POLITECNICO DI MILANO
Facolta di Ingegneria Industriale

Corso di Laurea in
Ingegneria Spaziale

Preliminary Study on a Vibration Suppression System
for a Large Flexible Space Structure

Relatore: Prof. Michéle LAVAGNA

Tesi di Laurea di:
Alessandro DIPAOLA Matr. 735267

Dario DONATIELLO Matr. 725548

Anno Accademico 2011-2012






Abstract

The subject of the present thesis is a preliminary analyistheovibrational is-
sues of a large flexible structure, that can represent thietskestructure of a
wide class of Space Solar Power (SSP) satellites. Due toute timensions of
such structures, their first natural frequencies turn oletdar lower than those
of the common satellites and a significant control-striectateraction issue may
arise. Even though the orbital and attitude control systerag be designed to be
low bandwidth regulators, particular operative condisi@ould excite the lowe-
st structural modes. Once excited, providing a mean to guish the vibrations
appear to be appropriate, in order to guarantee the osmiltato be damped. In
this context, the objective of this work is to study the iat#rons between the or-
bital/attitude control systems and the flexible structure. Heace@rbitalattitude
control system is designed in order to satisfy prescribgdirements related to
station keeping and pointing of such a class of spacecrafth&more, a possi-
ble approach in developing a preliminary vibration supgi@s system is carried
out, referring to the class of the direct output feedbackrotlers, utilizing pro-
perly distributed ion thrusters. It is shown that, consiigthe developed orbi-
tal/attitude controllers, there exists considerable intevagbroblems during the
operative life of the spacecraft. Eventually, the proposbration suppression sy-
stem is proved to be able to considerably mitigate thieces of these, potentially
dangerous, interactions.

Keywords Space Solar Power satellites. Control of large flexiblecstme. Di-
rect output feedback control. Collocated control. Geostary satellite station
keeping. Attitude control.




Sommario

Oggetto del presente lavoro e I'analisi preliminare detlebfematiche legate alle
vibrazioni di una grande struttura flessibile atta a rapgmese la struttura portan-
te di una vasta classe di Space Solar Power (SSP) satelitzsisa delle enormi
dimensioni di tali strutture, le loro prime frequenze naturisultano essere di
gran lunga inferiori a quelle dei satelliti comuni, facersl@he possa sorgere un
significativo problema di interazione tra controllo e dind. Benché i sistemi
di controllo d’orbita e d’assetto possano essere progéttatodo tale da avere
una banda passante molto bassa, particolari condiziomatipe potrebbero ec-
citare i modi di vibrare a piu bassa frequenza. Risulta dangdicato, in questa
situazione, fornire uno strumento per smorzare le vibraztrutturali. In que-
sto contesto, I'obiettivo della tesi & quello di studiaiatirazione tra i sistemi di
controllo orbitale e d’assetto e la struttura flessibilert#eo, € stato progettato
un sistema di controllo d’orbita e d’assetto in grado di ssidde i requisiti im-
posti sulla posizione e sul puntamento del satellite. teatproposto lo sviluppo
preliminare di un sistema di soppressione delle vibrazibasandosi sulla clas-
se dei controllori a retroazione diretta dell’'uscita eizidndo propulsori a bassa
spinta propriamente distribuiti. Si dimostra che, netitigsi di impiegare i rego-
latori progettati, possano sorgere significativi probleininterazione durante la
vita operativa del satellite. Infine, si verifica come il sisia di soppressione delle
vibrazioni proposto, sia in grado di mitigare gffetti, potenzialmente pericolosi,
di tali interazioni.

Parole chiave Space Solar Power satellites. Controllo di grandi stretflassi-
bili. Controllo subottimo. Controllo colocato. Manteninte di satelliti geosta-
zionari. Controllo d’assetto.
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Chapter 1

Introduction

The Space Solar Power (SSP) satellite was first suggested By ®laser in
1968 [Gla68]. It was initially proposed as a large sateltitbiting around the
Earth providing continuous power to the planet by collegtime solar energy. The
concept is not exclusively related to a terrestrial usageijtlzan be extended to
a variety of potential applications. These include sevaiakions involving outer
planet robotic science, commercial applications, and muexaloration. The SSP
satellite is generally made of a large solar-energy cotigadevice. Although the
most common solution is to employ one single big solar arpaysel, some con-
cepts involve a combination of concentrating mirrors anidrsarrays panels in
order to minimize the mass and to optimize the power cobecti

Secondly, a power transmission system is necessary tddrahg energy from
the SSP satellite to the desired receiving station. Witheesto the present tech-
nology, a microwave transmitting system is more reliablapared to the alterna-
tive laser system. However, a potential benefits of the gsem include smaller
land area requirements for the receiving station, the almn of radio frequency
interference, and reduction of biological and ecologicghacts [dep79]. In the
end a receiving station is required in order to convert therowave beam into
electricity. A rectifying-antenna, (rectenna) is the coamprimary power re-
ceiver and link to terrestrial power distribution.

1.1 Reasons For The SSP Research

The concept of the SSP satellite was initially developedraalgernative to the

nuclear and fossil-fuel sources for Earth consumptionh@igh there has been
little progress, the finiteness of the fossil fuel energy #redstorage of toxic prod-
uct coming from the nuclear reaction are still big issues.

Secondly a SSP satellite may help overcome some of the dch&lb&generating

solar power on Earth such as the absorption of solar enerdieogtmosphere,
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Introduction

the limited utilization at night, the low solar angles angalration by clouds.
Nowadays, the SSP satellite is far to be a feasible solutiothé terrestrial power
supply in terms of price per unit energy, if compared to osmirces. A compet-
itive result, in terms of costfBectiveness, may be achieved if the launch cost will
drop from the present 10000-2500B&to about 500 &g. At the same time, the
production cost of a typical space hardware should be retfroen the present
25000-50000 &g to about 1000 &g [Seb04].

Beyond the economic feasibility, some technical and emirental aspects should
be considered. The assembly and the maintenance of sucls&umsture for a pe-
riod of time of about 30 years represents a very big issueorgitg, some of the
major uncertainties are the impact on the radio frequenegtspm of other ter-
restrial users and the atmospheric impacts such as ionesplsuptions caused
by microwave heating.

Despite the economic, technical and environmental is®lated to the SSP satel-
lites for terrestrial power supply, the studies on such ter@htive energy source
is an interesting challenge and stimulus for future develept and for several
commercial and science applications.

1.2 Design Concepts

Some critical aspects should be examined in order to idethi& most competitive
design. First of all the orbit should insure that the sateleceiving area would
be most of the time exposed to the Sun, the photovoltaic devsbould convert
the solar energy with highfigciency, the transmitters should be able to beam an
Earth-receiving station in a spectral region where mininaimospheric absorp-
tion and scattering would be encountered. In the end madukmd simplicity
may be exploited in order to reduce the initial cost and thksrrelated to such a
project. In the end, for the purpose of developing a prelanjrcontrol system the
most generic geometry and simple architecture is preferalfiree concepts have
been compared: the Solar Tower (STW), the Tethered SolaeP@%P) and the
Abacus Reflector (ARF) satellites. Each one has been cheas@peesentative of
a family of SSP satellites.

1.2.1 The Sun Tower Satellite

The STW concept was first introduced in 1997 [Man97]. It is astellation of
medium-scale, gravity gradient-stabilized space solargpsystems. Each satel-
lite resembles a large, Earth-pointing sunflower in whioh fifice of the flower
is the transmitter array, and the leaves on the stalk araghteweight, inflatable
and deployable solar collectors. They are placed along theeptransmitting

3



1.2 Design Concepts

SunTower
Space Solar Power Concept - %varview

Fresnel Thin Film Concentrator
Refiactor of Lans; Lans Shown)

\ Goal: 1 MW Power Generation per Unit
N @ 1 KWikg, fully Self-Contained

..... _+_ —_ FET Device-Based, Phased Array RF
( ) /

Generation/Transmitler
Goal: 100-300 MW

- Energy Transmission
7 @ 5.8 GHz (approx./reterence)
¥
A f 150-250 m
rd
Y e Diameter (est.)
) with
- n
e ——s E s
“~ / 2-3 om in
Diametar

Figure 1.1: An example a single STW unit [Man99].

backbone which conveys the power generated to the tramsnfiisingle satellite
would be about 15 km long and would be sized to approximaté@-400 MW
scale. Figure 1.1 depicts a possible architecture for des®gwW unit.

The STW satellite concept exploit several innovative apphes to reduce the
development and life cycle cost of the SSP, while at the same lbroadening
market flexibility. It involves the use of highly-modulaei@d power generation and
power transmission, thus supporting the goal of low costufeturing.
Concerning the orbit, it may be deployed into any one of seayecific orbits:
sun-synchronous Low Earth Orbit (LEO), Medium Earth OrbMEQO) and Geo-
stationary Earth Orbit (GEO). The lowest cost choice is tiatconstellation in a
sun-synchronous LEO, inclined at an angle of abotie®®l at an altitude of about
1500 km. In order to achieve the maximum coverag@Q’ electronic beam steer-
ing capability was planned, and a formation of 18 SSP wasasgMan99].
The satellite-internal power distribution is one of thed®gt issue in terms of
the mass of wire required to link the power generation systethe microwave
transmitter and in terms of power loss.

1.2.2 The Tethered Solar Power Satellite

The TSP satellite was introduced in 2006 [Sas06]. It is aeteith solar power
satellite consisting of two main units: a large panek{29x0.1 km) and a bus
system, connected each other by multi-wires approximéat8likm long (Fig-

ure 1.2). It resumes the idea of the sandwich power genafaiaasmission panel

4
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Bus system

10 km

Power generator
(upper plane)

2.0km # Power transmitter

(lower plane)

Microwave

Figure 1.2: The TSP concept [Sas06].

introduced in 1979, where each solar array unit is packell anhicrowave trans-
mitting antenna to form a unique thin panel [dep79]. As a egnence there is
no moving structure, which makes the system highly robudtsaable.

The TSP satellite involves the use of highly modularizedeamsd integrated units.
Indeed the main generatifransmission panel is composed of equivalent smaller
functional units (10895 m) assembled and placed in GEO. The satellite is point-
ing towards the Earth in order to be always visible from theesground station,
and it is kept stabilized by the gravity gradient torque withany significant ac-
tive attitude control.

Although the satellite is capable of 1.2 GW of maximum powey@y and 0.75
GW average on the ground, the total powgicgency is about 36% lower than the
other sun-pointing SSP satellite, since the system has iwbanem to track the
sun for the power generation [Sas06].

1.2.3 The Abacus Reflector

The ARF satellite was introduced in the late 90’s. It is a squao-dimensional
solar array structure (21.9x0.1 km) with a total dry mass of about 248(°

kg [WRO1]. The solar array surface should be kept as much ssilgle facing
the solar rays. The transmitter is located at one of its sikits made of a
stationary microwave antenna with a diameter of 500 m, aradgelrotating re-

5
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Figure 1.3: The ARF concept [WRO01].

flector (500« 700 m) to redirect the microwave energy to the Earth (Figudg. 1
Compared to the original concept of 1979, the ARF avoids thgle infeasible
rotating joint that was expected to move the antenna ([dgdFL03)).

The satellite is placed in GEO in order to deliver a contiraimvel of power of
about 1.2 GW to the same receiving station on Earth. Anottiercéive plus is
its simplicity and highly modularity that has benefits far tackaging, assembly
and maintenance.

Besides these aspects, some critical points should be onedti The assembly
and maintenance does not seem to be trivial due to the langengions of such a
structure. Secondly, the power transmission line of GWII&een the solar array
panels to the transmitter requires a huge amount of condorcsuper-conduction
system to avoid a serious Joule loss.

Eventually, the ARF satellite is considered to be one of tlstmelatively low-
cost SSP concept due to its modularity and simplicity. Farrtiore, the highly
general bi-dimensional geometry makes the vibration cbmtesign interesting
for a preliminary study, since all the concepts analysedis survey share the
common feature of being characterized by one or more lanjacgs. As a con-
sequence, the ARF is chosen to be the reference SSP concejgviEoping a
structural vibration suppression system.

6
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1.3 Rationale for a Structural Vibration-Suppression
System

The subject of the present thesis is a preliminary analyfdiseovibrational issues
regarding a large flexible structure during its operatife lin particular, the orbit
and attitude control system together with the structutadation suppression sys-
tem should be capable to assure the ARF satellite of fuliltine operativeness
and functionality of the system. Beside the fact that tharsatrays should be
pointed towards the Sun, the most restrictive requirementdved the transmis-
sion of the power, collected in space, to a precise point erEtirth. Especially,
in the nominal condition, the SSP satellite should be ke@HO with Q1° lon-
gitude and M5’ latitude accuracies, while the attitude control shouldrgotee
0.08 pointing accuracy.

These requirements have to be satisfied in the presencegeféaternal distur-
bances. The orbital main disturbances are caused by theptwrical shape of the
Earth, the gravitational attraction of the Sun and the Mawhtae solar radiation
pressure, while the attitude disturbances are mainly iediy the gravity gradi-
ent torque and the solar radiation torque. Consideringeghkesystem behaviour,
internal disturbances may be caused by uncertainties ooetfiter of mass and
the principal moment of inertia directions. Furthermoresgible rotatory-device
motions, fuel sloshing or other subsystems interactiong imauce unexpected
perturbations.

Moreover, due to the significant mass involved in such a lapgeecratft, that is
about 25¢10° kg, the classical station keeping strategies based on siveuha-
noeuvres are expected to be not exploitable. As a consegutrecontinuous
orbit and attitude control actions are requested to satisfyaforementioned re-
quirements. In this context, the use of electric thrustetis lngh specific impulse
becomes mandatory [WRO1].

This previous discussion regards only the satellite rigatioms. However, since
the ARF satellite is a large flexible structure, the struadtbehaviour should not
be neglected a priori. Significant vibrations may be indulbgdenvironmental
disturbances such as the solar radiation pressures amdahtisturbances due
to the orbit and attitude control interactions. Moreovieg problems associated
with the vibrations and their suppression should not bepeddently treated for
the following reasons:

e The first natural frequencies of the structure are expectéa fow. There-
fore, the modal behaviour of the structure should be andlyse

e The orbit and attitude control may excite the low frequenades of the
structure.




1.3 Rationale for a Structural Vibration-Suppression &yst

e The flexibility of the structure may allow small sensors actlators dis-
placements and disorientation.

e The control force generated by a realistic vibration suggigsn system may
influence the orbit and attitude configurations.

As a consequence, the purpose of the present thesis is topeue integrated
system where the orbit and attitude controls are intergatitth a proper vibra-
tion suppression system. For the purpose of this prelinisardy the following
hypothesis are stated:

e The orbital disturbances are caused by the major envirotahdisturbances
previously described, together with the disturbances ngrfrom the atti-
tude and the vibration suppression control actions.

e The attitude is fiected by the gravity gradient torque and the solar radia-
tion torque together with the disturbances coming from tti®t@nd the
vibration suppression control actions.

e The structural vibrations are only influenced by the orbid #me attitude
control actions.

e The gravity field is not considered to be of significant infloen the struc-
tural vibrations due to its very slow fluctuation.

e The thermal distortions and structural vibrations due tardweating are not
considered, because, due to its inherent modellifigedity, is an excessive
refinement for the purpose of this preliminary study. Ndweldss, since its
potential criticality further study on this topic should te&rried out.

e The actuators are not supposed to change the directionsesgplect to the
undeformed structure.

In the present work, after the orbit and attitude controlsehaeen designed, the
simulations with a proper vibration suppression systemcarapared with the
ones coming from considering the uncontrolled structuitadation dynamics. It
will be exhibited that two kind of structural oscillationsise: large very low
frequency oscillations, that are the natural consequehtteeastructural flexibil-
ity due to the nominal trend of the orbit and attitude confmte, and much
higher frequency vibrations in correspondence to the mérdguencies of the
structure. Although the first kind of oscillations presenai@e amplitude, they
are not considered to be dangerous for the structure, wiels¢cond kind need
to be damped.

The final results show that, if the structural dynamics is$ lefcontrolled, the

8



Introduction

structural high frequency vibrations may be exited by tHa&tand attitude con-
trol actions. Contrary, the vibration suppression systeretbped in this work is
able to damped this kind of undesired oscillations.

1.4 Thesis Structure

The thesis is structured following the natural developnoéihe study.

Chapter 1: some concepts concerning the SSP project are introducerhng
them the ARF satellite is chosen to be the reference SSP pbiwcelevel-
oping a structural vibration suppression system. In the gredhypothesis
and the final results are briefly described.

Chapter 2: an orbit control system is developed for the GEO Space Saewer
(SSP) satellite model basing upon a continuous, low throistrol action.
In particular a Linear Quadratic Regulator (LQR) is destyspecific re-
quirements.

Chapter 3: an attitude control system is developed in order to keedhellite
in the desired attitude. Two kind of regulators are desigusdi compared
in terms of performance and control inputs: the Proportiontegrative
Derivative (PID) and the Linear Quadratic (LQ) regulator.

Chapter 4. an Finite Element (FE) model of the Abacus-like structwele-
veloped as a bi-dimensional frame. The geometric progedie chosen
such that some important features of the reference Abacwsepg, inertial
characteristics and the first modal frequency, are met [VWWRDle modal
analysis results are compared with those obtained from alogous model
developed with another software for FE analysis.

Chapter 5: several reduction techniques of the high-order dynansgatems
coming from finite element analysis of the flexible structumee discussed.
In the end, it is performed the order reduction of the stmattonodel of the
satellite employing the introduced methods.

Chapter 6: since a direct state feedback control cannot be employesuith
a large system, a direct output feedback controller, withdbjective of
suppressing the structural vibrations, is designed. Iretit the results,
obtained employing the developed suboptimal control lae/paesented.

Chapter 7: in this chapter the simulations with a proper vibration m@&ssion
system are compared with the ones coming from consideri@agititon-
trolled structural vibration dynamics.




1.4 Thesis Structure

Chapter 8: the contributions coming from the present work are sumzedrand
critically discussed. In the end, possible areas of futweke/are suggested.

10



Chapter 2

Orbital Dynamics and Control

It is underlined in Chapter 1 that the objective of the présessis is to study the
issues related to the vibrations which could be triggerethduhe operative life
of a SSP satellite, especially considering tifees of the forces introduced into
the structure by the orbitattitude control systems. Hence first of all, an orbit
control system is developed for the GEO SSP satellite maaghly upon a con-
tinuous, low thrust control action. A quick background angimeasure systems
is firstly given. Then the diierent reference frames employed for the perturbed
orbital dynamics analysis are introduced. Once presemteztal equivalent tech-
niques for representing the state of a satellite (consibasgunctiform) along its
orbit, the main environmental orbital perturbations agtim a GEO satellite are
surveyed. The fully non-linear equations holding the tlatn@nal dynamics of

a satellite in its motion along the perturbed orbit are coragavith a linearised
model based on the Clohessy-Wiltshire equations for thagivel orbital motion.
After discussing the requirements on the orbital positiba 8SP in GEO orbit, it

is presented a Linear Quadratic Regulator (LQR) approadesigning a control
law able to fulfil the aforementioned requirements.

