
POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di laurea in Ingegneria Aeronautica

Linear stability of 2D incompressible flows using Trilinos

Relatore: Prof. Franco Auteri

Autore: Andrea Penza 735235

Anno accademico 2010-2011

2

”The only way to do a great work is to love what you do.
If you haven’t found it yet, keep looking, don’t settle”

S. Jobs

”Never say never,
because limits, like fears, are often just an illusion”

M. Jordan

4

Contents

Abstract 10

Sommario 11

Introduction 21

1 Problem formulation 25

1.1 The differential problem . 26

1.2 Computation of the base flow . 27

1.3 The linear stability problem . 28

1.4 The Finite Element Method . 30

1.4.1 Discretization of the problem 30

1.4.2 Assembly of the linear system 32

1.4.3 Solution of the algebraic system 33

2 Introduction to Trilinos library 35

2.1 The Trilinos Project . 35

2.1.1 About the GNU Lesser General Public License 40

2.2 Sundance . 41

2.3 Set up the environment . 42

2.4 Third-Party software . 43

2.4.1 BLAS and LAPACK . 44

2.4.2 MPI . 44

2.4.3 Chaco Mesh Partitioner . 45

2.4.4 Exodus II . 45

2.4.5 NetCDF . 45

2.5 Trilinos installation . 46

2.5.1 Configuration . 46

2.5.2 Building . 48

3 Software’s structure 49

3.1 How Sundance works . 49

3.2 Building the code . 50

3.2.1 Iniatilization and finalization 50

5

6 CONTENTS

3.2.2 Getting the mesh and defining domains of integrations . . . 50
3.2.3 Defining unknowns, test functions and operators 52
3.2.4 Weak form and boundary conditions 53
3.2.5 Initial guess and nonlinear problem 54
3.2.6 Eigenvalue problem . 56
3.2.7 Output . 58

4 Results 61
4.1 Lid-driven cavity flow . 61

4.1.1 Problem formulation . 62
4.1.2 Computational grid . 64
4.1.3 Numerical results . 65

4.2 Stability analysis of 2D cylinder wake 71
4.2.1 Problem formulation . 71
4.2.2 Computational grid . 74
4.2.3 Numerical results . 76

5 Conclusions and future steps 89
5.1 Further developments . 89

A Complete codes 91
A.1 Chaco Mesh Partitioner script . 91
A.2 Sundance complete code . 93
A.3 Sundance linear eigenproblem class 98

Acknowledgements 105

Bibliography 106

List of Figures

1 Esempio di osciallatore fluidico di geometria semplice (figura tratta
da [8] . 13

2 Corrente attorno al cilindro: modulo della velocità del flusso base
(Re = 46.5) . 17

3 Corrente attorno al cilindro: autovalori del problema linearizzato . 17

4 Corrente attorno al cilindro: primo modo instabile relativo alla com-
ponente verticale della velocità . 18

5 Primo autovalore instable: dipendenza dal numero di Reynolds . . 18

6 Mesh di calcolo per un semplice oscillatore fluidico 20

7 Examples of different fluidic oscillators 22

8 Geometry of the fluidic oscillator investigated in [8] 24

1.1 Typical block scheme for a FEM code 30

1.2 Examples of available element shapes 31

1.3 Pattern of FEM matrix before (left) and after (right) enforcing the
Dirichlet boundary conditions for a 3D problem 32

2.1 Sundance’s structure . 42

3.1 Sundance simulation process, from [5] 49

4.1 Lid-driven cavity geometry sketch, side length L = 1.0 61

4.2 Mesh domain used for cavity problem 64

4.3 Lid-driven cavity flow: velocity components at Re = 1000 66

4.4 Lid-driven cavity flow: velocity magnitude ||u|| at Re = 1000 . . . 67

4.5 Lid-driven cavity flow: streamline comparison 69

4.6 Lid-driven cavity flow: isobar line comparison 69

4.7 Lid-driven cavity flow: vorticity levels. Values: −6, −4, −2, −0.5,
0.5, 2, 4, 6 (corresponding to the thick lines in the reference plot) . 70

4.8 Computational domain . 71

4.9 Cylinder geometry sketch . 74

4.10 Cylinder mesh . 75

4.11 Cylinder flow: velocity magnitude 77

4.12 Cylinder flow: velocity magnitude and streamlines near the cylinder 77

4.13 Cylinder flow: horizontal component of the velocity field 78

7

8 LIST OF FIGURES

4.14 Cylinder flow: horizontal component of the velocity field and stream-
lines near the cylinder . 78

4.15 Cylinder flow: vertical component of the velocity field 79
4.16 Cylinder flow: vertical component of the velocity field near the

cylinder . 79
4.17 Cylinder flow: pressure field . 80
4.18 Cylinder flow: streamlines . 80
4.19 Cylinder flow: wake length dependence on Reynolds number 81
4.20 Cylinder flow: wake bubble length 82
4.21 Cylinder flow: eigenvalue spectrum for three different Reynolds

numbers (40, 46.5, 50) . 83
4.22 Cylinder flow: unstable eigenvalue: effect of Reynolds number on

the real and imaginary parts . 84
4.23 Cylinder flow: computed eigenvalues near imaginary axis 85
4.24 Cylinder flow: dependence on Reynolds number of the most unsta-

ble eigenfuction (horizontal component of the velocity) 86
4.25 Cylinder flow: dependence on Reynolds number of the most unsta-

ble eigenfuction (pressure) . 87
4.26 Cylinder flow: Re(uy) at Reynolds 46.6 88

List of Tables

1 Componente orizzontale di velocità lungo la mezzeria verticale, Re
= 1000 . 16

2 Componente verticale di velocità lungo la mezzeria orizzontale, Re
= 1000 . 16

4.1 Square cavity mesh parameters . 65
4.2 Lid-driven cavity flow: horizontal velocity component through the

vertical centerline at Re = 1000 . 67
4.3 Lid-driven cavity flow: vertical velocity component through the hor-

izontal centerline at Re = 1000 . 68
4.4 Coordinates of the auxiliary points used to build the mesh 74
4.5 Cylinder mesh parameters, refer to equations 4.7 75

9

10

Abstract

This work focuses on the numerical investigation of the linear stability of two-
dimensional incompressible flows. For this purpose, an innovative software based
on the object-oriented C++ Trilinos library has been developed. The finite element
solver has been built exploiting the Sundance package of Trilinos, which showed an
excellent flexibility and a high level of abstraction leading to a rapid development
of the Navier-Stokes simulator. Good results have been obtained for the well-
known case of lid-driven cavity problem, which has been employed to validate the
solver of the base flow. Good results have been obtained also for the linear stability
problem of the flow around a circular cylinder, which has been used to validate the
linear stability solver. About this last test case part of the eigenvalue spectrum
and the eigenmodes of the most unstable eigenvalue are presented as final results
of the stability analysis.
Particular attention has been dedicated to the description of the configuration of
the software and to its installation, a quite involved task, while the whole code
produced and all modifications introduced in the existing Sundance classes are
completely listed.

11

12

Sommario

In questo lavoro ci si è prefissi l’obiettivo di realizzare un software innovativo per
lo studio della stabilità delle correnti fluidodinamiche. A questo scopo è stato re-
alizzato un codice basato sul linguaggio di programmazione C++, provato poi su
due casi di validazione. L’obiettivo finale è stato quello di realizzare uno strumento
per poter studiare le caratteristiche di stabilità degli oscillatori fluidici che sono
attualmente oggetto di ricerca. Gli oscillatori fluidici sono strumenti che utilizzano
un fluido per ottenere operazione logiche di tipo analagico o digitale simili a quelle
utilizzate in campo elettronico. L’obiettivo di tale ricerca è migliorare la compren-
sione del funzionamento degli oscillatori fluidici utili come alternativa a componenti
elettronici maggiormente soggetti alla sollecitazione termica e all’usura. In figura
1 è riportato un esempio di oscillatore fluidico di geometria molto semplice.

Figure 1: Esempio di osciallatore fluidico di geometria semplice (figura tratta da
[8]

In molti casi la documentazione si è rivelata inadeguata o assente. Questo lavoro

13

14

si propone anche di colmare alcune delle numerose lacune nella documentazione,
soprattutto per quanto riguarda la parte di installazione, documentazione che qui
è stata fornita dettagliatamente con indicazioni passo-passo sul da farsi.
Il primo passo da fare è studiare la stabilità in campo lineare delle correnti in-
comprimibili bidimensionali, il che comporta risolvere due problemi. Il primo è il
calcolo del flusso base relativo al problema stazionario, mentre il secondo è calcolare
gli autovalori del problema non stazionario linearizzato partendo dalla condizione
stazionaria precedentemente calcolata.
La formulazione fisica del problema parte delle equazioni di Navier-Stokes per un
flusso incomprimibile

∂u

∂t
+ (u ·∇)u− 1

Re
∇2u +∇p = g

∇·u = 0

(1)

e dalla loro linearizzazione nell’ambito della teoria delle piccole perturbazioni che
prevede una scomposizione della soluzione in una parte stazionaria (U0, P0), il
cosiddetto flusso base, sommata a una piccola pertubazione (uδ, pδ).

u = U0 + uδ

p = P0 + pδ

Si ottengono cos̀ı le equazioni linearizzate
∂uδ
∂t

+ ((U0 ·∇)uδ + (uδ ·∇)U0)−
1

Re
∇2uδ +∇pδ = 0

∇·uδ = 0

(2)

che discretizzate danno luogo al problema algebrico agli autovalori

λMv = Av (3)

che può essere riformulato nel modo seguente per accelerare la convergenza del
processo risolutivo:

(A− σM)−1Mv = νv (4)

Il software realizzato si è dimostrato estremamente compatto e flessibile in fase
di impostazione del problema da studiare. A ciò ha contribuito senza dubbio
l’eccellente qualità di programmazione della libreria su cui il software si basa,
ovvero Trilinos. Trilinos è una libreria di pacchetti per lo sviluppo di software che

15

usano un linguaggio di programmazione a oggetti, il C++. In particolare è stato
utilizzato il pacchetto Sundance, realizzato inizialmento presso i Sandia National
Laboratories e sviluppato ora dal Dipartimento di Matematica presso la Texas
Tech University.
Il solutore del problema agli autovalori è stato implementato usando il pacchetto
Sundance distribuito all’interno della libreria Trilinos. Sundance è un sistema
per il rapido sviluppo di solutori per problemi differenziali alle derivate parziali
basato sul metodo degli elementi finiti. Il codice prodotto, riportato interamente
in appendice A, ha la struttura tipica di un programma per la risoluzione di un
problema differenziale con il metodo degli elementi finiti. La griglia di calcolo non
strutturata composta da soli triangoli è stata realizzata tramite il software com-
merciale Ansys IcemCFD e una volta caricata nel programma la griglia vengono
costruiti gli elementi finiti. È possibile scegliere diversi tipi di elementi e in questo
lavoro si è optato per elementi lagrangiani di Taylor-Hood, quadratici per la ve-
locità e lineari per la pressione. Successivamente, utilizzando le classi disponibili
in Sundance, viene formulata molto velocemente e con estrema semplicità la forma
debole delle equazioni. La soluzione stazionaria è stata calcolata tramite il metodo
di Newton, implementato nel pacchetto di solutori non lineari di Trilinos chiam-
ato NOX. Per l’analisi di stabilità invece è stato necessario risolvere il problema
agli autovalori associato alla formulazione (2) tramite un interfaccia al pacchetto
Anasazi. Si è optato per una trasformazione spettrale di tipo shift-invert (4) per
aumentare l’efficienza del metodo risolutivo. Questo tipo di trasformazione au-
menta la velocità di convergenza calcolando per primi gli autovalori di modulo
minore invece che quelli di modulo maggiore. Per tale trasformazione è stato nec-
essario modificare la struttura di alcune classi di Sundance in quanto essa non era
stata inizialmente prevista degli sviluppatori.
Il programma sviluppato è stato applicato a flussi già studiati e noti in letteratura
in modo da validare il codice realizzato. Ottimi risultati sono stati ottenuti per il
problema della cavità, utilizzato nella fase iniziale dello sviluppo del codice come
caso prova per validare il solutore di Navier-Stokes stazionario. La soluzione calco-
lata è risultata in accordo con i dati numerici riportati da Botella & Peyret (1998)
[6] e il confronto è riportato nelle tabelle 1 e 2. I valori riportati sono stati calcolati
su 17 punti lungo la linea di mezzeria orizzontale e verticale.
Di maggiore interesse ai fini dell’obiettivo finale è però il caso della corrente bidi-
mensionale che investe un cilindro a sezione circolare. In questo caso è stata fatta
un’ analisi di stabilità della corrente. Partendo dalla soluzione stazionaria del
flusso base visibile in figura 2 si è passati al calcolo degli autovalori del problema
linearizzato. È stata calcolata parte dello spettro di autovalori, riportata in figura
3 in cui si può notare come il numero di Reynolds influenzi la stabilità della cor-
rente. Infatti i risultati hanno dimostrato che la corrente si mantiene stabile per
un numero di Reynolds inferiore a 46.5, che rappresenta pertanto il numero di
Reynolds critico per la stabilità della corrente attorno al cilindro. L’autovalore a
parte reale più grande è quello più instabile, a esso è associato il modo instabile
presentato in figura 4. L’accuratezza del calcolo degli autovalori è stata verificata

16

y ux, Ref. [6] ux

1.0000 -1.000 -1.000
0.9766 -0.664 -0.664
0.9688 -0.581 -0.581
0.9609 -0.517 -0.506
0.9531 -0.472 -0.469
0.8516 -0.337 -0.337
0.7344 -0.189 -0.194
0.6172 -0.057 -0.057
0.5000 0.062 0.062
0.4531 0.108 0.108
0.2813 0.280 0.280
0.1719 0.388 0.387
0.1016 0.300 0.300
0.0703 0.223 0.223
0.0625 0.202 0.204
0.0547 0.181 0.181
0.0000 0.000 0.000

Table 1: Componente orizzontale di velocità lungo la mezzeria verticale, Re =
1000

riferendosi a quanto già presentato da Giannetti & Luchini (2007) [7] nonchè da
Sipp & Lebedev (2007) [14].

x uy, Ref. [6] uy
0.0000 0.000 0.000
0.0312 -0.228 -0.233
0.0391 -0.294 -0.291
0.0469 -0.355 -0.357
0.0547 -0.410 -0.410
0.0947 -0.526 -0.527
0.1406 -0.426 -0.427
0.1953 -0.320 -0.311
0.5000 0.025 0.025
0.7656 0.325 0.325
0.7734 0.334 0.334
0.8437 0.377 0.377
0.9062 0.333 0.326
0.9219 0.310 0.310
0.9297 0.296 0.289
0.9375 0.281 0.281
1.0000 0.000 0.000

Table 2: Componente verticale di velocità lungo la mezzeria orizzontale, Re =
1000

17

Figure 2: Corrente attorno al cilindro: modulo della velocità del flusso base (Re =
46.5)

0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0.05
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Re()

Im
(

)

Eigenvalues

Re = 40
Re = 46.5
Re = 50

Figure 3: Corrente attorno al cilindro: autovalori del problema linearizzato

18

(a) Sipp & Lebedev (2007), [14] (b) Risultati attuali

Figure 4: Corrente attorno al cilindro: primo modo instabile relativo alla compo-
nente verticale della velocità

10 20 30 40 50 60 70 80 90 100 110
0.2

0.15

0.1

0.05

0

0.05

0.1

Reynolds

R
e(

)

0 20 40 60 80 100 120
0.1

0.12

0.14

0.16

Reynolds

St

Giannetti & Luchini (2007)
Present results
Williamson (1996)

Figure 5: Primo autovalore instable: dipendenza dal numero di Reynolds

La figura 5 è particolarmente importante. Presenta i risultati relativi al primo
autovalore instabile in termini di parte reale e numero di Strouhal al variare del
numero di Reynolds. Si può riscontrare un buon accordo coi dati pubblicati in
[7], in particolare per la curva Re − St. La linearità dell’approssimazione vale
per piccole perturbazioni ed è per questo valida solo in prossimità del numero di

