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List of symbols

We indicate the scalar values, scalar functions and sets by normal letters, like
λ and Φ. Vectors and vector value functions are typeset in lower case and bold
like u and g. Tensors and tensor value functions are written in upper case and
bold like K and G.

βγ Inverse of the equivalent molecular diffusion in the normal direction to
the fracture γ, page 116

Ca Capillary number in the dimensionless equations of the two-phase flow,
page 39

c The concentration of a passive scalar or tracer, page 109

u Total velocity, page 30

uα Darcy velocity for the α phase, page 26

û Reduced Darcy velocity for the Darcy reduced model, page 68

Eh Set of all the facets of the tessellation Th, page 50

ηγ Inverse of the equivalent permeability in the normal direction to the
fracture γ, page 70

I Identity matrix, page 34

γnw The interface tension between the wetting w and non-wetting n phase,
page 34

β̂ Inverse of the equivalent molecular diffusion in the tangential direction
to the fracture γ, page 115

η̂ Inverse of the equivalent permeability in the tangential direction to the
fracture γ for the Darcy reduced model, page 69

J·Kγ Jump of a quantity across the fracture γ, page 68

λ Total mobility, page 29

λα Mobility for the α phase, page 29

[·]i Element in position i of the vector in the square brackets, page 29

[·]ij Element at row i and column j of the matrix in the square brackets,
page 55
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{{·}}γ Mean of a quantity across the fracture γ, page 70

µα Dynamic viscosity for the α phase, page 28

E̊h Set of all the internal facets of the tessellation Th, page 50

Sα Effective saturation for the α phase, page 34

Φ Porosity of the medium, page 27

p Global pressure, page 30

pα Pressure for the α phase, page 26

p̂ Reduced pressure for the Darcy reduced model, page 69

p̂I Reduced pressure at the intersecting region I between two fractures,
page 84

ρα Density for the α phase, page 27

(·, ·)A The scalar product in L2(A) or in
[
L2(A)

]n
, page 28

1 The set [0, 1], page 26

q̂ Reduced scalar source for the Darcy reduced model, page 67

Th Conforming tessellation, page 50

K Absolute permeability tensor, page 27

ei Unit vector aligned to the xi coordinate axis, page 28

G Modified gravity, page 29

g Gravity acceleration, page 28

λ Parameter of the capillary pressure in the Brooks-Corey model, page 36

Υ Gravity number in the dimensionless equations of the two-phase flow,
page 39

α Subscript for wetting or non-wetting phase quantities, page 23

n Subscript for non-wetting phase quantities, page 23

w Subscript for wetting phase quantities, page 23

eK−K′ Facet shared between two elements K and K ′, with K,K ′ ∈ Th, page 50

fα Fractional flow for the α phase, page 29

J The J-Leverette function, page 34

krα Relative permeability for the α phase, page 28

M Mobility ratio in the dimensionless equations of the two-phase flow,
page 39

pc Capillary pressure, page 28
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pd Entry pressure, page 36

Sα Saturation for the phase α, page 26

Sαr Residual saturation for the α phase, page 33
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Introduction

The objective of this thesis is the development and the implementation of ad-
vanced models for the simulation of two phases flows in highly heterogeneous
porous medium. The work has been coordinated in collaboration with Eni s.p.a.,
the major Italian oil industry, which also sponsored it.
In the last few decades oil industries have resorted more and more to mathe-
matical and numerical modelling to locate new hydrocarbon reservoirs and to
exploit the existing ones at their best. The exploration of hydrocarbons is a
very expensive and risky operation, with a chance of success ranging from 30
to 80%. Accurate numerical simulation of generation and migration processes
can support the tracking of hydrocarbons “from source to trap” and therefore
reduce the risks and costs in oil exploration.
Hydrocarbons are generated several million of years ago in layers of sediments
rich in organic matter, called source rocks, under suitable pressure and tem-
perature conditions. Hydrocarbons then migrate upwards through the different
layers and accumulate in a reservoir, a porous layer seated by a poorly per-
meable layer called cap rock. The migration of hydrocarbons consists of two
distinct stages, characterized by different physical mechanisms and time scales.
During the first stage, denoted as primary migration, oil and gas are expelled
from the source rock as the layers compact, while during secondary migration
hydrocarbons move towards the reservoir through the porosity and fractures
of the rocks. A vast literature is present for flows of hydrocarbons in the
underground in terms of both laboratory experiments and numerical models.
Nevertheless the commonly numerical models used by petroleum engineering,
like invasion percolation or flowpath modelling, are too simplistic to resolve all
the physical phenomena of the problem. The major drawback is the lack of a
detailed and realistic description of the fractures, since very often they use ap-
proximated relations to describe the presence of fractures. Recently, thanks to
new fast numerical solvers and the diffusion of super-computers, the attention
of the scientific community has turned to the resolution of the physical govern-
ing equations for the flow previously regarded as too computationally costly.
Usually finite elements or finite volume methods are applied in order to solve
these equations. Even if the aforementioned technological advantages can im-
prove the performance of a simulation some problems still remain. Using both
finite element or finite volume numerical schemes a computational grid which
approximates the real domain has to be constructed. In realistic applications
the creation of a mesh which resolves all the fractures present in the domain
is complicated also for the modern mesh generation software. Furthermore the
resulting grid may have poor quality and involve several billions of grid cells
yielding a problem of prohibitive computational costs even in the high perfor-
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mance computing framework. On the other hand if the computational grid does
not resolve the fractures the solution we obtain is poorly approximated. Finally
all the data we know about the properties of the underground at the time when
the secondary migration took place, i.e. several million of years ago, are affected
by uncertainty and multiple scenario analyses are required to obtain a better
forecast of the reservoir distribution.
In [2] the authors proposed a model to overcome these problems, for the single-
phase flow, using a domain decomposition approach where the fractures are
natural interfaces between the domains with a suitable reduced model which
describes the flow inside the fracture. The numerical simulations presented
in the work are two-dimensional with simple geometries and the bulk grids
are conforming to the fractures, i.e. the mesh of the fracture is composed by
contiguous edges of the bulk mesh. The model proposed can successfully address
the problem of the high number of unknowns in the simulation, in the restricted
case of non intersecting fractures acting as preferential paths, which completely
cut the domain in separated sub-domains. An improvements to the model is
given in [48] where the authors presented a new reduced model which is also able
to describe the fractures that, thanks to their low permeability, act as barriers
for the flow. Numerical experiments are presented showing the capability of
the reduced model to capture both the behaviours. Realistic simulation in
a three dimensional porous medium are presented in [3] where also suitable
interface conditions are imposed on the intersecting fractures. These conditions
do not take into account the different properties of the fractures involved in
an intersection, e.g. one fracture can act as a barrier with respect to the other
one, and they simply impose the conservation of mass and the continuity of the
pressure. In [57] the reduced model presented previously is extended to take
into account the different pressure profiles in the fracture with an additional
parameter. Existence and uniqueness of the solution to the model problem are
proved. While all of the aforementioned models are written in the framework of
domain decomposition and cannot handle fractures with tips, in [4] the model
is extended to admit fractures which do not cut entirely the domain. Numerical
experiments show the correctness of the extension. To overcome the limit of
the conformity between the grids of the fractures and the grid of the porous
medium, in [24] the authors extended the reduced model presented in [57] to
the case of non matching grids between the fractures and the porous medium.
The idea is based on a previous work [39] which uses the extended finite element
method (XFEM) to allow discontinuity of the pressure and the Darcy velocity
inside the cut elements of the bulk grid. With this model the problems of mesh
conformity and generation disappear and the reduced model can be successfully
applied to realistic problems. Finally in a recent work [46] the authors extend
the reduced model valid for the single-phase flow to the two phase flow problem.
The aim of this thesis is twofold. We introduce further extensions of the non
matching reduced model presented in [24] in the case of single-phase flow. In
particular we address the problem of gravity effects, i.e. how the reduced model
and the coupling conditions have to be modified to take into account this new
feature correctly. In the framework of non matching grids, we extend the case
of crossing fractures presented in [3] where suitable interface conditions are con-
sidered to allow jump in the pressure and in the velocity. In this case the XFEM
method is applied to the porous matrix as well as to the fractures whose meshes
form an arbitrary set of non matching grids which intersect and communicate.
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Finally using the same mathematical and numerical tools we present a reduced
model for the parabolic problem governing the transport of a passive tracer in
the porous medium. For all of these models we present both analytical and
numerical results with an emphasis on realistic problems. The other part of
the thesis consists in the parallel implementation of a three-dimensional two-
phase flow solver. Numerical test will be presented to verify the correctness of
the implementation and the good properties in a high performance computing
framework.
The thesis is organized as follows: the first chapter presents an overview of the
physical process of the secondary migration of hydrocarbons, with an highlight
on the state of the art and a detailed description on the effect of faults and
horizons. In the second chapter the mathematical model which describes the
two-phase flow is presented with details on the numerical scheme used for its
solution. The third chapter is devoted in the presentation of reduced models to
handle fractures in an efficient and effective way. Both geometrical and model
complexity are addressed. In the fourth chapter the computational aspects of
the implementation the of two-phase solver and the reduced models are shown.
Finally, the fifth chapter contains several applicative examples, in particular
some examples of two-phase flows in realistic domains, together with a further
analysis of the reduced models and some test in high performance computing
framework. A conclusive section summarizes the results of this work and possi-
ble future studies and improvements.
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Chapter 1

From the source rock to the
reservoir

A “Petroleum System” is a geologic system that encompasses the hydrocarbon
source rocks and all related oil and gas, and which includes all of the geologic
elements and processes that are essential if a hydrocarbon accumulation is to
exist [56].

An hydrocarbon is an organic compound, which consists entirely of hydrogen
and carbon. In nature the hydrocarbons can be principally found in the crude
oil and natural gas, liquid and gas phases formed geological eras ago by de-
composition of organic matter. The sedimentary basin is a geographical feature
which exhibits subsidence and consequently infilling by sedimentation. The sed-
imentary basins lie on the bottom of depressed areas where the erosion processes
deposit various kinds of materials. Typically the type of sediments deposited
varies quite suddenly in a point of view of geological scales. This process forms
some well defined sedimentary layers and the mixing between the different ma-
terials is very limited. The separating interfaces between the layers are called
horizons.

Due to the lithostatic pressure, which is the pressure applied by the overbur-
den and to the possible extension of the basin, the sedimentary layers tend to
fracture and to modify their reciprocal position. See Figure 1.1 for an exam-
ple of a basin with horizons and faults. The typical size of the basins is of

Figure 1.1: Sedimentary basin with three faults, in red, and several horizons, in different
colours.
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the order of 100 by 100 km in the horizontal plane and 10 km in depth. A
reservoir is the portion of a sedimentary basin, usually sandstone, where hydro-
carbons can migrate and accumulate. The petroleum was generated geological
eras ago in the source rock, a thin layer of rock sediments rich in organic mat-
ter called kerogen, under suitable pressure and temperature conditions, usually
called oil window. Several techniques are used to model transport and genera-
tion processes for hydrocarbon flow in order to improve the understanding and
prediction of this phenomena. One of the techniques is the so-called reservoir
modelling, i.e. the mathematical description of all the geological processes in a
reservoir over geological time scales. Several geophysical processes are involved
and the most important are: deposition, compaction, heat flow, petroleum gen-
eration and petroleum migration and accumulation. The deposition process

Figure 1.2: Offshore oil recovery, figure taken from Nexus R© Reservoir Simulation Software.

describes the evolution of new layers of rocks on the top of the sedimentary
basin, due to sedimentation and erosion phenomena. Pore pressure reduction,
triggered by overburden weight due to sedimentation, entails compaction and
produces changes in the geometry of the basin. Heat flow calculation is neces-
sary to calibrate the geochemical reactions, which appear in all the geophysical
processes.
The migration of hydrocarbons from source rock to trap, a part of the reser-
voir which is surrounded by an impermeable rock, called seal rock or cap-rock,
consists of two different processes: the primary and the secondary migration.
Primary migration consists in the expulsion of the hydrocarbons from the source
rocks, while in the secondary migration the hydrocarbons flow from the source
rock to the trap through the sedimentary basin, see Figure 1.3. Even if some

Figure 1.3: Primary and secondary migration, figure taken from [30].

physical aspects are similar, primary and secondary migration are character-
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ized by different mechanisms, velocities and spatial scales. In this thesis our
attention is principally focused on the secondary migration.

1.1 Secondary migration

The secondary migration is the movement of the hydrocarbons, composed by
crude oil and natural gas, expelled from the source rock to the trap through the
basin usually along horizons and faults.
Following the work of [29], [30] and [77] the secondary migration occurs by a
mechanism involving two phases: petroleum, considering crude oil and natural
gas as a single phase, and water. The petroleum, once expelled from the source
rock, gradually accumulates as a separate phase from water, since it can be
considered insoluble in water. Given that, and since the petroleum is less dense
than surrounding pore water, it starts moving vertically, from bottom to top.
The capillary pressure, which is the difference in pressure across an interface
between two immiscible fluids, opposes the buoyancy force, discouraging the
entry into smaller water-wet pores.
Reaching some low permeability regions, e.g. with very small pores size, the
capillary pressure increases and the petroleum tends to move laterally over-
coming the local capillary pressure barriers, for example in pore throats of a
coarse-grained sandstone. The authors in [71] showed that the lateral migration
distance for petroleum was usually about 10km, but with a significant number
of cases that exceed 80km, while vertical distances range up to 1200m. If no
lateral path existed overpressure of the hydrocarbon would lead to break the
barriers, enabling the flow of petroleum. Any time the petroleum reaches a cap-
illary pressure heterogeneity, in the carrier bed, it starts to move in a tortuous
pathway involving much of the carrier bed. However only a small part of the to-
tal carrier is exploited by the migrating petroleum [30]. Typical flow rate, based
on average amount of expulsion oil, ranges from 8×10−15 to 8×10−14m3/m2/s,
see [30], therefore the total amount of oil involved in the secondary migration is
very small. During the migration part of the oil is lost and remains immobile in
the carrier: the authors in [59] studied 92 sample fields to determine the residual
of oil content in reservoirs and it was found to range from 2% to 46%, with an
approximate average of 15% to 20%.
The final part in the secondary migration is when hydrocarbons reach a trap
and the accumulation process starts, see Figure 1.4. The geochemical compo-
sition of petroleum in the trap is constantly changing because the maturity of
the source rock is varying with time. Because most reservoirs were felt from one
side, there is a geochemical compositional gradient of petroleum. Over time,
however, diffusion and convection can eliminate much of the inherited compo-
sitional gradients.

1.2 State of the art

Hydrocarbon migration at basin scale and geological time-scales may be mod-
elled by several techniques. The most important and common methods used
by the oil industries are: the solution of the equation governing the flow using
the finite volume or the finite element method, the flowpaths analyses and the
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Figure 1.4: (a) Petroleum migrating into a trap from a source rock. (b) During the initial
filling process, the coarsest beds are filled first with petroleum. Widespread mixing is impos-
sible due to poor connectivity. (c) and (d) The increasing column height causes other parts
of the reservoir rock to become saturated with petroleum. Figure taken from [56].

invasion percolation technique. If the simulations with the first method were
sufficiently fast to allow high-resolution modelling the other method would be
redundant. Both flowpaths analyses and invasion percolation are simplifications
of the governing equations with the objective of increasing the spatial resolu-
tion at an affordable temporal cost. We present the models highlighting the
advantages and disadvantages when they are applied in a secondary migration
framework. Further details can be found in [8], [73], [21], [19] and [40].

1.2.1 Darcy flow

We call “Darcy flow” the method which solves the partial differential equations
of the porous media flow and, using a finite volume method or a finite element
method, gives the value of the oil saturation in each grid cell, as Figure 1.5 shows.
The major advantage of the method is the simulation of all the most relevant

5.2 5.1 5.0

5.55.65.7

6.0 6.36.2

Figure 1.5: Example of a Darcy flow in a heterogeneous porous medium. The values are the
oil potential. Figure taken from [40].

physical phenomena occurring in the secondary migration. Due to its complexity
this method is the slowest and needs a lot of efforts to obtain the same spatial
resolution of the other methods. Separate flow of non-mixing phases is usually
assumed to be the dominant mechanism for secondary migration. Two or three
phases are commonly used depending if we consider gas and oil as a separate
phase. Chemical reactions and thermal description are needed to describe the
quality of the hydrocarbon at the reservoir. In presence of a leakage from a
cap rock the Darcy method will distribute hydrocarbons at low-saturation as a
relatively broad chimney above the trap, because of the physical and numerical
dispersion, the latter being caused by coarse grids. Chapter 2 is devoted to a
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wide presentation of the Darcy flows in the secondary migration framework.

1.2.2 Flowpath modelling

The flowpath modelling, or ray-tracing method, constructs the flowpaths of the
oil phase from a purely geometric analysis of the basin and indicates only the
direction of the flow, as Figure 1.6 shows. Even if it is simple the construction
of the method it provides an acceptable description of the secondary migration
process. Ray-tracing assumes that hydrocarbon flow-rates, and therefore hydro-

Figure 1.6: Section of a basin with the different layers. Figure taken from [40].

carbon saturation, changes very slowly compare to the chosen time step, hence
a steady state model is applied. Only the buoyancy force drives the migration
and the flow is modelled to occur up the steepest slop in a thin zone just be-
low the seals of carriers, see Figure 1.7 as an example. Migration modelling

Figure 1.7: Schematic picture of the flowpath method in an homogeneous porous medium.
Figure taken from [40].

with flowpaths has an implicit hight resolution because flowpaths can be con-
structed from interpolations of mapped grid-points. The flowpaths modelling
can be applied also for multi-component systems. As Figure 1.8 shows, several
flowpaths starting far from each other can end at one local height, hence all the
hydrocarbons reaching the same trap have to be summed up. Due to its high
efficiency the flowpath model is usually processed as a first guess model or as
a crude approximation, even if the assumptions are poorly fulfilled. The major
drawback of this method is its applicability to migration within mud-rocks.

1.2.3 Invasion percolation

In the invasion percolation method the flow is modelled using the entry pressure,
also called threshold pressure, and assuming that the hydrocarbon saturation is
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Figure 1.8: Flowpaths simulation in a basin with isolines depict the depth of the sealing
interface. The values in the figure are in meters. Figure taken from [40].

constant. The driving force is the buoyancy while an additional pressure gradi-
ent can be taken into account. The migration of oil and gas from one cell to the
next one is computed by looking for the neighbouring cell with the lowest resis-
tance to the flow, i.e. lowest threshold pressure. All the saturation present in
the cell is transferred into this neighbour cell, see Figure 1.9 for an example. At

1.0 1.0 0.8

0.91.11.1

1.2 1.31.2

Figure 1.9: Schematic picture of the invasion percolation algorithm with the values of the
entry pressure. Figure taken from [40].

the end of this process a backbone migration results and the sub-sequent migra-
tion is modelled to occur along the backbone. When a backbone reaches a cap
rock an hydrocarbon column builds up, then the percolation method finds the
next node with the lower entry pressure somewhere down along the migration
path and continues incorporating new nodes. See Figure 1.10 for an example
of invasion percolation in a permeable channel of a basin. In contrast with re-

Figure 1.10: Example of the invasion percolation method in a basin. Figure taken from [40].
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spect to the Darcy flow the method does not represent well the capillary leakage
from the cap rocks, this imply that the hydrocarbon migration losses may be
different. Due to the uncertainty on the underground properties it is difficult to
model correctly the threshold pressure and its anisotropy hence in presence of
heterogeneities the backbones created by the method can be different from one
scenario to the others, as Figure 1.11 shows. The percolation method can be

Figure 1.11: Solution with the percolation method with entry pressure heterogeneity of 10%
variations and different anisotropy level. Figure taken from [40].

successfully used when the filling rates of a reservoir are very low, e.g. in some
very old basins with very low thermal gradients, or in the assessment of multi
extraction system in deltas. The major drawback of the invasion percolation
method is that the dynamics of the basin, e.g. subsidence and compaction, is
not fully incorporated and the faults geometries and properties are not repre-
sented with sufficient degrees of accuracy. Further details about the percolation
method can be found in [44].

1.3 The effect of faults and horizons

Faults and horizons are important features that need to be accounted for in
many geological systems to obtain a realistic behaviour of the underlying phys-
ical phenomena, nevertheless they are frequently ignored or treated in a very
simplistic way. In this work we use the term fracture to indicate in general a
localized heterogeneity such as a fault or an horizon. Faults can act as barriers
or preferential paths for the flow at geological scales depending on their prop-
erties [16]. A fracture can act differently depending on the temporal window
we are dealing with, in fact it can behave as a barrier at the production scale,
i.e. years, while completely open to flow at a geological time scale.
Fractures and systems of fractures occur of different scales and with different
geometries, they are principally generated by an over stress in the underground
which can be lithostatic, tectonic, thermal or the result of overpressure of fluids.
Tectonic fractures tend to be oriented along stress field on a regional scale,
while the other types of stresses generate fractures on different scales and with
different geometries. When sand or seal sequences are faulted, some of the
materials is dragged into the fault plane. Clay or shale that is dragged into
the fault plane will act as capillary caps to the hydrocarbons that try to flow
through the very small holes of the clay stones. Hence the cross fault migration
is controlled by the minimum entry pressure of the part of the fault plane that
is in contact with hydrocarbons. When the thickness of the fault is large enough
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Figure 1.12: Fracture network in sandstone, with horizons and faults. Figure taken from
[28].

hydrocarbons may migrate along the fault plane and then they have to exceed
the entry pressure of the fault plane to get out of it. Hence it is often more
difficult to have migration up the fault plane than across it. The permeability

Figure 1.13: Different position of a fracture respect a low permeable layer, in grey. In the
left figure the flow can take place across the fracture while in the right picture only along the
fracture.

between fractures and the porous matrix spans many orders of magnitude and
can vary extremely in space. Characterizing fractured system therefore requires
a careful examination of the interconnections in the fracture network as well as
an evaluation of the fracture matrix interaction. Further details can be found
in [28].
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Chapter 2

Two-phase flow

In this chapter we introduce equations governing the secondary migration in
a sedimentary basin. We are interested in a very rather temporal window, we
also assume a very low velocity flow and finally, since we focus on a macroscopic
description of the phenomena, we can model the sedimentary basin as a porous
medium [8]. We are interested in sedimentary basins which extend for several
kilometres under the ground so we can suppose that the medium is saturated
with water.
For simplicity we consider crude oil and natural gases as a single incompressible
liquid phase, in the sequel called oil, and water as a different incompressible
liquid phase. We consider oil and water as immiscible fluids.
Thanks to the previous assumptions we can model secondary migration with the
two-phase flow equations in a porous media, considering water as the wetting
phase and oil as the non-wetting phase. The set of equations for the two-phase
flow is based on the Darcy’s law for a fluid flow in a porous medium, which
links, via the permeability tensor K, the pressure p and a macroscopic velocity
u, usually called the Darcy’s velocity.
The Darcy’s law is an approximation of the conservation of momentum law [78]
and is complemented with the equations for the conservation of mass for the
fluids. When two immiscible fluids share the pore space experiments have shown
[60] that the Darcy’s law is still applicable, separately, for each phase with the
addition of appropriate coupling conditions.

2.1 Two-phase flow equations

Let us consider the physical process that governs the flow of two immiscible
phases in a porous medium. This two phases are the wetting phase, indicated
with subscript w, and the non-wetting phase, indicated with the subscript n.
The interaction between the adhesive forces, which attract the fluid molecules to
the solid, and the cohesive forces, which attract the molecules of the two fluids,
lead to a contact angle. The fluid which angle is less then 90◦ is the wetting phase
while the other is the non-wetting phase. Here, and in the sequel, we indicate
with the subscript α quantities for one of the two phases, i.e. α ∈ {w, n}.

Assumption 2.1 (Porous matrix). We assume the following hypotheses, taken
from [9, 23, 8], to identify the rock matrix as a porous medium:
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1. the non-solid space of the solid porous matrix is interconnected, so no flow
can take place in a disconnected void space. If unconnected pores exist
they can be considered, for our purpose, as part of the solid matrix;

2. the smallest dimension of the pore solid space is large enough to contain
fluid particles, i.e. it is large compared to the mean-free path of fluid
molecules, therefore we may replace the fluid molecules in the void space
by an hypothetical continuum. For example, see [49], the mean-free path
of air in standard temperature is 68 nm while the mean-free path for water
is 2 Å;

3. the dimensions of the pore space is small enough so that the fluid flow is
controlled by adhesive forces at liquid-solid interfaces and cohesive forces
at fluid-fluid interfaces. We exclude cases like a network of pipes.

We focus on the study of fluid flows between the microscopic scale, i.e. ∼ 10−3m,
and the macroscopic scale, i.e. ∼ 10m, where the statistical average permits
the continuum approach to the model [9]. We will use macroscopic equations
that do not need an exact description of the microscopic configuration of the
porous medium with its properties so, as we said, only measurable statistical
properties of the porous medium and the fluids are required. Let us introduce
the mathematical requests for the domain of interest.

Assumption 2.2 (Domain). We introduce the main hypotheses for the compu-
tational domain Ω:

1. Ω is an open bounded measurable subset of Rn, with n = 2 or 3, with
Lipschitz boundary Γ := ∂Ω of outward unit normal n. The interval of
time is IT := (0, T ), with T ∈ R+. We define QT := Ω×IT the space-time
domain of interest;

2. Γ is partitioned in measurable sub-sets Γi and Υi where boundary condi-
tions for the Darcy and saturation equations will be imposed. We have

Γ = Γ
N ∪ Γ

E ∪ Γ
R

and Γ̊i ∩ Γ̊j = ∅ for i 6= j = N, E, R ,

Γ = Υ
N ∪Υ

E ∪Υ
R

and Υ̊i ∩ Υ̊j= ∅ for i 6= j = N, E, R .

Super scripts E, N and R indicate the sub-sets where essential, natural
and Robin boundary condition are imposed, respectively. We suppose that
ΓE 6= ∅ and ΥE 6= ∅;

3. we indicate with ei, for i = 1, . . . , n, the unit normal vectors of each
coordinate axis.

To introduce the properties of the underground for our problem, it is useful to
introduce the concept of representative elementary volume (REV), through the
definition of porosity Φ of the porous medium. Let Ω0 be a spherical sub-domain
of Ω centred in x0 with radius r, see Figure 2.1 for n = 2, on the macroscopic
level.
The void space indicator function at the microscopic level is

i (x, t) :=

1 x ∈ non-solid matrix at time t,

0 x ∈ solid matrix at time t,
(2.1)
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Ω

x

x0

Ω0

Figure 2.1: Example of averaging volume Ω0 in a two-dimensional porous medium Ω.

then the porosity Φ (x0, t) of the porous medium, at time t, is defined as

Φ (x0, t) :=
1

|Ω0|

∫
Ω0

i (x, t) dx . (2.2)

If we plot the value of Φ (x0, t) at the fixed position x0 and time t and for
different values of the radius |r| we obtain a behaviour as in Figure 2.2. For

l L |r|

Φ (x0, t)

Figure 2.2: Example of the value of the porosity Φ (x0, t) for different value of the radius
|r| of Ω0. Figure taken from [9].

small value of the radius |r| the indicator function i produces large variations of
Φ (x0 , t), then for an interval of values of |r| ∈ [l, L] the average stabilizes ob-
taining a fixed value of Φ (x0, t), finally the large scale heterogeneities destabilize
the value of Φ (x0, t) again. The averaging volume Ω0 is called a representative
elementary volume (REV) if its length scales in [l, L] for all t ∈ (0, T ).

Assumption 2.3 (Wetting and non-wetting phases). For the wetting and non-
wetting phase we require that:

1. the two phases are distinct;

2. the two phases completely fill the porous medium, therefore no void spaces
are allowed;

3. the two phases are immiscible.

Under Assumption 2.1 and Assumption 2.3 the standard set of equations, de-
rived for example in [18], for the two-phase flow describe the evolution of the
following quantities:
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• the saturation of the phase α indicated with Sα (x, t) and defined as

Sα (x, t) :=
volume of phase α in REV

volume of void space in REV
=

∫
Ω0

iα (x, t) dx∫
Ω0

i (x, t) dx

, (2.3)

in each REV centred in x, see [9], where iα is the phase α indicator
function defined as

iα (x, t) :=

1 x ∈ phase α at time t,

0 x /∈ phase α at time t.

By definition (2.3), the saturation is dimensionless with the constraints

Sα ∈ 1 a.e. in QT ,

with 1 := [0, 1] and, thanks to Assumption 2.3-2,

Sn + Sw = 1 a.e. in QT . (2.4)

• the Darcy velocity of each phase α, indicated with uα (x, t) such that
uα : QT → Rn. Its unit of measure is [m/s];

• the pressure of each phase α, indicated with pα (x, t) such that pα : QT →
R, whose unit of measure is [Pa].

Problem 2.1 (Two-phase flow equations). The system of equations for the
two-phase flow defined in QT reads: find Sα, uα, pα for α = n, w such that

∂ (ΦραSα)

∂t
+∇·(ραuα) = ραqα for α = n, w ,

uα = −krα
µα
K (∇pα − ραg) for α = n, w ,

Sw + Sn = 1 ,

pn − pw = pc(Sw) .

(2.5)

System (2.5) is supplemented by initial data for Sα and appropriate boundary
conditions, which will be discussed later. The parameters of (2.5) are detailed
in Assumption 2.4.

The first equation in (2.5) is the law of conservation of mass for each phase α.
The second equation is the generalized Darcy equation for each phase α, The
last two equations represent the saturation constraints and the relation linking
the pressure of the two phases with the capillary pressure pc.

Assumption 2.4 (Assumptions on the data). The data of Problem 2.1 are:
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1. the porosity of the medium Φ (x, t), defined by (2.2). We assume that
Φ ∈ L∞ (QT ). The porosity is dimensionless, moreover we assume that
there exist φ0, φ1 ∈ R+ such that φ0 < φ1 < 1 and

φ0 ≤ Φ ≤ φ1 a.e. in QT .

Typical values of Φ are reported in Table 2.1;

2. the absolute permeability of the medium K (x). We assume that K ∈
[L∞ (Ω)]

n×n
. The absolute permeability is a symmetric and positive defi-

nite tensor with unit of measure given in [m2]. We assume that there exists
a constant K0 ∈ R+ such that ‖K‖L∞(Ω) ≥ K0. Due to the symmetry

only 3(n − 1) coefficients are independent values, however in geophysical
applications, see [40] for example, K is often approximated with only two
independent components: the permeability along the geological layer Kh

and the permeability across the geological layer Kv with an anisotropy fac-
tor aK := Kh/Kv. Typical values of absolute permeability are reported in
Table 2.1;

Classification
Φ

aK
Kh[m2]

1 2 1 2

Chalk, typical 0.01 0.75 1.5 1.8 · 10−22 9.9 · 10−15

Coal, impure 0.0317 0.74 4.0 3.1 · 10−23 9.9 · 10−16

Limestone,
0.01 0.51 2.0 10−17 9.9 · 10−15

organic-rich typical

Limestone,
0.01 0.70 1.5 1.8 · 10−22 9.9 · 10−15

chalk typical

Dolomite, typical 0.01 0.35 1.1 1.3 · 10−15 8.2 · 10−12

Sandstone, typical 0.01 0.41 5.0 1.6 · 10−17 2.1 · 10−11

Shale, typical 0.012 0.7 1.2 3 · 10−24 9.9 · 10−17

Table 2.1: Typical values of Φ, aK and Kh for several rock types at different depth. Values
taken from [40].

3. the density for each phase ρα (x, t). We assume that ρα ∈ L∞ (QT ). The
density is given in [kg/m3] and there exists ρα, 0 ∈ R+ such that

ρα, 0 ≤ ρα a.e. in QT .

Typical values of ρn are reported in Table 2.2 for oil and bitumen;

Classification Value [m2]
Light oil ∼800
Heavy oil and bitumen ∼1000

Table 2.2: Typical values of ρn. Values taken from [72].

4. the scalar source for each phase qα (x, t) representing possible production
or destruction rate. We assume that qα ∈ L2 (QT ). The unit of measure
for qα is [s−1];
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5. the relative permeability for each phase krα (Sα). We assume that krα ∈
L∞ (1). The relative permeability is dimensionless and

krα ∈ 1 a.e. in QT .

If krα = 0 then the corresponding phase cannot flow. The shape of the rel-
ative permeabilities functions depends on the fluid types and on the porous
medium, we will discuss them in section 2.1.2 in detail;

6. the dynamic viscosity for each phases µα (x, t), we assume that µα ∈
L∞ (QT ). The dynamic viscosity is given in [Pa · s] and we assume that
there exists a µα, 0 ∈ R+ such that

µα, 0 ≤ µα a.e. in QT .

Typical values of µα for water and oil are reported in Table 2.3.

Classification Value range [Pa · s]
Light oil

[
3 · 10−4, 10−3

]
Medium oil

[
10−3, 6 · 10−3

]
Moderate oil

[
6 · 10−3, 5 · 10−2

]
Very viscous oil

[
5 · 10−2, 1

]
Heavy oil > 1

Water 3.1 · 10−4

Table 2.3: Typical values of µα for water and oil at reservoir condition, i.e. 28MPa−42MPa
and 93.3◦C. Values taken from [19].

7. the gravity acceleration g which is g = ge3. The unit of measure for g is
[m/s2];

8. the capillary pressure pc (Sw), such that pc ∈ W 1,∞ (1). The unit of
measure for pc is [Pa]. The capillary pressure describes the inter-facial
tension between two adjacent immiscible phases, which is an additional
fluid pressure due to geometry and contact forces. The capillary pressure
depends on the fluid types and on the porous medium, we will discuss it
in section 2.1.2 with more detail.

In the sequel we will indicate with (·, ·)A : L2 (A) × L2 (A) → R the scalar
product in L2(A) given a regular domain A, defined as

(u, v)A :=

∫
A

uv ,

with u, v ∈ L2 (A). With an abuse of notation the same symbol indicates also
the scalar product in

[
L2 (B)

]n
, with B a given regular domain, defined as

(·, ·)B :
[
L2 (B)

]n × [L2 (B)
]n → R, i.e.

(u, τ )B :=

∫
B

u · τ ,

with u, τ ∈
[
L2(A)

]n
.
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2.1.1 Fractional flow formulation

In [17] the authors have proposed a transformation that enables to rewrite sys-
tem (2.5) as a parabolic equation for the saturation coupled with an elliptic
equation for the pressure. This formulation is usually call global pressure for-
mulation or fractional flow formulation and depends on the following additional
requires.

Assumption 2.5 (Fractional flow). The additional data in the fractional flow
formulation are derived from the data presented in Assumption 2.4

1. the phase mobility for each phase λα (x, t; Sα) defined as

λα (x, t; Sα) :=
krα (Sα)

µα (x, t)
,

with regularity λα ∈ L∞ (QT × 1). Thanks to the previous assumptions

λα ≥ 0 a.e. in QT × 1 .

The unit of measure for λα is
[
(Pa · s)−1

]
;

2. the total mobility λ (x, t; Sw, Sn) defined as

λ (x, t; Sw, Sn) := λw (x, t; Sw) + λn (x, t; Sn) ,

with regularity λ ∈ L∞ (QT × 1). Thanks to (2.4) we may write

λ (x, t; Sw, Sn) = λ (x, t; Sα) with α = n or w .

From the previous assumptions there exists λ0 ∈ R+ such that

λ0 ≤ λ a.e. in QT × 1 .

