at node i
tij – travel time from node j to i

40 

 

solution modeling 

illustrates the model used on this project for 

the development of the genetic algorithms, based on the classic model that can be found 

that will be used as base for the development of the code. At each 

iteration, i.e. at each step of selection, application of crossover for reproduction and 

This size can be maintained selecting 

the population individuals and then applying the operator, but also can be 

maintained applying initially the operator and then selecting the individuals both from the 

initial population and the new generation. In both cases, in order to maintain the population 

size, the solutions should be disposed at each step of the algorithm. 

Unviablevisit 
Returnto base 
Addroutetosolution 
Starts new route 

listwithroutes 
routewith nodes 

time window 
initial time at i 
final time at i 

arrival time at node i 
service time at node i 
waiting time at node i 

travel time from node j to i 



41 
 

 

Figure 3.7 – Structure of the Genetic Algorithm developed 

 

 At the first algorithm execution, the initial population is composed by individuals and 

sequences of numbers, generated randomly. As the algorithm is executed, the worst 

solutions generated are substituted by better solutions, always maintaining the population 

size constant. Following, it will be explained the steps of the model of the genetic 

algorithms, what will give base to the analyses of the obtained results and of the 

developed system. 

 



42 
 

3.2.4 Evaluation Function 
 

 According to the book (6), the evaluation function is a function h
 that maps 

solutions x to numeric values h
�i�, called fitness values. The aim of the evaluation 

function is to give quantitative characteristics to the solutions, so that these can be 

classified in relation to the quality of the obtained result. It is assumed that the bigger the 

value retuned by the function, the better is the solution. 

 These values are used by the selection operation, because this is based on the 

quantitative characteristics to select the best individuals that will be exposed to the other 

operators. Therefore, the function should be modeled so that represents the analyzed 

solutions. On the treated case, the variables in question are the agent number or the 

created routes, the total traveling time per route and the total waiting time per route. These 

variables are used to the function model. From the problem analyses, it is understood that 

a low number of agents used, a low average waiting time and a low average traveling time 

are characteristics of a good solution. Having in mind all the details approached, the 

function used on the development of the algorithms can be found on functions from (3.2) to 

(3.5). 

 

j�J-� � k l m!- � n l mop- � q l mo - (3.2) 

m!- � �r!sJ � r!-�/r!sJ (3.3) 

mo - � �oo sJ � oo -�/oo sJ (3.4) 

mop- � �oopsJ � oop-�/oopsJ (3.5) 

 

S = Solution 

RA = Agents ratio 

RTE = Waiting Time ratio 

RTV = Traveling Time ratio 

NAPS = Agents on Worst Solution 

NA = Agents 

TTVPS = Total Traveling Time of the Worst Solution 

TTV = Total Traveling Time 

TTEPS = Total Waiting Time of the Worst Solution 

TTE = Total Waiting Time 

 



43 
 

 It can be observed on the functions showed above, that the values taken for 

analyses are taken as proportions of unique values, used to all solutions. These unique 

values are represented by the variables obtained from the worst solutions among all 

executions until the present moment, i.e. from the solution that presents the bigger number 

of agents used, that presents the longest traveling time per route and that presents the 

longest waiting time per route. At each iteration, in case worst values were found, these 

parameters are updated and the values of the evaluation functions are recalculated. This 

procedure is adopted so that the obtained value is uniform and can serve as comparison 

for the analyzed solutions using equal values as base. Moreover, to each variable there is 

a configuration parameter, represented by α, for the number of agents; β, for the total 

traveling time per route; and q, for the total waiting time per route. These parameters are 

used to alter the relevance of each variable. The bigger the value of the variable 

parameter, the bigger will be its relevance. 

 

3.2.5 Selection 
 

 The operation of selection is intrinsically correlated to the evaluation function, since 

this is used for the analyses of which solutions are most suitable to be used later. At this 

operation, the factor of selection pressure is the critical point for the maintenance of the 

population diversity. The bigger the pressure, i.e. the bigger the tendency of selecting the 

best individuals, the bigger the velocity with which the population will convert and will 

become homogeneous and bigger the chances of obtaining an optimum local, in this case, 

the mutation tends to be the only source of diversity. However, the smaller the pressure, 

slower will be the convergence and there is a risk of executing a blind search, i.e. a search 

where the solutions are analyzed randomly without any criteria. Nevertheless, a high 

selection pressure could end with the diversity and the system could converge to a local 

maximum, or a region of plains, from where it won’t be able to exit. 

 The problem of convergence is related to the velocity with which the solutions get 

better and to the factorto thehomogenization of thepopulation ofsolutions. The faster the 

convergence, bigger are the chances that the solutions with the worst evaluation are being 

disposed, preventing them to pass their characteristics to the next generation. This way, 

only the best solutions will be maintained on the population, what can cause in stagnation. 

It is clear that the equilibrium of this pressure is fundamental to the good execution of the 

algorithm. At this work, it will be approached and analyzed two selection operations: the 



44 
 

Tournament Selection, well described and studied on (28) and on (29); and the Roulette 

Wheel Selection or Proportional Selection, detailed on (29). 

 

3.2.5.1 Tournament Selection 
 

 The tournament selection, as the name shows, simulates a tournament between the 

solutions, in order to select only the winners. The parameter in focus on this selection is 

the size of the tournament, i.e. the quantity of solutions that will participate per round. 

According to (28), the tournament size is directly related to the selection pressure of the 

operator. The bigger the quantity of competitors, bigger the selection pressure will be. This 

factor contributed to thepopularity of thistypeof selection, since the pressure can be 

controlled by one parameter, making it easier torefinethe operator. 

 The function of the operator is of easy assimilation and implementation. Given a 

tournament size k, it is selected k individuals randomly to compete among them for the 

chance of proceed on the algorithm. The competition is based on the evaluation 

valueofthesolutionsof theselected subgroup, and also on the selection probability p of the 

individual that has a better evaluation, and so, the best individual is selected with a 

probability p, the second best with a probabilityt l �1 � t��uv. The value of p adopted at 

this project will be always 1, i.e. the best solution will be selected by subgroup. 

 The solutions can be chosen to the tournament with or without replacement. The 

choice of without replacement increases the selection pressure, since bigger the chances 

of intermediary or worse solutions to be eliminated immediately. 

 In the case of a choice with replacement, a value k equal to 2 and a population size 

P, it will be obtained w/2 solutions that, after crossover, will result in P solutions, 

maintaining the original size of the population. Another way to maintain the population size 

constant would be executing w/2 tournaments with size k and replacement. It is noticeable 

that if k is equal to P, the solutions obtained would be the w/2 better evaluated (bigger 

selection pressure) and, the smaller the size of k, more disperse (smaller selection 

pressure) would be the choices. 

 

3.2.5.2 Roulette Wheel Selection or Proportional Se lection 
 

 As mentioned before, to each solution there is an evaluation value mapped by the 

evaluation function. The proportional selection, well detailed on (29), will select the 

solutions based only on the proportions between the evaluation values, and so, the bigger 



45 
 

the evaluation value of a solution, bigger will be the chances of it to be chosen for 

reproduction. As the name illustrates, the process simulates a roulette wheel, on which the 

spaces drawn to each solution is proportional to its evaluation value and, the bigger the 

space occupied at the roulette, bigger the chances of the pointer to end at that area. 

Figure 3.8 exemplifies the roulette. 

 

 

Figure 3.8 – Proportional Selection, solutions s1 and s2 add up 50% of the probability of 
choice 

 

 Because the selection is completely correlated to the evaluation value, the chances 

of lower solutions to be eliminated are high, while solutions with high evaluation values will 

tend to be always selected. It is noticeable that the selection pressure of this operator is 

high, resulting on a fast convergence of the solutions. 

 

3.2.5.3 Elitism 
 

 The elitism is the process by which the best chromosomes are maintained on the 

population during the algorithm execution. During the selection process and crossover, the 

best chromosomes, solutions with bigger evaluation values at that step, can be lost. The 

role of the elitism is to maintain these chromosomes. Knowing the role of the selection 

pressure, it is observed that the elitism acts on the increment of this pressure, since 

maintain, immediately, the best solutions to the next reproduction. 



46 
 

 The elitism factor can be combined with the selection operator to balance the 

selection pressure. This factor is used on the algorithm through the determination of the 

number of individuals that should be maintained at each step. For example, in case the 

value to be maintained is 10 individuals, at each step will be maintained 10 individuals 

better placed, and so, in case a better solution occupies the ninth position of the list of 10: 

the previous ninth will occupy the tenth position, the tenth will occupy the eleventh and will 

be eliminated. 

 

3.2.6 Crossover 
 

 At the genetic algorithms, the crossover operation is used to vary the chromosomes 

from generation to generation. Being analogous to the biological crossover, more 

specifically to the anaphase phase, on which, after the duplication of the chromosomes, 

occurs the separation of the chromatids of each chromosome given origin to the 

chromosomes child (30). 

 The principal objective of the crossover is the exchange of characteristics between 

the two chromosomes, parent’s solutions, selected by the selection operation and giving 

origin to two chromosomes child that have information from both parents. This exchange 

of information can incur in chromosomes better evaluated by the evaluation function that 

will tend to be selected on the next phase of the algorithm. However, the opposite can 

occur, chromosomes child of lower quality that tend to be disposed. 

 The chromosome model used at this project was explained on section 3.2 The 

genetic approach, that consists in a sequence of numbers that represent the summary of 

nodes to be visited. Removing the zeros that are implicit computed by the algorithm to 

maintain the order and separation of the visits routes, the configuration of the 

chromosomes can be visualized below. 

  Chromosome parent 1: 1 2 3 4 5 6 7 8 9 

  Chromosome parent 2: 9 8 7 6 5 4 3 2 1 

 Among the crossover operator existing in literature, two were selected for analyses 

and development during this project: Order Crossover, described on (31) and (32); and 

partially Mapped Crossover (PMX), described on (32). 

 

 

 



47 
 

3.2.6.1 Order Crossover 
 

 The Order Crossover (OX), well described on (31), will be the first operation 

discussed in the project. The operation selects two cutting points on the parent’s 

chromosomes randomly. Assuming the example below, the indexes selected randomly 

from the first parent for the cut were 2 and 4, also, starting to count from the first gene with 

index 0 from the left to the right. 

  Chromosome parent 1: 1 2 3 4 5 6 7 8 9 

  Chromosome parent 2: 9 8 7 6 5 4 3 2 1 

 The selection, in bold, is transferred to the first chromosome child, according to the 

example below. 

  Chromosome child 1: _ _ Y Z [ _ _ _ _ 

 The second chromosome parent is used to fulfill the rest of the genes from the 

chromosome child 1. Going from the left to the right, in order (hence the name of the 

operator), the vacancies from the chromosome child 1 are fulfilled and repetitions will be 

avoided. 

  Chromosome child 1: 9 8 Y Z [ 7 6 2 1 

 To the generation of the chromosome child 2, the cutting operation is repeated to 

the second parent and the vacancies are fulfilled using the order found on the first parent. 

Assuming cutting index at 4 and 5, randomly selected, the second chromosome will have 

the following configuration: 

  Chromosome child 2: 1 2 6 7 [ Z 8 9 

 It is noticed, then, that this operation preserves the order of the visits found on the 

chromosome parent used to the fulfillment of the vacancies of the chromosome child. 

 

3.2.6.2 Partially Mapped Crossover 
 

 The partially mapped crossover, described on (32), can be seen as a permutation 

crossover that guaranties that the permuted positions among the two selected 

chromosomes parent are found only once at the chromosomes child generated. Both 

chromosomes child receive genes from each chromosome parent through a mapping of 

permutation. 