2.1 Time Measure

In the following sections the time conventions useful in @leping the orbital
dynamic model are introduced.

2.1.1 Sidereal Time and Universal Time

Sidereal time is a system of timekeeping based on the ratafithe Earth with
respect to the fixed stars in the sky. More specifically theal&pparent Sidereal
Time (LAST), is defined as the hour angle of the vernal equidkat locality.

The equinoxes, as can be seen in Figure 2.1a, are the twatsigtawhich the

11
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Nutation
. (Period= 18.6 y)
North Celestial Pole ~—
Celestial equator Autumn S~
equinox
Sep 21 Precession Direction
(Period= 26000 y) of Earth's
rotation axis
_ ~ 23.5
Vernal equino
Mar 21 Ecliptic North
k Earth

South Celestial Pole
(a) Vernal and autumn equinoxes. (b) Earth’s precession and nutation.

Figure 2.1: Vernal and autumn equinoxes, and Earth’s precession and nutation.

Sun, in its apparent motion about the Earth, crosses thesedigon between the
the equator plane and the ecliptic plane, namely the lineodes. Among the
two, the vernal equinox is the one in which the Sun’s pathsgsghe line of
nodes moving south to north, defining the First Point of A(@snbolT"). Due
to the dfect of precession, the First Point of Aries is not a fixed pmirgpace but
it moves along the ecliptic at a rate of roughly one degreeyeseventy years.
Apparent Sidereal Time flers from Mean Sidereal Time by an amount due to
nutation, the nodding motion of the Earth’s axis of rotatsuperimposed on that
of precession (see Figure 2.1b). When the measurementsaewith respect to
the prime meridian at Greenwich, the times are referred @asnwich Apparent
Sidereal Time (GAST) and Greenwich Mean Sidereal Time (GMShe latter
will be important in the developments of the present work.

Universal Time (UT), more precisely its variations UT1, &sskbd on a fictitious
mean Sun exhibiting uniform motion in right ascension (segtin 2.2) along the
equator and is related to the mean solar time at Greenwiah Cblordinated Uni-
versal Time (UTC), a time scale determined using highly iseeatomic clocks,
was introduced as a convenient approximation of UT1 andasbtisis for the
worldwide system of civil time which all satellite operat®refer to.

2.1.2 Epoch and Calendar Date

The moment in which an event occurs is referred as to the epbtie event.
The epoch indicates a particular instant designated witdlendar date expressed
following the convention

( year month day hours minutes seconds

12
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For example the date
(201211120 )

designates January 1, 2012 af 0p' 00.0’ UTC.
Another way to designate a date (useful in defining the daldsidy ephemerides)
is in terms of decimal number of days since a reference epW@den the con-
sidered reference date is January 1, 4713 BC at noon, thenJDkte (JD) is
computed. In order to deal with dates of handier orders ofnitade, the epoch
designated by the date January 1, 2000 &t 00.0' UTC of beginning of a
Julian year, is taken as the reference date. Its conneciitbrtive Julian Date is
directly computed as

JD2o00 = JD — 24515445 (2.1)

A Julian year is the solar year of 365.25 days, which implies extra day every
four years.

Given this framework for the measure of time, the approxa@MST at any
epoch can be calculated, with a loss of precision of 0.1 s&pen century, using
the following formula,

GMST = 18697374558+ 24.06570982441908 (2.2)

whereD are the number of days and fraction since January 1, 2000"a00.2
00.0' UTC and GMST needs to be reduced in the rany®@4' [Kap81].

2.2 Reference Frames and Coordinate Systems

2.2.1 Earth Centered Inertial RFCS

ECI reference fram&Y Z (Figure 2.2a) has its origin at the center of mass of the
Earth and the fundamental plane coinciding with the Eagbisatorial plane. The

X axis is aligned with the line of nodes directed towards thstARoint of Aries

T, theZ axis points to the North Pole anficompletes a right-handed orthogonal
coordinate system.

Earth Centered Inertial (ECI) frame is not truly inertialjedto the fact that the
vernal equinox and equatorial plane vary slightly over tinThe gravitational
attraction of the Sun and Moon on the Earth’s equatorialéa@yise the rotational
axis of the Earth to precess in space. Nutation is the smathgrlitude shorter
period wobble superposed on the precessional motion tbatised by the shorter
period fluctuations in the strength of the torque exertedanmis equatorial bulge
by the sun, moon, and planets.

In order to achieve a siiciently inertial coordinate system, the equinoxes and
equator are specified at a particular epoch. From 1984 thé coosmonly used

13



2.2 Reference Frames and Coordinate Systems

reference epoch is January 1, 2000 &ta@ 00.0' UTC.

The position of a point in the ECI frame, as can be seen in Ei@Qu2b can be
specified by either Cartesian coordinatey, z or using spherical coordinates, i.e.
geocentric distance right ascensioa and declinatiors.

2.2.2 Earth Centered Earth Fixed RFCS

ECEF reference fram¥: Y Zr is a geocentric coordinate system which is allowed
to rotate with the Earth. The fundamental plane is the Ealquatorial plane.
The Zr axis coincides withZ whilst Xg is always aligned with the Greenwich
meridian.

Position in this coordinate frame is given defining the gattde distancer, the
geographical longitude and the geocentric latitude(Figure 2.3a). Longitudg

is counted positively towards the East, anffatis from the right ascensianby
the right ascensio® of the Greenwich meridian.

A=a—0. (2.3)

The right ascensio® of the Greenwich meridian at a certain time (in the UTC
system) is equal to GMST and can be computed using (2.2).

2.2.3 Gaussian RFCS

Gaussian reference frame is a reference system designed Byaxes with the
origin fixed to the position of the spacecraft consideredwascpform. The unit
vectorsig, it andiy of its orthonormal basis have the same directions ofRhe
T, N axes (see Figure 2.3b). AxRis is defined as always pointing from the
Earth’s center along the radius vector toward the satelfité moves through the
orbit. TheN axis is normal to the orbit plane with direction of the satengular
momentum vector and thEe axis is perpendicular tB in the orbit plane and with
the direction toward the satellite movement. It completet) the unit vectorsg
andiy, a right-handed orthogonal basis.

2.2.4 Geostationary Clohessy-Wiltshire RFCS

GCW frame withXsYsZs axes is a non-inertial reference frame rotating with the
Earth (see Figure 2.4). The reference plane is the equigptaize and the origin

of this coordinate system is in the point of perfect geostetiy orbit. TheXg
axis lies along the radial direction pointing in oppositeedtion of the Earth, the
Zs axis is normal to the equatorial plane towards North ‘¥gdompletes a right-
handed orthogonal coordinate system.
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Equatorial plane

Vernal equinoxXT

(a) ECI reference frame.
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(b) Cartesian and spherical inertial coordinates within the ECI frame.

Figure 2.2: The ECI reference frame, and the Cartesian and spherical inertial coordi-
nates.

15



2.2 Reference Frames and Coordinate Systems

---------- Equatorial
plane -

N

______

Equatorial
plane

Line of nodes
(b) Gaussian reference frame.

Figure 2.3: ECEF reference frame and Gaussian reference frame.
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Zg,

Geostationary
ideal orbit

Figure 2.4: GCW reference frame.

The position of a point in the GCW frame is specified by Caaesioordinates
XG, Yo andzs.

2.3 Satellite State Representation

This section describes some equivalent forms in which tae sif a satellite in
space can be expressed. For this state to be completelydlsiinguantities need
to be specified. The collection of these quantities is retkas to either a state
vector or a set of orbital elements referenced to a partidtdae.

The following sections consider a spacecraft subjected tinthe gravitational
attraction of the Earth with punctiform mass (unperturbexian).

2.3.1 Position and Velocity

In the ECI frame position and velocity vectors of a spaceaain be simply de-
noted as follows,

=[xy 4 (2.42)
v=i=[xy 2 (2.4b)
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and the acceleration of the spacecraft satisfies the semuoled-vector diferential
equation governing the relative motion of two bodies in gpac

F— Ko (2.5)

whereug is the gravitational parameter of the Earth. Therefore stage repre-
sentation by position and velocity of a spacecraft is exgaedy,

x=[xy zxy 2 (2.6)

2.3.2 Classical Orbital Elements

The two-body system characterized by (2.5) has three degféeeedom, and the
orbit is uniquely determined if six initial conditions arpezified, three of which
are associated withat some initial time, and three of which are associated with
velocity v.

In orbital mechanics the constants of integration, or wesitunctions thereof, are
also referred to as elements of the orbit and such initiadlitams can be consid-
ered as six possible orbital elements.

A common set of scalars often employed to describe a sateliit is the Classi-
cal Orbital Elements (COES) set. It consists of five indeanduantities, which
are stficient to completely describe the size, shape, and orientétith respect
to the ECI frame) of an orbit, and one quantity required tqpint the position
of a satellite along the orbit at any particular time. The®ameters are (Fig-
ure 2.5) the following

e Semi-major axis: it specifies the size of the orbit.
e Eccentricitye: it specifies the shape of the orbit.

¢ Inclination of the orbit plane: specifies the tilt of the orbit plane with
respect to the Earth’s equatorial plane.

¢ Right ascension of the ascending n@eidt is the angle from the positiveg
axis to the line of node, that is the intersection betweereth&atorial plane
and the orbital plane, where the orbit crosses from soutlotihn

e Argument of the perigee: it is the angle measured from the ascending
node to the perigee.

e True anomalyf: it specifies the position of the satellite within its orbiich
it is the angle between the perigee and the current posigotovr .
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h Line of apsis
Satellite

< Perigee

- Equatorial
“.._ plane

Line of nodes
Figure 2.5: Classical Orbital Elements (COES).

Other quantities can be used instead of the true anomalystrie the satellite
position on the orbit. One choice is the eccentric anonkalyhich is the angle
defined on the auxiliary circle of radiasas in Figure 2.6. It is related to the true
anomaly by means of the following relation,

f 1+e E
tan— = — tan— 2.7
an2 1_ean2 (2.7)

Eccentric anomaly can be used to express the position oeHitsaas a function

of time,
- It
E — esinE = a—f (t—tp) =n(t—tpy) (2.8)

wheren is the mean motioty, is the time of pericenter passage. Defining the mean
anomalyM = n(t —t,), Kepler's time equation can be written as

M = E — esinE. (2.9)

Satellite state representation in terms of classical arblements is then denoted
as follows,
Xcoe=[a e i Q w anomal)]T (2.10)

where the anomaly component can be one anfgriggand M.
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Auxiliary
circle

Figure 2.6: True and eccentric anomalies for elliptic motion.

2.3.3 Equinoctial Orbital Elements

COEs stfter from two main singularities. The first is when the orbiticalar,
i.e., when the eccentricity is zere & 0). In this case the line of apsis is unde-
fined and also the argument of perigee The second occurs when the orbit is
equatorial, i.e., when the inclination is zelio=£ 0). In this case the ascending
node is undefined and also the right ascension of the asagenddeQ. In order

to deal with non-singular elements when analysing geastaty orbits, one must
search for combinations of the COEs to define a new set of mess) known as
Equinoctial Orbital Elements (EOES).

The EOEs avoid the singularities encountered when using@issical orbital ele-
ments. Their definitions in terms of Keplerian elements arergby the following
equations [BC71],

a, (2.118.)
P, =esin(w+ Q), (2.11b)
P, = ecos(w + Q), (2.11c)
Q.= tanlé sinQ, (2.11d)
Q= tanlz CcosQ, (2.11e)
L=Q+w+f. (2.11f)
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Figure 2.7: Eccentricity and inclination equinoctial components and true longitude.

The latter equation defines the true longitudeSimilarly to what happens with
the COEs, the true longitude (function of the true anomady) be replaced by
functions of either the eccentric or the mean anomaly, naB@ndM. Employ-
ing these anomaly leads to the definition of the eccentrigitade and the mean
longitude,

K=Q+w+E, (2.12a)
| =Q+w+ M. (2.12b)

GEO satellite state representation in terms of EquinoCtibltal Elements (EOES)
will be denoted as follows,

xEOEz[a P P, Qi Q anomal)]T, (2.13)

where the anomaly component can be one anigrigandl.

In the equinoctial frame, depicted in Figure 2.7 the elemBpntandP, represent
the projection of the eccentricity vector onto the axes. &lenentQ, andQ,
represent the projection of the vector oriented in the timacof the ascending
node with magnitude tafi/2) (see [CL]).

2.4 Environmental Perturbations

Thus far an ideal two body problem, held by (2.5), has beersidened. This
section deals with the analysis of the orbital dynamics wirital perturbation
are taken into account. For geostationary satellites, iterthing accelerations
that need to be considered are related to
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e Non-spherical shape of the Earth.
e Gravitational attraction of the Sun and the Moon.
e Solar radiation pressure.

Due to perturbing accelerations, the equation that holdsitin-Keplerian orbit
dynamics becomes,

F+ ’u — T =ap (2.14)

in which a,, the perturbing acceleratlon, represents the resultaturpéeng force
per unit mass acting on the satellite.

ap = a + ap + &, (2.15)

wherea, is caused by the asymmetric gravity attraction of the Eaagihy the
gravity attraction of the Sun and the Moon aadis due to the solar radiation
pressure.

2.4.1 Earth’s Gravitational Field

The gravitational field of a continuous and non-homogeneéaisbution of mass
can be conveniently described by its potential funclfgn

He

Ve(l, 4, @) = == + Ve(r, 4, @). (2.16)

in which V. is the perturbing gravitational potential expressed by,

Ve(r, A, @) ﬂTi zn: ( ) nm (SiNg) [Chmcos(m1) + Spmcos(mi)] .

(2.17)
In the previous expressidd,, andS,, are the tesserah(z m), sectoral i = m)
and zonal ifn = 0) harmonic cofficients characterizing the Earth’s mass distri-
bution, andP,, is the associated Legendre function of degresad ordem. In
the present work only the primary zon&l,( andS,g) and sectoral@,, andS,,)
effects are taken into account whilst the higher degree and batenonics are
neglected. In particular, the Earth’s elliptical equattescribed by the primary
sectoral harmonics, gives rise to a gravitational acceterahat causes a drift in
the longitudinal position of geostationary satellitesjehhis a major perturbation
that must be dealt with. There are four equilibrium poinigssated by approxi-
mately 90 along the equator, two stable points and two unstable paiitis eéfect
of the triaxiality is to cause geosynchronous satellitesstollate about the nearest
stable point on the minor axis. These two stable points, atab5 E longitude
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Table 2.1: Geopotential coefficients and the corresponding Legendre functions.

n m C-|m Snm an (Sinﬁo)
2 0 -1.0810° 0 3sifp— 3
2 2 -15%10°° -9.03x107 3cosy

and 108 W longitude, are called gravitational valleys.
Table 2.1 shows the values of the fla®ents and the related Legendre function
for the considered harmonics [\8]. The components of the acceleration vector

e = aexieraeYieraniz, (218)

induced by the perturbing potential functidh and expressed in the ECI refer-
ence frame are obtained calculating the partial derivatiwg with respect to the
inertial coordinates.

3 = VVe. (2.19)
The acceleration components are decomposed as follows,
3, = HoRg (35, +a%;) . (2.20a)
%, = paRs (8 + ). (2.20b)
ae, = tafRG (320 + a2). (2.20c)

where the expressions of the normalized acceleration coergs, in function of
the ECI coordinates, y, z, are given in [Los07] as,

o 3CooX(X®+y?—47)

20 _
ES > (X2 N y2 4 22)7/2 ’ (221a~)
2 2 — 47
2 3CaY (¢ +y 72, (2.21b)
2 e+y+2)
20 _ 3C0Z(3E + 3y — 22) (2.21c)

2 e+ v+
As regards the disturbing acceleration caused by fiieeteof the triaxiality of the
Earth,

6 (Y + yZ — 4x%y) F., (®) + 3(2xZ — 3x® + 7xy?) F, (©)

22
_ iy ., (2.22q)
2 B0CH X2 4N F(6) —3YZ 3+ YR)FR(O) o0y
ae‘( = (XZ i y2 + 22)7/2 5 .
22 _ 3002, (0) +152(y* — ) Fy, (©) (2.22¢)

(@ +y2 + )"
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Figure 2.8: Perturbing acceleration due to Earth’s non-homogeneous gravitational
field, computed during a period of one day.

where

F.,(®) = Cysin(20) + Sy, c08(20), (2.23a)
F.,(®) = C2,C08(20) — S»,Sin(20). (2.23b)

2.4.2 Gravity Attraction of the Sun and the Moon

In order to obtain a dficiently accurate model of the dynamics of a geostationary
satellite, the attractions exerted by the Sun and the Moaost tmel considered as
third-body perturbing accelerations acting on the spadecr

The perturbing acceleratiay caused by the luni-solar gravitationafexts on the
satellite is described by,

oo (30) e (245), o
's To m Te

wherers andry are the position vectors of the satellite from the Sun and the
Moon, andre andr¢ are the position vectors of the Sun and the Moon, all of
them measured in the ECI reference frame.

As it appears clearly, for the computation of the solar amauigravity attraction

it is necessary to express the positions of the Sun and thenihabie ECI refer-
ence frame as functions of time. This can be done by meanewnfgphemerides
which tabulate the position of the Sun and the Moon, in terfright ascension
and declination, as functions of time.

After some manipulations, the components of the disturbicgeleration, given
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by (2.24), can be easily expressed in function of the inectardinates as fol-
lows [WRO01],

ag, = ’uf ( X+ El lcos@e + — (5cos b — 1)] (Foy — x))
s 0) 2o

3
+ ’IE (—X+ _r |:COSHCC + L (5 CO§ Oc — 1)] (rCCx — X)) s (225&)
r(( e 2r¢

ag, = Ho (—y+ 3 lCOS@@ +-— (5c08 b — 1)] (roy —Y)>
ro 2re

3
s

L He ( y+ 3_ [cos@a + — (5c08 ¢ — 1)] (re, — y)) , (2.25b)
r@ 2r Ie

agz_'uf< z+i[0059@+—(5c0§9@— )](r@Z—z)>
r 2@

re

3r
cH 702 | cose + — (5c086¢ —1)| (re, —2) ), (2.25c)
r re 2r¢

wherefg is the angle between the Earth-satellite line and the Edwthiine and

O¢ is the angle between the Earth-satellite line and the Bddbn line, as de-
picted in Figure 2.9.

2.4.3 Solar Radiation Pressure

A satellite exposed to solar radiation experiences a sroadkefthat arises due to
photons impinging on its surface, as illustrated in Figudel2 It is assumed that
a fraction, ¢, of the impinging photons is specularly reflected, a fractig, is
diffusely reflected, and a fractiog,, is absorbed by the surface,

€ + €d + €y = 1. (226)

The solar radiation pressure acceleration acting on a fitgcuis then expressed
as,

A 2

a0 = Po’® (ny-ro) [(1— &)rs + (2& (ne-ts) + ged) ns] )
'S

where cofficientPgs ~ 4.56 x 10~% N/m? is the nominal solar radiation pressure

constantAs andmg are the satellite surface and massis a unit vector normal to

the surface ands is, as previously stated, the position vector of the s&telith
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2.4 Environmental Perturbations

Figure 2.9: Earth, Sun, Moon and spacecraft relative positions.

respect to the Sun.

