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Abstract

The subject of the present thesis is a preliminary analysis of the vibrational is-
sues of a large flexible structure, that can represent the skeleton structure of a
wide class of Space Solar Power (SSP) satellites. Due to the huge dimensions of
such structures, their first natural frequencies turn out tobe far lower than those
of the common satellites and a significant control-structure interaction issue may
arise. Even though the orbital and attitude control systemsmay be designed to be
low bandwidth regulators, particular operative conditions could excite the lowe-
st structural modes. Once excited, providing a mean to extinguish the vibrations
appear to be appropriate, in order to guarantee the oscillations to be damped. In
this context, the objective of this work is to study the interactions between the or-
bital/attitude control systems and the flexible structure. Hence,an orbital/attitude
control system is designed in order to satisfy prescribed requirements related to
station keeping and pointing of such a class of spacecraft. Furthermore, a possi-
ble approach in developing a preliminary vibration suppression system is carried
out, referring to the class of the direct output feedback controllers, utilizing pro-
perly distributed ion thrusters. It is shown that, considering the developed orbi-
tal/attitude controllers, there exists considerable interaction problems during the
operative life of the spacecraft. Eventually, the proposedvibration suppression sy-
stem is proved to be able to considerably mitigate the effects of these, potentially
dangerous, interactions.

Keywords Space Solar Power satellites. Control of large flexible structure. Di-
rect output feedback control. Collocated control. Geostationary satellite station
keeping. Attitude control.
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Sommario

Oggetto del presente lavoro è l’analisi preliminare delle problematiche legate alle
vibrazioni di una grande struttura flessibile atta a rappresentare la struttura portan-
te di una vasta classe di Space Solar Power (SSP) satellites.A causa delle enormi
dimensioni di tali strutture, le loro prime frequenze naturali risultano essere di
gran lunga inferiori a quelle dei satelliti comuni, facendosì che possa sorgere un
significativo problema di interazione tra controllo e struttura. Benché i sistemi
di controllo d’orbita e d’assetto possano essere progettati in modo tale da avere
una banda passante molto bassa, particolari condizioni operative, potrebbero ec-
citare i modi di vibrare a più bassa frequenza. Risulta dunque indicato, in questa
situazione, fornire uno strumento per smorzare le vibrazioni strutturali. In que-
sto contesto, l’obiettivo della tesi è quello di studiare l’interazione tra i sistemi di
controllo orbitale e d’assetto e la struttura flessibile. Pertanto, è stato progettato
un sistema di controllo d’orbita e d’assetto in grado di soddisfare i requisiti im-
posti sulla posizione e sul puntamento del satellite. Inoltre è proposto lo sviluppo
preliminare di un sistema di soppressione delle vibrazioni, basandosi sulla clas-
se dei controllori a retroazione diretta dell’uscita e utilizzando propulsori a bassa
spinta propriamente distribuiti. Si dimostra che, nell’ipotesi di impiegare i rego-
latori progettati, possano sorgere significativi problemidi interazione durante la
vita operativa del satellite. Infine, si verifica come il sistema di soppressione delle
vibrazioni proposto, sia in grado di mitigare gli effetti, potenzialmente pericolosi,
di tali interazioni.

Parole chiave Space Solar Power satellites. Controllo di grandi strutture flessi-
bili. Controllo subottimo. Controllo colocato. Mantenimento di satelliti geosta-
zionari. Controllo d’assetto.
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Chapter 1

Introduction

The Space Solar Power (SSP) satellite was first suggested by P. E. Glaser in
1968 [Gla68]. It was initially proposed as a large satelliteorbiting around the
Earth providing continuous power to the planet by collecting the solar energy. The
concept is not exclusively related to a terrestrial usage, but it can be extended to
a variety of potential applications. These include severalmissions involving outer
planet robotic science, commercial applications, and human exploration. The SSP
satellite is generally made of a large solar-energy collecting device. Although the
most common solution is to employ one single big solar arrayspanel, some con-
cepts involve a combination of concentrating mirrors and solar arrays panels in
order to minimize the mass and to optimize the power collection.
Secondly, a power transmission system is necessary to transfer the energy from
the SSP satellite to the desired receiving station. With respect to the present tech-
nology, a microwave transmitting system is more reliable compared to the alterna-
tive laser system. However, a potential benefits of the lasersystem include smaller
land area requirements for the receiving station, the elimination of radio frequency
interference, and reduction of biological and ecological impacts [dep79]. In the
end a receiving station is required in order to convert the microwave beam into
electricity. A rectifying-antenna, (rectenna) is the common primary power re-
ceiver and link to terrestrial power distribution.

1.1 Reasons For The SSP Research

The concept of the SSP satellite was initially developed as an alternative to the
nuclear and fossil-fuel sources for Earth consumption. Although there has been
little progress, the finiteness of the fossil fuel energy andthe storage of toxic prod-
uct coming from the nuclear reaction are still big issues.
Secondly a SSP satellite may help overcome some of the drawbacks of generating
solar power on Earth such as the absorption of solar energy bythe atmosphere,
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Introduction

the limited utilization at night, the low solar angles and obscuration by clouds.
Nowadays, the SSP satellite is far to be a feasible solution for the terrestrial power
supply in terms of price per unit energy, if compared to othersources. A compet-
itive result, in terms of cost effectiveness, may be achieved if the launch cost will
drop from the present 10000-25000 $/kg to about 500 $/kg. At the same time, the
production cost of a typical space hardware should be reduced from the present
25000-50000 $/kg to about 1000 $/kg [Seb04].
Beyond the economic feasibility, some technical and environmental aspects should
be considered. The assembly and the maintenance of such a bigstructure for a pe-
riod of time of about 30 years represents a very big issue. Secondly, some of the
major uncertainties are the impact on the radio frequency spectrum of other ter-
restrial users and the atmospheric impacts such as ionospheric disruptions caused
by microwave heating.
Despite the economic, technical and environmental issues related to the SSP satel-
lites for terrestrial power supply, the studies on such an alternative energy source
is an interesting challenge and stimulus for future development and for several
commercial and science applications.

1.2 Design Concepts

Some critical aspects should be examined in order to identify the most competitive
design. First of all the orbit should insure that the satellite receiving area would
be most of the time exposed to the Sun, the photovoltaic devices should convert
the solar energy with high efficiency, the transmitters should be able to beam an
Earth-receiving station in a spectral region where minimumatmospheric absorp-
tion and scattering would be encountered. In the end modularity and simplicity
may be exploited in order to reduce the initial cost and the risks related to such a
project. In the end, for the purpose of developing a preliminary control system the
most generic geometry and simple architecture is preferable. Three concepts have
been compared: the Solar Tower (STW), the Tethered Solar Power (TSP) and the
Abacus Reflector (ARF) satellites. Each one has been chosen as representative of
a family of SSP satellites.

1.2.1 The Sun Tower Satellite

The STW concept was first introduced in 1997 [Man97]. It is a constellation of
medium-scale, gravity gradient-stabilized space solar power systems. Each satel-
lite resembles a large, Earth-pointing sunflower in which the face of the flower
is the transmitter array, and the leaves on the stalk are the light-weight, inflatable
and deployable solar collectors. They are placed along the power-transmitting
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Figure 1.1: An example a single STW unit [Man99].

backbone which conveys the power generated to the transmitter. A single satellite
would be about 15 km long and would be sized to approximately 100-400 MW
scale. Figure 1.1 depicts a possible architecture for a single STW unit.
The STW satellite concept exploit several innovative approaches to reduce the
development and life cycle cost of the SSP, while at the same time broadening
market flexibility. It involves the use of highly-modularized power generation and
power transmission, thus supporting the goal of low cost manufacturing.
Concerning the orbit, it may be deployed into any one of several specific orbits:
sun-synchronous Low Earth Orbit (LEO), Medium Earth Orbit (MEO) and Geo-
stationary Earth Orbit (GEO). The lowest cost choice is thatof a constellation in a
sun-synchronous LEO, inclined at an angle of about 950 and at an altitude of about
1500 km. In order to achieve the maximum coverage,�300 electronic beam steer-
ing capability was planned, and a formation of 18 SSP was assumed [Man99].
The satellite-internal power distribution is one of the biggest issue in terms of
the mass of wire required to link the power generation systemto the microwave
transmitter and in terms of power loss.

1.2.2 The Tethered Solar Power Satellite

The TSP satellite was introduced in 2006 [Sas06]. It is a tethered solar power
satellite consisting of two main units: a large panel (2�1.9�0.1 km) and a bus
system, connected each other by multi-wires approximately10 km long (Fig-
ure 1.2). It resumes the idea of the sandwich power generation/transmission panel
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Figure 1.2: The TSP concept [Sas06].

introduced in 1979, where each solar array unit is packed with a microwave trans-
mitting antenna to form a unique thin panel [dep79]. As a consequence there is
no moving structure, which makes the system highly robust and stable.
The TSP satellite involves the use of highly modularized andeasy integrated units.
Indeed the main generation/transmission panel is composed of equivalent smaller
functional units (100�95 m) assembled and placed in GEO. The satellite is point-
ing towards the Earth in order to be always visible from the same ground station,
and it is kept stabilized by the gravity gradient torque without any significant ac-
tive attitude control.
Although the satellite is capable of 1.2 GW of maximum power supply and 0.75
GW average on the ground, the total power efficiency is about 36% lower than the
other sun-pointing SSP satellite, since the system has no mechanism to track the
sun for the power generation [Sas06].

1.2.3 The Abacus Reflector

The ARF satellite was introduced in the late 90’s. It is a square two-dimensional
solar array structure (2�1.9�0.1 km) with a total dry mass of about 25�106

kg [WR01]. The solar array surface should be kept as much as possible facing
the solar rays. The transmitter is located at one of its side and it’s made of a
stationary microwave antenna with a diameter of 500 m, and a large rotating re-
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Figure 1.3: The ARF concept [WR01].

flector (500� 700 m) to redirect the microwave energy to the Earth (Figure 1.3).
Compared to the original concept of 1979, the ARF avoids the single infeasible
rotating joint that was expected to move the antenna ([dep79], [FC03]).
The satellite is placed in GEO in order to deliver a continuous level of power of
about 1.2 GW to the same receiving station on Earth. Another attractive plus is
its simplicity and highly modularity that has benefits for its packaging, assembly
and maintenance.
Besides these aspects, some critical points should be mentioned. The assembly
and maintenance does not seem to be trivial due to the large dimensions of such a
structure. Secondly, the power transmission line of GW level from the solar array
panels to the transmitter requires a huge amount of conductor or super-conduction
system to avoid a serious Joule loss.
Eventually, the ARF satellite is considered to be one of the most relatively low-
cost SSP concept due to its modularity and simplicity. Furthermore, the highly
general bi-dimensional geometry makes the vibration control design interesting
for a preliminary study, since all the concepts analysed in this survey share the
common feature of being characterized by one or more large surfaces. As a con-
sequence, the ARF is chosen to be the reference SSP concept for developing a
structural vibration suppression system.

6



Introduction

1.3 Rationale for a Structural Vibration-Suppression
System

The subject of the present thesis is a preliminary analysis of the vibrational issues
regarding a large flexible structure during its operative life. In particular, the orbit
and attitude control system together with the structural vibration suppression sys-
tem should be capable to assure the ARF satellite of fulfilling the operativeness
and functionality of the system. Beside the fact that the solar arrays should be
pointed towards the Sun, the most restrictive requirementsinvolved the transmis-
sion of the power, collected in space, to a precise point on the Earth. Especially,
in the nominal condition, the SSP satellite should be kept inGEO with 0.10 lon-
gitude and 0.050 latitude accuracies, while the attitude control should guarantee
0.080 pointing accuracy.
These requirements have to be satisfied in the presence of large external distur-
bances. The orbital main disturbances are caused by the non-spherical shape of the
Earth, the gravitational attraction of the Sun and the Moon and the solar radiation
pressure, while the attitude disturbances are mainly induced by the gravity gradi-
ent torque and the solar radiation torque. Considering the real system behaviour,
internal disturbances may be caused by uncertainties on thecenter of mass and
the principal moment of inertia directions. Furthermore, possible rotatory-device
motions, fuel sloshing or other subsystems interactions may induce unexpected
perturbations.
Moreover, due to the significant mass involved in such a largespacecraft, that is
about 25�106 kg, the classical station keeping strategies based on impulsive ma-
noeuvres are expected to be not exploitable. As a consequence, the continuous
orbit and attitude control actions are requested to satisfythe aforementioned re-
quirements. In this context, the use of electric thrusters with high specific impulse
becomes mandatory [WR01].
This previous discussion regards only the satellite rigid motions. However, since
the ARF satellite is a large flexible structure, the structural behaviour should not
be neglected a priori. Significant vibrations may be inducedby environmental
disturbances such as the solar radiation pressures and internal disturbances due
to the orbit and attitude control interactions. Moreover, the problems associated
with the vibrations and their suppression should not be independently treated for
the following reasons:

• The first natural frequencies of the structure are expected to be low. There-
fore, the modal behaviour of the structure should be analysed.

• The orbit and attitude control may excite the low frequency modes of the
structure.
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• The flexibility of the structure may allow small sensors and actuators dis-
placements and disorientation.

• The control force generated by a realistic vibration suppression system may
influence the orbit and attitude configurations.

As a consequence, the purpose of the present thesis is to develop an integrated
system where the orbit and attitude controls are interacting with a proper vibra-
tion suppression system. For the purpose of this preliminary study the following
hypothesis are stated:

• The orbital disturbances are caused by the major environmental disturbances
previously described, together with the disturbances coming from the atti-
tude and the vibration suppression control actions.

• The attitude is affected by the gravity gradient torque and the solar radia-
tion torque together with the disturbances coming from the orbit and the
vibration suppression control actions.

• The structural vibrations are only influenced by the orbit and the attitude
control actions.

• The gravity field is not considered to be of significant influence on the struc-
tural vibrations due to its very slow fluctuation.

• The thermal distortions and structural vibrations due to solar heating are not
considered, because, due to its inherent modelling difficulty, is an excessive
refinement for the purpose of this preliminary study. Nevertheless, since its
potential criticality further study on this topic should becarried out.

• The actuators are not supposed to change the directions withrespect to the
undeformed structure.

In the present work, after the orbit and attitude controls have been designed, the
simulations with a proper vibration suppression system arecompared with the
ones coming from considering the uncontrolled structural vibration dynamics. It
will be exhibited that two kind of structural oscillations arise: large very low
frequency oscillations, that are the natural consequence of the structural flexibil-
ity due to the nominal trend of the orbit and attitude controlforce, and much
higher frequency vibrations in correspondence to the modalfrequencies of the
structure. Although the first kind of oscillations present alarge amplitude, they
are not considered to be dangerous for the structure, while the second kind need
to be damped.
The final results show that, if the structural dynamics is left uncontrolled, the

8



Introduction

structural high frequency vibrations may be exited by the orbit and attitude con-
trol actions. Contrary, the vibration suppression system developed in this work is
able to damped this kind of undesired oscillations.

1.4 Thesis Structure

The thesis is structured following the natural developmentof the study.

Chapter 1: some concepts concerning the SSP project are introduced. Among
them the ARF satellite is chosen to be the reference SSP concept for devel-
oping a structural vibration suppression system. In the end, the hypothesis
and the final results are briefly described.

Chapter 2: an orbit control system is developed for the GEO Space SolarPower
(SSP) satellite model basing upon a continuous, low thrust control action.
In particular a Linear Quadratic Regulator (LQR) is designed specific re-
quirements.

Chapter 3: an attitude control system is developed in order to keep thesatellite
in the desired attitude. Two kind of regulators are designedand compared
in terms of performance and control inputs: the Proportional Integrative
Derivative (PID) and the Linear Quadratic (LQ) regulator.

Chapter 4: an Finite Element (FE) model of the Abacus-like structure is de-
veloped as a bi-dimensional frame. The geometric properties are chosen
such that some important features of the reference Abacus concept, inertial
characteristics and the first modal frequency, are met [WR01]. The modal
analysis results are compared with those obtained from an analogous model
developed with another software for FE analysis.

Chapter 5: several reduction techniques of the high-order dynamicalsystems
coming from finite element analysis of the flexible structures are discussed.
In the end, it is performed the order reduction of the structural model of the
satellite employing the introduced methods.

Chapter 6: since a direct state feedback control cannot be employed for such
a large system, a direct output feedback controller, with the objective of
suppressing the structural vibrations, is designed. In theend, the results,
obtained employing the developed suboptimal control law, are presented.

Chapter 7: in this chapter the simulations with a proper vibration suppression
system are compared with the ones coming from considering the uncon-
trolled structural vibration dynamics.
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1.4 Thesis Structure

Chapter 8: the contributions coming from the present work are summarized and
critically discussed. In the end, possible areas of future works are suggested.
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Chapter 2

Orbital Dynamics and Control

It is underlined in Chapter 1 that the objective of the present thesis is to study the
issues related to the vibrations which could be triggered during the operative life
of a SSP satellite, especially considering the effects of the forces introduced into
the structure by the orbital/attitude control systems. Hence first of all, an orbit
control system is developed for the GEO SSP satellite model basing upon a con-
tinuous, low thrust control action. A quick background on time measure systems
is firstly given. Then the different reference frames employed for the perturbed
orbital dynamics analysis are introduced. Once presented several equivalent tech-
niques for representing the state of a satellite (considered as punctiform) along its
orbit, the main environmental orbital perturbations acting on a GEO satellite are
surveyed. The fully non-linear equations holding the translational dynamics of
a satellite in its motion along the perturbed orbit are compared with a linearised
model based on the Clohessy-Wiltshire equations for the relative orbital motion.
After discussing the requirements on the orbital position of a SSP in GEO orbit, it
is presented a Linear Quadratic Regulator (LQR) approach indesigning a control
law able to fulfil the aforementioned requirements.

2.1 Time Measure

In the following sections the time conventions useful in developing the orbital
dynamic model are introduced.

2.1.1 Sidereal Time and Universal Time

Sidereal time is a system of timekeeping based on the rotation of the Earth with
respect to the fixed stars in the sky. More specifically the Local Apparent Sidereal
Time (LAST), is defined as the hour angle of the vernal equinoxat that locality.
The equinoxes, as can be seen in Figure 2.1a, are the two instants in which the
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(a) Vernal and autumn equinoxes.
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(b) Earth’s precession and nutation.

Figure 2.1: Vernal and autumn equinoxes, and Earth’s precession and nutation.

Sun, in its apparent motion about the Earth, crosses the intersection between the
the equator plane and the ecliptic plane, namely the line of nodes. Among the
two, the vernal equinox is the one in which the Sun’s path crosses the line of
nodes moving south to north, defining the First Point of Aries(symbol�). Due
to the effect of precession, the First Point of Aries is not a fixed pointin space but
it moves along the ecliptic at a rate of roughly one degree every seventy years.
Apparent Sidereal Time differs from Mean Sidereal Time by an amount due to
nutation, the nodding motion of the Earth’s axis of rotationsuperimposed on that
of precession (see Figure 2.1b). When the measurements are made with respect to
the prime meridian at Greenwich, the times are referred to asGreenwich Apparent
Sidereal Time (GAST) and Greenwich Mean Sidereal Time (GMST). The latter
will be important in the developments of the present work.
Universal Time (UT), more precisely its variations UT1, is based on a fictitious
mean Sun exhibiting uniform motion in right ascension (see Section 2.2) along the
equator and is related to the mean solar time at Greenwich. The Coordinated Uni-
versal Time (UTC), a time scale determined using highly precise atomic clocks,
was introduced as a convenient approximation of UT1 and is the basis for the
worldwide system of civil time which all satellite operations refer to.