19

Reynolds critico che, come detto, è stato individuato in 46.5. Allontanandosi da
tale regione gli effetti non lineari prevalgono e la soluzione si allontana da quella
sperimentale proposta da Williamson (1996) [18].
Il software sviluppato ha prodotto dei buoni risultati, e la sua validazione può riten-
ersi conclusa. Tuttavia ha mostrato alcune criticità che dovranno essere oggetto
di futuri miglioramenti. Prima di tutto è cruciale la possibilità di poter usare il
codice in parallelo, in modo da poter distribuire la memoria impiegata ed effettuare
calcoli su mesh più fini. In questo lavoro sono già riportate tutte le informazioni
necessarie e il codice da utilizzare per partizionare la mesh, ma occorrerà senza
dubbio cambiare il solutore. In quest’ottica i solutori diretti paralleli MUMPS
e SuperLU Dist dovrebbero fornire le prestazioni desiderate in termini di calcolo
parallelo, e c’è la possibilità di interfacciarli con Sundance tramite il pacchetto
Amesos. Questo permetterebbe oltre che di poter lavorare su mesh composte da
un numero maggiore di elementi anche di ridurre sensibilmente i tempi di calcolo,
che al momento sono risultati eccessivi per il tipo di problema che si è risolto. In
quest’ottica l’ottimizzazione nella scelta del solutore è una questione cruciale e va
affrontata come priorità. Per quanto riguarda la scelta del solutore una ulteriore
possibile strada è quella dei solutori iterativi contenuti nel pacchetto AztecOO di
Trilinos. In questo caso la scelta del precondizionatore adeguato per ottenere la
convergenza del metodo risolutivo non è banale e la ricerca di un precondizionatore
robusto e affidabile nonché efficiente è ancora in corso. In letteratura sono presenti
diversi articoli che trattano questo argomento.
Come detto, la trasformazione shift-invert utilizzata per rendere più efficiente il
calcolo degli autovalori è stata introdotta in Sundance durante questo lavoro. Per
il momento è stato possibile implementare solamente uno shift reale. Si potreb-
bero limitare i tempi di calcolo rendendo possibile l’utilizzo di un shift complesso,
che permetterebbe cos̀ı di calcolare lo spettro degli autovalori su una regione più
ristretta nell’intorno dell’autovalore di interesse (tipicamente quello più instabile)
senza dover calcolare una regione ampia come è stato fatto in questo lavoro poichè
l’autovalore instabile era abbastanza lontano dall’asse reale.
Un altro possibile miglioramento al lavoro proposto è sicuramente quello di ren-
dere la procedura di realizzazione della griglia di calcolo indipendente dal software
commerciale Cubit, che è stato utilizzato solamente per assegnare dei numeri iden-
tificativi ai lati del dominio, in modo da poter applicare le condizioni al contorno.
In questo senso potrebbe essere necessario modificare una o alcune classi di Sun-
dance in modo da interfacciarlo con un numero maggiore di formati del file di mesh
oltre al formato ExodusII utilizzato per questo lavoro.
Infine lo scopo ultimo del lavoro, come anticipato, è quello di studiare la stabilità
lineare di correnti in geometrie complicate, come ad esempio le correnti all’interno
di oscillatori fluidici. Il prossimo passo previsto sarà proprio quello di utilizzare il
codice sviluppato in questo lavoro per studiare la prima instabilità della corrente
all’interno dell’oscillatore fluidico proposto. A puro titolo di esempio la figura 6
riporta la mesh relativa ad un geometria molto semplice, simile a quella della figura
1, e utilizzata nel lavoro di Hirata (2009) [8].

20

Figure 6: Mesh di calcolo per un semplice oscillatore fluidico

Introduction

A confined jet sometimes causes a self-excited oscillation characterized by a well-
defined frequency due to the existence of a downstream target. This phenomenon
has been investigated in recent years in order to study some fluidic oscillators, flip-
flop jet nozzles, heat/material mixers, flow controls and flowmeters, in order to
build high-reliability devices without mechanically moving components. Fluidics
addresses the use of a fluid to perform analog or digital operations similar to those
performed with electronics. The term fluidics is normally used when devices have
no moving parts. A jet of fluid can be deflected by a weaker jet striking it at the
side. This provides nonlinear amplification, similar to what happens in a transistor
used in electronic digital logic. Fluidic devices are used mostly in environments
where electronic digital logic would be unreliable, or where electronic components
are subject to overheating. Some examples of different geometries of fluidic devices
are shown in figure 7. The shape of a simple fluidic oscillator is shown in figure 8
and it refers to the geometry described by Hirata, Matoba, Naruse, Haneda and
Funaky (2009) [8], who carried out velocity measurements by an UVP (ultrasonic
velocity profiler) and by PIV (particle image velocimetry).

The characterization of a simple fluidic oscillator may be performed by the same
approach employed in the study of bluff-body wakes, and a numerical modal anal-
ysis can be used to determine the properties of the instability and to find its
critical Reynolds number. One of the most common examples of a bluff-body flow
is given by the flow around an infinitely long circular cylinder, for this reason such
a flow has been employed here as a test case. In this flow, the transition from the
steady to the unsteady state breaks the symmetry of the flow field and the Von
Karman vortex street is generated. Experimental results on the 2D cylinder wake
were reported by Williamson (1996) [18], who suggested the threshold of 47 for
the critical Reynolds where the transition from the steady to the unsteady state
of the cylinder wake occurs.
Several approaches can be used to deal with this problem. In recent years, direct
numerical simulations have been used to study the development of the Von Kar-
man vortex street and to identify the onset of the instability. The linear theory
provides an alternative way to the solution of the full nonlinear problem in order
to reduce the computational cost. In this approach the stability of the flow is in-
vestigated by solving the two-dimensional generalized eigenvalue problem derived
from the discretization of the linearized Navier-Stokes equations.

21

22

Figure 7: Examples of different fluidic oscillators

Numerical benchmarks have been provided in recent years. Sipp & Lebedev (2007)
[14] published an investigation on the case of the 2D cylinder wake, using Taylor-
Hood (P2, P2, P1) finite elements for the spatial discretization of the primitive
variable (ux, uy, p) equations. In this work, the eigenvalue problem is solved thanks
to an Arnoldi method based on a shift-invert strategy, available in the ARPACK li-
brary. Moreover, Giannetti & Luchini (2006) [7] used a finite volume discretization
and employed an immersed-boundary technique to represent the cylinder surface
on a Cartesian mesh. In this work, the eigenvalue problem is solved by a variant of
the classical inverse-iteration algorithm, simultaneously applied to both the direct
and the adjoint problems in order to procede in a coupled way. Only a LU decom-
position for each step was required. Lanzerstorfer & Kuhlmann (2012) [9] employed
a finite volume discretization applied to a backward-facing step on a staggered
rectangular grid. Contrary to Giannetti & Luchini (2006) [7] they did not use the
immersed boundary technique. In this work, an implicitly restarted Arnoldi algo-
rithm provided in the ARPACK software library and the MATLAB eig command
were employed. A shift-invert transformation with zero shift was used. Barkley,
Blackburn & Sherwin (2008) [4] employed a spectral element method applied to
the backward-facing step problem using the linear theory to investigate the stabil-

23

ity of the flow. In this work, the eigenvalue problem is solved by a Krylov method
implemented by the authors using the LAPACK library. Experimental results re-
ported by Williamson (1996) [18] substantially confirm the threshold of the critical
Reynolds number suggested by the quoted numerical investigations.
The numerical approach employed in this work is based on a finite element dis-
cretization of the Navier-Stokes equations implemented using the Trilinos library,
and an innovative software has been produced. The first problem to deal with was
the correct configuration and installation of the Trilinos package Sundance, this
package was employed to develop the code of the Navier-Stokes simulator.
In chapter 1 the problem formulation is introduced starting from the differential
equations up to the weak formulation, the approach employed to compute the base
flow and the discretization of the problem by the to finite element method is also
presented.
In chapter 2 the framework of the Trilinos library and the main features of the
Sundance package are presented. Furthermore, detailed instructions to install
Sundance and all necessary third-party softwares on Linux Ubuntu 11.04 opera-
tive system, on which this work was carried out and all components tested, are
given.
In chapter 3, the software structure and the whole code developed to implement
the Navier-Stokes simulator are presented.
Chapter 4 is devoted to the validation of the code. Results obtained by the steady
solver for the lid-driven cavity and flow the circular cylinder in crossflow are com-
pared to well established benchmark [6], [3],[7] and [14]. The eigenvalues and
eigenfunction computed by means of the linear stability solver are also reported
and validated with respect to accurate results available in the recent literature [7]
and [14]. The last chapter is devoted to some concluding remarks and to envisage
future developments.
In the appendix, in which all codes used to accomplish the work are reported. Of
particular interest are the modified lines implementing the shift-invert transfor-
mation in the Sundance package.

24

Figure 8: Geometry of the fluidic oscillator investigated in [8]

Chapter 1

Problem formulation

In order to investigate the linear stability of two-dimensional incompressible flows
the first step is to obtain the mathematical formulation of the problem. This
section deals with this task. First, the differential form of the Navier-Stokes equa-
tions is presented, the description of how the base flow is computed and how the
linear stability is treated is given. Finally a brief introduction to the finite el-
ement method, which is employed to discretize the equations, is provided. The
stability analysis requires the solution of the nonlinear steady Navier-Stokes equa-
tions first, to compute the base flow, and then the solution of the generalized
eigenvalue problem obtained from the linerization of the evolution equations in
the neighbourhood of the base flow. The nonlinear system of equations has been
solved by the Newton method, which requires solving a linear system per iteration.

The differential form of the Navier-Stokes equations in their incompressible and
dimensionless form (1.1) is provided below.

∂u

∂t
+ (u ·∇)u− 1

Re
∇2u +∇p = g

∇·u = 0

(1.1)

Here u is the velocity vector, with components (ux, uy), and p is the pressure.
Equations (1.1) are made dimensionless through the Reynolds number, R, which
is based on the cylinder diameter D as the characteristic length scale, the uniform
velocity U∞ of the undisturbed stream as the reference velocity and the kinematic
viscosity ν.

R =
U∞D

ν

25

26 CHAPTER 1. PROBLEM FORMULATION

1.1 The differential problem

We start considering the steady-state flows solution related to the nonlinear dif-
ferential system (1.1), in this way the governing equations result as follows:(u ·∇)u− 1

Re
∇2u +∇p = 0

∇·u = 0
(1.2)

The force field on right-hand side is neglected in this discussion. Moreover, bound-
ary conditions are required on the edges of the computational domain. Tipical con-
ditions are the no-slip conditions expressed by (1.3a), the conditions of symmetry
(1.3c) which can also be employed on egdes in the far field which are approximately
parallel to the flow velocity. The velocity vector is assigned on the inlet side (1.3b),
while the pressure distribuition and the normal derivative of the normal component
of the velocity is assigned on the outlet side (1.3d).

ux = 0, uy = 0 (1.3a)

ux = 1, uy = 0 (1.3b)

∂ux
∂y

= 0, uy = 0 (1.3c)

∂ux
∂x

= 0, p = 0 (1.3d)

The weak form is derived directly from the strong form (1.2) by multiplying each
scalar equation (1.4) by the relative test function and integrating by parts.

∂ux
∂x

+
∂uy
∂y

= 0

ux
∂ux
∂x

+ uy
∂ux
∂y

= −∂p
∂x

+
1

Re
∇2ux

ux
∂uy
∂x

+ uy
∂uy
∂y

= −∂p
∂y

+
1

Re
∇2uy,

(1.4)

The weak form is obtained:

∫
Ω

(
∂ux
∂x

+
∂uy
∂y

)
q = 0

−
∫
∂Ω

1

Re

(
∂ux
∂n

)
vx +

∫
Ω

1

Re
∇vx ·∇ux +

∫
Ω

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
vx +

∫
Ω

∂p

∂x
vx = 0

−
∫
∂Ω

1

Re

(
∂uy
∂n

)
vy +

∫
Ω

1

Re
∇vy ·∇uy +

∫
Ω

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
vy +

∫
Ω

∂p

∂y
vy = 0

1.2. COMPUTATION OF THE BASE FLOW 27

1.2 Computation of the base flow

In order to address the iterative solution of the steady base flow, the system (1.2)
is brought in form (1.5) and the Newton method is applied to the system (1.5).
The resulting nonlinear problem can be compactly written as

F (v) = 0 (1.5)

where F (v) is a vector of n nonlinear equations and n is the number of scalar
unknowns in vector unknown v. In the case of Navier-Stokes equations expressed
in primitive-variable formulation the vector v is defined as follows.

v =

u

p

The left-hand side of system (1.5) can be expanded in Taylor series truncated at
first order in the neighbourhood of the n-th approximation of the solution obtaining

F (v) ≈ F (vn) + ∂vF (vn)(v − vn) (1.6)

The derivative term in this formulation assumes the meaning of Jacobian matrix,
and contains the derivative of each equation with respect to all unknowns of the
problem. So the expression (1.6) can be rewritten as

F (v) ≈ F (v0) + J(v0)(v − v0) (1.7)

According to (1.5) right-hand term side of (1.7) is zero, so the formulation of
Newton’s method is obtained as follows:

F (vn) + J(vn)(v − vn) = 0 (1.8)

And the linear system leading to the n+1 approximation reads

J(vn)vn+1 = J(vn)vn − F (vn) (1.9)

Chapter 3 shows how the Newton’s method can be implemented by means of the
Trilinos library.
In any iterative method a convergence criterion for stopping the computation is
needed. In his case, the iteration is stopped when the residual F (vn) is less than
10−8 for the cavity problem and 10−10 for the cylinder problem. For the Newton’s
method an initial guess is required, and in this work a zero initial guess was
sufficient to achieve convergence in all the test cases. In this way the steady
solution of problem (1.1) can be computed. This solution serves as base flow for
the stability analysis presented in the next paragraph.

28 CHAPTER 1. PROBLEM FORMULATION

1.3 The linear stability problem

In order to investigate the onset of the instability in an incompressible flow the
linear theory is employed. Thus the solution field v = {u, p}T is decomposed into
the sum of a steady part and a small unsteady perturbation.

u(x, y, t) = U0(x, y) + uδ(x, y, t)

p(x, y, t) = P0(x, y) + pδ(x, y, t)

where v0 = {U0, P0}T represents of the base flow computed through the procedure
descripted in the previous paragraph. The linearization of equation (1.1) leads to
the decomposition of velocity and pressure into a steady part and an unsteady
perturbation. Neglecting second and higher order terms, the linearized evolution
problem reads

∂uδ
∂t

+ ((U0 ·∇)uδ + (uδ ·∇)U0)−
1

Re
∇2uδ +∇pδ = 0

∇·uδ = 0

(1.10)

It is important to notice that boundary conditions are homogeneous in this case,
because the pertubation on velocity and pressure is assumed to be null on all edges
of the domain. Essential Dirichlet boundary conditions are employed for uδ and
pδ.
Introducing the following expression for the velocity and pressure perturbation in
the linearized problem

uδ(x, y, t) = ûδ(x, y)eλt (1.11a)

pδ(x, y, t) = p̂δ(x, y)eλt (1.11b)

The following system is obtained:

λeλtûδ + ((U0 ·∇) ûδ + (ûδ ·∇)U0) e

λt − 1

Re
eλt∇2û + eλt∇p̂δ = 0

∇· ûδ = 0

(1.12)

After discretization by the finite element method, see the next paragraph, a non-
symmetric, generalized eigenvalue problem is obtained.

λMv̂ = Av̂ (1.13)

1.3. THE LINEAR STABILITY PROBLEM 29

The computed eigenvalues and eigenvector, solution to the problem (1.13), will be
in general complex, and taking a look to equations (1.11) it becomes evident that if
their real part is positive the corresponding mode amplitude grows exponentially in
time. If the real part of an eigenvalue is positive, the corresponding eigenfunction
is linearly unstable. The computed base flow is therefore linearly unstable if one or
more eigenvalues have positive real part. This work deals with the investigation of
the first instability of the flow and for this reason the eigenvalue with largest real
part is sought for. A few different techniques have been proposed so far to solve
the eigenvalue problem. In this work a shift-invert transformation (also known as
spectral transformation) is employed to increase the efficienty of convergence of
the employed Block Krylov Schur solver. In this method the following change of
variable is introduced,

λ = σ +
1

ν
(1.14)

which leads to the solution of the transformed eigenvaue problem

(A− σM)−1Mv̂ = νv̂ (1.15)

The value of σ is a shift that can be used when the position in the complex plane of
the most unstable eigenvalue is approximately known a priori. A real or complex
shift can be used to converge to the eigenvalues nearest to the shift. In this work
a complex shift has not been employed due to limitations of the eigenvalue solver
package. It is important to notice that the eigenfunctions of the transformed
problem are the same as those of the original one (1.13).

30 CHAPTER 1. PROBLEM FORMULATION

1.4 The Finite Element Method

The Finite Element Method (also known as FEM) is employed to discretize the
differential problems. The Finite Element Method is a numerical technique for
the efficient solution of partial differential equations, such as the Navier-Stokes
equations. The discretization and the solution of a partial differential equation
requires several steps as listed below and shown in figure 1.1.

MESH	 GEOMETRY	 INFO	 FUNCTIONAL	 INFO	

MATRIX	 	
BUILDING	

SOLVER	

END	

YES	

REMESHING	

NO	

Pre	 Assembly	

Post	

Figure 1.1: Typical block scheme for a FEM code

• Pre-processing and discretization of the problem.

• Assembly of the coefficient matrix and vector of known term.

• Solution of the algebraic system.

Each of these steps will be explained in more depth in the following sections.