 In a similar way to the order crossover, two cutting points will be selected randomly, 

but this time, the cuts will be done uniformly in both parents. Assuming that the cutting 



48 
 

indexes are 5 and 8, the configuration of the parents for the mapping of the permutation is 

illustrated below. 

  Chromosome parent 1: 1 2 3 4 [ \ ] ^ 9 

  Chromosome parent 2: 9 8 7 6 [ Z Y X 1 

 As can be observed, both parents received a mark for cutting. After the marking, 

two sub-chains are transferred to the chromosomes child, being the one from chromosome 

parent 1 transferred to child 2 and vice-versa. 

  Chromosome child 1: _ _ _ _ [ Z Y X_ 

  Chromosome child 2: _ _ _ _ [ \ ] ^_ 

 The permutation mapping is realized analyzing the two sub-chains marked on the 

chromosomes child. Therefore: 

• The gene 4 will be permutated with the gene 6; 

• The gene 3 will be permutated with the gene 7; 

• The gene 8 will be permutated with the gene 2. 

 After the mapping, the chromosomes parents will be analyzed and the permutations 

will be realized according to the mapping to the chromosomes child respectively, i.e. 

chromosome parent 1 to chromosome child 1 and parent 2 to child 2. Always that a gene 

that was mapped is found, it will be substituted. The chromosomes child generated, then, 

will have the configurations described below, the genes in bold are those that suffered 

permutation. 

  Chromosome parent 1: 1 2 3 4 [ \ ] ^ 9 

  Chromosome parent 2: 9 8 7 6 [ Z Y X 1 

  Chromosome child 1: 1 8 7 6 [ Z Y X 9 

  Chromosome child 2: 9 2 3 4 [ \ ] ^ ) 

 As well as the order crossover, the described crossover operator maintains the 

viability of the chromosome, i.e. the non-repetition of visits, through the mapping done 

after the marking of the chromosome parents. Therefore, if each chromosome parent were 

represented by a vector, the mapping is concluded after one pass by the sub-chains 

marked and the chromosomes child are found after the analyses of the genes from both 

chromosomes parents so that the permutation is realized. At the worst scenario, in which 

the marking is given in the entire chromosome, the algorithm should go through the vector 

3 times: one for the marking and one to each chromosome parent. Representing a linear 

complexity, y���. 

 



49 
 

3.2.7 Mutation 
 

 The mutation operator, well described and analyzed in (33), is used on the genetic 

algorithms as a way of adding a factor of randomly variation to each solution belonging to 

the analyzed population. The objective of the operator is to prevent the loss of diversity, 

i.e. to avoid the algorithm convergence to a local maximum, or to a plan region. 

 The traditional implementation of the operator uses a parameter that indicates the 

probability of a randomly selected gene to be altered. For example, if the parameter is 

used at 5%, the chromosomes from the solution have a 5% probability that any gene 

suffers mutation. Assuming that the mutation occurs and that the selected gene of index 7 

is substituted by the gene 4, the configurations before and after mutation are described 

below. 

  Chromosome before mutation: 1 2 3 4 5 6 7 ^ 9  

  Chromosome after mutation: 1 2 3 4 5 6 7 Z 9 

 The chromosome after mutation has two genes 4, and so, two visits will be done to 

the node represented by the index 4, violating the restriction of one unique visit to each 

node. Therefore, the traditional implementation do not respect the imposed conditions by 

the problem description. 

 On this project, the mutation operations developed and analyzed that respect the 

restrictions of uniqueness of the genes, are: the operation of Remove-and-Reinsert (RaR), 

described in (34); and the Inverse operation described in (33). 

 

3.2.7.1 Removal-and-Reinsert 
 

 The operation of Removal-and-Reinsert, described in (34), randomly selects two 

indexes from the chromosome, removes the gene corresponding to the first index and 

reinserts it at the corresponding point to the second index, readjusting the position of the 

remaining genes. The following example illustrates the process of Removal-and-Reinsert, 

given the drawn indexes 4 and 7. 

  Chromosome before mutation: 1 2 3 4 [ 6 7 8 9  

  Chromosome after mutation: 1 2 3 4  6 7 8 [ 9 

 

 

 



50 
 

3.2.7.2 Inversion 
 

 The inversion operation, described in (33), randomly selects two indexes from the 

chromosome and, opposite to the Removal-and-Insert, makes the change of genes 

corresponding to the selected indexes. The following example illustrates the inversion 

process, given the drawn indexes 4 and 7. 

  Chromosome before mutation: 1 2 3 4 [ 6 7 ^ 9  

  Chromosome after mutation: 1 2 3 4  ^ 6 7 [ 9 

  Chromosome after RaR: 1 2 3 4 6 7 8 [ 9 

 

3.2.8 Chromosomes duplications 
 

 After the initial generation of the chromosome population and after each step of the 

algorithm execution, there is the possibility of a chromosome to be repeated on the 

population. The repetition tends to occur in a bigger scale with the best solutions, since 

those ended up being selected in bigger proportions. To deal with duplications, the 

algorithm can be developed as following: 

• Accept duplications; 

• Limit the number of duplications; 

• Do not accept duplication. 

At this project, the algorithms developed won’t accept chromosome duplications. 

 

3.2.9 Stopping criteria 
 

 The stopping criteria adopted on the development of the algorithm is checked at the 

end of each iteration, and in case it is met, leads to the end of the execution of the 

algorithm and the selection of the best solution f0ound until that moment. A detailed and 

extensive analysis of stopping criteria can be found in (35). Among the possible criteria at 

the end of each iteration are: 

• Number of new chromosomes founded; 

• Number of new and unique chromosomes founded; 

• Number of generations (iterations) done; 

• Percentagedifferencebetweengenerationsof evaluation; 



51 
 

• Execution n-parallel of the same algorithm and verification of the error produced 

between the n samples. The stop will occurs when this error goes to a minimum 

previously determined. 

 During these tests and executions of the algorithms developed in this work, the 

stopping criteria used will be the number of generations realized. Therefore, according to 

the number of nodes analyzed, it will be defined a limit number of iterations to be executed 

to verify the conversion of the algorithm. 

 

3.3 Local Search Proposed 
 

 The local search proposed will be executed after the steps of the genetic algorithm, 

at each iteration. The idea of using the local search comes from the fact that studies 

(34)(3) demonstrated that genetic algorithms only are not capable of approximate efficient 

solutions to the Vehicle Routing Problem. 

 The local search illustrated on Figure 3.9 was inspired on the z � yt3searches, 

being the most common the λ=2, 2 � yt3, and λ=3,3 � yt3. The algorithm 2 � yt3, 

introduced on (36), remove two sections from a route chosen randomly and recombine 

them in all the possible ways given origin to many solutions, that are compared and the 

best is chosen. The 3 � yt3, proposed initially in (37), removes 3 sections from a route 

and proceed in a similar way as 2 � yt3. 

 

 

Figure 3.9 – Local search 2-Opt scheme 



52 
 

 

 The proposed idea, oriented to the scheduling problem of health agents, consists in, 

at each iteration step of the genetic algorithm, going through all the solutions founded, 

dismembering the worst route and trying to reconstruct the services from the dismembered 

route in the remaining routes from each solution analyzed. This way, the final algorithm 

would be orientated to reduce the number of agents, removing the worst route means 

decrease the number of agents used, and to maximize the number of services provided in 

each remaining route. 

 

 

Figure 3.10 – Structure of the local search proposed 

 

 The results founded using the genetic algorithm proposed and the local search 

shown on Figure 3.10 are presented in the next section. The results of the use of the local 

search oriented to the aim of the problem exceeded the expectations, and so, to the 

algorithm sub-system proposed, it will be used the combination of the genetic algorithm 

and the local search. 

 



53 
 

3.4 Procedure and Results 
 

3.4.1 Computer used for the tests 
 

 The results obtained and presented in this section were derivate from the data 

collected in a machine with the following configuration: 

• Processor: Intel ® Pentium ® Dual Core T4300, 2,10GHz, 800MHz FSB, 1MB 

cache L2; 

• Memory: 03GB, DDR2, 667MHz; 

• Hard Drive: 250GB, 5400RPM, SATA. 

 

3.4.2 Methodology and Data 
 

 To the realization of the tests, it was created databases with services allocations 

that allowed the calculation of the value of the optimum solution, in the categories of 

number of agents used, average waiting time per agents and average traveling time per 

agent. The databases created have the following number of nodes: 50, 60, 70, 80, 90, 

100, 110, 120. 

 These databases were created to allow the execution of the possible combinations 

of the genetic algorithms, in relation to the selection type, crossover, mutation, and others, 

with the objective of observing the theoretical concepts in practice and of selecting the 

combinations to be used to the final algorithm sub-system. 

 The data were obtained through 10 different samples, in which the stopping criteria 

adopted was the maximum number of iterations pre-determined, and to each group of 

data, it was analyzed the average and the standard deviation from the samples. This 

procedure was adopted so that eventually distortions founded in a sample could be 

redeemed thought the analyses of other samples in the same context. 

 All the results obtained and presented in this chapter were given using the static 

configuration of the algorithms, i.e. all information needed was already available in the 

created database. Moreover, in order to analyze a specific operation, as an example the 

mutation, the algorithm was configured with other operations, for example crossover and 

selection that were kept unchangeable during the whole analyses of the different target 

operations, in the case, mutation. 

 

 



54 
 

Parameter  Configuration  
Population size 100 

Evaluation Function All analyzed variables with same weight 1 
Selection Proportional, RouletteWheel 
Crossover Crossover OX 
Mutation Analyzed parameter 
Elitism 10% of population 

Table 3.1 – Example of the base table used to the configuration of the genetic algorithm 
analyzed 

 

 In the majority of analyses, the variables analyzed will be the ones discussed in 

previous chapters: 

• Number of agents/routes needed; 

• Average travelling time per route; 

• Average waiting time per route. 

 These variables serve as basis to the evaluation function, and so, are of extreme 

importance to the right configuration of the algorithm. 

 

3.4.3 Analyses of the effect of the population size  and execution time 
 

 Among the context of the possible configurations and the refining of parameters 

used by the genetic algorithm, the appropriate decision was to analyze first the effect of 

the population size used by the algorithm, since this value has a direct impact on the final 

execution time of the algorithm. 

 In order to analyze the effect of the population size, the team used a genetic 

algorithm base, without local search, composed of the configuration exposed bellow. 

Firstly, it was analyzed the execution time of the genetic algorithm with and without local 

search to identify the execution time of a package of 1000 iterations, base to the rest of the 

analyses. 

 The analyses of the execution time was done for a population of 100 chromosomes 

varying the number of nodes at the database analyzed, always maintaining the number of 

1000 iterations. The compilation of the obtained data is found on Figure 3.11 and at Table 

3.2 and Table 3.3. 

 

 

 

 



55 
 

Parameter  Configuration  
Population size Analised parameter 

Evaluation Function All analyzed variables with same weight 1 
Selection Proportional, RouletteWheel 
Crossover Crossover OX 
Mutation Inversion with probability of 5% 
Elitism 10% of population 

Table 3.2 – Genetic algorithms configuration for the analyses of population size 

 

Figure 3.11 – Comparison of the execution time between the genetic algorithm with and 
without local search varying the number of analyzed nodes, 1000 iterations 

Nodes  GA(s) GA+LS(s) 

50 6.4±0.7 7.5±0.3 

60 7.7±0.4 9.3±0.6 

70 10.5±1.3 11.9±0.7 

80 11.4±1.6 12.7±1.1 

90 13.4±3.1 13.7±0.5 

100 15.2±1.8 16.4±1.7 

110 15,3±1.2 17.9±0.8 

120 15.8±0.9 19.5±1.7 

Table 3.3 – Comparison of the execution time between the genetic algorithm with and 
without local search varying the number of analyzed nodes, 1000 iterations 

 



56 
 

 It is observed that the execution time varies linearly with the number of nodes 

analyzed and that the additional time, given the execution of the local search, 

compensates the quality of the solution founded, as will be demonstrated the superiority of 

the combination of the genetic algorithm and the local search (shown in the next section). 