The unit of measure for λ is
[
(Pa · s)−1

]
;

3. the fractional flow for each phase fα (x, t; Sα) defined as

fα (x, t; Sα) :=
λα (x, t; Sα)

λ (x, t; Sα)
,

with regularity fα ∈ L∞ (QT × 1) and such that

fα ∈ 1 a.e. in QT × 1 ;

4. the modified gravity G (x, t; Sw, Sn) defined as

G := g
λwρw + λnρn

λ
,

with regularity G ∈ [L∞ (QT × 1)]
n

and there exists G0 ≤ 0 such that

G0 ≥ [G]i for i = 1, . . . , n a.e. in QT × 1 ,

where we indicate with [·]i the element in position i of the vector in the
square brackets. The unit of measure for G is

[
Kg/(s2m2)

]
.
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To derive the new set of equations we introduce two artificial variables: the
total velocity u,

u (x, t) := uw (x, t) + un (x, t) , (2.6)

and the global pressure p, which is just a mathematical tool and not a physical
pressure, defined as

p (x, t; Sw) := pn (x, t)− πw (x, t; Sw) , (2.7)

with

πw (x, t, S) :=

∫ S

S0

fw (x, t, ξ) p′c (ξ) dξ + π0 . (2.8)

The existence of the global pressure is guaranteed by Assumption 2.4 and As-
sumption 2.5. Suppose that there exists a value S0 ∈ 1 in (2.8) such that
pc (S0) = 0 so, using the last equation of system (2.5), the expression of π0 is

π0 =
pn + pw

2
− p0 ,

with p0 = p
(
x̂, t̂, S0

)
a given reference value in

(
x̂, t̂

)
∈ QT . The gradient of

the total pressure, useful in the sequel, is then given by

∇p = ∇pn − fw∇pc .

We expand the time derivative in the first equation of (2.5) to obtain

∂Φ

∂t
ραSα +

∂ρα
∂t

ΦSα +
∂Sα
∂t

Φρα +∇· (ραuα) = ραqα .

Dividing the previous equation by ρα and adding the contributions of each phase
α we finally obtain

∂Φ

∂t
(Sn + Sw) + Φ

(
Sw
ρw

∂ρw
∂t

+
Sn
ρn

∂ρn
∂t

)
+ Φ

∂ (Sw + Sn)

∂t
+

+
∑
α=n,w

ρ−1
α ∇· (ραuα) = qw + qn .

The divergence term can be written in a more convenient way as∑
α=n,w

ρ−1
α ∇· (ραuα) =ρ−1

w ∇ρw · uw + ρ−1
n ∇ρn · un +∇·un +∇·uw =

=
∑
α=n,w

ρ−1
α ∇ρα · uα +∇·u ,

to obtain the first equation of the new formulation

∑
α=n,w

ρ−1
α

(
ΦSα

∂ρα
∂t

+∇ρα · uα
)

+∇·u = qn + qw −
∂Φ

∂t
. (2.9)
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We derive the second equation of the new formulation by summing the gener-
alized Darcy equations for each phase and using the capillary pressure relation,
obtaining

u = un + uw = −λnK∇pn + λnKρng − λwK∇pw + λwKρwg =

= −λnK∇pn − λwK∇pn + λwK∇pc(Sw) +Kg (λnρn + λwρw) =

= −λK∇pn + λwK∇pc(Sw) + λKG = −λK [∇pn − fw∇pc(Sw)−G] .

Then, using the definition of the global pressure (2.7),

u = −λK (∇p−G) . (2.10)

Performing a linear combination of the generalized Darcy’s laws for un and uw,
with coefficients −λw and λn respectively, we obtain

λnuw − λwun = −λnλwK∇pw + λnλwρwg + λnλwK∇pn − λnλwρng =

= −λnλwK [∇pw −∇pn + (ρn − ρw) g] =

= λnλwK [∇pc(Sn) + (ρw − ρn) g] =

= λnλwK [p′c∇Sn + (ρw − ρn) g] . (2.11)

Using the definition of total velocity (2.6) we find

λnuw − λw (u− uw) = λnuw − λwu+ λwuw = λuw − λwu (2.12)

and

λn (u− un)− λwun = λnu− λun . (2.13)

We combine equation (2.11) with (2.12) and (2.13) to express the phase velocities
as functions of u and Sn

uw = fwu+
λnλw
λ

K [p′c∇Sn + (ρw − ρn) g] , (2.14)

un = fnu−
λnλw
λ

K [p′c∇Sn + (ρw − ρn) g] .

Using equations (2.9), (2.10), (2.14) and the first equation of system (2.5) we
find

Problem 2.2 (Fractional flow formulation). The complete system of equations
for the two-phase flow in the fractional flow formulation reads: find u, p, Sn, un
such that

∑
α=n,w

ρ−1
α

(
ΦSα

∂ρα
∂t

+∇ρα · uα
)

+∇·u = qn + qw −
∂Φ

∂t

u = −λK (∇p−G)

∂ (ΦρnSn)

∂t
+∇·(ρnun) = ρnqn

un = fnu− λwfnK [p′c∇Sn + (ρw − ρn)g]

in QT . (2.15)

The system is supplemented by initial data for Sn and appropriate boundary
conditions. Sw and uw can be eliminated from the system (2.15) using (2.4)
and (2.6). The first two equations are called pressure equations, while the last
two equations are called saturation equations.
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We now introduce the boundary condition for the problem, in particular we
impose for the global pressure and total velocity

p = p̃ on ΓE × IT ,

u · n = ũN on ΓN × IT ,

u · n− p = ũR on ΓR × IT ,

(2.16)

and for the saturation and the velocity of the non-wetting phase we impose also
the initial condition 

Sn = S̃n on ΥE × IT ,

un · n = ũNn on ΥN × IT ,

un · n− Sn = ũRn on ΥR × IT ,

Sn (0) = Sn,0 in Ω× {0}.

(2.17)

Assumption 2.6 (Regularity of boundary and initial data). The boundary and
initial data in (2.16) and (2.17) fulfil the following hypotheses:

1. p̃ ∈ L2
(
IT ; H

1
2

(
ΓE
))

, ũN ∈ L2
(
IT ; H−

1
2

(
ΓN
))

and

ũR ∈ L2
(
IT ; L2

(
ΓR
))

;

2. S̃n ∈ L2
(
IT ; H

1
2

(
ΥE
))

, ũNn ∈ L2
(
IT ; H−

1
2

(
ΥN
))

,

ũRn ∈ L2
(
IT ; L2

(
ΥR
))

and Sn,0 ∈ L2 (Ω).

The formulation in Problem 2.2 becomes particularly attractive if both phase
densities ρw and ρn are constant, an assumption which is often made in oil
related applications, see for instance [20] and [21]. In this case the first equation
of (2.15) does not depend on Sn and un. As a consequence a simplified version
of system (2.15) can be obtained introducing also the additional assumption
that the porosity Φ is constant in time.

Problem 2.3 (Fractional flow). If ρw and ρn are constant and Φ is constant in
time then the system of equations for the two-phase flow in the fractional flow
formulation reads: find u, p, Sn, un such that

∇·u = qw + qn

u = −λK (∇p−G)

Φ
∂Sn
∂t

+∇·un = qn

un = fnu− λwfnK [p′c∇Sn + (ρw − ρn)g]

in QT , (2.18)

coupled with boundary conditions for the global pressure and the total velocity
p = p̃ on ΓE × IT ,

u · n = ũN on ΓN × IT ,

u · n− p = ũR on ΓR × IT ,
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and with the boundary and initial conditions for the saturation Sn and the ve-
locity un of the non-wetting phase

Sn = S̃n on ΥE × IT ,

un · n = ũNn on ΥN × IT ,

un · n− Sn = ũRn on ΥR × IT ,

Sn (0) = Sn,0 in Ω× {0}.

To reconstruct the pressure for each phase we use the definition of the global
pressure and the expression of the capillary pressure to findpn = p+ πw(Sw) ,

pw = p− pc(Sw) + πw(Sw) .

Note that we do not need to evaluate the phase pressures but for post-process
purpose.

2.1.2 Capillary pressure and relative permeability

In this section we present some models for the capillary pressure and the relative
permeability, for a gas and water system and for a liquid and water system.
As the porous medium is drained, the saturation of the wetting phase decreases
and capillary pressure increases. At the end of this process the so called pen-
dular water saturation is reached, i.e. the wetting phase takes the form of rings
around the contact points of the grains holding them together. These are called
pendular rings and have the shape of a saddle, as Figure 2.3 shows.

Ω

w

n

Figure 2.3: Example of pendular rings around grains.

The corresponding wetting phase saturation, usually greater than zero, is called
wetting phase residual saturation Swr. The wetting phase saturation cannot be
reduced below residual saturation by pure displacement. As the residual satura-
tion is approached the rapid increase in capillary pressure produces practically
no decrease in wetting phase saturation. Generally the residual saturation, also
known as critical saturation, is lithology dependent. Also the non-wetting phase
has a residual saturation Snr, with similar behaviour as wetting phase residual
saturation. In a moderately water wet sandstone with oil as non-wetting phase

33



Snr typically ranges in [0.2, 0.35], see [19]. We can then introduce the effective
saturation Sα for each phase α as

Sα :=
Sα − Sαr

1− Swr − Snr
,

such that

Sα ∈ 1 a.e. in QT and Sn + Sw = 1 a.e. in QT .

From an experimental point of view and for the dimensionless formulation of
the fractional flow system, it is more convenient to measure, instead of the
capillary pressure, the J-Leverett function. The J-Leverett function is a dimen-
sionless function, defined in an homogeneous porous medium, common to many
unconsolidated sands, also known as the J-function, which has the form

J (Sw) :=
pc(Sw)

γnw

√
K

Φ
,

where γnw is the interface tension between the wetting and non-wetting phase,
measured in [Kg · s−2], and K is the medium permeability. We can observe
that, in general, the permeability is a tensor but in this case we assume that it
can be written as K = KI, with I the identity tensor.

We consider two models for the capillary pressure and the relative permeability.
The first, called Van Genuchten model, describes a physical system with water
and a gas as phases, while the second, called Brooks-Corey model, takes care of
a physical system with water and a liquid as phases. For further details see [9],
[19] and [40].

Van Genuchten model

Van Genuchten introduced in [75] a model for the capillary pressure and the
relative permeability for a physical system composed by water, as wetting phase,
and a gas, as non-wetting phase. For this model the proposed expression for
capillary pressure pc is

pc(Sw) =
1

α

(
S
− 1
m

w − 1
) 1
n

, (2.19)

with m = 1− 1/n, n and α free parameters. Typical values of n range between
2 and 5. Examples of capillary pressure curves are in Figure 2.4. The relative
permeability krα is

krw(Sw) = S
ε

w

[
1−

(
1− S

n
n−1

w

)n−1
n

]2

,

krn(Sn) = S
γ

n

[
1−

(
1− Sn

) n
n−1

] 2(n−1)
n

.

with the typical choice ε = 1/2, γ = 1/3 and n the same as in capillary pressure
(2.19). Examples of relative permeability curves are in Figure 2.5
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Figure 2.4: Van Genuchten capillary pressure pc curves, with α = 3.3 · 10−4, Snr = 0.0 and
Swr = 0.3.
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Figure 2.5: Van Genuchten relative permeability krw and krn curves, with Snr = 0.0,
Swr = 0.3, ε = 1/2 and γ = 1/3.

Brooks-Corey model

Brooks and Corey introduced in [12] a model for the capillary pressure and the
relative permeability of a physical system composed by water, as wetting phase,
and a liquid, as non-wetting phase. The capillary pressure is modelled in this
case as

pc(Sw) = pdS
− 1

λ

w , (2.20)
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with pd the so called entry or bubbling or threshold pressure of the porous
medium and λ a parameter related to the pore size distribution. The entry
pressure, first introduced in the same article [12], is a constant characterizing the
medium. If a porous medium, as presented in Figure 2.6, is initially saturated
by the wetting phase, a certain pressure must be reached for the non-wetting
phase before the latter can begin to penetrate through the grains, displacing
the wetting phase contained in it. More precisely the capillary pressure must be

Ω

w

n

Figure 2.6: Example of porous medium with a bubble of non-wetting phase which displaces
the wetting phase.

build up above the entry pressure at the interface between the two fluids before
drainage of the wetting fluid starts. Values of entry pressure can be found in
[74]: it ranges from 5kPa for λ = 2, up to 20kPa for λ = 0.5. According to [74]
low values of λ are used for poorly sorted rocks, while large values of λ represent
well-sorted rocks. The parameter λ can vary from zero to infinity but typically
ranges in λ ∈ [0.25, 4] for reservoir rocks. Examples of capillary pressure curves
are in Figure 2.7.
For the sequel is useful to compute the derivative of the capillary pressure with
respect to Sn

dpc
dSn

(Sw) = pd
d

dSn

(
Sw − Swr

1− Swr − Snr

)− 1
λ

=

= pd
d

dSn

(
1− Sn − Swr
1− Swr − Snr

)− 1
λ

=

=
pd
λ

(
1− Sn − Swr
1− Swr − Snr

)− 1
λ
−1

1

1− Swr − Snr
=

=
pd

λ (1− Swr − Snr)
S
− 1

λ
−1

w .

The relative permeability krα, for each α phase, is
krw(Sw) = S

2+3λ
λ

w ,

krn(Sn) = S
2

n

[
1−

(
1− Sn

) 2+λ
λ

]
.

(2.21)

The parameter λ is the same as in the capillary pressure (2.20). Examples of
relative permeability are in Figure 2.8.
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Figure 2.7: Brooks-Corey capillary pressure pc curves, with pd = 5000, Snr = 0.0 and
Swr = 0.2.
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Figure 2.8: Brooks-Corey relative permeability krw and krn curves, with Snr = 0.0 and
Swr = 0.2.

2.1.3 Fractional flow equation in dimensionless form

In this section we derive the dimensionless equations for the system (2.18),
see [66] and [70], to analyse the behaviour of the system in different scenarios.
We use the superscript ∗ to indicate the dimensionless variables. Since we are
dealing with a multiscale problem, i.e. a representative elementary volume where
we have described the porous flow and the geological domain which is several
orders of magnitude bigger, we use two different scaling. A reference length L
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measured in [m] represents the macro scale, it may be the depth of the basin, and
a reference scalar permeability K0 measured in [m2] represents the micro scale.
Finally we introduce a reference velocity U measured in [m/s] and a reference
dynamic viscosity µ0 measured in [Pa · s]. The latter may be the parameters
for the solution of the single-phase flow problem for the non-wetting phase in a
given sample of a porous medium with permeability K0. Correspondingly, we
define the following dimensionless variables:

u∗ :=
u

U
, x∗ :=

x

L
, t∗ := t

U

φL (1− Swr − Snr)
,

p∗ :=
pK0

µ0UL
, S∗n :=

Sn − Snr
1− Swr − Snr

, T ∗ := T
U

φL (1− Swr − Snr)
,

J :=
pc
γnw

√
Φ

K0
,

with J the J-Leverett function for fixed values of pc, γnw and Φ. The domain of
interest QT is scaled in both space and time variables, i.e. Q∗T := Ω∗ × (0, T ∗)
where the variables in Ω∗ are scaled according to the definition of x∗. We
observe that the differential operators in (2.18), written in dimensionless form
read

∇·u =

n∑
i=1

∂

∂xi
ui =

n∑
i=1

∂

∂x∗i

∂x∗i
∂xi

u∗iU =
U

L

n∑
i=1

∂

∂x∗i
u∗i =

U

L
∇·∗u∗ ,

[∇p]i =
∂

∂xi
p =

∂

∂x∗i

∂x∗i
∂xi

p∗
µ0LU

K0
=
Uµ0

K0

∂

∂xi
p∗ =

Uµ0

K0
[∇∗p∗]i ,

∂

∂t
Sn =

∂

∂t∗
∂t∗

∂t
[S∗n (1− Swr − Snr) + Snr] =

=
∂

∂t∗
U

ΦL (1− Swr − Snr)
S∗n (1− Swr − Snr) =

U

ΦL

∂

∂t∗
S∗n ,

dpc
dSn

=
d

dS∗n

dS∗n
dSn

Jγnw

√
Φ

K0
=

γnw
(1− Swr − Snr)

√
Φ

K0

dJ

dS∗n
.

The first equation of the system (2.18) becomes

∇·∗u∗ =
L

U
(qn + qw) . (2.22)

For the second equation we use the above formula to obtain

u∗U = −λK
(
Uµ0

K0
∇∗p∗ −G

)
,

and divide by U obtaining the dimensionless form

u∗ = −λµ0
K

K0

(
∇∗p∗ − K0G

Uµ0

)
. (2.23)

The third equation of (2.18) becomes

Φ
U

ΦL

∂

∂t∗
S∗n +

U

L
∇·∗u∗n = qn ,
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then we divide by U/L and obtain

∂

∂t∗
S∗n +∇·∗u∗n =

L

U
qn . (2.24)

Using the expressions above, the last equation of (2.18) becomes

u∗n = fnu
∗ − λwfn

U
K

[
γnw

√
Φ

K0

dJ

dS∗n

∇∗

L
S∗n + (ρw − ρn) g

]
=

= fnu
∗ − λwfnKγnw

UL

√
Φ

K0

dJ

dS∗n
∇∗S∗n − λwfnK

(ρw − ρn) g

U
. (2.25)

We normalize the values of krn and krw by scaling them with the respective

maximum values to obtain k̃rn and k̃rw

k̃rn :=
krn

krn (1− Snr)
and k̃rw :=

krw
krw (Swr)

.

We introduce three dimensionless numbers that characterize the physical process
of the two-phase flow, namely

M :=
µw
µn

krn (1− Snr)
krw (Swr)

, Ca :=
µ0UL

γnw
√
K0Φ

, Υ := K0
(ρw − ρn) g

µ0U
. (2.26)

where M is the mobility ratio, Ca is the capillary number and Υ is the gravity
number. In the applications of out interest the latter is strictly positive since
ρw > ρn. We also introduce the mobility function defined as

λT := Mk̃rn + k̃rw

Using these values we obtain

fn =
krn/µn

krw/µw + krn/µn
=
µwkrn (1− Snr)
µnkrw (Swr)

k̃rn

k̃rw + µw
µn

krn(1−Snr)
krw(Swr) k̃rn

=

=
Mk̃rn
λT

,

λwfn =
krw
µw

Mk̃rn
λT

=
k̃rwkrw (Swr)

µw

µw
µn

krn (1− Snr)
krw (Swr)

k̃rn
λT

=

=
krn (1− Snr)

µn

k̃rwk̃rn
λT

,

and

λwfnKγnw
UL

√
Φ

K0
=
krn (1− Snr)

µn

k̃rwk̃rn
λT

Kγnw
UL

√
Φ

K0
=

=
krn (1− Snr)µ0

µnK0
K
k̃rwk̃rn
CaλT

,

λwfnK
(ρw − ρn) g

U
=
krn (1− Snr)

µn

k̃rwk̃rn
λT

K
(ρw − ρn) g

U
=

=
krn (1− Snr)µ0

µnK0
KΥ

k̃rwk̃rn
λT

e3 .

39



Then equation (2.25) becomes

u∗n =
Mk̃rn
λT

u∗ − µ0krn (1− Snr)
µnK0

K

(
k̃rwk̃rn
CaλT

dJ

dS∗n
∇∗S∗n + Υ

k̃rwk̃rn
λT

e3

)
(2.27)

Finally, by (2.22), (2.23), (2.24) and (2.27) the dimensionless form of system
(2.18) is described by the following problem.

Problem 2.4 (Fractional flow in dimensionless form). The system of equations
for the two-phase flow in the dimensionless fractional flow formulation is defined
in Q∗T and reads: find u∗, p∗, S∗n, u

∗
n such that

∇·∗u∗ =
L

U
(qn + qw) ,

u∗ = −λµ0
K

K0

(
∇∗p∗ − K0G

Uµ0

)
,

∂

∂t∗
S∗n +∇·∗u∗n =

L

U
qn ,

u∗n =
Mk̃rn
λT

u∗ − µ0krn (1− Snr)
µnK0

K

(
k̃rwk̃rn
CaλT

dJ

dS∗n
∇∗S∗n + Υ

k̃rwk̃rn
λT

e3

)
.

The three numbers introduced in (2.26) characterize the nature of the saturation
equation. To analyse this behaviour let us make some simplifications. Let us
consider a one dimensional flow parallel to the z axis, let us take u∗ constant,
unitary and parallel to e3, krn (1− Snr) = 1, no sources for the non-wetting
phase qn ≡ 0, the reference mobility µ0 equal to the non-wetting phase mobility
µn and suppose that the porous matrix is homogeneous with permeability tensor
K = K0I. With these assumptions the equation for the saturation becomes

∂S∗n
∂t∗

= − ∂

∂z∗

[
− k̃rwk̃rn

CaλT

dJ

dS∗n

∂

∂z∗
S∗n +

Mk̃rn
λT

(
1−Υ

k̃rw
M

)]
. (2.28)

In the absence of capillary dispersion, i.e. for Ca→∞, the equation (2.28) is a
non-linear hyperbolic conservation law with flux function

Fn :=
Mk̃rn
λT

(
1−Υ

k̃rw
M

)
,

where the shape of the flux function depends on the value of the parameters M
and Υ, as shown are in Figure 2.9 and 2.10 for the Brooks-Corey permeabilities
(2.21).
We show in Figure 2.10 that for Υ > 0, Fn has a positive slope for small
saturation and a negative slope for large value of S∗n. The flux function Fn
is not a convex function, so the Riemann solution of the hyperbolic problem
governing the saturation can involve both shock and rarefaction waves in a
single point. See, for example, the following references [54], [14], [1], [47] for
the analyses and numerical schemes to address this problem. In section 2.4 we
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Figure 2.9: Flux function Fn in function of M , with fixed Υ = 1 and λ = 1.6.
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Figure 2.10: Flux function Fn in function of Υ, with fixed M = 2 and λ = 1.6.

will present some numerical results and we will compare two different numerical
fluxes.

For non zero values of Ca, the saturation equation becomes a parabolic equation
with the diffusion that depends on the inverse of Ca. For large values of Ca the
diffusion term is small and the hyperbolic part is dominant, we obtain the same
behaviour as the pure hyperbolic equation with the profile dispersed around the
shock. For small value of Ca the diffusion term is dominant obtaining a purely
diffusive process with a drift.
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2.2 The implicit pressure explicit saturation
scheme

A common scheme to solve Problem 2.3 is based on a splitting strategy denoted
as IMPES method, that is IM plicit Pressure Explicit Saturation method, see
[18] for further details. The method splits system (2.18) in two parts: a pressure
equation and a saturation equation, which will be solved in succession at each
time step. Following [63] and [55], we can write Problem 2.3 in the following
abstract form 

∂ϕ2

∂t
+ L (ϕ) = ψp + ψS for t > 0,

ϕ2 (0) = ϕ2 for t = 0,

(2.29)

where ϕ is the unknown of the abstract problem of two components ϕ =
(ϕ1, ϕ2), with ϕ1 = p and ϕ2 = Sn. The differential operator L is defined
as

L (ϕ) := Lp (ϕ) + LS (ϕ) = Lp(ϕ1, ϕ2) + LS(ϕ1, ϕ2) ,

with Lp the differential operator associated to the pressure equation and LS
the differential operator associated to the saturation equation. Functions ψp
and ψS represent the source terms of the equation for the pressure and for the
saturation, respectively, and ϕ2 the initial condition for ϕ2. Thanks to the
splitting of L equation (2.29) can be written as

∂ϕ2

∂t
+ Lp (ϕ) + LS (ϕ) = ψp + ψS for t > 0,

ϕ2 (0) = ϕ2 for t = 0.

We consider a sub-division of the time interval IT in N + 1 sub-intervals,
(tk, tk+1) with 0 = t0 < t1 < . . . < tN+1 = T , and we indicate with super-
script k quantities at time tk. Using a Yanenko-like operator splitting [79] with
a first order scheme for the time discretization, we find a system of two implicit
equations, for k ≥ 0 and ∆t = tk+1 − tk. The system reads

Lp
(
ϕk+1

1 , ϕk2
)

= ψk+1
p ,

ϕk+1
2 − ϕk2

∆t
+ LS

(
ϕk+1

1 , ϕk+1
2

)
= ψk+1

S ,

(2.30)

with ϕ0
2 = ϕ2. The following lemma gives the order of the accuracy of the

method.

Lemma 2.1. Under Assumption 2.2, Assumption 2.5 and Assumption 2.6 the
consistency error of scheme (2.30) is first order with respect to ∆t.

Proof. We take the exact solution φ of the abstract problem (2.29) and, sum-
ming both equations of (2.30), we obtain

φk+1
2 − φk2

∆t
+ Lp

(
φk+1

1 , φk2
)

+ LS
(
φk+1

1 , φk+1
2

)
= ψk+1

p + ψk+1
S .

42



The local truncation error τk+1 is

τk+1 =
φk+1

2 − φk2
∆t

+ Lp
(
φk+1

1 , φk2
)

+ LS
(
φk+1

1 , φk+1
2

)
− ψk+1

p − ψk+1
S ,

using a Taylor expansion for Lp and for the time derivative we obtain

τk+1 =
∂φ2

∂t
+ ∆tφ′′

(
tk+1

)
+ Lp

(
φk+1

1 , φk+1
2

)
−∆t

∂Lp
∂φ2

(
φk+1

1 , φk+1
2

)
+

+ LS
(
φk+1

1 , φk+1
2

)
− ψk+1

p − ψk+1
S +O

(
∆t2

)
=

=∆t

[
φ′′
(
tk+1

)
− ∂Lp
∂φ2

(
φk+1

1 , φk+1
2

)]
+O

(
∆t2

)
.

We present, in the following subsections, the pressure equation and the satura-
tion equation decoupled with the IMPES splitting.

2.2.1 The pressure equation

Since for each time interval
(
tk, tk+1

)
the saturation Skn is fixed, the pressure

equation becomes a linear elliptic problem written in mixed form for the global
pressure pk+1 and the total velocity uk+1. The total mobility λ and the modified
gravity G depend on the saturation so we treat them explicitly: λ = λ

(
Skn
)

and

G = G
(
Skn
)
. Thus uk+1 and pk+1 are computed by solving∇·u

k+1 = qw + qn ,

uk+1 = −λK
(
∇pk+1 −G

)
,

in Ω (2.31)

coupled with the boundary conditions
pk+1 = p̃ on ΓE ,

uk+1 · n = ũN on ΓN ,

uk+1 · n− pk+1 = ũR on ΓR,

Note that in system (2.31) there are no time derivatives. Nevertheless it is
still a time dependent problem since the saturation Sn, and therefore the total
mobility λ and the modified gravity G, change at each time tk.

Well posedness of the problem

For the sake of simplicity we assume that ũN ≡ 0 or ΓN = ∅, otherwise a
standard lifting technique should be used. To write the weak formulation of
(2.31) we introduce the functional spaces Q = H1 (Ω) and V defined as

V :=
{
τ ∈Hdiv (Ω) :< τ · n, v >= 0∀v ∈ H1

0,Σ (Ω) and τ · n ∈ L2
(
ΓR
)}

,
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with Σ = ∂Ω\ΓN . Q and V are Hilbert spaces endowed with the scalar product
(·, ·)H1(Ω) : H1 (Ω)×H1 (Ω)→ R and (·, ·)V : V × V → R, defined as

(p, v)H1(Ω) := (p, v)Ω + (∇p, ∇v)Ω ,

(u, v)V := (u, v)Ω + (∇·u, ∇·v)Ω + (u · n, v · n)ΓR ,

and norms ‖·‖H1(Ω) : H1 (Ω)→ R and ‖·‖V : V → R, defined as

‖p‖2H1(Ω) := (p, p)H1(Ω) and ‖u‖2V := (u, u)V ,

with u, v ∈ V and p, v ∈ H1 (Ω). We define two bilinear forms a(·, ·) : V ×
V → R and b(·, ·) : V ×Q→ R, namely

a (u, τ ) :=
(

(Kλ)
−1
u, τ

)
Ω

+ (u · n, τ · n)ΓR ,

b (u, v) := − (∇ · u, v)Ω ,

with u, τ ∈ V and v ∈ Q. We introduce also two functionals F ∈ Q′ and
G ∈ V ′, namely

F (v) := (qw + qn, v)Ω ,

G (τ ) := (λKG, τ )Ω +
(
ũR, τ · n

)
ΓR
− (p̃, τ · n)ΓN ,

with v ∈ Q and τ ∈ V .

Problem 2.5 (Weak formulation of pressure equation). The weak formulation
of (2.31) is: find

(
uk+1, pk+1

)
∈ V ×Q such that{

a
(
uk+1, τ

)
+ b

(
τ , pk+1

)
= G (τ ) ∀τ ∈ V ,

b
(
uk+1, v

)
= −F (v) ∀v ∈ Q .

Lemma 2.2 (Well posedness). If ΓN 6= ∅ and under Assumption 2.2, Assump-
tion 2.4 and Assumption 2.6 and choosing the Brooks-Corey or Van Genuchten
model for the relative permeability then Problem 2.5 is well posed. Furthermore
we have the following bounds∥∥uk+1

∥∥
V
≤ ‖K‖L∞(Ω)‖λ‖L∞(Ω)‖G‖V ′ + (1 + α) ‖F‖Q′ ,∥∥pk+1

∥∥
Q
≤ (1 + α)

(
‖G‖V ′ +K0λ0‖F‖Q′

)
,

with

α ≤
‖K‖L∞(Ω)‖λ‖L∞(Ω)

K0λ0
, ‖F‖Q′ ≤ ‖qw‖L2(Ω) + ‖qn‖L2(Ω) ,

‖G‖V ′ ≤ ‖K‖L∞(Ω)‖λ‖L∞(Ω)‖G‖L2(Ω) +
∥∥ũR∥∥

L2(ΓR)
+ ‖p̃‖L2(ΓN ) .

Proof. For both models we have λ ∈ L∞(Ω) and ∃λ0 ∈ R+ such that λ ≥ λ0

since both relative permeabilities are positive and not zero at the same satura-
tion value. Moreover G ∈

[
L2(Ω)

]n
, then using the theory presented in [11] we

can conclude that ∃! (uk+1, pk+1) ∈ V ×Q solution of Problem 2.5. Furthermore∥∥uk+1
∥∥
V
≤ 1

α0
‖G‖V ′ +

1

k0

(
1 +
‖a‖
α0

)
‖F‖Q′ ,∥∥pk+1

∥∥
Q
≤ 1

k0

(
1 +
‖a‖
α0

)
‖G‖V ′ +

‖a‖
k2

0

(
1 +
‖a‖
α0

)
‖F‖Q′ ,
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where α0 is the coercivity constant of the bilinear form a in the kernel of the
operator B associated to the bilinear form b, ‖a‖ is the continuity constant of
the bilinear form a and k0 is a constant which depends on the bilinear form b.
In our case we have

1

α0
= ‖K‖L∞(Ω)‖λ‖L∞(Ω) , ‖a‖ ≤ 1

K0λ0
, k0 = 1 ,

and

‖F‖Q′ ≤ ‖qw‖L2(Ω) + ‖qn‖L2(Ω) ,

‖G‖V ′ ≤ ‖K‖L∞(Ω)‖λ‖L∞(Ω)‖G‖L2(Ω) +
∥∥ũR∥∥

L2(ΓR)
+ ‖p̃‖L2(ΓN ) .

2.2.2 The saturation equation

The saturation equation is a non-linear and possibly degenerate parabolic equa-
tion written in mixed form for the saturation of the non-wetting phase Sn and
the Darcy velocity of the non-wetting phase un. The non-linearities are in the
transport and in the diffusion terms. The latter degenerates, i.e. vanishes, if
Sn = Snr or Sn = 1 − Swr. At each time interval (tk, tk+1), from the pres-
sure equation (2.31) we obtain the total velocity uk+1 at time tk+1, thus the
saturation equation, defined in Ω× (tk, tk+1), reads

Φ
∂Sn
∂t

+∇·un = qn ,

un = fnu
k+1 − λwfnK [p′c∇Sn + (ρw − ρn)g] ,

(2.32)

coupled with boundary and initial conditions

Sn = Sn on ΥN ×
(
tk, tk+1

)
,

un · n = uEn on ΥE ×
(
tk, tk+1

)
,

un · n− Sn = uRn on ΥR ×
(
tk, tk+1

)
,

Sn
(
tk
)

= Skn in Ω×
{
tk
}

,

and with Sn (0) = S0
n = Sn,0.

In reservoir simulations the transport part is dominant, so if we want to numer-
ically solve the system of equations accurately we should stabilize it. There are
several possibilities, for example using upwinding techniques [62] or by operator
splitting [63]. The latter, which is a common approach to this type of problem
[42, 43, 52], is based on splitting the diffusion and the transport operators lead-
ing to a non-linear purely hyperbolic equation and a non-linear purely diffusive
parabolic equation. Using the same formalism of section 2.2 we introduce the
abstract equation 

∂ϕ

∂t
+ LS (ϕ) = ψ for t ∈

(
tk, tk+1

)
,

ϕ
(
tk
)

= ϕ for t = tk,

(2.33)
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with ϕ = Sn the unknown, ϕ = Skn the initial condition and ψ = qn the scalar
source. The operator LS can be decomposed as

LS (ϕ) := H (ϕ) + P (ϕ) ,

where P is the purely elliptic part whileH is the hyperbolic part of the saturation
equation. The gravity term belongs to the hyperbolic part. We should solve
first the hyperbolic equation, obtaining an intermediate value of ϕk+ 1

2 , then
solve the parabolic equation with the intermediate value ϕk+ 1

2 . In literature we
find at least two reasons to justify this splitting strategy:

• we must account for the boundary conditions of equation (2.32). In the
hyperbolic step, we have to use boundary conditions compatible with an
hyperbolic problem, i.e. just inflow and outflow type conditions. While
the parabolic step uses the full set of boundary conditions. In this way
if we solve the hyperbolic problem first the parabolic step “corrects” the
solution at the boundary;

• a typical choice to solve an hyperbolic equation is to use an explicit scheme
while for a non-linear parabolic equation it is preferable to employ an im-
plicit scheme. Following [55] we should solve first the hyperbolic part and
then the parabolic part. We obtain a global scheme which is conditionally
stable for all ∆t and converges to the stationary solution of the problem
for sufficiently small time steps. If we solved first the parabolic equation,
with an implicit scheme, and then the hyperbolic equation, with an ex-
plicit scheme, we obtain a global scheme which is unconditionally stable
but does not converge to the stationary solution.

From these considerations, using a first order scheme for time discretization, we
derive the following splitting

ϕk+ 1
2 − ϕk

∆t
+H

(
ϕk
)

= 0 ,

ϕk+1 − ϕk+ 1
2

∆t
+ P

(
ϕk+1

)
= ψk+1 ,

(2.34)

with ϕk = ϕ.

Lemma 2.3. Under Assumption 2.2, Assumption 2.5 and Assumption 2.6, the
consistency error of scheme (2.34) is first order with respect to ∆t.

Proof. We take the exact solution φ of the abstract problem (2.33), obtaining
φk+ 1

2 − φk

∆t
+H

(
φk
)

= 0 ,

φk+1 − φk+ 1
2

∆t
+ P

(
φk+1

)
= ψk+1 .

We substitute φk+ 1
2 in the second equation to have

φk+1 = φk −∆t
[
H
(
φk
)

+ P
(
φk+1

)
− ψk+1

]
.
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The local truncation error τk+1 is then

τk+1 =
φk+1 − φk

∆t
+H

(
φk
)

+ P
(
φk+1

)
− ψk+1 ,

using a Taylor expansion for H and for the time derivative we obtain

τk+1 =
∂φ

∂t
+ ∆tφ′′

(
tk+1

)
+H

(
φk+1

)
+ P

(
φk+1

)
− ψk+1+

−∆tH′
(
φk+1

)
+O

(
∆t2

)
= ∆t

[
φ′′
(
tk+1

)
−H′

(
φk+1

)]
+O

(
∆t2

)
.