2.1.2 Epoch and Calendar Date

The moment in which an event occurs is referred as to the epochof the event.
The epoch indicates a particular instant designated with a calendar date expressed
following the conventionx year month day hours minutes secondsy
12
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For example the date x 2012 1 1 12 0 0.0 y
designates January 1, 2012 at 12h 001 00.02 UTC.
Another way to designate a date (useful in defining the celestial body ephemerides)
is in terms of decimal number of days since a reference epoch.When the con-
sidered reference date is January 1, 4713 BC at noon, the Julian Date (JD) is
computed. In order to deal with dates of handier orders of magnitude, the epoch
designated by the date January 1, 2000 at 00h 001 00.02 UTC of beginning of a
Julian year, is taken as the reference date. Its connection with the Julian Date is
directly computed as

JD2000� JD� 2451544.5 (2.1)

A Julian year is the solar year of 365.25 days, which implies one extra day every
four years.
Given this framework for the measure of time, the approximate GMST at any
epoch can be calculated, with a loss of precision of 0.1 second per century, using
the following formula,

GMST� 18.697374558� 24.06570982441908D (2.2)

whereD are the number of days and fraction since January 1, 2000 at 12h 001
00.02 UTC and GMST needs to be reduced in the range 0h to 24h [Kap81].

2.2 Reference Frames and Coordinate Systems

2.2.1 Earth Centered Inertial RFCS

ECI reference frameXYZ (Figure 2.2a) has its origin at the center of mass of the
Earth and the fundamental plane coinciding with the Earth’sequatorial plane. The
X axis is aligned with the line of nodes directed towards the First Point of Aries
�, theZ axis points to the North Pole andY completes a right-handed orthogonal
coordinate system.
Earth Centered Inertial (ECI) frame is not truly inertial, due to the fact that the
vernal equinox and equatorial plane vary slightly over time. The gravitational
attraction of the Sun and Moon on the Earth’s equatorial bulge cause the rotational
axis of the Earth to precess in space. Nutation is the smalleramplitude shorter
period wobble superposed on the precessional motion that iscaused by the shorter
period fluctuations in the strength of the torque exerted on Earth’s equatorial bulge
by the sun, moon, and planets.
In order to achieve a sufficiently inertial coordinate system, the equinoxes and
equator are specified at a particular epoch. From 1984 the most commonly used

13



2.2 Reference Frames and Coordinate Systems

reference epoch is January 1, 2000 at 12h 001 00.02 UTC.
The position of a point in the ECI frame, as can be seen in Figure 2.2b can be
specified by either Cartesian coordinatesx, y, zor using spherical coordinates, i.e.
geocentric distancer, right ascensionα and declinationδ.

2.2.2 Earth Centered Earth Fixed RFCS

ECEF reference frameXFYFZF is a geocentric coordinate system which is allowed
to rotate with the Earth. The fundamental plane is the Earth’s equatorial plane.
The ZF axis coincides withZ whilst XF is always aligned with the Greenwich
meridian.
Position in this coordinate frame is given defining the geocentric distancer, the
geographical longitudeλ and the geocentric latitudeϕ (Figure 2.3a). Longitudeλ
is counted positively towards the East, and differs from the right ascensionα by
the right ascensionΘ of the Greenwich meridian.

λ � α� Θ. (2.3)

The right ascensionΘ of the Greenwich meridian at a certain time (in the UTC
system) is equal to GMST and can be computed using (2.2).

2.2.3 Gaussian RFCS

Gaussian reference frame is a reference system designed byRTN axes with the
origin fixed to the position of the spacecraft considered as punctiform. The unit
vectorsiR, iT and iN of its orthonormal basis have the same directions of theR,
T, N axes (see Figure 2.3b). AxisR is is defined as always pointing from the
Earth’s center along the radius vector toward the satelliteas it moves through the
orbit. TheN axis is normal to the orbit plane with direction of the satellite angular
momentum vector and theT axis is perpendicular toR in the orbit plane and with
the direction toward the satellite movement. It completes,with the unit vectorsiR
andiN, a right-handed orthogonal basis.

2.2.4 Geostationary Clohessy-Wiltshire RFCS

GCW frame withXGYGZG axes is a non-inertial reference frame rotating with the
Earth (see Figure 2.4). The reference plane is the equatorial plane and the origin
of this coordinate system is in the point of perfect geostationary orbit. TheXG

axis lies along the radial direction pointing in opposite direction of the Earth, the
ZG axis is normal to the equatorial plane towards North andYG completes a right-
handed orthogonal coordinate system.
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Figure 2.2: The ECI reference frame, and the Cartesian and spherical inertial coordi-
nates.
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Figure 2.3: ECEF reference frame and Gaussian reference frame.
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Figure 2.4: GCW reference frame.

The position of a point in the GCW frame is specified by Cartesian coordinates
xG, yG andzG.

2.3 Satellite State Representation

This section describes some equivalent forms in which the state of a satellite in
space can be expressed. For this state to be completely defined six quantities need
to be specified. The collection of these quantities is referred as to either a state
vector or a set of orbital elements referenced to a particular frame.
The following sections consider a spacecraft subjected only to the gravitational
attraction of the Earth with punctiform mass (unperturbed motion).

2.3.1 Position and Velocity

In the ECI frame position and velocity vectors of a spacecraft can be simply de-
noted as follows,

r � �
x y z

�T
(2.4a)

v � 9r � � 9x 9y 9z�T
(2.4b)
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and the acceleration of the spacecraft satisfies the second-order vector differential
equation governing the relative motion of two bodies in space.:r � �µC

r3
r (2.5)

whereµC is the gravitational parameter of the Earth. Therefore, thestate repre-
sentation by position and velocity of a spacecraft is expressed by,

x � �
x y z 9x 9y 9z�T

(2.6)

2.3.2 Classical Orbital Elements

The two-body system characterized by (2.5) has three degrees of freedom, and the
orbit is uniquely determined if six initial conditions are specified, three of which
are associated withr at some initial time, and three of which are associated with
velocityv.
In orbital mechanics the constants of integration, or various functions thereof, are
also referred to as elements of the orbit and such initial conditions can be consid-
ered as six possible orbital elements.
A common set of scalars often employed to describe a satellite orbit is the Classi-
cal Orbital Elements (COEs) set. It consists of five independent quantities, which
are sufficient to completely describe the size, shape, and orientation (with respect
to the ECI frame) of an orbit, and one quantity required to pinpoint the position
of a satellite along the orbit at any particular time. The sixparameters are (Fig-
ure 2.5) the following

• Semi-major axisa: it specifies the size of the orbit.

• Eccentricitye: it specifies the shape of the orbit.

• Inclination of the orbit planei: specifies the tilt of the orbit plane with
respect to the Earth’s equatorial plane.

• Right ascension of the ascending nodeΩ: it is the angle from the positiveX
axis to the line of node, that is the intersection between theequatorial plane
and the orbital plane, where the orbit crosses from south to north.

• Argument of the perigeeω: it is the angle measured from the ascending
node to the perigee.

• True anomalyf : it specifies the position of the satellite within its orbit and
it is the angle between the perigee and the current position vectorr.
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Figure 2.5: Classical Orbital Elements (COEs).

Other quantities can be used instead of the true anomaly to describe the satellite
position on the orbit. One choice is the eccentric anomalyE which is the angle
defined on the auxiliary circle of radiusa as in Figure 2.6. It is related to the true
anomaly by means of the following relation,

tan
f
2
� 


1� e
1� e

tan
E
2

(2.7)

Eccentric anomaly can be used to express the position of a satellite as a function
of time,

E� esinE � 

µC
a3

pt � tpq � n pt � tpq (2.8)

wheren is the mean motiontp is the time of pericenter passage. Defining the mean
anomalyM � n pt � tpq, Kepler’s time equation can be written as

M � E� esinE. (2.9)

Satellite state representation in terms of classical orbital elements is then denoted
as follows,

xCOE � �
a e i Ω ω anomaly

�T
(2.10)

where the anomaly component can be one amongf , E andM.
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Figure 2.6: True and eccentric anomalies for elliptic motion.

2.3.3 Equinoctial Orbital Elements

COEs suffer from two main singularities. The first is when the orbit is circular,
i.e., when the eccentricity is zero (e � 0). In this case the line of apsis is unde-
fined and also the argument of perigeeω. The second occurs when the orbit is
equatorial, i.e., when the inclination is zero (i � 0). In this case the ascending
node is undefined and also the right ascension of the ascending nodeΩ. In order
to deal with non-singular elements when analysing geostationary orbits, one must
search for combinations of the COEs to define a new set of parameters, known as
Equinoctial Orbital Elements (EOEs).
The EOEs avoid the singularities encountered when using theclassical orbital ele-
ments. Their definitions in terms of Keplerian elements are given by the following
equations [BC71],

a, (2.11a)

P1 � esinpω�Ωq , (2.11b)

P2 � ecospω�Ωq , (2.11c)

Q1 � tan
i
2

sinΩ, (2.11d)

Q2 � tan
i
2

cosΩ, (2.11e)

L � Ω� ω� f . (2.11f)
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Figure 2.7: Eccentricity and inclination equinoctial components and true longitude.

The latter equation defines the true longitudeL. Similarly to what happens with
the COEs, the true longitude (function of the true anomaly) can be replaced by
functions of either the eccentric or the mean anomaly, namely E andM. Employ-
ing these anomaly leads to the definition of the eccentric longitude and the mean
longitude,

K � Ω� ω� E, (2.12a)

l � Ω� ω� M. (2.12b)

GEO satellite state representation in terms of EquinoctialOrbital Elements (EOEs)
will be denoted as follows,

xEOE � �
a P1 P2 Q1 Q2 anomaly

�T
, (2.13)

where the anomaly component can be one amongL, K andl.
In the equinoctial frame, depicted in Figure 2.7 the elements P1 andP2 represent
the projection of the eccentricity vector onto the axes. TheelementsQ1 andQ2

represent the projection of the vector oriented in the direction of the ascending
node with magnitude tanpi{2q (see [CL]).

2.4 Environmental Perturbations

Thus far an ideal two body problem, held by (2.5), has been considered. This
section deals with the analysis of the orbital dynamics whenorbital perturbation
are taken into account. For geostationary satellites, the disturbing accelerations
that need to be considered are related to
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• Non-spherical shape of the Earth.

• Gravitational attraction of the Sun and the Moon.

• Solar radiation pressure.

Due to perturbing accelerations, the equation that holds the non-Keplerian orbit
dynamics becomes, :r � µC

r3
r � ap, (2.14)

in which ap, the perturbing acceleration, represents the resultant perturbing force
per unit mass acting on the satellite.

ap � ae� ap � ar , (2.15)

whereae is caused by the asymmetric gravity attraction of the Earth,ag by the
gravity attraction of the Sun and the Moon andar is due to the solar radiation
pressure.

2.4.1 Earth’s Gravitational Field

The gravitational field of a continuous and non-homogeneousdistribution of mass
can be conveniently described by its potential functionVe.

Vepr, λ, ϕq � µCr � Ṽepr, λ, ϕq. (2.16)

in which Ṽe is the perturbing gravitational potential expressed by,

Ṽepr, λ, ϕq � µCr 8̧
n�2

ņ

m�0

�
RC
r


n

Pnmpsinϕq rCnmcospmλq � Snmcospmλqs .
(2.17)

In the previous expressionCnm andSnm are the tesseral (n , m), sectoral (n � m)
and zonal (m � 0) harmonic coefficients characterizing the Earth’s mass distri-
bution, andPnm is the associated Legendre function of degreen and orderm. In
the present work only the primary zonal (C20 andS20) and sectoral (C22 andS22)
effects are taken into account whilst the higher degree and order harmonics are
neglected. In particular, the Earth’s elliptical equator,described by the primary
sectoral harmonics, gives rise to a gravitational acceleration that causes a drift in
the longitudinal position of geostationary satellites, which is a major perturbation
that must be dealt with. There are four equilibrium points separated by approxi-
mately 900 along the equator, two stable points and two unstable points. The effect
of the triaxiality is to cause geosynchronous satellites tooscillate about the nearest
stable point on the minor axis. These two stable points, at about 750 E longitude
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Table 2.1: Geopotential coefficients and the corresponding Legendre functions.

n m Cnm Snm Pnmpsinϕq
2 0 -1.08�10�3 0 3

2 sin2 ϕ� 1
2

2 2 -1.57�10�6 -9.03�10�7 3 cos2 ϕ

and 1050 W longitude, are called gravitational valleys.
Table 2.1 shows the values of the coefficients and the related Legendre function
for the considered harmonics [M�88]. The components of the acceleration vector

ae � aeX iX � aeY iY � aeZ iZ, (2.18)

induced by the perturbing potential functioñVe and expressed in the ECI refer-
ence frame are obtained calculating the partial derivativeof Ṽe with respect to the
inertial coordinates.

ae � ∇Ṽe. (2.19)

The acceleration components are decomposed as follows,

aeX � µCR2C �a20
eX
� a22

eX

�
, (2.20a)

aeY � µCR2C �a20
eY
� a22

eY

�
, (2.20b)

aeZ � µCR2C �a20
eY
� a22

eY

�
. (2.20c)

where the expressions of the normalized acceleration components, in function of
the ECI coordinatesx, y, z, are given in [Los07] as,

a20
eX
� 3C20

2
xpx2 � y2 � 4z2qpx2 � y2 � z2q7{2 , (2.21a)

a20
eY
� 3C20

2
ypx2 � y2 � 4z2qpx2 � y2 � z2q7{2 , (2.21b)

a20
eZ
� 3C20

2
zp3x2 � 3y2 � 2z2qpx2 � y2 � z2q7{2 . (2.21c)

As regards the disturbing acceleration caused by the effect of the triaxiality of the
Earth,

a22
eX
� 6 py3 � yz2 � 4x2yq F�

22 pΘq � 3 p2xz2 � 3x3 � 7xy2q F�
22 pΘqpx2 � y2 � z2q7{2 , (2.22a)

a22
eY
� 6 px3 � xz2 � 4y2xq F�

22 pΘq � 3 p2yz2 � 3y3 � 7yx2q F�
22 pΘqpx2 � y2 � z2q7{2 , (2.22b)

a22
eZ
� �30xyzF�22 pΘq � 15zpy2 � x2q F�

22 pΘqpx2 � y2 � z2q7{2 . (2.22c)
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Figure 2.8: Perturbing acceleration due to Earth’s non-homogeneous gravitational
field, computed during a period of one day.

where

F�
22 pΘq � C22 sinp2Θq � S22 cosp2Θq , (2.23a)

F�
22 pΘq � C22 cosp2Θq � S22 sinp2Θq . (2.23b)

2.4.2 Gravity Attraction of the Sun and the Moon

In order to obtain a sufficiently accurate model of the dynamics of a geostationary
satellite, the attractions exerted by the Sun and the Moon must be considered as
third-body perturbing accelerations acting on the spacecraft.
The perturbing accelerationag caused by the luni-solar gravitational effects on the
satellite is described by,

ag � �µ�� rS

r3
S

� r�
r3�
� µK� r M

r3
M

� rK
r3K
 , (2.24)

whererS and rM are the position vectors of the satellite from the Sun and the
Moon, andr� and rK are the position vectors of the Sun and the Moon, all of
them measured in the ECI reference frame.
As it appears clearly, for the computation of the solar and lunar gravity attraction
it is necessary to express the positions of the Sun and the Moon in the ECI refer-
ence frame as functions of time. This can be done by means of their ephemerides
which tabulate the position of the Sun and the Moon, in terms of right ascension
and declination, as functions of time.
After some manipulations, the components of the disturbingacceleration, given
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by (2.24), can be easily expressed in function of the inertial coordinates as fol-
lows [WR01],

agX � µ�r3� ��x� 3r
r� �cosθ� � r

2r� �5 cos2 θ� � 1
�� pr�X � xq
� µK

r3K ��x� 3r
rK �cosθK � r

2rK �5 cos2 θK � 1
�� prKX � xq
 , (2.25a)

agY � µ�r3� ��y� 3r
r� �cosθ� � r

2r� �5 cos2 θ� � 1
�� pr�Y � yq
� µK

r3K ��y� 3r
rK �cosθK � r

2rK �5 cos2 θK � 1
�� prKY � yq
 , (2.25b)

agZ � µ�r3� ��z� 3r
r� �cosθ� � r

2r� �5 cos2 θ� � 1
�� pr�Z � zq
� µK

r3K ��z� 3r
rK �cosθK � r

2rK �5 cos2 θK � 1
�� prKZ � zq
 , (2.25c)

whereθ� is the angle between the Earth-satellite line and the Earth-Sun line and
θK is the angle between the Earth-satellite line and the Earth-Moon line, as de-
picted in Figure 2.9.