 The analyses at Figure 3.12 and Table 3.4 was realized varying the size of the 

chromosome population for the same 50 nodes, without the local search proposed. 

 

 

Figure 3.12– Comparison of the execution time for different population sizes, base of 50 
nodes and 1000 iterations 

Population  Execution time (s)  

40 2.1±0.2 

100 5.4±0.6 

200 8.8±0.3 

400 18.6±1.1 

800 35.3±1.9 

1200 52.7±2 

1600 71.4±1.7 

2000 88.8±1.6 

Table 3.4 - Comparison of the execution time for different population sizes, base of 50 
nodes and 1000 iterations 

 



57 
 

 It was adopted the package of 1000 iterations as bases to the subsequent analyses 

and it was considered as the limit time the value of 40s per package, for the base case of 

50 nodes, considering that longer times would make impossible the analyses and tests of 

the algorithms, since the satisfactory results, as will be shown, will be found at the end of 

the execution of 50 packages (approximately 30min). 

 Analyzing the graphic from Figure 3.12 and keeping in mind the limit of 40s per 

package, the limit size of population adopted will be, in average, 600 chromosomes. 

Therefore, it was adopted for the next analyses, the sizes of 40, 100, 200 and 400 

chromosomes per population. 

 The first variable to be analyzed is the one that refers to the number of agents 

needed, i.e. the number or routes created by the algorithm for the working day. The 

graphic from Figure 3.13 and Table 3.5 illustrate the effect of the population size used by 

the algorithm during its execution, represented by the number of iterations. The graphics 

generated below show only the average of the samples; the standard deviation was left 

aside at this moment to not pollute the data. 

 

 

Figure 3.13 – Number of agents/routes per iteration varying the population size used 

Population size  Optimum  Agents  Difference  

40 8 9.2±0.4 13.04% 

100 8 8.9±0.3 10.11% 

200 8 8.9±0.3 10.11% 

400 8 8.7±0.5 8.05% 

Table 3.5 – Final conversion of agents for different population size 

 

 Analyzing the graphic at Figure 3.13, it is possible to notice that the smaller the 

population size used, bigger the number of routes traced initially, however, this value tends 



58 
 

to reduce with the iterations and stabilizes (theoretically, at infinity, it would tend to 

stabilize at the value of the optimum solution). 

 The next variable analyzed in Figure 3.14 and Table 3.6 regards the average 

waiting time per route to start to realize the service. It is expected that better solutions 

have smaller waiting time, since the efficiency of the agent associated to the scheduling 

and traced route would be bigger. The graphic on Figure 3.14 illustrates the effect of the 

population size used by the algorithm during its execution, represented by the number of 

iterations. 

 

 

Figure 3.14 – Average waiting time per iteration varying the population size used 

Population size  Optimum  Average  waiting time per route  Difference  

40 135 248±11 45.56% 

100 135 239±11 43.51% 

200 135 239±11 43.51% 

400 135 232±16 41.81% 

Table 3.6 – Final conversion of the waiting traveling time per route for the different 
population sizes 

 

 Though the graphic on Figure 3.14, it is observed that the variable waiting time 

behaves in a similar way as the variable number of agents needed, i.e. the smaller the 

population size used, bigger will be the average waiting time (smaller efficiency) estimated 

initially, however, this value is reduced with the iterations and stabilizes (theoretically, at 

infinity, it would tend to stabilize at the value of the optimum solution). 

 The last variable analyzed in Figure 3.15 and Table 3.7 concerns the average 

travelling time per route, i.e. the total time of dislocation between patients. It is expected 

that the behavior of this variable is the opposite from the previously variable analyzed and 



59 
 

so better solutions have longer travelling times. That because the larger the number of 

patients per route, bigger will be the traveling time consumed to treat them and smaller the 

number of agents needed. 

 

 

Figure 3.15 – Average travelling time per iteration varying the population size used 

Population size  Optimum  Average waiting time per route  Difference  

40 217.5 129±4 40.69% 

100 217.5 132±4 39.31% 

200 217.5 132±4 39.31% 

400 217.5 135±6 37.93% 

Table 3.7 – Final conversion of the average traveling time per route for the 
differentpopulation sizes 

 

 The variable analyzed on Figure 3.15 behaved as expected, i.e. stabilized in bigger 

travelling times with the increase of iterations, due to the reduction of the number of agents 

needed (equivalent to more patients per route). 

 To finish the comparison between the four population sizes, it was consolidated the 

previously analyses using the evaluation function described in section 3.2.1 using weights 

equal to the tree variables. And so obtaining the graphic of the evaluation value of the 

solutions from Figure 3.16 and Table 3.8. 

 



60 
 

 

Figure 3.16 – Evaluation of the solutions per iteration varying the population size used 

Population size  Evaluation  

40 0.90±0.03 

100 0.95±0.02 

200 0.95±0.02 

400 0.97±0.03 

Table 3.8–Final conversion of the evaluation function for different population sizes 

 

 As initially expected, the solutions founded have smaller evaluation values, this 

value increases with the iterations and stabilizes (converges), theoretically, at the 

evaluation value of the optimum solution, i.e. the solution that better represents the 

allocation of the agents to the patients in the context of execution, considering the tree 

variables analyzed previously. 

 Considering the execution time and the quality of the solutions founded, it was 

adopted, to the next analyses and comparisons, the value of the population size of 100 

chromosomes, since this value represented the best cost-benefit relation among the ones 

considered. 

 

3.4.4 Analyses of the stopping criteria by iteratio n number with and without the 
proposed Local Search 

 

 This section has as goal to analyze the stopping criteria using the maximum number 

of iterations, for the genetic algorithm and to its combination with the local search. The tree 

variables (number of agents, average traveling and waiting time) will be analyzed 

separated from each other in the final conversion (given a maximum value of iterations) 



61 
 

and to the conversion in 1000 initial iterations in the algorithm, in which is noticeable the 

superiority of the combined execution. 

 The analyses were realized using the configuration of the genetic algorithm 

presented on Table 3.9. 

 

Parameter  Configuration  
Population size 100 

Evaluation Function All analyzed variables with same weight 1 
Selection Proportional, RouletteWheel 
Crossover Crossover OX 
Mutation Inversion, 5% 
Elitism 10% of the population size 

Table 3.9 – Genetic algorithm configuration for the conversion analyses in function of the 
stopping criteria 

 

 Table 3.10 illustrates the number of iterations defined to the size of nodes at the 

base. 

 

Number of nodes  Iterations  

50 50,000 

60 50,000 

70 50,000 

80 100,000 

90 100,000 

100 100,000 

110 120,000 

120 120,000 

Table 3.10 – Number of maximum iterations per number of nodes 

 

Number of agents used 

 The first variable studied is the number of agents used in the solution. Figure 3.17 

and Figure 3.18 and Table 3.11, Table 3.12 and Table 3.13 illustrate the behavior of this 

variable in the different scenarios analyzed. 

GA GA+LS 

12.2±0.8 8.6±0.5 

Table 3.11 – Comparison of conversion of number of agents between genetic algorithm 
with and without local search in the 1000 initial iterations for 50 nodes 



62 
 

 

Figure 3.17 - Comparison of conversion of number of agents between genetic algorithm 
with and without local search in the 1000 initial iterations for 50 nodes 

 

Figure 3.18 - Comparison of conversion of number of agents between genetic algorithm 
with and without local search in different number of iterations 

Nodes  Optimum  GA Difference  GA+LS Difference  

50 8 12.2±0.8 34.43% 8.6±0.5 6.98% 

60 8 15.4±0.8 48.05% 10.0±0.0 20.00% 

70 10 18.3±1.2 45.36% 11.2±0.4 10.71% 

80 12 21.3±0.9 43.75% 13.3±0.5 9.77% 

90 14 23.6±0.7 40.68% 15.3±0.5 8.50% 

100 16 26.7±0.8 40.07% 16.2±0.4 1.23% 

110 16 30.5±2,1 47.54% 18.0±0.0 11.11% 

120 18 33.2±1.0 45.78% 20.0±0.0 10.00% 

Table 3.12 - Comparison of conversion of number of agents between genetic algorithm 
with and without local search in the 1000 initial iterations 



63 
 

Nodes  Optimum  GA Difference  GA+LS Difference  

50 8 9.7±0.5 17.53% 8.0±0.0 0.00% 

60 8 11.8±0.4 32.20% 8.0±0.0 0.00% 

70 10 13.6±0.7 26.47% 10.8±0.4 7.41% 

80 12 15.4±0.5 22.30% 12.9±0.3 6.98% 

90 14 17.6±0.7 20.45% 14.0±0.0 0.00% 

100 16 19.5±0.7 17.95% 16.0±0.0 0.00% 

110 16 21.2±0.6 24.53% 17.4±0.7 8.05% 

120 18 23.8±0.9 24.37% 19.0±0.0 5.26% 

Table 3.13 - Comparison of conversion of number of agents between genetic algorithm 
with and without local search in the number of maximum iteration 

 

Average waiting time per route 

 Figure 3.19 and Figure 3.20 and Table 3.14, Table 3.15 and Table 3.16 show the 

behavior of the variable average waiting time per route. 

 

 

Figure 3.19 – Comparison of conversion of average waiting time per route between 
genetic algorithm with and without local search in the 1000 initial iterations for 50 nodes 

GA GA+LS 

263.1±15.0 159.6±21.2 

Table 3.14- Comparison of conversion of average waiting time per route between genetic 
algorithm with and without local search in the 1000 initial iterations for 50 nodes 



64 
 

 

Figure 3.20 - Comparison of conversion of average waiting time per route between 
genetic algorithm with and without local search in different number of iterations 

Nodes  Optimum  GA Difference  GA+LS Difference  

50 135.0 263±15.0 48.69% 159.6±21.2 15.41% 

60 135.0 275.5±12.8 51.00% 150.0±0.0 10.00% 

70 90.0 278.9±15.3 67.73% 134.4±13.5 33.04% 

80 110.0 284.1±9.0 61.28% 148.1±13.0 25.73% 

90 117.9 280.9±6.8 58.04% 154.8±8.1 23.86% 

100 112.5 284.5±6.8 60.46% 139.4±9.3 19.30% 

110 69.4 292.4±13.9 76.27% 143.0±0.0 51.47% 

120 85.0 292.6±6.7 70.95% 150.0±0.0 43.33% 

Table 3.15 - Comparison of conversion of average waiting time per route between genetic 
algorithm with and without local search in the 1000 initial iterations 

 
 
 
 
 
 
 
 
 
 
 
 



65 
 

Nodes  Optimum  GA Difference  GA+LS Difference  

50 135.0 199.8±16.4 32.43% 135.0±0.0 0.00% 

60 135.0 204.4±11.8 33.95% 135.0±0.0 0.00% 

70 90.0 200.2±17.3 55.04% 120.4±16.0 25.25% 

80 110.0 198.9±10.5 44.69% 137.0±9.5 19.71% 

90 117.9 202.6±13.1 41.83% 124.0±0.0 4.95% 

100 112.5 201.8±10.9 44.25% 135.0±0.0 16.67% 

110 69.4 198.0±9.5 64.95% 128.7±12.8 46.08% 

120 85.0 206.8±12.3 58.90% 130.8±0.6 35.02% 

Table 3.16 - Comparison of conversion of average waiting time per route between genetic 
algorithm with and without local search in the number of maximum iterations 

 

Average travelling time per route 

 Figure 3.21 and Figure 3.22 and Table 3.17, Table 3.18 and Table 3.19 illustrate the 

behavior of the variable average travelling time per route. 