In contrast to the gravitational perturbations so far diseudl, the acceleration due
to the solar radiation depends on the spacecraft mass afladearea. Moreover
it computation involves the determination of the precismatmn of the Sun, the
correct satellite orbital attitude, the exact value of tbiasradiation pressure co-
efficient, the &ective time-varying cross-sectional area exposed to theniing
radiation, the correct and usually time-varying fimgents that model the space-
craft reflectivity.

For an ideal case of a perfect mirror wigh = ¢, = 0 ande, = 1, the resulting
acceleration is directed normally to the surface,

A
a, = 2Po— cOS ¢ N, (2.28)
ms

Also for an ideal case of a black body wigh= €5 = 0 ande, = 1, the dfect of
solar radiation is,

As rS
= Pg— coS ¢ —. 2.29
a o CO ¢rs (2.29)

S
where A;cosg is usually referred as to the projected area of the surfaderun
consideration.
For most practical cases a simplified expression of the saddation acceleration,
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Figure 2.10: Perturbing acceleration due to gravity attraction of the Sun and the
Moon, computed during a period of one day.
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photons

2222

Specularly reflected
photons

Figure 2.11: Solar radiation pressure force acting on an ideal flat surface.

commonly used for numerical simulations (see [Val01]) dsfted,

a = (1+e)Posls (2.30)
Msls

in which € is the overall surface reflectance. Equation (2.30) is a Igication
of the rigorous solar radiation pressure acceleration ibein(2.27) under the as-
sumption that the unit vector normal to the surface pointags in the direction
of the Sun, i.e. the satellite surface is always perpendidol the incoming radi-
ation. This simplified version is commonly used in orbit detmation programs
with the option of estimating the surface reflectanes a free parameter. Orbital
perturbations due to the solar radiation pressure may tawsbounted for with
high precision, even if no details of the satellite struefwrientation and reflec-
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Figure 2.12: Perturbing acceleration due to solar radiation pressure, computed dur-
ing a period of one day.

tivity are known. In the present work a reflectivity ¢beiente = 0.3 is assumed.
The acceleration vect@ can be expressed in the ECI reference frame as,

a = arxiX+ainY+afziZ’ (231)

where the components,, a,, anda,, along the axes can be obtained as the par-
tial derivatives of a pseudo-potential functivh(x, y, z t) of radiation pressure
(see [Los07]),

a, = —(1+€) P@% - X : - (2.32a)
5\ = 0% + (ys —y)2 + (25— 2

arY=—(1+e)P@% 2 ys ) 2 . (3)
= s =)+ (¥s — )% + (25— 2)

a, =—(1+e Po %2 (2.32¢)

Ms \/(zs — 2%+ (ys — y)° + (zs — 2

2.5 Translational Dynamics of GEO Satellites

This section introduces the equations that hold the tréosk dynamics of a
GEO satellite. Firstly the fully non linear equations arealéed, then a linearised
model is
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2.5.1 Non-Linear Geostationary Orbit Model

The fully non-linear equations of orbital motion under peloed conditions are
here introduced by means of the Variation Of Parameter (&fnations. VOP
equations of motion are a system of first-ordefedential equations that describe
the rate of change for the time-varying orbital equinocti@ment vectokgog.
Referring to [BC71], these equations can be expressedlas/&l

Xeoe = Aeoe (Xeok) aETN + beok, (2.33)

WhereaffTN is the perturbing acceleration vector expressed irRhé&l reference
frame,
Ap = Apgir + Ap,I7 + Apyin. (2.34)

The matrixAeoe (Xeoe), direct function of the orbital parameters themselves, and
the vectombgog are conveniently defined considering the following equegjo

2 2
% = 2% (PysinL — Py cosL) ay, + Z%Fam, (2.35)
dP,  p r P\ .
o - h cosL ap, + n [Pl + <1+ F) smL] Aoy
— %Pz (QicosL — Q;sinL) ap,, (2.36)
dP, P

T EsinLapRJr%[Per (1+?p> cosL]a

+ %Pl (QicosL — Qysinl) a,,, (2.37)

dQ

e % (1+ QI + Q3) sinL ap,, (2.38)
d r
d_QtZ = o (1+ Qf + Q3) cosL ay,, (2.39)

dl ) 2b
azn— {[ o ( ) Pls|nL+P2COSL)+E]apR

p )
+ — (l+—> P,cosL + P>sinL) a
a+b r (P1 2 ) 8

+ % (QicosL — Q;sinL) ap, } (2.40)
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2.5 Translational Dynamics of GEO Satellites

where the quantitiep, h andb are defined as follows,

p=a(l-¢), (2.41)
h= /P, (2.42)
b=ay/1-P?—P2. (2.43)

2.5.2 A Linearised Geostationary Orbit Model

The precise orbit propagation means that the fully nonaliregjuations of orbital
motion are numerically integrated to produce the positioth elocity vectors at
an arbitrary time.

An alternative is to obtain the solution of the relative roatiwith respect to
a known reference orbit [PC93,7A0]. The Geostationary Clohessy-Wiltshire
(GCW) reference frame described in Section 2.2.4 is cetht@réhe ideal geosta-
tionary position with station longitudés and describes a perfect geostationary
orbit. This circular orbit can be selected as a referenc anlol the motion in the
perturbed orbit can be described with respect to the GCWdriamterms of a set
of linear diferential equations called the Clohessy-Wiltshire equat[®CO05].
The non-linear equations of orbital motion are generallgtem as in (2.14),

P+ ’L%r —a, (2.44)

wherer is the position vector of the satellite in the ECI frame apds the perturb-
ing accelerations vector which includes, as previouslytioaed, the contributes
from the Earth’s gravitational harmonics, the solar andatuattraction and the
solar radiation pressure.

Referring to Figure 2.13, the relative position vectgiof the satellite with respect
to the ideal geostationary orbit is defined as,

l[c=I—Tcw= Xgle + ygiYG + ZG'Z(_;a (245)

wherercy is the position vector of the GCW frame’s origin within theegtk ECI
frame. Introducing (2.45) in (2.44) and after linearisataibout the ideal geosyn-
chronous orbit as a reference, the Clohessy-Wiltshire teapnsacan be written
as,

%6 = 3w X + 2weYs + AL, (2.464a)
Yo = —2we¥s + &, (2.46b)
% = —w5zs + a%, (2.46¢)
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Figure 2.13: Satellite motion relative to ECI and GCW reference frames.

in which the components of the disturbing vector need to Ipgessed relatively
to the GCW reference frame. Defining the state vegtas,

E=[x Yo % % Yo |, (2.47)

the Clohessy-Wiltshire equations are readily written mitistate-space form.

d
d—f = Acwé + Bewas ", (2.48)
where,
03 | 3
0 0 0 —-2we 0 O
| 0 0 —wi O 0 O]
Bew = ?2] ) (2.49b)
SV = [ae are a]. (2.49c)
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2.6 GEO Satellite Station Keeping

The inertial Cartesian components of the Earth’s gravitgeharationa,, of the
Sun’s and Moon’s gravity acceleratiagand of the solar radiation pressaecan
be expressed in the GCW Cartesian coordinates by means thtisformation
that connects the GCW frame to the ECI frame.

ax aXG

p g
a; = R3 (@ + /lg) apG R (2.50)
aZ ae

p p

whereR; (@ + Ag) indicates a rotation o® + g about the third axis of an or-
thogonal coordinate system.

2.6 GEO Satellite Station Keeping

This section describes the satellite station keeping prohinderlying the require-
ments that need to be fulfilled. Moreover a state feedbadklaény, designed to
meet these constraints, is discussed.

2.6.1 GEO Satellite Orbital Requirements

The main requirement of a geostationary satellite consgistaving, during its
whole life, longitudinal and latitudinal position confinéa a deadband box in
the (1, ¢) plane centered inig, 0) and with dimensions prescribed by the max-
imum acceptable deviations in longitude and latitude, HamMg.x andymax (See
Figure 2.14).

—Amax < A — Ag < Amax (251&)
—Pmax S@ < Pmax (2.51b)

A circular confinement area may also be prescribed, but shisually handled
like the previous case by using the square box inscribedeiciticle.

The angular constraints on geographic longitude and tiiexpressed by (2.51)
can also be related to constraints on the displacemente spidcecraft measured
in the GCW reference frame, i.e. displacements alongXtheYs andZs axes.
Consequently, as depicted in Figure 2.15, an allowed ramdengitude given
by (2.51a) entails an allowed range along Yaeaxis given by,

—rgtandmax < Yo < rgtandmay (2.52)

whererg is the modulus of the position vector of the center of the GCavhi,
that is the radius of the ideal geostationary orbit.On theeohand, an allowed
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Figure 2.14: Deadband rectangular box in (4, ¢) plane.

range in latitude given by (2.51b) entails an allowed rarige@theZ; axis given
by,

—rgtanNpmax < Zg < fgtangmax. (2.53)
Following the guidelines given in [WRO01], in the present wdhe bounds on
longitude and latitude are taken as,

/lmax = O. 10, and ‘,Dmax = 0.050.

This deadband box in thel(¢) plane entails a rectangular box in thés( Zg)
plane with sides nearly equal to 73.6 km and 36.8 km.

2.6.2 Orbit Control System

A state feedback regulator is designed in order to assutéhbaleviation of the
satellite position from the ideal geostationary orbit ramavithin the prescribed
limits. A LQR approach based on the linearised dynamicalehotla GEO satel-
lite is chosen.

d&

5t = Acwé + Bowar ™. (2.54)

Control accelerationaS™ turn out to be proportional to the statgshrough the
gain matrixK o,
aW = —Kopt. (2.55)
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A Zg

2rcw tangmax

Geostationary
ideal orbit

X T
_________ , L,
.......

Figure 2.15: Tolerance ranges along Yg and Zg axes of the geostationary GCW ref-
erence frame.

The gain matrix is eventually obtained minimizing the quidrcost function,
Jorb = J (fTQOrbf + aSWTRorbaEW> dt. (256)
0

The weight matrix on the states is a diagonal matrix witfieslent penalties on
the positions and on the velocities.

(3% 1014 0 0 0 0 0
0 3x 101 0 0 0 0
0 0 3x 10 0 0 0
Qo = 0 0 0 10° 0 0 (2.57)
0 0 0 0 10° O
0 0 0 0 0 107]

On the other hand, control actions have all equal penattirezssen as follows,

16 0 O
Rob=| 0 10 0 |. (2.58)
0 0 10
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Figure 2.16: Actuators pattern employed for the orbital control system.

Using the MxtLaB® function 1gr to solve the minimization problem, the gain
results as follows,

0.0000107 —0.0000006 0 447490 (0713248 0 .
Korp = | 00000573 —0.0000021 0 0713248 (4131018 0 [ x107" (2.59)
0 0 00000003 0 0 ®750131

The dynamical behaviour of the controlled system is finaéidiby,

d
d—f = (Acw — BewKom) € + Bewag . (2.60)

It is already underlined that, due to the significant masspaicecraft, about
25x 10° kg, a classical station keeping strategies, based on imputsgnoeuvres
are expected to be not exploitable. As a consequence thd aktic thrusters,
with high specific impulse and throttling capability, beasrmandatory (for fur-
ther details see Appendix A). In order to provide the neagssssulting control

accelerations, the control system is provided with tweltiation stations, dis-
tributed as illustrated in Figure 2.16.

In Figures 2.17 - 2.19 are given the results obtained intemyaver twenty orbits
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Figure 2.17: Time history of the requested control forces expressed in the GCW ref-
erence frame.

the vector equation (2.60) with initial conditions equal to

(tO) A fo\
ye(to) 0
£ (to) = { xzf;%ttzg b — { 8 - (2.61)
YG(tO) 0
%)) |0

at the initial epoclt, corresponding to the date January 1, 2012 &tQr® 00.0'
UTC with the satellite located at nominal longitutte = 75.07° (one of the stable
longitude). Orbit control simulation results are obtainaking into account the
effects of Earth’s oblateness and triaxiality, luni-solartpeyations, 60 N solar
pressure force and employing the continuous orbit contestdbed in this sec-
tion.

In Figure 2.17 is reported the time history of the neededrobfdrces, expressed
in the GCW frame. These have to be rotated into a local datediference frame
in order to properly adjust the actions of each actuator. rbt&tion is carried
out by means of the combination of a series of rotations gegriaking into ac-
count the time-varying attitude at each instant. Once esga@ into theXsYsZs
reference frame, the control forces are equally distrtbateong the available ac-
tuators, four for each direction.

It can be noticed that both the longitude and the latituder@astained into the
prescribed deadbands box definedibyx andemax. As expected, the longitudinal
drift mainly caused by the triaxiality of the Earth is the mpsominent pertur-
bation dfect and needs a relatively strong control action alongsid&¢ andYg
axes. It has to be underlined that these contributions areralquired in order
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to counteract the disturbances that would increase thenewity of the circular
orbit. On the other hand, the out of plane disturbances agedmgnificant, this
yielding the latitude to be more controllable with les&d.

Indeed, Figure 2.19 shows the control actions exerted byat¢hgators placed in
the actuation stations of Figure 2.16. It can be noticedttiteaheeded control ac-
tions are of the order of the tens of Newtons at each statitmayweak of almost
35 N along theXs direction, i.e. actuators # 1, # 4, # 8 and # 12.
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Figure 2.18: Time history of spacecraft longitude and latitude obtained integrating the

linearised orbital equations over a period of twenty orbits.
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(c) Actuators # 3, # 6, # 7 and # 10 along the Zg direction.

Figure 2.19: Time history of the control forces exerted by actuators.
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Chapter 3

Attitude dynamics

An attitude control system capable of guaranteeing theadpeness and func-
tionality of the SSP satellite has been designed, in ordiewestigate the interac-
tion with the structure during the operative life. Operatibrequirements impose
that the SSP satellite must collect as much energy as pe$sibh the Sun, and at
the same time transfer continuous power to the Earth by kgepie microwave
antenna pointed in the direction of the receiving station.

Once that the most suitable configuration has been chosedettired attitude has
to be guaranteed as much accurately as possible to impreveatisfer of energy
to the Earth. Consequently, high control torques have toxpeated in order to
counteract external disturbances. The major disturbaneelved during the op-
erative life are the environmental disturbances such asdta radiation torque
and the gravity gradient torque together with the intermgtlalbance torques com-
ing from other subsystems. Between all of them the graviadgnt torque is
expected to be the most critical. Secondly, the attitudérobmust show enough
authority to bring the SSP satellite from a perturbed to thgiréd configuration
in a time of the order of days. Furthermore, an attitude @stystem that shows
reasonable value of the maximum torque is preferable inrdaeninimize the
mass of the system architecture.

3.1 Reference Frames and Coordinate Systems

The reference frames considered for the attitude dynandcantrol system are
the Body Centered Sun Pointing (BCSP), the Body Centered=&cimg (BCSF),
the Earth Centered Sun Facing (ECSF), the Structural G{&@) and the Body
Principal Inertial (BPI) frames.

The BCSP frame is a non-inertial frame with its origin on tloelyy defined by the
XpYpZp axes.Xp IS a Sun-pointing axis, whil¥p lies on the equatorial plan&p
is placed such to define a right-handed orthogonal coomlsyatem with positive

40



Attitude dynamics

direction towards the North Pole.

The BCSF frame is a non-inertial frame centered on the bofigetbbyXs £Ys Zs k.
TheZs axis is normal to the equatorial plane towards the North RloéXs - axis
lies on the plane that includes the Sun and4ggeaxis. Ysg is placed such that it
completes the right-handed orthogonal coordinate system.

The ECSF frame is a non-inertial Earth centered frame defiyeXt YeZg. The

Ze axis is normal to the equatorial plane towards the North Xhexis lies on
the plane including the Sun ai@g. Yg is placed such that it completes the right-
handed orthogonal coordinate system.

The ECSF frame is approximately coincident with the BCS&aapart that it
does not consider the relative motion of the satellite addbe Earth. In the worst
case, the approximation involves an error of about 0.@téund theZg axis. For
this purpose of this work, this error can be neglected an&E@8F and the BCSF
frame can be indierently considered. In particular, the ECSF frame is padfier
because it can be simply defined as a rotation of the ECI framend theZ axis.
The SG frame is defined bYsYsZs and it is centered in one of the corner of the
square platform of the satellitéXs andYs are the in-plane axes along the side-
directions, whileZs is in the out-of-plane direction such to define a right-hahde
orthogonal coordinate system. In particuky lies along the side that contains
a possible microwave antenna. The frame is centered in otieeaforner of the
square platform as described in Figure 2.16.

The BPI frame is a non-inertial satellite-barycentric fegrdefined by the princi-
pal axes of inertia&Y,Z,, whereY, andZ, are the in-plane axes, whib§ is the
out-of-plane axis with respect to the planar platform of shéellite. In particu-
lar, X, Y, andZ, are respectively coincident withs, Xs andYs. The dynamic
equations are expressed with respect to this last framedardo simplify the
system.

3.2 Attitude configurations

The choice of the attitude configuration should guaranteestectiveness of the
mission and the feasibility of a possible attitude contystem at the same time.
Although the main goal is to collect as much energy as pas$iplkeeping the
solar array always perpendicular to the Sun, and to proveddirtuous power to
the Earth, it's necessary to analyse the possibility ofgiesq it.

For this reason two main configurations have been compahnedS®P and the SF
configurations, which dier in terms of the desired orientation. Between them,
two options should also be analysed concerning the indegpertgrees of free-
dom of a possible microwave transmitting system: the Inddpet Transmitter
Pointing (ITP) and One Axis Rotating Transmitter (OART) figaration. The
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choice of the final configuration should take into accounttitjet requirements
on the pointing accuracy.

3.2.1 Attitude Dynamics Requirements

The solar array pointing accuracy4%.5 aroundYcW andZcW. Although the
latter does not seem to be very restrictive, the pointingiamy of the attitude
control is driven by a possible microwave beam pointing nesents. In order
to transfer the energy to the receiving station without sgix@ loss, the beam
pointing error should not be more thai®.08° (JWRO01]).

Secondly the attitude control should have enough authtrigxtinguish an initial
attitude error of+10° aroundX,, Y, andZ, by a time of the order of some orbits
in the presence of all the disturbances [WRO0L1].

3.2.2 The Sun Pointing (SP) Configuration

The SP configuration is obtained by keeping the BPI framecidémt with the
BCSP frame. This configuration is the most promising in teoingperativeness
since the solar arrays are kept always perpendicular toolae Iays. At the same
time it shows some drawbacks that makes this choice hard redtly realized.
First of all a possible microwave transmitting system stlcag always oriented
towards the receiving station on the Earth by large rotadronind three axes. This
choice may be improbable considering the large mass inddqs@e Chapter 1).
Secondly the gravity gradient torque, is expected to hamsiderable component
around all the directions of the BPI frame. For these reamnSP configuration
is not considered to be the most suitable configuration.