2.4.3 Solar Radiation Pressure

A satellite exposed to solar radiation experiences a small force that arises due to
photons impinging on its surface, as illustrated in Figure 2.11. It is assumed that
a fraction,ǫr , of the impinging photons is specularly reflected, a fraction, ǫd, is
diffusely reflected, and a fraction,ǫa, is absorbed by the surface,

ǫr � ǫd � ǫa � 1. (2.26)

The solar radiation pressure acceleration acting on a flat surface is then expressed
as,

ar � P� As

ms
pns � rSq�p1� ǫrq rS � �2ǫr pns � rSq � 2

3
ǫd



ns

�
. (2.27)

where coefficientP� � 4.56� 10�6 N/m2 is the nominal solar radiation pressure
constant,As andms are the satellite surface and mass,ns is a unit vector normal to
the surface andrS is, as previously stated, the position vector of the satellite with
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Figure 2.9: Earth, Sun, Moon and spacecraft relative positions.

respect to the Sun.
In contrast to the gravitational perturbations so far discussed, the acceleration due
to the solar radiation depends on the spacecraft mass and surface area. Moreover
it computation involves the determination of the precise location of the Sun, the
correct satellite orbital attitude, the exact value of the solar radiation pressure co-
efficient, the effective time-varying cross-sectional area exposed to the incoming
radiation, the correct and usually time-varying coefficients that model the space-
craft reflectivity.
For an ideal case of a perfect mirror withǫd � ǫa � 0 andǫr � 1, the resulting
acceleration is directed normally to the surface,

ar � 2P� As

ms
cos2 φ ns. (2.28)

Also for an ideal case of a black body withǫr � ǫd � 0 andǫa � 1, the effect of
solar radiation is,

ar � P� As

ms
cos2 φ

rS

rS
. (2.29)

whereAs cosφ is usually referred as to the projected area of the surface under
consideration.
For most practical cases a simplified expression of the solarradiation acceleration,
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Figure 2.10: Perturbing acceleration due to gravity attraction of the Sun and the
Moon, computed during a period of one day.
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Figure 2.11: Solar radiation pressure force acting on an ideal flat surface.

commonly used for numerical simulations (see [Val01]), is adopted,

ar � p1� ǫqP� As

ms

rS

rS
, (2.30)

in which ǫ is the overall surface reflectance. Equation (2.30) is a simplification
of the rigorous solar radiation pressure acceleration formula (2.27) under the as-
sumption that the unit vector normal to the surface points always in the direction
of the Sun, i.e. the satellite surface is always perpendicular to the incoming radi-
ation. This simplified version is commonly used in orbit determination programs
with the option of estimating the surface reflectanceǫ as a free parameter. Orbital
perturbations due to the solar radiation pressure may thus be accounted for with
high precision, even if no details of the satellite structure, orientation and reflec-
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Figure 2.12: Perturbing acceleration due to solar radiation pressure, computed dur-
ing a period of one day.

tivity are known. In the present work a reflectivity coefficientǫ � 0.3 is assumed.
The acceleration vectorar can be expressed in the ECI reference frame as,

ar � arX iX � arY iY � arZ iZ, (2.31)

where the componentsarX, arY andarZ along the axes can be obtained as the par-
tial derivatives of a pseudo-potential functionṼr px, y, z, tq of radiation pressure
(see [Los07]),

arX � �p1� ǫqP� As

ms

xS � xbpxS � xq2 � pyS � yq2 � pzS � zq2 , (2.32a)

arY � �p1� ǫqP� As

ms

yS � ybpyS � yq2 � pyS � yq2 � pzS � zq2 , (2.32b)

arZ � �p1� ǫqP� As

ms

zS � zbpzS � zq2 � pyS � yq2 � pzS � zq2 . (2.32c)

2.5 Translational Dynamics of GEO Satellites

This section introduces the equations that hold the translational dynamics of a
GEO satellite. Firstly the fully non linear equations are recalled, then a linearised
model is
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2.5.1 Non-Linear Geostationary Orbit Model

The fully non-linear equations of orbital motion under perturbed conditions are
here introduced by means of the Variation Of Parameter (VOP)equations. VOP
equations of motion are a system of first-order differential equations that describe
the rate of change for the time-varying orbital equinoctialelement vectorxEOE.
Referring to [BC71], these equations can be expressed as follows,9xEOE � AEOE pxEOEq aRT N

p � bEOE, (2.33)

whereaRT N
p is the perturbing acceleration vector expressed in theRTN reference

frame,
ap � apRiR� apT iT � apN iN. (2.34)

The matrixAEOE pxEOEq, direct function of the orbital parameters themselves, and
the vectorbEOE are conveniently defined considering the following equations,

da
dt

� 2a2

h
pP2 sinL � P1 cosLq apR � 2a2

h
p
r

apT , (2.35)

dP1

dt
� � p

h
cosL apR � r

h

�
P1 � �1� p

r

	
sinL

�
apT� r

h
P2 pQ1 cosL � Q2 sinLq apN , (2.36)

dP2

dt
� p

h
sinL apR � r

h

�
P2 � �1� p

r

	
cosL

�
apT� r

h
P1 pQ1 cosL � Q2 sinLq apN , (2.37)

dQ1

dt
� r

2h

�
1� Q2

1 � Q2
2

�
sinL apN , (2.38)

dQ2

dt
� r

2h

�
1� Q2

1 � Q2
2

�
cosL apN , (2.39)

dl
dt

� n� r
h

"�
a

a� b

� p
r

	 pP1 sinL � P2 cosLq � 2b
a

�
apR� a

a� b

�
1� p

r

	 pP1 cosL � P2 sinLq apT� r
h
pQ1 cosL � Q2 sinLq apN

*
, (2.40)
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where the quantitiesp, h andb are defined as follows,

p � a
�
1� e2

�
, (2.41)

h� ?
pµC , (2.42)

b� a
b

1� P2
1 � P2

2 . (2.43)

2.5.2 A Linearised Geostationary Orbit Model

The precise orbit propagation means that the fully non-linear equations of orbital
motion are numerically integrated to produce the position and velocity vectors at
an arbitrary time.
An alternative is to obtain the solution of the relative motion with respect to
a known reference orbit [PC93, A�10]. The Geostationary Clohessy-Wiltshire
(GCW) reference frame described in Section 2.2.4 is centered at the ideal geosta-
tionary position with station longitudeλG and describes a perfect geostationary
orbit. This circular orbit can be selected as a reference orbit and the motion in the
perturbed orbit can be described with respect to the GCW frame in terms of a set
of linear differential equations called the Clohessy-Wiltshire equations [NC05].
The non-linear equations of orbital motion are generally written as in (2.14),:r � µC

r3
r � ap, (2.44)

wherer is the position vector of the satellite in the ECI frame andap is the perturb-
ing accelerations vector which includes, as previously mentioned, the contributes
from the Earth’s gravitational harmonics, the solar and lunar attraction and the
solar radiation pressure.
Referring to Figure 2.13, the relative position vectorrG of the satellite with respect
to the ideal geostationary orbit is defined as,

rG � r � rCW � xGiXG � yGiYG � zGiZG, (2.45)

whererCW is the position vector of the GCW frame’s origin within the fixed ECI
frame. Introducing (2.45) in (2.44) and after linearisation about the ideal geosyn-
chronous orbit as a reference, the Clohessy-Wiltshire equations can be written
as, :xG � 3ω2CxG � 2ωC 9yG � aXG

p , (2.46a):yG � �2ωC 9xG � aYG
p , (2.46b):zG � �ω2CzG � aZG

p , (2.46c)
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Figure 2.13: Satellite motion relative to ECI and GCW reference frames.

in which the components of the disturbing vector need to be expressed relatively
to the GCW reference frame. Defining the state vectorξ as,

ξ � �
xG yG zG 9xG 9yG 9zG

�T
, (2.47)

the Clohessy-Wiltshire equations are readily written in their state-space form.

dξ
dt

� ACWξ � BCWaCW
p , (2.48)

where,

ACW � �������� 03 I 3

3ω2C 0 0 0 2ωC 0
0 0 0 �2ωC 0 0
0 0 �ω2C 0 0 0

�������� , (2.49a)

BCW � �
03

I 3

�
, (2.49b)

aCW
p � �

aXG
p aYG

p aZG
p

�T
. (2.49c)
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The inertial Cartesian components of the Earth’s gravity accelerationae, of the
Sun’s and Moon’s gravity accelerationag and of the solar radiation pressurear can
be expressed in the GCW Cartesian coordinates by means of thetransformation
that connects the GCW frame to the ECI frame.$&%aX

p

aY
p

aZ
p

,.- � R3 pΘ� λGq$&%aXG
p

aYG
p

aZG
p

,.- , (2.50)

whereR3 pΘ� λGq indicates a rotation ofΘ � λG about the third axis of an or-
thogonal coordinate system.

2.6 GEO Satellite Station Keeping

This section describes the satellite station keeping problem underlying the require-
ments that need to be fulfilled. Moreover a state feedback regulator, designed to
meet these constraints, is discussed.

2.6.1 GEO Satellite Orbital Requirements

The main requirement of a geostationary satellite consistsin having, during its
whole life, longitudinal and latitudinal position confinedin a deadband box in
the (λ, ϕ) plane centered in (λG, 0) and with dimensions prescribed by the max-
imum acceptable deviations in longitude and latitude, namely λmax andϕmax (see
Figure 2.14). �λmax ¤ λ� λG ¤ λmax, (2.51a)�ϕmax ¤ϕ ¤ ϕmax. (2.51b)

A circular confinement area may also be prescribed, but this is usually handled
like the previous case by using the square box inscribed in the circle.
The angular constraints on geographic longitude and latitude expressed by (2.51)
can also be related to constraints on the displacements of the spacecraft measured
in the GCW reference frame, i.e. displacements along theXG, YG andZG axes.
Consequently, as depicted in Figure 2.15, an allowed range in longitude given
by (2.51a) entails an allowed range along theYG axis given by,�rG tanλmax ¤ yG ¤ rG tanλmax, (2.52)

whererG is the modulus of the position vector of the center of the GCW frame,
that is the radius of the ideal geostationary orbit.On the other hand, an allowed
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Figure 2.14: Deadband rectangular box in (λ, ϕ) plane.

range in latitude given by (2.51b) entails an allowed range along theZG axis given
by, �rG tanϕmax ¤ zG ¤ rG tanϕmax. (2.53)

Following the guidelines given in [WR01], in the present work the bounds on
longitude and latitude are taken as,

λmax � 0.10, and ϕmax � 0.050.
This deadband box in the (λ, ϕ) plane entails a rectangular box in the (YG, ZG)
plane with sides nearly equal to 73.6 km and 36.8 km.

2.6.2 Orbit Control System

A state feedback regulator is designed in order to assure that the deviation of the
satellite position from the ideal geostationary orbit remains within the prescribed
limits. A LQR approach based on the linearised dynamical model of a GEO satel-
lite is chosen.

dξ
dt

� ACWξ � BCWaCW
c . (2.54)

Control accelerationsaCW
c turn out to be proportional to the statesξ through the

gain matrixK orb,
aCW

c � �K orbξ. (2.55)
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Figure 2.15: Tolerance ranges along YG and ZG axes of the geostationary GCW ref-
erence frame.

The gain matrix is eventually obtained minimizing the quadratic cost function,

Jorb � » 8
0

�
ξTQorbξ � aCWT

c RorbaCW
c

	
dt. (2.56)

The weight matrix on the states is a diagonal matrix with different penalties on
the positions and on the velocities.

Qorb � ��������3� 10�14 0 0 0 0 0
0 3� 10�14 0 0 0 0
0 0 3� 10�14 0 0 0
0 0 0 10�9 0 0
0 0 0 0 10�9 0
0 0 0 0 0 10�9

�������� . (2.57)

On the other hand, control actions have all equal penalties,chosen as follows,

Rorb � ��106 0 0
0 106 0
0 0 106

�� . (2.58)
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Figure 2.16: Actuators pattern employed for the orbital control system.

Using the Matlab R© function lqr to solve the minimization problem, the gain
results as follows,

K orb � �
0.0000107 �0.0000006 0 0.0447490 0.0713248 0
0.0000573 �0.0000021 0 0.0713248 0.4131018 0

0 0 0.0000003 0 0 0.0750131

��10�4. (2.59)

The dynamical behaviour of the controlled system is finally held by,

dξ
dt

� pACW � BCWK orbq ξ � BCWaCW
p . (2.60)

It is already underlined that, due to the significant mass of spacecraft, about
25�106 kg, a classical station keeping strategies, based on impulsive manoeuvres
are expected to be not exploitable. As a consequence the use of electric thrusters,
with high specific impulse and throttling capability, becomes mandatory (for fur-
ther details see Appendix A). In order to provide the necessary resulting control
accelerations, the control system is provided with twelve actuation stations, dis-
tributed as illustrated in Figure 2.16.
In Figures 2.17 - 2.19 are given the results obtained integrating over twenty orbits
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Figure 2.17: Time history of the requested control forces expressed in the GCW ref-
erence frame.

the vector equation (2.60) with initial conditions equal to,

ξ pt0q � $''''''&''''''%
xGpt0q
yGpt0q
zGpt0q9xGpt0q9yGpt0q9xGpt0q

,//////.//////- � $''''''&''''''%
0
0
0
0
0
0

,//////.//////- . (2.61)

at the initial epocht0 corresponding to the date January 1, 2012 at 12h 001 00.02
UTC with the satellite located at nominal longitudeλG � 75.070 (one of the stable
longitude). Orbit control simulation results are obtainedtaking into account the
effects of Earth’s oblateness and triaxiality, luni-solar perturbations, 60 N solar
pressure force and employing the continuous orbit control described in this sec-
tion.
In Figure 2.17 is reported the time history of the needed control forces, expressed
in the GCW frame. These have to be rotated into a local satellite reference frame
in order to properly adjust the actions of each actuator. Therotation is carried
out by means of the combination of a series of rotations matrices taking into ac-
count the time-varying attitude at each instant. Once expressed into theXSYSZS

reference frame, the control forces are equally distributed among the available ac-
tuators, four for each direction.
It can be noticed that both the longitude and the latitude aremaintained into the
prescribed deadbands box defined byλmax andϕmax. As expected, the longitudinal
drift mainly caused by the triaxiality of the Earth is the most prominent pertur-
bation effect and needs a relatively strong control action alongside theXG andYG

axes. It has to be underlined that these contributions are also required in order
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to counteract the disturbances that would increase the eccentricity of the circular
orbit. On the other hand, the out of plane disturbances are less significant, this
yielding the latitude to be more controllable with less effort.
Indeed, Figure 2.19 shows the control actions exerted by theactuators placed in
the actuation stations of Figure 2.16. It can be noticed thatthe needed control ac-
tions are of the order of the tens of Newtons at each station with a peak of almost
35 N along theXS direction, i.e. actuators # 1, # 4, # 8 and # 12.

37



2.6 GEO Satellite Station Keeping

74.9 75 75.1 75.2 75.3 75.4 75.5 75.6 75.7
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Longitude [deg]

La
tit

ud
e 

[d
eg

]

 

 

Uncontrolled
Controlled

(a) Spacecraft trajectory in the (λ, ϕ) plane.
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(b) Spacecraft longitude.
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Figure 2.18: Time history of spacecraft longitude and latitude obtained integrating the
linearised orbital equations over a period of twenty orbits.

38



Orbital Dynamics and Control

0 2 4 6 8 10 12 14 16 18 20
−35

−30

−25

−20

−15

−10

−5

0

5

Orbits [−]

F
or

ce
 [N

]

(a) Actuators # 1, # 4, # 8 and # 12 along the XS direction.
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(b) Actuators # 2, # 5, # 9 and # 11 along the YS direction.
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(c) Actuators # 3, # 6, # 7 and # 10 along the ZS direction.

Figure 2.19: Time history of the control forces exerted by actuators.
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Chapter 3

Attitude dynamics

An attitude control system capable of guaranteeing the operativeness and func-
tionality of the SSP satellite has been designed, in order toinvestigate the interac-
tion with the structure during the operative life. Operational requirements impose
that the SSP satellite must collect as much energy as possible from the Sun, and at
the same time transfer continuous power to the Earth by keeping the microwave
antenna pointed in the direction of the receiving station.
Once that the most suitable configuration has been chosen, the desired attitude has
to be guaranteed as much accurately as possible to improve the transfer of energy
to the Earth. Consequently, high control torques have to be expected in order to
counteract external disturbances. The major disturbancesinvolved during the op-
erative life are the environmental disturbances such as thesolar radiation torque
and the gravity gradient torque together with the internal disturbance torques com-
ing from other subsystems. Between all of them the gravity gradient torque is
expected to be the most critical. Secondly, the attitude control must show enough
authority to bring the SSP satellite from a perturbed to the desired configuration
in a time of the order of days. Furthermore, an attitude control system that shows
reasonable value of the maximum torque is preferable in order to minimize the
mass of the system architecture.

3.1 Reference Frames and Coordinate Systems

The reference frames considered for the attitude dynamic and control system are
the Body Centered Sun Pointing (BCSP), the Body Centered SunFacing (BCSF),
the Earth Centered Sun Facing (ECSF), the Structural Global(SG) and the Body
Principal Inertial (BPI) frames.
The BCSP frame is a non-inertial frame with its origin on the body, defined by the
XPYPZP axes.XP is a Sun-pointing axis, whileYP lies on the equatorial plane.ZP

is placed such to define a right-handed orthogonal coordinate system with positive
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direction towards the North Pole.
The BCSF frame is a non-inertial frame centered on the body defined byXS FYS FZS F.
TheZS F axis is normal to the equatorial plane towards the North Pole, theXS F axis
lies on the plane that includes the Sun and theZS F axis.YS F is placed such that it
completes the right-handed orthogonal coordinate system.
The ECSF frame is a non-inertial Earth centered frame definedby XEYEZE. The
ZE axis is normal to the equatorial plane towards the North, theXE axis lies on
the plane including the Sun andZE. YE is placed such that it completes the right-
handed orthogonal coordinate system.
The ECSF frame is approximately coincident with the BCSF frame, apart that it
does not consider the relative motion of the satellite around the Earth. In the worst
case, the approximation involves an error of about 0.0160 around theZE axis. For
this purpose of this work, this error can be neglected and theECSF and the BCSF
frame can be indifferently considered. In particular, the ECSF frame is preferable
because it can be simply defined as a rotation of the ECI frame around theZ axis.
The SG frame is defined byXSYSZS and it is centered in one of the corner of the
square platform of the satellite.XS andYS are the in-plane axes along the side-
directions, whileZS is in the out-of-plane direction such to define a right-handed
orthogonal coordinate system. In particularXS lies along the side that contains
a possible microwave antenna. The frame is centered in one ofthe corner of the
square platform as described in Figure 2.16.
The BPI frame is a non-inertial satellite-barycentric frame, defined by the princi-
pal axes of inertiaXI YIZI , whereYI andZI are the in-plane axes, whileXI is the
out-of-plane axis with respect to the planar platform of thesatellite. In particu-
lar, XI , YI andZI are respectively coincident withZS, XS andYS. The dynamic
equations are expressed with respect to this last frame in order to simplify the
system.

3.2 Attitude configurations

The choice of the attitude configuration should guarantee the effectiveness of the
mission and the feasibility of a possible attitude control system at the same time.
Although the main goal is to collect as much energy as possible by keeping the
solar array always perpendicular to the Sun, and to provide continuous power to
the Earth, it’s necessary to analyse the possibility of designing it.
For this reason two main configurations have been compared: the SP and the SF
configurations, which differ in terms of the desired orientation. Between them,
two options should also be analysed concerning the independent degrees of free-
dom of a possible microwave transmitting system: the Independent Transmitter
Pointing (ITP) and One Axis Rotating Transmitter (OART) configuration. The
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choice of the final configuration should take into account thetight requirements
on the pointing accuracy.

3.2.1 Attitude Dynamics Requirements

The solar array pointing accuracy is�0.50 aroundYCW andZCW. Although the
latter does not seem to be very restrictive, the pointing accuracy of the attitude
control is driven by a possible microwave beam pointing requirements. In order
to transfer the energy to the receiving station without excessive loss, the beam
pointing error should not be more than�0.080 ([WR01]).
Secondly the attitude control should have enough authorityto extinguish an initial
attitude error of�100 aroundXI , YI andZI by a time of the order of some orbits
in the presence of all the disturbances [WR01].

3.2.2 The Sun Pointing (SP) Configuration

The SP configuration is obtained by keeping the BPI frame coincident with the
BCSP frame. This configuration is the most promising in termsof operativeness
since the solar arrays are kept always perpendicular to the solar rays. At the same
time it shows some drawbacks that makes this choice hard to bereally realized.
First of all a possible microwave transmitting system should be always oriented
towards the receiving station on the Earth by large rotationaround three axes. This
choice may be improbable considering the large mass involved (see Chapter 1).
Secondly the gravity gradient torque, is expected to have considerable component
around all the directions of the BPI frame. For these reasonsthe SP configuration
is not considered to be the most suitable configuration.

3.2.3 The Sun Facing (SF) Configuration

The SF configuration is obtained by keeping the BPI frame coincident with the
BCSF frame. The solar arrays are not exactly perpendicular to the Sun rays during
the whole orbit of the Earth around the Sun, except at the equinoxes.
TheZSF axis is always perpendicular to the equatorial plane so thatthe microwave
beam antenna system should be oriented to the receiving station by rotating the
transmitting system just around theZS F axis.
Beyond the fact that the attitude control appears to be more easily designed, the
gravity gradient torque shows its major contribution just around theZS F axis. In
the end the SF configuration is chosen to be the reference configuration for the
attitude control design ([WR01]).
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3.2.4 The Transmitting Pointing Configurations

Even though the microwave transmitting system has not been analysed in detail,
the attitude control should guarantee the beam pointing accuracy of�0.080.
In the ITP configuration, the attitude control of the whole SSP satellite may be de-
signed to satisfy the�0.50 accuracy aroundYCW andZCW, while an independent
attitude control for the microwave transmitting system should provide the finest
pointing requirement of�0.080. On the other hand, the OART configuration em-
ploys an attitude control system for the entire SSP satellite to satisfy the�0.080
accuracy. A possible microwave transmitting system is ableto rotate around the
ZCW axis tracking the receiving station on the Earth.
Although the OART configuration seems to be the most simple interms of archi-
tecture simplicity, it is necessary to verify the feasibility in a plausible operative
situation.