 

 

Figure 3.21 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in the 1000 initial iterations for 50 nodes 

GA GA+LS 

153.3±7.6 204.4±10.8 

Table 3.17 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in the 1000 initial iterations for 50 nodes 



66 
 

 

Figure 3.22 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in different number of iterations 

Nodes  Optimum  GA Difference  GA+LS Difference  

50 217.5 153.3±7.6 29.52% 204.4±10.8 6.02% 

60 210.0 146.9±6.5 30.05% 210.0±0.0 0.00% 

70 240.0 144.7±7.6 39.71% 217.0±6.3 9.58% 

80 230.0 142.6±4.7 38.02% 210.1±6.3 8.65% 

90 222.9 144.1±3.3 35.34% 206.4±5.8 7.39% 

100 217.5 142.3±3.5 34.57% 214.8±4.6 1.24% 

110 236.6 138.2±6.8 41.59% 213.0±0.0 9.97% 

120 230.0 138.0±3.6 40.00% 210.0±0.0 8.70% 

Table 3.18 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in the 1000 initial iterations 

 

 It is clear by the tests and comparisons realized that the execution of the genetic 

algorithm combined with the local search converge to better results when compared to the 

execution of the genet algorithm alone. Even though the execution of the combination 

demands of a bigger time, when compared to genetic algorithm alone, the conversion to 

better results occurs faster, requiring less iterations. Therefore, the algorithm sub-system 

proposed to the final system will use the local search and will be configured to a maximum 

(stopping criteria) of 20,000 iterations. 



67 
 

 

Nodes  Optimum  GA Difference  GA+LS Difference  

50 217.5 184.8±7.7 15.03% 217.0±0.0 0.23% 

60 210.0 182.6±5.5 13.05% 210.0±0.0 0.00% 

70 240.0 184.7±8.5 23.04% 224.0±8.4 6.67% 

80 230.0 185.6±5.3 19.32% 215.6±5.1 6.26% 

90 222.9 183.4±6.1 17.71% 222.0±0.0 0.39% 

100 217.5 183.4±5.2 15.68% 217.0±0.0 0.23% 

110 236.6 185.7±4.6 21.51% 219.7±7.4 7.14% 

120 230.0 181.3±5.7 21.17% 219.0±0.0 4.78% 

Table 3.19 - Comparison of conversion of average traveling time per route between 
genetic algorithm with and without local search in the number of maximum iterations 

 

3.4.5 Selection Operators 
 

 At this section, the comparison between operator by Tournament and Proportional 

will be analyzed. First, it was analyzed the selection pressure of the operators, varying its 

entry parameters, in order to verify in the practice the theory related to the operators, with 

the objective of choosing the best configuration to the final algorithm. The evaluation 

parameters are found on Table 3.20. 

 

Parameter  Configuration  
Population size 100 

Evaluation Function All analyzed variables with same weight 1 
Selection Analyzed parameter 
Crossover Crossover OX 
Mutation 5% 
Elitism 10% of the population size 

Table 3.20 – Genetic algorithm configuration for analyses of selection operators 

 

3.4.5.1 Tournament Selection 
 

 According to (28), the bigger the tournament size, bigger will be the selection 

pressure associated to the operator, i.e. faster will occur the conversion of the algorithm. 

This fast conversion can result in local maximums; however, a small selection pressure 

can result in a high execution time before a good solution is found. Therefore, it is 

important to have a balance between selection pressure and the required quality; this 



68 
 

balance has a subjective character and can prove the art touch needed to handle the 

genetic algorithms. 

 The selection pressure of the Tournament selection was analyzed varying the size 

of the tournament in question. With the increase of the tournament size, it is expected the 

conversion to be faster, and a bigger selection pressure, because the probability of worst 

solutions to be chosen is reduced. The variable agents used was analyzed according to 

the tournament size. The first curve represents the worst solution founded, the central 

curve represents the average solution of population and the third represents the best 

solution founded. It is possible to observe that the bigger the population size, faster the 

curves converge and approximate, and so the quality of the solutions tend to be equal. At 

Table 3.21 and  

Tournament 

Size 
Optimum 

Best 

Solution 
Difference 

Average 

Solution 
Difference 

Worst 

Solution 

Difference  

2 8 13.0±1.2 38.46% 13.1±1.2 38.73% 15.0±1.2 46.67% 

4 8 12.9±0.7 37.98% 12.9±0.7 38.19% 14.6±0.7 45.21% 

6 8 12.9±1.1 37.98% 13.0±1.1 38.24% 15.0±1.2 46.67% 

8 8 12.9±0.9 37.98% 12.9±0.9 38.17% 14.4±0.8 44.44% 

10 8 13.4±0.7 40.30% 13.5±0.7 40.53% 15.4±0.7 48.05% 

20 8 13.2±0.6 39.39% 13.2±0.6 39.61% 14.8±0.9 45.95% 

Table 3.22 it was done a comparison between the conversion values to 100 iterations and 

1000 iterations. 

 

Tournament 

Size 
Optimum  

Best 

Solution 
Difference  

Average 

Solution 
Difference  

Worst 

Solution 
Difference  

2 8 14.7±0.9 45.58% 15.0±1.2 46.71% 17.1±2.4 53.22% 

4 8 14.6±1.4 45.21% 14.7±1.3 45.76% 16.6±1.1 51.81% 

6 8 15.4±1.4 48.05% 15.5±1.6 48.48% 16.8±1.7 52.38% 

8 8 15.7±0.9 49.04% 15.8±1.0 49.43% 17.9±1.1 55.31% 

10 8 15.7±0.8 49.04% 15.8±0.8 49.22% 17.6±0.7 54.55% 

20 8 15.1±1.8 47.02% 15.1±1.8 47.15% 16.6±1.8 51.81% 

Table 3.21 – Conversion values of agents number after 100 iterations for the tournament 
selection operator with different tournaments sizes for 50 nodes 

 
 
 
 
 
 



69 
 

Tournament 

Size 
Optimum 

Best 

Solution 
Difference 

Average 

Solution 
Difference 

Worst 

Solution 

Difference  

2 8 13.0±1.2 38.46% 13.1±1.2 38.73% 15.0±1.2 46.67% 

4 8 12.9±0.7 37.98% 12.9±0.7 38.19% 14.6±0.7 45.21% 

6 8 12.9±1.1 37.98% 13.0±1.1 38.24% 15.0±1.2 46.67% 

8 8 12.9±0.9 37.98% 12.9±0.9 38.17% 14.4±0.8 44.44% 

10 8 13.4±0.7 40.30% 13.5±0.7 40.53% 15.4±0.7 48.05% 

20 8 13.2±0.6 39.39% 13.2±0.6 39.61% 14.8±0.9 45.95% 

Table 3.22 - Conversion values of agents number after 10,000 iterations for the 
tournament selection operator with different tournaments sizes for 50 nodes 

 

Figure 3.23 – Comparison of the conversion for the different tournament sizes of the 
Tournament selection operator 

 



70 
 

3.4.5.2 Roulette Wheel Selection or Proportional Se lection 
 

 The implementation of the Proportional selection is totally related to the model of 

the evaluation function, since the selection is realized proportionally to the evaluation value 

of each solution. The analyses of this operator will be done in comparison to the previous 

operator with tournament size k=2. 

 Table 3.23 illustrates the number of iteration defined to the size of nodes at the 

base. 

 

Number of nodes  Iterations  

50 50,000 

60 50,000 

70 50,000 

80 100,000 

90 100,000 

100 100,000 

110 120,000 

120 120,000 

Table 3.23 – Number of maximum iterations used per number of nodes for the comparison 
of selection operators 

 

Number of agents used 

 The first variable analyzed will be the number of agents used in the solution. Figure 

3.24 and Table 3.24 and Table 3.25 show the behavior of this variable in the different 

scenarios of selection operation studied. 

 



71 
 

 

Figure 3.24– Comparison between selection operators, variable analyzed: number of 
agents used 

Nodes  Optimum  Proportional  Difference  Tournament k=2 Difference  

50 8 12.2±0.8 34.43% 13.5±0.8 40.74% 

60 8 15.4±0.8 48.05% 16.4±1.1 51.22% 

70 10 18.3±1.2 45.36% 19.3±1.3 48.19% 

80 12 21.3±0.9 43.75% 21.9±1.7 45.21% 

90 14 23.6±0.7 40.68% 25.5±1.0 45.10% 

100 16 26.7±0.8 40.07% 28.8±1.1 44.44% 

110 16 30.5±2.1 47.54% 31.2±0.9 48.72% 

120 18 33.2±1.0 45.78% 34.6±1.4 47.98% 

Table 3.24 - Comparison between selection operators, variable analyzed: number of 
agents used for 1,000 initial iterations 

 
 
 
 
 
 
 
 
 



72 
 

Nodes  Optimum  Proportional  Difference  Tournament k=2 Difference  

50 8 9.7±0.5 17.53% 12.1±0.6 33.88% 

60 8 11.8±0.4 32.20% 14.4±0.8 44.44% 

70 10 13.6±0.7 26.47% 17.1±0.7 41.52% 

80 12 15.4±0.5 22.30% 18.7±0.7 35.83% 

90 14 17.6±0.7 20.45% 21.4±1.3 34.58% 

100 16 19.5±0.7 17.95% 23.7±0.8 32.49% 

110 16 21.2±0.6 24.53% 25.9±1.1 38.22% 

120 18 23.8±0.9 24.37% 29.2±1.1 38.36% 

Table 3.25 - Comparison between selection operators, variable analyzed: number of 
agents used for maximum iterations 

 

Average waiting time per route 

 Figure 3.25 and Table 3.26 and Table 3.27 illustrate the behavior of the variable 

average waiting time per route. 

 

 

Figure 3.25 - Comparison between selection operators, variable analyzed: average 
waiting time per route 

 
 
 
 
 



73 
 

Nodes  Optimum  Proportional  Difference  Tournament k=2  Difference  

50 135.0 263.1±15.0 48.69% 286.6±14.0 52.90% 

60 135.0 275.5±12.8 51.00% 289.4±15.6 53.35% 

70 90.0 278.9±15.3 67.73% 291.0±14.9 69.07% 

80 110.0 284.1±9.0 61.28% 289.3±15.2 61.98% 

90 117.9 280.9±6.8 58.04% 297.9±8.0 60.44% 

100 112.5 284.5±6.8 60.46% 301.1±8.7 62.64% 

110 69.4 292.4±13.9 76.27% 298.1±6.0 76.72% 

120 85.0 292.6±6.7 70.95% 301.2±8.8 71.78% 

Table 3.26 - Comparison between selection operators, variable analyzed: average waiting 
time per route for 1,000 initial iterations 

Nodes  Optimum  Proportional  Difference  Tournament k=2  Difference  

50 135.0 199.8±16.4 32.43% 261.5±11.7 48.37% 

60 135.0 204.4±11.8 33.95% 258.8±14.8 47.84% 

70 90.0 200.2±17.3 55.04% 263.2±10.7 65.81% 

80 110.0 198.9±10.5 44.69% 252.7±9.2 56.47% 

90 117.9 202.6±13.1 41.83% 256.5±14.8 54.05% 

100 112.5 201.8±10.9 44.25% 256.5±8.7 56.14% 

110 69.4 198.0±9,5 64.95% 254.5±11.1 72.73% 

120 85.0 206.8±12.3 58.90% 262.6±9.9 67.63% 

Table 3.27 - Comparison between selection operators, variable analyzed: average waiting 
time per route for maximum iterations 

 

Average travelling time per route 

 Figure 3.26 and Table 3.28 and Table 3.29 illustrate the behavior of the variable 

average travelling time per route. 