1.4.1 Discretization of the problem

The first step is to model the geometry of the computational domain using a CAD
software. The geometry model is then fed to the mesh generator to obtain the

1.4. THE FINITE ELEMENT METHOD 31

computational grid. In this phase, for 2D and 3D problems, the shape of the
elements must be choosen to suit the solver capabilities. Figure 1.2 shows some
typical element shapes. The user should also take care of the quality of the mesh.
In particular, attention should be paid to refine the element size in some critical
zones of the domain, such as corners, near-wall regions, wakes. In this work,
ustructured two-dimensional meshes of triangles are employed.

Figure 1.2: Examples of available element shapes

In the Finite Element Method the test and trial functions are approximated by
continuous piecewise polynomial functions built on the tessellation:

f ≈ fh,p
where h is the spacing due to discretization and p is the order of polynomials used
to approximate the solution on a single element.
The discrete approximation to the unknowns and the test function reads

fh,p(x, y, t) =
n∑
i=1

Φi(x, y)fi(t)

where φ represents a spatially-dependant function used to describe the solution
with support on the single finite element bubble. Differential operators can be

32 CHAPTER 1. PROBLEM FORMULATION

applied directly to the discrete approximation of the solution, for instance the
discrete Laplacian is built as follows:

∇2fh,p(x, y, t) =
n∑
i=1

(
∇2Φi(x, y)

)
fi(t)

1.4.2 Assembly of the linear system

When a linear equation is discretized by the finite element method a system of the
following kind is obtained.

Ax = b (1.16)

In this phase the stiffness matrix A is generated starting from geometric informa-
tion deriving from the mesh, and functional information deriving from the poly-
nomials choosen to describe the solution on the finite element.
In order to satisfy the compatibility condition between the velocity and pressure
approximations, Taylor-Hood elements are used. Second-order Lagrangian ele-
ments are used to describe the velocity unknowns, while first-order Lagrangian
elements are used for the pressure.
To complete the assembly of the linear system, boundary conditions should be
applied. The simplest way to impose Dirichlet boundary conditions is to eliminate
rows and columns corresponding to the prescribed degrees of freedom. As figure
1.3, shows the number of unknowns is thus reduced.

Figure 1.3: Pattern of FEM matrix before (left) and after (right) enforcing the
Dirichlet boundary conditions for a 3D problem

1.4. THE FINITE ELEMENT METHOD 33

1.4.3 Solution of the algebraic system

The most demanding operation, in terms of computing power, in a FEM simulation
is represented by the solution of the linear system (1.16). This operation has
to be performed once for each iteration in the solution of a nonlinear problem,
therefore an efficient linear solver must be used. In this work, the direct linear
solver provided with the Amesos package has been employed.

34 CHAPTER 1. PROBLEM FORMULATION

Chapter 2

Introduction to Trilinos library

Trilinos is a collection of object-oriented open source software libraries, called
packages, developed by Sandia National Laboratories and intended to be used as
building blocks for the development of scientific applications.
The Sandia National Laboratories are two major United Stated Department of
Energy research and development national laboratories. The primary campus is
located on Kirtland Air Force Base in Albuquerque, New Mexico and the other
is in Livermore, California. Their primary mission is to develop, engineer, and
test the non-nuclear components of nuclear weapons, but other aims include re-
search and development in energy and environmental programs, as well as the
security of critical national infrastructures. In addition, Sandia is home to a
wide variety of research including computational biology, mathematics (through
its Computer Science Research Institute), materials science, alternative energy,
psychology, MEMS1, and cognitive science initiatives.

2.1 The Trilinos Project

The Trilinos Project is an open-source C++ library aimed to facilitate the design,
development and intergration of mathematical software. Its goal is to develop al-
gorithms and technologies within an object-oriented software framework for the so-
lution of large-scale, complex multiphysics engineering and scientific applications.
Particularly the use of an object-oriented framework gives a very useful flexibil-
ity in scientific programming. The Trilinos library is made of different packages,
each of them is a self-contained, independent piece of software with its own set
of requirements, its own development team and group of users. Because of this,
Trilinos itself is designed to respect the autonomy of packages. Trilinos offers a
variety of ways for a particular package to interact with other Trilinos packages.
It also offers a set of tools that can assist package developers with builds across
multiple platforms, generating documentation and regression testing across a set
of target platforms. Trilinos packages provide a development framework for differ-

1Microelectromechanical systems

35

36 CHAPTER 2. INTRODUCTION TO TRILINOS LIBRARY

ents aspects of mathematical problems, such as constructing and using sparse and
dense matrices, graphs and vectors, iterative and direct solution of linear systems,
parallel multilevel and algebraic preconditioning, solution of non-linear, eigenvalue
and time-dependent problems, PDE-constrained optimization problem, partition-
ing and load balancing of distributed data structures, automatic differentiation,
and PDE-discretizations.
Below the complete list of Trilinos packages sorted into groups is reported and
shortly described.

1. Basic Linear Algebra Libraries:

• Epetra: core linear algebra package. Facilitates construction and ma-
nipulation of serial graphs, sparse ande dense matrices, vectors and
multivectors.

• EpetraExt: extension to the core linear algebra package, Epetra.

• Tpetra: next-generation templated version of Petra, taking advantage
of the newer advanced features of C++.

• Jpetra: experimental Java of the Petra library.

• Kokkos: core kernel package.

2. Preconditioners:

• AztecOO: ILU-type preconditioner.

• IFPACK: distributed algebraic preconditioner package. Includes in-
complete factorizations and relaxation-based preconditioners in domain
decomposition framework. Compatible with AztecOO.

• Ifpack2: Contains preconditioners that operate on the templated linear-
algebra objects provided by the Tpetra package. Intended as a tem-
plated replacement for Ifpack.

• ML: multilevel, distributed memory algebraic preconditioners. Pro-
vides multi-level, multigrid-like preconditioners for distributed linear
systems. Compatible with AztecOO.

• Teko: blocked and segregated preconditioning package.

3. Linear Solvers

• Epetra: provides wrappers for select BLAS and LAPACK routines.

• Teuchos: provides wrappers for select BLAS and LAPACK routines.

• Pliris: an object-oriented interface to a LU solver for dense matrices
on parallel platforms.

• AztecOO: preconditioned Krylov solver package. Supercedes Aztec
2.1. Solves linear systems of equations via preconditioned Krylov meth-
ods. Uses Epetra objects, compatible with IFPACK, ML and Aztec.

2.1. THE TRILINOS PROJECT 37

• Belos: next-generation iterative solvers written using a traits interface,
meaning that it has no explicit dependence on any concrete linear al-
gebra library. Instead, it can be used with any concrete linear algebra
library that implements the Thyra abstract interfaces and even Epetra
directly.

• Komplex: complex linear solver package. Solves complex-valued linear
systems via equivalent real formulations.

• Amesos: direct solver classes. Supports use of a growing list of third
party direct solvers, including DSCPACK, SuperLU, SuperLUDist and
UMFPACK. Compatible with Epetra.

• Amesos2: direct solver library/interface in Trilinos. Amesos2 provides
interfaces to third-party direct solvers for templated matrices and vec-
tors in Trilinos

4. Nonlinear, Transient, and Optimization Solvers

• NOX: nonlinear solver package. Abstract and concrete classes for con-
struction and solution of nonlinear problems.

• LOCA: LOCA is a software library for performing bifurcation analysis
of large-scale applications.

• MOOCHO: solve large-scale, equality and inequality nonlinearly con-
strained, non-convex optimization problems.

• Piro: Piro is striving to be the single unifying layer above all nonlinear
solver, time integration, optimization, and UQ packages.

• Rythmos: Rythmos is a transient integrator for ordinary differential
equations.

• TriKota: TriKota is a convenience package that builds the Dakota
framework underneath Trilinos as if it were a Trilinos package. Dakota
contains a wide array of algorithms for optimization and UQ.

• GlobiPack: the GlobiPack package contains a set of interfaces and
implementations for 1D globalization capabilities to be used in nonlin-
ear solvers, optimization solvers, and similar algorithms that require
globalization methods (e.g. line search and trust region methods).

• OptiPack: the OptiPack package contains interfaces and concrete im-
plementations of some basic optimization algorithms based on Thyra.
The globalization methods used are implemented in GlobiPack.

5. Eigensolvers

• Anasazi: Anasazi is an extensible and interoperable framework for
large-scale eigenvalue algorithms.

6. Automatic Differentiation

38 CHAPTER 2. INTRODUCTION TO TRILINOS LIBRARY

• Sacado: Sacado is a package for automatic differentiation of C++
programs.

• Stokhos: Stokhos is a package for intrusive stochastic Galerkin uncer-
tainty quantification methods.

7. Domain Decomposition

• Claps: Claps is a collection of domain decomposition preconditioners
and solvers.

8. Mortar Methods

• Moertel: surface coupling of different physical models, discretization
schemes or non-matching triangulations along interior interfaces of a
domain.

9. Partitioning / Load Balancing

• Isorropia: Isorropia is a partitioning and load balancing package, in-
tended to assist with redistributing objects such as matrices and matrix-
graphs in a parallel execution setting.

• Zoltan: Zoltan is a toolkit of parallel services for dynamic, unstruc-
tured, and/or adaptive simulations, parallel dynamic load balancing
for applications, including finite element methods, matrix operations,
particle methods, and crash simulations, parallel graph coloring, ma-
trix ordering, unstructured communication tools, and distributed data
directories.

10. Abstract Interfaces and Adapters

• Thyra: Abstract linear solver package. Replaces the now-deprecated
TSF family.

• PyTrilinos: Python interfaces to selected Trilinos packages.

• CTrilinos: C interfaces to selected Trilinos packages.

• ForTrilinos: ForTrilinos provides a set of standards-conforming, po-
trable Fortran interfaces to Trilinos packages.

• WebTrilinos: Web interface to experiment with Trilinos through a
browser.

• Stratimikos: Stratimikos contains a unified set of Thyra-based wrap-
pers to linear solver and preconditioner capabilities in Trilinos.

• FEI: a general interface for assembling finite-element data into a system
of linear equations.

• TrilinosCouplings: a collection of interfaces between packages.

11. Mesh Generation, Improvement, and Adaptivity

2.1. THE TRILINOS PROJECT 39

• Mesquite: Applies a variety of node-movement algorithms to improve
the quality and/or adapt a given mesh.

• PAMGEN: PAMGEN creates hexahedral or quadrilateral (in 2D) fi-
nite element meshes of simple shapes (cubes and cylinders) in parallel.

12. Discretization Utilities

• Intrepid: Intrepid is a library of interoperable tools for compatible
discretizations of Partial Differential Equations (PDEs).

• phdMesh: the Parallel Heterogeneous Dynamic unstructured Mesh
(phdMesh) data structure library is intended to be component used
within a finite element or finite volume library or code. The phdMesh
data structure supports arbitrary unstructured mesh connectivity, application-
defined groupings of mesh entities, and application-defined computa-
tional field data.

• STK: contains capabilities intended to support massively parallel multi-
physics computations on dynamically changing unstructured meshes.

13. Utilities

• Teuchos: Common tools package.

• TriUtils: TriUtils is a package of utilites used by many of the Trilinos
packages.

• EpetraExt: Matrix/Vector read/write utilities.

• RTOp: RTOp (reduction/transformation operators) provides the basic
mechanism for implementing vector operations in a flexible and efficient
manner.

• Galeri: Galeri is a package for generating linear systems used by many
of the Trilinos packages for examples and tests.

• ThreadPool: minimalistic interface for orchestrating the thread-parallel
execution of functions within a pool of threads.

• Optika: the Optika package provides trilinos developers with easy ac-
cess to GUI input methods for their programs.

• SEACAS: the Sandia Engineering Analysis Code Access System (SEA-
CAS) is a collection of applications for manipulating Exodus databases.

14. PDE Discretization Tools

• Phalanx: Phalanx is a local field evaluation kernel specifically designed
for general partial differential equation solvers.

• Intrepid: Intrepid is a library of interoperable tools for compatible
discretizations of Partial Differential Equations (PDEs).

40 CHAPTER 2. INTRODUCTION TO TRILINOS LIBRARY

• Shards: Shards is a suite of common tools for numerical and topological
data that facilitate interoperability between typical software modules
used to solve Partial Differential Equations (PDEs) by finite element,
finite volume and finite difference methods.

15. Instructional

• Didasko: Didasko is the Trilinos tutorial, and contains several ex-
amples, detailed descriptions, tips, and suggestions for most Trilinos
packages.

• New Package: a sample Trilinos package containing all of the infras-
tructure to install a new package into the Trilinos framework. Contains
the basic directory structure, a collection of sample configuration and
build files and a sample ”Hello World” package.

16. PDE Toolbox

• Sundance: Sundance is a system for rapid development of high-performance
finite-element solutions of partial differential equations.

Since Sundance is the package that will be employed in this work to develop
a code to investigate the linear stability of 2D incompressible flows, it will be
described in more detail in section 2.2.

2.1.1 About the GNU Lesser General Public License

The Trilinos library is licensed under the GNU Lesser General Public License (or
LGPL). The LGPL is a free software license published by the Free Software Foun-
dation, and it was designed as a compromise between the GNU General Public
License (or GPL) and permissive license. While permissive license permit the
redistributor to add other license terms and potentially restrictions to a derived
work, the copyleft-GPL do not allow further restrictions. However both free soft-
ware licenses offer the same freedoms in terms of how the software can be used,
studied and privately midified. The main difference between LGPL and GPL is
that the first allows the software to be linked with other softwares with different
licenses. So there are two cases: works deriving from software, and works thas use
the software. This latter case is not authorized by the license.

2.2. SUNDANCE 41

2.2 Sundance

Sundance is a multi-package toolbox of Trilinos, aimed to be a system for rapid de-
velopment of high-performance parallel finite-element solutions of PDEs, so it uses
a general, powerful, and quite elegant method for turning a PDE into a discrete
system of algebraic equations. Sundance is described with expressions, function
spaces, and domains instead of low-level concepts such as matrix entries, elements,
and nodes. Sundance does not require the user to provide the “stiffness matrix“
to te software but the user just writes a set of simbolic equations and Sundance
will provide to manage them. Here is the power of high-level programming of Sun-
dance, and it is possible thank to the C++ object-oriented framework, on which
it’s based on. So Sundance is intended to let the user make choiches by selecting
and combining high-level objects rather than by writing low-level code. The idea
is that the user should be able to code a finite element problem using the same
level of abstraction he would use to describe the problem and its discretization
on a blackboard. The high-level nature of the components means also that the
user need not worry about tedious and error-prone bookkeeping details. In addi-
tion to the advantage of conceptual simplicity and freedom from bookkeeping, this
component-based approach allows a high degree of flexibility in the formulation,
discretization, and solution of a problem.
Solution of partial differential equations is a complicated endeavor with many
subtle difficulties, and there can be no one-size-fits-all simulation code. For this
reason Sundance is not a simulation code but it is a set of high-level objects that
will let the user build his own simulation code. These objects shield the user from
rather tedious bookkeeping details required in writing a finite-element code, but
they do not shield from the need to understand how to do a proper formulation
and discretization of the problem.
Here is a list of the main features of Sundance:

• Sundance provide a finite-element model of PDE based on a weak form of
PDE set. The way to describe the PDEs’s set is to write the weak form using
a high-level symbolic notation.

• The geometric domain of the problem is decomposed into a discrete mesh
of cells. Sundance provide two choices to generate the mesh: the user can
generate the mesh using the built-in mesh generator with simple capability
(useful just for some toy problems), or carry out the mesh with a third-party
software and then import it in Sundance.

• Due to the complexity in solving a large system of linear and nonlinear
equations Kx = f Sundance lets the user to choose the best solver to suit
the structure of the problem.

• The solution of nonlinear problem is reduced to solving a sequence of linear
problems. There are many choices of linearization method and iteration

42 CHAPTER 2. INTRODUCTION TO TRILINOS LIBRARY

for a nonlinear problem, each one resulting in a different sequence of linear
problems.

As the reader could note, in solving a PDE set of equations with the finite-element
method the designer will be faced with a large number of choices. In this way Sun-
dance is intended to let the user make these choices combining high-level objects,
but it cannot help the user make good choices. The user is required to possess an
adequate knowledge of the problem and of the library to produce an efficient code.

Figure 2.1: Sundance’s structure

Figure 2.1 shows which Trilinos packages make up the Sundance toolbox. For
the description of each package the reader is referred to paragraph 2.1.

2.3 Set up the environment

Before starting to configure the installation of Trilinos the environment of the
system must be set up.
First of all, the user needs to get the Trilinos distribution from website2. The
download of the desired release of Trilinos is available after e-mail registration.
After the download the user has to choose the destination of Trilinos installation
and extract the tarball file in the desired directory.