3.3 Attitude State Representation

The principal momentum of inertia are:

Ix � 4.9023� 1013 kgm2 (3.1a)

Iy � 2.4492� 1013 kgm2 (3.1b)

Iz � 2.4532� 1013 kgm2 (3.1c)

(3.1d)

The Euler Equations of Motion (EEM) expressed in the BPI frame are [Wer99]:

Ix 9ωxI � pIzI � IyI qωzIωyI � Mc
xI
� Md

xI
(3.2a)

Iy 9ωyI � pIxI � IzI qωxIωzI � Mc
yI
� Md

xI
(3.2b)

Iz 9ωzI � pIyI � IxI qωyIωxI � Mc
zI
� Md

xI
(3.2c)

whereωxI , ωyI andωzI are the angular velocities in the BPI frame,Mc
xI

, Mc
yI

and
Mc

zI
are the the attitude control torques, whileMd

xI
, Md

yI
andMd

zI
are the disturbance

torques in the BPI frame.
The BPI frame can be related to the BCSF frame by a rotational matrix A such
that:

vBPI � A � vBCS F (3.3)

wherevBPI andvBCS F are respectively the vectors in the BPI and the BCSF frame.
Assuming that the SSP satellite is kept in the nominal configuration, the BPI frame
can be considered as the BCSF frame perturbed by small rotations. If an Euler
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angles parametrization with different indexes is used, theA matrix can be written
as [Wer99]:

A � ����� 1 αz �αy�αz 1 αx

αy �αx 1

����� (3.4)

whereαx, αy andαz are small rotations respectively aroundXE, YE andZE. Con-
sidering that the ECSF frame is rotating around theZ axis with the angular veloc-
ity of the Earth with respect to the Sun (nC), the cinematic equations become:$'''&'''%ωx

ωy

ωz

,///.///- � ����� 1 αz �αy�αz 1 αx

αy �αx 1

�����$'''&'''% 9αx9αy9αz� nC
,///.///- . (3.5)

If the second order terms are neglected, Equations 3.5 can besimplified as follow:

ωx � 9αx � αynC (3.6a)

ωy � 9αy � αxnC (3.6b)

ωz � 9αz� nC (3.6c)

Deriving Equations 3.6 with respect to time:9ωx � :αx � 9αynC (3.7a)9ωy � :αy � 9αxnC (3.7b)9ωz � :αz (3.7c)

Using Equations 3.7, Equations 3.2 yield:

Ix:αx � nCpIz� Iy � Ixq 9αy � n2CpIz � Iyqαx � Mc
xI
� Md

xI
(3.8a)

Iy:αy � nCpIx � Iy � Izq 9αx � n2CpIz� Ixqαy � Mc
yI
� Md

xI
(3.8b)

Iz:αz � Mc
zI
� Md

xI
(3.8c)

The state space realization for the attitude dynamic is:9̄α � Aattᾱ� Buatt M
d
I � Bdatt M

c
I (3.9a)
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where:

ᾱ � #
α9α+ �

$'''''''''''''&'''''''''''''%
αx

αy

αz9αx9αy9αz

,/////////////./////////////- Buatt � Bdatt �
���������������

0 0 0

0 0 0

0 0 0

1{Ix 0 0

0 1{Iy 0

0 0 1{Iz

��������������� (3.10)

Aatt �
���������������

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1�n2CpIz� Iyq
Ix

0 0 0
�nCpIz � Iy � Ixq

Ix
0

0
�n2CpIz� Ixq

Iy
0

�nCpIx � Iy � Izq
Iy

0 0

0 0 0 0 0 0

���������������
(3.11)

3.4 Environmental Disturbances

The environmental disturbances considered for the attitude control design are the
gravity gradient torque and the solar radiation torque. They all have to be evalu-
ated in the BPI frame. The torque caused by the counter-reaction force due to the
microwave transmission has been neglected since the transmitting system has not
been considered in the present work.
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(b) Solar radiation torque.

Figure 3.1: Environmental torques.

3.4.1 The Gravity Gradient Torque

The gravity gradient torque results from the not uniform Earth’s gravitational field
acting on the body. In BPI frame it can be expressed as:

Mg
xI
� 3µC

r3
pIz � Iyq czI cyI (3.12a)

Mg
yI
� 3µC

r3
pIx � Izq cxI czI (3.12b)

Mg
zI
� 3µC

r3
pIy � Ixq cyI cxI (3.12c)

wherecxI , cyI andczI are the component of the radial versor from the Earth to the
satellite, andMg

xI , Mg
yI andMg

zI are the components of the gravity gradient torque
[Wer99]. Since the BPI frame should be kept about the BCSF frame with a small
tolerance,czI is expected to be very small, so that in the nominal configuration the
major contribution of the gravity gradient torque should bearound theZI axis.
Figure 3.1a shows the gravity gradient torque disturbanceMgrav

I in the BPI frame
in the nominal configuration. As expected, the disturbance torque results to be
periodic around the pitch axis. As a consequence a cyclic disturbance suppression
control method may be implemented.

3.4.2 The Solar Radiation Torque

Despite the importance of the cyclic pitch gravity-gradient torque, the solar radi-
ation torque is more detrimental than one may expects because of the large value
of the area-to-mass ratio of the SSP satellite.
The solar radiation pressure acting on a satellite orbitingaround the Earth can be
considered to be constant and equal toP� � 4.5298� 10�6 Pa. Considering the
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satellite area equal toAsat� 10240000 m2, the solar radiation forceF�I is a vector
expressed in the BPI frame acting on the center of pressure ofthe SSP satellite
along the Sun-satellite direction. Its modulus is equal toF�I � P�Asat.
In the nominal condition the center of pressure is almost coincident with the center
of mass, so that the solar radiation force does not provide a considerable torque.
However, if uncertainties of 20 m are imposed on the center ofpressure and center
of mass [WR01], the solar radiation torque can be expressed as:

M�
I � F�I ^ vpmI (3.13)

wherevpm is the position vector from the center of pressure to the center of mass
with components in theYI ZI plane. Figure 3.1b shows the solar radiation torque
disturbanceM�

I in the BPI frame. As expected, in presence of a constant offset
between the center of mass and pressure, a constant torque should be guaranteed.

3.5 Attitude Uncontrolled Motion

The attitude uncontrolled motion of the SSP satellite should be considered in order
to estimate the necessity of an active attitude control. Thestarting attitude error
configuration is assumed equal to zero in terms of angle and their derivatives with
respect to the GCW. That is to impose ¯αI � ᾱ0I with

ᾱ0I � r0 0 0 0 0 0sT. (3.14)

Figure 3.2 shows the behaviour ofαxI αyI andαzI due to the environmental dis-
turbance torques. After just a simulation time of of a small fraction of orbit, the
tolerance accuracy is no longer not satisfied. Although Equations 3.9 are lin-
earised about zero, and the approximation is not effective in case of large angles,
it is evident that an active attitude control system is required.

3.6 Attitude Control Regulators

Two kind of attitude control regulators have been designed in order to assure that
the error angles don’t exceed the tolerances: the classicalPID regulator, and the
optimal LQR.

3.6.1 Proportional Integrative Derivative Regulator

The PID regulator generates a control torqueMPID
jI

around the j axis, as the sum
of a proportional, derivative and integral contributions of the error angleα jI .

MPID
j � Kp jα jI � Ki j

» T

0
α jI dt� Kd j

dα jI

dt
(3.15a)
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Figure 3.2: Full attitude state in the uncontrolled dynamics.

where the proportional, integral and derivative control parameters are chosen such
that:

Kp j � I jpξ jω0 jω1 j � ω2
0 jq (3.16a)

Ki j � I jω0 jω
2
1 jq (3.16b)

Kd j � I jp2ω0 jξ j � ω1 jq (3.16c)

with I j the principal momentum of inertia.

3.6.2 Optimal Linear Quadratic Regulator

The LQR has been considered in order to weigh the performances and the control
inputs distinctly, and to guarantee robustness of the closed loop system. The state
may be available by an estimator since the dimension of the full state is not pro-
hibitive. However, for simplicity, the full state is considered to be known.
The performance to be minimized is the state vectorᾱI since the pointing accu-
racy is given in the GCW frame.
The control torquesM c

I in the BPI frame turn out to be proportional to the states
ᾱ through the gain matrixK att,

M c
I � �K attᾱ. (3.17)

The gain matrix is eventually obtained minimizing the quadratic cost function,

J � » 8
0

�
ᾱTQattᾱ� M c

I
TRattM c

I

�
dt. (3.18)
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Figure 3.3: The cyclic-disturbance accommodating control for the ZE axis [WR01]

The Matlab R© functionlqr has been used to solve the minimization problem, and
to find the resulting gain. Substituting Equation 3.17 in Equation 3.9, the final
closed loop system yields:

dᾱ
dt

� pAatt � Buatt K attq ᾱ� Bdatt M
d
I (3.19)

3.6.3 Cyclic Disturbance Rejection

In order to satisfy the�0.080 pointing accuracy in the presence of large external
disturbances around theZI axis, the attitude control system utilizes a concept of
cyclic-disturbance accommodating control. Since the gravity gradient torque is
expected to be cyclic with a period of two times a day, a feedforward control
torque command is introduced as follow:

M f
zI
� 3µC

r3
pIy � Ixq sinp2nC � φq{2 (3.20)

whereφ depends on the initial attitude of the satellite with respect to the Earth.
In additon, a second-order-filter with a cut-off frequency equal to the main fre-
quency of the disturbance is placed in the control loop as shown in Figure 3.3.
The task of the filter is to attenuate the effect of the gravity gradient torque around
theZI axis using the internal modelling of the disturbance [WR01].

3.7 Attitude Control System

The simulations have been carried out in two different conditions: the Indepen-
dent Transmitter Pointing (ITP) and the One Axis Rotating Transmitter (OART)
in the presence of the environmental disturbances. The samecontrol architecture
described in Section 2.6.2 is considered to be the referencearchitecture for the
attitude control system. In particular, as shown in Figure 2.16, in the absence of
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Table 3.1: PID regulator parameters

X I axis YI axis ZI axis

ω0 nsat�3 nsat�3 nsat� 3
ω1 nsat�1 nsat�1 nsat�1
ξ 0.7 0.7 0.7

geometrical/configuration uncertainties, actuators #1, #2, #14, #5, #8,#9, #11 and
#12 are assigned to provide the required control torque around theXI axis, actua-
tors #3 and #10 aroundYI , while actuators #5 and #6 are assigned to provide the
torque aroundZI .
Although the location of the actuators is not optimized to minimize the interaction
with the orbit and the structural system, this architecturehas some interesting ad-
vantages for this preliminary study. First of all it can provide independent control
torques around each principal axes of inertia, secondly it maximize the lever arm
in each direction, so that it minimizes the force required for each actuator. One of
the principal drawback is a possible strong interaction with the structure, caused
by an expected high modal participation at the corners of thestructure. Thus, the
structural control interaction with respect to the orbit and attitude control systems
appears to be critical. The control parameters for the PID regulator are shown in
Table 3.1 while the matricesQatt andRatt have been chosen to be:

Qatt � ��������1� 1013 0 0 0 0 0
0 3� 1013 0 0 0 0
0 0 4� 1013 0 0 0
0 0 0 1� 1013 0 0
0 0 0 0 3� 1013 0
0 0 0 0 0 4� 1013

�������� (3.21)

Ratt � ��10 0 0
0 10 0
0 0 10

�� (3.22)

3.7.1 The Attitude Zero Initial Condition (AZIC)

In the AZIC, the starting angles are considered equal to zero. The simulations are
carried out using the PID control parameters of Table 3.1 andthe LQR penalty
matrices of Equation 3.21. Both the controllers are capableto keep the angles
into the specific tolerance of 0.080 (Figure 3.4). The PID regulator yield an initial
high elongation, that may be adjusted by a better choice of the control parameters.
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Figure 3.4: α in the ZIC.
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Figure 3.5: Control torque in the AZIC
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Figure 3.6: α in the APIC.

0 0.5 1 1.5 2
−12

−10

−8

−6

−4

−2

0

2
x 10

5

Orbits [−]

C
on

tr
ol

 T
or

qu
es

 [N
m

]

 

 

Mc x
Mc y
Mc z

(a) PID regulator.

0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4
x 10

5

Orbits [−]

C
on

tr
ol

 T
or

qu
es

 [N
m

]

 

 

Mc x
Mc y
Mc z

(b) LQR.

Figure 3.7: Control torque in the APIC.

Contrary, the LQR produces a smoother action on the attitudeangles, however
it appears that an integral control action is needed to remove the regime errors.
Despite this, the performances of the controllers are acceptable for the purpose
of a preliminary study of the structural and control interaction. Moreover, the
control torques required for both the PID regulator and the LQR are comparable
(Figure 3.5). As expected, in the nominal operative life of the satellite a signifi-
cant torque around theZI axis is required, in order to counteract the high gravity
gradient torque.

3.7.2 Attitude Perturbed Initial Condition (APIC)

In the APIC, a starting error of 100 have been imposed toαxI , αxI andαxI and zero
initial conditions to their derivatives. Figure 3.6 show the behaviours of the angles
αI resulting from the LQR and the PID regulators actions. Both the controllers
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Figure 3.8: Actuator #1 in the APIC.

have enough authority to bring the angles back into the tolerance of�0.080 in less
than one orbit from the same starting initial conditions. Asexpected, the control
torques (Figure 3.7) are much higher than those required in the nominal operative
life of the satellite (see Section 3.7.1). However, although both the controllers are
capable to restore the nominal configuration in a time of the order of the orbit,
the distribution of penalties imposed to the LQR yields a lower control action. As
a consequence, the same considerations may be referred to the actuator actions.
For example, considering the actuator #1, Figure 3.8 shows that an higher level
of force is required by the PID regulator. In the end, although the two controllers
show comparable behaviour, the LQR is preferable since it permits to better im-
pose penalties on the states and the control inputs. Moreover, it may be further
integrated with the already designed LQR orbit control.
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Chapter 4

Structural Model

In this chapter, a FE model of the Abacus-like structure is developed as a bidi-
mensional frame and constituted by beam elements. The geometric properties are
chosen such that some important features of the reference Abacus concept, iner-
tial characteristics and the first modal frequency, are met [WR01]. This model is
used to carry out the modal analysis of the structure and the results are compared
with those obtained from an analogous model developed with another software
for finite element analysis. The resulting second order dynamical system is then
transformed into the first order system of equations representing the state-space
realization of the dynamical model.

4.1 Finite Element Model

4.1.1 The Bidimensional Reference Configuration

This section deals with the development of a FE model of the Abacus satellite
concept. In order to easily study the dynamics and control ofthe structure, a Mat-
lab

R© routine has been developed to determine the mass, damping and stiffness
matrices of the satellite.
The ARF satellite is characterized by a square platform and amicrowave trans-
mitting system placed along a side of the array platform as shown in Figure 1.3.
The latter is made of a 500 m diameter antenna and an earth-tracking reflector
(500�700 m) with a total mass of about 25� 106 kg. The square platform is
mainly a bidimensional frame which supports the solar arrays plane (3.2 � 3.2
km) composed itself by smaller sub-panels (40�200 m) as depicted in Figure 4.1.
The mass of the square platform is 21�106 kg, that results to a total satellite mass
of 24.8� 106 kg.
According to the purpose of the present work, that is a preliminary study on an
orbit and attitude control together with a vibration suppression system, the mi-
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Figure 4.1: The ARF satellite modelled as a frame structure.

crowave transmitting system has been neglected. Moreover,the square platform
has been modelled by straight elements connected together and organized in a
bidimensional frame configuration. The element cross-sections properties have
not been available, thus, they have been calculated iteratively such that the be-
haviour of the global structure is comparable with that of the reference model (see
Section 4.1.3).

4.1.2 The Structural Reference Systems

Two reference systems have been employed in the FE modelling: the Struc-
tural Global (SG) frame is referred to the global structure,while the Structural
Local (SL) frame has been adopted to express the equilibriumequations for each
element.
The SG frame is defined byXSYSZS and it is centered in one of the corner of
the square platform of the satellite.XS andYS are the in-plane axes along the
side-directions, whileZS is in the out-of-plane direction such as to define a right-
handed orthogonal coordinate system. The SL frame is the local coordinate sys-
tem defined byXLYLYL. It is placed in the geometric-center of the element cross-
section. TheYL andZL axes are in the cross-section plane withYL coincident to
ZS, while XL completes a right-handed orthogonal coordinate system.

55



4.1 Finite Element Model

Table 4.1: Comparison between the global structural parameters.

Model parameters Reference parameters

Total mass [kg] 2.465�107 2.480�107

fel [Hz] 0.001807 0.001800
Ix [kgm2] 4.9023�1013 4.6�1013

Iy [kgm2] 2.4492�1013 2.8�1013

Iz [kgm2] 2.4532�1013 1.8�1013

Table 4.2: Elemental cross-section properties.

Prop. A Prop. B Prop. C Prop. D

A [m2] 0.1907086 0.0515676 0.0139439 0.0037704
Ixsec [m4] 3.85606102 0.28194037 0.02061440 0.00150725
Iysec [m4] 1.92803051 0.14097019 0.01030720 0.00075362
Izsec [m4] 1.92803051 0.14097019 0.01030720 0.00075362

4.1.3 The Finite Element Model

The bidimensional frame structure is built up by a series of straight beam element.
The degrees of freedom for each element are three displacements and three rota-
tions of the extremity nodes. Thus the total number of degrees of freedom for
each element is 12 [LQ03].
The beam elements are placed to form a grid in theXSYS plane, with 80 elements
alongXS and 16 elements alongYS. The nodes are exactly placed at the every
intersection of the grid [WR01].
The beams are supposed to be made of a uniform and isotropic material. Expect-
ing a very high slenderness of the sub-beams, the Aluminium 7075 have been
chosen for its good behaviour in compression-stability between the other metal
materials, and for its proven reliability in the space field.The composite materials
have been temporarily excluded for their high cost and unproven behaviour. The
Young modulus for the Aluminium 7075 is assumed to be E� 71 GPa, the Pois-
son’s ratioν � 0.33 and densityρ � 2768.
Four different cross-section properties have been identified. They have been it-
eratively calculated in order to obtain values for the totalmass, the first modal
frequency and the principal moments of inertia of the whole satellite compara-
ble with those of the ARF reference concept. Table 4.2 shows the cross-section
properties which give the value of total mass, first modal frequency and principal
moments of inertia of the whole satellite listed in Table 4.1.
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4.1.4 Dynamic Problem

The dynamic problem is written as:

M :A � Cd
9A � KA � Γu (4.1)

whereM , Cd andK are respectively the mass, damping and stiffness matrices,Γ
is the control-action matrix, whileA andu are respectively the global degrees of
freedom and the actuators input.

Local Degrees of Freedom

The element displacement vector is:

ae � ru1 v1 w1 ϑx1 ϑy1 ϑz1 u2 v2 w2 ϑx2 ϑy2 ϑz2sT (4.2)

where 1 and 2 indexes are referred to the element nodes at the extremity, whileu,
v andw stand for the translation displacements, andϑx, ϑy andϑz represent the
three rotational displacement. Thus, the element stiffness and the mass matrices
are 12�12 matrices. The components of the stiffness matrix are listed as follows,

ke �
������������������������

EA
2a 0 0 0 0 0 � EA

2a 0 0 0 0 0

3EIzL
2a3 0 0 0

3EIzL
2a2 0 � 3EIzL

2a3 0 0 0
3EIzL
2a2

3EIyL
2a3 0 � 3EIyL

2a2 0 0 0 � 3EIyL
2a3 0 � 3EIyL

2a2 0

GJ
2a 0 0 0 0 0 �GJ

2a 0 0

2EIyL
a 0 0 0

3EIyL
2a2 0

EIyL
a 0

2EIzL
a 0 � 3EIzL

2a2 0 0 0
EIzL

a

EA
2a 0 0 0 0 0

3EIzL
2a3 0 0 0 � 3EIzL

2a2

sy.
3EIyL
2a3 0

3EIyL
2a2 0

GJ
2a 0 0

2EIyL
a 0

2EIzL
a

������������������������
(4.3)

whereIyL andIzL are the second moment of area of the element cross-sections with
respect to theyL andzL axes, respectively.
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4.1 Finite Element Model

(a) Frame element in space with twelve DOFs. (b) Coordinate transformation for a
frame element in space.