 



74 
 

 

Figure 3.26 - Comparison between selection operators, variable analyzed: average 
traveling time per route 

Nodes  Optimum  Proportional  Difference  Tournament k=2  Difference  

50 217.5 153.3±7.6 29.52% 141.3±7.0 35.03% 

60 210.0 146.9±6.5 30.05% 139.6±7.7 33.52% 

70 240.0 144.7±7.6 39.71% 138.9±7.0 42.13% 

80 230.0 142.6±4.7 38.02% 139.9±7.7 39.17% 

90 222.9 144.1±3.3 35.34% 135.8±4.0 39.06% 

100 217.5 142.3±3.5 34.57% 134.1±4.2 38.34% 

110 236.6 138.2±6.8 41.59% 135.6±3.1 42.69% 

120 230.0 138.0±3.6 40.00% 133.8±4.3 41.83% 

Table 3.28 - Comparison between selection operators, variable analyzed: average 
traveling time per route for 1,000 initial iterations 

 
 
 
 
 
 
 
 
 
 
 
 



75 
 

Nodes  Optimum  Proportional  Difference  Tournament k=2  Difference  

50 217.5 184.8±7.7 15.03% 154.1±5.9 29.15% 

60 210.0 182.6±5.5 13.05% 155±7.1 26.19% 

70 240.0 184.7±8.5 23.04% 152.5±5.5 36.46% 

80 230.0 185.6±5.3 19.32% 158.2±4.5 31.22% 

90 222.9 183.4±6.1 17.71% 156.2±7.6 29.91% 

100 217.5 183.4±5.2 15.68% 156.5±4.1 28.05% 

110 236.6 185.7±4.6 21.51% 157±5.6 33.64% 

120 230.0 181.3±5.7 21.17% 153.3±4.8 33.35% 

Table 3.29 - Comparison between selection operators, variable analyzed: average 
traveling time per route for maximum iterations 

 

 From the previous analyses, the students will use on the final algorithm sub-system 

the Proportional Selection operator, since this provided the conversion to better values and 

more consistent when compared to the Tournament Selection operator. 

 

3.4.6 Crossover Operators 
 

 In this section, the comparison between the crossover operators Ordered (OX) and 

Partially Mapped (PMX) will be done. The tree variables will be once more analyzed one 

by one: number of agents used, average waiting time per route and average travelling time 

per route, according to Table 3.30 and Table 3.31. 

 

Parameter  Configuration  
Population size 100 

Evaluation Function All analyzed variables with same weight 1 
Selection Proportional Selection 
Crossover Analyzed parameter 
Mutation 5% 
Elitism 10% of population 

Table 3.30 – Configuration of the genetic algorithm for the analyses of the crossover 
operator 

 
 
 
 
 
 
 
 
 



76 
 

Number of nodes  Iterations  

50 50,000 

60 50,000 

70 50,000 

80 100,000 

90 100,000 

100 100,000 

110 120,000 

120 120,000 

Table 3.31 – Number of maximum iterations used per number of nodes for the comparison 
of the crossover operator 

 

Number of agents used 

 The first variable studied is the number of agents used in the solution. Figure 3.27 

and Table 3.32 illustrate the behavior of this variable in different scenarios of operation 

with both crossover studied. 

 

 

Figure 3.27 – Comparison between the crossover operators, variable analyzed: number of 
agents used 

 
 



77 
 

Nodes  Optimum  OX Difference  PMX Difference  

50 8 9.7±0.5 17.53% 12.4±1.0 35.48% 

60 8 11.8±0.4 32.20% 15.1±1.4 47.02% 

70 10 13.6±0.7 26.47% 18.3±0.9 45.36% 

80 12 15.4±0.5 22.30% 19.6±1.0 38.78% 

90 14 17.6±0.7 20.45% 22.6±1.0 38.05% 

100 16 19.5±0.7 17.95% 26.1±1.3 38.70% 

110 16 21.2±0.6 24.53% 27.6±1.5 42.03% 

120 18 23.8±0.9 24.37% 30.2±1.5 40.40% 

Table 3.32 - Comparison between the crossover operators, variable analyzed: number of 
agents used per maximum iterations 

 

Average waiting time per route 

 Figure 3.28 and Table 3.33 show the behavior of the variable average waiting time 

per route. 

 

 

Figure 3.28 - Comparison between the crossover operators, variable analyzed: average 
waiting time per route 

 
 
 
 
 



78 
 

Nodes  Optimum  OX Difference  PMX Difference  

50 135.0 199.8±16.4 32.43% 266.6±18.0 49.36% 

60 135.0 204.4±11.8 33.95% 269.5±18.0 49.91% 

70 90.0 200.2±17.3 55.04% 279.2±18.0 67.77% 

80 110.0 198.9±10.5 44.69% 264.3±0.0 58.38% 

90 117.9 202.6±13.1 41.83% 270.3±0.0 56.40% 

100 112.5 201.8±10.9 44.25% 279.1±0.0 59.69% 

110 69.4 198.0±9.5 64.95% 269.9±0.0 74.29% 

120 85.0 206.8±12.3 58.90% 270.6±0.0 68.59% 

Table 3.33 - Comparison between the crossover operators, variable analyzed: average 
waiting time per route for maximum iterations 

 

Average travelling time per route 

 Figure 3.29 and Table 3.34 illustrate the behavior of the variable average travelling 

time per route. 

 

Figure 3.29 – Spectrum of solutions illustrating the local maximums 

 

 Observing the behavior of both crossover operators, it is possible to visualize the 

superiority of the Ordered Crossover (OX). Apart from being of easy implementation, the 

operator allowed to obtain superior values when compared to the Partially Mapped (PMX) 

operator. 

 



79 
 

Nodes  Optimum  OX Difference  PMX Difference  

50 217.5 184.8±7.7 15.03% 151.5±9.1 30.34% 

60 210.0 182.6±5.5 13.05% 149.6±11.0 28.76% 

70 240.0 184.7±8.5 23.04% 144.5±5.8 39.79% 

80 230.0 185.6±5.3 19.32% 152.5±6.0 33.70% 

90 222.9 183.4±6.1 17.71% 149.1±4.6 33.10% 

100 217.5 183.4±5.2 15.68% 145.0±6.1 33.33% 

110 236.6 185.7±4.6 21.51% 149.4±6.7 36.86% 

120 230.0 181.3±5.7 21.17% 149.2±5.9 35.13% 

Table 3.34 - Comparison between the crossover operators, variable analyzed: average 
travelling time per route for maximum iterations 

 

3.4.7 Mutation Operators 
 

 In this section, the two mutation operators Inversion and Removal-and-Insert will be 

confronted. The variables from the business model will be once more analyzed separately 

with the aim of choosing the best operator and best parameter of probability of mutation 

used. The results were obtained using the database of 50 nodes and with stopping criteria 

of 1,000 iterations; the configuration can be seen on Table 3.35. 

 

Parameter  Configuration  
Population size 100 

Evaluation Function All analyzed variables with same weight 1 
Selection Proportional Selection 
Crossover Crossover OX 
Mutation Analyzes parameter 
Elitism 10% of size population 

Table 3.35 – Genetic algorithm configuration for the analyses of mutation operators 

 

Number of agents used 

 Figure 3.30 and Figure 3.31 and Table 3.36 illustrate the behavior of this variable in 

the different scenarios of probability of both mutation operators. 

 It can be noticed the formation of a valley to probabilities below 10% and that the 

values increase with the varying of the mutation probability. Analyzing the theory, it can be 

concluded that to small values of mutation probability, the variation of solutions is smaller, 

so the selection pressure is bigger and the conversion to a local maximum is faster. The 

opposite happens to probability values above 10%, with bigger variation of solutions, the 

conversion is slower and worst values are founded to the same number of iterations. 



80 
 

Given the results founded, considering the variable agents used, the value of 5% 

represents a good value to be used to the mutation probability. 

 

 

Figure 3.30 – Mutation operator – Inversion, variable analyzed: number of agents used 



81 
 

 

Figure 3.31 - Mutation operator – Removal-and-Reinsert, variable analyzed: number of 
agents used 

Probability  Optimum  Inversion  Difference  Removal -and-Reinsert  Difference  

1 8 10.8±0.4 25.93% 10.8±0.5 25.93% 

2 8 10.8±0.5 25.93% 10.4±0.7 23.08% 

5 8 10.4±0.4 23.08% 10.4±0.4 23.08% 

10 8 10.6±0.5 24.53% 10.8±0.4 25.93% 

20 8 10.8±0.6 25.93% 10.9±0.3 26.61% 

30 8 11.0±0.8 27.27% 11.0±0.5 27.27% 

40 8 11.0±0.0 27.27% 11.2±0.5 28.57% 

50 8 10.8±0.8 25.93% 11.1±0,5 27.93% 

60 8 11.3±0.7 29.20% 11.3±0.7 29.20% 

70 8 11.2±0.6 28.57% 11.2±0.5 28.57% 

80 8 11.6±0.5 31.03% 11.3±0.5 29.20% 

90 8 11.5±0.7 30.43% 11.4±0.5 29.82% 

95 8 12.1±0.7 33.88% 11.5±0.5 30.43% 

100 8 11.9±0.9 32.77% 11.8±0.3 32.20% 

Table 3.36 – Comparison between the mutation operators, variable analyzed: number of 
agents used for 10,000 iterations 

 



82 
 

Average waiting time per route 

 Figure 3.32 and Figure 3.33 and Table 3.37 and Table 3.38 illustrate the behavior of 

the variable average waiting time per route. 

 

Figure 3.32 - Comparison between the mutation operators, variable analyzed: average 
waiting time per route for 10,000 iterations 

Probability  Optimum  Inversion  Difference  Removal and Reinsert  Difference  

1 135.0 293.2±11.4 53.96% 219.2±13.9 53.64% 

2 135.0 292.1±13.9 53.78% 292.1±20.5 53.78% 

5 135.0 287.6±11.4 53.05% 286.5±11.4 52.88% 

10 135.0 292.5±13.9 53.84% 290.2±11.4 53.48% 

20 135.0 300.5±16.3 55.07% 295.5±8.5 54.32% 

30 135.0 306.9±20.4 56.01% 301.0±0.0 55.14% 

40 135.0 309.1±0.0 56.33% 298.5±13.0 54.77% 

50 135.0 317.8±20.0 57.52% 307.2±13.0 56.05% 

60 135.0 317.7±16.4 57.50% 317.7±16.4 57.50% 

70 135.0 322.5±15.4 58.14% 306.0±13.9 55.88% 

80 135.0 326.5±11.9 58.65% 309.6±13.9 56.39% 

90 135.0 332.8±15.3 59.44% 310.0±14.2 56.46% 

95 135.0 335.1±15.4 59.71% 315.9±14.2 57.27% 

100 135.0 338.7±18.5 60.14% 309.7±8.5 56.42% 

Table 3.37 - Comparison between the mutation operators, variable analyzed: average 
waiting time per route for 10,000 iterations 



83 
 

 Analyzing the behavior of the variables for both mutation operators with different 

probabilities values, it is possible to conclude that the operator Removal-and-Reinsert 

allows to obtain better results, and, then, will be used to compose the final algorithm to be 

used in the developed system. 