3.2.3 The Sun Facing (SF) Configuration

The SF configuration is obtained by keeping the BPI frameaident with the
BCSF frame. The solar arrays are not exactly perpendicuthetSun rays during
the whole orbit of the Earth around the Sun, except at theneges.

TheZsF axis is always perpendicular to the equatorial plane sdhieahicrowave
beam antenna system should be oriented to the receivingrstat rotating the
transmitting system just around tAgr axis.

Beyond the fact that the attitude control appears to be mas#yedesigned, the
gravity gradient torque shows its major contribution justuend theZs g axis. In
the end the SF configuration is chosen to be the referencegooatiion for the
attitude control design ([WRO01]).
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3.2.4 The Transmitting Pointing Configurations

Even though the microwave transmitting system has not bealysed in detalil,
the attitude control should guarantee the beam pointingracg of+0.08".

In the ITP configuration, the attitude control of the whold”Satellite may be de-
signed to satisfy the-0.5" accuracy aroundcW andZ:W, while an independent
attitude control for the microwave transmitting systemudti@rovide the finest
pointing requirement of0.08. On the other hand, the OART configuration em-
ploys an attitude control system for the entire SSP satdlitsatisfy thet0.08
accuracy. A possible microwave transmitting system is &bl®tate around the
ZcW axis tracking the receiving station on the Earth.

Although the OART configuration seems to be the most simptenms of archi-
tecture simplicity, it is necessary to verify the feastlilin a plausible operative
situation.

3.3 Attitude State Representation

The principal momentum of inertia are:

l, = 4.9023x 10 kgn? (3.1a)
l, = 2.4492x 10" kgn? (3.1b)
|, = 2.4532x 102 kgn? (3.1¢)

(3.1d)

The Euler Equations of Motion (EEM) expressed in the BPI feaare [Wer99]:

Ly + (I3 — Iy )wzwy = MS + MS (3.2a)
lyaoy, + (hy = Iz )wxwy = My + My (3.2b)
Izc;.)zl + (Iyl - le)wylwxl = Mz + M)C(jl (3.20)

wherewy,, wy, andw;, are the angular velocities in the BPI framé; , My and
Mg are the the attitude control torques, wHild , M$ andM are the disturbance
torques in the BPI frame.

The BPI frame can be related to the BCSF frame by a rotatiomalixnA such
that:

Vepl = A - VgcsF (3.3)

wherevgp, andvgcsFare respectively the vectors in the BPI and the BCSF frame.
Assuming that the SSP satellite is kept in the nominal corditgon, the BPI frame
can be considered as the BCSF frame perturbed by smallawsatif an Euler
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angles parametrization withftierent indexes is used, tlhematrix can be written
as [Wer99]:

1 az _ay
A = _az 1 ax (3.4)
ay _ax 1

whereay, ay anda, are small rotations respectively aroudg, Ye andZg. Con-
sidering that the ECSF frame is rotating aroundZreis with the angular veloc-
ity of the Earth with respect to the Sung), the cinematic equations become:

Wy 1 ay ay y
Wy ay —ay 1 a; + Ng

If the second order terms are neglected, Equations 3.5 csimipdified as follow:

wy = @y — ANy (3.6a)
wy = @y + axNg (3.6b)

Deriving Equations 3.6 with respect to time:

Wy = ax — &yNg (3.7a)
wy = &y + axNg (3.7b)
W; = O (3.7¢)

Using Equations 3.7, Equations 3.2 yield:

| xarx + nEB(Iz —ly— Ix)dy + né(lz — Iy)ozx = Mil + MS. (3.8a)
lycry + N (Ix + 1y — 1) ay + Mg (12— L)y = MS + Mg (3.8b)
|G, = M + My (3.8¢)

The state space realization for the attitude dynamic is:

@ = Ay + B, ,M? 4 By, M¢ (3.9a)

44



Attitude dynamics

where:
( 3\ [~ .
y 0 0 0
ay 0 0 0
_ a ay 0 0 0
a = = < > Bu., = Bd., = (3.10)
1% Qy /1y 0O 0
@y 0 11, O
kCUZ) O O ]/IZ
[ 0 0 0 1 0 0]
0 0 0 0 1
0 0 0 0 0 1
Aait = —nge(llz— ly) 0 0 0 —n@(lzl— Iy — 1y) 0
0 —nZ, (12— 1)) 0 —ng(lx + 1y — 1) 0 0
Iy Iy
| 0 0 0 0 0 o]
(3.11)

3.4 Environmental Disturbances

The environmental disturbances considered for the a#ticashtrol design are the
gravity gradient torque and the solar radiation torque.yTdlehave to be evalu-
ated in the BPI frame. The torque caused by the counteriogdcirce due to the
microwave transmission has been neglected since the tittimgnsystem has not
been considered in the present work.
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Figure 3.1: Environmental torques.

3.4.1 The Gravity Gradient Torque

The gravity gradient torque results from the not uniformtEargravitational field
acting on the body. In BPI frame it can be expressed as:

3

M5 = % (2= 1y) cacy (3.12a)
3u

Mg = =57 (k= 1) e (3.12b)
3

Mgl = % (Iy = Ix) ¢y Cxq (3.12¢)

wherec,, ¢, andc, are the component of the radial versor from the Earth to the
satellite, andVi§, Mj andM3 are the components of the gravity gradient torque
[Wer99]. Since the BPI frame should be kept about the BCSHdravith a small
toleranceg, is expected to be very small, so that in the nominal confignmahe
major contribution of the gravity gradient torque shouldabeund thez, axis.

Figure 3.1a shows the gravity gradient torque disturbAng@” in the BPI frame

in the nominal configuration. As expected, the disturbancgue results to be
periodic around the pitch axis. As a consequence a cyclianthance suppression
control method may be implemented.

3.4.2 The Solar Radiation Torque

Despite the importance of the cyclic pitch gravity-gradiemque, the solar radi-

ation torque is more detrimental than one may expects bed#ubke large value

of the area-to-mass ratio of the SSP satellite.

The solar radiation pressure acting on a satellite orbaogind the Earth can be
considered to be constant and equaPtb= 4.5298 x 10 Pa. Considering the
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satellite area equal s, = 10240000 A, the solar radiation forcEI‘D is a vector
expressed in the BPI frame acting on the center of pressuileedbSP satellite
along the Sun-satellite direction. Its modulus is equat fo= P®Agy.

In the nominal condition the center of pressure is almostadent with the center
of mass, so that the solar radiation force does not providmaiderable torque.
However, if uncertainties of 20 m are imposed on the centpregsure and center
of mass [WRO01], the solar radiation torque can be expressed a

MP =F> A Vpm, (3.13)

wherevpy, is the position vector from the center of pressure to theeresftmass
with components in th¥,Z, plane. Figure 3.1b shows the solar radiation torque
disturbanceM ® in the BPI frame. As expected, in presence of a constfigeb
between the center of mass and pressure, a constant toimuld ble guaranteed.

3.5 Attitude Uncontrolled Motion

The attitude uncontrolled motion of the SSP satellite sthbelconsidered in order
to estimate the necessity of an active attitude control. Staging attitude error
configuration is assumed equal to zero in terms of angle aiddharivatives with
respect to the GCW. That is to impose = aq, with

dg=[0 0 0 0 0 Q. (3.14)

Figure 3.2 shows the behaviour @f ay anda, due to the environmental dis-
turbance torques. After just a simulation time of of a sm@ctfion of orbit, the
tolerance accuracy is no longer not satisfied. Although Egus 3.9 are lin-
earised about zero, and the approximation is figoéive in case of large angles,
it is evident that an active attitude control system is resplii

3.6 Attitude Control Regulators

Two kind of attitude control regulators have been designeatder to assure that
the error angles don’t exceed the tolerances: the claiiBategulator, and the
optimal LQR.

3.6.1 Proportional Integrative Derivative Regulator

The PID regulator generates a control torddg® around the j axis, as the sum
of a proportional, derivative and integral contributioristee error angley;,.
PID T d da
Mj = Kpja/j, + Kij . aj, t+ deﬁ (3158.)
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Figure 3.2: Full attitude state in the uncontrolled dynamics.

where the proportional, integral and derivative contrabpaeters are chosen such
that:

Kpj = 1j(&jwojwsj + wf)) (3.16a)
Kij = ljwojwi)) (3.16b)
Kaj = 1j(2w0i¢j + wyj) (3.16¢)

with I; the principal momentum of inertia.

3.6.2 Optimal Linear Quadratic Regulator

The LQR has been considered in order to weigh the perfornsaarue the control
inputs distinctly, and to guarantee robustness of the dlts® system. The state
may be available by an estimator since the dimension of thetate is not pro-
hibitive. However, for simplicity, the full state is congiged to be known.

The performance to be minimized is the state veaiosince the pointing accu-
racy is given in the GCW frame.

The control torqued/y in the BPI frame turn out to be proportional to the states
a through the gain matriK 4,

MS = —K . (3.17)

The gain matrix is eventually obtained minimizing the qusigrcost function,

o6}
J= J (@"Qan@ + M RaeM¥) dit. (3.18)
0

48



Attitude dynamics

Feedforward Control
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Figure 3.3: The cyclic-disturbance accommodating control for the Zg axis [WRO01]

The MarLas® functionlqr has been used to solve the minimization problem, and
to find the resulting gain. Substituting Equation 3.17 in &wqn 3.9, the final
closed loop system yields:

da

gt (Aatt — By Katt) @ + BdanM? (3.19)

Uatt

3.6.3 Cyclic Disturbance Rejection

In order to satisfy thet0.08 pointing accuracy in the presence of large external
disturbances around tl# axis, the attitude control system utilizes a concept of
cyclic-disturbance accommodating control. Since the iggrayradient torque is
expected to be cyclic with a period of two times a day, a feedhod control
torque command is introduced as follow:

M) = ‘q’f—f (Iy — 1y) sin(2ng + ¢)/2 (3.20)
where¢ depends on the initial attitude of the satellite with respethe Earth.
In additon, a second-order-filter with a cut-érequency equal to the main fre-
guency of the disturbance is placed in the control loop asveha Figure 3.3.
The task of the filter is to attenuate thiéeet of the gravity gradient torque around
theZ, axis using the internal modelling of the disturbance [WRO01]

3.7 Attitude Control System

The simulations have been carried out in twéetent conditions: the Indepen-
dent Transmitter Pointing (ITP) and the One Axis Rotatingnemitter (OART)
in the presence of the environmental disturbances. The sanieol architecture
described in Section 2.6.2 is considered to be the referaratetecture for the
attitude control system. In particular, as shown in Figudéb2in the absence of
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3.7 Attitude Control System

Table 3.1: PID regulator parameters

X, axis Y, axis Z axis

Wy  Nsax3  NearX3  Nearx 3
w1 Nearx1l  Negxl  Ngyx1
& 0.7 0.7 0.7

geometricagkonfiguration uncertainties, actuators #1, #2, #14, #54@8411 and
#12 are assigned to provide the required control torquenartheX, axis, actua-
tors #3 and #10 around, while actuators #5 and #6 are assigned to provide the
torque around.

Although the location of the actuators is not optimized toimize the interaction
with the orbit and the structural system, this architechas some interesting ad-
vantages for this preliminary study. First of all it can pd®/independent control
torques around each principal axes of inertia, secondhyaitimize the lever arm
in each direction, so that it minimizes the force requiredgfach actuator. One of
the principal drawback is a possible strong interactiornwhe structure, caused
by an expected high modal participation at the corners o$theture. Thus, the
structural control interaction with respect to the orbitl @ttitude control systems
appears to be critical. The control parameters for the P¢blegor are shown in
Table 3.1 while the matrice®,; andR,: have been chosen to be:

1 % 1088 0 0 0 0 0
0 3x 101 0 0 0 0
0 0 4x 10 0 0 0
Qan = 0 0 0 1x 103 0 0 (3.21)
0 0 0 0 3x 108 0
|0 0 0 0 0 4x 10% |
10 0 O
Rye=10 10 0O (3.22)
0 0 10

3.7.1 The Attitude Zero Initial Condition (AZIC)

In the AZIC, the starting angles are considered equal to. Zére simulations are
carried out using the PID control parameters of Table 3.1thed_QR penalty

matrices of Equation 3.21. Both the controllers are capableep the angles
into the specific tolerance of@ (Figure 3.4). The PID regulator yield an initial
high elongation, that may be adjusted by a better choicesofdmtrol parameters.
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Figure 3.7: Control torque in the APIC.

Contrary, the LQR produces a smoother action on the attitundges, however

it appears that an integral control action is needed to rentlog regime errors.
Despite this, the performances of the controllers are dabépfor the purpose
of a preliminary study of the structural and control intéi@e. Moreover, the
control torques required for both the PID regulator and tdgRlLare comparable
(Figure 3.5). As expected, in the nominal operative lifeldd satellite a signifi-
cant torque around thd axis is required, in order to counteract the high gravity
gradient torque.

3.7.2 Attitude Perturbed Initial Condition (APIC)

In the APIC, a starting error of 2®ave been imposed tg, , @y, anday, and zero
initial conditions to their derivatives. Figure 3.6 show tiehaviours of the angles
a, resulting from the LQR and the PID regulators actions. Bathdontrollers
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Figure 3.8: Actuator #1 in the APIC.

have enough authority to bring the angles back into thedalsr of+0.08’ in less
than one orbit from the same starting initial conditions.ekpected, the control
torques (Figure 3.7) are much higher than those requirdteinominal operative
life of the satellite (see Section 3.7.1). However, althobgth the controllers are
capable to restore the nominal configuration in a time of tleeioof the orbit,
the distribution of penalties imposed to the LQR yields adoaontrol action. As
a consequence, the same considerations may be referreel &sttator actions.
For example, considering the actuator #1, Figure 3.8 shbaitsan higher level
of force is required by the PID regulator. In the end, althotlge two controllers
show comparable behaviour, the LQR is preferable sincermipg to better im-
pose penalties on the states and the control inputs. Moreibveay be further
integrated with the already designed LQR orbit control.
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Chapter 4

Structural Model

In this chapter, a FE model of the Abacus-like structure ietiged as a bidi-

mensional frame and constituted by beam elements. The daop@perties are

chosen such that some important features of the referenaeuslconcept, iner-
tial characteristics and the first modal frequency, are M&R(Q1]. This model is

used to carry out the modal analysis of the structure andethdts are compared
with those obtained from an analogous model developed witither software

for finite element analysis. The resulting second order dyoal system is then
transformed into the first order system of equations reptesgthe state-space
realization of the dynamical model.

4.1 Finite Element Model

4.1.1 The Bidimensional Reference Configuration

This section deals with the development of a FE model of thacib satellite
concept. In order to easily study the dynamics and contrtii@btructure, a -
LaB® routine has been developed to determine the mass, dampihgtifness
matrices of the satellite.

The ARF satellite is characterized by a square platform amdcaowave trans-
mitting system placed along a side of the array platform asvehn Figure 1.3.
The latter is made of a 500 m diameter antenna and an eacHirtgareflector
(500x 700 m) with a total mass of about 2561C° kg. The square platform is
mainly a bidimensional frame which supports the solar aaane (2 x 3.2
km) composed itself by smaller sub-panels 4800 m) as depicted in Figure 4.1.
The mass of the square platform is210° kg, that results to a total satellite mass
of 24.8 x 10° kg.

According to the purpose of the present work, that is a piakny study on an
orbit and attitude control together with a vibration sumgsien system, the mi-
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«———— 3200m (80 arrays) —

(80 Array Repeating Unit)

—

LUV LEEL LI ILLlY 800m

(16 arrays)

1280 Arrays I \ /
(total) | i A
) // R
| Single Arrays \ /

40m x 200m \f

Beams (varying

e B'uilt—Up Truss

f configurations and
Transmitter “\Reflector (500m x 750m) stiffness)
(500m diameter)

Figure 4.1: The ARF satellite modelled as a frame structure.

crowave transmitting system has been neglected. Moretheegquare platform

has been modelled by straight elements connected togatdeorganized in a

bidimensional frame configuration. The element crossiksestproperties have
not been available, thus, they have been calculated itehatsuch that the be-
haviour of the global structure is comparable with that eftéference model (see
Section 4.1.3).

4.1.2 The Structural Reference Systems

Two reference systems have been employed in the FE modelthrey Struc-
tural Global (SG) frame is referred to the global structuvijle the Structural
Local (SL) frame has been adopted to express the equilibegurations for each
element.

The SG frame is defined bXsYsZs and it is centered in one of the corner of
the square platform of the satellités and Ys are the in-plane axes along the
side-directions, whil&s is in the out-of-plane direction such as to define a right-
handed orthogonal coordinate system. The SL frame is tts tmordinate sys-
tem defined byX, Y, Y, . Itis placed in the geometric-center of the element cross-
section. TheY, andZ_ axes are in the cross-section plane withcoincident to
Zs, while X, completes a right-handed orthogonal coordinate system.
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Table 4.1: Comparison between the global structural parameters.

Model parameters Reference parameters

Total mass [kg] 2.46% 10’ 2.480x 10’
fo [Hz] 0.001807 0.001800
I [kgm?] 4.9023x 103 4.6x 10"
l, [kgm?] 2.4492¢ 1013 2.8x 1013
1, [kgm?] 2.4532¢ 1013 1.8x10%

Table 4.2: Elemental cross-section properties.

Prop. A Prop. B Prop. C Prop. D
A [m?] 0.1907086 0.0515676  0.0139439 0.0037704
ly.. [M*] 3.85606102 0.28194037 0.02061440 0.00150725
ly..[M* 1.92803051 0.14097019 0.01030720 0.00075362
l,...[m* 1.92803051 0.14097019 0.01030720 0.00075362

4.1.3 The Finite Element Model

The bidimensional frame structure is built up by a seriegraight beam element.
The degrees of freedom for each element are three displateieed three rota-
tions of the extremity nodes. Thus the total number of degmdreedom for
each elementis 12 [LQO3].

The beam elements are placed to form a grid inXk¥s plane, with 80 elements
along Xs and 16 elements along. The nodes are exactly placed at the every
intersection of the grid [WRO1].

The beams are supposed to be made of a uniform and isotropeciahaExpect-
ing a very high slenderness of the sub-beams, the AluminiQi#b have been
chosen for its good behaviour in compression-stabilityveen the other metal
materials, and for its proven reliability in the space fidlle composite materials
have been temporarily excluded for their high cost and wgrdehaviour. The
Young modulus for the Aluminium 7075 is assumed to be E1 GPa, the Pois-
son’s ratiovr = 0.33 and density = 2768.

Four diferent cross-section properties have been identified. Theg heen it-
eratively calculated in order to obtain values for the totalss, the first modal
frequency and the principal moments of inertia of the whealellite compara-
ble with those of the ARF reference concept. Table 4.2 shbestoss-section
properties which give the value of total mass, first modajdency and principal
moments of inertia of the whole satellite listed in Table.4.1
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4.1.4 Dynamic Problem

The dynamic problem is written as:
MA + C4A + KA =Tu (4.1)

whereM, C4 andK are respectively the mass, damping anffreéss matriced;
is the control-action matrix, whil& andu are respectively the global degrees of
freedom and the actuators input.