Figure 4.2: Frame element in local and global coordinates

The element mass matrix is:

me � ρAa
105

����������������
70 0 0 0 0 0 35 0 0 0 0 0

78 0 0 0 22a 0 27 0 0 0 �13a
78 0 �22a 0 0 0 27 0 13a 0

70r2
x 0 0 0 0 0 �35r2

x 0 0
8a2 0 0 0 �13a 0 �6a2 0

8a2 0 13a 0 0 0 �6a2

70 0 0 0 0 0
78 0 0 0 �22a

sy. 78 0 22a 0
70r2

x 0 0
8a2 0

8a2

����������������
(4.4)

where

r2
x � IxL

A
(4.5)

in which Ix is the second moment of area of the element cross-section with respect
to thexL axis.

4.1.5 Global Degrees of Freedom

The element matrices should be rotated into the global coordinate system in order
to express the dynamic equations involving the global displacement vectorA.
Considering Figure 4.2, Assuming that the local nodes 1 and 2of the element cor-
respond to global nodesi and j in the global displacement vector, respectively. As
stated by (4.2), the displacement of a node in the SL frame hasthree translational
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components in thexL, yL andzL directions, and three rotational components with
respect to thex, y andz axes for a total of 6 degrees of freedom.
The six displacements of theith node in the SG frame are listed in theA vector in
the same blockAe

i , from the position 6i�5 to the position 6i. In particular the first
three componentsA6i�5, A6i�4 andA6i�3 correspond respectively to the translation
of the ith node along theXS, YS andZS axes, whileA6i�2, A6i�1 andA6i are the
three rotational displacements around theXS, YS andZS axes (Figure 4.2b). The
same convention is applied to the nodej in order to identified an equivalent block
Ae

j. The degrees of freedom of an elemente is expressed as:

Ae � "
Ae

i
Ae

j

*
(4.6)

ThusAe results to be:

Ae � rA6i�5 A6i�4 A6i�3 A6i�2 A6i�1 A6i A6 j�5 A6 j�4 A6 j�3 A6 j�2 A6 j�1 A6 jsT
(4.7)

The coordinate transformation gives the relationship betweenae andAe:

ae � TeAe (4.8)

whereTe is the transformation matrix for the elemente given by

T � ����Te
3 0 0 0

0 Te
3 0 0

0 0 Te
3 0

0 0 0 Te
3

���� (4.9)

in which Te
3 is the direction cosines matrix between the SL and the SG reference

frames for the elemente.
Using the transformation matrixTe, the mass and stiffness matrices of the element
e in the global coordinate system are:

K e � TeT
keTe (4.10)

Me � TeT
meTe (4.11)

Assembling Procedure

Ones that the mass and stiffness matrices of the singular element have been con-
structed, the global matrices must be assembled. An ordinary procedure is to
express the global matrices as the sum of the contribution coming from each ele-
ment:

K �
ȩ

K̃ e M �
ȩ

M̃e (4.12)
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4.1 Finite Element Model

whereK̃ e andM̃e are the expanded matrices of the elemente. They can be calcu-
lated as:

K̃ e � HeT
K eHe M̃e � HeT

MeHe (4.13)

whereHe is the extraction matrix which relates the degrees of freedom of the
elemente to the vector of the global degrees of freedomA:

Ae � HeA (4.14)

This procedure results to the global mass and stiffness matrices of dimension
6nnod� 6nnod. Considering the large dimension of the system, the procedure de-
scribed before is not convenient in terms of computational time. Indeed a large
number of zero values should be memorized at each time.
Another procedure has been investigated which involves theuse of a pointing vec-
tor I e for each elemente. The position of each parameter in theI e vector indicates
the degree of freedom in theAe , while the value of each parameter stand for the
relative position in theA vector. Then, the global matricesK andM are gradually
populated by adding up the contribute of every element [coo].

Damping Matrix

The definition of a plausible damping matrixCd has been investigated. A diagonal
modal damping matrix is assumed in accordance with the experimental results,
which usually reveal uncoupled damping on each mode. As a consequence, if
Equation 4.1 are written using the modal transformationA � Uq:

UTMU:q � UTCdU 9A � UTKUA � UT
Γu (4.15)

it is reasonable to assume thatCd should has the same property of orthogonality
as the mass and stiffness matrices with respect to the modal matrixU. A model
often used to describe the structural damping considers thedamping matrix as a
linear combination of the mass and stiffness matrices:

Cd � αMM � αKK (4.16)

The proportionality with respect to the stiffness matrix can be refereable to a
viscous-elastic constitutive law of the material, while the proportionality to the
mass matrix is more complex and need further studies. For this reason, since a
low damping is preferable, in order to prove the effectiveness of a vibration sup-
pression system, the proportionality to the mass matrix hasbeen neglected, while
αK has been taken equal to 0.005, considering that a value between 0.1 and 0.01
is usually assumed for a bolted structure.
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Dynamic Problem

The modal analysis is useful to easily understand the behaviour of the structure in
terms of frequency response. First of all it is necessary to evaluate the first modal
frequencies of the structure in order to predict an eventualstrong interaction with
the orbit and attitude low-bandwidth control. Secondly themodal analysis may
be employed to simplify the behaviour of the structure by considering a proper
number of flexible modes (see Chapter 5). In the end, the results coming from
the modal analysis can be easily compared with a structural-analysis program
available on the market.
The dynamic problem is stated by the following equation system

M:a� Ka � 0 (4.17)

Assuming the harmonic solutiona � Φeiωt, the problem can be rewritten as�
K � ω2M

�
Φeiωt � 0 (4.18)

The non trivial solution is found by imposing

det
�
K � ω2M

� � 0 (4.19)

which leads to the determination of the modal frequencies from the eigenvalues
ω. The associated eigenvectorsΦi are the modal shapes of the structure.
The computation of the modal frequency and their eigenvector is accomplished in
Matlab R© by means of theeigs function which calculates the firstk eigenvalues,
wherek is specified by the user.

4.1.6 Structural Model Comparison

Here after, the results obtained by using the implemented algorithm are compared
with the results computed by Nastran on the same structure already defined in
Section 4.1.3. Table 4.3 shows the first eight modal frequencies with the associ-
ated modes depicted in the Figures from 4.3 to 4.10. As it is evident, some modes
at a similar modal frequency are switched. However, Table 4.3 shows that the
error in terms of frequencies is not relevant, and that the modal behaviour of the
structure can be considered to be sufficiently known.
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4.1 Finite Element Model

Table 4.3: Comparison of the modal frequencies.

Nastran Matlab Error [%]

Freq. 1 0.0018038 0.0018068 0.16631
Freq. 2 0.0029589 0.0029660 0.23995
Freq. 3 0.0029913 0.0029991 0.26076
Freq. 4 0.0047973 0.0048172 0.41482
Freq. 5 0.0048123 0.0048203 0.16624
Freq. 6 0.0079923 0.0080274 0.43917
Freq. 7 0.0080272 0.0080456 0.22922
Freq. 8 0.0084396 0.0084718 0.38153

(a) Nastran first mode.
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(b) First mode using the imple-
mented algorithm on Matlab.

Figure 4.3: Comparison of the first modal mode

(a) Nastran second mode.
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(b) Second mode using the imple-
mented algorithm on Matlab.

Figure 4.4: Comparison of the second modal mode

62



Structural Model

(a) Nastran third mode.
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(b) Third mode using the imple-
mented algorithm on Matlab.

Figure 4.5: Comparison of the third modal mode

(a) Nastran fourth mode.
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(b) Fourth mode using the imple-
mented algorithm on Matlab.

Figure 4.6: Comparison of the fourth modal mode

(a) Nastran fifth mode.
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(b) Fifth mode using the imple-
mented algorithm on Matlab.

Figure 4.7: Comparison of the fifth modal mode
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(a) Nastran sixth mode.
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(b) Sixth mode using the imple-
mented algorithm on Matlab.

Figure 4.8: Comparison of the sixth modal mode

(a) Nastran seventh mode.
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(b) Seventh mode using the implemented al-
gorithm on Matlab.

Figure 4.9: Comparison of the seventh modal mode

(a) Nastran eighth mode.
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(b) Eighth mode using the implemented algo-
rithm on Matlab.

Figure 4.10: Comparison of the eighth modal mode
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4.2 State-Space Realization

The dynamic problem defined by Equation (4.1) can be transformed in the state

space defining the state vectorx � �
A 9A�T

. In the previous expressionΓu is the

control force vector.
The state space realization can be written as9x � Ax � Bu (4.20)

in which

A � �
0 I�M̃�1K̃ �M̃�1C̃d

�
B � �

0�M̃�1
Γ̃

�
(4.21)

Considering a colocated control system the equation for thesensors measures is

y � Cx (4.22)

where

C � �
Γ̃

T 0
0 Γ̃

T

�
(4.23)

In the previous expressions̃M , K̃ , C̃d andΓ̃ are the projection ofM , K , Cd andΓ
onto the space of the flexible modes.

M̃ � ΦTMΦ (4.24a)

C̃d � ΦTCdΦ (4.24b)

K̃ � ΦTKΦ (4.24c)

Γ̃ � ΦT
Γ (4.24d)

in whichΦ is the modal matrix where only the flexible modes of the structure are
retained.
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Chapter 5

Model reduction

Numerical simulation of dynamical systems, such as FEM, usually results in com-
plex high-order dynamic models. It is often desirable, e.g.for control design is-
sues, to approximate these models by simpler models with reduced order. In this
process it is important to design the reduced model so as to capture the important
properties of the original high-order model. Until relatively recently model re-
duction was often based on physical intuition, that usuallymeans, for mechanical
engineers, removing high frequency vibration modes.
In particular, in this chapter it is firstly presented the classical modal truncation,
then the necessity of satisfactory approximation of the model behaviour at low
frequency leads to investigate the singular perturbation approximation method. A
slightly different technique is based on matching some important properties of
the system, i.e. the frequency and power moments. Finally the promising fam-
ily of balanced reductions is described as a possible effective mean of reducing
the order of a dynamical model. In the last section of the chapter it is performed
the order reduction of the structural model of the satelliteemploying the intro-
duced methods. Since the presented model reduction techniques lean on some
basic properties regarding the linear systems behaviour, Appendix B gives a brief
theoretical background on the significant properties.

5.1 Preliminary Concepts

Given a dynamic systemS of usually high ordern, a model reduction is a pro-
cedure that yields some approximate modelSr of ordernr   n and such that the
following properties, if possible, are satisfied [ASG]:

• The approximation error is small, and there exists an error bound.

• System properties stability is preserved.
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• The procedure is computationally stable and efficient.

Let S be a LTI model described by the set of equations (4.20) and (4.22),9x � Ax� Bu (5.1a)

y � Cx� Du (5.1b)

The reduced order modelSr to be determined has the same structure asS, that is,
a linear and time-invariant model described by9xr � Ar xr � Bru (5.2a)

yr � Cr xr � Dru (5.2b)

wherexr is a reduced order state andyr is the output of the reduced order state.

5.2 Model Reduction by Truncation

Dealing with state-space systems, truncation of the state vector is the natural
choice for obtaining a reduced order model. In this section several reduction tech-
niques are evaluated where truncation of some states are able to partially preserve
selected properties of the original system.
The basic idea behind all the considered techniques is to transform the state vec-
tor into a new set of coordinates and then truncate the new state obtained with the
transformation. The procedure can be summarized as follow

Algorithm 1. Given a LTI systemS written as in (5.1):

1. A preferred realization can be obtained via the similarity transformation
T � rT1 T2s.

x � �
T1 T2

� "x11
x12* and

"
x11
x12* � �

RT
1

RT
2

�
x (5.3)

whereT1RT
1 � T2RT

2 � In.

2. This operation transforms the realization of the original system as

A Ñ A1 � �
RT

1AT1 RT
1AT2

RT
2AT1 RT

2AT2

�
, BÑ B1 � �

RT
1B

RT
2B

�
C Ñ C1 � �

CT1 CT2

�
(5.4)

3. A reduced model (5.2) is then obtained by truncating the state vector so as
to preserve only the statexr � x11.

Ar � RT
1AT1, Br � RT

1B, Cr � CT1, Dr � D (5.5)
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5.2.1 Minimal Transfer Equivalent Realization

In Section B.1 it has been shown that different realizations can have the same
transfer function. This leads to the following definition.

Definition 1. Two distinct state-space realizations of a linear time-invariant sys-
tem are said to be transfer equivalent if they have the same transfer function.

In the context of model reduction, given a state-space realizationpA, B, C, Dq
of ordern, the realization is minimal in the sense that there exists noother transfer
equivalent realizationpAr , Br , Cr , Drq of ordernr smaller thann. The following
theorem, which is due to Kalman, gives a characterization ofminimal state space
realizations [DS00].

Theorem 1. The state-space realizationpA, B, C, Dq is minimal if, and only if, it
is controllable and observable.

An immediate implication is that if a given realization is not minimal, one
should be able to obtain a transfer equivalent realization with reduced order. A
transfer function with minimal degree is obtained whenpAr , Br , Cr , Drq is con-
trollable and observable. A constructive procedure to compute such a minimal re-
alization is based on the calculation of the controllable and observable subspaces.
The following algorithm allows to build a minimal transfer equivalent realization
in two steps. In the first step, it extracts the controllable subspace ofpA, B, C, Dq
then, in the second step, it obtains the observable subspaceof the controllable
system built in step one. The resulting system is controllable and observable.

Algorithm 2. Given the state-space realizationpA, B, C, Dq of ordern:

1. Calculate the singular value decomposition

C � �
Uc1 Uc2

� �Σc 0
0 0

��
VT

c1

VT
c2

� � Uc1ΣcV
T
c1

(5.6)

DefineTc :� Uc1Σ
1{2
c .

2. Calculate the singular value decomposition

OTc � �
Uco1 Uco2

� �Σco 0
0 0

� �
VT

co1

VT
co2

� � Uco1ΣcoV
T
co1

(5.7)

3. Compute the matrices

T1 � Uc1Σ
1{2
c Vco1Σ

�1{2
co , R1 � Uc1Σ

�1{2
c Vco1Σ

1{2
co (5.8)
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The state-space realization of ordernm, built using (5.4) and (5.5), is a minimal
transfer equivalent realization ofpA, B, C, Dq.

Caution must be exerted when these results are to be followedby the design of
a control law. It should be said that the deletion of unobservable states is always
desirable (given that the output includes all variables of interest), but it is not al-
ways desirable to delete uncontrollable states.
Reducing the model to a minimal degree realization is necessary in order to im-
plement model reduction techniques beyond the minimal degree.

5.2.2 Modal Truncation

Truncation methods of model reduction seek to remove unimportant states from
state-space models. As mentioned before, an ordinary approach, known as modal
truncation, seeks to remove those states that correspond tofast modes, i.e. high
frequency modes.
The main advantage of modal truncation, beyond its inherentsimplicity, is that
the poles of the reduced order system are a subset of the polesof the full order
system. This means that the most important frequencies of the dynamical sys-
tem are retained in the reduced model. In the following algorithm, the simple
implementation of modal truncation is outlined.

Algorithm 3. Given the minimal state-space realizationpA, B, C, Dq of ordern:

1. Compute the solution to the eigenvalue problem associated with matrix A
and determine the right eigenvectors matrix,

Φ � �
Φ1 . . . Φn

�
(5.9)

2. The similarity transformation (5.3) withT � Φ andR � Φ�T puts ma-
trix A into a diagonal form (known as Jordan form) and statex into modal
coordinates1. Wanting to discard those modes with the highest natural fre-
quencies, order the eigenvalues so that|λi | is non-decreasing with increasing
i.

3. Divide the state vectorx1 into components to be retained and components
to be discarded

x1 � "
x11
x12* (5.10)

in which thenr-vectorx11 contains the components to be retained andx12
contains those states to be discarded.

1This is strictly true ifA has distinct eigenvalues. Although, for multiple eigenvalues, it is
possible to transform it into a block diagonal form (see [Kai80]).
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4. Partition the matricesT andR in conformity withx1
T � �

T1 T2

�
, R � �

R1 R2

�
(5.11)

5. The reduced model of ordernr is then obtained using (5.4) and (5.5).

The error incurred in modal truncation depends not only on the λi, but also
on the size of the residuesCiBi. If modes labellednr � 1 to n are omitted by
truncation to obtainGr , the following holds [GL94],

‖G � Gr‖8 ¤ ņ

i�nr�1

‖CiBi‖2

|ℜ pλiq| . (5.12)

Another property that surely holds between the transfer function matricesG and
Gr , is

Gr p8q � G p8q (5.13)

which means that all reduced order models obtained by truncation have perfect
matching at infinite frequency.

5.2.3 Singular Perturbation Approximation

The steady state error obtained with state-space truncation may be unacceptably
large for applications requiring good low-frequency fidelity. In these cases, it is
appropriate to use a singular perturbation approximation in which the dynamics
associated with the discarded states, i.e. the fast dynamics, is statically recovered
in the reduced order model. The following algorithm sum up the procedure used to
obtain the reduced model of the LTI systemS, employing the singular perturbation
approximation.

Algorithm 4. Given the minimal state-space realizationpA, B, C, Dq of ordern:

1. Compute the similarity transformation (5.4) with matricesT andR calcu-
lated as in Algorithm 3

2. Approximate the low-frequency behaviour of the fast dynamics of the sys-
tem, represented byx12, by setting9x12 � 0

0 � A1
21x

1
1 � A1

22x
1
2 � B1

2u (5.14)

which, providedA1
22 non singular, yields

x12 � �A1�1

22 pA1
21x

1
1 � B1

2uq (5.15)
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3. Eliminatingx12 from the equations associated with9x11, the reduced model of
ordernr can be written as

Ar � A1
11� A1

12A
1�1

22 A1
21, Br � B1

1 � A1
12A

1�1

22 B1
2 (5.16a)

Cr � C1
1 � C1

2A
1�1

22 A1
21, Dr � D1 � C1

2A
1�1

22 B1
2 (5.16b)

It can be shown that the singular perturbation approach is related to state-space
truncation by a bilinear transformations ÞÑ 1{s (see [GL94]). Hence, this method
achieves perfect approximation at steady state,

Gr p0q � G p0q (5.17)

5.2.4 Matching Frequency and Power Moments

The following algorithm is able to reduce a minimal realization in such a manner
that the reduced model matches a subset of low frequency moments and a subset
of high frequency moments

The next lemma shows how to develop reduced order models thatmatch a subset
of the high frequency and power moments, that is, the Markov and the covariance
parameters.

Lemma 1. Given the minimal and asymptotically stable realizationpA, B, C, 0q
of ordern, compute the symmetric and positive definite controllability grammian
Wc. Calculate the singular value decomposition

Wq � �
Uq1 Uq2

� �Σq 0
0 0

� �
VT

q1

VT
q2

� � Uq1ΣqV
T
q1 (5.18)

where

Wq :� ����� C
CA
...