2http://trilinos.sandia.gov

2.4. THIRD-PARTY SOFTWARE 43

$ tar zxvf trilinos-10.8.3-Source /<USER_PATH>

For example, in this job the <USER PATH> variable was set to /home/andrea/Projects.
It’s really recommended to have two different locations for the installation direc-
tory and the Trilinos’s source directory. For this reason, the user is invited to create
a new directory within the Trilinos source using very simple terminal command
like this:

$ mkdir BUILD

$ cd BUILD/

Once the source and build directories are ready, the user has to set up the envi-
ronment variable TRILINOS HOME with the location of Trilinos source directory. In
the present case the following command was employed:

$ export TRILINOS_HOME=/<USER_PATH>/trilinos-10.8.3-Source

To view the complete list of environment variables and verify the correct set up
described above the bash command env can be used.

Moreover, since most of Trilinos packages are written in C++ with Fortran
kernels, the user needs to install a C++ compiler and a Fortran compiler too.
The last step required to install cmake. The easiest way is to get it is using the
following command from terminal:

$ non l’ho installato con: apt-get install cmake

$./configure

$ gmake

$ make install

and this will download and install the last version of cmake available for the Linux
release found on the system. After that the environment is fully equipped.

2.4 Third-Party software

Sundance manages the most of the problem but, as already said, it lets the user
make some choices regarding preprocessing and postprocessing modes. For what
concerns the preprocessing fase the user can choose to generate the mesh with an
external third-party software. The current release supports two input file formats;
the first one is Shewchuk’s Triangle Mesher, a smart Two-Dimensional mesh
generator based on Delaunay Triangulation developed by University of California
at Berkeley, while the second one is the Exodus file format. ExodusII format is
provided by Cubit software, developed and distribuited by Sandia under commer-
cial license. ExodusII file format is provided also by other commercial software,
one of these is Ansys IcemCFD. Thanks to Politecnico di Milano it could be

44 CHAPTER 2. INTRODUCTION TO TRILINOS LIBRARY

possible to use IcemCFD under academic license to generate all meshes needed for
this work, that will be shown in details in chapters 4.
Sundance lets also the user choose the output format of the results, and which
third-party software is preferred. As described in chapter 3, in this work it was
choosen the VTK output format and ParaView as visualization software.
In the following subparagraphs all required and optional third-party libraries
needed to reach the aim of this work are presented.

2.4.1 BLAS and LAPACK

As the figure 2.1 shows, Sundance is a multi-package toolbox of Trilinos that
exploits also some external libraries. It is the case of the Basic Linear Alge-
bra Subprograms library, better known as BLAS, and the Linear Algebra
PACKage, LAPACK. BLAS and LAPACK are required third-party libraries
without which the configuration of any package of Trilinos will crash.
On Debian or Ubuntu distributions, the quickest way to install these libraries is
with terminal, as follows:

$ apt-get install libblas-dev liblapack-dev

The system will require the root privileges to start this operation. This will com-
plete the installation of BLAS and LAPACK libraries.

2.4.2 MPI

The Message Passing Interface, or MPI, is a protocol for parallel computer
communication between nodes belonging to a cluster of computers. Unlike BLAS
and LAPACK, this is just an optional library, that is necessary if the user want
to run his Trilinos’s simulation in parallel. One of the goals of this work was to
be able to run the Sundance’s code in parallel, to reduce execution time and to
enable memory demanding computations. Indeed, it is very frequent to deal with
large-scale problems in scientific applications and the capability to run program
on a distributed memory system could be really useful and appreciated.
The user can use terminal command to install MPI on the system in very simple
and easy way:

$ apt-get install mpi

To run an executable program in parallel mode the user should use the following
command:

$ mpirun -np <NP> ./<FILENAME>.exe

where <NP> is the number of concurrent parallel processes.

2.4. THIRD-PARTY SOFTWARE 45

2.4.3 Chaco Mesh Partitioner

In order to run simulations in parallel mode Sundance needs the mesh already
partitioned. If the choosen mesh format is Exodus, as it was for this work, the
geometry should be partitioned using Chaco Mesh Partitoner, a program de-
veloped at Sandia and available free on Sandia’s open-source software portal3.
Once the mesh partitioner has been downloaded, the next step is unpacking the
downloaded file into a directory and use the command make in the main directory
to compile Chaco. Once the installation ends the variable PATH in the bashrc file
needs to be updated by adding the location of the executable file Chaco generated
during installation, that will be located in the <CHACO DIR>/Chaco-2.2/exec di-
rectory. So, regarding this work, the final state of the variable PATH to export in
the bashrc file appeared like this:

export PATH=/home/andrea/Projects/trilinos-10.8.3-Source/MyApps/

MeshPartitioner/Chaco-2.2/exec:/usr/local/sbin:/usr/local/bin:

/usr/sbin:/usr/bin:/sbin:/bin

The user should pay attention not to cancel other entries in the variable PATH, but
just update it.
The procedure to be followed to partition the mesh is quite simple, and amounts
to run a short Sundance code in which the user should just specify the name of
the source mesh file, <MeshFile>, and the number of processors of the parallel
simulation, <NP>. Indeed Chaco will divide the domain in the number of parallel
processes. Particular thanks to Kevin Long for providing the author with the
code reported in appendix A.1. As the reader can notice, information about the
namefile to partition and the number of parts to create are to be reported in the
source file as variables. Next the code should be compiled and run to divide the
mesh in the desired number.

2.4.4 Exodus II

Since the user will probably want to use ExodusII meshes ExodusII library has to
be installed. There are different ways to do this. The simplest one, requires the
installation of the SEACAS Trilinos package. Trilinos optional packages can be
installed by following the instructions reported in section 2.5.

2.4.5 NetCDF

In order to use an ExodusII mesh the NetCDF (Network Common Data Form)
library also has to be installed. First, the user should download the package
from the Unidata website4, and then extract the content of the tarball file into
a destination directory. To install the library the user has to run the configure

script located in the main directory of NetCDF in this way:

3http://www.cs.sandia.gov/web1400/1400 download.html
4http://www.unidata.ucar.edu/software/netcdf/

46 CHAPTER 2. INTRODUCTION TO TRILINOS LIBRARY

$./configure --prefix=/home/andrea/Projects/netcdf-4.1.3/BUILD

--disable-netcdf-4

$ make check install

where prefix is the path of a new directory previously created from the user
within the installation directory. After the installation’s end it could be necessary
fix an environment variable. The best way to do it and make this automatic is to
add bashrc file the following line:

export LD_LIBRARY_PATH=/home/andrea/Projects/netcdf-4.1.3/BUILD/lib

to the .bashrc file in the user home directory.

2.5 Trilinos installation

2.5.1 Configuration

Once the environment is ready (refer to 2.3) and all third-party software has been
installed, the user must to choose which Trilinos packages are going to be built.
This can be done running a configuration script containing the instructions of what
packages the user wants to enable, from the BUILD directory created before. In
this work the following script was used.

EXTRA_ARGS=$@

cmake \

-D CMAKE_BUILD_TYPE:STRING=DEBUG \

-D Trilinos_ENABLE_Sundance:BOOL=ON \

-D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON \

-D Trilinos_ENABLE_SEACAS:BOOL=ON \

-D Trilinos_ENABLE_Pamgen:BOOL=TRUE \

-D TPL_ENABLE_MPI:BOOL=ON \

-D MPI_INCLUDE_DIRS:PATH=/usr/lib/openmpi/include \

-D MPI_LIBRARY_NAMES:STRING="mpi;mpi_cxx;mpi_f77;mpi_f90;

openmpi_malloc;open-pal;open_rte;otf;vt;vt.fmpi;vt.mpi;

vt.omp;vt.ompi" \

-D MPI_LIBRARY_DIRS:PATH=/usr/lib/openmpi/lib \

-D TPL_ENABLE_Netcdf:BOOL=ON \

-D Netcdf_INCLUDE_DIRS:PATH=/<MY_PATH>/netcdf-4.1.3/include \

-D Netcdf_LIBRARY_NAMES:STRING="netcdf;netcdf_c++;netcdff" \

-D Netcdf_LIBRARY_DIRS:PATH=/<MY_PATH>/netcdf-4.1.3/BUILD/lib \

$EXTRA_ARGS \

${TRILINOS_HOME}

As the reader can see, the script is composed by two main parts. In the first the
user must give information about which packages have to be enabled, if test cases
have to be included, and if all optional packages have to be built. Particularly this
last instruction is strongly recommended in the case of Sundance, because it is a

2.5. TRILINOS INSTALLATION 47

multi-package toolbox with a lot of external dependencies. The compilation of a
Sundance executable will fail if all the required library are not installed.
The second part of the configuration script starts with TPL (third-party library)
and deals with the third-party software that the user wants to let work with
Trilinos. As explained in [21] the user should add four lines for each TPL he wants
to include in the installation. Particularly, the first line is:

-D TPL_ENABLE_<TPLNAME>:BOOL=ON

where <TPLNAME> is first MPI, and then Netcdf in the given example. Refer to [20]
for the complete list of names of supported third-party library.
Notice that also the order of the TPLs in relevant.
The second line deals with the path to the header include directories. The syntax
is:

-D <TPLNAME>_INCLUDE_DIRS:PATH=<INCLUDE_PATH>

where <INCLUDE PATH> is the path of the include directory of the third-party li-
brary in the current installation. e.g. in my installation, the MPI include directory
path is /usr/lib/openmpi/include, regarding to MPI.
The third line is the list of unadorned library names, put in the same order needed
by linker. Notice that the platform-specific prefixes (e.g. ’lib’) and postfixes (e.g.
’.a’, ’.lib’, or ’.dll’) will be added automatically. The fourth line is the path of
the directory where the library files can be found in the thirdparty installation.
Examples are given below:

-D <TPLNAME>_LIBRARY_NAMES:STRING=<LIST_OF_LIBRARY>

-D <TPLNAME>_LIBRARY_DIRS:PATH=<LIBRARY_PATH>

where for instance <LIST OF LIBRARY> for the MPI libraries libmpi.a, libmpi cxx.a
and libmpi f77.a is something like mpi;mpi cxx;mpi f77;, and <LIBRARY PATH>
is /usr/lib/openmpi/lib, for every.
These four lines are to be replicated each third-party library the user wants to
include.
The user should run the following command in order to start the configuration:

$./do-configure.sh

where do.configure is the name choosen for the configuration script described
above. Once the system give a positive responce like this:

$ Configuring done!

the configuration ends and the system is ready to complete the installation.

48 CHAPTER 2. INTRODUCTION TO TRILINOS LIBRARY

2.5.2 Building

The next step is to compile and build the library. To do this the following instruc-
tion must be given from terminal:

$ make

This will take the most part of installation time. On my system5 it took approxi-
mately 75 minutes. The last step is the installation, so as root do:

$ make install

and this will end the installation of Trilinos and Sundance.

5MacBookPro 8,1, Dual Core Intel i7 2.7 GHz, 4 GB RAM, working with Linux Ubuntu 11.04
distribution.

Chapter 3

Software’s structure

3.1 How Sundance works

The reasons that led Trilinos developers to build Sundance was the desire to create
a tool for the rapid development of partial differential equation solvers based on
finite element method so that it was the most user-friendly as possible. This
goal is achieved the way passes through an intuitive formulation of weak form
of the original problem so that the users can programm PDEs simulators quite
rapidly. The very high-level programming suits fine to this requirement, managing
individually a large number of issues that remain hidden to the user, and for
this reason Sundance is a powerful tool. Figure 3.1 shows the whole Sundance
simulation process, that anc be split into two main blocks. The first one is the
problem formulation. This phase involves mesh generation through a compatible
third-party software and the formulation of equations and boundary conditions
in weak form. The second one is the problem solution in which the user should
choose the right solver from the Trilinos package. Building the system very simple
using Sundance objects.

Figure 3.1: Sundance simulation process, from [5]

49

50 CHAPTER 3. SOFTWARE’S STRUCTURE

3.2 Building the code

In this paragraph the main parts of the code are presented and the reader can
refer to appendix A.2 for the complete code used for the Navier-Stokes simulation.

3.2.1 Iniatilization and finalization

The first step is to show the standard C++ format common to every Sundance
codes.

#include "Sundance.hpp"

int main(int argc, char** argv)

{

try

{

Sundance::init(&argc, &argv);

/****************************

code body goes here

****************************/

}

catch(std::exception& e)

{

Sundance::handleException(e);

}

Sundance::finalize();

}

These few lines are necessary since they control the initialization and the final-
ization of the Sundance software, and all the rest of the code should be added in
place of the comment code body goes here. As any C++ source code all header
files to include should be listed at the top of the file.

3.2.2 Getting the mesh and defining domains of integrations

Sundance lets the user two choices to provide the mesh grid. The first is to gen-
erate it using the MeshGenerator object, but this is functional for very simple
geometries as squares and rectangles. For more complex designs the only way is
to import the mesh through the MeshSource class. As described in paragraph 2.4
the choice is limited to two mesh formats for the current release of Sundance, the
Shewchuk’s Triangle mesh format and the ExodusII file format. In this work the

3.2. BUILDING THE CODE 51

ExodusII format has been preferred.
Sundance is designed to work with different kinds of mesh, so first of all the user
should specify which type of mesh is going to be used with the MeshType ob-
ject. In the following example, as for the whole job, a BasicSimplicialMeshType

was considered, which is the constructor for a grid made of simplicial elements,
e.g. triangles in the two-dimensional case or tetrahedra in three-dimensions. The
Sundance mesh object is built by the following lines.

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher = new ExodusMeshReader(meshFile, meshType, comm);

Mesh mesh = mesher.getMesh();

meshFile is the path of the location of the Exodus II mesh file. mesher is
an object of MeshSource class built through the ExodusMeshReader contructor,
since the choosen mesh format is ExodusII. Alternatively the user could use the
TriangleMeshReader to load a mesh made by Shewchuk’s Triangle Mesher. comm
is a communication parameter needed to run simulation in parallel. See A for
the complete code and the meaning of this parameter. Once the mesh is read the
next step is to partition the mesh in an interior zone and a boundary zone. To
do this Sundance uses a CellFilter object to represent subregions of a geometric
domain.

CellFilter interior = new MaximalCellFilter();

CellFilter edges = new DimensionalCellFilter(1);

The DimensionalCellFilter(int nOfDimensions) method is helpful to filter
mesh cells by dimension. According to a two-dimensional mesh, the edges of inlet,
outlet and walls are one-dimensional.
The edges instance should be splitted using the labeledSubset(int number)

method into the desired parts of the domain of integration as follows.

CellFilter left = edges.labeledSubset(5);

CellFilter right = edges.labeledSubset(3);

CellFilter up = edges.labeledSubset(2);

CellFilter down = edges.labeledSubset(4);

CellFilter cylinder = edges.labeledSubset(1);

These edges have been labeled by Cubit command window through the command:

sideset 1 curve 1

and so on for all boundaries.
Notice that through the CellFilter object the user could also redefine names of
boundaries, that could be useful in case of same boundary conditions on different
edges. The following lines show an example.

52 CHAPTER 3. SOFTWARE’S STRUCTURE

CellFilter walls = cylinder;

CellFilter up_down = up + down;

CellFilter inflow = left;

CellFilter outflow = right;

The reader should refer to paragraph 3.2.4 in order to fully understand the use of
these objects.

3.2.3 Defining unknowns, test functions and operators

According to the Navier-Stokes problem in primitive variables formulation we use
second order Lagrange P2 elements for horizontal and vertical velocity, and first
order Lagrange P1 elements for pressure. The same kind of elements is used for
unknown functions and their associated test functions. Defining this is really easy,
as follows.

BasisFamily L1 = new Lagrange(1);

BasisFamily L2 = new Lagrange(2);

Expr ux = new UnknownFunction(L2, "ux");

Expr vx = new TestFunction(L2, "vx");

Expr uy = new UnknownFunction(L2, "uy");

Expr vy = new TestFunction(L2, "vy");

Expr p = new UnknownFunction(L1, "p");

Expr q = new TestFunction(L1, "q");

Expr u = List(ux, uy);

Expr v = List(vx, vy);

In order to write the weak form of the Navier-Stokes equations it is necessary to
define coordinates, derivative and gradient operators. This is simply done because
the gradient operator is just formed by making a List containing the partial
differentiation operators in the x e y directions.

Expr x = new CoordExpr(0);

Expr y = new CoordExpr(1);

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

As the reader could notice the gradient thus defined is treated as a vector, and the
directions are always numbered starting from zero as in any C o C++ code. The
gradient is simply applied with an overloading of multiplication operator, so that
an operation such as grad*u expands correctly to {dx*u, dy*u}. Now everything
is set up and the weak form of Navier-Stokes equations can be written.

3.2. BUILDING THE CODE 53

3.2.4 Weak form and boundary conditions

In order to compute the main flow and to show how the weak form of two-
dimensional steady incompressible Navier-Stokes formulation is encoded into Sun-
dance equations (1.4) are recalled.