 

Figure 3.33 - Comparison between the mutation operators, variable analyzed: average 
travelling time per route for 10,000 iterations 

Probability  Optimum  Inversion  Difference  Removal and Reinsert  Difference  

1 217.5 168.8±5.9 22.39% 174.4±7.2 19.82% 

2 217.5 174.4±7.2 19.82% 176.3±10.2 18.94% 

5 217.5 176.2±5.9 18.99% 182.0±5.9 16.32% 

10 217.5 171.6±7.2 21.10% 168.8±5.9 22.39% 

20 217.5 169.1±8.3 22.25% 167.4±4.4 23.03% 

30 217.5 166.9±10.2 23.26% 173.0±7.4 20.46% 

40 217.5 166.0±0.0 23.68% 175.8±6.8 19.17% 

50 217.5 169.4±10.1 22.11% 170.2±6.8 21.75% 

60 217.5 163.0±8.1 25.06% 163.0±8.1 25.06% 

70 217.5 164.1±7.6 24.55% 171.6±7.2 21.10% 

80 217.5 159.4±5.7 26.71% 171.6±7.2 21.10% 

90 217.5 160.6±7.5 26.16% 173.0±7.4 20.46% 

95 217.5 154.2±7.7 29.10% 173.0±7.4 20.46% 

100 217.5 156.4±9.2 28.09% 178.6±4.4 17.89% 

Table 3.38 - Comparison between the mutation operators, variable analyzed: average 
traveling time per route for 10,000 iterations 

 



84 
 

3.5 Dynamic Approach 
 

 To the dynamic approach, it was used the local search proposed so that the 

additional information during the working day could be treated. This way, the additional 

information can come from the agents or from the services (patients). 

 In the case of the agent, this can become unavailable to the realization of the work 

and attendance of the remaining services. Therefore, the associated services to this agent 

would be available to relocation, i.e. will be treated as reinsertions and will be allocated to 

other routes or new agents. 

 In the case of the service, three possibilities will be studied: service cancelation, this 

will be removed and, in case it is associated to a route, it will be recalculated and the agent 

will be alerted; edition, in case of edition the previous service will be cancelled (treated as 

the previous case) and the edited service will be insert; service insertion, in case of 

insertion, the local search will look for a route to the service be associated and the agent 

will be alerted. In case a route cannot be found, a new one will be created and the service 

will be associated to a new agent. 

 

3.6 Summary 
 

 In this chapter was realized a discussion regarding the algorithm used, and its 

possible variations and how the different parameters involved affect the its function and 

results. Initially a small description about the genetic algorithm was done, the canonic 

model was exposed and the impacts of its application on the proposed problem were 

discussed. Then, some variations to each step was proposed, and, when possible, at least 

two possibilities to a specific operation of the genetic algorithm was searched, allowing a 

comparative analyses of the results. 

 At the end of the first section of this chapter, the local search proposed and the 

functioning of the genetic algorithm used were described. The idea is the combined use of 

this both techniques, to maximize the efficiency of the search for good solutions. At the 

second section of the chapter, it was presented analytical results regarding the proposed 

algorithm. A description of the conditions – machines, base of tests, etc. – was given. 

Each functionality of the algorithm was then tested separately, with many combinations of 

parameters, aiming to search for the best combination of algorithms and parameters, to 

achieve better results and performances. With these simulations, some initial expectations 

were reviewed, in specific the total travelling time that tends to increase with better 



85 
 

solutions. This happens due to the increase of nodes visited by an agent. On the other 

hand, the number of agents needed and the waiting time decrease, as predicted during the 

modeling of the problem. Even so, it is important to maintain the objective of minimize the 

travelling time, to avoid that this time increases beyond the needed. 

 The results confirmed the viability of the use of the proposed algorithm in the 

original problem. In some cases, it was possible to obtain results very close to the 

optimums (and even equals to the optimum values). Using the data obtained during the 

simulations, the final combination adopted is described on Table 3.39 below. 

 

Parameter  Configuration  
Population size 100 

Evaluation Function All analyzed variables with same weight 1 
Selection Proportional Selection 
Crossover Crossover OX 
Mutation 5% - Removal-and-Reinsert 
Elitism 10% of size population 

Local Search YES 
Table 3.39 – Final configuration to be used in the sub-system algorithm 

  



86 
 

4 Web and Mobile Sub-systems 
 

4.1 System objective 
 

 For the verification of the genetic algorithms operation on systems of Home Care 

management, it was developed a system that has features, which the routing genetic 

algorithms can be used to home care, besides the complementary features to guarantee 

the functioning of the system. 

 

4.2 Methodology adopted 
 

 The system was developed on components specifically designed in order to 

maintain the concept of modularity, being able to substitute anyone for another analogous. 

It was specified tree modules: Web module, Mobile module and Algorithm module. With 

the aim of support to these tree modules, it was added an infrastructure management 

function (considered as a fourth module to this project). 

 

4.3 Scenarios of use of the system 
 

4.3.1 Scenarios of Web sub-system 
 

4.3.1.1 Scenario 1 – First use 
 

 The user connects to the system and visualizes an empty list of agents and an 

empty list of positions to be visited. The user registers the address and other data needed 

at the base. The user, then, adds agents and clients to be visited, uploading the necessary 

information. 

 After the inclusion of data, the user activates manually the execution of the 

algorithm that defines the routes. The algorithm indicates that the solution was founded 

and returns to the agents list. 

 

 



87 
 

4.3.1.2 Scenario 2 –Traced Routes Visualization 
 

 The user connects to the system and has the access to the agents list, previously 

registered, and a list of patients. The user selects an agent and visualizes his route, in 

case exits (previously calculated). Once the route was visualized, the user selects a client 

and visualizes the information, on real time, regarding the selected client. 

 

4.3.1.3 Scenario 3 – Manipulation of Users 
 

 The user connects to the system and edits the registered information of an agent 

and some clients to be visited. The user deletes the registered information of a visit agent 

and of some clients to be visited. The user adds the information of a new visit agent and 

new clients to be visited. The edition, removal or inclusion, is treated in real time if there is 

the need of modifying the agents routes. 

 

4.3.1.4 Scenario 4 – Service Scheduling 
 

 The user connects to the system and has access to the patients list. He chooses 

the option of scheduling of services of attendance and tries to schedule a service for a day 

on which the patient has already a scheduled service. The system notifies that is not 

possible to schedule a visit on the day required. The user, then, schedules the visit for a 

day, on which, there is no other service for the same patient. The system returns a 

message of success. 

 

4.3.2 Scenarios of Mobile sub-system 
 

4.3.2.1 Scenario 1 – Regular Use 
 

 The registered agent connects to the system with username and password, 

requests the transmission of route data regarding the day. The data will be carried on the 

memory of the equipment. The route will be displayed on the device, the patients 

information are received when clicking on each node. The agent sends the visit status 

(ok/not ok), as an alternative, more concrete data about the procedures can be sent. 

 



88 
 

4.3.2.2 Route Update 
 

 The agent receives on his mobile device a warning that a new route is available, he, 

then, requests an update of the route information, the new route is finally loaded to the 

mobile device. 

 

4.3.2.3 Scenario 3 - Anomalies 
 

 Unable by adverse reason of continue his visits during the day, the agent selects 

the option Anomaly. The mobile sub-module sends to the web sub-module a signal that 

the agents cannot continue, starting a procedure of route recalculation, where the patients 

that were assigned to this agent are redistributed to the others. 

 

4.3.2.4 Scenario 4 – Sending reports 
 

 After the realization of a visit, or its non-realization, the user chooses the option 

corresponding to the report creation, a screen is shown enabling the entry of data 

regarding the visit or not. The report created is then sent to the web system. 

 

4.4 Function requirements 
 

4.4.1 Web sub-system 
 

1. Agents management: The sub-system should register the agents, as well as edit 

their information, disable them (in case they cannot realize the service), reactivate 

and remove them from the system; 

2. Patients management: The sub-system should register the patients, as well as edit 

their information, disable them (in case they are not available for the service) and 

remove them from the system; 

3. Self-service service management: The sub-system should schedule the services, 

as well as edit its information (including rescheduling) and remove them from the 

system (in case of cancelling); 

4. Agents list and data consultation; 

5. Patients list (complete list and scheduled Patients for one Agent) and consultation 

of his data; 



89 
 

6. List of self-service service (including services already realized – history) and 

consultation of data; 

7. Manual calculation of route; 

8. Route visualization for each Agent graphically on a map; 

9. Distinction between different types of Patients on the map, according to his service 

situation, necessity of route recalculation and if the same is active or not. 

 

4.4.2 Mobile sub-system 
 

1. User validation – necessary for access to the app; 

2. Route loading: the sub-system realizes the download of the route (with the order of 

the patients to be visited) calculated for the user associated to the app in execution; 

3. Visualization (graphically on a map) of the route allocated to an Agent associated to 

the app; 

4. Visualization of the patients information; 

5. Sending the information about the care Service realized with success or not 

(feedback); 

6. Sending the visit Report from each Patient visited; 

7. Sending the notice of self-deactivation, in casa the Agent cannot complete the 

route. 

 

4.5 Non-function requirements 
 

4.5.1 Usability and Performance 
 

 The Mobile system should have a fast response time, because it is used on field by 

the agents. This time is subjected to the internet speed of the mobile devices and to the 

data plan hired by the company that uses the system. The controls should be of easy use 

(big buttons). The Web system, because it is accesses by an unique manager of the 

system, has exclusively the commitment of being fast (again according to the internet 

speed used). 

 

 



90 
 

4.5.2 Availability and Reliability 
 

 The database should be available to the agents, as well as the algorithm module, 

due to the constant need of the agent to download the route, send feedbacks and reports 

and due to the dynamic module in case there were unexpected changes on the routes 

during the day. The database should have consistent information and its operations should 

be atomic, due to the fact that the agents can access the route information at any instant. 

Therefore, at the moment of update of these data, the changes of each route should be 

released at the same moment. 

 

4.5.3 Security and Limitations 
 

 The Mobile sub-system should have the minimum security of validation of user. 

However, for the Web sub-system this need doesn’t exist since it is accessed by a unique 

manager/supervisor of the system. The entire system (including the Web, Mobile and 

Algorithm sub-system) should always have access to internet, without which there is no 

possibility of access to the API of Google Maps, preventing then the visualization of maps, 

location of point at the map, request of address data (geocoding), assembly of routes and 

exchange of information between sub-systems. 

 

4.6 System specifications 
 

4.6.1 System architecture 
 

4.6.2 Classes diagram 
 

4.6.2.1 Web Sub-system 
 

The diagram of Figure 4.2 defines the classes of the Web Sub-system: 

 

4.6.2.2 Algorithm Sub-system 
 

The diagram of Figure 4.3 defines the classes of the Mobile Sub-system: 

 



91 
 

 

Figure 4.1 – Architecture of the Complete System 

 

Figure 4.2 – Classes diagram of the Web Sub-system 

 
 
 
 
 
 
 



92 
 

4.6.2.3 Algorithm Sub-system 
 

The diagram of Figure 4.4defines the classes of the Algorithm Sub-system: 

 

 

Figure 4.3 – Classes diagram of the Mobile Sub-system 



93 
 

 
Figure 4.4 – Classes diagramof the Algorithm Sub-system 

 

4.6.3 Database Model 
 

 On Figure 4.5 and Figure 4.6 are illustrated the Entity Relationship Diagram (ERD), 

with focus on its entities and its relationships, and the database scheme, on which is 

possible to analyze the entities attributes. 