Local Degrees of Freedom

The element displacement vector is:
a® = [Uy Vi Wy B, By, D, Up Vo Wo B, By, 9] (4.2)

where 1 and 2 indexes are referred to the element nodes attteengy, whileu,

v andw stand for the translation displacements, @gdd, and, represent the
three rotational displacement. Thus, the elemefiingt$s and the mass matrices
are 12x 12 matrices. The components of thetsiess matrix are listed as follows,

52 o0 0 0 0 o -&& 0 0 0 0 0 7]
3EI 3ElI 3EI 3ElI
2a§L 0 0 0 2a§L 0 - 2a§L 0 0 0 2azL
3Ely, 3Ely, 3Ely, 3Ely,
2a3 T 2a2 0 0 0 T 2a3 T 2a2 0
GJ GJ
g 0 0 0 0 0 -9 0 0
2Ely, 3Ely, Ely,
= 0 0 0 e 0 - 0
2Ely 3Ely Ely
ke — =n 0o —=* 0 0 0 2
N EA 0 0 0 0 0
2a
3EI 3ElI
2a§L 0 0 0 Za;L
3Ely, 3Ely,
Sy. >3 0 2 0
GJ
g 0 0
2Ely,
aL 0
2El5
- T -
(4.3)

wherel,, andl, are the second moment of area of the element cross-sectitins w
respect to thg, andz_axes, respectively.

57



4.1 Finite Element Model

Va

%

0
{}

(a) Frame element in space with twelve DOFs.  (b) Coordinate transformation for a
frame element in space.
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Figure 4.2: Frame element in local and global coordinates

The element mass matrix is:

70 0 0 O 0 0 3 0 O 0 0 0]

7 0 0 0 22 0 27 O 0 0 -13a

78 0 -222 0 0 0 27 0 13 0

702 0 0 O O O -332 0 0

82 0 0 O -13 0 -6a O

e PAa 8 0 1& O 0 0 —6a
~ 105 70 0 0 0 0 0
78 0 0 0 -22a

sy 78 0 22 0

70020 0

8a? 0

8a?
) (4.4)

where I

r2— 2 (4.5)

X
A
in whichy is the second moment of area of the element cross-sectibnegpect
to thex,_ axis.

4.1.5 Global Degrees of Freedom

The element matrices should be rotated into the global coatelsystem in order
to express the dynamic equations involving the global disgpinent vectoA.
Considering Figure 4.2, Assuming that the local nodes 1 arfdli element cor-
respond to global nodesnd| in the global displacement vector, respectively. As
stated by (4.2), the displacement of a node in the SL framehinas translational
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components in the, y. andz_ directions, and three rotational components with
respect to the, y andz axes for a total of 6 degrees of freedom.

The six displacements of thth node in the SG frame are listed in tAevector in
the same bloclA?, from the position 65 to the position b In particular the first
three component& s, Asi_4 andAg 3 correspond respectively to the translation
of theith node along th&s, Ys andZs axes, whileAs », Asi 1 andAg are the
three rotational displacements around ¥zg Ys andZs axes (Figure 4.2b). The
same convention is applied to the ngde order to identified an equivalent block
AT. The degrees of freedom of an elemeid expressed as:

e JAT
- ) s

ThusAF® results to be:

A® = [Asi_5 Asi_a Asi—3 Asi_2 Aei—1 Asi Asj—s5 Asj—a Asj_3 Psj_2 Asj—1 AGj]T

The coordinate transformation gives the relationship betva® andA®: )
a®=T°A° (4.8)
whereT¥€ is the transformation matrix for the elemagiven by
TS 0 0 O
T= 8 T.E % 8 (4.9)
0O 0 0 T

in which T§ is the direction cosines matrix between the SL and the SGarde
frames for the elemerat

Using the transformation matrik®, the mass and sthess matrices of the element
ein the global coordinate system are:

Ke=TeKkeT® (4.10)
Me = T¢'meTe® (4.11)

Assembling Procedure

Ones that the mass andfBiess matrices of the singular element have been con-
structed, the global matrices must be assembled. An oxdimacedure is to
express the global matrices as the sum of the contributionrgpfrom each ele-

ment:
K=>K M=) Me (4.12)
e e
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whereK ® andM® are the expanded matrices of the elemeerithey can be calcu-
lated as:

Ke=HEKeH®  M°®=H"M°H® (4.13)

whereH¢ is the extraction matrix which relates the degrees of freead the
elemente to the vector of the global degrees of freedAm

A® = HeA (4.14)

This procedure results to the global mass anfirgtss matrices of dimension
BNnog X BNnog. Considering the large dimension of the system, the praeeder
scribed before is not convenient in terms of computatiomaét Indeed a large
number of zero values should be memorized at each time.

Another procedure has been investigated which involvessbef a pointing vec-
tor I ¢ for each elemerg. The position of each parameter in tifesector indicates
the degree of freedom in th&® , while the value of each parameter stand for the
relative position in thé vector. Then, the global matricksandM are gradually
populated by adding up the contribute of every element [coo0]

Damping Matrix

The definition of a plausible damping matfy has been investigated. A diagonal
modal damping matrix is assumed in accordance with the erpatal results,
which usually reveal uncoupled damping on each mode. As aetprence, if
Equation 4.1 are written using the modal transformafion UqQ:

U'MU§ + UTCqUA + UTKUA = U'Tu (4.15)

it is reasonable to assume tt@&f should has the same property of orthogonality
as the mass and ftiess matrices with respect to the modal maittixA model
often used to describe the structural damping considerdahging matrix as a
linear combination of the mass andBtess matrices:

Cd = CUMM + CUKK (416)

The proportionality with respect to the tiess matrix can be refereable to a
viscous-elastic constitutive law of the material, while ghroportionality to the
mass matrix is more complex and need further studies. Ferdaison, since a
low damping is preferable, in order to prove théeetiveness of a vibration sup-
pression system, the proportionality to the mass matrixbeas neglected, while
ak has been taken equal to 0.005, considering that a value eet:é and 0.01
is usually assumed for a bolted structure.
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Dynamic Problem

The modal analysis is useful to easily understand the behaef the structure in
terms of frequency response. First of all it is necessaryatuate the first modal
frequencies of the structure in order to predict an eversinahg interaction with
the orbit and attitude low-bandwidth control. Secondly thedal analysis may
be employed to simplify the behaviour of the structure bysidering a proper
number of flexible modes (see Chapter 5). In the end, theteesaiming from
the modal analysis can be easily compared with a structuralysis program
available on the market.

The dynamic problem is stated by the following equationesyst

M&a+Ka =0 (4.17)
Assuming the harmonic solutian= ®e*“!, the problem can be rewritten as
(K — w®M) ®€“' =0 (4.18)
The non trivial solution is found by imposing
det(K —w’M) =0 (4.19)

which leads to the determination of the modal frequencies) fthe eigenvalues
w. The associated eigenvectdrsare the modal shapes of the structure.

The computation of the modal frequency and their eigenveéstaccomplished in
MarLas® by means of theigs function which calculates the firkteigenvalues,
wherek is specified by the user.

4.1.6 Structural Model Comparison

Here after, the results obtained by using the implementgari#hm are compared
with the results computed byaNrran on the same structure already defined in
Section 4.1.3. Table 4.3 shows the first eight modal fregesneith the associ-
ated modes depicted in the Figures from 4.3 to 4.10. As ititkeed, some modes
at a similar modal frequency are switched. However, Taldesthows that the
error in terms of frequencies is not relevant, and that thdahbehaviour of the
structure can be considered to béfsiently known.
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Table 4.3: Comparison of the modal frequencies.

NASTRAN MarLae  Error [%]
Freq. 1 0.0018038 0.0018068 0.16631
Freg. 2 0.0029589 0.0029660 0.23995
Freq. 3 0.0029913 0.0029991 0.26076
Freq. 4 0.0047973 0.0048172 0.41482
Freq. 5 0.0048123 0.0048203 0.16624
Freq. 6 0.0079923 0.0080274 0.43917
Freq. 7 0.0080272 0.0080456 0.22922
Freq. 8 0.0084396 0.0084718 0.38153

(a) NasTran first mode.

4000

0
-2000 -1000

(b) First mode using the imple-
mented algorithm on MarLag.

Figure 4.3: Comparison of the first modal mode

(a) NasTraN second mode.
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(b) Second mode using the imple-
mented algorithm on MarLag.

Figure 4.4: Comparison of the second modal mode
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4000
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(a) NasTRAN third mode. (b) Third mode using the imple-
mented algorithm on MarLAB.

Figure 4.5: Comparison of the third modal mode
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(a) Nastran fourth mode. (b) Fourth mode using the imple-
mented algorithm on MarLas.

Figure 4.6: Comparison of the fourth modal mode
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(a) Nastran fifth mode. (b) Fifth mode using the imple-
mented algorithm on MarLas.

Figure 4.7: Comparison of the fifth modal mode
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(a) NasTraN sixth mode. (b) Sixth mode using the imple-
mented algorithm on MarLaB.

Figure 4.8: Comparison of the sixth modal mode
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(a) NasTrAN seventh mode. (b) Seventh mode using the implemented al-
gorithm on MarLaB.

Figure 4.9: Comparison of the seventh modal mode
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(a) NasTraN eighth mode. (b) Eighth mode using the implemented algo-
rithm on MarLaB.

Figure 4.10: Comparison of the eighth modal mode
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4.2 State-Space Realization

The dynamic problem defined by Equation (4.1) can be tramsddrin the state

LT
space defining the state vectore [A A] . In the previous expressidru is the

control force vector.
The state space realization can be written as

X = AX + Bu (4.20)
in which
A= [—Molk —Mlléd] B = [_Mo_lf] (4.21)
Considering a colocated control system the equation foséimsors measures is
y = Cx (4.22)
where 0
C= [o fT] (4.23)

In the previous expressiot, K, C4 andI” are the projection o, K, C4 andIl’
onto the space of the flexible modes.

M=0' M (4.243)
Cy=D'Cy® (4.24b)
K=®'K® (4.24c)
=0T (4.24d)

in which @ is the modal matrix where only the flexible modes of the strecare
retained.
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Chapter 5

Model reduction

Numerical simulation of dynamical systems, such as FEMallgtesults in com-
plex high-order dynamic models. It is often desirable, €éog.control design is-
sues, to approximate these models by simpler models withcestlorder. In this
process it is important to design the reduced model so agptareathe important
properties of the original high-order model. Until relaty recently model re-
duction was often based on physical intuition, that usuakans, for mechanical
engineers, removing high frequency vibration modes.

In particular, in this chapter it is firstly presented thessiaal modal truncation,
then the necessity of satisfactory approximation of the ehde@haviour at low
frequency leads to investigate the singular perturbatopr@imation method. A
slightly different technique is based on matching some important prepert
the system, i.e. the frequency and power moments. Finadyptbmising fam-
ily of balanced reductions is described as a possifitcgve mean of reducing
the order of a dynamical model. In the last section of the tdrapis performed
the order reduction of the structural model of the sate#itgploying the intro-
duced methods. Since the presented model reduction tessigan on some
basic properties regarding the linear systems behaviqapeAdix B gives a brief
theoretical background on the significant properties.

5.1 Preliminary Concepts

Given a dynamic syster® of usually high orden, a model reduction is a pro-
cedure that yields some approximate magledbf ordern, < n and such that the
following properties, if possible, are satisfied [ASG]:

e The approximation error is small, and there exists an emwand.

e System properties stability is preserved.
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e The procedure is computationally stable affitent.

LetS be a LTI model described by the set of equations (4.20) ar22)4.

X = AXx+ Bu (5.1a)
y=Cx+Du (5.1b)

The reduced order mod8| to be determined has the same structurg,dlat is,
a linear and time-invariant model described by

X = A% + Bu (5.2a)
Yo = Cr% + DU (5.2b)

wherex, is a reduced order state apds the output of the reduced order state.

5.2 Model Reduction by Truncation

Dealing with state-space systems, truncation of the statéov is the natural
choice for obtaining a reduced order model. In this sectemesal reduction tech-
niques are evaluated where truncation of some states aréogirtially preserve
selected properties of the original system.

The basic idea behind all the considered techniques isnsftyem the state vec-
tor into a new set of coordinates and then truncate the nee/stdained with the
transformation. The procedure can be summarized as follow

Algorithm 1. Given a LTI systen$ written as in (5.1):

1. A preferred realization can be obtained via the simyafiansformation

T:[T1 Tz].
X, X, RI
(8w (5[ 6o

whereT,R] + ToR] = ..

2. This operation transforms the realization of the origgystem as

TAT, R'AT. B
wo [ Al oo [fg] cemien on
(5.4)

3. Areduced model (5.2) is then obtained by truncating thgestector so as
to preserve only the state = X;.

A =R]AT;, B,=R]B, C,=CT,, D,=D (5.5)
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5.2.1 Minimal Transfer Equivalent Realization

In Section B.1 it has been shown thaffdrent realizations can have the same
transfer function. This leads to the following definition.

Definition 1. Two distinct state-space realizations of a linear timeirant sys-
tem are said to be transfer equivalent if they have the samefer function.

In the context of model reduction, given a state-spaceza&@in(A, B, C, D)
of ordern, the realization is minimal in the sense that there existsther transfer
equivalent realizatiorfA,, B,, C,, D,) of ordern, smaller tham. The following
theorem, which is due to Kalman, gives a characterizatianiofmal state space
realizations [DSO00].

Theorem 1. The state-space realizatigi, B, C, D) is minimal if, and only if, it
is controllable and observable.

An immediate implication is that if a given realization istmainimal, one
should be able to obtain a transfer equivalent realizatidh veduced order. A
transfer function with minimal degree is obtained whép, B, C;, D;) is con-
trollable and observable. A constructive procedure to asepuch a minimal re-
alization is based on the calculation of the controllable ainservable subspaces.
The following algorithm allows to build a minimal transfegjuavalent realization
in two steps. In the first step, it extracts the controllabllespace ofA, B, C, D)
then, in the second step, it obtains the observable subggabe controllable
system built in step one. The resulting system is contrt@labd observable.

Algorithm 2. Given the state-space realizatiogh B, C, D) of ordern:
1. Calculate the singular value decomposition

T 0] [Vq
€C=[Ug Ug] [ o o] lv‘%l] = Ug, 2V (5.6)
C2

1/2

DeflneTC = Uclzc .

2. Calculate the singular value decomposition
T O] [V

OTe = [Ueo, Ucoy] [ 0 0] [VCT%] = Uco,ZeoVeg, (5.7)
Co

3. Compute the matrices

T1 = U S0 Veo Zed’?, Ry = Ug, Zc YPVeo S0 (5.8)

68



Model reduction

The state-space realization of ordgy, built using (5.4) and (5.5), is a minimal
transfer equivalent realization A, B, C, D).

Caution must be exerted when these results are to be follow#te design of
a control law. It should be said that the deletion of unobeigler states is always
desirable (given that the output includes all variablestériest), but it is not al-
ways desirable to delete uncontrollable states.
Reducing the model to a minimal degree realization is n@cgss order to im-
plement model reduction techniques beyond the minimaleegr

5.2.2 Modal Truncation

Truncation methods of model reduction seek to remove unitapbstates from
state-space models. As mentioned before, an ordinary apipr&nown as modal
truncation, seeks to remove those states that correspdadttmodes, i.e. high
frequency modes.

The main advantage of modal truncation, beyond its inhesenplicity, is that

the poles of the reduced order system are a subset of the gfatles full order

system. This means that the most important frequencieseofiynamical sys-
tem are retained in the reduced model. In the following algor, the simple
implementation of modal truncation is outlined.

Algorithm 3. Given the minimal state-space realizati@q B, C, D) of ordern:

1. Compute the solution to the eigenvalue problem assaCiaih matrix A
and determine the right eigenvectors matrix,

®=[D; ... O (5.9)

2. The similarity transformation (5.3) with = ® andR = ® ' puts ma-
trix A into a diagonal form (known as Jordan form) and siateto modal
coordinates Wanting to discard those modes with the highest natural fre
qguencies, order the eigenvalues so tlyats non-decreasing with increasing
i

3. Divide the state vector’ into components to be retained and components
to be discarded

Xl} (5.10)

in which then,-vector x| contains the components to be retained ahd
contains those states to be discarded.

1This is strictly true ifA has distinct eigenvalues. Although, for multiple eigemes, it is
possible to transform it into a block diagonal form (see BQ3).
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5.2 Model Reduction by Truncation

4. Partition the matrice$ andR in conformity withx’

T=[T: T2], R=[R: Ry (5.11)

5. The reduced model of order is then obtained using (5.4) and (5.5).

The error incurred in modal truncation depends not only authbut also
on the size of the residug3B;. If modes labellech, + 1 to n are omitted by
truncation to obtairts,, the following holds [GL94],

5 ICiBill
IG — Gl < : (5.12)
i=§r1 R ()l

Another property that surely holds between the transfectfan matricesG and
G,,is
G, (0) = G () (5.13)

which means that all reduced order models obtained by ttiomchave perfect
matching at infinite frequency.

5.2.3 Singular Perturbation Approximation

The steady state error obtained with state-space trumcatay be unacceptably
large for applications requiring good low-frequency fiteliln these cases, it is
appropriate to use a singular perturbation approximatiowhich the dynamics

associated with the discarded states, i.e. the fast dyisamistatically recovered
in the reduced order model. The following algorithm sum wgphocedure used to
obtain the reduced model of the LTI syst&nemploying the singular perturbation
approximation.

Algorithm 4. Given the minimal state-space realizati@q B, C, D) of ordern:

1. Compute the similarity transformation (5.4) with ma#sd andR calcu-
lated as in Algorithm 3

2. Approximate the low-frequency behaviour of the fast agits of the sys-
tem, represented by, by settingx’, = 0

0 = A% X; + AyX; + Bhu (5.14)
which, providedA’, non singular, yields

X, = —Aby (AbX) + Bhu) (5.15)
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3. Eliminatingx), from the equations associated wi}) the reduced model of
ordern, can be written as

Ar = Ay — Allelz_zlAlzl’ B, =B — Allelz_lelz (5.16a)
C, = C) — C4A,, A}, D, =D — ChAL, B (5.16b)
It can be shown that the singular perturbation approachataeto state-space

truncation by a bilinear transformatian— 1/s(see [GL94]). Hence, this method
achieves perfect approximation at steady state,

G, (0) = G (0) (5.17)

5.2.4 Matching Frequency and Power Moments

The following algorithm is able to reduce a minimal realiaatin such a manner
that the reduced model matches a subset of low frequency nisraed a subset
of high frequency moments

The next lemma shows how to develop reduced order modelsidtah a subset
of the high frequency and power moments, that is, the MarkoMhe covariance
parameters.