Given the hyperbolic operator H we introduce the flux function

F(S) := fn(S)uk+1 − λw(S)fn(S)K (ρw − ρn) g . (2.35)

Due to the hyperbolic nature of the problem, the boundary conditions are im-
posed only on the inflow part of Υ, i.e. on

ΥE
inflow =

{
ΥE ∩F

(
Ŝn

)
· n > 0

}
,

we impose Ŝn = Sn on ΥE
inflow, where Ŝn is the intermediate saturation. The

hyperbolic part of the saturation equation reads then
Φ
∂Ŝn
∂t

+∇·F
(
Ŝn

)
= 0

F
(
Ŝn

)
= fnu

k+1 − λwfnK (ρw − ρn) g

Ω×
(
tk, tk+1

)
(2.36)

coupled with boundary and initial conditionsŜn = Sn on ΥE
inflow ×

(
tk, tk+1

)
,

Ŝkn = Skn in Ω×
{
tk
}

provides Ŝn. The purely parabolic equation at time step tk+1 then reads
Φ
∂Sn
∂t

+∇·ûn = qn ,

ûn = −λwfnKp′c∇Sn ,
in Ω×

(
tk, tk+1

)
(2.37)

coupled with boundary and initial conditions

Sn = Sn on ΥN ×
(
tk, tk+1

)
,

un · n = uEn on ΥE ×
(
tk, tk+1

)
,

un · n− Sn = uRn on ΥR ×
(
tk, tk+1

)
,

Sn
(
tk
)

= Skn = Ŝn
(
tk+1

)
in Ω×

{
tk
}

.
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Well posedness of the problem

For the sake of simplicity we assume that uNn ≡ 0 or ΥN = ∅, otherwise a
standard lifting technique should be used. To derive the weak formulation of
the purely hyperbolic equation (2.36) we introduce the functional space

Q̂ =
{
S ∈ Q : S = S

E
on ΥE

inflow

}
,

then the weak formulation of problem (2.36) is: find Ŝn ∈ Q̂ such that(
Φ
∂Ŝn
∂t

, v

)
Ω

−
(
F
(
Ŝn

)
, ∇v

)
Ω

= 0 ∀v ∈ C∞0 (Ω) ,

The study of the well posedness of the problem is complicated and not com-
pletely solved, we refer to [14] and the reference therein for a preliminary anal-
ysis.
Due to the degeneracy of the purely diffusion part of the saturation equation
(2.37) the mathematical analyses is rather complex, we refer to [18] and [5] for
a detailed description. To write the weak formulation of the parabolic part we
introduce the functional space

W :=
{
τ ∈Hdiv (Ω) :< τ · n, v >= 0∀v ∈ H1

0,Θ (Ω) and τ · n ∈ L2
(
ΥR
)}

,

with Θ = ∂Ω \ΥN . We define the non-linear form w (·, ·, ·) : W ×Q×W → R
and the bilinear form b(·, ·) : W ×Q→ R

w (u, z, τ ) :=
(

[λw(z)fn(z)Kp′c(z)]
−1
u, τ

)
Ω

+ (u · n, τ · n)ΥR ,

b(u, z) := −(∇·u, z)Ω

with u, τ ∈ W and z ∈ Q. We introduce also two functionals FS ∈ Q′ and
GS ∈W ′, namely

FS (v) = (qn, v)Ω and GS (τ ) =
(
uRn , τ · n

)
ΥR
−
(
S
N
, τ · n

)
ΥN

.

The weak formulation reads: find (Sn, ûn) ∈ L2
(
tk, tk+1; Q

)
×L2

(
tk, tk+1; W

)
such that S′n ∈ L2

(
tk, tk+1; Q′

)
and a.e. in

(
tk, tk+1

)
w (ûn, Sn, τ ) + b (τ , Sn) = GS(τ ) ∀τ ∈W0 ,

b (ûn, v)− (ΦS′n, v)Ω = −FS(v) ∀v ∈ Q .
(2.38)

The following lemma, taken from [18], gives the existence and uniqueness of the
solution for the un-split saturation equation under stricter hypotheses on the
data.

Lemma 2.4 (Existence). If ΥE 6= ∅ and under Assumption 2.2, Assumption 2.4
and Assumption 2.6 and supposing that the parabolic part of the saturation equa-
tion (2.38) is non degenerate, i.e.

Sn 6= Snr and Sn 6= 1− Swr ,
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the saturation equation (2.38) admits at least one solution satisfying

0 ≤ Sn ≤ 1 a.e. in Ω ,

and

Sn ∈ L∞
(
IT ; L2 (Ω)

)
and S′n ∈ L2

(
IT ; H−1 (Ω)

)
.

Lemma 2.5 (Uniqueness). Under the hypotheses of Lemma 2.4 and assuming
furthermore suppose that neither gravity nor capillary pressure heterogeneity are
present, then the saturation equation (2.32) admits one solution, such that

Sn ∈ L∞
(
IT ; H1 (Ω)

)
and S′n ∈ L2

(
IT ; L2 (Ω)

)
.

2.3 Mixed finite element formulation

To solve numerically the pressure equation (2.31) and the parabolic part of the
saturation equation (2.37) we use the dual, mixed and hybrid finite element
method, we refer to [11] and [67] for a more detailed description.

Problem 2.6 (Primal formulation). The classical formulation for an elliptic
partial differential equation is to find a function p ∈ C2 (Ω) such that

−∇· [K (∇p− fv)] + γp = f in Ω,

K∇p · n+ lp = gR on ΓR,

p = 0 on ΓE.

The data are reported in Assumption 2.7.

Assumption 2.7. We assume that:

1. the diffusione matrix K = K (x) is a symmetric and positive definite
matrix such that K ∈ [L∞ (Ω)]

n×n
;

2. the vector source term fv = fv (x) is such that fv ∈
[
L2 (Ω)

]n
;

3. the reactive coefficient γ = γ (x) is such that γ ∈ L∞ (Ω);

4. the scalar source f = f (x) is such that f ∈ L2 (Ω);

5. the data for the robin boundary l = l (x) and gR = gR (x) are such that

l ∈ L∞
(
ΓR
)

and gR ∈ H− 1
2

(
ΓR
)
.

2.3.1 Mixed formulation

Standard continuous finite elements are not suitable to solve neither the pressure
equation nor the saturation equation, in fact they are designed for problems
with smooth solutions, whereas in porous media simulations the solutions may
develop sharp fronts due to convection effects. Another problem for the standard
finite elements is that the velocity of the two fluids, which is an important
coupling factors in the equations, is poorly approximated. More precisely the
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constraint on the saturation is better reproduced if the velocity field fulfils local
conservation property. Finally the typical data in the equations, for instance
K, may vary up to several order of magnitude from one grid cell to the nearby
ones, standard finite elements can behave poorly in this case. For these reasons
we use mixed finite elements for the space discretization of the pressure equation
and the parabolic part of the saturation equation.
In the context of mixed methods, a problem that depends just on the unknown
p is call primal formulation of the problem, as in Problem 2.6. Nevertheless in
most practical and engineering problems, like the ones in our interest, another
unknown is useful: the total flux u, which is

u = −K (∇p− fv) .

Using the total flux Problem 2.6 can be written in the mixed formulation, in-
troduced and analysed in [64].

Problem 2.7 (Mixed formulation). The classical mixed formulation for an
elliptic partial differential equation is: find p ∈ C1 (Ω) and u ∈

[
C1 (Ω)

]n
such

that 

K−1u+∇p = fv in Ω,

∇·u+ γp = f in Ω,

u · n+ lp = gR on ΓR,

p = 0 on ΓE.

(2.39)

Assumption 2.8 (Computational domain and mesh). To write equation (2.39)
in a discrete form we introduce the following requests:

1. Ω fulfils Assumption 2.2 and is a polygonal domain;

2. Th is the conforming tessellation of domain Ω such that

Ω =
⋃

K∈Th

K .

For an element K ∈ Th we divide ∂K into several facet denoted with eK .
The facet shared between two elements K and K ′ is indicated with eK−K′ .
Further we indicate with Eh the set of all the facets of Th and with E̊h ⊂ Eh
the set of all the internal facets. See Figure 2.11 for an example;

3. the elements K are segments for n = 1, triangles for n = 2 or tetrahe-
dra for n = 3; we are not considering Th composed by quadrilateral nor
hexahedra since the convergence rate is not guaranteed for a general mesh
Th, see [6] and [69] for further details. We indicate with NI the number
of facets in Eh and with NE the number of elements in Th. In addition n
may be the outward unit normal to ∂K or the outward unit normal to Γ,
depending on the context;

4. we require that Th is regular, i.e.

∃ ξ ≥ 0 :
hK
ρK
≤ ξ ∀K ∈ Th , (2.40)
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Th

∂K

K
Ω

ρKhK

∂K ′

eK−K′

K ′

K

Figure 2.11: Picture of the domain Ω, its triangulation Th and the element definitions.

where hK := diam (K) is the diameter of K, with

diam (K) := max
x,y∈K

|x− y| ,

and ρK is the diameter of the circle inscribed in K, see left part of Figure
2.11. We indicate with h := max

K∈Th
hK .

We use the hybridization procedure to split Problem 2.7 from the entire domain
to problems in each element K, and write the weak formulation for the dual
problem (2.39). We introduce the following functional Hilbert spaces

Q := L2 (Ω) , Hdiv (K) :=
{
τ ∈

[
L2 (K)

]n
: ∇·τ ∈ L2 (K)

}
,

Z :=
{
τ ∈

[
L2 (Ω)

]n
: τ |K ∈Hdiv (K) for K ∈ Th

}
,

Λ :=
{
λ ∈ H 1

2 (Eh) : λ = 0 on ΓE
}
,

each space is equipped with a scalar product: (·, ·)Q : Q×Q→ R, (·, ·)Hdiv(K) :

Hdiv (K) ×Hdiv (K) → R, (·, ·)Z : Z × Z → R and (·, ·)Λ : Λ × Λ → R,
respectively such that

(p, v)Q := (p, v)Ω , (u, τ )Hdiv(K) := (u, τ )K + (∇·u, ∇·τ )K ,

(r, s)Z :=
∑
K∈Th

(r, s)Hdiv(K) , (λ, µ)Λ :=
∑
e∈Eh

(λ, µ)e ,

with p, v ∈ Q, u, τ ∈ Hdiv (K), r, s ∈ Z and λ, µ ∈ Λ. The corresponding
norms are ‖·‖Q : Q → R, ‖·‖Hdiv(K) : Hdiv (K) → R, ‖·‖Z : Z → R and

‖·‖Λ : Λ→ R

‖p‖2Q := (p, p)Q , ‖u‖
2
Hdiv(K) := (u, u)Hdiv(K) ,

‖r‖2Z := (r, r)Z , ‖λ‖2Λ := (λ, λ)Λ .

The Dirichlet boundary conditions in this framework are of essential type, since
they are imposed in the definition of the space Λ.
To write the first equation of (2.39) in a weak form, let us take a test function
τ ∈ Z, integrate on a single triangle K and sum on the triangulation Th to
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obtain ∑
K∈Th

(
K−1u, τ

)
K

+ (∇p, τ )K − (fv, τ )K =

∑
K∈Th

(
K−1u, τ

)
K
− (p, ∇·τ )K + (p̃, τ · n)∂K − (fv, τ )K = 0 .

The trace of a function in Q on ∂K is not well defined, so we substitute p̃ with
λ ∈ Λ to find∑

K∈Th

(
K−1u, τ

)
K
− (p, ∇·τ )K + (λ, τ · n)∂K − (fv, ·τ )K = 0 ∀τ ∈ Z .

(2.41)

To impose the requirement that u ∈Hdiv (Ω), we need to require continuity of
the total flux u over E̊h. Following [63] we introduce the constraint∑

e∈E̊h

(µ, u · n)e =
∑
K∈Th

(µ, u · n)∂K\ΓR = 0 , ∀µ ∈ Λ . (2.42)

To write the second equation of (2.39) in the weak form we take a test function
v ∈ Q, then integrate on a single triangle K and sum on Th to obtain∑

K∈Th

−(∇·u, v)K − (γp, v)K =
∑
K∈Th

−(f, v)K ∀v ∈ Q . (2.43)

The Robin boundary conditions in ΓR are imposed weakly to give∑
K∈Th

(µ, u · n)∂K∩ΓR + (lµ, λ)∂K∩ΓR =
∑
K∈Th

(
gR, µ

)
∂K∩ΓR

, ∀µ ∈ Λ .

(2.44)

Gathering equations (2.41), (2.42), (2.43) and (2.44) we find the weak form for
Problem 2.7: find (u, p, λ) ∈ Z × V × Λ such that

∑
K∈Th

(
K−1u, τ

)
K
− (p, ∇·τ )K + (λ, τ · n)∂K = (fv, τ )Ω ∀τ ∈ Z ,

∑
K∈Th

−(∇·u, v)K − (γp, v)K = −(f, v)Ω ∀v ∈ Q ,

∑
K∈Th

(µ, u · n)∂K\ΓE + (lµ, λ)∂K∩ΓR =
∑
K∈Th

(
gR, µ

)
∂K∩ΓR

∀µ ∈ Λ .

We introduce the local bilinear forms: aK(·, ·) : Hdiv (K)×Hdiv (K)→ R and
bK(·, ·) : L2 (K)×Hdiv (K)→ R and the corresponding global bilinear forms:
a(·, ·) : Z ×Z → R and b(·, ·) : Q×Z → R such that

aK(u, τ ) :=
(
K−1u, τ

)
K
, bK(p, τ ) := −(p, ∇·τ )K ,

a(u, τ ) :=
∑
K∈Th

aK(u, τ ) , b(p, τ ) :=
∑
K∈Th

bK(p, τ ) ,
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with K ∈ Th. We introduce also the following local bilinear forms: ce(·, ·) :

H
1
2 (e)×Hdiv (K) → R where e ∈ Eh is a facet of K ∈ Th, eK(·, ·) : L2 (K)×

L2 (K)→ R and he(·, ·) : H
1
2 (e)×H 1

2 (e)→ R and the corresponding bilinear
forms c(·, ·) : Λ × Z → R, e(·, ·) : Q × Q → R and h(·, ·) : Λ × Λ → R such
that

ce(λ, τ ) := (λ, τ · n)e , eK(p, v) := (γp, v)K ,

he(λ, µ) := (lµ, λ)e , c(λ, τ ) :=
∑
e∈Eh

ce(λ, τ ) ,

e(p, v) :=
∑
K∈Th

eK(p, v) , h(λ, µ) :=
∑

e∈Eh∩ΓR

he(λ, µ) ,

Finally we introduce also some local functionals: Fv,K ∈ Hdiv (K)
′
, FK ∈

L2 (K)
′

and Ge ∈ H
1
2 (e)

′
and the corresponding global functionals Fv ∈ Z ′,

F ∈ Q′ and G ∈ Λ′ such that

Fv,K (τ ) := (fv, τ )K , FK (v) := (f, v)K ,

Ge (µ) := (g, µ)e , Fv (τ ) :=
∑
K∈Th

Fv,K (τ ) ,

F (v) :=
∑
K∈Th

FK (v) , G (µ) :=
∑

e∈Eh∩ΓR

Ge (µ) .

Problem 2.8 (Weak mixed formulation). The weak formulation of Problem 2.7
is: find (u, p, λ) ∈ Z ×Q× Λ such that

a(u, τ ) + b(p, τ ) + c(λ, τ ) = Fv (τ ) ∀τ ∈ Z ,

b(v, u)− e(p, v) = −F (v) ∀v ∈ Q ,

c(µ, u) + h(λ, µ) = G (µ) ∀µ ∈ Λ .

Lemma 2.6 (Well posedness). Under Assumption 2.7 and Assumption 2.8
Problem 2.8 is well posed.

Proof. We refer to [11] for the proof.

2.3.2 Numerical approximation

To solve Problem 2.8 we introduce the following finite dimensional subspaces of
Q, Z and Λ. We have adopted the following choices:

• piecewise Lagrangian polynomials of degree r for the scalar variables

Qh := {qh ∈ Q : qh|K ∈ Pr (K) for K ∈ Th} ⊂ Q ,

where we indicate with φK,i the base function of Pr (K) associated to the
degrees of freedom i = 1, . . . , bQ of the element K ∈ Th. The dimension
of the space Pr (K) is

bQ = dimPr(K) =
1

n!

n∏
k=1

(r + k) ,
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therefore the dimension of Qh is NEbQ. Given a function qh ∈ Qh its
expansion in the base functions of Qh reads

qh (x) =
∑
K∈Th

bQ∑
i=1

qK,iφK,i(x) ,

where qK =
(
qK,1, . . . , qK,bQ

)
∈ RbQ is the vector of the local coefficients

in the element K ∈ Th;

• piecewise Raviart-Thomas, introduced in [64], of degree r for the vector
variables

Zh := {zh ∈ Z : zh|K ∈ RTr (K) for K ∈ Th} ⊂ Z ,

where we indicate with ψK,j the base function of RTr (K) associated to the
degrees of freedom j = 1, . . . , bZ of the element K ∈ Th. The dimension
of the space RTr(K) is

bZ = dimRTr(K) = (r + 1)(r + 3) for n = 2 ,

bZ = dimRTr(K) =
1

2
(r + 1)(r + 2)(r + 4) for n = 3 ,

therefore the dimension of Zh is NEbZ . Given a function zh ∈ Zh its
expansions in the base functions of Zh reads

zh (x) =
∑
K∈Th

bZ∑
j=1

zK,jψK,j(x) ,

where zK = (zK,1, . . . , zK,bZ ) ∈ RbZ is the vector of the local coefficients
in the element K ∈ Th;

• piecewise Lagrangian polynomials of degree r on Eh, indicated also with
Rr (Eh), for the hybrid variables

Λh := Rr (Eh) = {λ ∈ Λ : λ|e ∈ Pr (e) for e ∈ Eh} ⊂ Λ ,

where we indicate with ξe,k the base function of Pr (e) associated to the
degrees of freedom k = 1, . . . , bΛ of the facet e ∈ Eh. The dimension of
the space Rr(e) is

bΛ = dimRr (e) =
1

(n− 1)!

n−1∏
k=1

(r + k) ,

therefore the dimension of Λh is NIbΛ. Given a function λh ∈ Λh its
expansion in the base function of Λh reads

λh (x) =
∑
e∈Eh

bΛ∑
k=1

λe,kξe,k (x) , (2.45)

where λe = (λe,1, . . . , λe,bΛ) ∈ RbΛ is the vector of the local coefficients in
the element e ∈ Eh.
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uh
ph
λh

Figure 2.12: Picture of the degrees of freedom for the space P0(K), RT0(K) and R0 (∂K)
in a triangle and in a tetrahedron.

A schematic representation for the lowest order case, i.e. r = 0, of the degrees
of freedom for a function in Qh, Zh and Λh is in Figure 2.12.

Problem 2.9 (Discrete mixed formulation). The discrete version of Prob-
lem 2.8 is: find (uh, ph, λh) ∈ Zh ×Qh × Λh such that

a(uh, τh) + b(ph, τh) + c(λh, τh) = Fv (τh) ∀τh ∈ Zh ,

b(vh, uh)− e(ph, vh) = −F (vh) ∀vh ∈ Qh ,

c(µh, uh) + h(λh, µh) = G (µh) ∀µh ∈ Λh .

Lemma 2.7 (Well posedness). Under Assumption 2.7 and Assumption 2.8
Problem 2.9 is well posed.

Proof. We refer to [11] for the proof.

We can write the above system in the local matrix formulation, to this purpose
we introduce the local matrices and vectors

[A]ij := aK(ψK,j , ψK,i) , [B]ij := bK(φK,j , ψK,i) ,

[C]ij :=
∑
e∈∂K

ce(ξe,i, ψK,j) , [E]ij := eK(φK,j , φK,i) ,

[H]ij :=
∑
e∈∂K

he(ξe,i, ξe,j) , [Fv]j := Fv,K (ψK,j) ,

[F ]j := FK (φK,j) , [G]j :=
∑
e∈∂K

Ge (ξe,j) ,

where we neglect to write the dependence on the element K ∈ Th in all the
matrices and vectors. We indicate with [·]ij the element at row i and column j
of the matrix in the square brackets.

Problem 2.10 (Local matrix formulation). The local matrix formulation of
Problem 2.9 in each K ∈ Th is

AuK +BpK +CλK = Fv ,

B>uK −EpK = −F ,

C>uK +HλK = G .

(2.46)
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Or alternatively 
A B C

B> −E 0

C> 0 H



uK

pK

λK

 =


Fv

−F

G

 .
Where uK , pK and λK denote the vectors of degrees of freedom restricted to
element K of the corresponding variables.

We recall the convergence rates for the dual, mixed and hybrid method for r = 0,
which is the most used in practice. Further details can be found in [11].

Lemma 2.8 (Convergence rates). Under Assumption 2.7, Assumption 2.8 and
supposing also fv ≡ 0 and f ∈ H1 (Ω), the solutions (p, u) of Problem 2.8 is
such that p ∈ H2 (Ω) and the errors between the discrete solutions (ph, uh) of
Problem 2.9 and (p, u) are bounded,

‖p− ph‖L2(Ω) ≤ C1h
(
‖p‖H2(Ω) + ‖f‖H1(Ω)

)
,

‖u− uh‖Hdiv(Ω) ≤ C2h
(
‖p‖H2(Ω) + ‖f‖H1(Ω)

)
,

with the constants C1, C2 ∈ R+ independent of h.

2.3.3 Static condensation

The unknowns in system (2.46) are not independent since pK and uK may be
written in function of λK alone. This technique is called static condensation.
The main practical assumption for the static condensation is to use relatively
low polynomial degree for the approximation, such that the local matrix A is
simple and fast to factorize with the Cholesky algorithm.

From the first equation of system (2.46) we derive that

uK = −A−1 (BpK +CλK − Fv) . (2.47)

Using (2.47), the third equation of (2.46) becomes

−B>A−1 (BpK +CλK − Fv)−EpK =

= −
(
B>A−1B +E

)
pK +B>A−1Fv −B>A−1CλK = −F .

Introducing the local matrix

S =
(
B>A−1B +E

)−1
,

we obtain a relation between pK and λK

pK = S
(
F +B>A−1Fv −B>A−1CλK

)
. (2.48)
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We express, using the relations (2.47) and (2.48), the first term of the last
equation of (2.46) as

C>uK =−C>A−1 (BpK +CλK − Fv) =

=−C>A−1BpK −C>A−1CλK +C>A−1Fv =

= −C>A−1BS
(
F +B>A−1Fv −B>A−1CλK

)
+

+C>A−1CλK +C>A−1Fv =

=
(
C>A−1BSB>A−1C −C>A−1C

)
λK+

−C>A−1BSF −C>A−1BSB>A−1Fv +C>A−1Fv .

Finally introducing the local matrix and vector for the hybrid unknown

LK = C>A−1BSB>A−1C −C>A−1C +H ,

rK = G+C>A−1BSF +C>A−1BSB>A−1Fv −C>A−1Fv ,

we may write the third equation of (2.46) as the local system

LKλK = rK .

To build the global system for the unknown λh, we use the fact that a function
in Λh is single valued on each facet in Eh. Summing the corresponding value for
each facet for λK we obtain the following global system

Lλ = r . (2.49)

Once we have solved the global system (2.49) we can locally reconstruct pK and
uK using the relations (2.48) and (2.47). The latter operations are perfectly
parallel.

2.4 Calculation of the numerical flux for the
saturation equation

To solve the hyperbolic part of Problem 2.3 presented in section 2.2.2 we use an
explicit finite volume scheme, i.e. discontinuous Galerkin [22], with a suitable
numerical flux. In particular, due to the possible heterogeneity of the ground,
the physical flux (2.35) may be discontinuous across grid cell boundaries, so the
numerical scheme must be implemented with care.
The time step in the hyperbolic solvers is limited by the CFL condition. We
could take the same time step for both the hyperbolic and the parabolic parts
but this can be inefficient since the former can be very small. A common
method, see for instance [32] and [43], to handle this problem is to have sub
temporal iterations for the hyperbolic problem, with the time step given by the
CFL condition, for each time step for the parabolic problem. The global scheme
(2.36) and (2.37) is first order accurate in space and in time, see [26] and [27].
Following [47], [1] and [58] one possibility to compute the numerical flux at the
interface between elements, commonly adopted by petroleum engineers, is the so
called upstream mobility flux (UM) which is an approximation of the solution of
the Riemann problem. Referring to Figure 2.13 we indicate with a superscript
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n

uα

K+

K−

Figure 2.13: Example of two facing elements K+,K− ∈ Th in the bi-dimensional case.

+ quantities defined in the element K+ and with a superscript − quantities
defined in the facing element K−. The upstream mobility flux function is

FUM

(
S+
n , S

−
n

)
=

λ∗n
λ∗w + λ∗n

[
uk+1 − λ∗wK (ρw − ρn) g

]
,

where λ∗ are the upstream mobilities defined as

λ∗α :=

λα
(
S−α
)

if uk+1
α · n > 0,

λα
(
S+
α

)
if uk+1

α · n ≤ 0.

Another possibility is to compute the solution of the Riemann problems at the
interface using the exact Godunov (G) flux, given by

FG

(
S+
n , S

−
n

)
=


min

θ∈[S+
n , S

−
n ]

F (θ) if S+
n < S−n ,

max
θ∈[S−n , S+

n ]
F (θ) if S+

n ≥ S−n ,

computed in both elements K+ and K−.

Assumption 2.9 (Two-phase flux). We assume the following hypotheses for
the flux function F

1. F+ and F− are Lipschitz functions;

2. F+ (Snr) = F− (Swr) = 0 and F+ (1− Swr) = F− (1− Swr) = uk+1;

3. both F+ (Sn) · n and F− (Sn) · n have exactly one local maximum for
Sn ∈ [Snr, 1− Swr].

Where Snr and Swr are the residual saturation of the non-wetting phase and
wetting phase, respectively, introduced in section 2.1.2.

Under Assumption 2.9 then the Godunov flux can be re-written with the fol-
lowing form

F−G
(
S+
n , S

−
n

)
= min

{
F−

(
min

{
S+
n , θ

−}) , F− (min
{
θ−, S−n

})}
,

F+
G

(
S+
n , S

−
n

)
= min

{
F+

(
min

{
S+
n , θ

+
})
, F+

(
min

{
θ+, S−n

})}
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with

θ± = argmax
Sn∈[Snr, 1−Swr]

F± (Sn) .

When the two phases flow in the same direction both upstream mobility and ex-
act Godunov fluxes give the same answer but they differ when the phases flow in
different directions. In fact the solutions computed using the upstream mobility
flux are not consistent with the interface entropy condition given in [1], which
excludes under-compressive waves at the interfaces and captures the physically
relevant solutions. Finally heterogeneities in the absolute permeability K can
affect the solution when the upstream mobility flux function is used.
We present some numerical tests, taken from [58], to highlight the different
behaviour of the two formulations of the numerical fluxes. In both examples we
suppose a one-dimensional problem with zero total velocity and zero residual
saturations.
In the first example only the permeability changes, K+ ≡ 1.1 and K− ≡ 1,
while both porosity, Φ ≡ 1, and relative permeabilities remain unchanged, with

krn (S) = 1− S and krw (S) = S .

The non-wetting fluid is lighter then the wetting fluid, we choose ρng ≡ 2 and
ρwg ≡ 1. Finally the initial data is discontinuous at the interface of the two
rocks x = 0, namely

Sn0 (x) =

0.65 if x < 0,

0.35 if x > 0.

We can see from Figure 2.14 that the upstream mobility flux does not resolve

0.3

0.4

0.5

0.6

0.7

-2 -1 0 1 2 -2

Sn

x

Time 0.3 s

-1 0 1 2

x

Time 3.8 s

UM
G

UM
G

Figure 2.14: Comparison between the upstream mobility flux (UM) and the exact Godunov
(G) flux at two different times for the first example. The mesh grid has spacing h = 0.01 and
∆t = 0.01.

well the interface compared to the exact Godunov flux. Furthermore, the up-
stream mobility develops an unphysical travelling wave in the right rock. The
reason of the incorrect behaviours of the upstream mobility flux is that it may
not be consistent with the entropy interface condition, as the author pointed
out in [58]. The amplitude of the wave decreases if the mesh size decreases
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hence the limit solution computed by the upstream mobility flux converges to
the entropy solution.
In the second example we use the same fluids as in the previous example and
we leave unchanged both porosity, Φ ≡ 1, and absolute permeability K ≡ 1.
The relative permeabilities are different in the two rocks,

k±rn = 1− S2 , k+
rw = S and k−rw =

1.75S if S ≤ 0.25,

0.25S + 0.375 if S ≥ 0.25.

Finally the initial condition is Sn0 ≡ 0.5. Figure 2.15 shows the numerical

0.47

0.5

0.53

-2 -1 0 1 2 -2

Sn

x

Time 0.3 s

-1 0 1 2

x

Time 3.8 s

UM
G

UM
G

Figure 2.15: Comparison between the upstream mobility flux (UM) and the exact Godunov
(G) flux at two different time for the second example. The mesh grid has spacing h = 0.01
and ∆t = 0.01.

solution computed with the upstream mobility flux and the exact Godunov
flux at two different times. The solution highlights the difference between the
solution which fulfils the entropy condition [51], i.e. the one with the upstream
mobility, and the solution which fulfils the interface entropy condition [1], the
one with the exact Godunov flux. The constant solution, obtained with the
upstream mobility flux in Figure 2.15, is considered in literature as unphysical
[50], since the heavier fluid should flow downwards.
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Chapter 3

Reduced models for faults
and horizons

We introduce and analyse a reduced model that describes a single-phase flow in
a fracture or fault that exchange fluids with the surrounding porous media. We
will employ the term “fracture” to indicate both faults and macro fractures of
the porous medium. Fault, horizons and large fractures represent preferential
paths for secondary migration, and must be accurately resolved. Due to the
typical size of a sedimentary basin (200km × 200km × 10km) the grid size is
too coarse to capture those feature, whose characteristic width is of order of
meters, unless an extreme refinement is employed, leading to unreasonably high
computational costs. Thus, following [2, 57, 4, 53], we have decided to adopt a
reduced model to handle this difficulties.

3.1 Single-phase Darcy equation

To introduce the reduced model we assume that the geometry and the data fulfil
some requirements.

Assumption 3.1 (Domain). We made the following requests for the domain
Ω, which represents the heterogeneous porous media:

1. Ω is an open bounded measurable subset of Rn, with n = 2, 3, with Lips-
chitz boundary Γ := ∂Ω;

2. Ω is divided into three connected subset, called Ω1, Ω2 and Ωf , such that

Ω̊i ∩ Ω̊j = ∅ for i 6= j and i, j = 1, 2, f ,⋃
i=1,2,f

Ωi = Ω ,

∂Ωi ∩ Γ 6= ∅ for i = 1, 2 and ∂Ω1 ∩ ∂Ω2 = ∅, as shown for example in
Figure 3.1. We define

Γi := ∂Ωi ∩ Γ for i = 1, 2, f and γj := ∂Ωj ∩ ∂Ωf for j = 1, 2 .
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We require also that each piece of the boundary is sub-divided into two
disjoint parts: ΓEi and ΓNi , such that for i = 1, 2, f

Γi = Γ
N

i ∪ Γ
E

i , and Γ̊Ni ∩ Γ̊Ei = ∅ ,

due to the mixed formulation of the problem on ΓEi we will impose essential
boundary conditions, i.e. data on vector fields, while on ΓNi we will impose
natural boundary conditions, i.e. data on scalar fields. We define

ΓN :=
⋃

i=1,2,f

ΓNi , and ΓE :=
⋃

i=1,2,f

ΓEi , (3.1)

with the assumption ΓN 6= ∅. In Figure 3.1 we put into evidence also the
outward unit normal of the boundary nΓ. We indicate with ni the unit
normal of γi directed outwards with respect to Ωi;

d

Ωf

Ω1 Ω2

n1

n2

γ1 γ2nΓ

ΓN1

ΓN2

ΓE1

ΓE2

γ

ΓEf

ΓNf

Figure 3.1: Picture of the domain Ω and the three sub-domains Ω1, Ω2 and Ωf for n = 2.

3. furthermore, referring to Figure 3.1, we require that only one type of
boundary condition, natural or essential, is imposed on the upper part
of Γf and only one type, natural or essential, is imposed on the lower part
of Γf , more formally we require that ΓNf and ΓEf are connected subset of

Rn−1 with

∂ΓNf ∩ ∂ΓEf = ∅ ;

4. for the sub-domain Ωf , which describes the part of Ω occupied by the frac-
ture, we suppose that exists a non auto-intersecting n − 1 manifold γ of
class C2 such that the domain Ωf can be written as

Ωf :=

{
x ∈ Ω : x = s+ rn, s ∈ γ, r ∈

(
−d (s)

2
,
d (s)

2

)}
, (3.2)

with d ∈ C2(γ) the thickness of Ωf and n the unit normal to γ, aligned
as n1. We require that ∃ c1, c2 ∈ R+

d (s) > c1 and |d′ (s)| < c2 ∀s ∈ γ ,

with c2 “small”. See Figure 3.2 for an example of Ωf for n = 2. In other
words, we assume that γ does not differ too much from a plane if n = 3
or a straight line if n = 2;
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Ωf

Ω1

Ω2

d (s3)
d (s1)

γ
τ (s)

n (s) d (s2)

Figure 3.2: Example of Ωf and γ for n = 2.

5. we define the parts of γ which belong to the natural or the essential part
of the boundary as

∂γN := γ ∩ ΓNf and ∂γE := γ ∩ ΓEf ;

6. the domain Ωf is “thin” compared with Ω1 and Ω2, i.e.

diam (Ωi)� max
s∈γ

d (s) for i = 1, 2 .

With this assumption we can identify Ωf with γ and we can adopt the approxi-
mations n ≈ n1 ≈ −n2, ΓNf ≈ ∂γN and ΓEf ≈ ∂γE.

The permeability tensor K can vary smoothly in each Ωi, for i = 1, 2, f , but
may be discontinuous across γj , for j = 1, 2. Furthermore, in the fracture K
may be significantly different from that in the rest of the domain Ω.
The Darcy equations are given by

∇·u = q in Ω ,

K−1u+∇p = 0 in Ω ,

p = p on ΓN ,

u · nΓ = u on ΓE .

(3.3)

Assumption 3.2 (Data regularity). We assume the following regularity hy-
potheses for the data of system (3.3)

1. the source term q ∈ L2 (Ω) can be decomposed as

q =
∑

i=1,2,f

qi|Ωi ,

qi ∈ L2 (Ω) with qi|Ωi := q|Ωi for i = 1, 2, f ;

2. the symmetric and positive definite permeability tensor K ∈ [L∞ (Ω)]
n×n

can be decomposed as

K =
∑

i=1,2,f

Ki|Ωi ,

Ki ∈ [L∞ (Ω)]
n×n

with Ki|Ωi := K|Ωi for i = 1, 2, f ;
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3. the data on the natural boundary p ∈ H 1
2

(
ΓN
)

can be decomposed as

p =
∑

i=1,2,f

pi|ΓNi ,

pi ∈ H
1
2

(
ΓN
)

with pi|ΓNi := p|ΓNi for i = 1, 2, f ;

4. the data on the essential boundary u ∈ H− 1
2

(
ΓE
)

can be decomposed as

u =
∑

i=1,2,f

ui|ΓEi ,

ui ∈ H−
1
2

(
ΓE
)

with ui|ΓEi := u|ΓEi for i = 1, 2, f .

In the sequel we will, with a little abuse of notation, indicate with a subscript i
the restriction of a function in the i-th subset of its definition set.

Lemma 3.1 (Well posedness of (3.3)). Under the Assumption 3.2 the problem
(3.3) has one solution (u, p) ∈Hdiv (Ω)×H1 (Ω).

Proof. We refer to [11] for the proof.

Defining the restriction of the Darcy flux u and the pressure p in each sub-part
Ωi of the domain Ω as ui := u|Ωi and pi := p|Ωi for i = 1, 2, f , we can prove
the following result.

Proposition 3.2. The solution (u, p) of system (3.3) satisfies the following
differential equations for i = 1, 2, f∇·ui = qi

K−1
i ui +∇pi = 0

in Ωi ,

equipped with the following coupling conditions for j = 1, 2uj · nj = uf · nj

pj = pf

on γj ,

and the boundary conditions for i = 1, 2, fpi = pi on ΓNi ,

ui · nΓ = ui on ΓEi .

Proof. By standard means we can derive that a weak solution of (3.3) satisfying
−
∫

Ω

u · ∇v =

∫
Ω

qv ∀v ∈ H1
0 (Ω) ,∫

Ω

K−1uτ −
∫

Ω

p∇·τ = 0 ∀τ ∈Hdiv,0 (Ω) .