∂ux
∂x

+
∂uy
∂y

= 0

ux
∂ux
∂x

+ uy
∂ux
∂y

= −∂p
∂x

+
1

Re
∇2ux

ux
∂uy
∂x

+ uy
∂uy
∂y

= −∂p
∂y

+
1

Re
∇2uy

We come to the integral weak formulation by multiplying for test functions and
integrating by parts the strong form. The terms of velocity derivatives in normal
direction are cut off because they are zero due to Neumann homogeneous boundary
conditions. ∫

Ω

(
∂ux
∂x

+
∂uy
∂y

)
q = 0

∫
Ω

1

Re
∇vx ·∇ux +

∫
Ω

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
vx +

∫
Ω

∂p

∂x
vx = 0

∫
Ω

1

Re
∇vy ·∇uy +

∫
Ω

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
vy +

∫
Ω

∂p

∂y
vy = 0

This is very simply coded in Sundance using high-level programming with the
following instructions, required to build the nonlinear problem and solve the base
flow.

∫
K
f(x)dx ≈

nqn∑
iq=1

f(xiq)wiq (3.1)

QuadratureFamily quad2 = new GaussianQuadrature(2);

Expr eqn1 = Integral(interior, (dx * ux + dy * u y) * q, quad2);

Expr eqn2 = Integral(interior, (1 / reynolds) * ((grad * vx) *

(grad * ux) + (grad * vy) * (grad * uy)) + vx *

(u * grad) * ux + vy * (u * grad) * uy - p * (dx *

vx + dy * vy), quad2);

Expr eqn = eqn1 + eqn2;

54 CHAPTER 3. SOFTWARE’S STRUCTURE

First of all the user should define a quadrature rule, needed to compute integrals.
However, if any exactly integrable term is detected the quadrature rule will be
ignored. Equation (3.1) shows how integrals will be approximated using a quadra-
ture rule.
The second step is to enforce the appropriate boundary conditions. As told, Neu-
mann boundary conditions are applied simply cutting out normal derivative terms
from the weak form, while Dirichlet boundary conditions are managed by the
EssentialBC object as follows. ∫

walls
v ·u = 0 (3.2)

∫
inflow

vx (ux − 1.0) + vyuy = 0 (3.3)

∫
outflow

qp = 0 (3.4)

∫
up,down

vyuy = 0 (3.5)

In equation 3.2 the no-slip condition is enforced on all walls, while in 3.3 and
3.5 both the velocity components are imposed at the inflow boundary and on the
bottom and top sides of domain. Condition 3.3 enforces also the uniform unitary
horizontal velocity field at inflow. At last, equation 3.4 mposes a null pressure at
outflow. Essential boundary conditions are coded as follows.

Expr bcWalls = EssentialBC(walls, v * u, quad2);

Expr bcInflow = EssentialBC(inflow, vx * (ux - 1.0) + vy * uy, quad2);

Expr bcOutflow = EssentialBC(outflow, q * p, quad2);

Expr bcUpDown = EssentialBC(up_down, vy * uy, quad2);

Expr bc = bcWalls + bcInflow + bcOutflow + bcUpDown;

As the last line shows all boundary conditions should be joint to be used in
the building of nonlinear problem discussed in the next paragraph.

3.2.5 Initial guess and nonlinear problem

To build a nonlinear problem the user needs to create an expression for the initial
guess. This is easily done by creating a discrete space with a vector of basis
functions.

DiscreteSpace discSpace(mesh, Sundance::List(L2, L2, L1), vecType);

Expr u0 = new DiscreteFunction(discSpace, 0.0, "u0");

3.2. BUILDING THE CODE 55

Here the initial guess u0 is set to zero for all three components. It results to
work fine with Navier-Stokes equations solved by the Newton method.
Constructing the nonlinear problem is done by using the NonlinearProblem con-
structor, as follows.

NonlinearProblem prob(mesh, eqn, bc, List(vx, vy, q), List(ux, uy, p),

u0, vecType);

All objects previously created will be passed to the NonlinearProblem constructor,
and it is relevant to notice the order of list of functions, because test functions
should be passed before unknown functions, as shown above.
The computation of the base flow involves two different classes of problems, since
the nonlinear system is solved by an iterative technique and a linear subproblem
is build and processed at each nonlinear iteration. The NOX package of Trilinos
was developed to provide the user with a tool for solving large-scale systems of
nonlinear equations in the form 1.5 using the Newton’s method.

ParameterXMLFileReader reader("nox-amesos.xml");

ParameterList solverParams = reader.getParameters();

NOXSolver solver(solverParams);

NOX::StatusTest::StatusType status = prob.solve(solver);

A quick clarification about the method used to solve the nonlinear system is
needed. As told, the NOX package of Trilinos was employed in order to use the
Newton’s method. The procedure of such a method was explained in paragraph
1.2. As shown, Newton’s method solve a linear system for each nonlinear iteration.
So also a linear method is needed, and NOX leaves the choice of which employ
to the user. Here the direct solvers contained in the Amesos package of Trilinos
were used. Particularly the direct solver called KLU was used as default choice for
Amesos. The list of parameters needed to call the Amesos solver through the xml
file is reported below. Tolerance and maximum number of iteration are typical
parameters of the Newton’s method.

<ParameterList>

<ParameterList name="NOX Solver">

<Parameter name="Nonlinear Solver" type="string" value=

"Line Search Based"/>

<ParameterList name="Line Search">

<Parameter name="Method" type="string" value="More’-Thuente"/>

</ParameterList>

<ParameterList name="Status Test">

<Parameter name="Max Iterations" type="int" value="50"/>

<Parameter name="Tolerance" type="double" value="1e-10"/>

</ParameterList>

<ParameterList name="Linear Solver">

<Parameter name="Type" type="string" value="Amesos"/>

</ParameterList>

</ParameterList>

</ParameterList>

56 CHAPTER 3. SOFTWARE’S STRUCTURE

3.2.6 Eigenvalue problem

In order to investigate the linear stability of 2D incompressible flows the generalized
eigenvalue problem 3.6 is built.

λMx = Ax (3.6)

The computed steady solution U0 plays the role of base flow in the linearization
for small perturbations of the equations 4.9, as follows.

u = U0 + uδ

p = p0 + pδ
∂u

∂t δ
= −Re ((U0 ·∇)uδ + (uδ ·∇)U0) +∇2uδ −∇pδ

0 =∇·uδ
(3.7)

Since the only term which has changed is the nonlinear term the weak form of the
problem 3.6 is modified as follows.

Expr U = List(u0[0], u0[1]) ;

Expr eqn3 = Integral(interior, - (1 / reynolds) * ((grad * vx)

* (grad *ux) + (grad * vy) * (grad * uy)) + vx

* (U * grad) * ux + vy * (U * grad) * uy + vx *

(u * grad) * ux + vy * (u * grad) * uy - p *

(dx * vx + dy * vy), quad2) ;

Expr eqn4 = Integral(interior, - (dx * ux + dy * uy) * q, quad2) ;

Expr sigma_M = Integral(interior, - sigma *

(vx*ux + vy*uy + 0.000001*q*p), quad2);

Expr eqnEig = eqn3 + eqn4 + sigma_M ;

The left-hand terms form the mass matrix. A trick is employed to set to zero the
term regarding the pressure, according to the formulation (3.7).

Expr massExpr = vx * ux + vy * uy + 0.000001 * q * p ;

Since the linearized eigenvalue problem is formulated in terms of a pertubation of
velocity and pressure just homogeneous boundary conditions are applied.

Expr bcWallsEig = EssentialBC(walls, v * u, quad2);

Expr bcInflowEig = EssentialBC(inflow, vx * ux + vy * uy, quad2);

Expr bcOutflowEig = EssentialBC(outflow, q * p, quad2);

Expr bcUpDownEig = EssentialBC(up_down, vy * uy, quad2);

Expr bcEig = bcWallsEig + bcInflowEig + bcOutflowEig + bcUpDownEig;

3.2. BUILDING THE CODE 57

The eigenvalue problem is built with a syntax which is similar to he one used for
the nonlinear problem for the solution of the base flow. Sundance offers different
ways of building the problem, and here a constructor which allows to input the
mass matrix and the boundary conditions is employed.

LinearEigenproblem probEig(mesh, eqnEig, bcEig, massExpr,

List(vx, vy, q), List(ux, uy, p), vecType, lumpedMass);

As already done, the eigenvalue solver is built reading parameters from an eXten-
sible Markup Language file (.xml) through the ParameterXMLFileReader object
and then passed to the Eigensolver constructor. Finally the solution is computed
calling the solve inverse A.3 member function from the LinearEigenproblem

object.

ParameterXMLFileReader readerEig(solverFileEig) ;

ParameterList paramsEig = readerEig.getParameters() ;

ParameterList solverParamsEig = paramsEig.sublist("Eigensolver") ;

Eigensolver<double> solverEig = new AnasaziEigensolver<double>(

solverParamsEig) ;

Eigensolution solnEig = probEig.solve_inverse(solverEig) ;

The reader could note that the called member function to solve the problem is
just an inverse trasformation, instead of the shift-inverse one. The reason of this
will soon explanined. It was impossible to subtract the operators A andM in the
modified file of Sundance (see appendix A.3 for the complete code).

(A− σM)−1Mx = νx

F−1Mx = νx

The shift σ is introduced directly in the weak formulation of the problem, in order
to build the operator F . This is simply done adding the expression sigmaM to the
equations.

Expr sigmaM = Integral(interior, - sigma * massExpr, quad2);

Expr eqnEig = eqn3 + eqn4 + sigmaM ;

Since an inverse transformation is required to solve the initial eigenvalue prob-
lem, the eigenvalues of the original problem must be recovered by the following
transformation.

λ = σ +
1

ν

for(int i = 0; i < solnEig.numEigenfunctions(); i++)

{

const std::complex<double>& ew = solnEig.eigenvalue(i);

std::complex<double> eigval;

eigval = solnEig.eigenvalue(i);

eigval = sigma + (1.0 / solnEig.eigenvalue(i));

cout << "ew=(" << eigval << ")" << std::endl;

}

58 CHAPTER 3. SOFTWARE’S STRUCTURE

The complete parameter list used to call the Block Krylov-Schur method pro-
vided by the Anasazi package to solve the non-hermitian eigenvalue problem is
reported hereafter for convenience.

<ParameterList>

<ParameterList name="Eigensolver">

<Parameter name="Method" type="string" value="Block Krylov Schur"/>

<Parameter name="Number of Eigenvalues" type="int" value="10"/>

<Parameter name="Block Size" type="int" value="1"/>

<Parameter name="Num Blocks" type="int" value="100"/>

<Parameter name="Verbosity" type="int" value="0"/>

<Parameter name="Which" type="string" value="LM"/>

<Parameter name="Use Preconditioner" type="bool" value="false"/>

<Parameter name="Is Hermitian" type="bool" value="false"/>

<Parameter name="Maximum Restarts" type="int" value="100"/>

<Parameter name="Use Locking" type="bool" value="false"/>

<Parameter name="Max Locked" type="int" value="1"/>

<Parameter name="Convergence Tolerance" type="double" value=

"1.0e-06"/>

<ParameterList name="Preconditioner">

<Parameter name="Type" type="string" value="ML"/>

<Parameter name="Problem Type" type="string" value="SA"/>

<ParameterList name="ML Settings">

<Parameter name="output" type="int" value="0"/>

</ParameterList>

</ParameterList>

</ParameterList>

</ParameterList>

The boolean variable “Use Preconditioner” must be set to “false”, since the Block
Krylov-Schur method does not support any preconditioning. For this reason the
lines regarding the ML preconditioner are ignored.
“Maximum restarts” is the maximum number of times that the subspace will be
expanded to compute approximate eigenpairs to the desired precision, which is set
with the “Convergence Tolerance“ parameter. The Block Krylov-Schur method
will keep the minimum multiple of the blocksize that is larger than the number
of requested eigenvalues, and expand the subspace to the dimension obtained by
multiplying ”Num Blocks” and ”Block Size”. The desired approximated Ritz
eigenpairs (determined by the “Which“ parameter) are found for the expanded
system and undesired eigenpairs are discarded, reducing the projected system back
to the minimum multiple of the blocksize needed for the requested number of
eigenpairs. More details about Krylov-Schur method are provided by Stewart [15]
and its block version used in this job is in-depth described by Zhou et Saad [19].

3.2.7 Output

The last step described is the data output. Sundance provides different output
file formats to visualize the computed solution or to extract numerical data, such

3.2. BUILDING THE CODE 59

as VTK file or Matlab ”.dat“ file. Fields are added through the FieldWriter

class and the addField member function. Desired fields should be listed as in the
following example, in order to generate a VTK file.

Expr expr_vector(List(u0[0], u0[1]));

FieldWriter w = new VTKWriter("NavierStokesCylinder-" + Teuchos::

toString(reynolds));

w.addMesh(mesh);

w.addField("ux", new ExprFieldWrapper(u0[0]));

w.addField("uy", new ExprFieldWrapper(u0[1]));

w.addField("p", new ExprFieldWrapper(u0[2]));

w.addField("vel", new ExprFieldWrapper(expr_vector));

w.write();

60 CHAPTER 3. SOFTWARE’S STRUCTURE

Chapter 4

Results

This chapter 4 focuses on the numerical results obtained by the Trilinos code
previously described. The aim is to validate the code with results available in
literature. Two cases are analyzed with two different goals. The first one is the
well-known case of the Lid-driven cavity flow in a square domain, and its aim is to
compare the present results with the benchmark of Botella & Peyret [6] in order
to validate the solution of the steady flow. Moreover the stability of the wake
of a two-dimensional cylinder is investigated. Results show a good agreement
with those obtained by Giannetti & Luchini [7] and confirm the correctness and
accuracy of our solution for the eigenvalue problem associated to the linearized
unsteady formulation presented in section 1.3.
In section 4.1 both the strong and the weak formulation of the problem and their
boundary conditions are introduced, and then we show the computational grid
employed. Numerical results are finally reported.

4.1 Lid-driven cavity flow

ux = −1.0

Γlid

ΓwallsΓwalls

Γwalls

Figure 4.1: Lid-driven cavity geometry sketch, side length L = 1.0

61

62 CHAPTER 4. RESULTS

4.1.1 Problem formulation

This paragraph introduces the reader to the the lid-driven cavity flow problem. A
square domain is employed and a uniform horizontal velocity is enforced on the
upper edge Γlid. We start from the steady Navier-Stokes equations(u ·∇)u− 1

Re
∇2u +∇p = 0

∇·u = 0
(4.1)

and then we write their scalar version useful to obtain the weak form, which is
necessary for the finite element formulation.

ux
∂ux
∂x

+ uy
∂ux
∂y

= −∂p
∂x

+
1

Re
∇2ux

ux
∂uy
∂x

+ uy
∂uy
∂y

= −∂p
∂y

+
1

Re
∇2uy

∂ux
∂x

+
∂uy
∂y

= 0

(4.2)

The partial differential equations are supplemented by the following boundary
conditions. The no-slip condition is as usual applied to walls Γwalls, while the
upper edge slides from right to left as a lid. A condition of uniform velocity is on
the lid employed.

ux = 1, uy = 0, on Γlid (4.3a)

ux = 0, uy = 0, on Γwalls (4.3b)

The weak form is obtained by multiplying the Navier-Stokes equations by a test
function and integrating by parts as follows:

−
∫
Γ

1

Re

(
∂ux
∂n

)
vx +

∫
Ω

1

Re
∇u ·∇vx +

∫
Ω

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
vx +

∫
Ω

∂p

∂x
vx = 0

−
∫
Γ

1

Re

(
∂uy
∂n

)
vy +

∫
Ω

1

Re
∇uy ·∇vy +

∫
Ω

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
vy +

∫
Ω

∂p

∂y
vy = 0

∫
Ω

(
∂ux
∂x

+
∂Uy
∂y

)
q = 0

(4.4)

4.1. LID-DRIVEN CAVITY FLOW 63

Since Dirichlet boundary conditions are imposed on velocity, the corresponding
test functions annihilate there, therefore the boundary integrals are all zero.

∫
Γlid

(ux − 1.0) vx = 0

∫
Γlid

uyvy = 0, on Γlid (4.5a)∫
Γwalls

uxvx = 0

∫
Γwalls

uyvy = 0, on Γwalls (4.5b)

The formulation (4.4) becomes:

∫
Γ

1

Re
∇ux ·∇vx +

∫
Γ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
vx +

∫
Γ

∂p

∂x
vx = 0

∫
Γ

1

Re
∇uy ·∇vy +

∫
Γ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
vy +

∫
Γ

∂p

∂y
vy = 0

∫
Γ

(
∂ux
∂x

+
∂uy
∂y

)
q = 0

(4.6)

64 CHAPTER 4. RESULTS

4.1.2 Computational grid

Figure 4.2: Mesh domain used for cavity problem

It is known that the lid-driven cavity problem formulated in primitive variables
presents two singularity points in the corners where the vertical walls intersect the
sliding lid. We must take this into account when the mesh geometry is created.
Ansys ICEM Cfd mesh generator was employed to obtain the computational
mesh shown in figure 4.2. Suitable stretching laws were used along the cavity walls
to refine the size of the mesh elements in critical points. Table 4.1 shows in detail
how the mesh shown in figure 4.2 was obtained, while parameters involved in the
use of hyperbolic grid refinement law are listed below. Si is the spacing of the i-th
element on the boundary, while the only parameters left to the control of the user
are the spacings of both the first and the last element along the edge, Sp1 and
Sp2, and the number on nodes N to employ on each side. The length of the edge
is represented by b. It is to be noted that in vertical edges Sp1 is above Sp2. The
total number of triangles is 40739.