 



 

Figure 4.5 –  

Figure 

 
 
 
 
 
 
 

 Entity Relationship Diagram (ERD) of the project

Figure 4.6 – Scheme of the database of the project

94 

 

D) of the project 

 

Scheme of the database of the project 



95 
 

4.7 Implementation 
 

4.7.1 Infrastructure 
 

 A server was provided at the Software Factory Laboratory from Escola Politécnica, 

running Windows 7. The manager SystemManagerDatabase used was MySQL and, to 

realize the versioning of files and documents, it was used the SVN. Both services were 

hosted on the server so that these services were available through internet. It was 

necessary to have installed a client software, to access the database and to use the 

versioning. For the access of the base it was used the dbForge and for the versioning it 

was used the Tortoise SVN. 

 

4.7.2 Technology 
 

 The Web sub-system was developed in Java, using the appliance Eclipse (version 

Helios) with server Apache-Tomcat (version 6.0). Additionally, there was an application 

programming interface (API) from Google Maps for the maps and routes visualization and 

obtaining the address data (including latitude and longitude). The Mobile sub-system was 

developed in Java, using the appliance Eclipse (version Helios), using a development tool 

for the Android platform. The mobile devices and the emulator used to the tests use the 

operational system Android and this also has access to the API from Google Maps. All the 

development had as bases the version 2.1 (Éclair) from the operational system Android, 

this was the stable version of the system at the initial moment of development. By 

uncertainties in relation to the compatibility, the version of the operational system was 

maintained, even after the launch of the new version. Other than that, the integration 

between the mobile module and the database at the server was done through the scripts 

PHP running on protocol HTTP, for security issue, for the integration with the maps server 

(Google Mas). It was also used the protocol HTTP, with information reception in XML. The 

algorithm sub-system, both static and dynamic, was also developed using language Java 

and appliance Eclipse (version Helios). The code developed was distributed as a file .jar to 

the Web sub-system, providing access to the classes and methods necessary to the use 

of the routing functionalities and entities from the database. 

 

 



96 
 

4.8 System screens 
 

4.8.1 Screen results – Web Sub-system 
 

4.8.1.1 Agents 
 

Figure 4.7Figure 4.8,Figure 4.9 and Figure 4.10 show the health agents in the 

system: 

 

Figure 4.7 – Screen 001 – List of agents 

 
Figure 4.8 – Screen 002 – Agent creation steps 



97 
 

 
Figure 4.9 – Screen 003 – Agent edition steps 

 



98 
 

 
Figure 4.10 – Screen 004 – Agent removal steps 

 
 



99 
 

4.8.1.2 Patients 
 

 Figure 4.11,Figure 4.12 and Figure 4.13 show the patients in the system: 

 

 

Figure 4.11 – Screen 005 – List of patients 

 
Figure 4.12 – Screen 006 – Patient criation steps 



100 
 

 
Figure 4.13 – Screen 007 – Patient edition steps 

 
 



101 
 

4.8.1.3 Services 
 

 Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17 show the customer service in 

the system: 

 

 

Figure 4.14 – Screen 008 – List of patients services 



102 
 

 
Figure 4.15 – Screen 009 - Service creation steps 



103 
 

 
Figure 4.16 – Screen 010 – Service edition steps 



104 
 

 
Figure 4.17 – Screen 011 – Service removal steps 

 
 



105 
 

4.8.1.4 Routes 
 

 Figure 4.18, Figure 4.19, Figure 4.20 and Figure 4.21 show the routes in the 

system: 

 

 

Figure 4.18 – Screen 012 – List of patients per agents 



106 
 

 

Figure 4.19 – Screen 013 – Service in route or not visualization 



107 
 

 

Figure 4.20 – Screen 014 – Visualization of route and legend 

 

Figure 4.21 – Screen 015 – Description of location 

4.8.2 Screen results – Mobile Sub-system 
 

4.8.2.1 Regular use of the system 
 

 Figure 4.22 andFigure 4.23 show an example of use of the system: 

 



108 
 

 

Figure 4.22 – Screen 016 – Authentication of the agent 

 
Figure 4.23 – Screen 017 – Visualization of patient information 



109 
 

4.8.2.2 Route update 
 

 Figure 4.24 shows an example of route update: 

 

 

Figure 4.24 – Screen 018 – Notification of existence of new route information 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



110 
 

4.8.2.3 Anomaly information 
 

 Figure 4.25 shows an example of anomaly: 

 

 

Figure 4.25 – Screen 019 – Information of impossibility of agent to continue the visits 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



111 
 

4.8.2.4 Report generation 
 

 Figure 4.26 shows an example of a visit report: 

 

Figure 4.26 – Screen 020 – Agent creates the report informing about the visit 

4.9 Tests and Results 
 

4.9.1 Test cases – Web Sub-system 
 

 Table 4.1 shows the tests done for the Web Sub-system: 

 

Tests Target functionality Scenarios Results 

Entries Base, Agent, Patient 
and Service Entries 

- File a base into the Database; 

- File Agents into the Database; 

- File Patients into the Database; 

- File services into the Database. 

OK 

Lists Agents, Patients and 
Services lists 

- Show Agents; 

- Show Patient List; 

- Show Patient List for a specific 
Agent; 

OK 



112 
 

- Show Blocked list of Patients; 

- Show patient Service List 
(present, past and future) 

Patient Status Patient List 
- Show status and service 
information of a Patient to a 
designed Agent in the list. 

OK 

Show routes 
Route Visualization for 
an Agent, Differences 
of Patients by Status 

- Show numbered Route, patient 
base and color differentiation 
according to Status on the map. 

OK 

Patient Information Visualization of Patient 
Information 

- Show information window on the 
map (about Patient geological 
local) with Patient address data. 

OK 

Patient Edition Edition of 

- Change Patient Name; 

- Change Patient Address; 

- In case the Patient Address if of 
limits from the original local, 
change status to “Recalculate”. 

OK 

Service Edition Edition of 

- Change date of Service; 

- Change Service Time; 

- In case there is another Service 
for the same date, or this is 
previously the current date, not 
allow it. 

OK 

Agent Removal Agent Removal 

- Remove Agent from the 
Database; 

- Put all non-visited Patients as 
“Recalculate”. 

OK 

Patient Removal Patient Removal - Remove Patient from the 
Database. OK 

Service Removal Service Removal 

- Remove Service from the 
Database; 

- In case the Service date is 
previously the current date, not 
allow it. 

OK 

Agent Deactivate Agent Deactivate 

- Deactivate Agent; 

- Put all non-visited Patients as 
“Recalculate”. 

OK 

Agent Reactivate Agent Reactivate - Activate Agent. OK 

Calculate manual 
route 

Calculation of Manual 
Routes - Recalculate Agents Routes OK 

Table 4.1 – Functional tests of the Web module 

 



113 
 

4.9.2 Test cases – Algorithm Sub-system 
 

 The trials were realized together with the tests described on 4.8.1 Web Sub-system, 

since it is a module used by the same type of system. However, tests and results rolling 

theoretical and practical aspects can be found on Chapter 3. 

 

4.9.3 Test cases – Mobile Sub-system 
 

The Mobile Sub-system tests were realized to guarantee the module functionality 

and were based on the collected cases. In cases where the functionality was a start point 

to a complex series of routines, some unitary tests were realized. 

Table 4.2 shows the unitary tests and cases realized, with a small description of 

scenario that it was conducted. 

 

Tests Target functionality Scenarios Results 

Receiving route 
information 

Integration with 
Google Maps 

- Given two geographic points 
(latitude and longitude), find the 
route between them; 
- Given N geographic points, find 
the route between the first and last 
passing by the others. 

OK 

Show route on top of 
map 

Route trace on 
Android’s Interface 

- Given any route, show it on the 
map. OK 

Receiving BD route Integration with BD 
- Given an agent name, search on 
BD the points where he should 
pass. 

OK 

Marker Color Change Visual Feedback of 
report generation 

- Change marker color (shown on 
map) according to the value of a 
Boolean variable. 

OK 

Table 4.2 – Functional tests of the Mobile Sub-system 

 
 
 
 
 
 
 
 
 
 
 
 



114 
 

4.9.4 Integration Tests 
 

 Table 4.3 shows the integration tests done: 

 

Tests Target functionality Scenarios Results 

Visualize Data 

- Web: EntryAgent, EntryPatient 
and EntryService; 

- Algorithm: DAOAgent, 
DAOPatient, DAOService, 
Agent, Patient and Service. 

- Receive Agent data; 
- Receive Patient data; 
- Receive Service data. 

OK 

List formation 

- Web: AgentList, PatientList and 
ServiceList; 

- Algorithm: DAOAgent, 
DAOPatient, DAOService, 

DAOLocation, Agent, Patient, 
Service and Node. 

- Receive Agents list; 
- Receive Patient list; 
- Receive Service list. 

OK 

Save Patient 

- Web: PersistPatient; 
- Algorithm: DAOPatient, 

DAOService, DAOLocation, 
Patient, Service and Node. 

- Saved information on 
Database. OK 

Remove Patient 
- Web: RemovePatient; 

- Algorithm: DAOPatient. 
- Remove patient from 
database. OK 

Remove Service 
- Web: RemoveService; 

- Algorithm: DAOService. 
- Remove Service from 
database; OK 

Deactivate Agent 
- Web: DeactivateAgent; 
- Algorithm: DAOAgent, 

DAOService, Agent and Service. 

- Parameter isActive as 
false on Database; 
- Services as isDynamic 
as true. 

OK 

Activate Agent 
- Web: ActivateAgent; 

- Algorithm: DAOAgent and 
Agent. 

- Parameter isActive as 
true on Database. OK 

Table 4.3 – Functional tests of iteration 

4.10 Difficulties faced 
 

The main difficulties faced were related to the mobile technology used. The first 

difficult concerns the routes exhibition on the map, the API Google Maps for Android 2.1 

do not allows the direct route exhibition, given two points. Therefore, it was necessary that 

the information were loaded directly on Google Maps website, which offers the possibility 

of download the information from an xml file. From this file is possible to extract the 

relevant route information and to do the manual tracing on the map. 

The second difficult refers to the access to the central database. For security reasons 

on information change, the direct access to the database is not advisable on mobile 



115 
 

devices. The proposed solution uses a PHP script, localized on the server. This script is 

accessed by HTTP and has direct access to the central database. It then fives, though 

HTTP, the information related to the route. The same process can be done for the report 

sending. 

 

4.11 Summary 
 

On this section, it was discussed the relative aspects to the implementation of the 

complete system, including the algorithm described on the previously chapter and access 

interfaces: one manageable, based on a web platform; and one for the agents, based on a 

mobile Android platform. Many market technologies were used to the implementation 

viability; those technologies were detailed during the section. The functionality and 

scenarios of use were listed and described, as well as the tests realized. On this phase, 

the tests are related to the functionality and not to the routing results founded, that were 

evaluated on Chapter 3. Even considering the technological difficulties faced, the 

implementation was considered successful. 

 

  



116 
 

 

 

 

 

 

 

 

 

 

 

PART IV 

 

FINAL CONSIDERATIONS 
 

  



117 
 

5 Final Considerations 
 

5.1 Achieved objectives 
 

The objective initially proposed to develop a system that allowed an automatic 

calculation of the scheduling and routing of health agents and nurse for patients was 

accomplished. Moreover, for the development of the system, knowledge in the area of 

Artificial Intelligence and Operational Research was studied, in order to the modeling 

problem be realized and to techniques of solution approximation be proposed and 

developed. However, some aspects, see section 5.2, could not be treated in the desired 

depth, leaving it for future works. 

 

5.2 Future works 
 

Some desirable characteristics of the system had to be disregarded due to the 

implementation deadline. Those characteristics remain as complementary work to this 

project. It can be cited in special the non-existence of the agent’s specialization and the 

homogeneity of patients.  It is noticeable that in a real case those aspects are key to the 

function of the real business, and so a practical system should obligatory content these 

requirements. 