(3.4)
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If we select v ∈ H1
0 (Ωi) for i = 1, 2 or f the first equation of (3.4) is equivalent

to

−
∫

Ωi

ui · ∇v =

∫
Ωi

qiv ∀v ∈ H1
0 (Ωi) ,

which implies that ∇·ui − qi = 0 in a distributional sense, i.e. a.e. in Ωi. If we
now take a v ∈ H1

0 (Ω) with support in Ωf ∪ γi ∪ Ωi for i = 1 or 2, we have

−
∫

Ωi

ui · ∇v −
∫

Ωf

uf · ∇v =

∫
Ωi

qiv +

∫
Ωf

qfv ,

that is

[H1(Ωi)]
′< ∇·ui − qi, v >H1(Ω1) +[H1(Ωf )]′< ∇·uf − qf , v >H1(Ωf ) +

+

∫
γi

(ui · ni − uf · ni) v = 0 ,

the first two terms are zero obtaining the coupling condition for u across γi.
If we select τ ∈ Hdiv,0 (Ωi) for i = 1, 2 or f the second equation of (3.4) is
equivalent to ∫

Ωi

K−1
i ui · τ −

∫
Ωi

pi∇·τ = 0 ∀τ ∈Hdiv,0 (Ωi) ,

which implies K−1
i ui +∇pi = 0 a.e. in Ωi. If we take now τ ∈Hdiv,0 (Ω) with

support in Ωf ∪ γi ∪ Ωi for i = 1 or 2, we have∫
Ωi

K−1
i ui · τ −

∫
Ωi

pi∇·τ +

∫
Ωf

K−1
f uf · τ −

∫
Ωf

pf∇·τ = 0 ,

that is

[Hdiv(Ωi)]
′<K−1

i ui +∇pi, τ >Hdiv(Ωi) +

+ [Hdiv(Ωf )]′<K
−1
f uf +∇pf , τ >Hdiv(Ωf ) −

∫
γi

(pi − pf ) τ · ni = 0 ,

the first two terms are zero obtaining the coupling condition for p across γi.

The system of equation (3.3) with the interface conditions derived in Proposi-
tion 3.2 describes the evolution in all the domain Ω of the Darcy velocity and
the pressure.

Problem 3.1 (Darcy coupled problem). The coupled problem for the single-
phase Darcy system is: find (u, p) ∈ Hdiv (Ω) × H1 (Ω) which satisfy: for
i = 1, 2, f ∇·ui = qi

K−1
i ui +∇pi = 0

in Ωi , (3.5)
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with the coupling conditions for j = 1, 2uj · nj = uf · nj

pj = pf

on γj (3.6)

and the boundary conditions for i = 1, 2, fpi = pi on ΓNi ,

ui · nΓ = ui on ΓEi .
(3.7)

3.1.1 Projection matrix

Thanks to Assumption 3.1 the curve γ, defined in (3.2), can be parametrized as

g(s) =

n∑
i=1

yi(s)ei ,

where s is the curvilinear abscissa, ei are three orthonormal vectors of unit
length and yi ∈ C2 (γ) represent the parametrization of γ. In the sequel, to
simplify the notation, we avoid to indicate the dependence on s when it is clear
from the context. On γ we can define the normal vector n(s); if s is the arc-
length coordinate, then

n(s) :=
g′′(s)

|g′′(s)|
.

Given the normal vector we can introduce the projection matrices along the
normal of γ and on the tangential space

N := n⊗ n and T := I −N ,

with the following properties

N = N> , T = T> , NN = N , TT = T , and NT = 0 .

Furthermore the following relationships hold,

Nn = n , Nτ = 0 , Tτ = τ , and Tn = 0 , ∀τ⊥n .

Given a generic vector m, we can decompose m along the normal direction and
the tangential space as

m = Nm+ Tm = mn +mτ ,

with mn := Nm and mτ := Tm.

3.1.2 Normal and tangential operators

In differential geometry the nabla ∇ operator can be represented as

∇ =

n∑
i=1

∂

∂xi
ei .
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We now want to use the formalism introduced in the subsection 3.1.1 to de-
compose the gradient and the divergence operators along the normal direction
n and in the tangential space defined on γ. Given a regular scalar function
g : Ω→ R we define the normal and tangential gradient as

∇ng :=
∂g

∂n
n = N∇g and ∇τ g := ∇g −∇ng = T∇g ,

while, given a regular vector function u : Ω → Rn, we define the normal and
tangential divergence as

∇n · u := N : ∇u and ∇τ · u := ∇·u−∇n · u = T : ∇u .

3.1.3 Reduced conservation equation

In this section we obtain a reduced model for the conservation equation in the
fracture, i.e. the first equation in (3.5) for i = f . Given a normal vector n, we
introduce the normal and the tangential Darcy velocity, namely

uf,n := Nuf and uf, τ := Tuf . (3.8)

To obtain from the conservation equation in Ωf the corresponding reduced con-
servation equation along γ, we decompose the divergence into its normal and
tangential part. We integrate the conservation equation along the normal di-
rection, for a given point s∗ ∈ γ, see Figure 3.3.

Ωf

Ω1

n1

γ s∗

Ω2
d (s∗) /2

−d (s∗) /2

n2

Figure 3.3: Example of a bi-dimensional fracture with the data in the normal direction.

∫ d
2

− d2
∇·uf dr =

∫ d
2

− d2
∇n · uf dr +

∫ d
2

− d2
∇τ · uf dr =

∫ d
2

− d2
qf dr ,

where, for convenience in notation, we omit to indicate the dependence on s∗.
We define the total source in a section of the fracture as

q̂ (s) :=

∫ d(s)
2

− d(s)
2

qf (r) dr (s) ,

and integrating by parts the normal divergence term we obtain

uf |γ2
· n− uf |γ1

· n+

∫ d
2

− d2
∇τ · uf dr = q̂ , (3.9)
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where, here and in the sequel, we indicate with b|γi the trace of b on γi. The
integral in equation (3.9) is approximated as∫ d

2

− d2
∇τ · uf dr =

∫ d
2

− d2
T : ∇uf dr =

∫ d
2

− d2
(TT ) : ∇uf dr =

= T :

∫ d
2

− d2
T∇uf dr ≈ T : ∇

∫ d
2

− d2
Tuf dr ,

defining the flux in the tangential direction as

û (s) :=

∫ d(s)
2

− d(s)
2

uf, τ (r) dr (s) , (3.10)

equation (3.9) becomes

uf |γ2
· n− uf |γ1

· n+∇τ · û = q̂ .

Finally, by exploiting Assumption 3.1-6 and interface condition (3.6), we can
make the approximations

uf |γ2
· n ≈ − uf |γ2

· n2 = − u2|γ2
· n2 ≈ u2|γ · n ,

and

uf |γ1
· n ≈ uf |γ1

· n1 = u1|γ1
· n1 ≈ u1|γ · n .

The conservation equation for the tangential component of the Darcy velocity
in the fracture becomes

∇τ · û = q̂ + Ju · nKγ on γ , (3.11)

where we indicate with J·Kγ the jump of a quantity across γ in the brackets

JbKγ := b1|γ − b2|γ ,

where bi : Ωi → R, i = 1, 2 are functions with a well defined trace on γ. We
notice that the normal n in equation (3.11) is unique.

3.1.4 Reduced Darcy equation

In this section we want to obtain a reduced model for the Darcy equation in
the fracture, derived from the second equation of system (3.5) for i = f , and a
consistency condition for the interface between the fracture and the rest of the
domain.

Assumption 3.3 (Permeability Kf ). We assume the following properties for
the permeability tensor Kf in the fracture:

1. for all s, tensor Kf can be written as

Kf = Kf,nN +Kf, τT ,

with Kf,n,Kf, τ ∈ L∞ (Ωf ) strictly positive;
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2. both Kf,n and Kf, τ are constant on each cross normal to the fracture.

As a consequence of Assumption 3.3-1 we have

Kfn = Kf,nn and Kfτ = Kf, ττ ∀τ⊥n .

For convenience we recall the Darcy equation in the fracture which reads

uf = −Kf∇pf in Ωf .

Multiplying the above equation by the projection matrix N and using Assump-
tion 3.3-1, we have

Nuf = −NKf∇pf = −Kf,nN∇pf = −Kf,n∇npf .

We perform the same operations multiplying by the projection matrix T

Tuf = −TKf∇pf = −Kf, τT∇pf = −Kf, τ∇τpf ,

and using definition (3.8) of normal uf,n and tangential uf, τ Darcy velocity of
the fracture, we find the following systemuf,n = −Kf,n∇npf ,

uf, τ = −Kf, τ∇τpf .
(3.12)

Thanks to Assumption 3.3-2 we integrate the second equation of system (3.12)
finding∫ d

2

− d2
uf, τ dr = û = −Kf, τ

∫ d
2

− d2
∇τpf dr = −Kf, τT

∫ d
2

− d2
∇pf dr ≈

≈ −Kf, τ∇τ
∫ d

2

− d2
pf dr .

Defining the mean pressure in the fracture as

p̂ (s) :=
1

d (s)

∫ d(s)
2

− d(s)
2

pf (r) dr (s) , (3.13)

and setting

η̂ (s) :=
1

d (s)Kf, τ (s)
,

which represents the inverse of the equivalent permeability in the tangential
direction to the fracture γ, we obtain the reduced Darcy equation in the fracture,

η̂û+∇τ p̂ = 0 on γ . (3.14)

To derive the coupling conditions for the global problem, we consider the first
equation of system (3.12). We multiply the equation by n and, using Assump-
tion 3.3-2, we integrate in the direction normal to the fracture to obtain∫ d

2

− d2
uf,n · n dr = −Kf,n

∫ d
2

− d2
∇npf · n dr = −Kf,n

(
pf |γ2

− pf |γ1

)
. (3.15)

69



The integral on the left-hand side can be approximated by∫ d
2

− d2
uf,n · n dr ≈

d

2

(
uf,n|γ2

· n+ uf,n|γ1
· n
)

=

=
d

2

(
u2|γ2

· n+ u1|γ1
· n
)

= d {{u · n}}γ , (3.16)

where {{·}}γ indicates the mean of a quantity across the fracture γ in the brackets,

{{a}}γ =
1

2

(
a1|γ + a2|γ

)
,

with ai : Ωi → R a continuous function on Ωi, for i = 1, 2. Using equation
(3.16), condition (3.6) and Assumption 3.1-6, equation (3.15) can be written as

{{u · n}}γ = −Kf,n

pf |γ2
− pf |γ1

d
≈ Kf,n

d

(
p1|γ − p2|γ

)
. (3.17)

Defining ηγ , which represent the inverse of the equivalent permeability in the
normal direction to the fracture γ, as

ηγ (s) :=
d (s)

Kf,n (s)
, (3.18)

we can rewrite equation (3.17) as

ηγ {{u · n}}γ = JpKγ , (3.19)

To close the reduced system we need another relation to model the effects of
the variation of pressure and velocity across the fracture.

Ω2

Ωf

Ω1

n1

γ

x2

x1

s∗
n (s∗)n2

Figure 3.4: Frame of reference for the approximation of the pressure in the fracture.

In the first transversal section, see Figure 3.4, we approximate the value of the
pressure inside the fracture by the following Taylor expansion

pf (s∗) = pf (x1) +
d

2
∇pf (θ1) · n , (3.20)

where θ1 = s∗ − ξ1
d (s∗)

2
n with ξ1 ∈ [0, 1]. The point x1 ∈ γ1 is such that

x1 = s∗ − d (s∗)

2
n. In the second transversal section we approximate the value

of the pressure inside the fracture by

pf (s∗) = pf (x2)− d

2
∇pf (θ2) · n , (3.21)
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where θ2 = s∗ + ξ2
d (s∗)

2
n with ξ2 ∈ [0, 1]. The point x2 ∈ γ2 is such that

x2 = s∗+
d (s∗)

2
n. Using relations (3.6), (3.12) and assuming a piecewise linear

variation of uf,n we haveuf,n (θ1) · n = ξ1u1 · n+ (1− ξ1)u2 · n ,

uf,n (θ2) · n = ξ2u2 · n+ (1− ξ2)u1 · n ,

the approximate pressure in the fracture (3.20) becomes

pf (s∗) ≈p1(x1)− ηγ
2

[ξ1u1 · n+ (1− ξ1)u2 · n] =

=p1(x1)− ηγ
2

[
{{u · n}}γ +

(
ξ1 −

1

2

)
Ju · nKγ

]
, (3.22)

while equation (3.21) gives

pf (s∗) ≈p2(x2) +
ηγ
2

[ξ2u1 · n+ (1− ξ2)u2 · n] =

=p2(x2) +
ηγ
2

[
{{u · n}}γ −

(
ξ2 −

1

2

)
Ju · nKγ

]
. (3.23)

Using relation (3.19) we find

pf (s∗) ≈{{p}}γ −
ηγ (2ξ1 − 1)

4
Ju · nKγ ,

pf (s∗) ≈{{p}}γ −
ηγ (2ξ2 − 1)

4
Ju · nKγ .

Since the pressure in the fracture pf is single valued at s∗, the only possibility
is to choose ξ1 = ξ2 = ξ, finding

pf (s∗) ≈ {{p}}γ −
ηγ (2ξ − 1)

4
Ju · nKγ ,

Finally, integrating in the transversal section of γ and using the definition (3.13)
for the reduced pressure we obtain

p̂ = {{p}}γ −
ηγ (2ξ − 1)

4
Ju · nKγ . (3.24)

An alternative approach to derive (3.24) is the following. Let us assume that p
is regular in Ωf and we indicate with p (x) = p (s∗ + xn) for a s∗ ∈ γ. We have
that

p̂− {{p}}γ = −d
2

12
p′′ (ξ) for ξ ∈

(
−d (s∗)

2
,
d (s∗)

2

)
.

On the other hand using Taylor expansion and relation (3.12), we obtain

Ju · nKγ = dKf,np
′′ (0) +O

(
d3
)
.
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Thus, neglecting higher order terms we may set

Ju · nKγ = dKf,np
′′ (0) ,

and assuming p′′ (ξ) = cp′′ (0), being c a particular constant, we find

{{p}}γ − p̂ = −d
2

12
cp′′ (0) =

dc

12Kf,n
Ju · nKγ = ηγ

c

12
Ju · nKγ ,

which is equal to (3.24) if c = 6ξ−3. Other approaches to derive equation (3.24)
are presented in [57] and [4]. Using (3.19) and (3.24), the interface conditions
on γ become ξ0ηγ Ju · nKγ = {{p}}γ − p̂

ηγ {{u · n}}γ = JpKγ
on γ , (3.25)

with ξ0 := (2ξ − 1)/4. Alternatively, the previous system can be written asξu1 · n+ (1− ξ)u2 · n = 2η−1
γ (p1 − p̂)

(1− ξ)u1 · n+ ξu2 · n = 2η−1
γ (p̂− p2)

on γ .

To derive the boundary conditions for the reduced problem we use Assump-
tion 3.1-3 and the equations (3.7) to find

û · nΓ :=

∫
ΓEf

uf , and p̂ :=
1

d

∫
ΓNf

pf . (3.26)

Using Assumption 3.1 and Assumption 3.3, hence approximating the domain
Ω reported in Figure 3.1 with the domain in Figure 3.5, the equations (3.11),
(3.14), (3.25) and (3.26) form the reduced model summarized in the following
problem.

Problem 3.2 (Reduced model for Darcy equation). Under Assumption 3.1, As-
sumption 3.2 and Assumption 3.3, the reduced formulation of the Darcy problem
in a porous medium with one fracture is: find the Darcy velocity and the pressure
associated to the porous matrix, respectively ui and pi for i = 1, 2, and the re-
duced Darcy velocity and reduced pressure associated to the fracture, respectively
û and p̂, which satisfy the following system of partial differential equations

∇·ui = qi in Ωi ,

K−1
i ui +∇pi = 0 in Ωi ,

∇τ · û = q̂ + Ju · nKγ on γ ,

η̂û+∇τ p̂ = 0 on γ ,

coupled with the interface conditions on γξ0ηγ Ju · nKγ = {{p}}γ − p̂

ηγ {{u · n}}γ = JpKγ
on γ ,
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and with the boundary conditions on ∂Ω

pi = pi on ΓNi ,

ui · nΓ = ui on ΓEi ,

p̂ = p̂ on ∂γN ,

û · nΓ = û · nΓ in ∂γE ,

for i = 1, 2.

n2
Ω1

n

n1

Ω2

∂γN

∂γE

γnΓ

ΓN2

ΓN1

ΓE1

ΓE2

Figure 3.5: Sketch of the domain Ω, the two sub-domains Ω1 and Ω2 and the reduced
fracture γ.

3.1.5 Gravity effects

The reduced model presented in the previous section changes in presence of the
gravity, more generally in the presence of a vector source q

u = −K (∇p− q) in Ω .

The transmission conditions (3.6) remain unchanged same since we use the total
flux instead the gradient as the vector variable.

Assumption 3.4 (Vector source). The source vector q ∈
[
L2 (Ω)

]n
can be

decomposed as

q =
∑

i=1,2,f

qi|Ωi ,

with qi ∈
[
L2 (Ωi)

]n
defined as qi|Ωi := q|Ωi for i = 1, 2, f . In the sequel we

often will make the abuse of notation indicating with qi its restriction on Ωi.

Performing the same computations as in sub-section 3.1.3, system (3.12) be-
comes uf,n = −Kf,n (∇npf −Nqf ) ,

uf, τ = −Kf, τ (∇τpf − Tqf ) .
(3.27)

Then defining the reduced vector source as

q̂ (s) :=
1

d (s)

∫ d(s)
2

− d(s)
2

Tqf (r) dr (s) ,
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we obtain the reduced Darcy equation in the fracture

η̂û+∇τ p̂ = q̂ on γ . (3.28)

To derive new coupling conditions for the global problem, we consider the first
equation of system (3.27). We multiply the equation by n and, using Assump-
tion 3.3-2, we integrate in the normal direction to the fracture to obtain

d {{u · n}}γ = Kf,n JpKγ +Kf,n

∫ d
2

− d2
qf · n dr ≈

≈ Kf,n

(
JpKγ + d {{q · n}}γ

)
,

then using definition (3.18) we obtain the new coupling condition

ηγ {{u · n}}γ = JpKγ + d {{q · n}}γ . (3.29)

The closure equation (3.24) should be modified in order to take into account the
vector source. In fact using the same assumption, instead of (3.22) and (3.23),
we find

pf (s∗) ≈ p1(x1)− ηγ
2

[
{{u · n}}γ +

(
ξ1 −

1

2

)
Ju · nKγ

]
+
d

2
qf (θ1) · n ,

pf (s∗) ≈ p2(x2) +
ηγ
2

[
{{u · n}}γ −

(
ξ2 −

1

2

)
Ju · nKγ

]
− d

2
qf (θ2) · n .

Then approximating qf (θi) ≈ qi|γi and using (3.29) we find

pf (s∗) ≈ {{p}}γ −
ηγ (2ξ1 − 1)

4
Ju · nKγ −

d

4
Jq · nKγ ,

pf (s∗) ≈ {{p}}γ −
ηγ (2ξ2 − 1)

4
Ju · nKγ −

d

4
Jq · nKγ .

Since the pressure in the fracture pf is single valued at s∗, the only possibility
is to choose ξ1 = ξ2 = ξ, then integrating in the transversal section of γ and
using the definition (3.13) for the reduced pressure we obtain the new second
coupling condition

ξ0ηγ Ju · nKγ +
d

4
Jq · nKγ = {{p}}γ − p̂ on γ . (3.30)

Using Assumption 3.1 and Assumption 3.3, the equations (3.11), (3.28), (3.29),
(3.30) and (3.26) form the reduced model summarized in the following problem.

Problem 3.3 (Reduced model for Darcy equation with gravity). Under As-
sumption 3.1, Assumption 3.2 and Assumption 3.3, the reduced problem for the
Darcy system with gravity is: find the Darcy velocity and the pressure associated
to the porous matrix, respectively ui and pi for i = 1, 2, and the reduced Darcy
velocity and reduced pressure associated to the fracture, respectively û and p̂,
which satisfy the following system of partial differential equations

∇·ui = qi in Ωi ,

K−1
i ui +∇pi = qi in Ωi ,

∇τ · û = q̂ + Ju · nKγ on γ ,

η̂û+∇τ p̂ = q̂ on γ ,

(3.31)
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coupled with the interface conditions on γ
ξ0ηγ Ju · nKγ +

d

4
Jq · nKγ = {{p}}γ − p̂

ηγ {{u · n}}γ = JpKγ + d {{q · n}}γ

on γ , (3.32)

and with the boundary conditions on ∂Ω

pi = pi on ΓNi ,

ui · nΓ = ui on ΓEi ,

p̂ = p̂ on ∂γN ,

û · nΓ = û · nΓ in ∂γE ,

(3.33)

for i = 1, 2.

3.1.6 Weak formulation

We derive the weak formulation of the global reduced Problem 3.3 and for the
sake of simplicity we require ui = 0 for i = 1, 2 and û · nΓ = 0 or ΓE = ∅,
otherwise a lifting technique should be used to impose the boundary data. We
define

D :=

2⋃
i=1

Ωi = Ω \ γ , (3.34)

and introduce the following functional spaces for i = 1, 2

Vi :=
{
vi ∈Hdiv(Ωi) :< vi · nΓ, v >= 0 ∀v ∈ H1

0,ΓNi
(Ωi)

and vi · ni ∈ L2 (γ ∩ ∂Ωi)
}

and Qi := H1(Ωi) , (3.35)

which are Hilbert spaces, endowed with inner products (·, ·)Vi : Vi × Vi → R
and (·, ·)Qi : Qi ×Qi → R, defined as

(u, τ )Vi := (u, τ )Ωi
+ (∇·u, ∇·τ )Ωi

+ (u · ni, τ · ni)γ ,
(p, q)Qi := (p, q)Ωi

+ (∇p, ∇q)Ωi
,

and associated norms ‖·‖Vi : Vi → R and ‖·‖Qi : Qi → R, defined as

‖u‖Vi :=
√

(u, u)Vi and ‖p‖Qi :=
√

(p, p)Qi

with u, τ ∈ Vi and p, q ∈ Qi. We also introduce the broken functional space
V : D → Rn

V :=
{
v : D → Rn : vi := v|Ωi ∈ Vi for i = 1, 2

}
,

which is an Hilbert space endowed with the inner product (·, ·)V : V ×V → R
and associated norm ‖·‖V : V → R, defined as

(u, v)V :=

2∑
i=1

(ui, vi)Vi and ‖u‖2V :=

2∑
i=1

‖ui‖2Vi ,

75



with u, v ∈ V . Analogously the broken space Q : D → R

Q :=
{
w : D → R : wi := w|Ωi ∈ Qi for i = 1, 2

}
,

which is an Hilbert space with internal product (·, ·)Q : Q × Q → R and
associated norm ‖·‖Q : Q→ R, given by

(p, w)Q :=

2∑
i=1

(pi, wi)Qi and ‖p‖2Q :=

2∑
i=1

‖pi‖2Qi ,

with p, w ∈ Q. Note that V and Q may be identified with a subset of
[
L2 (Ω)

]n
and L2 (Ω), respectively since γ is a set of zero Lebesgue measure in Rn. Thus
we will indicate for a v ∈ Q

‖v‖2L2(Ω) =

2∑
i=1

∫
Ωi

v2
i =

∫
Ω

v2 ,

where it is understood that v has been extended to the whole Ω. Analogously
we define the L2 (Ω) norm of an element of V . If we set

VΩ :=
{
u ∈Hdiv (Ω) :< u · nΓ, v >= 0∀v ∈ H1

0,ΓN (Ω)
}
,

QΩ := H1 (Ω) , (3.36)

to each element v ∈ VΩ there is a unique v ∈ V such that for i = 1, 2

v|Ωi = v|Ωi and Jv · nKγ = 0 .

Analogously, for each w ∈ QΩ there exist a unique w ∈ Q such that for i = 1, 2

w|Ωi = w|Ωi and JwKγ = 0 .

We introduce also the functional spaces for the problem in the fracture: the
spaces of functions living in the tangent space, that is

V̂ :=
{
v̂ : γ → Rn, v̂ ∈

[
L2 (γ)

]n
: v̂ · n = 0, ∇τ · v̂ ∈ L2 (γ)

and < v̂ · nΓ, v >= 0∀v ∈ H1
0,∂γN (γ)

}
,

Q̂ :=
{
ŵ : γ → R, ŵ ∈ L2 (γ) : ∇nŵ = 0 and ∇τ ŵ ∈

[
L2 (γ)

]n}
, (3.37)

which are Hilbert spaces endowed with inner products (·, ·)V̂ : V̂ × V̂ → R and

(·, ·)Q̂ : Q̂× Q̂→ R, defined as

(û, v̂)V̂ := (û, v̂)γ + (∇τ · û, ∇τ · v̂)γ ,

(p̂, ŵ)Q̂ := (p̂, ŵ)γ + (∇τ p̂, ∇τ ŵ)γ ,

and norms ‖·‖V̂ : V̂ → R and ‖·‖Q̂ : Q̂→ R, defined as

‖û‖2V̂ := (û, û)V̂ and ‖p̂‖2Q̂ := (p̂, p̂)Q̂ ,
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with û, v̂ ∈ V̂ and p̂, ŵ ∈ Q̂. We define also the global space for the Darcy
velocity and the global space for the pressure

V :=
{

v = (v, v̂) ∈ V × V̂
}

and Q :=
{

w = (w, ŵ) ∈ Q× Q̂
}
,

which are Hilbert spaces endowed with inner products (·, ·)V : V ×V → R and
(·, ·)Q : Q×Q → R, defined as

(u, v)V := (u, v)V + (û, v̂)V̂ and (p, w) := (p, w)Q + (p̂, ŵ)Q̂ ,

and norms ‖·‖V : V → R and ‖·‖Q : Q → R, defined as

‖u‖2V := (u, u)V and ‖p‖2V := (p, p)Q ,

with u, v ∈ V such that u = (u, û), v = (v, v̂) and p, w ∈ Q such that
p = (p, p̂), w = (w, ŵ). Finally we define the global space for the whole
problem

D := {z = (v, w) ∈ V ×Q} , (3.38)

which is an Hilbert space endowed with the inner product (·, ·)D : D ×D → R
and associated norm ‖·‖2D : D → R, defined as

(z, t)D := (v, u)V + (w, p)Q and ‖z‖2D := (z, z)D ,

with z = (v, w) ∈ D and t = (u, p) ∈ D.
We derive the weak formulation of Problem 3.3, starting with the differential
equation in the medium. Taking a test function w ∈ Q multiply and integrate
on Ωi the first equation of (3.31)

(∇·ui, w)Ωi
= (qi, w)Ωi

,

summing on all the domains Ωi for i = 1, 2 we have

(∇·u, w)Ω = (q, w)Ω .

Introducing the bilinear form b(·, ·) : V ×Q→ R and the functional Fq ∈ Q′

b(u, w) := −(∇·u, w)Ω and Fq (w) := (q, w)Ω , (3.39)

then the weak formulation of the first equation of (3.31) is

b(u, w) = −Fq (w) ∀w ∈ Q .

Taking a test function v ∈ V multiply and integrate on Ωi the second equation
of (3.31)(
K−1
i ui, v

)
Ωi

+ (∇pi, v)Ωi
− (qi, v)Ωi

=

=
(
K−1
i ui, v

)
Ωi
− (pi, ∇·v)Ωi

+ (pi, v · nΓ)Γ + (pi, v · ni)γ − (qi, v)Ωi
= 0 .

Summing the previous equation for i = 1, 2 and using the boundary conditions
(3.33) we obtain

(
K−1u, v

)
Ω
− (p, ∇·v)Ω + (p, v · nΓ)ΓN +

2∑
i=1

(pi, v · ni)γ = (q, v)Ω .
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Since n = n1 = −n2, using the relation JabKγ = JaKγ {{b}}γ + {{a}}γ JbKγ and the
coupling conditions for γ (3.32) we have

2∑
i=1

(pi, v · ni)γ =

∫
γ

JpvKγ · n =
(
JpKγ , {{v · n}}γ

)
γ

+
(
{{p}}γ , Jv · nKγ

)
γ

=

=
(
ηγ {{u · n}}γ , {{v · n}}γ

)
γ
−
(
d {{q · n}}γ , {{v · n}}γ

)
γ
+

+ ξ0

(
ηγ Ju · nKγ , Jv · nKγ

)
γ

+

(
d

4
Jq · nKγ , Jv · nKγ

)
γ

+
(
p̂, Jv · nKγ

)
γ
.

Introducing the bilinear forms a(·, ·) : V × V → R and d(·, ·) : V × Q̂ → R
and the functionals Fq ∈ V ′ as

a(u, v) :=
(
K−1u, v

)
Ω

+
(
ηγ {{u · n}}γ , {{v · n}}γ

)
γ
+

+ ξ0

(
ηγ Ju · nKγ , Jv · nKγ

)
γ
,

d(v, p̂) :=
(
p̂, Jv · nKγ

)
γ
, (3.40)

and

Fq (v) :=− (p, v · nΓ)ΓN + (q, v)Ω +
(
d {{q · n}}γ , {{v · n}}γ

)
γ
+

−
(
d

4
Jq · nKγ , Jv · nKγ

)
γ

,

then the weak formulation of the second equation of system (3.31) with the
coupling conditions on γ becomes

a(u, v) + b(v, p) + d(v, p̂) = Fq (v) ∀v ∈ V .

We derive the weak formulation of the equations in the fracture, taking a test
function ŵ ∈ Q̂ multiply and integrate on γ the third equation of (3.31) becomes

(∇τ · û, ŵ)γ −
(
Ju · nKγ , ŵ

)
γ

= (q̂, ŵ)γ ,

introducing the bilinear form b̂(·, ·) : V̂ × Q̂→ R and the functional F̂q̂ ∈ Q̂′

b̂(û, ŵ) := −(∇τ · û, ŵ)γ and F̂q̂ (ŵ) := (q̂, ŵ)γ , (3.41)

the weak formulation of the third equation of (3.31) reads

b̂(û, ŵ) + d(u, ŵ) = −F̂q̂ (ŵ) ∀ŵ ∈ Q̂ .

Taking a test function v̂ ∈ V̂ and integrating on γ, the fourth equation of (3.31)
becomes

(η̂û, v̂)γ + (∇τ p̂, v̂)γ − (q̂, v̂)γ =

= (η̂û, v̂)γ − (p̂, ∇τ · v̂)γ + (p̂, v̂ · nΓ)∂γ − (q̂, v̂)γ = 0 .
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Using the boundary conditions (3.33) and introducing the bilinear form â(·, ·) :

V̂ × V̂ → R and the functional F̂q̂ ∈ V̂ ′

â(û, v̂) := (η̂û, v̂)γ and F̂q̂ (v̂) := (q̂, v̂)γ −
(
p̂, v̂ · nΓ

)
∂γN

,

we obtain the weak formulation of the fourth equation of (3.31)

â(û, v̂) + b̂(v̂, p̂) = F̂q̂ (v̂) ∀v̂ ∈ V̂ .

We define the global bilinear forms for the medium and the fracture as α(·, ·) :
V × V → R, β(·, ·) : V ×Q → R and A(·, ·) : D ×D → R

α(u, v) := a(u, v) + â(û, v̂) ,

β(v, p) := b(v, p) + b̂(v̂, p̂) + d(v, p̂) ,

A [(u, p) , (v, w)] := α(u, v) + β(v, p)− β(u, w)

and the global functionals for the medium and the fracture as Fq ∈ V ′, Fq ∈ Q′
and F ∈ D′

Fq (v) := Fq (v) + F̂q̂ (v̂) and Fq (w) := −Fq (w)− F̂q̂ (ŵ) ,

F(v, w) := Fq (v) + Fq (w) .

Indicating with u := (u, û) ∈ V the Darcy velocity in the medium and in the
fracture, p := (p, p̂) ∈ Q the pressure in the medium and in the fracture we
introduce the following problem.

Problem 3.4 (Weak Formulation of Darcy Reduced Model). Under Assump-
tion 3.1, Assumption 3.2, Assumption 3.3 and Assumption 3.4 the weak formu-
lation of Problem 3.3 is: find (u, p) ∈ D such thatα(u, v) + β(v, p) = Fq (v) ∀v ∈ V ,

β(u, w) = Fq (w) ∀w ∈ Q ,

or alternatively

A [(u, p), (v, w)] = F(v, w) ∀(v, w) ∈ D .

In [57] the authors prove the following theorem of existence and uniqueness

Theorem 3.3 (Existence and uniqueness [57]). Assume that ξ0 > 0 then Prob-
lem 3.4 has a unique solution.

Lemma 3.4 (Global conservation of mass). Assume that qi ≡ 0 and q̂ ≡ 0 then
the solution u ∈ V of Problem 3.4 satisfies∫

∂A

u · nA = 0 ∀A ⊂ Ω ,

with A an open bounded measurable subset of Rn with Lipschitz boundary ∂A
and with outward unit normal nA.
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Figure 3.6: Example of domain A ⊂ Ω for n = 2.

Proof. If A ∩ γ = ∅ then the proof is trivial. Let assume that A ∩ γ 6= ∅ like in
Figure 3.6. Then we can divide A into two connected subset called A1 and A2

such that

A = A1 ∪A2 and Å1 ∩ Å2 = ∅ ,

thus γ = ∂A1∩∂A2. Taking u ∈ V solution of Problem 3.4 with w ≡ 1 we have∫
A

∇·u =

∫
A1

∇·u1 +

∫
A2

∇·u2 +

∫
γ

∇τ · û =

∫
γ

Ju · nKγ . (3.42)

Then since ui is solution of Problem 3.4 in Ai we have∫
Ai

∇·ui =

∫
∂Ai\γ

ui · nA +

∫
γ

ui · ni ,

furthermore û is solution of Problem 3.4 in γ we obtain∫
γ

∇τ · û =

∫
∂γ

û · nA .

Hence we have∫
A

∇·u =

2∑
i=1

∫
∂Ai\γ

ui · nA +

∫
∂γ

û · nA +

∫
γ

Ju · nKγ ,

finally using the above relation with (3.42) we obtain the result.

3.2 Single-phase Darcy equation with
intersection

In nature macro or micro fractures can intersect, we want to extend the model
introduced previously to take into account this configuration. Let us consider
the sketch of an intersection between fractures illustrated in Figure 3.7.
The two fractures Ωf1 and Ωf2 are identified by the two lines γ1 and γ2. We will
indicate with s1 and s2 the curvilinear coordinate along γ1 and γ2, respectively.
The intersection point ip has curvilinear coordinate sip,1 and sip,2 respectively
on γ1 and γ2. The physical fracture intersect in a region of the plane I which
is modelled as a quadrilateral. In the reduced model we assume that the fluxes
û1 and û2 along fractures and the pressure p̂1 and p̂2 are discontinuous at
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Figure 3.7: Example of a bi-dimensional domain with two fractures intersecting once and
the corresponding reduced model.

the intersection point ip. We denote with p̂I the value of the pressure at the
intersection point. We set for i = 1, 2

ûi,1 := lim
si→s−ip,i

ûi , ûi,2 := lim
si→s+ip,i

ûi ,

p̂i,1 := lim
si→s−ip,i

p̂i , p̂i,2 := lim
si→s+ip,i

p̂i ,

more over we set

JaiKip := ai,1 − ai,2 and {{ai}}ip :=
ai,1 + ai,2

2
.

We start the derivation of new coupling conditions from the following requests.
For the sake of simplicity we consider here only the case n = 2.

Assumption 3.5 (Intersecting fractures). We require:

1. the problem is composed by two different fractures, for each fracture we as-
sume that Assumption 3.1 is valid and we indicate quantities of a fracture
with an additional subscript. See Figure 3.8 for an example;

Ω1

Ω3

Ω4

Ω2

n1,2

n1,1

n2,2

d2 d1

n2,1

Ωf2
γ2,2

I

γ2,1

Ωf1

γ1,2

γ1,1

γ2

γ1

Figure 3.8: Example of a bi-dimensional domain with two fractures intersecting once.