4.1. LID-DRIVEN CAVITY FLOW 65

edge law n. of nodes Sp1 Sp2

top hyperbolic 200 0.001 0.001
left hyperbolic 140 0.001 0.010

right hyperbolic 140 0.001 0.010
bottom uniform 101 0.010 0.010

Table 4.1: Square cavity mesh parameters

Si =
Ui

2 ·A+ (1−A)Ui
(4.7a)

Ui = 1 +
tanh (b−Ri)

tanh
(
b
2

) (4.7b)

Ri =
i− 1

N − 1
− 1

2
(4.7c)

A =

√
Sp1

Sp2
(4.7d)

sinh b =
b

(N − 1) ·
√
Sp1 · Sp2

(4.7e)

4.1.3 Numerical results

In this paragraph numerical results for the lid-driven cavity flow problem are
presented. Our aim is to compare results produced by Sundance to reference
data available in literature. In particular, our numerical results are compared to
those reported by Botella & Peyret [6] who provided very accurate benchmark
data with a desingularized spectral Navier-Stokes solver formulated in primitive
variable. Vorticity levels are compared to those reported by Auteri, Quartapelle &
Vigevano [3], who developed a desingularized spectral for the ω-ψ formulation; an
excellent agreement in the ”eye-ball norm” was found between the vorticity levels
computed with our u-p formulation using equation (4.8) and those reported in [3].

ω =
∂uy
∂x
− ∂ux

∂y
(4.8)

Figure 4.3 illustrates the velocity fields computed for the horizontal and vertical
components. The boudary condition is properly satisfied on the sliding lid, as well
as on the walls where both velocities are zero, as expected. For what concerns the

66 CHAPTER 4. RESULTS

velocity field a change of direction can be noticed in the lower region of the domain.
This represents correctly the recirculation region, where the mass conservation
coupled with the presence of walls induces the fluid to flow upstream. The figure on
the right shows how vertical component of the field is influenced by the movement
of the lid. An upward flow is triggered in the right-hand side of the domain, as
opposed to what happens on the left-hand side.
Figure 4.4 illustrates the circulating motion established in the cavity due to the
sliding of the upper lid. All figures are referred to a Reynolds number of 1000.

(a) Horizontal velocity component ux (b) Vertical velocity component uy

Figure 4.3: Lid-driven cavity flow: velocity components at Re = 1000

4.1. LID-DRIVEN CAVITY FLOW 67

Figure 4.4: Lid-driven cavity flow: velocity magnitude ||u|| at Re = 1000

y ux, Ref. [6] ux

1.0000 -1.000 -1.000
0.9766 -0.664 -0.664
0.9688 -0.581 -0.581
0.9609 -0.517 -0.506
0.9531 -0.472 -0.469
0.8516 -0.337 -0.337
0.7344 -0.189 -0.194
0.6172 -0.057 -0.057
0.5000 0.062 0.062
0.4531 0.108 0.108
0.2813 0.280 0.280
0.1719 0.388 0.387
0.1016 0.300 0.300
0.0703 0.223 0.223
0.0625 0.202 0.204
0.0547 0.181 0.181
0.0000 0.000 0.000

Table 4.2: Lid-driven cavity flow: horizontal velocity component through the ver-
tical centerline at Re = 1000

68 CHAPTER 4. RESULTS

x uy, Ref. [6] uy
0.0000 0.000 0.000
0.0312 -0.228 -0.233
0.0391 -0.294 -0.291
0.0469 -0.355 -0.357
0.0547 -0.410 -0.410
0.0947 -0.526 -0.527
0.1406 -0.426 -0.427
0.1953 -0.320 -0.311
0.5000 0.025 0.025
0.7656 0.325 0.325
0.7734 0.334 0.334
0.8437 0.377 0.377
0.9062 0.333 0.326
0.9219 0.310 0.310
0.9297 0.296 0.289
0.9375 0.281 0.281
1.0000 0.000 0.000

Table 4.3: Lid-driven cavity flow: vertical velocity component through the hori-
zontal centerline at Re = 1000

A direct comparison with the reference results is shown in tables 4.2 and 4.3.
The horizontal velocity component along the vertical centerline and the vertical
component along the horizontal centerline are reported respectively. The computed
data show a quite close agreement with the results of Botella & Peyret [6] at
a Reynolds number of 1000. Numerical values of pressure are not included in
the quantitative analysis because it is known that pressure is defined modulo an
additive constant. However, a qualitative analysis of the trend could be useful to
understand to what extent is the computed solution correct. Figure 4.6 shows the
computed isobar lines compared to those reported in [6]: an excellent match can
be noted.
In figure 4.5 streamlines are illutrated. The Paraview stream tracer tool allows the
user to draw the streamlines from a line source, as in this case, or from a point
source. Also in this case a qualitative comparison with [6] confirms the correctness
of the computed solution for the lid-driven cavity problem. Finally, vorticity levels
are printed. Figure 4.7 shows a quantitative comparison of the results computed
with Sundance with those reported in [3] for a Reynolds number of 1000. As it
can be seen, they agree. Level values are reported in the caption.

4.1. LID-DRIVEN CAVITY FLOW 69

(a) Present results (b) Botella & Peyret (1998), [6]

Figure 4.5: Lid-driven cavity flow: streamline comparison

(a) Present results (b) Botella & Peyret (1998), [6]

Figure 4.6: Lid-driven cavity flow: isobar line comparison

70 CHAPTER 4. RESULTS

(a) Present results (b) Auteri, Quartapelle & Vigevano (2002), [3]

Figure 4.7: Lid-driven cavity flow: vorticity levels. Values: −6, −4, −2, −0.5, 0.5,
2, 4, 6 (corresponding to the thick lines in the reference plot)

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 71

4.2 Stability analysis of 2D cylinder wake

Once the steady solver is validated, the case of a two-dimensional cylinder in
cross-flow is investigated. The aim is to compute the eigenvalues of the linearized
problem in order to study the linear stability of the flow. To reach this target
we have to compute the, possibly unstable, steady solution of the Navier-Stokes
equations, which represents the base flow for the unsteady linearized problem
described in section 1.3.

4.2.1 Problem formulation

Figure 4.8: Computational domain

To obtain the base flow, the Navier-Stokes equations

(u ·∇)u− 1

Re
∇2u +∇p = 0

∇·u = 0
(4.9)

have to be solved. The field force is neglected in this discussion, while the velocity
time derivative is zero. The following boundary conditions have been enforced to
compute the base flow:

72 CHAPTER 4. RESULTS

ux = 1, uy = 0 on Γin (4.10a)

∂ux
∂y

= 0, uy = 0 on Γup ∪ Γlow (4.10b)

∂ux
∂x

= 0, p = 0 on Γout (4.10c)

ux = 0, uy = 0 on Γc (4.10d)

The no-slip boundary condition (4.10d) is imposed on the cylinder surface, while
different conditions are enforced on the external boundary of the rectangular com-
putational domain. A uniform free stream horizontal velocity is enforced (4.10a)
on the inflow edge, symmetry boundary conditions are enforced on the upper and
lower sides (4.10b), while pressure and the streamwise derivative of the horizontal
velocity components are set to zero at outflow edge (4.10c). A homogeneous Neu-
mann boundary condition is enforced on the horizontal component of the velocity
at the outlet boundary and for this reason normal derivative terms do not appear
in equations (4.11). The weak form is obtained by multiplying the equations (4.2)
by the test functions (vx, vy, q) and integrating by parts.

∫
Γ

1

Re
∇ux ·∇vx +

∫
Γ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
vx +

∫
Γ

∂p

∂x
vx = 0

∫
Γ

1

Re
∇uy ·∇vy +

∫
Γ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
vy +

∫
Γ

∂p

∂y
vy = 0

∫
Γ

(
∂ux
∂x

+
∂uy
∂y

)
q = 0

(4.11)

The boundary conditions in their weak form are formulated in a similar way.

∫
Γin

(ux − 1.0) vx = 0,
∫
Γin

uyvy = 0, on Γin (4.12a)∫
Γup

uyvy = 0,
∫
Γlow

uyvy = 0, on Γup ∪ Γlow (4.12b)∫
Γout

pq = 0, on Γout (4.12c)∫
Γc

uxvx = 0,
∫
Γc
uyvy = 0, on Γc (4.12d)

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 73

As shown in Section 1.3, the linearization of the Navier-Stokes equations (4.9)
leads to a non-symmetric, generalized eigenvalue problem. Velocity and pressure
can be decomposed in the sum of two contributions: the solution (U0, P0) of the
steady problem and a small perturbation (uδ, pδ). After dropping quadratic terms,
the following system of linear equations is obtained in strong form:

∂uδ
∂t

+ ((U0 ·∇)uδ + (uδ ·∇)U0)−
1

Re
∇2uδ +∇pδ = 0

∇·uδ = 0

(4.13)

after reformulating this problem in weak form and discretizing it, we obtain

λMv = Av (4.14)

As explained in section 1.3, a spectral transformation is employed to solve the
eigenvalue problem, and this leads to the final expression of the shift-invert problem
used to compute the perturbation of pressure and velocity.

(A− σM)−1Mv = νv (4.15)

According to [7] homogeneous boundary conditions of the same kind as those
employed for the base flow are enforced to obtain the eigenproblem:

ux,δ = 0, uy,δ = 0 on Γin (4.16a)

∂ux,δ
∂y

= 0, uy,δ = 0 on Γup ∪ Γlow (4.16b)

∂ux,δ
∂x

= 0, pδ = 0 on Γout (4.16c)

ux,δ = 0, uy,δ = 0 on Γc (4.16d)

74 CHAPTER 4. RESULTS

4.2.2 Computational grid

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

a b

cd

e f g
h

i
lm

n

Figure 4.9: Cylinder geometry sketch

The mesh geometry was generated by assigning the maximum spacing between
adjacent nodes and/or the number of nodes along each side, which are defined
by points from a to m, using a commercial mesh generator. Table 4.4 reports
the coordinates of all points. The size of the computational domain is the same
employed by Giannetti & Luchini in [7].

point x y

a -25.0 20.0
b 50.0 20.0
c 50.0 -20.0
d -25.0 -20.0
e -25.0 4.0
f 0.0 4.0
g 25.0 4.0
h 50.0 4.0
i 50.0 -4.0
l 25.0 .4.0
m 0.0 -4.0
n -25.0 -4.0

Table 4.4: Coordinates of the auxiliary points used to build the mesh

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 75

Figure 4.10: Cylinder mesh

Figure 4.10 presents the unstructured mesh used for the computation. It was
created with the commercial software Ansys IcemCFD. The mesh is composed
of triangles, and the total number of elements is 55918. Table 4.5 reports all
information needed to generate the mesh. See equations 4.7 for the meaning of
the Sp1 and Sp2 parameters.

edge law n. of nodes Sp1 Sp2

1 uniform 100 0.03173 0.03173
2 hyperbolic 150 0.12823 0.30000
3 hyperbolic 150 0.12823 0.30000
4 hyperbolic 80 0.12823 0.35000
5 hyperbolic 80 0.12823 0.35000
6 uniform 28 0.30000 0.30000
7 uniform 11 1.53061 1.53061
8 uniform 11 0.53061 1.53061
9 uniform 28 0.30000 0.30000
10 hyperbolic 80 0.30000 0.40000
11 hyperbolic 80 0.30000 0.40000
12 uniform 21 0.40000 0.40000
13 uniform 50 1.53061 1.53061
14 uniform 50 1.53061 1.53061
15 uniform 11 1.53061 1.53061
16 uniform 11 1.53061 1.53061
17 uniform 100 0.12823 0.12823

Table 4.5: Cylinder mesh parameters, refer to equations 4.7

76 CHAPTER 4. RESULTS

4.2.3 Numerical results

The numerical procedure described in the previous section was used to evaluate
the steady flow. Calculations were performed on the grid shown in section 4.2.2.
Numerical results are reported below, first for the steady problem, and then for
the eigenvalue problem.
Figures 4.11 and 4.12 show the velocity field around the two-dimensional cylinder.
A recirculation region can be seen in the cylinder wake where velocity magnitude
slightly tends to increase in the x direction. Velocity increases correctly along
the upstream side of the cylinder due to the geometry. Flow velocity decreases
along the rear side of the cylinder while pressure tends to increase, as expected.
The front stagnation point is clearly visible in figure 4.12 at the leading edge
of the cylinder and the horizontal streamline confirms its correct position. The
recirculation region within the wake near the rear side of the cylinder is highlighted
in figure 4.14. Figures 4.15 and 4.16 illustrate the vertical velocity component. A
rapid increase of velocity modulus can be seen near the upstream side of the
cylinder, where the flow is deflected because of the geometry. A different behavior
can be noted downstream, where the horizontal velocity is negative because the
flow is separated, as figure 4.18 shows. Isobar lines are provided in figure 4.17
and it can be seen how separation influences the downstream spatial distribution
of pressure. The solution agrees with the enforced condition of zero-pressure at
outflow boundary. Finally figure 4.19 shows the dependence of the wake length on
Reynolds number. As expected the bubble length increases with Reynolds number
and figure 4.20 compares the present results to those obtained by Giannetti &
Luchini [7].

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 77

Figure 4.11: Cylinder flow: velocity magnitude

Figure 4.12: Cylinder flow: velocity magnitude and streamlines near the cylinder

78 CHAPTER 4. RESULTS

Figure 4.13: Cylinder flow: horizontal component of the velocity field

Figure 4.14: Cylinder flow: horizontal component of the velocity field and stream-
lines near the cylinder

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 79

Figure 4.15: Cylinder flow: vertical component of the velocity field

Figure 4.16: Cylinder flow: vertical component of the velocity field near the cylin-
der

80 CHAPTER 4. RESULTS

Figure 4.17: Cylinder flow: pressure field

Figure 4.18: Cylinder flow: streamlines

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 81

(a) Re = 20 (b) Re = 30

(c) Re = 40 (d) Re = 50

(e) Re = 60 (f) Re = 70

(g) Re = 80 (h) Re = 100

Figure 4.19: Cylinder flow: wake length dependence on Reynolds number

82 CHAPTER 4. RESULTS

40 45 50 55 60 65
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Re

L w

Giannetti & Luchini (2007)
Present results

Figure 4.20: Cylinder flow: wake bubble length

The stability characteristics of the flow are assesed by monitoring the behavior of
the most unstable mode of the linearized equations of motion. Since the matrix of
the linearized problem is real the complex modes of this problem occur in conju-
gate pairs. The critical Reynolds number starting from which on the steady flow
becomes unstable was estimated to be equal to 46.7 by Giannetti & Luchini [7],
and 46.6 by Sipp & Lebedev [14]. According to our calculation the onset of the
first unstable mode occurs at Rec = 46.5. This result substantially agrees with
the reference results. In the experiments provided by Williamson (1996) [18] a
threshold of 47 was observed. Figure 4.21 shows the computed eigenvalue spec-
trum for three Reynolds numbers in the neighborhood of the computed threshold
of 46.5. As expected, by increasing the Reynolds number a shift of all eigenvalues
is noted, and the eigenvalue having the largest real part moves to the right-hand
side of the complex plane. Thus the flow becomes unstable, and the computed
critical eigenvalue computed is σ = (0.000172± j0.745): this is in line with results
obtained by Sipp & Lebedev [14] (2007) who reported an imaginary part of 0.74
in the neighborhood of the imaginary axis, as shown in figure 4.23. Several clus-
ters of eigenvalues are to be noted in the reported pictures. Differences between
the present ones and those reported in [14] could depend on different geometry
size, mesh characteristics and employed boundary condition at outflow and on the

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 83

non-normality of the problem. Figure 4.22 shows the amplification rate Re(σ) and
the Strouhal number St = Im(σ1)/2π for the most unstable mode. The relation
between Reynolds and Strouhal number is in agreement with results reported by
Giannetti & Luchini [7]. However, it is important to note that only in the neigh-
borhood of the critical point the predicted Strouhal number is in good agreement
with the experimental data of Williamson (1996). In fact the linear theory is un-
able to predict the real vortex-shedding frequency in the unstable regime far from
the critical point, where nonlinear effects become important and the relationship
Re− St shown in figure 4.22 is no longer accurate.
Finally, figure 4.26 shows the vertical component of the real part of the most un-
stable eigenfunction. It is self-evident the good agreement with the picture taken
from Sipp & Lebedev (2007) [14]. The effects of Reynolds number parameter on
the horizontal velocity and pressure modes are presented in figures 4.24 and 4.25.