CAq�1

����� (5.19)

Then compute the following matrices

Tq1 � WcVq1

�
VT

q1WcVq1

��1
, Rq1 � Vq1 (5.20)

The preferred realization of ordernr defined by

Ar � RT
q1ATq1, Br � RT

q1B, Cr � CTq1, Dr � D (5.21)

is asymptotically stable and matches the firstq Mi p j8q and the firstq Ri p j8q,
wherei � 0, . . . , q� 1, of (A, B, C, 0). It is worth to notice that the stability of
the reduced system comes from the minimality of the originalsystem
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Low frequency parameters can be matched by means of the following lemma

Lemma 2. Given the minimal and asymptotically stable realization (A, B, C, 0)
of ordern and computed the controllability grammianWc, calculate the singular
value decomposition

Wp � �
Up1 Up2

� �Σp 0
0 0

� �
VT

p1

VT
p2

� � Up1ΣpV
T
p1 (5.22)

in which

Wp :� �����CA�1

CA�2

...

CA�p

����� (5.23)

Calculate the matrices

Tp1 � WcVp1

�
VT

p1WcVp1

��1
, Rp1 � Vp1 (5.24)

The preferred realization of ordernr given by

Ar � RT
p1ATp1, Br � RT

p1B, Cr � CTp1, Dr � D (5.25)

is asymptotically stable and matches the firstp Mi p j0q and the firstp Ri p j0q,
wherei � 0, . . . , p� 1, of (A, B, C, 0).

Matching the first low frequency moments guarantees that thesteady state
values of the response of the system are preserved. On the other hand, matching
the high frequency moments guarantees that the time momentsof the impulse
response are matched.
Combining the results expressed by Lemma 1 and Lemma 2, it is possible to
develop an algorithm that can be employed to simultaneouslymatch a set of high
and low frequency moments.

Algorithm 5. Given the minimal state-space realizationpA, B, C, 0q of ordern:

1. Calculate the singular value decomposition�
Wq

Wp

� � �
U1 U2

� �Σ 0
0 0

� �
VT

1
VT

2

� � U1ΣV
T
1 (5.26)

where matricesWq andWp are defined by 5.19 and 5.22

2. Define the matrices

T1 � WcV1

�
VT

1 WcV1

��1
, R1 � V1 (5.27)
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3. Produce the following state-space realization of ordernr

Ar � RT
1AT1, Br � RT

1B, Cr � CT1, Dr � D (5.28)

The latter computed model matches the firstp low frequency moments and
the firstq high frequency moments, as stated by Lemma 1 and Lemma 2.
It is interesting to notice that the projections generate reduced order models that
are not guaranteed to approximate the original system according to any system
norm.

5.2.5 Balanced Truncation

Balanced truncation is an interesting technique for model reduction because of
its good absolute-error truncation properties. It requires a state truncation of a
system which is represented in a preferred set of coordinates, known as balanced
coordinates.

Definition 2. The asymptotically stable and time-invariant state-spacerealizationpA, B, C, Dq of ordern, is said to be in balanced coordinates if the controllability
and observability grammians,Wc and Wo, are equal and diagonal. Hence, the
following hold

AW� WAT � BBT � 0 (5.29a)

ATW� WA�CTC � 0 (5.29b)

where

Wc � Wo � W � ���σ1Ir1 0 0

0
. . . 0

0 0 σmIrm

��� , σi , σ j andσi ¡ 0 �i (5.30)

in whichn � r1 � . . .� rm, eachr i being the multiplicity of the correspondentσi.
The balanced realization is said to be an ordered balanced realization if, in addi-
tion,σ1 ¡ . . . ¡ σm ¡ 0.

The following theorem, concerned with the existence and uniqueness of bal-
anced realization, can be proved.

Theorem 2. A given realizationpA, B, C, Dq admits a balanced representation if
and only if it is minimal and asymptotically stable.

Algorithm 6. Given the minimal and asymptotically stable systempA, B, C, Dq
of ordern:
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1. Compute the controllability grammianWc and factorize it such that

Wc � FTF (5.31)

2. Calculate the observability grammianWo and the singular value decompo-
sition

FWoF
T � �

U1 U2

� �Σ2
1 0

0 Σ2
2

� �
UT

1
U t

2

�
(5.32)

whereΣ � diagpσ1Ir1, . . . , σmIrmq and theσi are the Hankel singular val-
ues.

3. The following matrices

T1 � FTU1Σ
�1{2
1 , R1 � F�1U1Σ

1{2
1 (5.33)

produce the reduced model of ordernr obtained by truncation of the original
system transformed in balanced coordinates.

Ar � RT
1AT1, Br � RT

1B, Cr � CT1, Dr � D (5.34)

In practice, this approximation method provides very efficient and good ap-
proximate models. It eliminates the poorly reachable and poorly observable states
from a state space model.
As mentioned before, balanced truncation is attractive also due to its good trunca-
tion error properties. In particular the following relation can be proved to provide
an upper bound for the infinity norm of the model reduction error (see [dVS87])

‖G � Gr‖8 ¤ 2
ņ

i�nr�1

σi . (5.35)

5.3 Application of the Reduction Algorithms

In control theory, eigenvalues define a system stability, whereas Hankel singular
values define the energy of each state in the system [BB94]. Keeping larger en-
ergy states of a system preserves most of its characteristics in terms of stability,
frequency, and time responses. In virtue of this consideration, the rationale ac-
cording to which the order of the reduced system can be selected is analysing the
rate of decay of the the Hankel singular values of the structural model developed
in Chapter 4. Referring to a system in which a number of collocated sensors and
actuators are employed as in Figure 5.1, the associated minimal dynamical system
(A,B,C,D) of order 56 is then considered. In Figure 5.2 are shown the determined
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# 1

# 2 # 3

# 4

# 5

# 6

# 7

# 8
# 9

Figure 5.1: Actuators pattern employed in generating the minimal structural model of
order 56.

Hankel singular values for this system in which the first thirty modes have been
computed, resulting to be a sixth order system. Two huge drops in their magni-
tude can be noticed between the eighth and the ninth singularvalue and between
the twelfth and the thirteenth. Consequently, in Figures 5.4 - 5.7 are depicted the
Bode plots of the reduced systems obtained using the aforementioned algorithms
in comparison with those of the full-order system. As an illustrative example, the
response from input 4 to output 4 is showed. Although this choice is to be consid-
ered not a limiting one for the interpretation of the results. It is clear that, when
employing the matching moments technique, one cannot directly select the order
of the reduced model. It is instead necessary to choose the number of the mo-
ments at low and high frequency that are desired to be matched. The order of the
reduce system is then computed by the implemented routine itself. As concern
the modal truncation, the singular perturbation approximation and the balanced
reduction, that is for those techniques in which the order ofthe reduced system
can be explicitly imposed, the twelfth order systems, as expected, better approxi-
mate the full order system behaviour. A little increasing inthe dimensions of the
system (eighth to twelfth order) allows to achieve a better behaviour at very low
frequencies and permits a good match of the peaks of the Bode magnitude plot in
the frequency band between 10�3 and 10�2 Hz, this being the frequency band of
interest for the first modes of the structure. On the other hand, when the matching
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Figure 5.2: Hankel Singular Values for the considered full dynamical system of the
56th order.

moments method is used, requiring to match just the first low frequency moments
leads to a reduced system of the 18th order, whereas matchingthe first two low
frequency moments entails a reduced-order model of the 36thorder. Hence, this
technique does not appear to be effective for the problem of interest in the present
work.
Among the remaining methods, the singular perturbation approximation provides
the best approximation of the full order system at very low frequency, as antic-
ipated by the given theoretical considerations in Section 5.2.3, allows a perfect
match at the lowest frequencies. Nevertheless, since the resulting reduced sys-
tem is not strictly proper, it shows a non-zero feed-throughand a greatly different
high-frequency response.
Balanced reductions have the main advantage of eliminatingthe less controllable
and observable states and, at the same time, provide a valid global frequency be-
haviour of the reduced system, very much comparable to that obtained by modal
truncation.
In Table 5.1 are reported the approximation errors, measured as‖G�Gr‖8, made
by the different reduction methods described. It can be noticed that, since the
matching moments algorithm does not provide any bound to that error, it turns
out to be an order of magnitude greater than the errors resulting from the other
reduction methods, and even worse if the 36th order is to be used. Concerning the
other techniques, the infinity norm of the error is essentially the same, regardless
the order and the method used, apart from the 12th order reduced system obtained
by balancing the state, which shows a roughly halved error.
Drawing on the previous considerations, a reduced model of order twelve is cho-
sen. Besides, for the next developments regarding the design of a vibration sup-
pression system, it will be useful to interpret the results focusing onto the struc-
tural modes behaviour. Hence, for clarity’s sake, the choice has fallen onto the
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Figure 5.3: Bode plots of the full order model, 56th order. From input 4 to output 4.
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Figure 5.4: Bode plots of the reduced order models. Modal truncation, 8th and 12th

order. From input 4 to output 4.

simple modal truncation, even though other techniques, e.g. balanced truncation
of order 12, appear to be more effective.
In Chapter 4 a modal analysis of the FE model of the satellite structure has been
carried out. It can be noticed that a reduced order system (Ar ,Br ,Cr ,Dr) of order
twelve entails the inclusion of six modes, implying the exclusion of the seventh
mode which has an associated frequency closed to the previous one. This con-
sideration motivates the adoption of a reduced model in which seven modes are
included, i.e. a reduced system of order fourteen. In Figure5.8 is illustrated the
frequency behaviour of the chosen reduced order model, in comparison with the
full, 56th order system.
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Figure 5.5: Bode plots of the reduced order models. Singular perturbation approxi-
mation, 8th and 12th order. From input 4 to output 4.
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Figure 5.6: Bode plots of the reduced order models. Matching moments, 8th and 12th

order. From input 4 to output 4.
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Figure 5.7: Bode plots of the reduced order models. Balanced reduction, 8th and 12th

order. From input 4 to output 4.
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Table 5.1: H8 norm of the approximation error committed in using the different re-
duction technique.

Method
Modal Singular Matching Balanced

Truncation Perturbation Moments Truncation
Order 8 12 14 8 12 18 36 8 12

‖G � Gr‖8 0.2707 0.2707 0.2707 0.2707 0.2707 1.6253 2.4737 0.2707 0.1038

10
−4

10
−3

10
−2

10
−1

−140

−120

−100

−80

−60

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency  (Hz)

(a) Magnitude Bode plot.

10
−4

10
−3

10
−2

10
−1

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (Hz)

(b) Phase Bode plot.

Figure 5.8: Bode plots of the final considered reduced order model. Modal truncation,
14th order. From input 4 to output 4.
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Chapter 6

Vibration Suppression System

In Section 1.3 is underlined the appropriateness of having acontrol system which
carries out vibration suppression.
To this concern, when designing controllers for dynamical models (even linearised
models) of large space structures, three major problems usually arise [JK93].

• Many of the available control methods assume that the full-state vector,
or an estimate of it, is available. However, in most practical situations,
the estimation algorithms and associated control laws encounter difficulties
when only a low-dimensioned subset of the state vector is measured. On
the other hand, real time implementation of high-dimensioned estimators
are computationally unattractive.

• It is computationally expansive to design controllers for extremely high or-
der systems such as those arising from FE models of flexible structure. It is
usually more feasible to design a controller based on a reduced-order, which
includes only the most important subset of vibration modes.

6.1 Linear Output Feedback Control

When the full-state vector of a large dynamical system is notneither available nor
practical to be reconstructed by an estimator, there existsan alternative solution,
often profitably applicable. It is based on the idea of producing a control action
proportional to the available measures, that is,

u � �Ky . (6.1)

In this case, an estimation of the full-state vector is not necessary and a consider-
able simplification of the resulting control system can be achieved. Nevertheless,
this simplification usually entails the optimal value of an appropriate performance
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index to be higher than that that could be determined by meansof a classical
LQR. For this reason the output feedback control is known as to be a sub-optimal
control.

6.1.1 Stability Analysis

Consider the class of dynamical systems modelled by the following equation of
motion, which usually results from numerical simulation offlexible structures,

M:a� Cd 9a� Ka � Γu, (6.2)

in which M is the positive definite mass matrix,K is the positive, at least semi-
definite, stiffness matrix andCd is the damping matrix that is defined as a linear
combination of the previous matrices as in (4.16).
Assuming to carry out independent measures of position and velocity, the output
relation can be written as,

y � "
yp

yv

* � �
Cp 0
0 Cv

�"
a9a* . (6.3)

Hence, a direct feedback action is determined as,

u � �pK pyp � K vyvq � � pK pCpa� K vCv 9aq . (6.4)

Substituting the latter expression into (6.2) leads to the following equation de-
scribing the closed-loop system,

M:a� pCd � ΓK vCvq 9a� pK � ΓK pCpq a� 0. (6.5)

If it is supposed that the needed measures are carried out at exactly the same
positions in which the actuation takes place (collocated sensors and actuators),
the following symmetric output feedback form the control law can be introduced,

y � "
yp

yv

* � �
Γ

T 0
0 Γ

T

�"
a9a* . (6.6)

since it isCp � Cv � ΓT. The closed-loop equations can now be written as,

M:a� �Cd � ΓK vΓ
T
� 9a� �K � ΓK pΓ

T
�

a � 0. (6.7)

Equation (6.7) states that, ifK p and K v are positive definite, then the control-
induced damping and stiffness perturbationsΓK pΓ

T andΓK vΓ
T are symmetric

positive definite. This characteristic can be imposed taking advantage of the pos-
sibility of freely assigning a desired structure to the gainmatrices. It can be shown

81
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that, if this is the case, asymptotic stability of the closed-loop system is guaran-
teed [JK93].
Moreover, an important consequence is that the stability ismaintained regardless
the number of states retained in the reduced-order model, regardless of inaccura-
cies in the parameter values used in the structural model andeven in the event of a
breakdown of some sensors and actuators; only the predictedperformances (and
the optimality index) would be degraded. Thus, by using the symmetric output
feedback controller, the instability problems due to spillover effects seem to be
completely avoided, and the parameters of the model do not have to be accurately
known.
In fact, these assertions must be tempered when taking into account the real dy-
namics of sensors and actuators, delays in possible digitalrealizations and non-
linear effects such as saturations of the actuators.

6.1.2 Stability Robustness Analysis

In practice, exact sensors and actuators collocation is generally impossible to
achieve. Hence, this section deals with a preliminary analysis of the robustness of
of symmetric output feedback controllers due to imprecise collocation of sensors
and actuators.
The first-order state-space realization of (6.7) is,9x � Ax (6.8)

where

x � "
a9a* and A � �

0 I�M�1
�
K � ΓK pΓ

T
� �M�1

�
Cd � ΓK vΓ

T
�� . (6.9)

Let P be some positive definite matrix and consider the Lyapunov equation,

U pxq � xTPx. (6.10)

Using (6.8), the time derivative of the Lyapunov function becomes,9U � xT
�
ATP� PA

�
x � �xTQx. (6.11)

Since the closed-loop system (6.8) is asymptotically stable, for any given posi-
tive definiteQ there exists a positive definiteP that is solution of the following
Lyapunov equation,

ATP� PA � �Q. (6.12)

Suppose that the sensors and the actuators are not preciselycollocated and in-
troduce the non-collocation perturbation matrices,Λp andΛv, due to which the
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output relation becomes,

y � "
yp

yv

* � �pΓ� ΛpqT 0
0 pΓ� ΛvqT�"a9a* . (6.13)

The following theorem, proven in [Jos89], gives an upper bound on the size of
non-collocation matrices which guarantee stability.

Theorem 3. The closed-loop system(6.8)with imprecisely collocated sensors and
actuators is asymptotically stable if,

‖K p‖2‖Λp‖2 � ‖K v‖2‖Λv‖2 ¤ λmpMq
2‖Γ‖2λM

�
P̃
� , (6.14)

whereP̃ is the solution of the Lyapunov equation(6.12) whenQ is an identity
matrix, whilstλm andλM denotes respectively the smallest and the largest singular
value of a matrix.

This theorem does not take into account possible unmodelledactuators and
sensors dynamics or non-linearities, though it gives an indication of good robust-
ness of the symmetric output feedback controller.

6.2 Unstructured Suboptimal Control

The dynamical system modelled by (6.2), with collocated sensors and actuators,
can be written in its state-space realization as," 9a:a* � �

0 I�M�1K �M�1Cd

�"
a9a*� � 0

M�1
Γ

�
u � Ax � Bu. (6.15)

y � �
Γ

T 0
0 Γ

T

�"
a9a* � Cx. (6.16)

Consider to employ a symmetric output feedback controlleru � �Ky seeking to
minimize the following performance index,

J � » 8
0

xTQx � uTRu dt � » 8
0

xTW pK q x dt. (6.17)

where
W pK q � Q� CTK TRKC . (6.18)

If the system is perturbed by some initial conditionsx0, the problem of minimizing
the performance index can be restated as follows,

minpJq � min
P,K

ptracepPX0qq , (6.19)
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in which P is a symmetric matrix satisfying the following Lyapunov equation,�
AT � CTK TBT

�loooooooomoooooooon
ĀT

P� P pA � BKCqlooooomooooon
Ā

�W pK q � 0, (6.20)

and X0 is an appropriate matrix which comprises the interactions between the
different components of the initial conditionx0. This constrained minimization
can be translated into the corresponding unconstrained problem by means of the
introduction of the Lagrange multipliers matrixΛ. Hence, the new performance
index to be minimized is,

J̃ � PX0 � Λ �ĀTP� PĀ � W pK q� . (6.21)

Computation of the correspondent stationarity conditionsleads to the following
system of matrix equations,B J̃BΛ � ĀTP� PĀ � W pK q � 0 (6.22a)B J̃BP

� ĀΛ� ΛĀT � X0 � 0 (6.22b)B J̃BK
� RKCΛCT � BTPΛCT � 0 (6.22c)

From the latter equation, it is immediate to determine the gain matrix as,

K � R�1
�
BTPΛCT

� �
CΛCT

��1
. (6.23)

6.2.1 Gain Matrix Computation Algorithm

As can be inferred from expression (6.23), the gain matrix ofthe symmetric output
feedback controller depends on bothP andΛ. This means that it is not possible
to refer to a single Algebraic Riccati Equation (ARE), and therefore an iterative
solution of the problem appears unavoidable. In Algorithm 7a simple iterative
procedure used to find the gain matrix for the output feedbackcontrol is outlined.

Algorithm 7. Given the system of equations (6.22)

1. Find a stabilizingK p0q for the closed-loop system9x � pA � BKCq x.

2. CalculatePp0q with (6.22a).

3. SetJÆ � 1030, εJ � 10�10 andεα � 10�15.

4. CalculateΛp0q with equation (6.22b).
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5. Determine∆K p1q � R�1
�
BTPp0q

Λ
p0qCT

� �
CΛp0qCT

��1 � K p0q .

6. Setα � 1 and calculateK p1q � K p0q � α∆K p1q.
7. If the closed-loop system withK p1q is not stable, halveα and return to 6.

Iterate until stability is achieved orα   εα.
8. CalculatePp1q andJ � tracepPX0q.
9. If the system is stable andJ   JÆ, setJÆ � J.

10. Iterate until

���� J
JÆ � JÆ����   εJ.

In order to be able to start the mentioned iterative procedure it is necessary to
find a stabilizing initial guessK p0q. If this initialization turned out to be difficult, it
would be advisable to employ an eigenvalue shifting technique before beginning
with the algorithm.
In case of arbitrary constraints upon the structure of the gain matrix K , the direct
solution of system (6.22) could be difficult. For this reason it is often preferred
the alternative approach of a direct numerical optimization, even constrained, of
the performance index.