2. we define

∂γN :=

2⋃
i=1

∂γNi , and ∂γE :=

2⋃
i=1

∂γEi ;

3. the intersection area involves two different fractures Ωf1 and Ωf2 and

I := Ωf1
∩ Ωf2

,

is a connected subset with boundary ∂I. Using Assumption 3.1-2 the
domain Ω is thus divided into four disjoint parts, see Figure 3.8 for a
schematic example;
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4. we assume that I can be modelled as a quadrilateral with parallel sides. The
thickness di of each fracture Ωfi does not change inside the intersecting
region I. We introduce

d∗i :=
di

sin θ
=

di√
1− (τ1 · τ2)

2
,

see Figure 3.9 for an example. We can write the intersecting region I as

I =

{
x ∈ Ω : x = ip + x1τ1 + x2τ2, xi ∈

(
−
d∗j
2
,
d∗j
2

)
for i 6= j = 1, 2

}
,

furthermore

|I| = d∗1d
∗
2 |sin θ| = d∗1d

∗
2

√
1− (τ1 · τ2)

2
=

d1d2√
1− (τ1 · τ2)

2
;

I d1

∂I1,2∂I1,1τ1

n1

γ1

θ

d1d∗1

Figure 3.9: Example of a bi-dimensional intersection between two fractures.

5. we can partition the boundary ∂I into four disjoint pieces ∂Ii,j, for i, j =
1, 2, such that

∂Ii,1 ∪ ∂Ii,2 = ∂I ∩ Ωfi ∀i = 1, 2 ,

see Figure 3.9 for an example. Furthermore we assume that each ∂Ii,j can
be approximated by a straight line;

6. the permeability tensor in the intersection KI , which fulfils Assumption 3.2-
2, is constant;

7. we assume Assumption 3.2-1 for the scalar source qI , i.e. qi ∈ L2 (I);

8. the domain I is “smaller” than each Ωi for i = 1, . . . , 4, i.e.

diam (Ωi)� diam (I) for i = 1, . . . , 4 .

With this assumption we can identify I with its centre point if n = 2 or its
centre line if n = 3 defined as ip := γ1∩γ2, which divides each fracture into two
disjoint parts

γ̊j = γ̊j1 ∪ ip ∪ γ̊j2 for j = 1, 2 .
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We need now to find proper matching conditions for the reduced models at point
ip. First of all let us note that the mass conservation implies

2∑
k=1

Jûk · τkKip = 0 ,

since we neglect the contribution of the source term in I. The momentum
equation of the Darcy model implies that

−K−1
I uI = ∇pI in I . (3.43)

The coupling conditions (3.6) still hold if we consider each piece of the bound-
ary of the intersection. To derive the first coupling condition we integrate the
previous equation on I and we assume∫

∂Ii,j

uI ≈ ûi,j and
1

d∗i

∫
∂Ii,j

pI ≈ p̂i,j . (3.44)

We approximate the integral involving the velocity uI by the trapezium rule for
each fracture, then using the definition (3.10) and Assumption 3.5-6 we find

−
∫
I

K−1
I uI = −K−1

I

∫
I

uI ≈ −K−1
I

|I|
2

2∑
i=1

ûi,1 + ûi,2
d∗i

=

= −K−1
I |I|

2∑
i=1

1

d∗i
{{ûi}}ip . (3.45)

Furthermore the integral of the pressure pI in the intersection becomes∫
I

∇pI =

∫
∂I

pIn∂I = n2

∫
∂I1,2

pI − n2

∫
∂I1,1

pI + n1

∫
∂I2,2

pI − n1

∫
∂I2,1

pI ≈

≈ (p̂1,2 − p̂1,1)n2d
∗
1 + (p̂2,2 − p̂2,1)n1d

∗
2 = − Jp̂1Kip n2d

∗
1 − Jp̂2Kip n1d

∗
2 (3.46)

Hence using the relations (3.45) and (3.46), equation (3.43) becomes

K−1
I |I|

2∑
i=1

1

d∗i
{{ûi}}ip = Jp̂1Kip n2d

∗
1 + Jp̂2Kip n1d

∗
2 ,

multiplying the above relation by τ1, or equivalently by τ2, and using the iden-
tity d1 = d∗1n2 ·τ1 we obtain a reduced model for the intersection valid for j = 1
and 2

τ>j ·K−1
I

|I|
dj

2∑
i=1

1

d∗i
{{ûi}}ip = Jp̂jKip in ip . (3.47)

Assumption 3.6 (Orthogonal fractures). The two fractures γ1 and γ2 are or-
thogonal and the permeability tensor is diagonal, namely

K−1
I =

[
ηγ1

/d1 0
0 ηγ2/d2

]
.

With these requirements the relations (3.44) are exact.
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Under Assumption 3.6 the reduced model (3.47) can be simplified, for i, j = 1, 2
and i 6= j, as

ηγi
dj
{{ûj · τj}}ip = Jp̂jKip in ip . (3.48)

In this relation, very similar to (3.19), the jump of the pressure depends on the
permeability of the other fracture i which can act as a barrier or a preferential
path for the current fracture j. Furthermore decreasing the thickness of the
fracture j the pressure jump increases, while increasing the thickness of the
other fracture i the pressure jump decreases, and this is physically correct.
Defining the pressure in the intersection region p̂I as

τ1

n1

τ2

n2

ip γ1

∂I1,1 ∂I1,2

∂I2,2
x2

∂I2,1
x1γ2

Figure 3.10: Example of a bi-dimensional intersection between two fractures.

p̂I :=
1

|I|

∫
I

pI , (3.49)

we use the same arguments as in subsection 3.1.4 to close the system. For
each fracture j in the first transversal section, see Figure 3.10 for an example,
we approximate the value of the pressure in the intersection point ip by the
following Taylor expansion

pfj (ip) = pI (x1) +
d∗j
2
∇pI (θ1) · τi i 6= j , (3.50)

where θ1 = ip − ξ1
d∗j
2
τi and ξ1 ∈ [0, 1]. In the second transversal section we

approximate the value of the pressure in the intersection point ip by

pfj (ip) = pI (x2)−
d∗j
2
∇pI (θ2) · τi i 6= j , (3.51)

where θ2 = ip+ξ2
d∗j
2
τi and ξ2 ∈ [0, 1]. Using the relation (3.6) we find pI (xk) =

pfi |∂Ii,k , for k = 1, 2 and with (3.43) equations (3.50) and (3.51) become

pfj (ip) = pi|∂Ii,1 −
d∗j
2
τ>i ·K−1

I uI(θ1) ,

pfj (ip) = pi|∂Ii,2 +
d∗j
2
τ>i ·K−1

I uI(θ2) .
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The values of uI in θk for k = 1, 2 are unknown, therefore using (3.6) we express
them by the following combination

uI (θ1) = ξ1 ui|∂Ii,1 + (1− ξ1) ui|∂Ii,2 +
1

2
uj |∂Ij,1 +

1

2
uj |∂Ij,2 for ξ1 ∈ [0, 1] ,

uI (θ2) = ξ2 ui|∂Ii,2 + (1− ξ2) ui|∂Ii,1 +
1

2
uj |∂Ij,1 +

1

2
uj |∂Ij,2 for ξ2 ∈ [0, 1] .

Using the previous expression the pressure of the fracture j in the intersection
becomes

pfj (ip) = pi|∂Ii,1 −
d∗j
2
τ>i ·K−1

I

[
ξ1 ui|∂Ii,1 + (1− ξ1) ui|∂Ii,2 +

+
1

2
uj |∂Ij,1 +

1

2
uj |∂Ij,2

]
,

and

pfj (ip) = pi|∂Ii,2 +
d∗j
2
τ>i ·K−1

I

[
ξ2 ui|∂Ii,2 + (1− ξ2) ui|∂Ii,1 +

+
1

2
uj |∂Ij,1 +

1

2
uj |∂Ij,2

]
.

Integrating the above relations in I and using the midpoint rule to approximate
(3.49) we find

p̂I |I| ≈ d∗i dj p̂i,1 −
d∗j
2
τ>i ·K−1

I

[
dj {{ûi}}ip + di {{ûj}}ip + dj

(
ξ1 −

1

2

)
JûiKip

]
,

p̂I |I| ≈ d∗i dj p̂i,2 +
d∗j
2
τ>i ·K−1

I

[
dj {{ûi}}ip + di {{ûj}}ip − dj

(
ξ2 −

1

2

)
JûiKip

]
.

Using the coupling condition (3.47)

p̂I = p̂i,1 −
dj
di

1

2
τ>i ·K−1

I

[
{{ûi}}ip +

di
dj
{{ûj}}ip +

(
ξ1 −

1

2

)
JûiKip

]
=

= p̂i,1 −
1

2
Jp̂iKip −

dj
di

(2ξ1 − 1)

4
τ>i ·K−1

I JûiKip =

= {{p̂i}}ip −
dj
di

(2ξ1 − 1)

4
τ>i ·K−1

I JûiKip ,

and

p̂I = {{p̂i}}ip −
dj
di

(2ξ2 − 1)

4
τ>i ·K−1

I JûiKip .

The pressure p̂I is single value thus ξ1 = ξ2 = ξ. In conclusion the second
coupling condition is

ξ̂0
dj
di
τ>i ·K−1

I JûiKip = {{p̂i}}ip − p̂I in ip , (3.52)

with ξ̂0 := (2ξ−1)/4. Furthermore using Assumption 3.6 we obtain the following
simplified relation

ξ̂0
ηγj
di

Jûi · τiKip = {{p̂i}}ip − p̂I in ip , (3.53)
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Using Assumption 3.5, hence approximating the domain Ω reported in Figure 3.8
to the domain in Figure 3.11, then Problem 3.2 written for each fracture coupled
with (3.47) and (3.52) forms the reduced model with intersections summarized
in the following problem.

Problem 3.5 (Reduced Model for Darcy Equation with Intersection). Under
Assumption 3.5, the reduced problem for the Darcy system of equation with two
fractures intersecting once is: find the Darcy velocity and the pressure associated
to the porous matrix, respectively ui and pi for i = 1, . . . , 4, the reduced Darcy
velocity and reduced pressure associated to each fracture, respectively ûj and p̂j
for j = 1, 2 and the reduced pressure associated to the intersection point p̂I ,
which satisfy the following system of partial differential equations

∇·ui = qi in Ωi,

K−1
i ui +∇pi = 0 in Ωi,

∇τj · ûj = q̂j + Ju · njKγj on γj,

η̂jûj +∇τj p̂j = 0 on γj,

(3.54)

coupled with the interface conditions for the matrix-fracture system for j = 1, 2ξ0jηγj Ju · njKγj = {{p}}γj − p̂j

ηγj {{u · nj}}γj = JpKγj
on γj , (3.55)

and the coupling conditions for the fracture-fracture system for i 6= j = 1, 2

τ>j ·K−1
I

|I|
dj

2∑
i=1

1

d∗i
{{ûi}}ip = Jp̂jKip

ξ̂0
dj
di
τ>i ·K−1

I JûiKip = {{p̂i}}ip − p̂I

2∑
k=1

Jûk · τkKip = 0

in ip , (3.56)

and with the boundary conditions on ∂Ω for i, j = 1, 2

pi = pi on ΓNi ,

ui · nΓ = ui on ΓEi ,

p̂j = p̂j on ∂γNj ,

ûj · τj = ûj · τj on ∂γEj .

3.2.1 Weak formulation

We derive the weak formulation of the global reduced Problem 3.5 and for the
sake of simplicity we require ui = 0 for i = 1, . . . , 4 and ûj ·τj = 0, for j = 1, 2 or
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Figure 3.11: Example of the reduced bi-dimensional domain with two fractures intersecting
once, from the original domain presented in Figure 3.8.

ΓE = ∅, otherwise a lifting technique should be used. Furthermore to simplify
the derivation of the weak formulation we assume Assumption 3.6. Indicating
with

γj :=
2⋃
k=1

γj,k , γ :=
2⋃
j=1

γj and D :=
4⋃
i=1

Ωi ,

then we consider the functional space defined in (3.35) for i = 1, . . . , 4. We
introduce the broken functional space V : D → Rn

V :=
{
v : D → Rn : v|Ωi ∈ Vi for i = 1, . . . , 4

}
, (3.57)

which is an Hilbert space endowed with the inner product (·, ·)V : V ×V → R
and associated norm ‖·‖V : V → R, defined as

(u, v)V :=

4∑
i=1

(ui, vi)Vi and ‖u‖2V :=

4∑
i=1

‖ui‖2Vi .

Analogously the broken space Q : D → R

Q :=
{
w : D → R : w|Ωi ∈ Qi for i = 1, . . . , 4

}
, (3.58)

which is an Hilbert space with internal product (·, ·)Q : Q × Q → R and
associated norm ‖·‖Q : Q→ R, defined as

(p, w)Q :=

4∑
i=1

(pi, wi)Qi and ‖p‖2Q :=

4∑
i=1

‖pi‖2Qi .

Note that V and Q may be identified with a subset of
[
L2 (Ω)

]n
and L2 (Ω),

respectively since

γ =

4⋂
i=1

∂Ωi \ {ip}

is a set of zero Lebesgue measure in Rn. Thus we will indicate for a v ∈ Q

‖v‖2L2(Ω) =

4∑
i=1

∫
Ωi

v2
i =

∫
Ω

v2 ,
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where it is understood that v has been extended to the whole Ω. Analogously
we define the L2 (Ω) norm of an element of V . Considering the space VΩ in
(3.36) then for a v ∈ VΩ there is a unique v ∈ V such that for i = 1, . . . , 4 and
j = 1, 2

v|Ωi = v|Ωi and Jv · njKγj = 0 .

Analogously, considering the space QΩ in (3.36), for each p ∈ QΩ there exist a
unique p ∈ V such that for i = 1, . . . , 4 and j = 1, 2

p|Ωi = p|Ωi and JpKγj = 0 .

We consider also the functional spaces for the problem in each fractures: on
each γj we consider a space of vector functions living in the tangent space, that
is

V̂j,k :=
{
v̂ : γj,k → Rn, v̂ ∈

[
L2 (γj,k)

]n
: v̂ · nj = 0,

∇τj · v̂ ∈ L2 (γj,k) and < v̂ · nΓ , v >= 0∀v ∈ H1
0,∂γNj

(γj)
}
,

and the space of scalar functions living in the tangent space

Q̂j,k :=
{
ŵ : γj,k → R, ŵ ∈ L2 (γj,k) : ∇nj ŵ = 0 and ∇τj ŵ ∈

[
L2 (γj,k)

]n}
.

Both spaces are Hilbert spaces endowed with inner products (·, ·)V̂j,k : V̂j,k ×
V̂j,k → R and (·, ·)Q̂j,k : Q̂j,k × Q̂j,k → R, defined as

(û, v̂)V̂j,k := (û, v̂)γj,k +
(
∇τj · û, ∇τj · v̂

)
γj,k

,

(p̂, ŵ)Q̂j,k := (p̂, ŵ)γj,k +
(
∇τj p̂, ∇τj ŵ

)
γj,k

,

and norms ‖·‖V̂j,k : V̂j,k → R and ‖·‖Q̂j,k : Q̂j,k → R, defined as

‖v̂‖2V̂j,k := (v̂, v̂)V̂j,k and ‖ŵ‖2Q̂j,k := (ŵ, ŵ)Q̂j,k .

We will also use the broken space for vector value function on each piece of the
fractures V̂j : γj → Rn

V̂j :=
{
v̂ : γj → Rn : v̂k := v̂|γj,k ∈ V̂j,k

}
,

which is an Hilbert space endowed with inner product (·, ·)V̂j : V̂j × V̂j → R
and associated norm ‖·‖V̂j : V̂j → R, defined as

(û, v̂)V̂j :=

2∑
k=1

(ûk, v̂k)V̂j,k and ‖û‖2V̂j :=

2∑
k=1

‖ûk‖2V̂j,k .

Analogously the broken space Q̂j : γj → R

Q̂j :=
{
ŵ : γj → R : ŵk := ŵ|γj,k ∈ Q̂j,k

}
,
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which is an Hilbert space endowed with inner product (·, ·)Q̂j : Q̂j × Q̂j → R
and associated norm ‖·‖Q̂j : Q̂j → R, defined as

(p̂, ŵ)Q̂j :=

2∑
k=1

(p̂k, ŵk)Q̂j,k and ‖p̂‖2Q̂j :=

2∑
k=1

‖p̂k‖2Q̂j,k .

Note that V̂j and Q̂j may be identified with a subset of
[
L2 (γj)

]n
and L2 (γj),

respectively since ip is a set of zero Lebesgue measure in Rn−1. Thus we will

indicate for a v ∈ Q̂j

‖v‖2L2(γj)
=

2∑
k=1

∫
γj,k

v2
k =

∫
γj

v2 ,

where it is understood that v has been extended to the whole γj . Analogously we

define the L2 (γj) norm of an element of V̂j . Note that the normal component
v · nj of a function v ∈ V is discontinuous across γj and a function v̂ ∈
V̂j is discontinuous across ip. We define also the global space for the Darcy
velocity and the global space for the pressure including the reduce pressure at
the interface I

V :=
{

v = (v, v̂1, v̂2) ∈ V × V̂1 × V̂2

}
,

Q :=
{

w = (w, ŵ1, ŵ2, c) ∈ Q× Q̂1 × Q̂2 × R
}
,

equipped with scalar products (·, ·)V : V × V → R and (·, ·)Q : Q × Q → R,
defined as

(u, v)V := (u, v)V +

2∑
j=1

(ûj , v̂j)V̂j ,

(p, w)Q := (p, w)Q +

2∑
j=1

(p̂j , ŵj)Q̂j + c1c2

with p = (p, p̂1, p̂2, c1) ∈ Q and similarly for w. The associated norms ‖·‖V :
V → R and ‖·‖Q : Q → R, defined as

‖v‖2V := (v, v)V and ‖w‖2Q := (w, w)Q .

With this definition of V and Q, we finally introduce the global space D for the
problem as in (3.38).
The derivation of the weak formulation for the first two equation of (3.54) is
similar to the one presented in the section 2.3, but in this case we do not use
the hybridization procedure leaving the system in the mixed form.
Taking a test function w ∈ Q and integrating in Ωi the first equation of (3.54)
becomes for i = 1, . . . , 4

(∇·ui, w)Ωi
= (qi, w)Ωi

∀w ∈ Q ,

then sum on all the domains Ωi for i = 1, . . . , 4 we find

(∇·u, w)Ω = (q, w)Ω ∀w ∈ Q .
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Introducing the bilinear form b(·, ·) : V ×Q → R and the functional Fq ∈ Q′,
defined as

b(u, w) := −(∇·u, w)Ω and Fq (w) := (q, w)Ω ,

the weak formulation of the first equation of (3.54) is

b(u, w) = −Fq (w) ∀w ∈ Q . (3.59)

Taking a test function v ∈ V and integrating in Ωi the second equation of (3.54)
reads for i = 1, . . . , 4(
K−1
i ui, v

)
Ωi

+ (∇pi, v)Ωi
=
(
K−1
i ui, v

)
Ωi
− (pi, ∇·v)Ωi

+ (pi, v · nΓ)Γi
+

+

2∑
j=1

(pi, v · nj,i)γj∩∂Ωi
= 0 ∀v ∈ V .

Summing the previous equation on all the domains Ωi for i = 1, . . . , 4 and using
the boundary condition we obtain(

K−1u, v
)

Ω
− (p, ∇·v)Ω + (p, v · nΓ)ΓN+

+

4∑
i=1

2∑
j=1

(pi, v · nj,i)γj∩∂Ωi
= 0 ∀v ∈ V .

Since nj = nj,1 = −nj,2 for j = 1, 2, using the relation JabKγj = JaKγj {{b}}γj +

{{a}}γj JbKγj and the coupling conditions for γj (3.55), the last integral becomes

4∑
i=1

2∑
j=1

(pi, v · nj,i)γj∩∂Ωi
=

2∑
j=1

∫
γj

JpvKγj · nj =

2∑
j=1

(
JpKγj , {{v · nj}}γj

)
γj

+

+
(
{{p}}γj , Jv · njKγj

)
γj

=

2∑
j=1

(
ηγj {{u · nj}}γj , {{v · nj}}γj

)
γj

+

+
(
p̂j , Jv · njKγj

)
γj

+ ξ0j

(
ηγj Ju · njKγj , Jv · njKγj

)
γj
.

We finally obtain

(
K−1u, v

)
Ω
− (p, ∇·v)Ω +

2∑
j=1

(
ηγj {{u · nj}}γj , {{v · nj}}γj

)
γj

+

+ ξ0j

(
ηγj Ju · njKγj , Jv · njKγj

)
γj

+
(
p̂j , Jv · njKγj

)
γj

=

= −(p, v · nΓ)ΓN ∀v ∈ V .

Introducing the bilinear forms a(·, ·) : V × V → R and d(·, ·) : V × Q̂j → R
and functionals

a(u, v) :=
(
K−1u, v

)
Ω

+

2∑
j=1

(
ηγj {{u · nj}}γj , {{v · nj}}γj

)
γj

+

+ ξ0j

(
ηγj Ju · njKγj , Jv · njKγj

)
γj
,

d(v, p̂j)γj :=
(
p̂j , Jv · njKγj

)
γj

and Fq (v) := −(p, v · nΓ)ΓN ,
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then the weak formulation of the second equation of system (3.54) together with
the coupling conditions on γi becomes

a(u, v) + b(v, p) +

2∑
j=1

d(v, p̂j) = Fq (v) ∀v ∈ V . (3.60)

We derive the weak formulation of the equations in the fractures, i.e. the third
and fourth equation of (3.54). Taking a test function ŵ ∈ Q̂j and integrating
on γj,k for k, j = 1, 2, the third equation of (3.54) becomes(

∇τj · ûj , ŵ
)
γj,k
−
(
Ju · njKγj , ŵ

)
γj,k

= (q̂j , ŵ)γj,k ∀ŵ ∈ Q̂j ,

then summing for k = 1, 2 we find for j = 1, 2(
∇τj · ûj , ŵ

)
γj
−
(
Ju · njKγj , ŵ

)
γj

= (q̂j , ŵ)γj ∀ŵ ∈ Q̂j .

Introducing the bilinear from b̂j(·, ·) : V̂j × Q̂j → and the functional F̂q̂,j ∈ Q̂′j ,
defined as

b̂j(ûj , ŵ) := −
(
∇τj · ûj , ŵ

)
γj

and F̂q̂,j (ŵ) := (q̂j , ŵ)γj ,

the weak formulation of the third equation of (3.54) reads for j = 1, 2

b̂j(ûj , ŵ) + d(u, ŵ) = −F̂q̂,j (ŵ) ∀ŵ ∈ Q̂j . (3.61)

Taking a test function v̂ ∈ V̂j and integrating on γj,k for k, j = 1, 2, the fourth
equation of (3.54) becomes

(η̂jûj , v̂)γj,k +
(
∇τj p̂j , v̂

)
γj,k

=(η̂jûj , v̂)γj,k −
(
p̂j , ∇τj · v̂

)
γj,k

+

+ (p̂j , v̂ · τj)∂γj,k = 0 ∀v̂ ∈ V̂j .

Summing the previous equations for k = 1, 2 and using the boundary conditions
with nΓ ≈ τj , we find for j = 1, 2

(η̂jûj , v̂)γj −
(
p̂j , ∇τj · v̂

)
γj

+ Jp̂j v̂Kip · τj = − p̂j v̂
∣∣
∂γNj
· nΓ ∀v̂ ∈ V̂j .

The term with the jump operator can be decomposed using the interface con-
ditions on ip (3.56) for j = 1, 2

Jp̂j v̂Kip · τj = Jp̂jKip {{v̂}}ip · τj + {{p̂j}}ip Jv̂Kip · τj =

=
ηγi
dj
{{ûj · τj}}ip {{v̂ · τj}}ip + ξ̂0

ηγi
dj

Jûj · τjKip Jv̂ · τjKip + p̂I Jv̂ · τjKip ,

then we find for j = 1, 2

(η̂jûj , v̂)γj −
(
p̂j , ∇τj · v̂

)
γj

+
ηγi
dj
{{ûj · τj}}ip {{v̂ · τj}}ip + p̂I Jv̂ · τjKip

+ ξ̂0
ηγi
dj

Jûj · τjKip Jv̂ · τjKip = − p̂j v̂
∣∣
∂γNj
· nΓ ∀v̂ ∈ V̂j .
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Introducing the bilinear forms âj(·, ·) : V̂j × V̂j → R and d̂j(·, ·) : V̂j ×R→ R
and the functional F̂q̂,j ∈ V̂ ′j , defined as

âj(ûj , v̂) :=(η̂jûj , v̂)γj +
ηγi
dj
{{ûj · τj}}ip {{v̂ · τj}}ip +

+ ξ̂0
ηγi
dj

Jûj · τjKip Jv̂ · τjKip ,

d̂j(v̂, p̂I) :=p̂I Jv̂ · τjKip and F̂q̂,j (v̂) := − p̂j v̂
∣∣
∂γNj
· nΓ ,

we obtain the weak formulation of the fourth equation of (3.54) for j = 1, 2

âj(ûj , v̂) + b̂j(v̂, p̂j) + d̂j(v̂, p̂I) = F̂q̂,j (v̂) ∀v̂ ∈ V̂j . (3.62)

The weak formulation of the coupling condition of the two fractures at the
intersection point ip, i.e. the third equation of (3.56), is

2∑
j=1

ŵI Jûj · τjKip = 0 ∀ŵI ∈ R .

Using the definition of the bilinear form d̂j we obtain

2∑
j=1

d̂j(ûj , ŵI) = 0 ∀ŵI ∈ R . (3.63)

Defining the global bilinear forms for the medium and the fractures as α(·, ·) :
V × V → R, β(·, ·) : V ×Q → R and A(·, ·) : D ×D → R

α(u, v) :=a(u, v) +

2∑
j=1

âj(ûj , v̂) ,

β(v, p) :=b(v, p) +

2∑
j=1

b̂j(v̂, p̂j) + d(v, p̂j) + d̂j(v̂, p̂I) ,

A [(u, p), (v, w)] :=α(u, v) + β(v, p)− β(u, w)

and the global functionals for the medium and the fractures as Fq ∈ V ′, Fq ∈ Q′
and F ∈ D′

Fq (v) :=Fq(v) +

2∑
j=1

F̂q̂,j (v̂j) , Fq (w) := −Fq(w)−
2∑
j=1

F̂q̂,j (ŵj) ,

F(v, w) :=Fq (v) + Fq (w) ,

with u := (u, û1, û2) ∈ V the Darcy velocity in the medium and in each
fracture, p := (p, p̂1, p̂2, p̂I) ∈ Q the pressure in the medium, in each fracture
and in the intersection point ip, therefore using the equations (3.59), (3.60),
(3.61), (3.62) and (3.63) we obtain the following problem.

Problem 3.6 (Weak Formulation of Darcy Reduced Model with Intersection).
The weak formulation of Problem 3.5 is: find (u, p) ∈ D such thatα(u, v) + β(v, p) = Fq (v) ∀v ∈ V ,

β(u, w) = Fq (w) ∀w ∈ Q ,
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or alternatively

A [(u, p), (v, w)] = F(v, w) ∀(v, w) ∈ D .

3.2.2 Enriched finite elements spaces

To introduce the enriched finite elements spaces for the discrete formulation of
the system presented in Problem 3.6 we consider a family of regular tessellation
Th such that

Ω ≈ Th :=
⋃
j

Kj and ∂Th := {e ∈ ∂K, K ∈ Th} ,

with h the largest diameter of elements of Th and Kj a generic triangle, moreover
∂Th is the collection of all the edges in the triangulation. For each fracture i we
introduce a family of regular tessellation γĥ,i such that

γi ≈ γĥ,i :=
⋃
j

lj ,

with ĥ the maximum length of the segments of γĥ,i and lj a generic segment.
Note that Th may not be conformal with γĥ,i, since elements of Th may be cut
by γĥ,i as reported in Figure 3.12. Also element of γĥ,1 may not be conformal
with elements of γĥ,2.

�
�
�
�

γ1

Ω

Th
γ2

ip

Figure 3.12: Example of a bi-dimensional triangulation Th of Ω crossed by two intersecting
fractures.

To introduce the enriched finite elements spaces we require the following as-
sumptions, pointing out also when there are present more then two fractures
and more then one intersection point.

Assumption 3.7. We suppose the following properties for Th and γĥ,i, for
i = 1, 2

1. the bi-dimensional mesh Th is composed by triangles and is regular, i.e. it
satisfies (2.40);

2. if a fracture intersect a triangle K ∈ Th then it intersect exactly two edges.
Situations reported in Figure 3.13 are excluded;
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K

γ

K

γ

Figure 3.13: Example of not allowed crossings between fracture γ and triangle K.

3. for the sake of simplicity we suppose that at most two fractures cross inside
a triangle K ∈ Th;

4. the intersection point ip of two fractures belongs to the interior of a triangle

ip ∈ K̊, for K ∈ Th. The fracture meshes may intersect each other in a
non-conforming way. If they intersect more then once, the intersection
points belongs to different triangles, the situation in Figure 3.14 is not
allowed;

��
��
��
�� ����

K

γ2

γ1

Figure 3.14: Example of multiple intersections in a triangle not allowed.

5. we approximate the curve γi describing the fracture i by its piecewise
rectilinear interpolation γ̃i, each piece belonging to a triangle, see Fig-
ure 3.15 for an example. Therefore the mono-dimensional meshes γĥ,i is
constructed on γ̃i by segments, for i = 1, 2.

γ̃
γ

Figure 3.15: Example of the interpolation γ̃ of the fracture γ, in 2D.

6. let γĥ,i, for i = 1, 2 be the straight line segment connecting the points of

intersection between γi and ∂K. We assume that γi|K is a function of
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length on γĥ,i. In particular, in local coordinates (s, t) we have

γĥ,i =
{

(s, t) : 0 < s <
∣∣∣γĥ,i∣∣∣ , t = 0

}
,

γi|K =
{

(s, t) : 0 < s <
∣∣∣γĥ,i∣∣∣ , t = δ(s)

}
,

where δi is positive in the direction of ni, i.e.

ni (s) =
(−δ′i (s) , 1)

>(
δ′i (s)

2
+ 1
)2 ,

in local coordinates. This hypotheses is fulfilled on sufficiently small mesh-
es if γi has bounded curvature. Assumption taken from [24].

Thanks to the above assumptions, we report in Figure 3.16 situations that are
allowed.

γK1

K2

K1

γ2

K2

K3

γ1 K1

K4

K2

γ2

γ1

K3

Figure 3.16: Example of possible intersections of a triangle and the system of fractures.

We denote by for i = 1, 2

Gh,i := {K ∈ Th : K ∩ γi 6= ∅ ∧K ∩ γj = ∅, j 6= i} ,

the collection of elements that are crossed only by fracture i, while we denote
by

Mh := {K ∈ Th : K ∩ γi 6= ∅ ∧K ∩ γj 6= ∅ ∧ γi ∩ γj = ∅, j 6= i} ,

the set of elements that are crossed by the two fractures, but the fractures do
not intersect each other. We define also the set

Ih := {K ∈ Th : γi ∩ γj ∈ K, j 6= i} ,

which is the collection of elements that contain an intersection point. Finally
we introduce

CRh :=Mh ∪ Ih ∪
2⋃
i=1

Gh,i and Nh := Th \ CRh ,

which are the cut region and the collection of elements in Th not crossed by any
fracture, respectively; see Figure 3.17 for an example. For finite elements with
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γ1

Ω

γ2

Nh

Gh,1

Gh,2

Mh

Ih

Figure 3.17: Example of subdivision of Th in Gh,1, Gh,2,Mh, Ih and Nh, in a bi-dimensional
domain Ω.

degrees of freedom defined on the edges of a triangle, it is useful to define the
following sets for i = 1, 2

∂Ih := {e ∈ ∂K, K ∈ Ih} , ∂Mh := {e ∈ ∂K, K ∈Mh} \ ∂Ih ,

∂Gh,i := {e ∈ ∂K, K ∈ Gh,i} \ ∂Mh , ∂Nh := {e ∈ ∂K, K ∈ Nh} \
2⋃
i=1

∂Gh,i .

We split also the mesh of the fractures into intersected elements and non inter-
sected elements, in particular we define for i = 1, 2

Cĥ,i :=
{
l ∈ γĥ,i : l ∩ ip 6= ∅

}
and Bĥ,i := γĥ,i \ Cĥ,i ,

see Figure 3.18 for an example.

ip

γĥ,1

γĥ,2

Bĥ,1

Bĥ,2

Cĥ,1

Cĥ,2

Figure 3.18: Example of subdivision of γĥ,i in Cĥ,i and Bĥ,i, for i = 1, 2, in the triangle K.

As done previously we introduce the following sets of points

∂Bĥ,i :=
{
p ∈ ∂l, l ∈ Bĥ,i

}
and ∂Cĥ,i :=

{
p ∈ ∂l, l ∈ Cĥ,i

}
\ ∂Bĥ,i .

In our applications, to numerically solve Problem 3.6 with finite elements it is
common to choose the (RT0, P0) pair, which is locally conservative and robust
with respect to the heterogeneity of the coefficients [64]. For these reasons
we choose RT0 finite elements to approximate the Darcy velocity, both in the
medium and in the fractures, while P0 finite elements are used to approximate
the pressure, both in the medium and in the fractures. To account for the
presence of fractures and coupling terms we have to enrich the standard RT0
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and P0 spaces with additional base functions. Following the idea presented in
[24] we handle discontinuous functions where the jump is inside an element. In
particular the solution in K ∈ Gh,i, for i = 1, 2, can be discontinuous once, the
solution in K ∈ Mh is discontinuous two times, while the solution in K ∈ Ih
is discontinuous three times and finally the solution K ∈ Nh have no jumps.
To this purpose we enrich the finite elements space by doubling the degrees
of freedom in each element K ∈ Gh,i for i = 1, 2, three times in each element
K ∈ Mh and four times in each element K ∈ Ih. A similar enrichment have
to be done for the fractures, in particular we double the base functions in each
element l ∈ Cĥ,i for i = 1, 2 to allow jumps for both the velocity and the pressure.
We introduce the following enriched finite elements spaces for the medium

R̃T0 (Th) := RT0 (Nh)⊕
2⋃

k,j=1

RT0 (Gh,k)⊕
3⋃

m=1

RT0 (Mh)⊕
4⋃
l=1

RT0 (Ih) ,

P̃0 (Th) := P0 (Nh)⊕
2⋃

k,j=1

P0 (Gh,k)⊕
3⋃

m=1

P0 (Mh)⊕
4⋃
l=1

P0 (Ih) .