0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0.05
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Re()

Im
(

)

Eigenvalues

Re = 40
Re = 46.5
Re = 50

Figure 4.21: Cylinder flow: eigenvalue spectrum for three different Reynolds num-
bers (40, 46.5, 50)

84 CHAPTER 4. RESULTS

10 20 30 40 50 60 70 80 90 100 110
0.2

0.15

0.1

0.05

0

0.05

0.1

Reynolds

R
e(

)

0 20 40 60 80 100 120
0.1

0.12

0.14

0.16

Reynolds

St

Giannetti & Luchini (2007)
Present results
Williamson (1996)

Figure 4.22: Cylinder flow: unstable eigenvalue: effect of Reynolds number on the
real and imaginary parts

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 85

0.25 0.2 0.15 0.1 0.05 0 0.05
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Re()

Im
(

)

Eigenvalues S&L region

Re = 40
Re = 46.5
Re = 50

(a) Present results

(b) Sipp & Lebedev (2007), [14]

Figure 4.23: Cylinder flow: computed eigenvalues near imaginary axis

86 CHAPTER 4. RESULTS

(a) Re = 30 (b) Re = 35

(c) Re = 40 (d) Re = 46.5

(e) Re = 50

Figure 4.24: Cylinder flow: dependence on Reynolds number of the most unstable
eigenfuction (horizontal component of the velocity)

4.2. STABILITY ANALYSIS OF 2D CYLINDER WAKE 87

(a) Re = 30 (b) Re = 35

(c) Re = 40 (d) Re = 46.5

(e) Re = 50

Figure 4.25: Cylinder flow: dependence on Reynolds number of the most unstable
eigenfuction (pressure)

88 CHAPTER 4. RESULTS

(a) Sipp & Lebedev (2007), [14]

(b) Present results

Figure 4.26: Cylinder flow: Re(uy) at Reynolds 46.6

Chapter 5

Conclusions and future steps

This work has focused on the numerical investigation of the stability of incom-
pressible flows by the Finite Element Method. A new software has been developed
by leveraging the Trilinos C++ library and the obtained results have been shown
to be correct. In particular, it is shown that the software works properly for the
computation of the base flow in the two examples provided, i.e. the lid-driven
cavity flow and the 2D cylinder wake. For this latter test case, computed results
the linear stability analysis has been performed and the result have been shown
to be in close agreement with a couple of quite recent benchmarks.
The proposed Navier-Stokes proposed solver has revealed itself flexible and com-
pact. A few lines of software are sufficient to implement the solver, and this is
certainly an important feature. Changing the problem is very quick: the user can
pass from the cavity problem to the cylinder wake one by just modifying a few
lines. This makes the code extremely flexible. A small change to the Sundance
class was necessary in order to implement the spectral transformation of shifh-
invert type. This was possible only by virtue of to the open-source nature of the
Trilinos library, a feature that offers a lot of possibilities to develop and improve
the code. The Trilinos community is very active: a users mailing list exists, and I
have often addressed it to submit questions and requests for clarifications. It was
very useful and allowed to fill some gaps in the documentation. In particular the
biggest effort was necessary to build and solve the eigenvalue problem, because the
documentation was totally absent. In conclusion Sundance has revealed a good
tool to develop in finite element solvers for partial differential equations.

5.1 Further developments

Further developments are needed at the present to obtain a fully capable solver
for the linear stability problems. Hereafter a list is reported sorted according to
what I deem more important.

1. Parallel mode: all computations were run in serial mode and the compu-
tational cost is too large at the moment. The impossibility to run in parallel

89

90 CHAPTER 5. CONCLUSIONS AND FUTURE STEPS

was caused by the choosen solver for the linear step of Newton’s method,
that has revealed itself inappropriate to suit the parallel mode. This as-
pect has limited the capability of the code, because it limits the number of
mesh cells that can be employed. To improve our results using more refined
meshes it would be crucial to solve this issue and change the linear solver.
The iterative solvers provided by the AztecOO package of Trilinos could to
be useful for reach this goal if efficientpreconditioners were available.

2. Matrix factorization: The coefficient matrix arising from the discretiza-
tion of the linearized problem must be factored to implement the shift-invert
method. This was done using the direct method provided by the Amesos
package of Trilinos and it has revealed quite inefficient. It could be useful
to investigate some alternative linear solver, such as UMFpack, MUMPS or
SuperLU.

3. Mesh format: the current release of Sundance supports just Shewchuck’s
Triangle or ExodusII mesh format. It could be useful to extend the interface
to other common mesh formats. The MeshSource object could be modified
in order to make it possible to employ different input files for the mesh. In
particular, it was really inconvenient to use the software Cubit just to assign
labels to the mesh edges in order to enforce boundary conditions. Cubit is
a commercial software developed at Sandia Labs and it is available for free
only in a trial 30-days version. The labeledSubset(int) member function
of the CellFilter class should be improved in order to read not only int

type inputs but also strings. This should allow to use ExodusII mesh files
generated by softwares different from Cubit.

4. Preconditioners: in order to find a different, more efficient way to solve
the nonlinear problem related to the computation of the base flow, a pre-
conditioned iterative solver can be considered. This seems to be a critical
aspect and the choice of the best preconditioner is the subject of current
investigations.

5. Documentation: Sundance documentation lacks in several parts. It would
be extremely useful to complete the documentation. This could help the
Trilinos community to know Sundance and its great potential.

6. Complex shift: the shift used in the spectral transformation is just a real
shift. This aspect could be improved in order to reduce the dimension of the
Krylov subspace required to compute the first unstable eigenvalue and, in
this way, reduce the required computational time. It is not clear if Sundance
can manage a complex shift, and more investigations are needed.

Appendix A

Complete codes

A.1 Chaco Mesh Partitioner script

#include "Sundance.hpp"

#include "SundanceMeshIOUtils.hpp"

int main(int argc, char** argv)

{

try

{

std::string infile="<MeshFile>";

std::string outfile=infile;

int numProc = <NP>;

bool help=false;

Sundance::setOption("i", infile, "Input mesh filename");

Sundance::setOption("o", outfile, "Output mesh filename");

Sundance::setOption("np", numProc, "Number of partitions");

Sundance::setOption("h", "nohelp", help, "Help");

Sundance::init(&argc, &argv);

if (help || infile.length()==0 || numProc<1)

{

cout << "Usage: partitionExo --i=inputFilename --o=outputFilename "

"--np=numberOfPartitions" << std::endl;

cout << "Do not include .exo suffix on filenames" << std::endl;

return 0;

}

else

{

TEST_FOR_EXCEPT(infile.length()==0);

TEST_FOR_EXCEPT(outfile.length()==0);

TEST_FOR_EXCEPT(numProc<=1);

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher

= new ExodusMeshReader(infile, meshType);

RCP<SerialPartitionerBase> part

= rcp(new FileIOChacoPartitioner("part"));

serialPartition(part, numProc, mesher, outfile);

}

91

92 APPENDIX A. COMPLETE CODES

TimeMonitor::summarize();

}

catch(std::exception& e)

{

std::cerr << "Detected exception: " << e.what() << std::endl;

}

}

A.2. SUNDANCE COMPLETE CODE 93

A.2 Sundance complete code

/* ** */

/* Navier-Stokes Flow around 2D cylinder */

/* ** */

#include "Sundance.hpp"

#include "SundanceEvaluator.hpp"

#include "PlayaNOXSolver.hpp"

#include "PlayaMPIComm.hpp"

#include "PlayaAnasaziEigensolverDecl.hpp"

#include "PlayaAnasaziEigensolverImpl.hpp"

// #include "SundanceElementIntegral.hpp"

using Sundance::List;

int main(int argc, char** argv)

{

try

{

// Declare solver:

std::string meshFile="../Mesh/cylinder2";

std::string solverFile = "../Solvers/nox-amesos.xml";

Sundance::setOption("meshFile", meshFile, "mesh file");

Sundance::setOption("solver", solverFile, "name of XML file for solver");

std::string solverFileEig = "../Solvers/AnasaziKrylovSchur-04LM-300.xml";

Sundance::init(&argc, &argv);

MPIComm comm = MPIComm::world();

int myrank = MPIComm::world().getRank();

// Define case ID number:

double numCase = 0.0;

// Define Reynolds number:

double reynolds = 50.0;

std::cout << " " << std::endl;

std::cout << "START CASE: " + Teuchos::toString(numCase) << std::endl;

std::cout << "Mesh File: " + meshFile << std::endl;

std::cout << "Reynolds: " + Teuchos::toString(reynolds) << std::endl;

std::cout << "Solver: " + solverFile << std::endl;

std::cout << "Solver Eigen: " + solverFileEig << std::endl;

// Define vector type:

VectorType<double> vecType = new EpetraVectorType();

// Input Triangle mesh:

MeshType meshType = new BasicSimplicialMeshType();

MeshSource mesher = new ExodusMeshReader(meshFile, meshType, comm);

Mesh mesh = mesher.getMesh();

cout << "Nr Cells: "<<mesh.numCells(2) << std::endl;

cout << "My Rank is: " << myrank << std::endl;

// Define mesh domain:

CellFilter interior = new MaximalCellFilter();

CellFilter edges = new DimensionalCellFilter(1);

94 APPENDIX A. COMPLETE CODES

// CellFilter point = new DimensionalCellFilter(0);

CellFilter left = edges.labeledSubset(3);

CellFilter right = edges.labeledSubset(4);

CellFilter up = edges.labeledSubset(2);

CellFilter down = edges.labeledSubset(5);

CellFilter cylinder = edges.labeledSubset(1);

CellFilter walls = cylinder;

CellFilter up_down = up + down;

CellFilter inflow = left;

CellFilter outflow = right;

// Define basis family and functions:

BasisFamily L1 = new Lagrange(1);

BasisFamily L2 = new Lagrange(2);

Expr ux = new UnknownFunction(L2, "ux");

Expr vx = new TestFunction(L2, "vx");

Expr uy = new UnknownFunction(L2, "uy");

Expr vy = new TestFunction(L2, "vy");

Expr p = new UnknownFunction(L1, "p");

Expr q = new TestFunction(L1, "q");

Expr u = List(ux, uy);

Expr v = List(vx, vy);

// Define coordinates, derivatives and gradient:

Expr x = new CoordExpr(0);

Expr y = new CoordExpr(1);

Expr dx = new Derivative(0);

Expr dy = new Derivative(1);

Expr grad = List(dx, dy);

// Expr h = new CellDiameterExpr();

// Define quadrature rule:

QuadratureFamily quad1 = new GaussianQuadrature(1);

QuadratureFamily quad2 = new GaussianQuadrature(2);

QuadratureFamily quad4 = new GaussianQuadrature(4);

// Define the weak form:

Expr eqn1 = Integral(interior, (1/reynolds)*((grad*vx)*(grad*ux) +

(grad*vy)*(grad*uy)) + vx*(u*grad)*ux + vy*(u*grad)*uy - p*(dx*vx+dy*vy), quad2);

Expr eqn2 = Integral(interior, (dx*ux + dy*uy) * q, quad2);

Expr eqn = eqn1 + eqn2;

// Define the boundary conditions:

// Expr Uinflow = 0.5 * (1.0-x*x); // parabolic u profile at inflow

Expr bcWalls = EssentialBC(walls, v*u, quad2);

Expr bcInflow = EssentialBC(inflow, vx*(ux-1.0) + vy*uy, quad2);

Expr bcOutflow = EssentialBC(outflow, q*p, quad2);

Expr bcUpDown = EssentialBC(up_down, vy*uy, quad2);

Expr bc = bcWalls + bcInflow + bcOutflow + bcUpDown;

A.2. SUNDANCE COMPLETE CODE 95

/* ** */

/* NON LINEAR PROBLEM */

/* ** */

// Define discrete space and initial guess for iterative method:

DiscreteSpace discSpace(mesh, Sundance::List(L2, L2, L1), vecType);

Expr u0 = new DiscreteFunction(discSpace, 0.0, "u0");

// Define the NON linear problem:

NonlinearProblem prob(mesh, eqn, bc, List(vx, vy, q), List(ux, uy, p), u0, vecType);

// Define solver parameters and build the solver:

ParameterXMLFileReader reader(solverFile);

ParameterList solverParams = reader.getParameters();

NOXSolver solver(solverParams);

// Solve the nonlinear system

NOX::StatusTest::StatusType status = prob.solve(solver);

DiscreteSpace discSpace2(mesh, L1, vecType);

L2Projector projector(discSpace2, dx*u0[1]-dy*u0[0]);

Expr omega = projector.project();

// Write the field in VTK format

FieldWriter w = new VTKWriter("cylinder2-Re-" + Teuchos::toString(reynolds));

w.addMesh(mesh);

Expr expr_vector(List(u0[0], u0[1]));

w.addField("ux", new ExprFieldWrapper(u0[0]));

w.addField("uy", new ExprFieldWrapper(u0[1]));

w.addField("vel", new ExprFieldWrapper(expr_vector));

w.addField("p", new ExprFieldWrapper(u0[2]));

w.addField("vorticity", new ExprFieldWrapper(omega));

w.write();

/***/

/* Wake-Bubble measurement */

/***/

// ux interpolation

DiscreteSpace discSpace3(mesh, L1, vecType);

L2Projector projUx(discSpace3, u0[0]);

Expr u_x = projUx.project();

AToCPointLocator locator(mesh, interior, createVector(tuple(200, 200)));

CToAInterpolator interpolator(locator, u_x);

int nPts = 1000;

Array<double> pos(2*nPts);

Array<double> Ux(u_x.size() * nPts);

vector<double> X(nPts);

vector<double> Y(nPts);

double X0_b = 3.0;

double XF_b = 4.0;

double h = (XF_b - X0_b) / nPts;

for (int i=0; i<nPts; i++)

{

96 APPENDIX A. COMPLETE CODES

X[i] = X0_b + i * h;

Y[i] = 0.0;

}

for (int i=0; i<nPts; i++)

{

pos[2*i] = X[i];

pos[2*i+1] = Y[i];

}

interpolator.interpolate(pos, Ux);

std::cout << " *************** ux *************** " << std::endl;

for (int i=0; i<nPts; i++)

{

std::cout << "x = " << X[i] << " y = " << Y[i] << " ux = " << Ux[i] << std::endl;

}

/***/

/* EIGENVALUE PROBLEM: */

/***/

bool lumpedMass = false;

double sigma = -0.01;

Expr U = List(u0[0], u0[1]);

// Define the new weak form for the operator A:

Expr eqn3 = Integral(interior, - ((1/reynolds)*((grad*vx)*(grad*ux) +

(grad*vy)*(grad*uy)) + vx*(U*grad)*ux + vy*(U*grad)*uy + vx*(u*grad)*U[0]

+ vy*(u*grad)*U[1] - p*(dx*vx+dy*vy)), quad2);

Expr eqn4 = Integral(interior, - (dx*ux + dy*uy) * q, quad2);

Expr sigma_M = Integral(interior, - sigma * (vx*ux + vy*uy + 0.000001*q*p), quad2);

Expr eqnEig = eqn3 + eqn4 + sigma_M;

// Define bc for eigenproblem:

Expr bcInflowEig = EssentialBC(inflow, vx*ux + vy*uy, quad2);

Expr bcEig = bcWalls + bcInflowEig + bcOutflow + bcUpDown;

// Define the weak form to build the operator M:

Expr massExpr = vx*ux + vy*uy + 0.000001*q*p;

LinearEigenproblem probEig(mesh, eqnEig, bcEig, massExpr, List(vx, vy, q),

List(ux, uy, p), vecType, lumpedMass);

// Define solver parameters and build the solver:

ParameterXMLFileReader readerEig(solverFileEig);

ParameterList paramsEig = readerEig.getParameters();

ParameterList solverParamsEig = paramsEig.sublist("Eigensolver");

Eigensolver<double> solverEig = new AnasaziEigensolver<double>(solverParamsEig);

Eigensolution solnEig = probEig.solve_inverse(solverEig);

// qui recuperare gli autovalori del problema originario !!!

for(int i = 0; i < solnEig.numEigenfunctions(); i++)

A.2. SUNDANCE COMPLETE CODE 97

{

const std::complex<double>& ew = solnEig.eigenvalue(i);

std::complex<double> eigval;

Expr ev = solnEig.eigenfunction(i);

eigval = solnEig.eigenvalue(i);

eigval = sigma + (1.0 / solnEig.eigenvalue(i));

cout << " *********************************** " << std::endl;

cout << "ew=(" << eigval << ")" << std::endl;

cout << "ev=(" << ev << ")" << std::endl;

}

DiscreteSpace discSpaceU_m(mesh, L2, vecType);

DiscreteSpace discSpaceP_m(mesh, L1, vecType);

FieldWriter wef = new VTKWriter("UnstableEigenmodes-2-Re" + Teuchos::toString(reynolds));

wef.addMesh(mesh);

for (int i=0; i< solnEig.numEigenfunctions(); i++)

{

Expr ef = solnEig.eigenfunction(i);