Another aspect to be improved is the possibility of preference or dislike of an agent 

by the patient. It is known that in the medical sector the relation between health agent and 

patient is a differential on the medical treatment, therefore a system that reinforces this 

bound is desirable. However, the total link between an agent and a patient would prevent 

the possibility of distribution optimization of agents by patients, because of that the system 

should be done in a carefulmanner, given preference to the couples but not its obligation. 

Other than that, personal problem between patients and agents can occur during the 

treatment, fact that counts in favor of the exclusion of visit possibility to a patient by an 

agent. 

One more relevant aspect is the preferential service, in case exist a service that 

demands a faster treatment from the health agent; those should be passed in from of the 

others. However, should not be part of the system hospital emergency cases, which 

should be treated in a conventional manner. 

Last, the increase of test numbers and performance improvements of the algorithms 

used during the dynamic execution of the system are relevant aspects to be accounted for. 



118 
 

Especially, for the dynamic execution, it is suggested the adoption of adaptive techniques 

(38). In the case of the genetic algorithm modeling, it was initially studied the proposals 

named on (39), however there was no time to finalize it, leaving this line or research as a 

future work. On the static aspect, even though many and comprehensive tests were 

realized, not all of the parameters were evaluated, due to the multiple combination 

possibilities resulting from the options of available operator. 

 

5.3 Conclusions 
 

The use of medical home service has been shown to be a tendency on developed 

countries as a way of decreasing the amount of people in hospitals. The method can be 

applied to less severe cases, with long treatments and that do not necessitate continue 

monitoring throughout the day. To those cases, a health agent can visit the patient on his 

house, giving him better conditions, e.g. more comfort and less expose to hospital 

infections. 

This type of service has been satisfactory on countries like Denmark and it starts to 

be adopted in Brazil, already with public subsidy. On this project, it was proposed a 

solution for the optimal allocating problem of patients and health agents, aiming to 

maximize the number of patients visited by the agent, decreasing the traveling time and 

the number of agents necessary to the round. 

The developed system is based on a mix approach of genetic algorithms and local 

search. The genetic algorithms were adapted from its canonical form to a viable form to 

the mentioned problem. The results obtained by these algorithms were satisfactory, 

approaching, in many cases, to the optimal solutions on the realized tests. 

Finally, the complete system was created, with a web management module, which 

allows to the inclusion and exclusion of agents and patients and a mobile module for the 

exhibition of route information to the agent during the visits. The algorithm was 

incorporated with the web sub-system module, once it has no direct function to the user. 

Even with the imposed restrictions to the aim of the project, its implementation was 

satisfactory. The system is functional and the results obtained are beyond the initially 

expected. Moreover, the system performance, even though it is not optimal, is sufficient for 

the requirements imposed by the application. 

 

  



119 
 

REFERENCES 

 

1. DOHN, A. e. a. The Home Care Crew Scheduling Problem. 1st International 
Conference on Applied Operational Reseach. Yerevan, Armenia: s.n., 2008. 

2. APPLEGATE, D. e. a. The Travelling Salesman Problem: A Computational Study. 
Princeton, USA : Princeton University Press, 2006. ISBN 0691129932. 

3. TOTH, P. and VIGO, D.  The vehicle routing problem. Philadelphia, USA: Society for 
Industrial and Applied Mathematics. 2001. ISBN 0898715792 

4. KOHL, N. e. a.  2-path cuts for the vehicle routing problem with time windows. 
Transportation Science, INFORMS Institute for Operations research and the management 
Sciences, Linthicum, Maryland, USA. 1999, Vol. 33, pp. 101-116. ISSN 1526-5447 

5. PILLAC, V, GUÉRET, C. and MEDAGLIA, A. Dynamic Vehicle Routing Problems: State 
of The Art and Prospects. Nantes, France: Ecole des Mines de Nantes, 2010. 

6. RUSSEL, S. J. and NORVIG, P. Artificial Intelligence: A Modern Approach. Upper 
Saddle River, New Jersey, USA: Prentice Hall, 2010. ISBN 9780132071482 

7. KIRKPATRICK, S. C., GELLATT, D. C. and VECCHI, M. P . Optimization by simulated 
annealing: Quantitative studies. Journal of Statistical Physics, Springer Netherlands, 
Amsterdam, Holand. 1983, Vol. 34, pp. 975-986. ISSN 0022-4715 

8. CERNY, V. A thermodynamical approach to the travelling salesman problem: an 
efficient simulation algorithm. Journal of Optimization Theory and Applications. 1985, Vol. 
45, pp. 41-51. ISSN 0022-3239 

9. GLOVER, F. e. a.New advances and applications of combining simulation and 
optimization. In: [S.I.]: IEEE Computer Society, 1996. 

10. GLOVER, F. and LAGUNA, M.  Tabu search. In: SHARDA, R. et al. (Ed)Metaheuristic 
Procedures for Training Neutral Networks. New York, New York, USA: Springer US, 1997, 
(Operations Research/Computer Science Interfaces Series, Vol. 36), pp. 53-69. ISBN 978-
0-387-33416-5 

11. GENDREAU, M.An introduction to tabu search. In: [S.I.: s.n.] 2003. 

12. DORIGO, M.Optimization, learning and natural algorithms.Dipartimento di Elettronica, 
Politecnico di Milano. Milan, Italy: 1992. 

13. LIU, W. et al.  Ant Colony Optimization Algorithm for Multiple Travelling Salesman 
Problem. Xi'an, China:Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE 
Conference on, 2009. 

14. JUNJIE, P. and DINGWEI, W.  An Ant Colony Optimization Algorithm for Multiple 
Travelling Salesman Problem. Beijing, China : ICICI 06 Proceedings of the First 
International Conference on Innovative Computing, Information and Control. 2006. Vol. 1, 
pp. 210-213. 

15. MULLEN, R. J. et al. A review of ant algorithms. Expert Systems with Applications, 
Maryland Heights, MO 63043, USA, 2009. pp. 9608-9617. Vol. 36. ISSN 0957-4174. 

16. VIANA, B. B. et al.  Utilização de autômatos adaptativos na simulação de inteligência 
artificial de uma colônia de formigas. Trabalho de Conclusão de Curso da Escola 
Politécnica da USP - Engenharia da Computação. São Paulo, SP, Brazil: s.n., 2006. 



120 
 

17. DARWIN, C. On the origin of Species by Means of Natural Selection, or the 
Preservation of Favoured Races in the Struggle for life. [S.I.]: John Murray, 1959. 

18. HOLLAND, J. e. a.  Adaptation in Natural and Artificial Systems. Cambrigde, 
Massachusetts, USA: MIT Press, 1975. ISBN 978-0262581110 

19. SHARAPOV, R. R. and LAPSHIN, A. V.  Convergence of genetic algorithms. Lenina 
51 Yekaterinburg 630083, Russia: Pattern regognition and image analysis, 2006, Vol. 16, 
pp. 392-397. 

20. ANDERSON, M. B.  Genetic Algorithms in Aerospace Design: Substantial Progress, 
Tremendous Potential. Rhode-Saint-Genèse, Belgium: RTO-EN-022 Intelligent Systems 
for Aeronautics. 2002. 

21. TOEMEH, R. and ARUMUGAN, S.  Breaking Transposition Cipher with Genetic 
Algorithm. Kaunas, LÇituania: Electronics and Electrical Engineering. 2007, Vol. 79. 

22. GARG, P., SHASTRI, A. and AGARWAL, D. An Enhanced Cryptanalytic Attack on 
Knapsack Cipher using Genetic Algorithm. Penang, Malaysia: Proceedings of world 
academy of science, engineering and technology, 2006. pp. 355-358. Vol. 12. 

23. CLARK, D. E. Evolutionary Algorithms in Molecular Design. New York, New York, 
USA: John Wiley and Sons, 2008. (Methods and principles in medicinal chemistry) ISBN 
9783527301553. 

24. CHAMBERS, L. D. The practical Handbook of Genetic Algorithms: Applications 
Second Edition. Boca Raton, Florida: Chapman&Hall/CRC, 2000. (The practical handbook 
of Genetic Algorithms, Vol. 1). ISBN 978-1584882404. 

25. HAUPT, R.L. and HAUPT, S. E.  Practical Genetic Algorithms. Second Edition. Storrs, 
Connecticut, USA: John Wiley and Sons, 2004. ISBN 978-0-471-45565-3 

26. OMAR, M., BAHARUM, A, and HASAN, Y. A.  A job-shop scheduling problem (JSSP) 
using genetic algorithm (GA). Penang, malaysia: Proceedings of the 2nd IMT-GT Regional 
Conference on Mathematics, Statistics and Applications, 2006. 

27. BRANCHINI, R. M.  Busca Tabu para o problema de roteamento dinâmico de veículos 
com janelas de tempo. Campinas, Brazil : Thesis presented to Faculdade de Engenharia 
Elétrica e de Computação da Universidade Estadual de Campinas, 2005. 

28. GOLDBERG, D. E. and MILLER, B. L.  Genetic algorithms, tournament selection and 
the effects of noise.Complex Systems, Champaign, Illinois, USA, 1995. pp. 193-212. Vol. 
9. 

29. BACK, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, 
Evolutionary Programming, Genetic Algorithms. New York, New York, USA: Oxford 
University Press, 1996. ISBN 0-19-509971-0. 

30. LOPES, S.Biologia Volume Único. Sao Paulo, SP, Brazil: Editora Saraiva, 2004. 

31. OLIVER, I. M., SMITH, D. J. and HOLLAND, J. R. C.  A study of permutation 
crossover operators on the travelling salesman problem. In: Proceedings of the Second 
International Conference on Genetic Algorithms and their applications.[S.I.]: L. Erlbaum 
Associates Inc, 1987, pp. 224-230. ISBN 0-8058-0158-8 

32. DOMINIK, T. G.Genetic Algorithms Reference, Volume 1 Crossover for single-
objectiver numerical optimization problems. Lomianki, Poland: Tomasz Gwiazda, 2006. 
ISBN 978-8392395836. 

33. —. Genetic Algorithms Reference, Volume II Mutation operator for numerical 
optimization problems. Lomianki, Poland: Tomasz Gwiazda, 2007. ISBN 978-8392395843. 



121 
 

34. GENDREAU, M., LAPORTE, G, and POTVIN, J.-Y.  Metaheuristics for the Vehicle 
Routing problem. Montréal, Québec, Canada: Les Cahiers du Gerad, G-98-52, 1998. 

35. SAFE, M. et al.  On Stopping Criteria for Genetic Algorithms. Lecture Notes in 
Computer Science. São Luis, Maranhão, Brazil: s.n., 2004. pp. 405-413. 

36. —. On Stopping Criteria for Genetic Algorithms. Lectures Notes in Computer Science. 
Sao Luis, Maranhão, Brazil: s.n., 2005. pp. 405-413. 

37. BOCK, F.  An algorithm for solving travelling-salesman and related network 
optimization problems. Saint Louis, Missouri, USA: manuscript non published, presented 
on the 14th ORSA National Meeting, 1958. 

38. NETO, J.J.  Adaptive rule-driven devices - general formulation and case study. 
Pretoria, South Africa: CIAA 2001 Sixth International Conference on Implementation and 
Application of Automata, 2001. pp. 234-250. 

39. LOPES, V. D. Proposta de Integracao entre tecnologias adaptativas e algoritmos 
genéticos. São Paulo, SP, Brazil:Dissertation presented to Escola Politécnica da USP to 
obtain the title of master in Engineering. 2009. 

 