Lemma 1. Given the minimal and asymptotically stable realizati@n B, C, 0)
of ordern, compute the symmetric and positive definite controllapbdirammian
W.. Calculate the singular value decompaosition

Zq 0 VTl T
Wy = [Ug Ug] [O“ 0] [ij] = UquZqVg (5.18)
where
C
CA
W, = . (5.19)
CAt

Then compute the following matrices
Tar = WeVar (VEWVer) ™, Rer = Vi (5.20)
The preferred realization of ordar defined by
A =RyATq, B =RyB, C, =CTyu, D, =D (5.21)

is asymptotically stable and matches the fqa¥l; (joo) and the firsig R (joo),
wherei = 0, ...,q— 1, of (A, B, C, 0). It is worth to notice that the stability of
the reduced system comes from the minimality of the origsyatem
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5.2 Model Reduction by Truncation

Low frequency parameters can be matched by means of thevioidemma

Lemma 2. Given the minimal and asymptotically stable realizatién B, C, 0)
of ordern and computed the controllability grammi&, calculate the singular
value decomposition

%y 0] [Va T
in which
CA1
CA?
W, = _ (5.23)
CA™P
Calculate the matrices
-1
Tpr = WeVpr (Vo WeVpr) —0 Rpn =V (5.24)
The preferred realization of ordey given by
A =RLATn, B =RB, C =CTy, D, =D (5.25)

is asymptotically stable and matches the fipsM; (jO) and the firstp R (j0),
wherei = 0,...,p—1,0of (A B, C,D0).

Matching the first low frequency moments guarantees thasteady state
values of the response of the system are preserved. On thelathd, matching
the high frequency moments guarantees that the time moroérnite impulse
response are matched.

Combining the results expressed by Lemma 1 and Lemma 2, ibssilple to
develop an algorithm that can be employed to simultaneaualgh a set of high
and low frequency moments.

Algorithm 5. Given the minimal state-space realizati@y B, C, 0) of ordern:

1. Calculate the singular value decomposition

W, T 0] [V
[WZ] = [Ur U] [0 o] [vﬂ = U.ZV] (5.26)
where matrice®\; andW, are defined by 5.19 and 5.22

2. Define the matrices

-1
To=WVs (VIWeVL) 7, Ri=Vy (5.27)
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3. Produce the following state-space realization of orger

A =RIAT;, B,=R]|B, C,=CT,, D,=D (5.28)

The latter computed model matches the fpdbw frequency moments and
the firstq high frequency moments, as stated by Lemma 1 and Lemma 2.
It is interesting to notice that the projections generatkiced order models that
are not guaranteed to approximate the original system dicgpto any system
norm.

5.2.5 Balanced Truncation

Balanced truncation is an interesting technique for modeuction because of
its good absolute-error truncation properties. It requaestate truncation of a
system which is represented in a preferred set of coordinkt®wn as balanced
coordinates.

Definition 2. The asymptotically stable and time-invariant state-spaakzation
(A, B, C, D) of ordern, is said to be in balanced coordinates if the controllgbilit
and observability grammian¥)y, andW,, are equal and diagonal. Hence, the
following hold

AW+ WA + BB' =0 (5.29a)
AW +WA+C'C=0 (5.29b)
where
0'1|r1 0 0
W, =W, =W = 0 0 , o-i;&ajandai>OVi (530)
0 0 onlr,

inwhichn=r, + ...+ ry, eachr; being the multiplicity of the correspondemt.
The balanced realization is said to be an ordered balanaedidagon if, in addi-
tion,o1 > ... >0y > 0.

The following theorem, concerned with the existence andugemess of bal-
anced realization, can be proved.

Theorem 2. A given realizatior{A, B, C, D) admits a balanced representation if
and only if it is minimal and asymptotically stable.

Algorithm 6. Given the minimal and asymptotically stable systeél B, C, D)
of ordern:
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1. Compute the controllability grammiai, and factorize it such that

W, =FTF (5.31)

2. Calculate the observability grammisiv, and the singular value decompo-

sition , ;
2 0f|U
FWET = [Us U] [01 zg] [UJ (5.32)
whereX = diag(oily,, ..., omly,,) and theo; are the Hankel singular val-
ues.

3. The following matrices

T, =FUE, "% R = F U, zy? (5.33)

produce the reduced model of oragiobtained by truncation of the original
system transformed in balanced coordinates.

A, =RIAT;, B,=R]B, C,=CT,, D, =D (5.34)

In practice, this approximation method provides veffyceent and good ap-
proximate models. It eliminates the poorly reachable aratlp@bservable states
from a state space model.

As mentioned before, balanced truncation is attractive @l to its good trunca-
tion error properties. In particular the following relatioan be proved to provide
an upper bound for the infinity norm of the model reductiome(see [dVS87])

n
IG—Gille <2 )] o (5.35)

i=n+1

5.3 Application of the Reduction Algorithms

In control theory, eigenvalues define a system stabilityenes Hankel singular
values define the energy of each state in the system [BB94dpiKkg larger en-
ergy states of a system preserves most of its charactsriatierms of stability,
frequency, and time responses. In virtue of this consiaerathe rationale ac-
cording to which the order of the reduced system can be selésanalysing the
rate of decay of the the Hankel singular values of the strattnodel developed
in Chapter 4. Referring to a system in which a number of caled sensors and
actuators are employed as in Figure 5.1, the associatedhalidynamical system
(A, B, C,D)of order 56 is then considered. In Figure 5.2 are shown tteihned
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Figure 5.1: Actuators pattern employed in generating the minimal structural model of
order 56.

Hankel singular values for this system in which the firsttthmodes have been
computed, resulting to be a sixth order system. Two hugesogheir magni-
tude can be noticed between the eighth and the ninth singallae and between
the twelfth and the thirteenth. Consequently, in Figurds-%.7 are depicted the
Bode plots of the reduced systems obtained using the afort@med algorithms
in comparison with those of the full-order system. As arsiitative example, the
response from input 4 to output 4 is showed. Although thisahis to be consid-
ered not a limiting one for the interpretation of the resultgs clear that, when
employing the matching moments technique, one cannottljireelect the order
of the reduced model. It is instead necessary to choose timeruof the mo-
ments at low and high frequency that are desired to be matdrrexlorder of the
reduce system is then computed by the implemented rouse#.itAs concern
the modal truncation, the singular perturbation approxiomaand the balanced
reduction, that is for those techniques in which the ordethefreduced system
can be explicitly imposed, the twelfth order systems, asetqu, better approxi-
mate the full order system behaviour. A little increasinghia dimensions of the
system (eighth to twelfth order) allows to achieve a bet&hdviour at very low
frequencies and permits a good match of the peaks of the Badaitnde plot in
the frequency band betweenftand 102 Hz, this being the frequency band of
interest for the first modes of the structure. On the othedhahen the matching
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Figure 5.2: Hankel Singular Values for the considered full dynamical system of the
56" order.

moments method is used, requiring to match just the first tegtfency moments
leads to a reduced system of the 18th order, whereas matttterfgst two low
frequency moments entails a reduced-order model of the @6t#r. Hence, this
technique does not appear to lfEeetive for the problem of interest in the present
work.

Among the remaining methods, the singular perturbatiomapmation provides
the best approximation of the full order system at very loggtrency, as antic-
ipated by the given theoretical considerations in Secti@35 allows a perfect
match at the lowest frequencies. Nevertheless, since tudtireg reduced sys-
tem is not strictly proper, it shows a non-zero feed-throagti a greatly dierent
high-frequency response.

Balanced reductions have the main advantage of eliminétieéess controllable
and observable states and, at the same time, provide a ValidIgrequency be-
haviour of the reduced system, very much comparable to thtaireed by modal
truncation.

In Table 5.1 are reported the approximation errors, medasis — G,||,,, made
by the diferent reduction methods described. It can be noticed tivate she
matching moments algorithm does not provide any bound todiar, it turns
out to be an order of magnitude greater than the errors negudtom the other
reduction methods, and even worse if th& ®8der is to be used. Concerning the
other techniques, the infinity norm of the error is esselgttake same, regardless
the order and the method used, apart from tHedr2ler reduced system obtained
by balancing the state, which shows a roughly halved error.

Drawing on the previous considerations, a reduced modeidsrdawelve is cho-
sen. Besides, for the next developments regarding therdesig vibration sup-
pression system, it will be useful to interpret the resuwisuking onto the struc-
tural modes behaviour. Hence, for clarity’s sake, the ahbias fallen onto the
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Figure 5.3: Bode plots of the full order model, 56 order. From input 4 to output 4.
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Figure 5.4: Bode plots of the reduced order models. Modal truncation, 8" and 12"
order. From input 4 to output 4.

simple modal truncation, even though other techniques,lm&@anced truncation
of order 12, appear to be morfective.

In Chapter 4 a modal analysis of the FE model of the sateliiteegire has been
carried out. It can be noticed that a reduced order sységn(, C,, D,) of order
twelve entails the inclusion of six modes, implying the esibn of the seventh
mode which has an associated frequency closed to the peegiwel This con-
sideration motivates the adoption of a reduced model in klve@/en modes are
included, i.e. a reduced system of order fourteen. In FigBds illustrated the
frequency behaviour of the chosen reduced order model,mmpeadson with the
full, 56" order system.
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Figure 5.5: Bode plots of the reduced order models. Singular perturbation approxi-
mation, 8" and 12" order. From input 4 to output 4.
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Figure 5.6: Bode plots of the reduced order models. Matching moments, 8" and 12"
order. From input 4 to output 4.
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Figure 5.7: Bode plots of the reduced order models. Balanced reduction, 8" and 12t
order. From input 4 to output 4.
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Table 5.1: H,, norm of the approximation error committed in using the different re-
duction technique.

Method Modal Singular Matching Balanced
Truncation Perturbation Moments Truncation
Order 8 12 14 8 12 18 36 8 12

IG - Gyll, 0.2707 0.2707 0.2707 0.2707 0.2707 1.6253 2.4737 0.2707038.1
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Figure 5.8: Bode plots of the final considered reduced order model. Modal truncation,
14™ order. From input 4 to output 4.
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Chapter 6

Vibration Suppression System

In Section 1.3 is underlined the appropriateness of havicwn#rol system which
carries out vibration suppression.

To this concern, when designing controllers for dynamicadleis (even linearised
models) of large space structures, three major problenalysrise [JK93].

e Many of the available control methods assume that the fatlesvector,
or an estimate of it, is available. However, in most pratt&gaations,
the estimation algorithms and associated control lawsuarteo dtficulties
when only a low-dimensioned subset of the state vector issored. On
the other hand, real time implementation of high-dimenstbastimators
are computationally unattractive.

e Itis computationally expansive to design controllers firemely high or-
der systems such as those arising from FE models of flexihletste. It is
usually more feasible to design a controller based on a eztiocder, which
includes only the most important subset of vibration modes.

6.1 Linear Output Feedback Control

When the full-state vector of a large dynamical system iswedther available nor
practical to be reconstructed by an estimator, there eaistdternative solution,
often profitably applicable. It is based on the idea of praggi@ control action
proportional to the available measures, that is,

u= —Ky. (6.1)

In this case, an estimation of the full-state vector is naessary and a consider-
able simplification of the resulting control system can beieced. Nevertheless,
this simplification usually entails the optimal value of @peopriate performance
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Vibration Suppression System

index to be higher than that that could be determined by meémsclassical
LQR. For this reason the output feedback control is knowm &&ta sub-optimal
control.

6.1.1 Stability Analysis

Consider the class of dynamical systems modelled by theviollg equation of
motion, which usually results from numerical simulatiorflekible structures,

Ma+ Cqa+ Ka =Tu, (6.2)

in which M is the positive definite mass matrikK, is the positive, at least semi-
definite, stifness matrix an€4 is the damping matrix that is defined as a linear
combination of the previous matrices as in (4.16).

Assuming to carry out independent measures of position atatity, the output
relation can be written as,

Jyel |Gy O a
SRl e
Hence, a direct feedback action is determined as,

u=—(Kpyp+Kwy) =—(K,Cpa+K,C,a). (6.4)

Substituting the latter expression into (6.2) leads to tiWing equation de-
scribing the closed-loop system,

Ma+ (Cq+I'K,C,)a+ (K +TK,Cp)a=0. (6.5)

If it is supposed that the needed measures are carried oxbetlyethe same
positions in which the actuation takes place (collocatetsges and actuators),
the following symmetric output feedback form the contraV kean be introduced,

S e

since itisC, = C, = I'". The closed-loop equations can now be written as,
M&+ (Cq+TKIT)a+ (K +TKI'")a=0. (6.7)

Equation (6.7) states that, i, andK, are positive definite, then the control-
induced damping and #ftness perturbationsK ,I'" and 'K, I'" are symmetric

positive definite. This characteristic can be imposed kidvantage of the pos-
sibility of freely assigning a desired structure to the gagtrices. It can be shown
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6.1 Linear Output Feedback Control

that, if this is the case, asymptotic stability of the clo$®op system is guaran-
teed [JK93].

Moreover, an important consequence is that the stabilitydstained regardless
the number of states retained in the reduced-order modgrdkess of inaccura-
cies in the parameter values used in the structural modedeedin the event of a
breakdown of some sensors and actuators; only the pregeréormances (and
the optimality index) would be degraded. Thus, by using §maraetric output

feedback controller, the instability problems due to sp#lr éfects seem to be
completely avoided, and the parameters of the model do mettieebe accurately
known.

In fact, these assertions must be tempered when taking @ctwuat the real dy-
namics of sensors and actuators, delays in possible digaéizations and non-
linear @fects such as saturations of the actuators.

6.1.2 Stability Robustness Analysis

In practice, exact sensors and actuators collocation igrgéy impossible to
achieve. Hence, this section deals with a preliminary aslyf the robustness of
of symmetric output feedback controllers due to imprec@cation of sensors
and actuators.

The first-order state-space realization of (6.7) is,

% = Ax (6.8)

where

X= {Z} and A = [—M—l (KO+ TK,I™) —M-! (cd|+ I‘KVI‘T)] - 69
Let P be some positive definite matrix and consider the Lyapunoaton,
U (x) = x"Px. (6.10)
Using (6.8), the time derivative of the Lyapunov functiorcbmes,
U =x" (ATP + PA) x = —x"Qx. (6.11)

Since the closed-loop system (6.8) is asymptotically stalolr any given posi-
tive definiteQ there exists a positive definite that is solution of the following
Lyapunov equation,

AP+ PA = —Q. (6.12)

Suppose that the sensors and the actuators are not precidielyated and in-
troduce the non-collocation perturbation matrickg,and A,, due to which the
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output relation becomes,

AR [ S

The following theorem, proven in [Jos89], gives an upperraban the size of
non-collocation matrices which guarantee stability.

Theorem 3. The closed-loop systef®.8)with imprecisely collocated sensors and
actuators is asymptotically stable if,

Am(M)

Koll2llApllz + [IKNIA < ——=—,
IKollliApll + KAz < 5 )

(6.14)

whereP is the solution of the Lyapunov equati(®12) whenQ is an identity
matrix, whilst1,,and 1y, denotes respectively the smallest and the largest singular
value of a matrix.

This theorem does not take into account possible unmodatiathtors and
sensors dynamics or non-linearities, though it gives aicatishn of good robust-
ness of the symmetric output feedback controller.

6.2 Unstructured Suboptimal Control

The dynamical system modelled by (6.2), with collocatedssenand actuators,
can be written in its state-space realization as,

{:} - [—MolK —Mllcd] {Z} + [M Olr] U=Ax +Bu.  (6.15)

y = [I(‘)T I(‘)T] {2} = Cx. (6.16)

Consider to employ a symmetric output feedback contraller —Ky seeking to
minimize the following performance index,

J:f xTQx+uTRudt=J x"W (K) x dt. (6.17)
0 0

where

W (K) = Q + CTK'RKC. (6.18)
If the system is perturbed by some initial conditiogsthe problem of minimizing
the performance index can be restated as follows,

min(J) = rm(n (trace(PXo)), (6.19)
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in which P is a symmetric matrix satisfying the following Lyapunov atjon,

(AT —C'K'BT) P+ P (A —BKC)+W (K) =0, (6.20)
N ~ J hf_J
AT A

and X, is an appropriate matrix which comprises the interactiogtsvben the
different components of the initial conditiog. This constrained minimization
can be translated into the corresponding unconstraindalggmoby means of the
introduction of the Lagrange multipliers matr&x Hence, the new performance
index to be minimized is,

J=PXo+ A (ATP+PA +W (K)). (6.21)

Computation of the correspondent stationarity conditieasls to the following
system of matrix equations,

0J

X AP+ PA +W (K) =0 (6.22a)
aj - _T

o5 =AM+ AAT+ X =0 (6.22b)
g—i = RKCACT —B'PACT =0 (6.22c)

From the latter equation, it is immediate to determine the geatrix as,

1

K =R (B'PACT) (CAC") . (6.23)

6.2.1 Gain Matrix Computation Algorithm

As can be inferred from expression (6.23), the gain matrtkesymmetric output
feedback controller depends on bé&tlandA. This means that it is not possible
to refer to a single Algebraic Riccati Equation (ARE), andrdfore an iterative
solution of the problem appears unavoidable. In Algorithm Simple iterative
procedure used to find the gain matrix for the output feedicackrol is outlined.

Algorithm 7. Given the system of equations (6.22)
1. Find a stabilizind< (%) for the closed-loop systesm= (A — BKC) x.
2. CalculateP© with (6.22a).
3. SetJ* = 10*°, g; = 10%ande, = 10715,
4. CalculateA© with equation (6.22b).
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5. DetermineAK W = R=1 (BTPOAOCT) (CAOCT) " —K© .
6. Sete = 1 and calculat&® = KO + oAK®.

7. If the closed-loop system witk ™ is not stable, halver and return to 6.
Iterate until stability is achieved ar < &,,.

8. CalculateP™™ andJ = trace(PX,).

9. If the system is stable and< J*, setJ* = J.

4
10. Iterate unti 3 J*

< &3.

In order to be able to start the mentioned iterative procedus necessary to
find a stabilizing initial guesk ©. If this initialization turned out to be fiicult, it
would be advisable to employ an eigenvalue shifting tealmigefore beginning
with the algorithm.

In case of arbitrary constraints upon the structure of the geatrix K, the direct
solution of system (6.22) could befiiicult. For this reason it is often preferred
the alternative approach of a direct numerical optimizgteven constrained, of
the performance index.

6.3 Simulation results

In the previous sections it is underlined that the employntéra direct state
feedback control law, being the full state of the system lyaetoverable, is un-
affordable when dealing with large flexible structures. Thisivates the recourse
to the class of direct output feedback regulators that ge@ercontrol action pro-
portional to the available measures of a usually small dutfsine full state. It
has also been stressed in Chapter 5 the necessity of havedgeed order system
to design a vibration control system.

This section shows the performance of the vibration coritel designed re-
ferring to the the reduced order model of the structure, inckvithe first seven
modes, drawing on the discussion in Section 5.3, are retaiftee control system
is based on the developments of Section 6.2 where the ganxnsatomputed
solving the optimization problem (6.17) without imposingrficular constraint
upon the structure of the feedback gains. Finally a usefmiparison is given
with an optimal controller in which the gain matrix is calatéd basing on the
knowledge of the full state of the system.