6.3 Simulation results

In the previous sections it is underlined that the employment of a direct state
feedback control law, being the full state of the system hardly recoverable, is un-
affordable when dealing with large flexible structures. This motivates the recourse
to the class of direct output feedback regulators that generate a control action pro-
portional to the available measures of a usually small subset of the full state. It
has also been stressed in Chapter 5 the necessity of having a reduced order system
to design a vibration control system.
This section shows the performance of the vibration controllaw, designed re-
ferring to the the reduced order model of the structure, in which the first seven
modes, drawing on the discussion in Section 5.3, are retained. The control system
is based on the developments of Section 6.2 where the gain matrix is computed
solving the optimization problem (6.17) without imposing particular constraint
upon the structure of the feedback gains. Finally a useful comparison is given
with an optimal controller in which the gain matrix is calculated basing on the
knowledge of the full state of the system.
The state-space system that describes the dynamics of such astructure can be
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3200 m

Figure 6.1: Actuators pattern used for the vibration suppression system.

expressed by the following, 9x � Ax � Bu. (6.24a)

y � Cx. (6.24b)

The matrixC that links the output vector with the state vector has been computed
considering the positions of the actuators and sensors pairs as depicted in Fig-
ure 6.1. Referring to the results given by the modal analysisin Chapter 4, the free
structure first modes turn out to be associated with the out ofplane vibrations.
Hence, six actuators, disposed as illustrated, assure thatevery mode is easily con-
trollable. In order to prove and assess the functioning of the controllers designed
to suppress the vibrations of the structure, some initial conditions are imposed. It
can be shown that the imposition of initial conditions is equal to excite the sys-
tem with impulsive forces and their time derivative. Consider the second-order
equation of the forced system dynamics,

M:a� Cd 9a� Ka � B0δptq � B1 9δptq. (6.25)

Successive integrations yield,

M 9a� Cda� K
»

adt � B0scaptq � B1δptq � C1, (6.26)
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Figure 6.2: Open-loop eigenvalues of the reduced order system in the complex plane.

Ma � Cd

»
adt� K

"
adt � B0rampptq � B1scaptq � C1 � C2. (6.27)

Evaluating the integrals between 0� and 0� and supposing homogeneous initial
conditions at 0�, yields,

ap0�q � M�1B1, (6.28a)9ap0�q � M�1 pCda� B0q . (6.28b)

In the following sections, the initial conditions are calculated from the imposition
of impulsive forces and their time derivative using (6.28).B0 andB1 are a column
vectors in which forces of 1000 N (the order of magnitude of the environmental
disturbances) are equally distributed onto all the translational degrees of freedom
of the full structure. Eventually they are reduced by means of the same transfor-
mation matrixT, used for the reduction of the system.
In Figure 6.2 are reported the eigenvalues of the open-loop reduced model. The
uncontrolled motion of the structure perturbed by the imposition of initial con-
ditions is slightly damped by the structural damping given by the matrixCd. As
expected, since the internal damping is assumed to be low in order to be on the
safe side, the vibrations are extinguished very slowly. This can be predicted by
noticing that the open-loop eigenvalues are almost pure imaginary and is con-
firmed in Figure 6.3, in which, as an example, the time historyof the uncontrolled
third mode is depicted. The trend is analogous for the other modes.

6.3.1 Unstructured Suboptimal Regulator

As introduced in the previous section, an unstructured suboptimal regulator has
been developed. The gain matrix has been computed followingthe steps outlined
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Figure 6.3: Uncontrolled structural vibrations with respect to the imposition of initial
conditions. Mode 3.

Table 6.1: Closed-loop eigenvalues of the reduced order system. Unstructured Sub-
optimal Regulator.

Mode Open-Loop Closed-Loop

1 �0.00000032� 0.01135258i �0.00150992� 0.01129401i
2 �0.00000086� 0.01863602i �0.00134120� 0.01864962i
3 �0.00000088� 0.01884402i �0.00112420� 0.01877911i
4 �0.00000228� 0.03026719i �0.00062441� 0.03028173i
5 �0.00000229� 0.03028664i �0.00119769� 0.03028904i
6 �0.00000635� 0.05043782i �0.00024016� 0.05042173i
7 �0.00000638� 0.05055180i �0.00029145� 0.05055039i

in Algorithm 7. The following penalty matrices are determined to produce a reg-
ulator able to extinguish the structural vibrations in about one third of the orbit
period.

Qsub� diagpr10 200 40 100 200 1000 1000 10 200 40 100 200 1000 1000sq ,
(6.29)

Rsub� diagpr0.015 0.05 0.015 0.015 0.025 0.015sq . (6.30)

The resultant gain matrix is a fully populated matrix in which the highest values
have an order of magnitude of 103, whereas the lowest ones are of the order of
10�3.
In Table 6.1 and in Figure 6.4a are reported the closed-loop eigenvalues in com-
parison with the open-loop ones. It can be seen that the real part of the closed-loop
eigenvalues are effectively moved far away from the imaginary axis by at least two
orders of magnitude. The imaginary part is left practicallythe same for all the
eigenvalues, this yielding to the damping factor of each mode to be increased. In
Figure 6.5 is plotted the time history of the third modal coordinate, which can be
straightforwardly compared to the uncontrolled behaviour. As expected, there is
the same initial elongation as the uncontrolled case, but the following oscillations
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(a) Unstructured Suboptimal Regulator.
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(b) Linear quadratic regulator.

Figure 6.4: Closed-loop eigenvalues of the reduced order system in the complex
plane.
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Figure 6.5: Controlled structural vibrations with respect to the imposition of initial con-
ditions. Unstructured suboptimal regulator. Mode 3.

are extinguished in about a tenth of the orbital period. The same qualitative be-
haviour is shown by the other modes, the only difference being the time in which
the fluctuations are cancelled. Recalling Table 6.1, the third mode is one of the
more damped, since the associated eigenvalue is moved into the negative real part
plane by almost four orders of magnitude. However, as mentioned before, all the
modal coordinates considered in the reduced subsystem are damped within one
third of the orbital period.

6.3.2 Comparison with LQR

The performances of the previous controller is then compared with the dynamical
system controlled by a classical LQR, supposing to know the full state vector.
The following weight matrices are chosen in order to extinguish all the vibrations
within one third of the orbit,

Qlqr � diagpr10 30 20 20 20 50 30 10 30 20 20 20 50 30sq , (6.31)

Rlqr � diagpr1 1 1 0.1 0.1 0.1sq . (6.32)
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Table 6.2: Closed-loop eigenvalues of the reduced order system. LQR.

Mode Open-Loop Closed-Loop

1 �0.00000032� 0.01135258i �0.00167628� 0.01148216i
2 �0.00000086� 0.01863602i �0.00128350� 0.01871441i
3 �0.00000088� 0.01884402i �0.00140243� 0.01885967i
4 �0.00000228� 0.03026719i �0.00063204� 0.03028603i
5 �0.00000229� 0.03028664i �0.00124113� 0.03029888i
6 �0.00000635� 0.05043782i �0.00032686� 0.05045831i
7 �0.00000638� 0.05055180i �0.00053761� 0.05053522i
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Figure 6.6: Controlled structural vibrations with respect to the imposition of initial con-
ditions. LQR. Mode 3.

This choice yields a 6� 14 gain matrix in which the highest elements have an
order of 102 and the lowest have an order of 10�3.
The characteristics of the resulting closed-loop employing the linear quadratic
regulator, in comparison with those of the open-loop, are summarized in Table 6.2
and in Figure 6.4b. It can be noticed that the eigenvalues aremoved slightly farer
away from the imaginary axis in comparison with the suboptimal regulator, this
being particularly true for the last two eigenvalues, at higher frequency. Neverthe-
less, the highest terms in the gain matrix are one order of magnitude less than those
of the unstructured suboptimal regulator, suggesting thatthe LQR could be able
to get the same results as the suboptimal regulator with lesseffort. This is quite
expected and is confirmed by Figure 6.6, in which the time history of the third
modal coordinate is plotted and can be compared with the trend of Figure 6.5.
It is clear that the performances of the different regulator are highly comparable.
The same observations are valid for the other modal coordinates. In order to
strengthen the last considerations, in Figure 6.7, it is reported as an illustrative
example, the time history of the control force exerted by theactuator #1. Even
though the magnitude of the requested action is not really significant in this case,
since the system is forced by fictitious initial conditions,it can be noticed that
the highest peak of the force requested by the LQR is half the one needed by the
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suboptimal controller. Besides, the control action appears to vanish quicker in the
LQR case, suggesting that it slightly more efficient in damping the vibrations. In
conclusion ,recalling that the estimation of the full statevector is not affordable
when dealing with large flexible structures, this chapter proves the general rea-
sonableness of a direct output feedback approach in carrying out the vibrations
suppression problem.
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(a) Actuator # 1S. Unstructured suboptimal regulator
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(b) Actuator # 1S. LQR

Figure 6.7: Comparison between the control force provided by actuator #1.
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Chapter 7

Integrated System Simulation
Comparisons and Results

The necessity of a vibration suppression system should be verified by considering
the the structural dynamics in a plausible operative situation, in which the contin-
uous orbit and the attitude controls guarantee the station keeping and the desired
attitude configuration. In particular, 0.050 latitude and 0.10 longitude are con-
sidered to be the maximum station keeping errors, while 0.080 attitude pointing
accuracy on each axes should be guaranteed. In order to keep the orbit and the at-
titude of the satellite into these specific limits, the LQR approach is employed for
both the orbit and attitude regulators. In particular, the following penalty matrices
are considered with respect to the orbit regulator:

Qorb � ��������3� 10�14 0 0 0 0 0
0 3� 10�14 0 0 0 0
0 0 3� 10�14 0 0 0
0 0 0 10�9 0 0
0 0 0 0 10�9 0
0 0 0 0 0 10�9

�������� . (7.1)

Rorb � ��106 0 0
0 106 0
0 0 106

�� . (7.2)

While the attitude penalty matrices:

Qatt � ��������3� 1013 0 0 0 0 0
0 2� 1014 0 0 0 0
0 0 1� 1014 0 0 0
0 0 0 3� 1013 0 0
0 0 0 0 2� 1014 0
0 0 0 0 0 1� 1014

�������� (7.3)
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7.1 The Uncontrolled Structural Dynamics (USD) Condition

Ratt � ��10 0 0
0 10 0
0 0 10

�� (7.4)

In the first part of the chapter, the structure is left uncontrolled. It is shown how
the structural vibrations are excited by the orbit and attitude control actions in two
illustrative situations: a nominal and a perturbed initialcondition. It will be ex-
hibited that two kind of structural oscillations arise fromthese interactions: large
very low frequency oscillations, that are the natural consequence of the structural
flexibility due to the nominal trend of the orbit and attitudecontrol force, and
much higher frequency vibrations in correspondence to the modal frequencies of
the structure. Although the first kind of oscillations present a large amplitude,
they are not considered to be dangerous for the structure, while the second kind
need to be damped. In the end, it is shown how the active vibration suppression
system, previously developed, is able to extinguish the undesired high frequency
vibrations on the structure.
All the simulations are carried out for a time interval of 20 orbits. This is not re-
strictive, since a long term quasi-periodic behaviour of all the variables has been
preliminary verified. Moreover the initial epocht0 is considered to be January
1, 2012 at 12h 001 00.02 UTC with the satellite located at the nominal longitude
λG � 75.070. While the nominal attitude orientation is considered to bethe ECSF
reference frame directions.
In the end, three sets of actuators are considered to be independently employed
for the orbit, the attitude and the structural vibration control. In particular, equiv-
alent sets for the orbit and the attitude are adopted, as depicted in Figure 7.1. The
actuators #1, #4, #8 and #11 are placed along theXS direction, the actuators #2,
#5, #9 and #12 along theYS direction, while the actuators #3, #6, #7 and #10. The
set of actuators for the vibration suppression system consists of six actuators from
#1S to #6S placed as depicted in Figure 7.2.

7.1 The Uncontrolled Structural Dynamics (USD)
Condition

In the USD condition the structure does not have any active vibration suppression
system. In particular, the hypothesis and simplifications,adopted for the Uncon-
trolled Structural Dynamics (USD) condition, are stated asfollow:

• The orbital disturbances are caused by the major environmental disturbances
together with the disturbances coming from the attitude control actions.

• The attitude is affected by the gravity gradient torque and the solar radiation
torque together with the disturbances coming from the orbitcontrol actions.
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Figure 7.1: Actuators pattern employed for the orbital and attitude control system.

• The structural vibrations are only influenced by the orbit and the attitude
control actions.

Two configurations are considered to be significant concerning the structural in-
teractions with the rigid body motion dynamics: the Zero Initial Conditions (ZIC)
and the Perturbed Initial Conditions (PIC).

7.1.1 The Zero Initial Conditions (ZIC) Configuration

In the ZIC configuration, the starting errors are consideredto be equal to zero with
respect to the nominal orbit position and the attitude pointing.
As shown in Figure 7.3, the requirements on the maximum latitude and longitude
errors, of respectively 0.050 and 0.10, are satisfied. The corresponding control ac-
tions is homogeneously distributed within the set of actuators. In particular, the a
maximum force of about 30 N is required by the actuators in theXS direction as
shown in Figure 7.4. Similarly, the attitude control satisfies the pointing accuracy
of 0.080 around each axis (Figure 7.5). As expected, the maximum control torque
is requested around theXS axis due to the significant pitch gravity gradient torque.
Thus, the forces on the actuator #3 and #10 reach a maximum value of about 60
N, as shown in Figure 7.5.
The structure modal coordinates, as expected, present large very low frequency
oscillations as exemplified in Figure 7.7, where the second modal coordinate be-
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Figure 7.2: Actuators pattern employed for the vibration suppression system.

haviour is depicted. These kind of oscillations does not need to be extinguished.
However, the first modal coordinate as well as the sixth and the seventh appear
to be excited in correspondence to their related modal frequencies as exemplified
in Figures 7.8, 7.9 and 7.10. As a consequence, a vibration suppression system
appears be appropriate.

7.1.2 The Perturbed Initial Conditions (PIC) Configuration

Hereafter, the perturbed initial conditions are imposed tothe orbit and the attitude
nominal configuration. In the considered scenario, the spacecraft initially lays on
the boundaries of the longitude and latitude admissible boxwith a pointing error
about each axis. Particularly, 0.050 latitude and 0.10 longitude errors are consid-
ered for the position of the spacecraft on the orbit, whereas100 pointing errors
around each principal axis of inertia. As a consequence, a step behaviour of the
control action is expected.
The requirements are met for both the orbit and the attitude controls in a time
of the order of some orbits (Figures 7.12 and 7.13). As it is expected, the max-
imum actuator forces requested in the PIC configuration are much more higher
than those in the ZIC configuration, due to the initial conditions. However, once
the regime conditions are reached, the actuators forces return to the nominal be-
haviour (Figures 7.11 and 7.14).
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Figure 7.3: Time history of spacecraft longitude and latitude in the USD condition and
the ZIC configuration.
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Figure 7.4: Force on the actuator #1 requested for the orbit control in the USD condi-
tion and the ZIC configuration.
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Figure 7.5: Attitude angles α in the USD condition and the ZIC configuration.
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Figure 7.6: Force on the actuator #6 requested for the attitude control in the USD
condition and the ZIC configuration.
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Figure 7.7: The second modal coordinate in the USD condition and the ZIC configu-
ration.
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Figure 7.8: The first modal coordinate in the USD condition and the ZIC configuration.
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Figure 7.9: The sixth modal coordinate in the USD condition and the ZIC configura-
tion.
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Figure 7.10: The seventh modal coordinate in the USD condition and the ZIC config-
uration.
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Figure 7.11: Time history of spacecraft longitude and latitude in the USD condition
and the PIC configuration.

As a consequence of the initial strong orbit and control actions, all the modal
coordinates are expected to be initially perturbed. Thus, the higher frequency
vibrations, superimposed on to the lower large frequency oscillations, should be
generally more significant than those in the ZIC configuration. Even if he struc-
tural damping may encourage the damping of such undesired high frequency vi-
brations, as it occurs for the the fifth modal coordinate (Figure7.15), the orbit and
attitude control actions may excite the vibrations in correspondence to particular
modal frequencies. This is the case of the sixth and seventh modal frequencies
(Figures 7.16 7.17).
Although the condition just analysed may be considered to beone of the worst
case, since the step behaviour for orbit and control action,it has been shown that
the possible appearance of a vibration may not be extinguished.

7.2 The Controlled Structural Dynamics (CSD) Con-
dition

In the CSD condition, the high frequencies vibrations are damped by a suboptimal
regulator. The penalty matrices for such a regulator have been chosen to diagonal
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Figure 7.12: Force on the actuator #1 requested for the orbit control in the USD con-
dition and the PIC configuration.
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Figure 7.13: Attitude angles α in the USD condition and the PIC configuration.
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Figure 7.14: Force on the actuator #6 requested for the attitude control in the USD
condition and the PIC configuration.

0 2 4 6 8 10 12 14 16 18 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Orbits [−]

M
od

al
 c

oo
rd

in
at

e 
[−

]

Figure 7.15: The fifth modal coordinate in the USD condition and the PIC configura-
tion.
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Figure 7.16: The sixth modal coordinate in the USD condition and the PIC configura-
tion.
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Figure 7.17: The seventh modal coordinate in the USD condition and the PIC config-
uration.

104



Integrated System Simulation Comparisons and Results

matrices with the diagonal:

Q � diagpr10 200 40 100 200 1000 1000 10 200 40 100 200 1000 1000sq ,
(7.5)

R � diagpr0.015 0.05 0.015 0.015 0.025 0.015sq . (7.6)

In particular, the hypothesis and simplifications, adoptedfor the CSD condition,
are stated as follow:

• The orbital disturbances are caused by the major environmental disturbances
previously described, together with the disturbances coming from the atti-
tude and the vibration suppression control actions.

• The attitude is affected by the gravity gradient torque and the solar radia-
tion torque together with the disturbances coming from the orbit and the
vibration suppression control actions.

• The structural vibrations are only influenced by the orbit and the attitude
control actions.

Only the PIC configuration is examined in the CSD condition, since it resumes
the behaviour of the control systems in both the perturbed initial conditions and
the nominal operative configuration. The presence of the vibration suppression
system is not detrimental for the orbit and the attitude controls, which show the
similar behaviour as it results considering the uncontrolled structure (Figures 7.18
and 7.20). As a consequence, the actuators forces are expected to be comparable,
as exemplified in Figures 7.19 and 7.21, where the behavioursof the actuators #1
and #6, respectively for the orbit and attitude control, aredepicted.
Concerning the structural behaviour, the large low frequency oscillations appear
to have the same behaviour of those of the uncontrolled structure. This is what
results observing Figure 7.22, which represents the sixth modal coordinate low
frequency trend. However, if the very initial time intervals are considered, it is
evident that the vibration suppression system is able to extinguish the undesired
high frequency vibrations (Figures from 7.23 to 7.29). Moreover, the correspon-
dent action required by the vibration suppression system isof the same order as
that required for the orbit and attitude control systems, asresults observing Fig-
ures from 7.30 to 7.35.
The simulations described in this chapter show that the interaction between the or-
bit and attitude control systems and the structure could be potentially dangerous.
A suboptimal control approach for the vibration suppression has been introduced
and yields satisfactory results. Is is to be underlined thatthe aforementioned vibra-
tions suppression system has been designed considering a reduced order structural
model including the first seven flexible modes. Although the order of the reduced
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Figure 7.18: Time history of spacecraft longitude and latitude in the CSD condition.
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Figure 7.19: Force on the actuator #1 requested for the orbit control in the CSD con-
dition.
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Figure 7.20: Attitude angles α in the CSD condition..
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Figure 7.21: Force on the actuator #6 requested for the attitude control in the CSD
condition.
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Figure 7.22: The sixth modal coordinate in the CSD condition.
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Figure 7.23: The first modal coordinate in the CSD condition, for the initial time inter-
val.
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Figure 7.24: The second modal coordinate in the CSD condition, for the initial time
interval.
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Figure 7.25: The third modal coordinate in the CSD condition, for the initial time in-
terval.
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Figure 7.26: The forth modal coordinate in the CSD condition, for the initial time in-
terval.
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Figure 7.27: The fifth modal coordinate in the CSD condition, for the initial time inter-
val.
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Figure 7.28: The sixth modal coordinate in the CSD condition, for the initial time in-
terval.
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Figure 7.29: The seventh modal coordinate in the CSD condition, for the initial time
interval.
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Figure 7.30: Force on the #1S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.31: Force on the #2S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.32: Force on the #3S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.33: Force on the #4S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.34: Force on the #5S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.35: Force on the #6S actuator in the CSD condition, for the initial time inter-
val.
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system has been reasonably selected, the interactions withthe neglected dynamics
should be further investigated.