Expr Re_ux = ef[0].real();

Expr Im_ux = ef[0].imag();

Expr Re_uy = ef[1].real();

Expr Im_uy = ef[1].imag();

Expr Re_p = ef[2].real();

Expr Im_p = ef[2].imag();

Expr ux_m = sqrt((Re_ux * Re_ux) + (Im_ux * Im_ux));

Expr uy_m = sqrt((Re_uy * Re_uy) + (Im_uy * Im_uy));

L2Projector projectorU_m(discSpaceU_m, sqrt((ux_m * ux_m) + (uy_m * uy_m)));

Expr u_m = projectorU_m.project();

L2Projector projectorP_m(discSpaceP_m, sqrt((Re_p * Re_p) + (Im_p * Im_p)));

Expr p_m = projectorP_m.project();

// Expr u_mode(List(ef[0], ef[1]));

// Expr p_mode(List(ef[2], ef[2]));

wef.addField("u[" + Teuchos::toString(i) + "]", new ExprFieldWrapper(u_m));

wef.addField("p[" + Teuchos::toString(i) + "]", new ExprFieldWrapper(p_m));

}

wef.write();

// End run message:

std::cout << " " << std::endl;

std::cout << "END OF PROGRAM " + Teuchos::toString(numCase) << std::endl;

std::cout << "----------------------------------" << std::endl;

std::cout << " " << std::endl;

}

catch(exception& e)

{

Sundance::handleException(e);

}

Sundance::finalize();

return Sundance::testStatus();

}

98 APPENDIX A. COMPLETE CODES

A.3 Sundance linear eigenproblem class

SundanceLinearEigenproblem.cpp

// **

/* @HEADER@ */

#include "PlayaLinearSolverBuilder.hpp"

#include "PlayaAmesosSolver.hpp"

#include "SundanceLinearEigenproblem.hpp"

#include "SundanceOut.hpp"

#include "PlayaTabs.hpp"

#include "SundanceTestFunction.hpp"

#include "SundanceUnknownFunction.hpp"

#include "SundanceEssentialBC.hpp"

#include "SundanceIntegral.hpp"

#include "SundanceListExpr.hpp"

#include "SundanceZeroExpr.hpp"

#include "SundanceEquationSet.hpp"

#include "SundanceQuadratureFamily.hpp"

#include "SundanceAssembler.hpp"

#include "SundanceMaximalCellFilter.hpp"

#include "SundanceGaussianQuadrature.hpp"

#include "PlayaLinearCombinationDecl.hpp"

#include "PlayaLinearCombinationImpl.hpp"

#include "PlayaLinearOperatorDecl.hpp"

#include "PlayaVectorDecl.hpp"

#include "PlayaSimpleDiagonalOpDecl.hpp"

#include "PlayaSimpleIdentityOpDecl.hpp"

#include "PlayaSimpleIdentityOpImpl.hpp"

#include "PlayaSimpleComposedOpDecl.hpp"

#include "PlayaSimpleComposedOpImpl.hpp"

#include "PlayaInverseOperatorDecl.hpp"

#include "PlayaInverseOperatorImpl.hpp"

#include "PlayaLinearSolverImpl.hpp"

#ifndef HAVE_TEUCHOS_EXPLICIT_INSTANTIATION

#include "PlayaVectorImpl.hpp"

#include "PlayaLinearCombinationImpl.hpp"

#include "PlayaLinearOperatorImpl.hpp"

#include "PlayaSimpleDiagonalOpImpl.hpp"

#include "PlayaSimpleIdentityOpDecl.hpp"

#endif

using namespace Sundance;

using namespace Sundance;

using namespace Sundance;

using namespace Sundance;

using namespace Teuchos;

using namespace Playa;

using namespace PlayaExprTemplates;

static Time& normalizationTimer()

{

static RCP<Time> rtn

= TimeMonitor::getNewTimer("Eigenfunction normalization");

return *rtn;

}

static Time& makeEigensystemTimer()

A.3. SUNDANCE LINEAR EIGENPROBLEM CLASS 99

{

static RCP<Time> rtn

= TimeMonitor::getNewTimer("Building eigensystem stiffness matrix");

return *rtn;

}

LinearEigenproblem::LinearEigenproblem(

const Mesh& mesh, const Expr& eqn,

const Expr& v, const Expr& u,

const VectorType<double>& vecType)

: lumpMass_(false),

kProb_(),

mProb_(),

M_(),

MUnlumped_(),

discSpace_()

{

Expr empty;

kProb_ = LinearProblem(mesh, eqn, empty, v, u, vecType);

discSpace_ = *(kProb_.solnSpace()[0]);

}

LinearEigenproblem::LinearEigenproblem(

const Mesh& mesh, const Expr& eqn,

const Expr& v, const Expr& u,

const VectorType<double>& vecType,

bool lumpedMass)

: lumpMass_(lumpedMass),

kProb_(),

mProb_(),

M_(),

MUnlumped_(),

discSpace_()

{

Expr empty;

kProb_ = LinearProblem(mesh, eqn, empty, v, u, vecType);

mProb_ = makeMassProb(mesh, empty, v, u, vecType);

discSpace_ = *(kProb_.solnSpace()[0]);

MUnlumped_ = mProb_.getOperator();

if (lumpMass_)

{

M_ = lumpedOperator(MUnlumped_);

}

else

{

M_ = MUnlumped_;

}

}

LinearEigenproblem::LinearEigenproblem(

const Mesh& mesh, const Expr& eqn,

const Expr& massExpr,

const Expr& v, const Expr& u,

const VectorType<double>& vecType,

bool lumpedMass)

: lumpMass_(lumpedMass),

kProb_(),

mProb_(),

M_(),

100 APPENDIX A. COMPLETE CODES

MUnlumped_(),

discSpace_()

{

Expr bc;

kProb_ = LinearProblem(mesh, eqn, bc, v, u, vecType);

mProb_ = makeMassProb(mesh, massExpr, v, u, vecType);

discSpace_ = *(kProb_.solnSpace()[0]);

MUnlumped_ = mProb_.getOperator();

if (lumpMass_)

{

M_ = lumpedOperator(MUnlumped_);

}

else

{

M_ = MUnlumped_;

}

}

// modificato 21/02/2012

LinearEigenproblem::LinearEigenproblem(

const Mesh& mesh, const Expr& eqn, const Expr& bc,

const Expr& massExpr,

const Expr& v, const Expr& u,

const VectorType<double>& vecType,

bool lumpedMass)

: lumpMass_(lumpedMass),

kProb_(),

mProb_(),

M_(),

MUnlumped_(),

discSpace_()

{

kProb_ = LinearProblem(mesh, eqn, bc, v, u, vecType);

mProb_ = makeMassProb(mesh, massExpr, v, u, vecType);

discSpace_ = *(kProb_.solnSpace()[0]);

MUnlumped_ = mProb_.getOperator();

if (lumpMass_)

{

M_ = lumpedOperator(MUnlumped_);

}

else

{

M_ = MUnlumped_;

}

}

LinearProblem LinearEigenproblem::makeMassProb(

const Mesh& mesh,

const Expr& massExpr,

const Expr& v, const Expr& u,

const VectorType<double>& vecType) const

{

Expr eqn;

CellFilter interior = new MaximalCellFilter();

QuadratureFamily quad = new GaussianQuadrature(4);

A.3. SUNDANCE LINEAR EIGENPROBLEM CLASS 101

if (massExpr.ptr().get()==0)

{

eqn = Integral(interior, v*u, quad);

}

else

{

eqn = Integral(interior, massExpr, quad);

}

Expr bc;

LinearProblem rtn(mesh, eqn, bc, v, u, vecType);

return rtn;

}

Array<Expr> LinearEigenproblem::makeEigenfunctions(

Array<Vector<double> >& ev) const

{

TimeMonitor timer(normalizationTimer());

Array<Expr> x(ev.size());

CellFilter interior = new MaximalCellFilter();

QuadratureFamily q = new GaussianQuadrature(2);

for (int i=0; i<ev.size(); i++)

{

x[i] = new DiscreteFunction(discSpace_, ev[i], "ev[" + Teuchos::toString(i)+"]");

double N = 1.0;

if (MUnlumped_.ptr().get())

{

N = ev[i] * (MUnlumped_ * ev[i]);

}

else

{

N = evaluateIntegral(discSpace_.mesh(),

Integral(interior, x[i]*x[i], q));

}

ev[i].scale(1.0/sqrt(N));

}

return x;

}

LinearOperator<double>

LinearEigenproblem::lumpedOperator(const LinearOperator<double>& M) const

{

Vector<double> ones = M.domain().createMember();

ones.setToConstant(1.0);

Vector<double> m = M * ones;

LinearOperator<double> rtn = diagonalOperator(m);

return rtn;

}

Eigensolution LinearEigenproblem::solve(const Eigensolver<double>& solver) const

{

Array<std::complex<double> > ew;

Array<Vector<double> > ev;

LinearOperator<double> K;

{

TimeMonitor timer(makeEigensystemTimer());

102 APPENDIX A. COMPLETE CODES

K = kProb_.getOperator();

}

solver.solve(K, M_, ev, ew);

Array<Expr> eigenfuncs = makeEigenfunctions(ev);

return Eigensolution(eigenfuncs, ew);

}

// Added by F.A. on 17/2/2012: inverse, no shift

Eigensolution LinearEigenproblem::solve_inverse(const Eigensolver<double>& solver) const

{

Array<std::complex<double> > ew;

Array<Vector<double> > ev;

LinearSolver<double> linInvSolver = LinearSolverBuilder::createSolver("../Solvers/

amesos.xml");

LinearOperator<double> K, Ainv, AinvM;

{

TimeMonitor timer(makeEigensystemTimer());

K = kProb_.getOperator();

Ainv = inverse(K, linInvSolver);

AinvM = Ainv * M_;

}

LinearOperator<double> Id = identityOperator(K.domain());

solver.solve(AinvM, Id, ev, ew);

Array<Expr> eigenfuncs = makeEigenfunctions(ev);

return Eigensolution(eigenfuncs, ew);

}

A.3. SUNDANCE LINEAR EIGENPROBLEM CLASS 103

SundanceLinearEigenproblem.hpp.

// **

/* @HEADER@ */

#ifndef SUNDANCE_LINEAREIGENPROBLEM_H

#define SUNDANCE_LINEAREIGENPROBLEM_H

#include "SundanceDefs.hpp"

#include "SundanceLinearProblem.hpp"

#include "SundanceEigensolution.hpp"

#include "SundanceFunctionalEvaluator.hpp"

#include "PlayaEigensolver.hpp"

namespace Sundance

{

using namespace Sundance;

using namespace Sundance;

using namespace Sundance;

using namespace Sundance;

using namespace Sundance;

using namespace Teuchos;

using namespace Playa;

/**

*

*/

class LinearEigenproblem

{

public:

/** */

LinearEigenproblem(){}

/** */

LinearEigenproblem(

const Mesh& mesh, const Expr& eqn,

const Expr& v, const Expr& u,

const VectorType<double>& vecType) ;

/** */

LinearEigenproblem(

const Mesh& mesh, const Expr& eqn,

const Expr& v, const Expr& u,

const VectorType<double>& vecType,

bool lumpMass) ;

/** */

LinearEigenproblem(

const Mesh& mesh, const Expr& eqn,

const Expr& massExpr,

const Expr& v, const Expr& u,

const VectorType<double>& vecType,

bool lumpMass) ;

/** */

LinearEigenproblem(

const Mesh& mesh, const Expr& eqn, const Expr& bc,

const Expr& massExpr,

const Expr& v, const Expr& u,

const VectorType<double>& vecType,

bool lumpMass) ;

/** */

Eigensolution solve(const Eigensolver<double>& solver) const ;

/** */

Eigensolution solve_inverse(const Eigensolver<double>& solver) const ;

104 APPENDIX A. COMPLETE CODES

/** */

Eigensolution solve_shift_inverse(const Eigensolver<double>& solver) const ;

/** */

LinearOperator<double> getK() const {return kProb_.getOperator();}

/** */

LinearOperator<double> getM() const {return mProb_.getOperator();}

private:

/** */

Array<Expr> makeEigenfunctions(Array<Vector<double> >& ev) const ;

/** */

LinearProblem makeMassProb(

const Mesh& mesh,

const Expr& massExpr,

const Expr& v, const Expr& u,

const VectorType<double>& vecType) const ;

/** */

LinearOperator<double>

lumpedOperator(const LinearOperator<double>& M) const ;

bool lumpMass_;

LinearProblem kProb_;

LinearProblem mProb_;

LinearOperator<double> M_;

LinearOperator<double> MUnlumped_;

DiscreteSpace discSpace_;

};

}

#endif

Acknowledgements

A special mention goes to my supervisor Franco Auteri. His patient guide has
been crucial for the good result of this work. In every meeting with him I have
learned several knowledges, which will be certainly useful also in my future career.
To him my total admiration.
Particular thanks go to the Professor Kevin Long, for his precious advice in the
very beginning of the work, and to Heidi Thornquist for the support in the last
period of work.

105

106

Bibliography

[1] F. Auteri, L. Quartapelle, “Newton–Krylov Method with Stokes Precondition-
ing for Steady Incompressible Flow in a Sphere”, in preparation, 2011

[2] F. Auteri, L. Quartapelle, “Stability analysis of Navier-Stokes equations”, in
preparation, 2011

[3] F. Auteri, L. Quartapelle, L. Vigevano, “Accurate ω-Ψ Spectral Solution of the
Singular Driven Cavity Problem”, Journal of Computational Physics, vol. 180,
pp. 597–615, 2002

[4] D. Barkley, H. M. Blackburn, S. J. Sherwin, “Direct Optimal Growth Analysis
for Timesteppers”, International Journal For Numerical Method In Fluids, vol.
57, pp. 1435–1458, 2008

[5] J. Benk, M. Mehl, M. Ulbrich, “Sundance PDE Solvers on Cartesian Fixed
Grid in Complex and Variables Geometries”, CFD and OPTIMIZATION 2011
- An ECCOMAS Thematic Conference, Anatalya (Turkey), 2011

[6] O. Botella, R. Peyret, “Benchmark Spectral Results on the Lid-Driven Cavity
Flow”, Computers & Fluids, vol. 24, No. 4, pp. 421-433, 1998

[7] F. Giannetti, P. Luchini, “Structural Sensitivity of the First Instability of the
Cylinder Wake”, Journal of Fluid Mechanics, vol. 581, pp. 167-197, 2007

[8] K. Hirata, N. Matoba, T. Naruse, Y. Haneda, J. Funaki, “On the Stable-
Oscillation Domain of a Simple Fluidic Oscillator”, Journal of Fluid Science
and Technology, vol. 4, No. 3, pp. 623–635, 2009

[9] D. Lanzerstorfer, H. C. Kuhlmann, “Global Stability of the Two-Dimensional
Flow Over a Backward-Facing Step”, Journal of Fluid Mechanics, vol. 693, pp.
1-27, 2012

[10] K. Long, “Sundance 2.0 Tutorial”, Computational Science and Mathematics
Research Department, Sandia National Laboratories, Livermore, CA, 2004

[11] K. Long “Sundance: a Trilinos package for efficient development of efficient
simulators”, Copper Mountain Trilinos Workshop, 2008

107

108 BIBLIOGRAPHY

[12] A. Quarteroni, Modellistica Numerica per Problemi Differenziali, Springer-
Verlag Italia, Milano, 2008

[13] M. Sala, M. A. Heroux, D. M. Day, J. M. Willenbring, “Trilinos Tutorial -
For Trilinos Release 10.8“, Available on http://trilinos.sandia.gov, 2011

[14] D. Sipp, A. Lebedev, “Global Stability of Base and Mean Flows: a General
Approach and its Applications to Cylinder and Open Cavity Flows”, Journal of
Fluid Mechanics, vol. 593, pp. 333–358, 2007

[15] G. W. Stewart, “A Krylov-Schur algorithm for large scale eigenproblems”,
SIAM J. Matrix Anal. Appl., vol 23, No. 3, pp. 601–614, 2001

[16] R. Temam, Theory and numerical analysis of the Navier–Stokes equations,
North-Holland, Amsterdam, 1977

[17] V. Theofilis, “Global Linear Instability”, Annual Reviews of Fluid Mechanics,
vol. 43, pp. 319-352, 2011

[18] C. H. K. Williamson, “Vortex Dynamics in the Cylinder Wake”, Annual Re-
view of Fluid Mechanics, vol. 28, pp. 477–539, 1996

[19] Y. Zhou, Y. Saad, “Block Krylov-Schur method for large symmetric eigenvalue
problems”, Kluwer Academic Publishers, 2008

[20] ”Third-Party Libraries - A discussion of the various third-party
libraries often used in conjunction with Trilinos”, Available on
http://trilinos.sandia.gov/third-party libraries.html

[21] “Trilinos CMake Quickstart - Instructions for building Trilinos 10.0 and later“,
Available on http://trilinos.sandia.gov, 2009