The state-space system that describes the dynamics of ssichcture can be
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Figure 6.1: Actuators pattern used for the vibration suppression system.

expressed by the following,

X = AX + Bu. (6.24a)
y = Cx. (6.24Db)

The matrixC that links the output vector with the state vector has beempced
considering the positions of the actuators and sensors paidepicted in Fig-
ure 6.1. Referring to the results given by the modal analpshapter 4, the free
structure first modes turn out to be associated with the oypiarfe vibrations.
Hence, six actuators, disposed as illustrated, assuretbat mode is easily con-
trollable. In order to prove and assess the functioning efctbntrollers designed
to suppress the vibrations of the structure, some initiatidmns are imposed. It
can be shown that the imposition of initial conditions is @&dio excite the sys-
tem with impulsive forces and their time derivative. Comsithe second-order
equation of the forced system dynamics,

Ma + Cqa + Ka = Bod(t) + B16(t). (6.25)

Successive integrations yield,

Ma+ Cqa+ K Jadt = Boscdt) + B1d(t) + Cy, (6.26)
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Figure 6.2: Open-loop eigenvalues of the reduced order system in the complex plane.

Ma + Cq4 Jadt+ K ffadt = Boramp(t) + B;scdt) + C; + C,. (6.27)

Evaluating the integrals between @nd 0" and supposing homogeneous initial
conditions at 0, yields,

a(0™) = M !By, (6.28a)
a(0*t) = M~ (Cqa + By). (6.28b)

In the following sections, the initial conditions are cdated from the imposition
of impulsive forces and their time derivative using (6.28).andB, are a column
vectors in which forces of 1000 N (the order of magnitude efénvironmental
disturbances) are equally distributed onto all the trdimsial degrees of freedom
of the full structure. Eventually they are reduced by medrth®same transfor-
mation matrixT, used for the reduction of the system.

In Figure 6.2 are reported the eigenvalues of the open-ledpaed model. The
uncontrolled motion of the structure perturbed by the inmpms of initial con-
ditions is slightly damped by the structural damping givgritie matrixCq. As
expected, since the internal damping is assumed to be lowder do be on the
safe side, the vibrations are extinguished very slowly.sTdan be predicted by
noticing that the open-loop eigenvalues are almost purgjimaay and is con-
firmed in Figure 6.3, in which, as an example, the time histdthe uncontrolled
third mode is depicted. The trend is analogous for the otloztas.

6.3.1 Unstructured Suboptimal Regulator

As introduced in the previous section, an unstructured gtimal regulator has
been developed. The gain matrix has been computed follothimgteps outlined
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Figure 6.3: Uncontrolled structural vibrations with respect to the imposition of initial
conditions. Mode 3.

Table 6.1: Closed-loop eigenvalues of the reduced order system. Unstructured Sub-
optimal Regulator.

Mode Open-Loop Closed-Loop

1 —0.00000032+ 0.01135258 —0.00150992+ 0.01129401
2 —0.00000086+ 0.01863602 —0.00134120+ 0.01864962
3 —0.00000088+ 0.01884402 —0.00112420+ 0.01877911
4 —0.00000228+ 0.03026719 —0.00062441+ 0.030281738
5
6
7

—0.00000229+ 0.03028664 —0.0011976% 0.03028904
—0.00000635+ 0.05043782 —0.00024016+ 0.05042178
—0.00000638+ 0.05055180 —0.00029145+ 0.05055039

in Algorithm 7. The following penalty matrices are detereudrto produce a reg-
ulator able to extinguish the structural vibrations in abowoe third of the orbit
period.

Qsub = diag([10 200 40 100 200 1000 1000 10 200 40 100 200 1000 000
(6.29)
Reu = diag([0.015 Q05 0015 Q015 Q025 Q015]). (6.30)

The resultant gain matrix is a fully populated matrix in whitie highest values
have an order of magnitude of 3 Gvhereas the lowest ones are of the order of
1073,

In Table 6.1 and in Figure 6.4a are reported the closed-laggnealues in com-
parison with the open-loop ones. It can be seen that the agabfthe closed-loop
eigenvalues areffectively moved far away from the imaginary axis by at least tw
orders of magnitude. The imaginary part is left practicéilg same for all the
eigenvalues, this yielding to the damping factor of each enodoe increased. In
Figure 6.5 is plotted the time history of the third modal aboate, which can be
straightforwardly compared to the uncontrolled behavids expected, there is
the same initial elongation as the uncontrolled case, lautadtiowing oscillations
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(a) Unstructured Suboptimal Regulator. (b) Linear quadratic regulator.

Figure 6.4: Closed-loop eigenvalues of the reduced order system in the complex
plane.
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Figure 6.5: Controlled structural vibrations with respect to the imposition of initial con-
ditions. Unstructured suboptimal regulator. Mode 3.

are extinguished in about a tenth of the orbital period. Tdraesqualitative be-

haviour is shown by the other modes, the onlffetience being the time in which
the fluctuations are cancelled. Recalling Table 6.1, thel tmode is one of the
more damped, since the associated eigenvalue is movedhategative real part
plane by almost four orders of magnitude. However, as meatidefore, all the

modal coordinates considered in the reduced subsystemaarped! within one

third of the orbital period.

6.3.2 Comparison with LQR

The performances of the previous controller is then contpaith the dynamical
system controlled by a classical LQR, supposing to know thlestate vector.
The following weight matrices are chosen in order to extisgall the vibrations
within one third of the orbit,

Qiyr = diag([10 30 20 20 20 50 30 10 30 20 20 20 50]B0  (6.31)
R = diag([11 10101 01]). (6.32)
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Table 6.2: Closed-loop eigenvalues of the reduced order system. LQR.

Mode Open-Loop Closed-Loop

1 —0.00000032+ 0.01135258 —0.00167628+ 0.01148216
2 —0.00000086+ 0.01863602 —0.00128350+ 0.01871441
3 —0.00000088+ 0.01884402 —0.00140243+ 0.01885967
4 —0.00000228+ 0.03026719 —0.00063204+ 0.03028608
5
6
7

—0.00000229+ 0.03028664 —0.00124113+ 0.03029888
—0.00000635+ 0.05043782 —0.00032686+ 0.05045831
—0.00000638+ 0.05055180 —0.00053761+ 0.05053522
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Figure 6.6: Controlled structural vibrations with respect to the imposition of initial con-
ditions. LQR. Mode 3.

This choice yields a & 14 gain matrix in which the highest elements have an
order of 13 and the lowest have an order of £0

The characteristics of the resulting closed-loop emplgytime linear quadratic
regulator, in comparison with those of the open-loop, amerearized in Table 6.2
and in Figure 6.4b. It can be noticed that the eigenvaluemared slightly farer
away from the imaginary axis in comparison with the suboptiregulator, this
being particularly true for the last two eigenvalues, abkigrequency. Neverthe-
less, the highest terms in the gain matrix are one order ohmatg less than those
of the unstructured suboptimal regulator, suggestingtti@at. QR could be able
to get the same results as the suboptimal regulator withetésg. This is quite
expected and is confirmed by Figure 6.6, in which the timeohysof the third
modal coordinate is plotted and can be compared with thel toérFigure 6.5.

It is clear that the performances of thétdrent regulator are highly comparable.
The same observations are valid for the other modal coaelna In order to
strengthen the last considerations, in Figure 6.7, it i®mep as an illustrative
example, the time history of the control force exerted byabwiator #1. Even
though the magnitude of the requested action is not realyifstant in this case,
since the system is forced by fictitious initial conditiortsgan be noticed that
the highest peak of the force requested by the LOR is half tieene@eded by the
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suboptimal controller. Besides, the control action appéavanish quicker in the
LQR case, suggesting that it slightly mof@&@ent in damping the vibrations. In
conclusion ,recalling that the estimation of the full ste¢etor is not &ordable
when dealing with large flexible structures, this chaptewvps the general rea-
sonableness of a direct output feedback approach in cgroum the vibrations
suppression problem.
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Figure 6.7: Comparison between the control force provided by actuator #1.
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Chapter 7

Integrated System Simulation
Comparisons and Results

The necessity of a vibration suppression system shouldifeeddoy considering
the the structural dynamics in a plausible operative siunatn which the contin-
uous orbit and the attitude controls guarantee the stagepikg and the desired
attitude configuration. In particular,@ latitude and QI° longitude are con-
sidered to be the maximum station keeping errors, whid&Qattitude pointing
accuracy on each axes should be guaranteed. In order toheepait and the at-
titude of the satellite into these specific limits, the LQR@&gach is employed for
both the orbit and attitude regulators. In particular, thiéfving penalty matrices
are considered with respect to the orbit regulator:

[3 x 10714 0 0 0 0 0
0 3x 10 0 0 0 0
0 0 3x10 0 0 0
Qo= 0 0 10° 0 O (7.1)
0 0 0 0 10° O
| 0 0 0 0 0 107
1® 0 O
Rop=| 0 1¢ 0 |. (7.2)
0O 0 1¢
While the attitude penalty matrices:
3 x 10% 0 0 0 0 0 |
0 2 x 101 0 0 0 0
0 0 1x 10* 0 0 0
Qar = 0 0 0 3x108® 0 0 (7:3)
0 0 0 0 2x 101 0
|0 0 0 0 0 1x 10|
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10 0 O
Ratt = O 10 0 (74)
0O 0 10

In the first part of the chapter, the structure is left uncalfed. It is shown how
the structural vibrations are excited by the orbit andwdttcontrol actions in two
illustrative situations: a nominal and a perturbed inigahdition. It will be ex-
hibited that two kind of structural oscillations arise frahese interactions: large
very low frequency oscillations, that are the natural cqusace of the structural
flexibility due to the nominal trend of the orbit and attitudentrol force, and
much higher frequency vibrations in correspondence to théahfrequencies of
the structure. Although the first kind of oscillations prasa large amplitude,
they are not considered to be dangerous for the structuride tile second kind
need to be damped. In the end, it is shown how the active vdlorauppression
system, previously developed, is able to extinguish theesined high frequency
vibrations on the structure.

All the simulations are carried out for a time interval of 2B@its. This is not re-
strictive, since a long term quasi-periodic behaviour btlad variables has been
preliminary verified. Moreover the initial epodh is considered to be January
1, 2012 at 1200 00.0" UTC with the satellite located at the nominal longitude
Ag = 75.07°. While the nominal attitude orientation is considered taHseECSF
reference frame directions.

In the end, three sets of actuators are considered to beandeptly employed
for the orbit, the attitude and the structural vibrationtcoh In particular, equiv-
alent sets for the orbit and the attitude are adopted, astéepn Figure 7.1. The
actuators #1, #4, #8 and #11 are placed alongdhdirection, the actuators #2,
#5, #9 and #12 along thé; direction, while the actuators #3, #6, #7 and #10. The
set of actuators for the vibration suppression system stasf six actuators from
#1S to #6S placed as depicted in Figure 7.2.

7.1 The Uncontrolled Structural Dynamics (USD)
Condition

In the USD condition the structure does not have any activetion suppression
system. In particular, the hypothesis and simplificati@ugpted for the Uncon-
trolled Structural Dynamics (USD) condition, are statedodisw:

e The orbital disturbances are caused by the major envirotahdisturbances
together with the disturbances coming from the attituddrobactions.

e The attitude is fiected by the gravity gradient torque and the solar radiation
torque together with the disturbances coming from the adnitrol actions.
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Figure 7.1: Actuators pattern employed for the orbital and attitude control system.

e The structural vibrations are only influenced by the orbid &me attitude
control actions.

Two configurations are considered to be significant conogrthe structural in-
teractions with the rigid body motion dynamics: the Zerai&hiConditions (ZIC)
and the Perturbed Initial Conditions (PIC).

7.1.1 The Zero Initial Conditions (ZIC) Configuration

In the ZIC configuration, the starting errors are considéodzke equal to zero with
respect to the nominal orbit position and the attitude pogt

As shown in Figure 7.3, the requirements on the maximunulditand longitude
errors, of respectively.05” and 01°, are satisfied. The corresponding control ac-
tions is homogeneously distributed within the set of adrgtin particular, the a
maximum force of about 30 N is required by the actuators ind¢eirection as
shown in Figure 7.4. Similarly, the attitude control saséisfine pointing accuracy
of 0.08 around each axis (Figure 7.5). As expected, the maximumaldotque

is requested around thé& axis due to the significant pitch gravity gradient torque.
Thus, the forces on the actuator #3 and #10 reach a maximuwra wékhbout 60
N, as shown in Figure 7.5.

The structure modal coordinates, as expected, presemt Varny low frequency
oscillations as exemplified in Figure 7.7, where the secondahcoordinate be-
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=T

e

3200 m

Figure 7.2: Actuators pattern employed for the vibration suppression system.

haviour is depicted. These kind of oscillations does notrteebe extinguished.
However, the first modal coordinate as well as the sixth aedst#venth appear
to be excited in correspondence to their related modal &eges as exemplified
in Figures 7.8, 7.9 and 7.10. As a consequence, a vibratigoression system
appears be appropriate.

7.1.2 The Perturbed Initial Conditions (PIC) Configuration

Hereafter, the perturbed initial conditions are imposeithéoorbit and the attitude
nominal configuration. In the considered scenario, theepadft initially lays on
the boundaries of the longitude and latitude admissibleviaitix a pointing error
about each axis. Particularly,0® latitude and (L° longitude errors are consid-
ered for the position of the spacecraft on the orbit, whed€apointing errors
around each principal axis of inertia. As a consequenceg@lsthaviour of the
control action is expected.

The requirements are met for both the orbit and the attitwierols in a time
of the order of some orbits (Figures 7.12 and 7.13). As it {geexed, the max-
imum actuator forces requested in the PIC configuration arehnmore higher
than those in the ZIC configuration, due to the initial colotis. However, once
the regime conditions are reached, the actuators forcesrig the nominal be-
haviour (Figures 7.11 and 7.14).
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Figure 7.3: Time history of spacecraft longitude and latitude in the USD condition and

the ZIC configuration.
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Figure 7.4: Force on the actuator #1 requested for the orbit control in the USD condi-

tion and the ZIC configuration.
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Figure 7.5: Attitude angles « in the USD condition and the ZIC configuration.
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Figure 7.6: Force on the actuator #6 requested for the attitude control in the USD
condition and the ZIC configuration.
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Figure 7.7: The second modal coordinate in the USD condition and the ZIC configu-
ration.
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Figure 7.8: The first modal coordinate in the USD condition and the ZIC configuration.
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Figure 7.9: The sixth modal coordinate in the USD condition and the ZIC configura-
tion.
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Figure 7.10: The seventh modal coordinate in the USD condition and the ZIC config-
uration.
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As a consequence of the initial strong orbit and controloadtj all the modal
coordinates are expected to be initially perturbed. Thiug,Higher frequency
vibrations, superimposed on to the lower large frequenciyllasons, should be
generally more significant than those in the ZIC configuratiBven if he struc-
tural damping may encourage the damping of such undesiggdffrequency vi-
brations, as it occurs for the the fifth modal coordinate (Fed.15), the orbit and
attitude control actions may excite the vibrations in cep@ndence to particular
modal frequencies. This is the case of the sixth and seveonttahirequencies
(Figures 7.16 7.17).

Although the condition just analysed may be considered torieeof the worst
case, since the step behaviour for orbit and control actidvas been shown that
the possible appearance of a vibration may not be extingdish

7.2 The Controlled Structural Dynamics (CSD) Con-
dition

In the CSD condition, the high frequencies vibrations amapked by a suboptimal
regulator. The penalty matrices for such a regulator haea lseosen to diagonal
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Figure 7.12: Force on the actuator #1 requested for the orbit control in the USD con-
dition and the PIC configuration.
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Figure 7.13: Attitude angles « in the USD condition and the PIC configuration.
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Figure 7.14: Force on the actuator #6 requested for the attitude control in the USD
condition and the PIC configuration.
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Figure 7.15: The fifth modal coordinate in the USD condition and the PIC configura-
tion.
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Figure 7.16: The sixth modal coordinate in the USD condition and the PIC configura-
tion.
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Figure 7.17: The seventh modal coordinate in the USD condition and the PIC config-
uration.
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matrices with the diagonal:

Q = diag([10 200 40 100 200 1000 1000 10 200 40 100 200 1000 1000
(7.5)
R = diag([0.015 Q05 0015 Q015 Q025 Q015|). (7.6)

In particular, the hypothesis and simplifications, adogtedhe CSD condition,
are stated as follow:

e The orbital disturbances are caused by the major envirotahgisturbances
previously described, together with the disturbances ogrfrom the atti-
tude and the vibration suppression control actions.

e The attitude is fiected by the gravity gradient torque and the solar radia-
tion torque together with the disturbances coming from tH@t@nd the
vibration suppression control actions.

e The structural vibrations are only influenced by the orbid #me attitude
control actions.

Only the PIC configuration is examined in the CSD condition¢s it resumes
the behaviour of the control systems in both the perturbglironditions and
the nominal operative configuration. The presence of theatitn suppression
system is not detrimental for the orbit and the attitude i@st which show the
similar behaviour as it results considering the uncorgcbfitructure (Figures 7.18
and 7.20). As a consequence, the actuators forces are edpgedie comparable,
as exemplified in Figures 7.19 and 7.21, where the behavajuhe actuators #1
and #6, respectively for the orbit and attitude control,depicted.

Concerning the structural behaviour, the large low fregyesscillations appear
to have the same behaviour of those of the uncontrolledtsteic This is what
results observing Figure 7.22, which represents the sixdbdahcoordinate low
frequency trend. However, if the very initial time intersare considered, it is
evident that the vibration suppression system is able toguxish the undesired
high frequency vibrations (Figures from 7.23 to 7.29). Muwer, the correspon-
dent action required by the vibration suppression systeoi tlse same order as
that required for the orbit and attitude control systemggeasilts observing Fig-
ures from 7.30 to 7.35.