115



Chapter 8

Conclusions

8.1 Thesis Contributions

The objective of the present work is the study of the problemsthat may arise due
to the interactions between the orbital/attitude control systems of a large flexible
spacecraft and its structural vibrations. The reference model is the Abacus Re-
flector SSP concept, chosen because, thanks to its structural simplicity and high
modularity, constitutes the basilar structure for a wider class of SSP concepts.
Besides, its simple geometry enables a preliminary study ofthe behaviour of the
structure when designing the orbital and attitude control systems of the satellite.
First of all, taking into account the main perturbing actions acting on a GEO
satellite, the orbital and attitude control system has beendesigned to fulfil realis-
tic requirements regarding the station keeping and pointing accuracies. Since the
employment of chemical propulsion devices is unrealistic due to their low specific
impulse, it is appropriate to exploit the efficiency of the low-thrust propulsion. It
has been proven that a LQR approach for continuous control can maintain the po-
sition and the attitude of the satellite within the prescribed limits. The designed
control systems utilize the same set of actuators to providethe necessary actions
to counteract the external disturbances. As a consequence,the control forces are
introduced into the structure and their effects need to be investigated.
To this concern, a FE model of the Abacus-like structure has been developed in
order to characterize the modal behaviour of the structure.As expected, the first
natural frequencies turn out to be lower than those of the common, much more
compact, satellites.
An immediate solution, in order to avoid the interactions with the flexible modes
of the structure, can be designing the orbital/attitude control system with a very
low bandwidth. One drawback of this approach is that such lowbandwidth regula-
tors could not have the necessary authority to execute possible harder manoeuvres
during the operational life of the spacecraft. Another disadvantage is the poor ro-
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bustness of the whole system under unexpected or unmodelleddisturbances which
may excite the vibrations of the structure. For this reason,a preliminary study of
a vibration suppression system has been carried out.
Since the numerical simulations of dynamical systems, suchas FE analysis, usu-
ally results in complex high-order dynamic models, it is desirable to approximate
them by simpler models with reduced order. For this purpose,several techniques
of model reduction has been investigated. The choice has fallen onto the simple
modal truncation because it allows the interpretation of the dynamical behaviour
of the system in terms of modal coordinates, which give a direct physical insight.
For large flexible structures it is unlikely to know the full state vector of the dy-
namical system. This consideration justifies the recourse to the class of the direct
output feedback controllers in which the measures coming from collocated sen-
sors are directly used to provide the feedback control action. The effectiveness
of the designed regulator has been demonstrated in two significant situations: the
satellite operative condition, and a perturbed initial condition. It has been exhib-
ited that, for both the conditions, two kind of structural oscillations arise from
these interactions: large very low frequency oscillations, that are the natural con-
sequence of the structural flexibility due to the nominal trend of the orbit and
attitude control force, and much higher frequency vibrations in correspondence
to the modal frequencies of the structure. Although the firstkind of oscillations
present a large amplitude, they are not considered to be dangerous for the struc-
ture, while the second kind need to be damped.
It can be shown that, if the vibration suppression system is inactive, some of the
modal coordinates are excited and the vibrations remain undamped. On the other
hand, it has been proved that when the vibration control is active, those sparked
oscillations are extinguished in a time of the order of the orbit, whit affordable
actuation forces. Is is to be underlined that the aforementioned vibrations sup-
pression system has been designed considering a reduced order structural model
including the first seven flexible modes. Although the order of the reduced system
has been reasonably selected, the interactions with the neglected dynamics should
be further investigated.

8.2 Further Developments

Although the implemented controller are designed to be sufficiently robust with
respect to external perturbations, the thermal distortionand structural vibrations
due to solar heating need deeper studies. In particular, thethermoelastic interac-
tions appear to be a critical issue in the development of suchsatellites and defi-
nitely deserve a future investigation.
The latter consideration leads to the necessity of refining the FE model of the
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structure. This should include a model of the solar arrays and of the huge mi-
crowave transmitting system. Moreover, the FE model shouldbe able to compute
the stresses and the strains that result in the structure, inorder to give precise re-
quirements on the performances requested to the control systems.
A further important aspect that has been not deeply studied is the interactions of
the structural system with the rest of the satellite and withthe environmental per-
turbations. Among these, it should be considered a realistic model of the actuation
system. In fact, the actuation stations are not punctiform and follow the structure
when it is subjected to large vibrations. Thus, the movements of the actuators
could potentially affect the performances of the control systems. Besides, the ac-
tual dynamics of the actuators and the fact that they cannot be perfectly collocated
with sensors should be considered. Concerning the externaldisturbances, only
the environmental quasi-deterministic perturbing forceshave been considered. It
is worthwhile to take into account possible sources of random, hardly predictable
disturbances. Hence, a possible area for future works couldbe the employment of
Linear Quadratic Gaussian (LQG) regulators.
Drawing from the results of the stability and robustness analysis of the direct
output feedback controllers, a promising area for future studies may regard the
possibility of structuring the gain matrix of such regulators. The selection of
the gain matrix among the stabilizing family of positive definite matrices and its
parametrization by means, for example, of the Cholesky decomposition, could be
the first step leading to a direct numerical optimization exploited to minimize an
appropriate performance index. At the same time, the increased controller design
freedom given by the parametrization of the gain matrix, allows to impose several
other constraints on the behaviour of the closed-loop system, e.g. directly assign
the position of significant poles within the complex plane.
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Appendix A

Electric Propulsion Systems

Electrical propulsion systems are based on accelerating anionized mass by an
electromagnetic or electrostatic field, where the ions leave the thruster nozzle at
very high velocity. The common peculiar characteristics shared by the differ-
ent typologies of electric systems are the high values of specific impulseIsp and
the possibility of adjusting the thrust level. Furthermore, a highIsp entails a low
propellant consumption and the reduction of the mass to takeon-board per mis-
sion. In particular, minimization of propellant (and tanks) mass is essential for all
large-scale space systems, since the amount of propellant and the dimensions of
the related propulsion system needed if chemical propulsion was to be employed
would be unaffordable. For these reason, in the present work the option of making
use of chemical-based propulsion systems is not considered. Naturally, there are
also numerous drawbacks concerning electric propulsion. The most awkward of
them appear to be that the thrust levels that can be achieved are very low and that
high voltages are required. In this section a brief survey ofthe different electrical
thruster categories is given.

A.0.1 Electrothermal propulsion

The acceleration is achieved heating a propellant gas by electrical heat addition
and expanding it through a convergent/divergent nozzle. Resistojet and arcjet
propulsion systems belong to this class.

Resistojet Resistojets heat propellant using an heated solid surface and have a
low specific impulse, ranging from 100 to 400 s.

Arcjet Opposite to resistojets, arcjets heat propellant using an electric arc gen-
erated between an anode and a catode. They are less efficient at converting power
to Isp (20 to 30%) but higher specific impulses are achievable (500 to 1500 s).
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A.0.2 Electrostatic propulsion

It is based on the acceleration of an ionized propellant gas by the application of
electric fields. Examples include gridded ion thrusters andField Emission Electric
Propulsion (FEEP).

Gridded ion thrusters Propellant atoms (of mercury, xenon or argon vapour)
are injected into the ionization chamber where they are bombarded with electrons
from a hollow cathode, causing the atoms to lose electrons and become ionized.
The side of the exit of the ionization chamber is equipped with two high voltage
electrodes that have a grid structure. The high voltage applied to the electrodes
accelerates the ions to a high velocity thus forming the thrust beam. Electrons
and ions must be injected in the thrust beam in equal numbers to maintain charge
neutrality. For this reason electrons are shot from a cathode, called the neutraliser,
towards the ions behind the ship to ensure that equal amountsof positive and neg-
ative charge are ejected. Neutralizing is needed to preventthe ship from gaining
a net negative charge.
Gridded ion thrusters show a very high specific impulse, ranging from 3000 to
8000 s and very high thrust efficiency (more than 60%). Another interesting plus,
when the thrusters are employed in a cluster configuration, is the low ion plume
divergence, typically about 200.
The primary performance degradation is due to grid erosion caused by high speed
ion impingement on the acceleration grid. The consequent reduction in thrust ef-
ficiency and specific impulse due to hole enlargement and plume defocussing is
the main lifetime limiting factor.

FEEP Thrust is produced by exhausting a beam of mainly singly-ionized cae-
sium atoms, produced by field evaporation. Thrust level verylow, ranging from 1
to 100 mN.

A.0.3 Electromagnetic propulsion

It is based on the acceleration of an ionized propellant gas by the application of
both electric and magnetic fields. Examples include Hall thrusters and Magneto-
Plasma Dynamic thrusters (MPDT).

Hall thrusters Electrons are generated by an external cathode and injectedinto
a dielectric annular chamber. A radial magnetic field is generated between in-
ner/outer poles of magnets. The Lorentz force on electrons crossing radial mag-
netic field lines causes electron cyclotron motion in chamber, thus they follow a
helical path towards the anode. Neutral gas (usually xenon)injected into chamber
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Electric Propulsion Systems

collide with electrons.
The acceleration of ions is carried out by the self-established electric field created
by the electron current induced by Lorentz force.
Additional electrons are emitted by an external cathode into the ion plume in order
to neutralize the ions.
This class of thruster presents relatively low specific impulses, about 2000 s, and
lower efficiency with respect to gridded ion thrusters.
The main issue is related with the erosion of ceramic insulation of the dielectric
annular chamber. At current development stage, with currently used materials,
thruster lifetime is reduced to a few thousands hours.

MPDT Ion acceleration is carried out by exploiting electromagnetic Lorentz
forces. Very high current axial cathode produces electronsby thermionic emis-
sion. High radial electron discharge to anode poles on lip ofcylindrical chamber,
ionisation of propellant (solid lithium). Self-induced azimuthal magnetic field
from high radial electric field causes axial acceleration ofions.
They show goodIsp levels, ranging from 1800 to 8000 s, but the high current
needed in the cathode entails a high power level, in the orderof the kW. On the
other hand the peak thrust level achievable is at least one order of magnitude more
than that attainable with the other electric propulsion systems.
The major drawback in employing the Magneto-Plasma thrusters is the high power
requirement, due to which at present only experimental models have been devel-
oped for laboratory testing.

The electrostatic ion thrusters, in particular gridded ionengines, appear to be a
kind of highly-efficient low-thrust propulsion systems running on electricalpower
that deserve particular attention in the context of this work because they could
be the good candidates for geostationary station keeping and attitude control. In
Figure A.1 is schematically illustrated the functioning principle of a gridded ion
thruster and in Table A.1 are listed the characteristics of the reference thruster
considered in this work.
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Figure A.1: Schematic diagram of an electrostatic ion thruster.

Table A.1: Reference electric propulsion system.

Thrust [N] 1
Specific impulse [s] 5000
Exhaust velocity [km/s] 50
Total efficiency [-] 0.8
Power to thrust ratio [kW/N] 30
Mass to power ratio [kg/kW] 5
Total peak thrust [N] 200
Total peak power [MW] 6
Total average thrust [N] 80
Total average power [MW] 2.5
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Appendix B

Linear System Properties

This section will introduce several concepts and properties associated with linear
systems that are of interest of the model reduction problem.

B.1 Transfer Function Matrix

Considering the state-space representation of the LTI system S, as in (5.1), the
transfer matrix fromu to y is defined as

Ypsq � GpsqUpsq (B.1)

whereUpsq andYpsq are the Laplace transforms ofuptq andyptq with zero initial
conditions. Hence,

Gpsq � C psIn � Aq�1 B� D (B.2)

Thus, the transfer function matrix provides a frequency domain description of the
input-output behaviour of the systemS.
It can be seen that more than one realizationpA, B, C, Dq of S can produce the
same transfer functionGpsq. That is, different system realizations can produce the
same input-output behaviour. In particular, considering the state-space transfor-
mation

x � T x1 (B.3)

with T a non-singular matrix of dimensionn � n. Since such a transformation
only amounts to rewriting the state variable in a new basis, it does not affect the
input-output behaviour associated withS. Thus the following can be stated

Lemma 3. If S is represented as in (5.1), then the input-output behaviourof S is
equivalently represented by the state-space realization defined by9x1 � T�1AT x1 � T�1Bu (B.4a)

y � CT x1 � Du (B.4b)
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B.2 State-Space Models Versus Transfer Functions

The transformationA Ñ T�1AT is called a similarity transformation of the matrix
A. It has the property of leaving the eigenvalues of theA matrix invariant.

B.2 State-Space Models Versus Transfer Functions

The most important differences between the state space representation and the
transfer function representation of a given system are (see[Sil71]):

• The transfer function of an LTI system describes the relation between the
input and the output of the system under the assumption that the system
is initially relaxed (i.e. the initial state is zero). Hence, if this assumption
does not hold, the description is not applicable. In contrast to the state
space description, the transfer function representation does not reveal what
happens if the system is not initially relaxed. For example observable modes
can be excited due to a non-zero initial state but may not appear in the
transfer function due to pole-zero cancellation.

• The transfer function formulation does not reveal the behaviour inside the
system, such as unobservable unstable modes. Therefore, the transfer func-
tion matrix cannot always be used to study the stability properties of an LTI
system.

• Although most results that are available for MIMO state space descriptions
can also be obtained in the transfer function approach, the state space for-
mulation stays the better way of dealing with generalizations like MIMO
systems or non-linear systems. Moreover, in practice the state space formu-
lation is very important for numerical computations and modern controller
design (cf. Chapter 5 and Chapter 6).

B.3 Controllability and Observability

Theorem 4. Given a state-space realization of the LTI systemS, the following
statements are equivalent

a) pA, Bq is controllable

b) The controllability matrix

C � �
B AB A2B . . . An�1B

�
(B.5)

has full-row rank
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c) The controllability grammian Wc, solution of the Lyapunov equation

AWc � WcA
T � BBT � 0 (B.6)

is positive definite

Theorem 5. Given a state-space realization of the LTI systemS, the following
statements are equivalent

a) pC, Aq is observable

b) The observability matrix

O � ������� C
CA
CA2

...

CAn�1

������� (B.7)

has full-column rank

c) The observability grammian Wo, solution of the Lyapunov equation

ATWo � WoA�CTC � 0 (B.8)

is positive definite

B.4 Frequency Moments and Markov Parameters

Given a LTI systemS, its transfer functionGpsq � CpsIn�Aq�1B�D, is expanded
in a Fourier power series,

Gpsq � 8̧
i�0

Mi p jωq ps� jωqi (B.9)

The matrices

Mi p jωq � C p jωIn � Aq�pi�1q B, i � 0, . . . , 8 (B.10)

are known as the low frequency moments of the transfer functionGpsq. The high
frequency moments

Mi p j8q � lim
ωÑ8 Mi p jωq � CAi B, i � 0, . . . , 8 (B.11)

are also called Markov parameters. It can be shown that thei-th Markov parameter
is associated with thei-th time derivative of the impulse response at instant zero.
Since the frequency moments are input-output properties, they remain invariant
under a similarity transformation.
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B.5 Output Correlation and Power Moments

B.5 Output Correlation and Power Moments

Another quantity related to the input-output behaviour of alinear system is the
output correlation for impulsive inputs. It can be shown that it can be computed
as

R̂ptq � CeAtWcC
T (B.12)

The output covariance can be Laplace transformed and expanded in a Fourier
series obtaining

R̂psq � C psIn � Aq�1 WcC
T � 8̧

i�0

Ri p jωq ps� jωqi (B.13)

The matrices

Ri p jωq � C p jωIn � Aq�pi�1q WcC
T, i � 0, . . . , 8 (B.14)

are known as the low frequency power moments. The high frequency power mo-
ments

Ri p j8q � lim
ωÑ8Ri p jωq � CAiWcC

T, i � 0, . . . , 8 (B.15)

are also called covariance parameters. As the frequency moments, being also the
frequency power moments input-output properties of the systemS, they remain
invariant under a similarity transformation.

B.6 H2 and H8 Norms

Let Gpsq P L2, theL2 norm ofG is defined as

‖G‖22 � 1
2π

» 8�8 tr pG� p jωqG p jωqq dω (B.16)

It is worth noticing that theL2 norm defined previously is finite iff the transfer
matrix G is strictly proper, that isGp8q � 0. Although‖G‖2 can be computed
from its definition (B.16), it is useful to have an alternative characterization of this
norm to take advantage of the state-space representation ofG.

Lemma 4. Given the transfer matrix of a strictly proper system

Gpsq � �
A B
C 0

�
(B.17)

then theL2 norm ofG can be computed as

‖G‖22 � tr pB�WoBq � tr pCWcC
�q (B.18)

whereWo andWc are the observability and controllability grammians.
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Another norm of interest is theH8 norm, defined as

‖G‖8 :� sup
ω

σtGp jωqu (B.19)

whereσpGq is the largest singular value ofG. For SISO systems, a simple in-
terpretation of theH8 norm of a system can be given. For these systems the
infinity norm of the scalar transfer functionG appears as the peak value on the
Bode magnitude plot of|Gp jωq|.
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Acronyms

LAST Local Apparent Sidereal Time

GAST Greenwich Apparent Sidereal Time

GMST Greenwich Mean Sidereal Time

UT Universal Time

UTC Coordinated Universal Time

RFCS Reference Frame and Coordinate System

ECI Earth Centered Inertial

ECEF Earth Centered Earth Fixed

GCW Geostationary Clohessy-Wiltshire

COEs Classical Orbital Elements

EOEs Equinoctial Orbital Elements

GEO Geostationary Earth Orbit

LQR Linear Quadratic Regulator

ARE Algebraic Riccati Equation

VOP Variation Of Parameter

LQG Linear Quadratic Gaussian

EEM Euler Equation of Motion

LQ Linear Quadratic

SSP Space Solar Power
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BCSP Body Centered Sun Pointing

BCSF Body Centered Sun Facing

ECSF Earth Centered Sun Facing

BPI Body Principal Inertial

SP Sun Pointing

SF Sun Facing

AR Abacus Reflector

EEM Euler Equations of Motion

PID Proportional Integrative Derivative

APIC Attitude Perturbed Initial Condition

AZIC Attitude Zero Initial Condition

ITP Independent Transmitter Pointing

OART One Axis Rotating Transmitter

LEO Low Earth Orbit

MEO Medium Earth Orbit

ARF Abacus Reflector

STW Solar Tower

TSP Tethered Solar Power

SL Structural Local

SG Structural Global

FE Finite Element

USD Uncontrolled Structural Dynamics

CSD Controlled Structural Dynamics

ZIC Zero Initial Conditions

PIC Perturbed Initial Conditions
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