A function vh ∈ R̃T0 (Th) can be expanded using the base functions of R̃T0 (Th)

vh (x) =
∑

e∈∂Nh

ve,1ψe (x) +

2∑
i,k=1

∑
e∈∂Gh,k

ve,i ψe (x)|Ki +

+

3∑
m=1

∑
e∈∂Mh

ve,m ψe (x)|Km +

4∑
l=1

∑
e∈∂Ih

ve,l ψe (x)|Kl , (3.64)

where Ki, Km and Kl are the sub-divisions in two, three and four pieces of the
generic triangle K, see Figure 3.16 for an example of the sub-divisions of the
triangle K ∈ Th. Where we indicate with ~v = (. . . , vi,j , . . .) ∈ RNv the vector of
the degrees of freedom associated to the finite element function vh and with Nv
the total number of degrees of freedom for R̃T0 (Th). A function wh ∈ P̃0 (Th)

can be expanded using the base functions of P̃0 (Th)

wh (x) =
∑
K∈Nh

wK,1φK (x) +

2∑
i,k=1

∑
K∈Gh,k

wK,i φK (x)|Ki +

+

3∑
m=1

∑
K∈Mh

wK,m φK (x)|Km +

4∑
l=1

∑
K∈Ih

wK,l φK (x)|Kl ,

where Ki, Km and Kl are the sub-divisions in two, three and four pieces of the
generic triangle K. As for vh, we indicate with ~w = (. . . , wi,j , . . .) ∈ RNq the
vector of the degrees of freedom associated to the finite element function wh
and with Nq the total number of degrees of freedom for P̃0 (Th).
For each fracture i = 1, 2 the enriched finite elements spaces are

R̃T0

(
γĥ,i

)
:= RT0

(
Bĥ,i

)
⊕

2⋃
k=1

RT0

(
Cĥ,i
)
,

P̃0

(
γĥ,i

)
:= P0

(
Bĥ,i

)
⊕

2⋃
k=1

P0

(
Cĥ,i
)
.
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A function v̂h,i ∈ R̃T0

(
γĥ,i

)
can be expanded using the base functions of

R̃T0

(
γĥ,i

)
for i = 1, 2

v̂h,i (x) =
∑

p∈∂Cĥ,i

v̂p,1ψp (x) +

2∑
k=1

∑
p∈∂Bĥ,i

v̂p,k ψp (x)|lk ,

where lk is the sub-division in two pieces of the generic segment l. As in prece-
dence we indicate with ~̂vi = (. . . , v̂j,k, . . .) ∈ RNv̂ the vector of the degrees of
freedom associated to the finite element function v̂h,i and withNv̂ the total num-

ber of degrees of freedom for R̃T0

(
γĥ,i

)
. Finally a function ŵh,i ∈ P̃0

(
γĥ,i

)
can be expanded using the base functions of P̃0

(
γĥ,i

)
for i = 1, 2

ŵh,i (x) =
∑
l∈Bĥ,i

ŵl,1φl (x) +

2∑
k=1

∑
l∈Cĥ,i

ŵl,k φl (x)|lk ,

where lk is the sub-division in two pieces of the generic segment l. We indicate
with ~̂wi = (. . . , ŵj,k, . . .) ∈ RNq̂ the vector of the degrees of freedom associated
to the finite element function ŵh,i and with Nq̂ the total number of degrees of

freedom for P̃0

(
γĥ,i

)
.

The choice of these expansions is due that the base functions involved have the
support on the whole of each element K ∈ Th and not just on each sub-element
Ki, hence the error between the exact solution and the computed depends on
the strach of K and not on Ki.

3.2.3 Discrete formulation

We use the Nitsche’s method to impose essential boundary conditions on ΓE and
∂γE , which is a flexible tool to impose essential boundary conditions directly on
the weak formulation of the problem. Reference of this approach can be found
in [13] and [25]. We introduce the following h-dependent norm valid for the
medium and the fractures

‖u‖h,± 1
2 ,Σ

:= h∓
1
2

√∫
Σ

u2 , (3.65)

and the Hdiv-weighted norm

‖v‖2Hdiv(Σ),f := ‖fv‖2L2(Σ) + ‖f∇·v‖2L2(Σ)

where f ∈ L∞ (Σ) is the weight function.
To introduce the discrete formulation of Problem 3.6, we define the following
functional spaces

Vh := V ∩ R̃T0 (Th) and Qh :=Q ∩ P̃0 (Th) ,

V̂h,j := V̂j ∩ R̃T0

(
γĥ,j

)
and Q̂h,j :=Q̂j ∩ P̃0

(
γĥ,j

)
,
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which are Hilbert spaces, which we endow with the following problem dependent
norms ‖·‖Vh : Vh → R and ‖·‖Qh : Qh → R, which also take into account the
penalization terms due to the Nitsche’s method, defined as

‖vh‖2Vh :=

4∑
i=1

‖vh,i‖2
Hdiv(Ωi),ρ

− 1
2

Ki

+ ‖vh,i · nΓ‖2h,+ 1
2 ,Γ

E
i

+

+

2∑
j=1

∥∥∥η 1
2
γj {{vh · nj}}γj

∥∥∥2

L2(γĥ,j)
+ ξ0j

∥∥∥η 1
2
γj Jvh · njKγj

∥∥∥2

L2(γĥ,j)
,

‖wh‖2Qh :=

4∑
i=1

∥∥∥ρ 1
2

Ki
wh,i

∥∥∥2

L2(Ωi)
, (3.66)

where ρKi
is the spectral radius of the permeability tensorKi in the sub-domain

Ωi. The norms for the space defined on the fractures ‖·‖V̂h,j : V̂h,j → R and

‖·‖Q̂h,j : Q̂h,j → R read

‖v̂h‖V̂h,j :=‖v̂h · nΓ‖2ĥ,+ 1
2 ,∂γ

E
j

+ ξ̂0ηγi Jv̂h · τiK2
ip

+ ηγi {{v̂h · τi}}
2
ip

+

+

2∑
k=1

‖v̂h,k‖2
Hdiv(γĥ,j,k),η

1
2
τj

,

‖ŵh,j‖Q̂h,j :=

2∑
k=1

∥∥∥η− 1
2

τj ŵh,j

∥∥∥
L2

(
γĥ,jk

) ,

with i 6= j in the weight ηγi of the jump and average terms. We define also the
global discrete spaces as

Vh :=
{

vh = (vh, v̂h,1, v̂h,2) ∈ Vh × V̂h,1 × V̂h,2
}
⊂ V ,

Qh :=
{

wh = (wh, ŵh,1 , ŵh,2 , c) ∈ Qh × Q̂h,1 × Q̂h,2 × R
}
⊂ Q ,

Dh := Vh ×Qh ⊂ D ,

which are Hilbert spaces endowed with the norms ‖·‖Vh : Vh → R, ‖·‖Qh :
Qh → R and ‖·‖Dh : Dh → R, defined as

‖vh‖2Vh := ‖vh‖2Vh +

2∑
j=1

‖v̂h,j‖2V̂h,j ,

‖wh‖2Qh := ‖wh‖2Qh +

2∑
j=1

‖ŵh,j‖2Q̂h,j + |c|2 ,

‖(vh, wh)‖2Dh := ‖vh‖2Vh + ‖wh‖2Qh

To implement the Nitsche’s method we modify the bilinear forms and the func-
tionals to take into account the boundary terms. The bilinear forms for the

99



medium become

ah(uh, vh) := a(uh, vh) +

4∑
i=1

µh−1(uh,i · nΓ, vh · nΓ)ΓEi
,

bh(uh, wh) := b(uh, wh) +

4∑
i=1

(uh,i · nΓ, wh)ΓEi
,

with µ ∈ R+ a penalty parameter. The functionals become

Fh,q (wh) := Fq (wh)−
4∑
i=1

(wh, ui)ΓEi
,

Fh,q (vh) := Fq (vh) +

4∑
i=1

µh−1(ui, vh · nΓ)ΓEi
,

while for the fractures the bilinear forms become for j = 1, 2

âh,j(ûh,j , v̂h) := âj(ûh,j , v̂h) + µĥ−1 ûh,j · nΓv̂h|∂γEj · nΓ ,

b̂h,j(ûh,j , ŵh) := b̂j(ûh,j , ŵh) + ŵhûh,j |∂γEj · nΓ ,

and the functionals read

F̂h,q̂,j (ŵj) := F̂q̂,j (ŵj)− ûj · nΓŵj
∣∣
∂γEj

,

F̂h,q̂,j (v̂h) := F̂q̂,j (v̂h) + µĥ−1 ûj · nΓv̂h
∣∣
∂γEj
· nΓ .

Finally the global bilinear forms for the discrete problem are

αh(uh, vh) :=ah(uh, vh) +

2∑
j=1

âh,j(ûh,j , v̂h) ,

βh(vh, ph) :=bh(vh, ph) +

2∑
j=1

b̂h,j(v̂h, p̂h,j) + d(vh, p̂h,j)+

+ d̂j(v̂h, p̂h,I) ,

Ah [(uh, ph), (vh, wh)] :=αh(uh, vh) + βh(vh, ph)− βh(uh, wh)

while the global functionals are

Fh,q (vh) :=Fh,q (vh) +

2∑
j=1

F̂h,q̂,j (v̂h,j) ,

Fh,q (wh) :=− Fh,q(w)−
2∑
j=1

F̂q̂,j (ŵj) ,

Fh(vh, wh) :=Fh,q (vh) + Fh,q (wh) ,

with uh := (uh, ûh,1, ûh,2) ∈ Vh the discrete Darcy velocity in the medium
and in each fracture, ph := (ph, p̂h,1, p̂h,2, p̂h,I) ∈ Qh the discrete pressure in
the medium, in each fracture and in the intersection point ip. Using the above
operators we obtain
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Problem 3.7 (Discrete Formulation of Darcy Reduced Model with Intersec-
tion). The discrete formulation of Problem 3.6 is: find (uh, ph) ∈ Dh such
that αh(uh, vh) + βh(vh, ph) = Fh,q (vh) ∀vh ∈ Vh ,

βh(uh, wh) = Fh,q (wh) ∀wh ∈ Qh ,

or alternatively

Ah [(uh, ph), (vh, wh)] = Fh(vh, wh) ∀(vh, wh) ∈ Dh .

We recall an important theorem from [24] valid if the fractures do not intersect
each other and if the pressures in the fractures p̂h,i are known.

Theorem 3.5 (Convergence [24]). Let (u, p) ∈ D be the solution of Prob-
lem 3.4. If the fractures do not intersect each other and p̂h,i are known, then
there exist a unique discrete solution (uh, ph) ∈ Dh of Problem 3.7. Further-
more

‖(uh − u, ph − p)‖Dh ≤Mγ inf
(vh,wh)∈Dh

‖(vh − u, wh − p)‖Dh ,

with Mγ := max

{
1, h
√
ηγ/min

{
λ−1
K

}}
and λK is the minimum eigenvalue of

K on D.

The following results are an extension of the results presented in [24] when the
fractures intersect and the pressures in the fractures and in the intersection
points are known. The proofs are similar to the one presented in [24], where the
key is the construction of patches of elements in the cut region CRh.
Under Assumption 3.7 a sub-element Kj = K ∩ Ωj 6= ∅ of K ∈ CRh can be a
triangle, a quadrangle or a pentagon. See Figure 3.19 as an example.

P0 P1 P2 P3

Ω2Ω3

Ω4

Ω1

ip

γ1

γ2

Ω2Ω3

Ω4

Ω1

ip

γ1

γ2

active inactive

Figure 3.19: In the left the patches for the domain Ω1, in the right the patches for the
domain Ω2. In both cases there are indicated also the active and inactive edges for vp.

We enrich the definition of patches given in [24] to our problem. For each
K ∈ ∪iGh,i let eK the only edge, which we call active edge, of K that is not cut
by γi. There are only two possibilities: either eK ∩Ωj = ∅ or eK ⊂ ∂Th ∩ ∂Gh,i.
In the first case Kj is a triangle, we say that K is of type T and we write
K ∼ T . In the other case Kj is a quadrangle, we say that K is of type Q and
we write K ∼ Q. In the regionMh the sub-element Kj can be a pentagon then
we say that K is of type R and we write K ∼ R, a quadrangle then K ∼ Q,
or a triangle then K ∼ T . In the last case the triangle Kj always shares a
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vertex V with K. We call the active edge eK the edge of K opposite to V . We
indicate with K ∼ {Q,R} the fact that K ∼ Q or K ∼ R. Finally if K ∈ Ih
the sub-element Kj can be a quadrangle then K ∼ Q, a pentagon then K ∼ R
or a triangle then K ∼ T . In the last case the triangle Kj shares only a part of
an edge esh of K, then we call the active edge eK one of the two edges in the
set ∂K \ esh.

We split CRh in the following types of patch:

• patches of type P0 are formed by a single element K ∼ T ;

• patches of type Pn are formed by one element K ′ ∼ T and n elements
K ∼ {Q,R};

• patches of type Sn are formed by n elements K ∼ Q.

Assumption 3.8 (Shape regularity). Let K1 and K2 be two adjacent elements
in CRh. There exist two constant c, C ∈ R+, dependent only on γi, such that∣∣K1

j

∣∣ ≤C ∣∣K2
j

∣∣ if K1 ∼ T and K2 ∼ {Q,R} ,
c
∣∣K1

j

∣∣ ≤ ∣∣K2
j

∣∣ ≤C ∣∣K1
j

∣∣ if K1,K2 ∼ {Q,R} .

Lemma 3.6 (Inf-sup condition). Under Assumption 3.8 and if p̂h,i and p̂h,I
are known, then for any pressure ph ∈ Qh there exists vp ∈ Vh such that

b(vp, ph) & ‖ph‖2Qh and ‖vp‖Vh .Mγ‖ph‖Qh ,

moreover vp = 0 on ΓE. The h-dependent constant Mγ is the same as in
Theorem 3.5.

Proof. We can identify a patch of type Sn to a patch of type Pn simply choosing
as the active edge of the patch the uncut edge of an element. An example of Sn
is reported in Figure 3.20.

active inactive

γ1

γ2

Ω1

Ω2

S5

Ω3

Figure 3.20: Example of a patch of type Sn for the domain Ω3 with the active and inactive
edges for vp.

With the new definition of patches we can apply the proof of [24] as it is, where
the edge EK in [24] is substituted with the active edge eK defined above and
where elements K ∼ Q are now elements K ∼ {Q,R}.
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Thanks to Lemma 3.6 and following [24] we can proof a stability and a conver-
gence theorem analogous to those in [24].

The following lemmas are extensions of the lemmas presented in [24] when the
fractures intersect and the pressures in the fractures and in the intersection
point are unknowns of the problem.

Lemma 3.7 (Consistency). Let (u, p) ∈ D be solution of Problem 3.6 and let
(uh, ph) ∈ Vh ×Qh be the solution of Problem 3.7, if Ω = Th and γi = γĥ,i for
i = 1, 2, then

Ah [(u− uh, p− ph), (vh, wh)] = 0 ∀(vh, wh) ∈ Vh ×Qh .

Proof. Due to the linearity of the problem if we can show that

Ah [(u, p), (vh, wh)] = Fh(vh, wh) ∀(vh, wh) ∈ Vh ×Qh ,

the proof is complete. Using the Green’s theorem in the bulk and in the fractures
we obtain for j = 1, 2

bh(vh, p) = (∇p, vh)Ω − (p, vh · nΓ)ΓN −
2∑
j=1

∫
γj

Jpvh · njKγj ,

b̂h,j(v̂h, p̂j) =
(
∇τj p̂j , v̂h

)
γj
− p̂j v̂h|∂γNj · nΓ − Jp̂j v̂h · τjKip .

Since (u, p) is the solution of Problem 3.6, then

Ah [(u, p), (vh, wh)] = (q, wh)Ω − (p, vh · nΓ)ΓN −
4∑
k=1

(uk, wh)ΓEk
+

+

2∑
i=1

(
ηγi {{u · ni}}γi , {{vh · ni}}γi

)
γi

+ ξ0i

(
ηγi Ju · niKγi , Jvh · niKγi

)
γi

+

+ µh−1(uk · nΓ, vh · nΓ)ΓEk
+ (q̂i, ŵh)γi − p̂iv̂h

∣∣
∂γNi
· nΓ − ûi · nΓŵh

∣∣
∂γEi

+

+
ηγj
di
{{ûi · τi}}ip {{v̂h · τi}}ip + ξ̂0

ηγj
di

Jûi · τiKip Jv̂h · τiKip +

+ µĥ−1 ûi|∂γEi · nΓ v̂h|∂γEi · nΓ +
(
p̂i, Jvh · niKγi

)
γi + p̂I Jv̂h · τiKip +

−
∫
γi

Jpvh · niKγi − Jp̂iv̂h · τiKip , (3.67)

thanks to the interface conditions (3.55) and (3.56) for i = 1, 2 the last two
terms become∫

γi

Jpvh · niKγi =
(
JpKγi , {{vh · ni}}γi

)
γi

+
(
{{p}}γi , Jvh · niKγi

)
γi

=

=
(
ηγi {{u · ni}}γi , {{vh · ni}}γi

)
γi

+ ξ0i

(
ηγi Ju · niKγi , Jvh · niKγi

)
γi

+

+
(
p̂i, Jvh · niKγi

)
γi
,
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and

Jp̂iv̂h · τiKip = Jp̂iKip {{v̂h · τi}}ip + {{p̂i}}ip Jv̂h · τiKip =

=
ηγj
di
{{ûi · τi}}ip {{v̂h · τi}}ip + ξ̂0

ηγj
di

Jûi · τiKip Jv̂h · τiKip +

+ p̂I Jv̂h · τiKip

then equation (3.67) becomes

Ah [(u, p), (vh, wh)] = (q, wh)− (p, vh · nΓ)ΓN −
4∑
k=1

(uk, wh)ΓEk
+

+ µh−1(uk, vh · nΓ)ΓEk
+

2∑
i=1

(q̂i, ŵh)γi − p̂iv̂h
∣∣
∂γNi
· nΓ+

− ûi · nΓŵh
∣∣
∂γEi

+ µĥ−1 ûi · nΓv̂h
∣∣
∂γEi
· nΓ = Fh(vh, wh) .

Lemma 3.8 (Fh-Boundedness). If ξ0i > 0 for i = 1, 2 and ξ̂ > 0 then exists a
constant Ch, depending also on h, such that

|Fh(vh, wh)| ≤ Ch‖(vh, wh)‖Dh ,

where the constant Ch is

Ch =

4∑
i=1

CΩi

∥∥∥ρ 1
2

Ki
pi

∥∥∥
H

1
2 (ΓNi )

+ µ‖ui‖h,+ 1
2 ,Γ

E
i

+
∥∥∥ρ− 1

2

Ki
qi

∥∥∥
L2(Ωi)

+

+
∥∥∥ρ− 1

2

Ki
ui

∥∥∥
L2(ΓEi )

+

2∑
j=1

Ĉγj,k

∥∥∥η̂− 1
2

j p̂j

∥∥∥
H

1
2 (∂γNj )

+ µ
∥∥ûj · τj∥∥ĥ,+ 1

2 ,∂γ
E
j

+

+
∥∥∥η̂ 1

2
j q̂j

∥∥∥
L2(γj)

+
∥∥∥η̂ 1

2
j ûj · τj

∥∥∥
L2(∂γEj )

.

Proof. Using the definition of Fh and the triangle inequality we find

|Fh(vh, wh)| ≤
4∑
i=1

∣∣∣∣(ρ 1
2

Ki
pi, ρ

− 1
2

Ki
vh · nΓ

)
ΓNi

∣∣∣∣+
+ µ

∣∣∣∣(h− 1
2ui, h

− 1
2vh · nΓ

)
ΓEi

∣∣∣∣+

2∑
j=1

∣∣∣∣(η̂− 1
2

j p̂j , η̂
1
2
j v̂h · nΓ

)
∂γNj

∣∣∣∣+
+ µ

∣∣∣∣(ĥ− 1
2 ûj · nΓ, ĥ

− 1
2 v̂h · nΓ

)
∂γEj

∣∣∣∣+

∣∣∣∣(ρ− 1
2

Ki
qi, ρ

1
2

Ki
wh

)
Ωi

∣∣∣∣+
+

∣∣∣∣(ρ− 1
2

Ki
ui, ρ

1
2

Ki
wh

)
ΓEi

∣∣∣∣+

∣∣∣∣(η̂ 1
2
j q̂j , η̂

− 1
2

j ŵh

)
γj

∣∣∣∣+

∣∣∣∣(η̂ 1
2
j ûj · nΓ, η̂

− 1
2

j ŵh

)
∂γEj

∣∣∣∣ .
By using Cauchy-Schwartz inequality, the weighted trace inequality in Hdiv and
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the definition (3.65) we obtain

|Fh(vh, wh)| ≤
4∑
i=1

CΩi

∥∥∥ρ 1
2

Ki
pi

∥∥∥
H

1
2 (ΓNi )

‖vh‖
Hdiv(Ωi),ρ

− 1
2

Ki

+

+ µ‖ui‖h,+ 1
2 ,Γ

E
i
‖vh · nΓ‖h,+ 1

2 ,Γ
E
i

+

+

2∑
j=1

Ĉγj,k

∥∥∥η̂− 1
2

j p̂j

∥∥∥
H

1
2 (∂γNj )

‖v̂h‖
Hdiv(γj),η̂

1
2
j

+

+ µ
∥∥ûj · τj∥∥ĥ,+ 1

2 ,∂γ
E
j

‖v̂h · τj‖ĥ,+ 1
2 ,∂γ

E
j

+
∥∥∥ρ− 1

2

Ki
qi

∥∥∥
L2(Ωi)

∥∥∥ρ 1
2

Ki
wh

∥∥∥
L2(Ωi)

+

+
∥∥∥ρ− 1

2

Ki
ui

∥∥∥
L2(ΓEi )

∥∥∥ρ 1
2

Ki
wh

∥∥∥
L2(Ωi)

+

2∑
j=1

∥∥∥η̂ 1
2
j q̂j

∥∥∥
L2(γj)

∥∥∥η̂− 1
2

j ŵh

∥∥∥
L2(γj)

+

+
∥∥∥η̂ 1

2
j ûj · τj

∥∥∥
L2(∂γEj )

∥∥∥η̂− 1
2

j ŵh

∥∥∥
L2(γj)

with CΩi ∈ R+ the constant for the trace inequality for the sub-domain Ωi and
Ĉγj,k ∈ R+ the constant for the trace inequality for the sub-domain γj,k.

Lemma 3.9 (Ah-Boundedness). The bilinear form Ah is bounded in Dh, that
is

|Ah [(uh, ph), (vh, wh)]| ≤ C‖(uh, ph)‖Dh‖(vh, wh)‖Dh ,

where the constant C ∈ R+ depends on the penalty parameter µ and the thickness
of the fracture dj.

Proof.

|Ah [(uh, ph), (vh, wh)]| ≤ |αh(uh, vh)|+ |βh(vh, ph)|+ |βh(uh, wh)| ,

we estimate each piece of the previous inequality.

|αh(uh, vh)| ≤ |ah(uh, vh)|+
2∑
j=1

|âh,j(ûh,j , v̂h)| ≤ |a(uh, vh)|+

+

4∑
i=1

∣∣∣µh−1(uh,i · nΓ, vh · nΓ)ΓEi

∣∣∣+

2∑
j=1

|âj(ûh,j , v̂h)|+

+
∣∣∣µĥ−1 ûh,j · nΓv̂h|∂γEj · nΓ

∣∣∣ ,
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the first term is bounded by

|a(uh, vh)| ≤
∣∣(K−1uh, vh

)
Ω

∣∣+

2∑
j=1

∣∣∣∣(ηγj {{uh · nj}}γj , {{vh · nj}}γj)γj
∣∣∣∣+

+ ξ0j

∣∣∣∣(ηγj Juh · njKγj , Jvh · njKγj
)
γj

∣∣∣∣ ≤
≤

4∑
i=1

∥∥∥ρ− 1
2

Ki
uh,i

∥∥∥
L2(Ωi)

∥∥∥ρ− 1
2

Ki
vh,i

∥∥∥
L2(Ωi)

+

+

2∑
j=1

∥∥∥η̂ 1
2
j {{uh · nj}}γj

∥∥∥
L2(γĥ,j)

∥∥∥η̂ 1
2
j {{vh · nj}}γj

∥∥∥
L2(γĥ,j)

+

+ ξ0j

∥∥∥η 1
2
γj Jvh · njKγj

∥∥∥
L2(γĥ,j)

∥∥∥η 1
2
γj Juh · njKγj

∥∥∥
L2(γĥ,j)

≤ ‖uh‖Vh‖vh‖Vh .

The penalisation term in the medium is bounded by∣∣∣µh−1(uh,i · nΓ, vh · nΓ)ΓEi

∣∣∣ ≤ µ‖uh,i · nΓ‖h,+ 1
2 ,Γ

E
i
‖vh,i · nΓ‖h,+ 1

2 ,Γ
E
i
≤

≤ µ‖uh‖Vh‖vh‖Vh .

The bilinear form âj is bounded by

|âj(ûh,j , v̂h)| ≤
∣∣∣(η̂jûh,j , v̂h)γj

∣∣∣+
ηγi
dj

∣∣∣{{ûh,j · τj}}ip {{v̂h · τj}}ip ∣∣∣+
+ ξ̂0

ηγi
dj

∣∣∣Jûh,j · τjKip Jv̂h · τjKip
∣∣∣ ≤

≤
2∑
k=1

∥∥∥η 1
2
τj ûh,j,k

∥∥∥
L2(γĥ,j,k)

∥∥∥η 1
2
τj v̂h,k

∥∥∥
L2(γĥ,j,k)

+

+
ηγi
dj

∣∣∣{{ûh,j · τj}}ip ∣∣∣ ∣∣∣{{v̂h · τj}}ip ∣∣∣+
+ ξ̂0

ηγi
dj

∣∣∣Jûh,j · τjKip ∣∣∣ ∣∣∣Jv̂h · τjKip ∣∣∣ ≤ ‖ûh,j‖V̂h,j‖v̂h‖V̂h,j .
The penalisation term for each fracture j is bounded by∣∣∣µĥ−1 ûh,j · nΓv̂h|∂γEj · nΓ

∣∣∣ ≤ µ‖ûh,j · nΓ‖ĥ,+ 1
2 ,∂γ

E
j
‖v̂h · nΓ‖ĥ,+ 1

2 ,∂γ
E
j
≤

≤ µ‖ûh,j‖V̂h,j‖v̂h‖V̂h,j

The bilinear forms βh are bounded by

|βh(vh, ph)| ≤ |bh(vh, ph)|+
2∑
j=1

∣∣∣b̂h,j(v̂h, p̂h,j)∣∣∣+ |d(vh, p̂h,j)|+

+
∣∣∣d̂j(v̂h, p̂h,I)∣∣∣ ,
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we now bound each piece of the previous inequality

|bh(vh, ph)| ≤ |b(vh, ph)|+
4∑
i=1

∣∣∣(vh · nΓ, ph,i)ΓEi

∣∣∣ ≤ 4∑
i=1

∣∣∣(∇·vh, ph,i)Ωi

∣∣∣+
+ ‖vh · nΓ‖L2(ΓEi )‖ph,i‖L2(ΓEi ) ≤ ‖vh‖Vh‖ph‖Qh + CΩ‖vh‖Vh‖ph‖Qh =

= (1 + CΩ) ‖vh‖Vh‖ph‖Qh ,

where CΩ ∈ R+ is maximum of the trace constants in each Ωi.∣∣∣b̂h,j(v̂h, p̂h,j)∣∣∣ ≤ ∣∣∣b̂j(v̂h, p̂h,j)∣∣∣+
∣∣∣ p̂h,j v̂h|∂γEj · nΓ

∣∣∣ ≤
≤
∣∣∣(∇τj · v̂h, p̂h,j)γj ∣∣∣+

∣∣∣ p̂h,j |∂γEj ∣∣∣ ∣∣∣ v̂h|∂γEj · nΓ

∣∣∣ ≤
≤ ‖v̂h‖V̂h,j‖p̂h,j‖Q̂h,j + Ĉγj‖v̂h‖V̂h,j‖p̂h,j‖Q̂h,j =

=
(

1 + Ĉγj

)
‖v̂h‖V̂h,j‖p̂h,j‖Q̂h,j .

where Ĉγj ∈ R+ is maximum of the trace constants in each γj,k. Furthermore
we have

|d(vh, p̂h,j)| =
∣∣∣∣(p̂j , Jv · njKγj

)
γj

∣∣∣∣ ≤ ‖p̂j‖L2(γj)

∥∥∥Jvh · njKγj∥∥∥L2(γj)
≤

≤ ‖p̂j‖Q̂h,j‖vh‖Vh ,

and finally∣∣∣d̂j(v̂h, p̂h,I)∣∣∣ =
∣∣∣p̂I Jv̂ · τjKip

∣∣∣ ≤ |p̂I | ∣∣∣Jv̂ · τjKip ∣∣∣ ≤ |p̂I | ‖v̂‖V̂h,j .
We can bound βh(uh, wh) in the same way as βh(vh, ph) obtaining the result.

Lemma 3.10 (Ah-Positivity). If µ ≥ 1 then the bilinear form Ah is positive,
that is

Ah [(vh, wh), (vh, wh)] ≥ ‖vh‖2∗ ,

where ‖·‖∗ : Vh → R is defined as

‖vh‖∗ := ‖vh‖Vh −
4∑
i=1

‖vh,i‖
Hdiv(Ωi),ρ

− 1
2

Ki

−
2∑
k=1

‖v̂h,k‖
Hdiv(γĥ,j,k),η

1
2
τj

.

Proof. If µ ≥ 1, then we have

Ah [(vh, wh), (vh, wh)] = αh(vh, vh) ≥ ‖vh‖2∗ .
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3.2.4 Algebraic formulation

We now introduce the matrices and the vectors associated to the bilinear forms
of Problem 3.7. For the medium we set

[A]ij := ah(ψj , ψi) , [B]ij := bh(ψi, φj) ,

[Fq]i := Fq,h (ψi) , [Fq]i := Fq,h (φi) ,

while, for each fracture k = 1, 2 we have[
Âk

]
ij

:= âh,k

(
ψ̂j , ψ̂i

)
,

[
B̂k

]
ij

:= b̂h,k

(
ψ̂i, φ̂j

)
,[

F̂q̂,k

]
i

:= F̂h,q̂,k

(
ψ̂i

)
,

[
F̂q̂,k

]
i

:= F̂h,q̂,k

(
φ̂i

)
,

and for the medium-fracture interaction

[E]ij := d
(
ψi, φ̂j

)
.

Finally, for the fracture-fracture interaction we set[
Êk

]
ij

:= d̂k(ψi, 1) .

The global algebraic system is then

A B 0 E1 0 E2 0

B> 0 0 0 0 0 0

0 0 Â1 B̂1 0 0 Ê1

E>1 0 B̂>1 0 0 0 0

0 0 0 0 Â2 B̂2 Ê2

E>2 0 0 0 B̂>2 0 0

0 0 Ê>2 0 Ê>2 0 0





~u

~p

~̂u1

~̂p1

~̂u2

~̂p2

~̂pI


=



Fq

Fq

F̂q̂,1

F̂q̂,1

F̂q̂,2

F̂q̂,2

0


.

It is easy to verify that the matrix is symmetric.

3.3 Passive transport equation

We now consider the model of a passive scalar or tracer transported by an
external field in a porous media. The external field can be computed by solving
a Darcy problem or can be a given data.

Assumption 3.9 (Passive scalar transport). We assume the following,

1. the domain of interest Ω satisfies Assumption 3.1;

2. we indicate the interval of time of interest with IT := (0, T ), with T ∈ R+.
We set, as in Assumption 2.2-1, QT := Ω × IT . Figure 3.21 shows an
example for n = 2;
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γ1

Ω

Ω

d

t = 0

t = T
γ2

Ωf

Figure 3.21: Picture of the spatial-temporal cylinder QT with the three spatial sub-domains
Ω1, Ω2 and Ωf for n = 2.

3. the external convective vector field is the Darcy velocity, of the medium u
and the fracture û, solution of Problem 3.1.

We indicate with c the concentration of the passive scalar which is dimensionless
with the constraint

c ∈ 1 a.e. in QT .

We indicate with χ the total flux of the concentration c, defined as

χ := −D∇c+ uc , (3.68)

where D is the molecular diffusion of the tracer given in [m2/s]. The tensor D
can vary smoothly in each sub-domain Ωi, for i = 1, 2, f , but may be discontinu-
ous across γj , for j = 1, 2. Furthermore, in the fracture D may be significantly
different from the rest of the domain Ω. The equations which describe the
evolution of c in QT are given, in mixed form, by

Φ
∂c

∂t
+∇·χ = g in QT ,

D−1χ+∇c−D−1uc = 0 in QT ,

c = c on ΓN × IT ,

χ · nΓ = χ on ΓE × IT ,

c = c0 in Ω× {0}.

(3.69)

Assumption 3.10 (Regularity of the data). We assume the following regularity
hypotheses for the data of system (3.69)

1. the source term g ∈ L2 (QT ) which can be decomposed as

g =
∑

i=1,2,f

gi|Ωi ,

with gi ∈ L2 (QT ) defined as gi|Ωi := g|Ωi for i = 1, 2, f ;
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2. the symmetric and positive defined molecular diffusion tensor constant in
time D ∈ [L∞ (Ω)]

n×n
, which can be decomposed as

D =
∑

i=1,2,f

Di|Ωi ,

with Di ∈ [L∞ (Ω)]
n×n

defined as Di|Ωi := D|Ωi for i = 1, 2, f . We
assume the same hypotheses of Kf for Df reported in Assumption 3.3, so
we can write

Df = Df,nN +Df,τT ,

with Df,n, Df,τ ∈ L∞ (Ωf ) bounded away from zero;

3. the data for the natural boundary condition, c ∈ L2
(
IT ; H

1
2

(
ΓN
))

and

can be decomposed as

c =
∑

i=1,2,f

ci|ΓNi ,

with ci ∈ L2
(
IT ; H

1
2

(
ΓN
))

defined as ci|ΓNi := c|ΓNi for i = 1, 2, f ;

4. the data for the essential boundary condition, χ ∈ L2
(
IT ; H−

1
2

(
ΓE
))

and can be decomposed as

χ =
∑

i=1,2,f

χi|ΓEi ,

with χi ∈ L2
(
IT ; H−

1
2

(
ΓE
))

defined as χi|ΓEi := χ|ΓEi for i = 1, 2, f ;

5. the porosity Φ ∈ L∞ (Ω) which fulfils Assumption 2.4-1 and can be decom-
posed as

Φ =
∑

i=1,2,f

Φi|Ωi ,

with Φi ∈ L∞ (Ωi) defined as Φi|Ωi := Φ|Ωi for i = 1, 2, f ;

6. the initial condition c0 ∈ L2 (Ω) can be decomposed as

c0 =
∑

i=1,2,f

c0,i|Ωi ,

with c0,i ∈ L2 (Ω) defined as c0,i|Ωi := c0|Ωi for i = 1, 2, f ;

In the sequel we will, with a little abuse of notation, indicate with a subscript i
the restriction of a function in the i-th subset of its definition set.

Defining the restriction of the flux χ and the concentration c in each sub-part
Ωi, for i = 1, 2, f , of the domain Ω, i.e. χi := χ|Ωi and ci := c|Ωi for i = 1, 2, f ,
we can proof the following result.
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Proposition 3.11. The solution (χ, c) of system (3.69) satisfies the following
differential equations for i = 1, 2, f

Φi
∂ci
∂t

+∇·χi = gi

D−1
i χi +∇ci −D−1

i uici = 0

in QT ,

equipped with the following coupling conditions for j = 1, 2{
χj · nj = χf · nj
cj = cf

on γj × IT ,

and the boundary and initial conditions for i = 1, 2, f
ci = ci on ΓNi × IT ,

χi · nΓ = χi on ΓEi × IT ,

ci = c0,i in Ωi × {0}.

Proof. By standard means the weak formulation of (3.69) satisfies
∫

Ω

Φ
∂c

∂t
v −

∫
Ω

χ · ∇v =

∫
Ω

gv ∀v ∈ H1
0 (Ω),

∫
Ω

D−1χτ −
∫

Ω

c∇·τ −
∫

Ω

D−1ucτ = 0 ∀τ ∈Hdiv,0 (Ω).

(3.70)

If we select v ∈ H1
0 (Ωi) for i = 1, 2 or f the first equation of (3.70) is equivalent

to ∫
Ωi

Φi
∂ci
∂t
v −

∫
Ωi

χi · ∇v =

∫
Ωi

giv ∀v ∈ H1
0 (Ωi) ,

which implies that Φi
∂ci
∂t

+∇·χi − gi = 0 in a distributional sense, i.e. a.e. in

Ωi. If we now take a v ∈ H1
0 (Ω) with support in Ωf ∪ γi ∪Ωi for i = 1 or 2, we

have∫
Ωi

Φi
∂ci
∂t
v −

∫
Ωi

χi · ∇v +

∫
Ωf

Φf
∂cf
∂t

v −
∫

Ωf

χf · ∇v =

∫
Ωi

giv +

∫
Ωf

gfv ,

(3.71)

that is

[H1(Ωi)]
′< Φi

∂ci
∂t

+∇·χi − gi, v >H1(Ω1) +

+ [H1(Ωf )]′< Φf
∂cf
∂t

+∇·χf − gf , v >H1(Ωf ) +

+

∫
γi

(χi · ni − χf · ni) v = 0 ,
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but the first two terms are zero because (3.71), obtaining the coupling condition
for χ across γi. If we select τ ∈Hdiv,0 (Ωi) for i = 1, 2 or f the second equation
of (3.70) is equivalent to∫

Ωi

D−1
i χi · τ −

∫
Ωi

ci∇·τ −
∫

Ωi

D−1
i uiciτ = 0 ∀τ ∈Hdiv,0 (Ωi) , (3.72)

which implies D−1
i χi + ∇ci −D−1

i uici = 0 a.e. in Ωi. If we take now τ ∈
Hdiv,0 (Ω) with support in Ωf ∪ γi ∪ Ωi for i = 1 or 2, we have∫

Ωi

D−1
i χi · τ −

∫
Ωi

ci∇·τ −
∫

Ωi

D−1
i uiciτ +

∫
Ωf

D−1
f χf · τ+

−
∫

Ωf

cf∇·τ −
∫

Ωf

D−1
f ufcfτ = 0 ,

that is

[Hdiv(Ωi)]
′<D−1

i χi +∇ci −D−1
i uici, τ >Hdiv(Ωi) +

+ [Hdiv(Ωf )]′<D
−1
f cf +∇cfD−1

f ufcf , τ >Hdiv(Ωf ) −
∫
γi

(ci − cf ) τ · ni = 0 ,

the first two terms are zero because of (3.72), obtaining the coupling condition
for c across γi.