The simulations described in this chapter show that theaoten between the or-
bit and attitude control systems and the structure couldobenpially dangerous.
A suboptimal control approach for the vibration suppress$ias been introduced
and yields satisfactory results. Is is to be underlinedttt@aforementioned vibra-
tions suppression system has been designed consideridgeaeckorder structural
model including the first seven flexible modes. Although thaeo of the reduced
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Figure 7.18: Time history of spacecraft longitude and latitude in the CSD condition.
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Figure 7.19: Force on the actuator #1 requested for the orbit control in the CSD con-
dition.
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Figure 7.20: Attitude angles « in the CSD condition..
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Figure 7.21: Force on the actuator #6 requested for the attitude control in the CSD
condition.
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Figure 7.22: The sixth modal coordinate in the CSD condition.
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Figure 7.23: The first modal coordinate in the CSD condition, for the initial time inter-
val,
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Figure 7.24: The second modal coordinate in the CSD condition, for the initial time
interval.
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Figure 7.25: The third modal coordinate in the CSD condition, for the initial time in-
terval.
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Figure 7.26: The forth modal coordinate in the CSD condition, for the initial time in-
terval.
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Figure 7.27: The fifth modal coordinate in the CSD condition, for the initial time inter-
val.
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Figure 7.28: The sixth modal coordinate in the CSD condition, for the initial time in-
terval.
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Figure 7.29: The seventh modal coordinate in the CSD condition, for the initial time
interval.
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Figure 7.30: Force on the #1S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.31: Force on the #2S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.32: Force on the #3S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.33: Force on the #4S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.34: Force on the #5S actuator in the CSD condition, for the initial time inter-
val.
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Figure 7.35: Force on the #6S actuator in the CSD condition, for the initial time inter-
val.
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system has been reasonably selected, the interactiondwitteglected dynamics
should be further investigated.
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Chapter 8

Conclusions

8.1 Thesis Contributions

The objective of the present work is the study of the problératmay arise due
to the interactions between the orbjgdtitude control systems of a large flexible
spacecraft and its structural vibrations. The referencdahis the Abacus Re-
flector SSP concept, chosen because, thanks to its strusit@icity and high
modularity, constitutes the basilar structure for a widess of SSP concepts.
Besides, its simple geometry enables a preliminary studgi@behaviour of the
structure when designing the orbital and attitude conyslesms of the satellite.
First of all, taking into account the main perturbing actiaacting on a GEO
satellite, the orbital and attitude control system has lokssigned to fulfil realis-
tic requirements regarding the station keeping and payrdoturacies. Since the
employment of chemical propulsion devices is unrealigtie t their low specific
impulse, it is appropriate to exploit théfieiency of the low-thrust propulsion. It
has been proven that a LQR approach for continuous contnaih@antain the po-
sition and the attitude of the satellite within the presedbimits. The designed
control systems utilize the same set of actuators to pravideecessary actions
to counteract the external disturbances. As a consequerecepntrol forces are
introduced into the structure and theffexts need to be investigated.

To this concern, a FE model of the Abacus-like structure e ldeveloped in
order to characterize the modal behaviour of the structdiseexpected, the first
natural frequencies turn out to be lower than those of thenscom much more
compact, satellites.

An immediate solution, in order to avoid the interactionghwihe flexible modes
of the structure, can be designing the orlétitude control system with a very
low bandwidth. One drawback of this approach is that suchblaadwidth regula-
tors could not have the necessary authority to executelgedsrder manoeuvres
during the operational life of the spacecraft. Another disatage is the poor ro-
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bustness of the whole system under unexpected or unmodigkebances which
may excite the vibrations of the structure. For this reasgoreliminary study of
a vibration suppression system has been carried out.

Since the numerical simulations of dynamical systems, sgdRE analysis, usu-
ally results in complex high-order dynamic models, it isicEse to approximate
them by simpler models with reduced order. For this purpseegral techniques
of model reduction has been investigated. The choice hesfahto the simple
modal truncation because it allows the interpretation efdipnamical behaviour
of the system in terms of modal coordinates, which give actlpaysical insight.
For large flexible structures it is unlikely to know the futage vector of the dy-
namical system. This consideration justifies the recoursled class of the direct
output feedback controllers in which the measures comioin fcollocated sen-
sors are directly used to provide the feedback control actithe dfectiveness
of the designed regulator has been demonstrated in twdisegmt situations: the
satellite operative condition, and a perturbed initialdition. It has been exhib-
ited that, for both the conditions, two kind of structuratitlations arise from
these interactions: large very low frequency oscillatjghat are the natural con-
sequence of the structural flexibility due to the nominahdr®f the orbit and
attitude control force, and much higher frequency vibragian correspondence
to the modal frequencies of the structure. Although the kirsdl of oscillations
present a large amplitude, they are not considered to beedaungifor the struc-
ture, while the second kind need to be damped.

It can be shown that, if the vibration suppression systemastive, some of the
modal coordinates are excited and the vibrations remaiampeéd. On the other
hand, it has been proved that when the vibration controlisgdhose sparked
oscillations are extinguished in a time of the order of thieitpmvhit affordable
actuation forces. Is is to be underlined that the aforeroaeti vibrations sup-
pression system has been designed considering a reducadstuttural model
including the first seven flexible modes. Although the ordehe reduced system
has been reasonably selected, the interactions with tHeated dynamics should
be further investigated.

8.2 Further Developments

Although the implemented controller are designed to &aently robust with

respect to external perturbations, the thermal distorioth structural vibrations
due to solar heating need deeper studies. In particulathérenoelastic interac-
tions appear to be a critical issue in the development of sabdllites and defi-
nitely deserve a future investigation.

The latter consideration leads to the necessity of refinmgRE model of the
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8.2 Further Developments

structure. This should include a model of the solar arrays @frthe huge mi-
crowave transmitting system. Moreover, the FE model shbeldble to compute
the stresses and the strains that result in the structuoeder to give precise re-
guirements on the performances requested to the contite@nsgs

A further important aspect that has been not deeply studiéaki interactions of
the structural system with the rest of the satellite and wighenvironmental per-
turbations. Among these, it should be considered a reatisdidel of the actuation
system. In fact, the actuation stations are not punctifanthfallow the structure
when it is subjected to large vibrations. Thus, the movemehthe actuators
could potentially &ect the performances of the control systems. Besides, the ac
tual dynamics of the actuators and the fact that they carepebfectly collocated
with sensors should be considered. Concerning the extdrsiairbances, only
the environmental quasi-deterministic perturbing forcage been considered. It
is worthwhile to take into account possible sources of ramdwardly predictable
disturbances. Hence, a possible area for future works dmittle employment of
Linear Quadratic Gaussian (LQG) regulators.

Drawing from the results of the stability and robustnesdyam of the direct
output feedback controllers, a promising area for futuueliss may regard the
possibility of structuring the gain matrix of such regulato The selection of
the gain matrix among the stabilizing family of positive dé& matrices and its
parametrization by means, for example, of the Choleskymgcsition, could be
the first step leading to a direct numerical optimizationleed to minimize an
appropriate performance index. At the same time, the isecaontroller design
freedom given by the parametrization of the gain matrixqvadl to impose several
other constraints on the behaviour of the closed-loop systeg. directly assign
the position of significant poles within the complex plane.
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Appendix A

Electric Propulsion Systems

Electrical propulsion systems are based on acceleratingrared mass by an
electromagnetic or electrostatic field, where the ionsddhe thruster nozzle at
very high velocity. The common peculiar characteristicaretd by the dter-
ent typologies of electric systems are the high values ofipempulsels, and
the possibility of adjusting the thrust level. Furthermaaeénighls, entails a low
propellant consumption and the reduction of the mass toaakieoard per mis-
sion. In particular, minimization of propellant (and tapksass is essential for all
large-scale space systems, since the amount of propefidrtha dimensions of
the related propulsion system needed if chemical propulsis to be employed
would be un&fordable. For these reason, in the present work the optioraking
use of chemical-based propulsion systems is not considélaairally, there are
also numerous drawbacks concerning electric propulsidwe most awkward of
them appear to be that the thrust levels that can be achiegedey low and that
high voltages are required. In this section a brief survefhefdiferent electrical
thruster categories is given.

A.0.1 Electrothermal propulsion

The acceleration is achieved heating a propellant gas loyriel@ heat addition
and expanding it through a convergglitergent nozzle. Resistojet and arcjet
propulsion systems belong to this class.

Resistojet Resistojets heat propellant using an heated solid surfadédave a
low specific impulse, ranging from 100 to 400 s.

Arcjet Opposite to resistojets, arcjets heat propellant usindetree arc gen-
erated between an anode and a catode. They areflieserd at converting power
to Isp (20 to 30%) but higher specific impulses are achievable (6300 s).
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A.0.2 Electrostatic propulsion

It is based on the acceleration of an ionized propellant gatd application of
electric fields. Examples include gridded ion thrusterskiett Emission Electric
Propulsion (FEEP).

Gridded ion thrusters  Propellant atoms (of mercury, xenon or argon vapour)
are injected into the ionization chamber where they are lzvddnd with electrons
from a hollow cathode, causing the atoms to lose electrodsanome ionized.
The side of the exit of the ionization chamber is equippedhwito high voltage
electrodes that have a grid structure. The high voltageiegpb the electrodes
accelerates the ions to a high velocity thus forming theghbeam. Electrons
and ions must be injected in the thrust beam in equal numbenaintain charge
neutrality. For this reason electrons are shot from a cathcalled the neutraliser,
towards the ions behind the ship to ensure that equal amotiptsitive and neg-
ative charge are ejected. Neutralizing is needed to preterghip from gaining

a net negative charge.

Gridded ion thrusters show a very high specific impulse, irepérom 3000 to
8000 s and very high thrusfficiency (more than 60%). Another interesting plus,
when the thrusters are employed in a cluster configuratstie low ion plume
divergence, typically about 20

The primary performance degradation is due to grid erosamised by high speed
ion impingement on the acceleration grid. The consequelctéeon in thrust ef-
ficiency and specific impulse due to hole enlargement and @ldefocussing is
the main lifetime limiting factor.

FEEP Thrust is produced by exhausting a beam of mainly singlyzexh cae-
sium atoms, produced by field evaporation. Thrust level \@®y ranging from 1
to 100 mN.

A.0.3 Electromagnetic propulsion

It is based on the acceleration of an ionized propellant gathd application of
both electric and magnetic fields. Examples include Hallsters and Magneto-
Plasma Dynamic thrusters (MPDT).

Hall thrusters  Electrons are generated by an external cathode and injextted
a dielectric annular chamber. A radial magnetic field is gateel between in-
nerouter poles of magnets. The Lorentz force on electrons icrgsadial mag-
netic field lines causes electron cyclotron motion in chamibels they follow a
helical path towards the anode. Neutral gas (usually xeimggnted into chamber
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collide with electrons.

The acceleration of ions is carried out by the self-esthbtieelectric field created
by the electron current induced by Lorentz force.

Additional electrons are emitted by an external cathodethm ion plume in order
to neutralize the ions.

This class of thruster presents relatively low specific ilags, about 2000 s, and
lower dficiency with respect to gridded ion thrusters.

The main issue is related with the erosion of ceramic ingratf the dielectric
annular chamber. At current development stage, with ctlyersed materials,
thruster lifetime is reduced to a few thousands hours.

MPDT lon acceleration is carried out by exploiting electromdgnkorentz
forces. Very high current axial cathode produces electlynthermionic emis-
sion. High radial electron discharge to anode poles on ligybhdrical chamber,
ionisation of propellant (solid lithium). Self-inducedismithal magnetic field
from high radial electric field causes axial acceleratioioas.

They show goods, levels, ranging from 1800 to 8000 s, but the high current
needed in the cathode entails a high power level, in the afitre kW. On the
other hand the peak thrust level achievable is at least ae¥ of magnitude more
than that attainable with the other electric propulsioriays.

The major drawback in employing the Magneto-Plasma thrsisgg¢he high power
requirement, due to which at present only experimental nsduve been devel-
oped for laboratory testing.

The electrostatic ion thrusters, in particular griddedeagines, appear to be a
kind of highly-dficient low-thrust propulsion systems running on electnzaler
that deserve particular attention in the context of thisknoecause they could
be the good candidates for geostationary station keepid@titude control. In
Figure A.1 is schematically illustrated the functioningngiple of a gridded ion
thruster and in Table A.1 are listed the characteristicshefreference thruster
considered in this work.
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Figure A.1: Schematic diagram of an electrostatic ion thruster.

Table A.1: Reference electric propulsion system.

Thrust [N] 1
Specific impulse [s] 5000
Exhaust velocity [kn's] 50
Total dficiency [-] 0.8

Power to thrust ratio [K\VIN] 30
Mass to power ratio [kixW] 5

Total peak thrust [N] 200
Total peak power [MW] 6
Total average thrust [N] 80

Total average power [MW] 2.5
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Appendix B

Linear System Properties

This section will introduce several concepts and propedgsociated with linear
systems that are of interest of the model reduction problem.

B.1 Transfer Function Matrix

Considering the state-space representation of the LTesy8t as in (5.1), the
transfer matrix fromu toy is defined as

Y(s) = G(s)U(s) (B.1)

whereU(s) andY(s) are the Laplace transforms oft) andy(t) with zero initial
conditions. Hence,

G(s)=C(sh—A)"'B+D (B.2)
Thus, the transfer function matrix provides a frequency dondescription of the
input-output behaviour of the syste$n
It can be seen that more than one realizatianB, C, D) of 8§ can produce the
same transfer functio@(s). That is, diferent system realizations can produce the
same input-output behaviour. In particular, considerimg $tate-space transfor-
mation

x=TX (B.3)

with T a non-singular matrix of dimensiam x n. Since such a transformation
only amounts to rewriting the state variable in a new basidgoés not &ect the
input-output behaviour associated w&hThus the following can be stated

Lemma 3. If S is represented as in (5.1), then the input-output behawabéins
equivalently represented by the state-space realizagbnet! by

X =T ATX + T 'Bu (B.4a)
y=CTX + Du (B.4b)
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B.2 State-Space Models Versus Transfer Functions

The transformatio — T—AT is called a similarity transformation of the matrix
A. It has the property of leaving the eigenvalues of Amatrix invariant.

B.2 State-Space Models Versus Transfer Functions

The most important dierences between the state space representation and the
transfer function representation of a given system are[&€#L]):

e The transfer function of an LTI system describes the refaietween the
input and the output of the system under the assumption hieasystem
is initially relaxed (i.e. the initial state is zero). Hendkthis assumption
does not hold, the description is not applicable. In contraghe state
space description, the transfer function representatb@s tot reveal what
happens if the system is notinitially relaxed. For examplssovable modes
can be excited due to a non-zero initial state but may not apipethe
transfer function due to pole-zero cancellation.

e The transfer function formulation does not reveal the bghavinside the
system, such as unobservable unstable modes. Therefeteatisfer func-
tion matrix cannot always be used to study the stability progs of an LTI
system.

¢ Although most results that are available for MIMO state gpdescriptions
can also be obtained in the transfer function approach,téte space for-
mulation stays the better way of dealing with generalizegibke MIMO
systems or non-linear systems. Moreover, in practice Hte space formu-
lation is very important for numerical computations and ermdcontroller
design (cf. Chapter 5 and Chapter 6).

B.3 Controllability and Observability

Theorem 4. Given a state-space realization of the LTI syst&nthe following
statements are equivalent

a) (A, B)is controllable
b) The controllability matrix
¢=[B AB AB ... A"'B] (B.5)

has full-row rank
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c) The controllability grammian VW solution of the Lyapunov equation
AW, + W,AT + BB' = 0 (B.6)
is positive definite

Theorem 5. Given a state-space realization of the LTI syst&nthe following
statements are equivalent

a) (C, A) is observable

b) The observability matrix
C
CA

0o=| CA (B.7)

car

has full-column rank
c) The observability grammian y\solution of the Lyapunov equation
A'™W, + W,A+C'C=0 (B.8)

is positive definite

B.4 Frequency Moments and Markov Parameters

Given a LTI systens, its transfer functio(s) = C(sl,—A)~*B+D, is expanded
in a Fourier power series,

G(s) = > M (jo) (s— jo) (B.9)

i=0
The matrices
M (jw) = C(jwl,— A YB, i=0, ..., o (B.10)

are known as the low frequency moments of the transfer fan@is). The high
frequency moments

Mi (joo) = lim M; (jw) =CAB, i=0,..., o (B.11)

are also called Markov parameters. It can be shown thaitth®arkov parameter

is associated with thieth time derivative of the impulse response at instant zero.
Since the frequency moments are input-output propertiey, temain invariant
under a similarity transformation.
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B.5 Output Correlation and Power Moments

B.5 Output Correlation and Power Moments

Another quantity related to the input-output behaviour dihaar system is the
output correlation for impulsive inputs. It can be showntthaan be computed
as

R(t) = CE"W.CT (B.12)

The output covariance can be Laplace transformed and egdainda Fourier
series obtaining

RS =Clsh— A *WCT = YR (j0)(s— jo)  (B13)

i=0
The matrices
R (jw) = C(jwlh,—A) "PWLCT, i=0,...,o (B.14)

are known as the low frequency power moments. The high fregyupower mo-
ments ,
R (joo) = lim R (jw) = CAWLC', i=0,..., o (B.15)

are also called covariance parameters. As the frequencyemisnbeing also the
frequency power moments input-output properties of theéesys, they remain
invariant under a similarity transformation.

B.6 H,and X, Norms

Let G(s) € £L,, the L, norm of G is defined as
1 (® . .
IGIE = ZJ i (G* (j) G (jw)) dw (B.16)

It is worth noticing that theC, norm defined previously is finitefithe transfer
matrix G is strictly proper, that i$5(c0) = 0. Although||GJ|, can be computed
from its definition (B.16), it is useful to have an alternatsharacterization of this
norm to take advantage of the state-space representat@®n of

Lemma 4. Given the transfer matrix of a strictly proper system

A B
G(s) = [C O] (B.17)
then thel, norm of G can be computed as
IGI2 = tr (B*W,B) = tr (CW.C*) (B.18)

whereW, andW, are the observability and controllability grammians.
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Another norm of interest is th& ., norm, defined as
IGlle, := supa{G(jw)} (B.19)

wherea(G) is the largest singular value @&. For SISO systems, a simple in-
terpretation of theH,, norm of a system can be given. For these systems the

infinity norm of the scalar transfer functidd appears as the peak value on the
Bode magnitude plot dG(jw)|.
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Acronyms

LAST Local Apparent Sidereal Time
GAST Greenwich Apparent Sidereal Time
GMST Greenwich Mean Sidereal Time
UT Universal Time

UTC Coordinated Universal Time

RFCS Reference Frame and Coordinate System
ECI Earth Centered Inertial

ECEF Earth Centered Earth Fixed

GCW Geostationary Clohessy-Wiltshire
COEs Classical Orbital Elements

EOEs Equinoctial Orbital Elements

GEO Geostationary Earth Orbit

LQR Linear Quadratic Regulator

ARE Algebraic Riccati Equation

VOP Variation Of Parameter

LQG Linear Quadratic Gaussian

EEM Euler Equation of Motion

LQ Linear Quadratic

SSP Space Solar Power
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BCSP Body Centered Sun Pointing
BCSF Body Centered Sun Facing
ECSF Earth Centered Sun Facing

BPI Body Principal Inertial

SP Sun Pointing

SF Sun Facing

AR Abacus Reflector

EEM Euler Equations of Motion

PID Proportional Integrative Derivative
APIC Attitude Perturbed Initial Condition
AZIC Attitude Zero Initial Condition
ITP Independent Transmitter Pointing
OART One Axis Rotating Transmitter
LEO Low Earth Orbit

MEO Medium Earth Orbit

ARF Abacus Reflector

STW Solar Tower

TSP Tethered Solar Power

SL Structural Local

SG Structural Global

FE Finite Element

USD Uncontrolled Structural Dynamics
CSD Controlled Structural Dynamics
ZIC Zero Initial Conditions

PIC Perturbed Initial Conditions
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B.6 H, andH,, Norms
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