The system of equation (3.69) with the interface conditions derived in Proposi-
tion 3.11 describes the evolution in Ω of the total flux and the concentration.

Problem 3.8 (Transport coupled problem). The coupled problem for the trans-
port of a tracer in a porous medium is: find (χi, ci) ∈ L2 (IT ; Hdiv (Ωi)) ×
L2
(
IT ; H1 (Ωi)

)
for i = 1, 2, f which satisfy for i = 1, 2, f

Φi
∂ci
∂t

+∇·χi = gi

D−1
i χi +∇ci −D−1

i uici = 0

in QT , (3.73)

together with the coupling conditions for j = 1, 2{
χj · nj = χf · nj
cj = cf

in γj × IT , (3.74)

and the boundary and initial conditions for i = 1, 2, f
ci = ci on ΓNi × IT ,

χi · nΓ = χi on ΓEi × IT ,

ci = c0,i in Ωi × {0}.

(3.75)

We can notice that the coupling conditions on γj , for j = 1, 2, of Problem 3.8
are similar to the ones of Problem 3.1 because we have chosen the total flux in
the definition (3.68) instead the ordinary flux.
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3.3.1 Reduced conservation equation

We now obtain a reduced model form for the conservation equation in the frac-
ture, i.e. the first equation in (3.73) for i = f . Given the normal vector n along
the fracture γ, we introduce the normal flux and tangential flux, namely

χf,n := Nχf and χf,τ := Tχf . (3.76)

To obtain the reduced conservation equation, we decompose the divergence in
a normal part and a tangential part with respect to γ. We integrate in the
normal direction for a fixed point s = s∗ with s ∈ γ and fixed time t = t∗ with
t∗ ∈ [0, T ], see Figure 3.22. We get,

Ωf

Ω1

n1

γ s∗

Ω2
d (s∗) /2

−d (s∗) /2

t = t∗

n2

Figure 3.22: Example of a bi-dimensional fracture with the data in the normal direction.

∫ d
2

− d2
Φf

∂cf
∂t

dr +

∫ d
2

− d2
∇·χf dr =

∫ d
2

− d2
Φf

∂cf
∂t

dr +

∫ d
2

− d2
∇n · χf dr +

∫ d
2

− d2
∇τ · χf dr =

∫ d
2

− d2
gf dr .

where, for convenience in notation, we drop the dependence on s∗ and t∗ when
it is clear from the context. Defining the total source in a section of the fracture
as

ĝ (s, t) :=

∫ d(s)
2

− d(s)
2

gf (r, t) dr (s) ,

and integrating by parts the normal divergence term we have that∫ d
2

− d2
Φf

∂cf
∂t

dr + χf |γ2
· n− χf |γ1

· n+

∫ d
2

− d2
∇τ · χf dr = ĝ . (3.77)

The integral with the tangential divergence, in the above equation, becomes∫ d
2

− d2
∇τ · χf dr =

∫ d
2

− d2
T : ∇χf dr =

∫ d
2

− d2
(TT ) : ∇χf dr =

= T :

∫ d
2

− d2
T∇χf dr ≈ T : ∇

∫ d
2

− d2
Tχf dr ,

We define the reduced flux in the fracture as

χ̂ (s , t) :=

∫ d(s)
2

− d(s)
2

χf,τ (r, t) dr (s) , (3.78)
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obtaining

T : ∇
∫ d

2

− d2
Tχf dr = ∇τ · χ̂ .

Assumption 3.11 (Porosity). We assume the porosity Φf is constant in each
transversal section of the fracture Ωf .

Defining the mean concentration in the fracture as

ĉ (s, t) :=
1

d (s)

∫ d(s)
2

− d(s)
2

cf (r, t) dr (s) , (3.79)

with Assumption 3.11 the integral with time derivative in (3.77) becomes∫ d
2

− d2
Φf

∂cf
∂t

dr = Φf
∂

∂t

(∫ d
2

− d2
cf dr

)
= dΦf

∂ĉ

∂t
.

Then (3.77) reads

dΦf
∂ĉ

∂t
+ χf · n|γ2

− χf · n|γ1
+∇τ · χ̂ = ĝ .

Finally using Assumption 3.9-1 and the interface condition (3.74), we find

χf |γ2
· n ≈ − χf |γ2

· n2 = − χ2|γ2
· n2 ≈ χ2|γ2

· n ,

and

χf |γ1
· n ≈ χf |γ1

· n1 = χ1|γ1
· n1 ≈ χ1|γ1

· n .

The conservation equation for the tangential component of the velocity in the
fracture becomes

dΦf
∂ĉ

∂t
+∇τ · χ̂ = ĝ + Jχ · nKγ on γ × IT . (3.80)

3.3.2 Reduced total flux equation

We now want to obtain a reduced model for the total flux equation in the
fracture, i.e. the second equation in the system (3.73) for i = f , and a con-
sistency condition for the interfaces between the fracture and the rest of the
domain. Multiplying the equation by the projection matrix N and using As-
sumption 3.10-2, we have

Nχf = −NDf∇cf +Nufcf = −Df,nN∇cf +Nufcf =

= −Df,n∇ncf + uf,ncf .

We perform the same operations multiplying by the projection matrix T

Tχf = −TDf∇cf + Tufcf = −Df,τT∇cf + Tufcf =

= −Df,τ∇τ cf + uf, τ cf ,
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and using the definition (3.76) we find the following systemχf,n = −Df,n∇ncf + uf,ncf ,

χf,τ = −Df,τ∇τ cf + uf,τ cf .
(3.81)

Thanks to Assumption 3.10-2 we can integrate the second equation of system
(3.81) to find∫ d

2

− d2
χf,τ dr =χ̂ = −Df,τ

∫ d
2

− d2
∇τ cf dr +

∫ d
2

− d2
uf,τ cf dr =

=−Df,τT

∫ d
2

− d2
∇cf dr +

∫ d
2

− d2
uf,τ cf dr ≈

≈−Df,τ∇τ
∫ d

2

− d2
cf dr +

∫ d
2

− d2
uf,τ cf dr .

Assuming that ∫ d
2

− d2
uf,τ cf dr ≈ dûĉ , (3.82)

we obtain the reduced equation for the total flux in the fracture

β̂χ̂+∇τ ĉ− dβ̂ûĉ = 0 on γ × IT , (3.83)

where

β̂ (s) :=
1

d (s)Df,τ (s)
,

which represent the inverse of the equivalent molecular diffusion in the tangen-
tial direction to the fracture γ.
To derive the coupling conditions for the global problem, we consider the first
equation of system (3.81). We multiply the equation by n and, using Assump-
tion 3.10-2 and (3.74), we integrate in the normal direction the fracture to
obtain ∫ d

2

− d2
χf,n · n dr = −Df,n

∫ d
2

− d2
∇ncf · n dr +

∫ d
2

− d2
cfuf · n dr =

= −Df,n

(
cf |γ2

− cf |γ1

)
+

∫ d
2

− d2
cfuf · n dr

= −Df,n

(
c2|γ2

− c1|γ1

)
+

∫ d
2

− d2
cfuf · n dr

= Df,n JcKγ +

∫ d
2

− d2
cfuf · n dr . (3.84)

The integral, in the left-hand side, can be approximated by∫ d
2

− d2
χf,n · n dr ≈

d

2

(
χf,n|γ2

· n+ χf,n|γ1
· n
)

=

=
d

2

(
χ2|γ2

· n+ χ1|γ1
· n
)

= d {{χ · n}}γ ,

115



while, using the same approximation of equation (3.82) but for the normal
component of uf , the integral in the right-hand side of equation (3.84) becomes∫ d

2

− d2
cfuf · n dr ≈ 0 ,

since the normal component of the reduced velocity inside the fracture γ is
assumed to be zero. Finally equation (3.84) becomes

{{χ · n}}γ =
Df,n

d
JcKγ .

Defining βγ as

βγ (s) :=
d (s)

Df,n (s)
,

which represent the inverse of the equivalent molecular diffusion in the normal
direction to the fracture γ, we can write the above equation as

βγ {{χ · n}}γ = JcKγ on γ × IT . (3.85)

To close the reduced system we need another relation which needs to model the
variation of the concentration and total flux across the fracture. We proceed as

Ω2

Ωf

Ω1

n1

γ

x2

x1

s∗
n (s∗)n2

t = t∗

Figure 3.23: Approximation of the pressure in the fracture.

in subsection 3.1.4, i.e. in the first transversal section, see Figure 3.23 for an
example, we approximate the value of the concentration inside the fracture by
the following Taylor expansion

cf (s∗) = cf (x1) +
d

2
∇cf (θ1) · n , (3.86)

where θ1 = s∗ − ξ1
d

2
n and ξ1 ∈ [0, 1]. In the second transversal section we

approximate the value of the concentration inside the fracture by

cf (s∗) = cf (x2)− d

2
∇cf (θ2) · n , (3.87)

where θ2 = s∗ + ξ2
d

2
n and ξ2 ∈ [0, 1]. Using relations (3.74), (3.81) and

assuming a piecewise linear combination of normal component of the total flux
χf,n χf,n (θ1) · n = ξ1χ1 · n+ (1− ξ1)χ2 · n ,

χf,n (θ2) · n = ξ2χ2 · n+ (1− ξ2)χ1 · n ,
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the approximate concentration in the fracture (3.86) becomes

cf (s∗) ≈c1(x1)− βγ
2

[ξ1χ1 · n+ (1− ξ1)χ2 · n] =

=c1(x1)− βγ
2

[
{{χ · n}}γ +

(
ξ1 −

1

2

)
Jχ · nKγ

]
,

and equation (3.87) becomes

cf (s∗) ≈c2(x2) +
βγ
2

[ξ2χ1 · n+ (1− ξ2)χ2 · n] =

=c2(x2) +
βγ
2

[
{{χ · n}}γ −

(
ξ2 −

1

2

)
Jχ · nKγ

]
.

Using relation (3.85) we find

cf (s∗) ≈{{c}}γ −
βγ (2ξ1 − 1)

4
Jχ · nKγ ,

cf (s∗) ≈{{c}}γ −
βγ (2ξ2 − 1)

4
Jχ · nKγ .

Since the concentration in the fracture cf is single value at s∗, the only possi-
bility is to choose ξ1 = ξ2 = ξ to find the coupling condition for cf (s∗)

cf (s∗) ≈ {{c}}γ −
βγ (2ξ − 1)

4
Jχ · nKγ ,

finally integrating in the transversal section of γ and using the definition (3.79)
for the reduced pressure we obtain

ĉ = {{c}}γ −
βγ (2ξ − 1)

4
Jχ · nKγ on γ × IT . (3.88)

Using (3.85) and (3.88), the interface conditions on γ becomeξ0ηγ Jχ · nKγ = {{c}}γ − ĉ

ηγ {{χ · n}}γ = JcKγ
on γ × IT , (3.89)

with ξ0 := (2ξ−1)/4. Or alternatively, summing and subtracting each equation
of (3.89), we findξχ1 · n+ (1− ξ)χ2 · n = 2β−1

γ (c1 − ĉ)

(1− ξ)χ1 · n+ ξχ2 · n = 2β−1
γ (ĉ− c2)

on γ × IT .

To derive the boundary condition for the reduced problem we use (3.75)

χ̂ · nΓ :=

∫
ΓEf

χf and ĉ :=

∫
ΓNf

cf . (3.90)

Furthermore, the reduced initial condition for c using (3.78) becomes

ĉ0 :=
1

d

∫ d
2

− d2
c0,f dr (3.91)

Using Assumption 3.9 hence approximating the domain Ω reported in Figure
3.21 to the domain in Figure 3.24, the equations (3.80), (3.83), (3.89), (3.90)
and (3.91) form the reduced model summarize in the following problem.
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Problem 3.9 (Reduced Model for Transport Equation). Given Assumption 3.9,
Assumption 3.10 and Assumption 3.11, the reduced problem for the transport
of a tracer is: given ui for i = 1, 2 and û from Problem 3.4, find the total flux
and the concentration associated to the porous matrix, respectively χi and ci for
i = 1, 2, and the reduced total flux and the reduced concentration associated to
the fracture, respectively χ̂ and ĉ, which satisfy the following system of partial
differential equations for i = 1, 2

Φi
∂ci
∂t

+∇·χi = gi in QT ,

D−1
i χi +∇ci −D−1

i uici = 0 in QT ,

dΦf
∂ĉ

∂t
+∇τ · χ̂ = ĝ + Jχ · nKγ on γ × IT ,

β̂χ̂+∇τ ĉ− dβ̂ûĉ = 0 on γ × IT ,

(3.92)

coupled with the interface conditions on γ × IT{
ξ0βγ Jχ · nKγ = {{c}}γ − ĉ
βγ {{χ · n}}γ = JcKγ

on γ × IT , (3.93)

with the boundary conditions on ∂Ω× IT for i = 1, 2

ci = ci on ΓNi × IT ,

χi · nΓ = χi on ΓEi × IT ,

ĉ = ĉ on ∂γN × IT ,

χ̂ · nΓ = χ̂ · nΓ in ∂γE × IT ,

(3.94)

and the initial condition for the concentration for i = 1, 2ci = c0,i in Ω× {0},

ĉ = ĉ0 on γ × {0}.

Ω

Ω

t = 0

t = Tγ

Figure 3.24: Picture of the domain QT with the reduced fracture for n = 2.
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3.3.3 Weak formulation

We derive the weak formulation of Problem 3.9 and, for the sake of simplicity,
we require χi = 0 for i = 1, 2 and χ̂ · nΓ = 0 or ΓE = ∅, otherwise a standard
lifting technique should be used. We indicate with

DT := D × IT ,

where D is defined by (3.34). We introduce the following functional spaces for
each piece of the domain i = 1, 2

Ui := L2 (IT ; Vi) and Ji := L2 (IT ; Qi) ,

where Vi and Qi are defined in (3.35). We introduce the broken functional space
U : DT → Rn and J : DT → R

U :=
{
v : DT → Rn : v|Ωi ∈ Ui for i = 1, 2

}
,

J :=
{
w : DT → R : w|Ωi ∈ Ji for i = 1, 2

}
.

We introduce the functional spaces for the problem in the fracture: the spaces
of functions living in the tangent space, that is

Û := L2
(
IT ; V̂

)
and Ĵ := L2

(
IT ; Q̂

)
,

where V̂ and Q̂ are defined in (3.37). We define also the global space for the
flux and the global space for the concentration

U :=
{

x = (χ, χ̂) ∈ U × Û
}

and J :=
{

c = (c, ĉ) ∈ J × Ĵ
}
.

We derive the weak formulation of Problem 3.9, starting with the differential
equation in the medium. Taking a test function w ∈ Q multiply and integrate
on Ωi the first equation of (3.92)

(Φic
′
i, w)Ωi

+ (∇·χi, w)Ωi
= (gi, w)Ωi

,

where we indicate with c′ instead of
dc

dt
(x). Summing on all the domain Ωi for

i = 1, 2 we have

(Φc′, w)Ω + (∇·χ, w)Ω = (g, w)Ω .

Using the bilinear form defined in (3.39) and introducing the functional Fg ∈ Q′

Fg (w) := −(g, w)Ω

with w ∈ Q, then the weak formulation of the first equation of (3.92) reads for
a.e. t ∈ IT

−(Φc′, w)Ω + b(χ, w) = −Fg (w) ∀w ∈ Q .

Taking a test function v ∈ V multiply and integrate on Ωi the second equation
of (3.92)(

D−1
i χi, v

)
Ωi

+ (∇ci, v)Ωi
−
(
D−1
i uici, v

)
Ωi

=
(
D−1
i χi, v

)
Ωi

+

− (ci, ∇·v)Ωi
+ (ci, v · nΓ)Γ + (ci, v · ni)γ −

(
D−1
i uici, v

)
Ωi

= 0 .
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Summing the previous equation for i = 1, 2 and using boundary conditions
(3.94) we have(

D−1χ, v
)

Ω
− (c, ∇·v)Ω + (c, v · nΓ)ΓN+

+

2∑
i=1

(ci, v · ni)γ −
(
D−1uc, v

)
Ω

= 0 .

Since n = n1 = −n2, using relation JabKγ = JaKγ {{b}}γ + {{a}}γ JbKγ and the
coupling conditions (3.93) for γ we have

2∑
i=1

(ci, v · ni)γ =

∫
γ

JcvKγ · n =
(
JcKγ , {{v · n}}γ

)
γ

+
(
{{c}}γ , Jv · nKγ

)
γ

=

=
(
βγ {{χ · n}}γ , {{v · n}}γ

)
γ

+ ξ0

(
βγ Jχ · nKγ , Jv · nKγ

)
γ
+

+
(
ĉ, Jv · nKγ

)
γ
.

Introducing the bilinear forms a(·, ·) : V × V → R and e(·, ·) : V ×Q→ R

a(χ, v) :=
(
D−1χ, v

)
Ω

+
(
βγ {{χ · n}}γ , {{v · n}}γ

)
γ
+

+ ξ0

(
βγ Jχ · nKγ , Jv · nKγ

)
γ
,

e(v, c) :=−
(
D−1uc, v

)
Ω
,

and the functional Fg ∈ V ′,

Fg (v) := −(c, v · nΓ)ΓN ,

and using the bilinear form d defined in (3.40), the weak formulation of the
second equation of system (3.92) becomes, for a.e. t ∈ IT

a(χ, v) + b(v, c) + e(v, c) + d(v, ĉ) = Fg (v) ∀v ∈ V .

We derive the weak formulation for the equations in the fracture, taking a test
function ŵ ∈ Q̂ multiplying and integrating on γ the third equation of (3.92).
We obtain

(dΦf ĉ
′, ŵ)γ + (∇τ · χ̂, ŵ)γ −

(
Jχ · nKγ , ŵ

)
γ

= (ĝ, ŵ)γ .

where we indicate
dĉ

dt
(x) with ĉ′. Using the bilinear form introduced in (3.41)

and defining the functional F̂ĝ ∈ Q̂′

F̂ĝ (ŵ) := −(ĝ, ŵ)γ ,

the weak formulation of the third equation of (3.92) is: for a.e. t ∈ IT ,

−(dΦf ĉ
′, ŵ)γ + b̂(χ̂, ŵ) + d(χ, ŵ) = −F̂ĝ (ŵ) ∀ŵ ∈ Q̂ .
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Taking a test function v̂ ∈ V̂ and integrating on γ, the fourth equation of (3.92)
becomes(

β̂χ̂, v̂
)
γ

+ (∇τ ĉ, v̂)γ −
(
dβ̂ûĉ, v̂

)
γ

=

=
(
β̂χ̂, v̂

)
γ
− (ĉ, ∇τ · v̂)γ + (ĉ, v̂ · nΓ)∂γ −

(
dβ̂ûĉ, v̂

)
γ

= 0 .

Using the boundary conditions (3.94) and introducing the bilinear forms â(·, ·) :

V̂ × V̂ → R, ê(·, ·) : V̂ × Q̂→ R

â(χ̂, v̂) :=
(
β̂χ̂, v̂

)
γ

and ê(v̂, ĉ) := −
(
dβ̂ûĉ, v̂

)
γ
,

and the functional F̂ĝ ∈ V̂ ′

F̂ĝ (v̂) := −(ĉ, v̂ · nΓ)∂γ ,

we obtain the weak formulation of the fourth equation of (3.92) for a.e. t ∈ IT

â(χ̂, v̂) + b̂(v̂, ĉ) + ê(v̂, ĉ) = F̂ĝ (v̂) .

We define the global bilinear forms for the medium and the fracture as α(·, ·) :
V × V → R, ε(·, ·) : V ×Q → R and β(·, ·) : V ×Q → R

α(x, v) := a(χ, v) + â(χ̂, v̂) and ε(v, c) := e(v, c) + ê(v̂, ĉ) ,

β(v, c) := b(v, c) + b̂(v̂, ĉ) + d(v, ĉ) .

We introduce also the bilinear form τ(·, ·) : Q×Q → R as

τ(c′, w) := (Φc′, w)Ω + (dΦf ĉ
′, ŵ)γ .

Finally we define the global functionals for the medium and the fracture as
Fq ∈ V ′ and Fq ∈ Q′

Fg (v) := Fg (v) + F̂ĝ (v̂) and Fg (w) := −Fg (w)− F̂ĝ (ŵ) ,

Indicating with x := (χ, χ̂) ∈ U the flux in the medium and in the fracture,
c := (c, ĉ) ∈ J the concentration in the medium and in the fracture we introduce
the following problem.

Problem 3.10 (Weak Formulation of Transport Reduced Model). Find (x, c) ∈
U × J such that c′ ∈ L2 (IT ; Q) and for a.e. t ∈ ITα(x, v) + β(v, c) + ε(v, c) = Fq (v) ∀v ∈ V ,

β(x, w)− τ(c′, w) = Fq (w) ∀w ∈ Q ,

coupled with the initial condition

c = c0 a.e. in Ω

where c0 := (c0, ĉ0).
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Lemma 3.12 (Global conservation of mass). Assume that gi ≡ 0 and ĝ ≡ 0
then the solution x ∈ U of Problem 3.10 satisfy a.e. t ∈ IT∫

∂A

x · nA = −
2∑
i=1

d

dt

∫
Ai

Φici −
d

dt

∫
γ

Φf ĉ ∀A ⊂ Ω ,

with A any open bounded measurable subset of Rn with Lipschitz boundary ∂A
and outward unit normal nA, such that A ∩ γ 6= ∅ and

A = A1 ∪A2 while Å1 ∩ Å2 = ∅ .

Proof. Taking x ∈ U solution of Problem 3.10 with w ≡ 1 we have∫
A

∇·x =

∫
A1

∇·χ1 +

∫
A2

∇·χ2 +

∫
γ

∇τ · χ̂ =

=

∫
γ

Jχ · nKγ −
2∑
i=1

d

dt

∫
Ai

Φici −
d

dt

∫
γ

Φf ĉ ∀A ⊂ Ω . (3.95)

Then since χi is solution of Problem 3.10 in Ai we have∫
Ai

∇·χi =

∫
∂Ai\γ

χi · nA +

∫
γ

χi · ni ,

furthermore χ̂ is solution of Problem 3.10 in γ we obtain∫
γ

∇τ · χ̂ =

∫
∂γ

χ̂ · nA .

Hence we have∫
A

∇·x =

2∑
i=1

∫
∂Ai\γ

χi · nA +

∫
∂γ

χ̂ · nA +

∫
γ

Jχ · nKγ ,

finally using the above relation with (3.95) we obtain the result.
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Chapter 4

Implementation aspects

In this chapter we present the implementation aspects we used to problems of
chapters 2 and 3. In particular we discuss the implementation of the two-phase
flow system of equations presented in Problem 2.3, highlighting the aspects
associated with high performance computing. Furthermore we present the diffi-
culties and the strategies we adopted to solve the reduced models presented in
Problem 3.4, Problem 3.6 and Problem 3.10.

4.1 The LifeV library

We present some implementation aspects to solve Problem 2.3 with the numer-
ical schemes presented in chapter 2. While the computational grid should have
a typical size of several kilometres, it is evident that the number of degrees of
freedom involved in the computation is too large to be efficiently handled by
standard computers. An implementation which use parallel paradigms is thus
mandatory to obtain results in a reasonable time. For this purpose we have de-
cided to adopt as development platform the library of finite element LifeV [33]
which provides implementations of state of the art mathematical and numerical
methods in a parallel setting. LifeV is the joint collaboration between four in-
stitutions: École Polytechnique Fédérale de Lausanne (CMCS) in Switzerland,
Politecnico di Milano (MOX) in Italy, INRIA (REO, ESTIME) in France and
Emory University (Sc. Comp) in the U.S.A.

LifeV is a library, written in C++ language, which uses modern and advanced
techniques in programming to implement solvers in several fields of apply mathe-
matics. Templates programming, inheritance structures, factories and other de-
sign pattern techniques are used to obtain a fast and versatile software. LifeV
is principally based on the Trilinos library suite [41], which provides sparse and
distributed matrix and vector in the package Epetra and fast and parallel pre-
conditioned linear solvers, package Ifpack [68], robust algebraic preconditioners,
and the package ML [37], for multi-grid preconditioners. Furthermore Trilinos
offers filters to export the solution common formats like Ensight, VTK or HDF5.
Finally Trilinos is tested and tuned for high performance computing. Others
libraries are connected to LifeV, for example some functionalities of the boost,
shared pointers and the binding of functions. Finally to partition the global
mesh for each sub-domains LifeV includes the library Parmetis which can parti-
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tion complex meshes minimizing the connectivity graph to decrease the number
of communication in the matrix assembly.

To solve Problem 2.3 with the IMPES method we have written several physical
solvers. In particular we have implemented four different generalized Darcy
solvers: a Darcy linear solver, a Darcy transient solver, a Darcy non-linear
solver with the non-linearities in the permeability matrix and a Darcy transient
and non-linear solver. We decided to use the inheritance technique to derive
the transient and the non-linear solvers from the linear solvers, since most of
the code is the same. Further the transient and non-linear solver inherits from
both the transient and the non-linear solver. The inheritance graph is reported

Figure 4.1: Inheritance graph of the generalized Darcy solver.

in Figure 4.1 which shows the so called diamond problem typical in the crossing
public inheritance. To avoid redundant duplications of the attributes presented
in the base class we use the virtual public inheritance technique, obtaining a code
very flexible and easy to extend. The static condensation technique, presented in
the sub-section 2.3.3, is performed with the BLAS and LAPACK library which
can handle matrix and vectors operations in a very fast way. The temporal
scheme used in the transient solver is a BDF scheme implemented in an external
class, while the non-linear solver is a fixed point method implemented in the
non-linear Darcy solver class. The solvers have been tested with different exact
solutions and the error computed scales as the theory predicts. Furthermore the
code has been tested on several super-computers showing a good performance,
see section 5.3 for the examples.

We have implemented also an hyperbolic non-linear solver to address the hyper-
bolic part of the saturation equation. The solver can handle a generic hyperbolic
problem and use an exact Godunov scheme, with a Brant algorithm for the min-
imization procedure to solve the Riemann problems at each facet of the mesh,
for further details see [10]. This method is quite expensive, since it is applied
for each facet of the mesh, and can be automatically overwritten using a prob-
lem dependent Godunov solver. The CFL condition is computed to obtain the
correct time step. Finally we have used some typical techniques of functional
programming to obtain the one dimensional Riemann problems, in the normal
direction of each facet of the mesh, from a user implementation of the numeri-
cal flux. We use also this techniques for the CFL computation. The solver has
been tested with different solutions, both with linear and non-linear physical
flux functions, obtaining the correct error scale. Like the Darcy solvers we have
performed some scalability tests.
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4.2 Reduced models

In this section we present the relevant computational aspects for all the reduced
model of chapter 3. Each fracture is represented with a level set. This is a
powerful tool since, given a fracture, we can divide the domain into two different
parts: where the level set function is strictly positive and where the level set
function is strictly negative. The fracture is represented by the line, or surface,
where the level set function is zero. If more then one fracture are present we can
combine the signs of the level set functions to obtain different separated regions,
as in Figure 4.2. To program the reduced model we have used the Getfem++

Ω

γ2

−

+
−

(+, −)

(−, +)

(−, −) (+, +)

Ω3

Ω4

Ω1

+

γ1

Ω2

Figure 4.2: Division of the domain Ω into four different sub-regions according to the signs
of the level set functions associated to the fractures γ1 and γ2.

library of finite elements, while we have started the extension of LifeV [33] to
include also the XFEM method.

4.2.1 Degrees of freedom

One of the major problem in the implementation of the XFEM method is the
handling of the degrees of freedom. In fact when a level set cut an element K of
the triangulation Th, under Assumption 3.5, it divides K into two sub-elements
K1 and K2 which K1 or K2 is not a triangle. To represent a function f ∈ P̃0 (Th)
we need to enrich the space P0 with new functions, i.e. we need to add new
degrees of freedom. Since we are using a piecewise polynomial approximation
each element K ∈ Th has the degrees of freedom inside itself and not shared
with the neighbouring elements. Hence the enriching procedure of P0 is adding
one extended degrees of freedom, for each element in K ∈ Gh,j , associated to the
fracture γj . Considering Figure 4.3, we should have a policy common to every

γ1xb

K1

K2

Figure 4.3: Enriching of the space P (K) with K ∈ Gh,1.

element K to link the base, i.e. the degree of freedom coming from P0 (K), and
the extended degree of freedom to some geometrical properties of the triangle
K. In our implementation we have chosen to assign the base degree of freedom
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to the sub-element which contains the barycentre xg of K, e.g. K1 for the
example in Figure 4.3, and the extended degree of freedom to the other part of
K, e.g. K2 for the example in Figure 4.3. Now, using the expansion (3.64), we
can represent a discontinuity inside the element K. It is more involved to handle
the degrees of freedom of intersecting fractures, instead to characterize the base
and extended degrees of freedom to the position of the barycentre, referring to
Figure 4.4, we can divide K into at least four sub-elements Ki characterized by
different signs of the two level sets. We have to chose an order, based on the

−

−
+

+

(+, +)

(−, +)

(+, −)

γ1

γ1
+
−

−
+

(−, +)

(+, −)

γ1

γ2

(+, +)
(−, −)

Figure 4.4: Different possibilities of regions, according to the signs of the level sets.

signs, for the sub-region to link a degree of freedom to the corresponding region.
As a convention we have chosen the following order

¬ (+, +)  (−, −) ® (+, −) ¯ (−, +) (4.1)

where the first sign is referred to γ1 and the second to γ2. Note that it may
happens that one of the region is not present, in this case we rescale the num-
bering. If an element K belongs to Mh to have two discontinuity we have to
enrich K with two extended degrees of freedom. In this case, according to con-
vention (4.1), we assign the base degree of freedom to the first available region,
the first extended degree of freedom to the second available region while the
second extended degree of freedom to the last available region. Finally if an
element K ∈ Ih we have to add three degrees of freedom to represent correctly
four discontinuity in its interior. According to convention (4.1) we assign the
base degree of freedom to the region ¬, the first extended degree of freedom to
the region , the second extended degree of freedom to the region ® and finally
the extra degree of freedom is assigned to the region ¯. To represent a function

f̂ ∈ P̃0

(
γĥ,j

)
we have to enrich the polynomial space P0

(
γĥ,j

)
for both the

fractures j. We have chosen the same policy adopted for the elements K ∈ Gh,i,
based on the barycentre position.

The construction of the enriched space R̃T0 (Th) is more involved since the
degrees of freedom are on the edges of the mesh and are shared by two elements.
The difficulty is to correctly decide the numeration to be coherent for all the
neighbouring elements. If an element K ∈ Gh,j , for each fracture γj , we use the

same policy to construct R̃T0 (K) as in P̃0 (K) case. That is, for each edges
of the triangle K, we assign the base degree of freedom to the edge of the
sub-element which contains its midpoint. The extended degrees of freedom are
assigned consequently to complete the degrees of freedom of each sub-element.
Referring to Figure 4.5 we assign the base degree of freedom 1 to the sub-element
K1, while the base degrees of freedom 2 and 3 to K2. Furthermore we assign the
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23
K2

K1

γ1

1

Figure 4.5: Example of local numeration of the degrees of freedom for the element K ∈ Gh,1
cut by fracture γ1.

extended degrees of freedom 2 and 3 to K1 and the extend degree of freedom
1 to the sub-element K2. This procedure ensure the continuity of a function

f ∈ R̃T0 (Gh,j) in each part of the mesh separated by the fracture γj . If an

element K ∈ Mh or K ∈ Ih, following the idea for P̃0 (Mh), we need to add
two more extended degrees of freedom and one extra degree of freedom for each
base degree of freedom. If an edge of the sub-element Ki contains the midpoint

+
−

γ1

1

γ2
+
−(−, −)

(+, +)

(−, +) 3

2

+ −

+
−

2

1

γ2

3

γ1

(+, +) (−, +)

(+, −)

(−, −)

Figure 4.6: K ∈Mh.

of the edge e, of the element K, then the base degree of freedom associated to
the edge e belongs to Ki. If an edge of the sub-element Ki does not contain
the midpoint of e we have to check how many signs, of the level sets which
intersect the element K, do change. If just one sign changes then we assign the
extend degree of freedom associated to which level set changes the sign, while
if two signs change we assign the extra degree of freedom, e.g. referring to the
left part of Figure 4.6 we have the subdivision of the degrees of freedom, for an
element K ∈ Mh, reported in Table 4.1 for each region. While considering the

(+, +) (−, −) (+, −) (−, +)
1 extended γ1 extended γ2 not present base
2 base extra not present extended γ1

3 extended γ1 extended γ2 not present base

Table 4.1: Subdivision of the degrees of freedom for the left triangle of Figure 4.6.

right part of Figure 4.6 we have the subdivision of the degrees of freedom, for
an element K ∈ Ih reported in Table 4.2 for each region. In all of the cases the
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(+, +) (−, −) (+, −) (−, +)
1 base extra extended γ2 extended γ1

2 extra base extended γ1 extended γ2

3 extended γ2 extended γ1 base extra

Table 4.2: Subdivision of the degrees of freedom for the right triangle of Figure 4.6.

continuity is guaranteed in each part of the mesh delimited by the fractures.

To enrich the space RT0

(
γĥ,j

)
, for each fracture j, to obtain R̃T0

(
γĥ,j

)
we

have chosen the same policy adopted for the elements K ∈ Gh,i, based on the
midpoint position.

4.2.2 Quadrature rule on the cut grid

The solution of Problem 3.4, Problem 3.7 or Problem 3.10 requires to compute
integrals on the cut elements, which are not in general triangles, or tetrahedra.
One possibility is to use quadrature rules which works over arbitrary polygonal
domains, as in [61], an alternative is to divide the cut element into several
triangles or tetrahedra only for the quadrature. The first choice is more general
since it can handle non-convex domains but more complex to program and less
standard. Since, thanks to Assumption 3.7 we have only convex elements from
a cut element we preferred the second procedure. We choose to divide a cut
element into triangles or tetrahedra, as Figure 4.7 shows. To this purpose we

K ′
K ′2

γ

K ′1

Figure 4.7: Triangulation of a cut element.

adopted the Qhull library [7] which can divide a general convex polygon into
triangles, or tetrahedra, with a very fast algorithm. Furthermore we can divide
each triangle or tetrahedra independently from the others the sub-triangulation
is used just for the integration. Another benefit is that the parallelization of this
procedure is trivial. We can observe that the quadrature error is not influenced
by the “quality” of the domain, [31].
To exporting the computed solution for post-processing we use the same mesh we
generated for the integration, to get the result on a “standard” mesh, therefore
easy to open with standard software for scientific visualization.
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Chapter 5

Applicative examples

In this chapter we apply the methods presented in chapters 2, 3 and 4, to signif-
icant test cases to asses the proposed techniques highlighting strong points and
possible limits. The first section is devoted to the application of the two-phase
flow model for different problems related to oil migration. In the second section
we analyse different aspects of the reduced models for different aspects, e.g. the
behaviour of the error, and we provide some realistic examples. Finally, in the
third section we present some results about the performance of the algorithms.

5.1 Numerical simulations

We present some numerical results concerning the two-phase flow solver pre-
sented in Chapter 2. We focus our attention on some physical problems related
to oil secondary migration which is an ideal application for the method. In
particular we consider two different scenarios:

1. a single fault, acting as a barrier that stops the oil which tends to flow
along it;

2. a cap-rock which captures the oil, forming an accumulation.

In the final subsection we will present a numerical test to compare, in a transmis-
sion problem similar to [38], the advantages of the XFEM method with respect
the classical FEM.

5.1.1 Flow along a fracture

We present a two-phase flow problem for a water-oil system in the presence of
a fault. The fracture, which acts as a barrier, is resolved by the computational
grid. Figure 5.1 represents a transversal section of the domain Ω, which is
obtained by extrusion along the y axis and has the dimensions

Ω = (0, 4000)× (0, 200)× (0, 2000) .

The mesh Th, composed by 72892 tetrahedra, is conforming with the fault and
more refined therein. At initial time the medium is completely filled with water,
and we impose, until t < 1900 years an inflow of oil saturation, Sinflown = 0.9 in
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Figure 5.1: Schematic representation of the computational domain.

the left bottom part of the boundary ∂Ω of the domain, i.e. marked in blue in
Figure 5.1, while on the top of the domain we impose zero saturation. For the
pressure we impose natural boundary condition at the top ptop = 1MPa, at the
bottom left part pbott = 40MPa of the domain and at the bottom right part
we impose 10MPa. Homogeneous boundary conditions for the flux, for both
pressure and saturation equation, on the remaining part of the boundary. The
data of the problem are listed in the Table 5.1.

Km = 10−13m2 Kb = 10−18m2 µw = 10−3 Pa · s
µn = 2 · 10−3 Pa · s ρw = 980Kg/m3 ρn = 700Kg/m3

Sαr = 0 λ = 2 pd = 1200Pa

Φ = 0.4 ptop = 40MPa pbott = 10MPa

Table 5.1: Data for the problem of two-phase flow along a fracture.

Figure 5.2 represents the saturation Sn of the oil at two different times. On
the left, at t = 630 years, the saturation is higher along the fracture and fills
the left-bottom part of the domain, under the impermeable layer. On the right,
at t = 2540 years, the inflow of saturation has stopped and, since the oil is
lighter then water, it has accumulated under the two impermeable layers. It
can be observed also that the lower accumulation starts slowly to flow inside
the barrier. Figure 5.3 shows the global pressure field at t = 2540 years. We

Figure 5.2: The saturation of the liquid at two different times: on the left at t = 630 years,
on the right at t = 2540 years. The colour scale ranges from blue, Sn = 0, to red, Sn = 1.

can observe that the fracture support a strong gradient of the pressure across
it. The pressure experiences a small variation during the simulation due to the
changes in the relative permeabilities.
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Figure 5.3: The global pressure at t = 2540 years.

5.1.2 Schematic cap rock

We now consider a two-phase flow for a water-oil system in presence of a cap
rock resolved by the computational grid Th. The simulation is based on the
real problem presented in [76]. Figure 5.4 represents a transversal section of the
domain Ω where the flow takes place. The computational domain is obtained by
its extrusion along the y axis and has dimension 2000 m× 400 m× 3200 m. The
mesh, composed by 120865 tetrahedra, is conforming to the cap rock. At the

x
z

ptop

Kb

Km

Sinflown , pbott

Figure 5.4: Schematic representation of the computational domain.

initial time the medium is completely filled with water. We impose an inflow
condition Sinflown = 0.9 for t < 1900 years in the bottom part of the domain,
marked in blue in Figure 5.4. The boundary conditions and the data are the
same as in the previous example, reported in Table 5.1.

Figure 5.5 represents the saturation at three different times. In the left figure, for
t = 1500 years, the oil starts invading the domain and, since it does not reach the
cap rock, the flow is governed by the gravity force. In the second snapshot, for
t = 2400 years, the oil reaches the cap rock and, since it is almost impermeable
the oil starts to accumulate under the cap rock. In the right picture, for t =
3000 years, almost all the oil accumulates under the cap rock. Even if this
example is schematic it represents well the process of the accumulation and
trapping of the oil in a sedimentary basin. Figure 5.6 shows the global pressure
field at the final time t = 3000 years, we can see that the pressure varies almost
linearly along the vertical with a small variation near the cap rock.
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Figure 5.5: The saturation of the oil at three different times: on the left at t = 1500 years,
in the centre at time 2400 years on the right part at t = 3000 years. The color scale ranges
from blue, Sn = 0, to red, Sn = 1.

Figure 5.6: The global pressure of the oil at t = 3000 years.
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5.1.3 Fitted and unfitted discontinuities

In realistic applications permeability coefficient can be, as shown in the pre-
vious examples, discontinuous across internal interfaces. To solve numerically
this type of problems, it is common to take the discontinuity of the data into
account by enforcing mesh lines or surface along the interface, otherwise we
have sub-optimal convergence, as [38] shown. Let us consider a domain Ω ∈ R3,
divided into two sub-domains Ω1 and Ω2 by the interface γ, see Figure 5.7 for
an example. Then the problem is

n

γ

K1 K2

Ω2Ω1

Figure 5.7: Sketch of a bi-dimensional domain for a Darcy problem with discontinuous
coefficients across γ.



−∇·K∇p = q in Ω1 ∪ Ω2,

JpKγ = 0 on γ,

JK∇p · nKγ = g on γ,

p = 0 on ∂Ω,

where K ∈ L∞ (Ω) can be discontinuous across γ. We want to reproduce with
a 3D code the test case proposed in [38] in 1D, reading

−
2∑
i=1

d

dz

(
Ki
dpi
dz

)
= 1 in I ,

where I = (0, 1) and γ = {z ∈ I : z = 0.5} and subject to the coupling condi-
tions 

JpKγ = 0
s
K
dp

dz

{

γ

= 0
on γ ,

and with the following boundary conditionsp1 (0) = 0 for z = 0,

p2 (1) = 0 for z = 1.

To solve this problem in Ω = (0, 1)3, following [45] we employ homogeneous
natural boundary condition in x = 0, x = 1, y = 0 and y = 1, while the jump of
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the co-normal derivative is imposed in the plane z = 1/2. The analytic solution
of the problem is

p1 (x) =
(3K1 +K2)z

4K2
1 + 4K1K2

− z2

2K1
in Ω1,

p2 (x) =
K2 −K1 + (3K1 +K2)z

4K2
2 + 4K1K2

− z2

2K2
in Ω2.

In the test case we choose K1 = 1/2 and K2 = 20. We want to verify the

Figure 5.8: In the left figure the solution of the problem, while in the right figure the solution
of the solution in a line perpendicular and crossing the level set.

quadratic convergence of the error in L2 norm and compare the solution with
that obtained with an unfitted finite element method. The volumetric mesh is
the same for the XFEM simulations and the unfitted FEM simulations. The
errors are presented in Table 5.2 and plotted in Figure 5.9.

h XFEM FEM

0.15746 8.02 · 10−4 7.898 · 10−3

0.10188 3.03 · 10−4 5.134 · 10−3

0.08242 1.89 · 10−4 4.162 · 10−3

0.05587 8.997 · 10−5 2.824 · 10−3

0.04224 6.297 · 10−5 2.137 · 10−3

Table 5.2: Comparison between the L2 norms of the error, for the XFEM method and for
the unfitted FEM method.

The results confirm the better capability of the XFEM method to capture the
real solution of problems with sharp discontinuity in the data, keeping the com-
putational costs comparable with the classic FEM.

5.2 Reduced models

We show some numerical results with the reduced models presented in chapter
3. This section is organized in the following sub-sections:
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Figure 5.9: Comparison between the L2 norms of the error between the XFEM method and
the standard unfitted FEM method.

1. we will numerically evaluate the model error, i.e. the error we obtain if
the reduced model is used instead of the complete model. We consider the
reduced model with single fracture, the reduced model with intersecting
fractures and the reduced model for the advection-diffusion problem;

2. we will analyse the convergence rates defining the error, taken as the dif-
ference between an exact solution of the reduced model and the numerical
solution in the three cases considered above;

3. we will study the condition number and the maximum and minimum eigen-
values and the condition number of the coupled system when the fracture
position changes. We treat only the Darcy reduced models since the re-
duced model for the tracers behaves similarly;

4. we will show some limits of the reduced model for particular values of the
data and the discretization of the meshes;

5. finally we will discuss some realistic examples.

In all of the examples which involve the intersecting fractures we assume As-
sumption 3.6 even if the fractures involved are not exactly orthogonal.

5.2.1 Model error

The model error is the error we commit if we use the reduced model instead of
solving the real equation. We define the error err as the difference between a
reference solution, obtained using the original equations solved on a fine grid,
and the reduced solution

err := ‖p− pref‖L2(Ω) , (5.1)
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while the relative error errrel is

errrel :=
err

‖pref‖L2(Ω)

. (5.2)

For time dependent problem we investigate the errors at different time steps.
Note that we are not considering the solution of the reduced model inside the
fracture.

Reduced Darcy model

We consider a two-dimensional problem in a square domain cut by two fractures
γ1 and γ2 characterized by different properties, let Ω = (0, 1)2 and

γ1 = {(x, y) ∈ Ω : y = 0.27} , γ2 = {(x, y) ∈ Ω : y = 0.5x+ 0.34} .

The boundary of Ω is partitioned into two parts

ΓE = {0, 1} × [0, 1] and ΓN = [0, 1]× {0, 1} .

In ΓE we prescribe essential boundary conditions while in ΓN we impose natural
boundary conditions. We consider no flux as boundary conditions for both the
fractures at ∂γi, for i = 1, 2. The computational domain is sketched in Figure
5.10. The bulk flow and the flow in the fracture are described by Problem 3.4,

x
y

u
·n

=
0

γ1

γ2

q = 10

u
·n

=
0

Ω

p = 1

p = 0

Figure 5.10: Computational domain cut by two fractures γ1 and γ2.

with boundary natural data p(x, y) = y, for the porous medium, source term q
given by

q(x, y) =

10 if (x− 0.75)2 + (y − 0.5)2 < 0.04 ,

0 otherwise ,

while q̂i ≡ 0 for both the fractures and K = I. The first fracture γ1 is char-
acterized by the same tangential permeability as the porous medium in Ω thus
η̂1 = d−1, with d the thickness of the fractures which we will choose in the
sequel, while the normal permeability is variable along the fracture, namely

ηγ1
(x, y) =

10d if x < 0.5 ,

100d if x ≥ 0.5 .
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The second fracture γ2 is instead characterized by the same normal permeability
as the porous medium in Ω i.e. ηγ2

= d, and a high tangential permeability
η̂2 = 0.01d−1.

Figure 5.11 shows the pressure field in Ω, γ1 and γ2, obtained with the reduced
model and with the original model with a fine grid. Due to the small normal
permeability of γ1 there is a jump in the pressure across this fracture, and the
gap changes along the line according to ηγ1 . While γ1 acts as a barrier for the
flow, γ2 is a preferential path thanks to its high tangential permeability.

Figure 5.11: On the left the solution with the reduced model, with ξ0 = 0.25 and d = 0.05,
using 952 triangles for the medium and 100 segments for each fracture. On the right the
reference solution with 125769 triangles.

Figures 5.12 and 5.13 show the model error (5.1), taking as a reference the
solution of the original problem with a fine grid composed by 125769 triangles,
considering the domain without both fractures. Due to the model reduction
the major errors are localized near the fractures, in particular when a pressure
jump occurs across a fracture. We can see comparing Figure 5.12 and 5.13 that

Figure 5.12: On the left image the model error (5.1) for thickness d = 0.05 while on the
right image the model error (5.1) for thickness d = 0.02. In both simulation we take ξ0 = 0.25.

the major error is near fracture γ1 since the pressure jumps across it, while the
error is lower near fracture γ2 which is comparable to the error in the bulk. The
global relative error (5.2) is reported in Table 5.3. We can notice that decreasing
the fracture thickness d the model error decreases as expected. While changes
in the shape parameter ξ0 do not significantly affect the solution.
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Figure 5.13: On the left image the model error (5.1) for thickness d = 0.05 while on the
right image the model error (5.1) for thickness d = 0.02, with ξ0 = 0.25. In both images we
left out the region occupied by the fracture, now replaced by a mono-dimensional interface.

ξ0 = 0 ξ0 = 0.25 ξ0 = 0.5
d = 0.02 0.0337824 0.0279828 0.0334472
d = 0.05 0.0683489 0.0687755 0.0691853

Table 5.3: Global relative error errrel.

Reduced Darcy model with intersection

We consider a two-dimensional problem in a square domain cut by two inter-
secting fractures characterized by different properties, let Ω = (0, 1)2 and

γ1 = {(x, y) ∈ Ω : y = 0.387} and γ2 = {(x, y) ∈ Ω : y = −2x+ 1.4} .

In the boundaries for the domain ∂Ω and for each fracture ∂γi, for i = 1, 2,
we prescribe homogeneous natural boundary conditions. The bulk flow and the
flow in the intersecting fractures are described by Problem 3.5 with source terms
q = 10 and q̂i = 10d for both fractures and K = I, with d the thickness of the
fracture. γ1 is characterized by the same tangential and normal permeability as
the porous medium in Ω thus η̂1 = d−1 and ηγ1

= d. γ2 is instead characterized
by the same tangential permeability as the porous medium in Ω i.e. η̂2 = d−1,
and a low normal permeability ηγ2 = 50d. We set ξ̂0 = 0. The computational
domain is sketched in Figure 5.14.

��
��
��
��

γ2

γ1

Ω

p = 0

p = 0

ip

p
=

0 p
=

0

x
y

Figure 5.14: Computational domain cut by two intersecting fractures.

Figure 5.15 shows the pressure field in the domain Ω and in the fractures γ1 and
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γ2, with and without the reduced model. Due to the small normal permeability
of γ2 there is a jump in the pressure across this fracture, furthermore the effect
of fracture γ1 is null since it has the same permeability tensor as the porous
matrix.

Figure 5.15: On the left the solution with the reduced model, with ξ0 = 0.25 and d = 0.02,
using 4418 triangles for the medium, 101 segments for first fracture and 102 segments for the
second fractures. On the right the reference solution with 114115 triangles.

In Table 5.4 the global relative error (5.2) defined in 5.4 is reported.

ξ0 = 0 ξ0 = 0.25 ξ0 = 0.5
d = 0.02 0.0437599 0.0440597 0.0456497
d = 0.05 0.072244 0.0726848 0.0724751

Table 5.4: Global relative error errrel for different values of thickness d and shape parameter
ξ0.

We notice that decreasing the thickness d of the fracture the model error de-
creases, while changing the shape parameter ξ0 the model error does not change
significantly.
Figure 5.16 shows the model error (5.1) considering the global domain and the
domain without the first fracture. We take as a reference the solution of the
real problem with a fine grid composed by 114115 triangles. Due to the model
reduction the major errors are localized near the fractures, in particular when
a pressure jump occurs across a fracture.
In Figure 5.17 we present a zoom of the error near the intersection point ip, we
can notice that the error is comparable with the neighbouring regions.

Reduced transport model

We here consider the two-dimensional problem presented in [36], with compu-
tational domain QT = Ω × (0, T ), where Ω is cut by a slanting fracture, see
Figure 5.18. Let Ω = (0, 1)2, with boundary divided into ΓE = {0, 1} × [0, 1]
and ΓN = [0, 1]× {0, 1}.
The fracture is defined as

γ = {(x, y) ∈ Ω : y = 2x− 0.4} .

The bulk flow and the flow in the fracture are described by Problem 3.4, with
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Figure 5.16: On the left image the model error (5.1) for thickness d = 0.05 while on the right
image the model error (5.1) for thickness d = 0.02. In both simulation the shape parameter
is ξ0 = 0.25.
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γ2

γ1

Ω

ip

Figure 5.17: On the left image the zoom, coloured in green, of the domain Ω while on
the right image the zoom of the model error for thickness d = 0.02, with shape parameter
ξ0 = 0.25.

x
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Ω1 Ω

c0 = 1 c0 = 1

Ω2 γ

γ2

d

γ1

Ωf

Figure 5.18: On the left, the domain Ω divided into two parts by the region Ωf , of thickness
d, corresponding to the fracture. On the right Ωf has been replaced with the n−1-dimensional
interface γ. The initial condition for the concentration of the tracer is also sketched in both
domains.

zero scalar sources qi ≡ 0 and q̂ ≡ 0, natural boundary data p (x, y) = 1 − y,
and thickness of the fracture d = 0.01. We consider full natural boundary
conditions for the fracture p̂ = 1 − y on ∂γ with ξ = 0.75. The permeability
tensor of the medium is isotropic, Km = KmI with Km = 1 while the fracture
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is characterized by a high permeability in the normal and tangential directions,
Kf = 100I. We want to solve Problem 3.9 where the advection field is the
computed Darcy velocity which is higher in the fracture than in the porous
matrix.

We set the boundary condition as c = 0 and the initial data, for the concentra-
tion c, as

c0(x, y) =

1 if (x− 0.5)2 + (y − 0.2)2 < 0.03,

0 otherwise,

as shown in Figure 5.18. The diffusion tensor is isotropic and constant, D =
0.05I everywhere. We simulate this test case with the standard mixed FEM
method and a refined mesh that is able to resolve the fracture, and compare
the results with the reduced model and the XFEM approach. The time step
size is ∆t = 0.005 and T is set to 0.2 for both simulations. In Figure 5.19
the solutions are compared at two different times. In both cases the tracer
is advected upwards and flows preferably along the fracture where the fluid
velocity is higher. The two methods produce results that are qualitatively in
good agreement even if a grid of only 3200 triangles for the medium and 100
segments for the fracture are used with the XFEM approach versus a much more
refined grid, more than 13000 triangles, is for the standard approach. The slight
mismatch between the two solutions is mainly due to the numerical diffusion
associated to the coarse grid.

5.2.2 Convergence rates

In this section we investigate the convergence rates of the proposed numerical
methods. In all the examples the value of the pressure in the fractures is im-
posed. We compute the error err for the pressure in the medium using the norm
defined in (3.66) as

err = ‖p− pexact‖Qh , (5.3)

where p is the computed pressure while pexact is the exact pressure. For time
dependent problem we investigate the error at the final time step.

Reduced Darcy model

To verify numerically the convergence rate presented in Theorem 3.5 of Prob-
lem 3.4 we use the same example reported in [24]. The error we compute,
involves just the medium since we fix the solution inside the fracture.

We consider the domain Ω = (0, 1)2 with the fracture defined as

γ =

{
(x, y) ∈ Ω : r2 =

(
x− 1

2

)2

+

(
y − 1

2

)2

= R2

}
,

with R = 0.21. The computational domain is reported in Figure 5.20.
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Figure 5.19: In the left images the concentration of the tracer computed with the standard
mixed FEM and the fine grid is shown at time t = 0.1 and t = 0.2 respectively. While in
the right images we report the solution obtained at the same time steps with the reduced
approach and a coarse grid that is non matching with the fracture. The black line represents
the concentration along γ.
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Figure 5.20: Computational domain cut by a fracture.

The data for the problem are: permeability of the medium K ≡ I, inverse of

normal permeability of the fracture ηγ ≡
2

3
R, source term

q(r) =


2

R2
if r2 > R2 ,

4

R2
if r2 < R2 ,

and shape parameter ξ0 = 0.25. The pressure in the fracture is imposed to

p̂ =
19

12
. We impose natural boundary condition on ∂Ω such that the exact

solution is

pexact(r) =


r2

2R2
+

3

2
if r2 > R2 ,

r2

R2
if r2 < R2 ,

Figure 5.21 shows the computed solution for 45602 triangles. Figure 5.22 shows

Figure 5.21: Computed solution on a mesh composed by 45602 triangles.

the convergence rate for the pressure error err defined in (5.3). The numerical
results are in good agreement with the theoretical result.

Reduced Darcy model with intersection

For the reduced model with intersection there are no theoretical results about
convergence rates for the error (3.5). However since the model presented in
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Figure 5.22: Convergence rate for the pressure error err of the model with a single fracture.

Problem 3.5 is an extension of the one in Problem 3.4, we can expect a similar
behaviour for the error. The aim of this test case is to validate this assumption
numerically.
We consider the domain Ω = (0, 1)2 with two different fractures

γ1 = {(x, y) ∈ Ω : y = −2x+ 1.4} and γ2 = {(x, y) ∈ Ω : y = 0.51} .

The computational domain is reported in Figure 5.23 together with γ1 and γ2.
The exact solution is
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Figure 5.23: Computational domain cut by two different fractures γ1 and γ2.

p (x, y) =

y if y < 0.51,

y + 0.5 otherwise.

The data of the problem are: permeability of the porous medium K = I, scalar
source q ≡ 0, shape parameter ξ0 = 0 for both fractures, inverse of the normal
permeability in the first fracture ηγ2

≡ 0.5. The boundary condition ∂Ω are
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natural on the top and on the bottom, and essential on the right and on the left
part. The reduced pressure in γ2 is imposed and equal to p̂2 = 0.751 while the
reduced pressure in γ1 is imposed and equal to the exact solution p. The penalty
parameter for the Nitsche’s method for the imposition of essential boundary
conditions is chosen as µ = 7. Figure 5.24 shows the computed solution for
17384 triangles. We analyse two different values of ηγ1

, first ηγ1
≡ 0, i.e. perfect

Figure 5.24: Computed solution with two fractures on a mesh composed by 17384 triangles,
the first fracture has the same parameter as the bulk while the second fracture support a
pressure jump.

transmission conditions are imposed to the fracture, then ηγ1
≡ 0.01, i.e. the

same properties as the porous medium. Figure 5.25 shows the errors for

0.003

0.03

0.015 0.1

err

h

Convergence rate

err
h
h2

Figure 5.25: Convergence rate for the pressure error err, with ηγ1 ≡ 0, of the model with
two intersecting fractures.

the first case while in Figure 5.26 are reported the errors for the second case.
The numerical results are in good agreement with what we expected, indeed
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Figure 5.26: Convergence rate for the pressure error err, with ηγ1 ≡ 0.01, of the model with
two intersecting fractures.

convergence is roughly quadratic in both cases.

5.2.3 Analyses of the condition number

In this part we present the behaviour of the eigenvalues in two cases: single
fracture and intersecting fractures, treated with the XFEM method. In partic-
ular, in the relevant case of a cut element whose area tends to zero as in Figure
5.27. Even if there are no theoretical results on the eigenvalues of the Darcy

������

γĥ ThTh

γĥ,2

γĥ,1

Figure 5.27: Different position of fractures respect to the mesh Th.

problem with fractures except for [24], where some numerical are presented. We
refer to [80], [65], [15] and [45] for a detailed analysis of similar problems with
the XFEM method applied to elliptic problems written in primal formulation.
From the aforementioned works we have a bound for the maximum eigenvalue

λmax ≤ M̃hn
(

1 + C̃h−2
)
, (5.4)
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where M̃, C̃ ∈ R+ are independent of the position of the fracture, n is the space
dimension and h is the diameter of the smaller element of the mesh Th. In our
tests we have two different mesh sizes: h the one associated to the mesh Th and
ĥ the one associated to the fracture mesh γĥ. Since in our test n = 2 we would

expect λmax to be independent of h with fixed ĥ, while λmax . ĥ−1 for fixed h.
For the minimum eigenvalue we have that

λmin ≥ α̃CCmin (h, κ) , (5.5)

where α̃C ∈ R+ is related to the coercivity and Poincaré constants, while for
Cmin we have

Cmin (h, κ) & hn min (c1, cκ) ,

with c1, c ∈ R+ two constants and κ is the ratio between the minimum and
maximum area or volume of the two parts of a cut element. For fixed κ and
for n = 2 we expect that λmin & h2 for a given ĥ while λmin & ĥ for a given
h. Finally, since the matrices are symmetric and positive definite, the condition
number of the problem in norm 2, fixing ĥ, is cond2 . h−2 and cond2 . h−2

for a given h.
In all examples the data in the fractures are such that the pressure and velocity
are continuous in all the domain Ω, thus the values of the eigenvalues and the
condition number are related to the numerical method and not a particular
choice of the data.
Before considering the reduced model, we analyse the behaviour of the spectrum
in a transmission problem solved with the XFEM method.

XFEM

We analyse the behaviour of the spectrum of the matrix generated by the XFEM
method for the classical problem presented in section 5.1.3, where the compu-
tational grid is Cartesian. We change the position of the interface γ such that
the minimum ratio of volume of the cut elements decreases more and more. In
Table 5.5 we present the results obtained for the spectrum of the matrix of the
problem.

min
Th

κ λmin λmax λmax/λmin

0.125 8.06 · 10−3 3.481 4.31 · 102

1.5625 · 10−2 8.12 · 10−3 3.468 4.27 · 102

10−3 8.44 · 10−4 3.465 4.105 · 103

1.25 · 10−4 1.02 · 10−4 3.464 3.396 · 104

1.56 · 10−5 1.26 · 10−5 3.460 2.7467 · 105

1.25 · 10−7 1.0029 · 10−7 3.463 3.453 · 107

Table 5.5: Minimum and maximum eigenvalue with respect to the ratio of the volumes.

We can observe that the maximum eigenvalue is almost constant while the
minimum eigenvalue decreases linearly when the ratio between the areas of the
sub-elements decreases. This result is confirmed by the theory.
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We then solve the same problem but we refine the mesh leaving the interface
fixed, i.e. with constant κ. Table 5.6 shows the values of the eigenvalues and
the condition number in norm 2 for different values of the spacing of the mesh
h ≈ 1/N .

N λmin λmax cond2

5 2.148 · 10−2 4.40769 2.05 · 102

11 4.27 · 10−3 1.1505 2.67 · 102

19 1.06 · 10−3 1.00001 9.51 · 102

29 3.29 · 10−4 1 3.03 · 103

39 1.42 · 10−4 1 7.002 · 103

Table 5.6: Eigenvalues and condition number for different values of h ≈ 1/N .

We can observe that both eigenvalues are affected by the grid spacing h. The
maximum eigenvalue stabilizes to 1 for decreasing values of h, while the mini-
mum eigenvalue quadratically decreases with respect to h. Therefore the con-
dition number grows quadratically with respect to h as the theory predicts

cond2 ≤
M̃h3(1 + C̃h−2)

h3 min (c1, cκ)
≈ h−2 .

Reduced Darcy model

To analyse the behaviour of both the eigenvalues λmax and λmin and the con-
dition number for coupled Darcy problem with a single fracture we consider the
domain Ω = [0, 1]2, discretized with a computational grid Th with 20 elements
for each border, and the fracture

γ = {(x, y) ∈ Ω : y = ci} ,

ci ∈ {0.525, 0.5, 0.515, 0.51, 0.505, 0.5025, 0.50125, 0.500625, 0.5003125}, dis-
cretized with 101 segments. We set for the porous medium K = I and q ≡ 4,
while the data of the fracture are d = 0.01, ξ0 = 0.25, q̂ ≡ qd, η̂ = 1/d and
ηγ = d. The boundary condition are of homogeneous natural type on the top
and bottom part of ∂Ω and homogeneous essential type on the left and right
part of ∂Ω and on ∂γ.

The sparsity pattern of the global matrix is reported in Figure 5.28 to show
the symmetry, the different blocks medium-fracture and the extended degrees
of freedom which modify the more structured pattern of the original problem.
Figure 5.29 shows the behaviour of λmax and λmin for decreasing values of κ.
As we expected, the maximum eigenvalue has a stable value while the mini-
mum eigenvalue decreases to zero according to (5.4) and (5.5). In Table 5.7
is reported the behaviour of the eigenvalues and condition number for fixed κ
but for decreasing h of the mesh and constant ĥ = 1/101 of the fracture. The
position of the fracture is ci = 0.5. We indicate with N the number of elements
in one of the four pieces of boundary of Ω.

The results are in good agreement with what we expected. In Table 5.8 we
report the behaviour of the eigenvalues and condition number for fixed κ and
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Figure 5.28: Sparsity patter of the coupled problem with 13965 non zero values.
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Figure 5.29: Maximum and minimum of the eigenvalues for the matrix scale with dist.

h ≈ 1/29 but for decreasing ĥ. The position of the fracture is ci = 0.5. We

indicate with M the spacing of the discretized fracture γĥ, M ≈ 1/ĥ.
As we expected the maximum eigenvalue scales linearly with M but the mini-
mum eigenvalue behaves almost independent with respect to ĥ, thus the condi-
tion number seems to scale linearly with M .
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N λmin λmax cond2

11 1.9 · 10−3 5.05 · 104 2.7 · 107

19 5.8 · 10−4 5.05 · 104 8.6 · 107

29 2.5 · 10−4 5.05 · 104 2 · 108

39 1.4 · 10−4 5.05 · 104 3.6 · 108

49 8.9 · 10−5 5.05 · 104 5.7 · 108

Table 5.7: Eigenvalues and condition number for different mesh sizes h.

M λmin λmax cond2

51 2.3 · 10−4 2.55 · 104 1.1 · 108

101 2.47 · 10−4 5.05 · 104 2 · 108

201 2.56 · 10−4 1 · 105 3.9 · 108

301 2.58 · 10−4 1.5 · 105 5.8 · 108

401 2.59 · 10−4 2 · 105 7.74 · 108

501 2.59 · 10−4 2.5 · 105 9.66 · 108

Table 5.8: Eigenvalues and condition number for different mesh sizes ĥ.

Reduced Darcy model with intersection

We analyse the behaviour of both eigenvalues λmax and λmin and the condition
number for the reduced Darcy model with intersecting fractures not coupled
with the porous medium. The fractures are

γ1 = {(x, y) ∈ Ω : y = 0.5} and γ2 = {(x, y) ∈ Ω : y = −2x+ 1.4} .

The data of the fractures are d = 0.01, ξ0 = 0.25, q̂ ≡ 4d, η̂ = 1/d and ηγ = d, for
both fractures. The boundary condition are of natural type, with zero data for
γ1 and 0.5 for γ2. The sparsity patter of the matrix is reported in Figure 5.30 to
shows the symmetry, the different blocks fracture-fracture, the reduced problem
in the intersection point ip and its transposed which express the conservation
of mass and the extended degrees of freedom which modify the more structured
pattern of the original problem.
Table 5.9 shows the scaling of the maximum and the minimum eigenvalue and
the condition number when the number M of segments for each fractures in-
creases. We see that λmin decreases linearly with ĥ and, when the λmax ap-
proaches a fixed value, the condition number increases linearly with ĥ. This
behaviour is analogous to that reported in the previous section.

5.2.4 Limitations of the reduced model

We want to investigate the occurrence of spurious oscillatory for the coupled
problem of Darcy flow in a fracture and the outer porous medium, see Figure
5.31 for an example. In particular pressure oscillations in the fracture arise in the
case of strong variations of the coefficients, normal and tangential permeabilities
of the fracture, when the discretization of the fracture is finer than the outer
medium. A similar phenomena is presented also in [34].
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Figure 5.30: Sparsity patter of the coupled problem with 353 non zero values.

M λmin λmax cond2

11 7.9 · 10−3 9.7 1.2 · 103

21 4.3 · 10−3 5.2 1.2 · 103

41 2.2 · 10−3 2.7 1.2 · 103

81 1.1 · 19−3 2 1.75 · 103

161 5.8 · 10−4 2 3.46 · 104

321 2.9 · 10−4 2 6.88 · 104

Table 5.9: Eigenvalues and condition number for different mesh sizes M ≈ 1/ĥ1 ≈ 1/ĥ2.

Figure 5.31: In the left the pressure in the medium and in the fracture, we see some
oscillation where the fracture acts as a barrier. In the right the pressure in the fracture, the
oscillation ranges in ±0.06. The medium is discretized with 64 triangles for each edge while
the fracture with 128 segments.
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In the sequel we indicate with N the number of triangles per edge of the do-
main, with M the number of elements in the fracture, with A the amplitude
of the oscillations of pressure in the fracture and with ν the frequency of the
oscillations.
The problem of interest is given on a square domain Ω = (0, 1)2 with an hor-
izontal fracture that cuts the domain as shown in Figure 5.32. The fracture

Ω

p = 1

p = 0

p
=
y p

=
y

x
y

γ

l2l1 l3

Figure 5.32: Computational domain cut by a fracture.

is

γ = {(x, y) ∈ Ω : y = 0.47} .

As Figure 5.32 shows, the fracture is divided into three parts, with |l1| = |l3| =
0.25 and |l2| = 0.5, where we will impose different values of fracture permeability.
The fixed data are the permeability of the porous medium K = I, the scalar
source q = 4 and the boundary conditions which are of essential type on ∂Ω and
in ∂γ, in both cases we impose p (x, y) = y. We present two different scenarios
characterized by different permeability of the fracture. The first has η̂ = 100
and

ηγ (x) =

10 if x ∈ l2,

10−2 otherwise.

The values of the oscillations are reported in Table 5.10 for different values of
meshes size M and N .

for N = 10 for N = 20

M 10 20 40 80 10 20 40 80

A 0 2.5 · 10−2 2.5 · 10−2 2.5 · 10−2 0 0 10−2 10−2

ν 0 5 5 5 0 0 10 10

Table 5.10: Values of the amplitude A and frequency ν of the oscillations for different values
of the meshes size M and N in the first scenario.

The second scenario has the following permeabilities in the fracture

η̂ (x) =

103 if x ∈ l2,

1 otherwise
and ηγ (x) =

10 if x ∈ l2,

10−2 otherwise.
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The values of the oscillations are reported in Table 5.11 for different values of
meshes size M and N .

for N = 10 for N = 40

M 10 20 40 80 20 40 80 160

A 0 0.8 0.8 0.8 0 0 0.35 0.4

ν 0 5 5 5 0 0 20 20

Table 5.11: Values of the amplitude A and frequency ν of the oscillations for different values
of the meshes size M and N in the second scenario.

The results show that the oscillations occur when the discretization of the frac-
ture is finer than the mesh of the medium, which exhibit a frequency that
depends only on the discretization of the outer medium N , in particular we
found ν ≈ N/2. Figure 5.33 shows the same problem of Figure 5.31 with dif-
ferent mesh of the fracture, the frequency does not change but the amplitude
decreases. Finally, if the spacing of the meshes of the porous medium and of

Figure 5.33: On the left the pressure in the medium and in the fracture, we see some
oscillation in the centre where the fracture acts as a barrier. On the right the pressure in the
fracture, the oscillation ranges in ±0.03. The medium is discretized with 128 triangles for
each edge while the fracture with 256 segments.

the fracture are comparable no significant oscillation are present, as Figure 5.34
shows.
It is important to notice that, even if the model develops oscillations for specific
values of the parameters, the oscillations disappear when h and ĥ go to to zero,
as the theory predicts.

5.2.5 Some realistic examples

We present several realistic examples where the reduced models are applied. In
particular we highlight the advantages of the reduced models compared to the
complete models and the effect of the fractures to the flow. We use realistic data
to prove that the reduced models behave well also for concrete applications.

Reduced Darcy model

To assess the effectiveness of the reduced model on realistic test cases we now
consider the test case in subsection 5.1.1 and replace the fault with a two-
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Figure 5.34: In the left the pressure in the medium and in the fracture, we see no oscillation
for the fracture. In the right the pressure in the fracture, the oscillation ranges in ±10−4,
mainly concentrated near the discontinuity of the permeability. The medium is discretized
with 24 triangles for each edge while the fracture with 24 segments.

dimensional interface, as shown in [35]. The fracture γ divides the domain in
two sub-domains Ω1 and Ω2 as shown in Figure 5.35. We want to compare
the pressure field obtained using the standard approach with a refined mesh,
72892 tetrahedra, and the pressure in the matrix and in the fault computed
with the reduced model presented in Problem 3.3 with coarser grids, only 9840
tetrahedra for the matrix and 656 triangles for the fault.

x
z Ω2

ptop

Kb

Kb

γ

pbott

Ω1

Km

Km

Figure 5.35: Schematic representation of the computational domain. The fault in subsection
5.1.1 is here replaced by a two-dimensional interface. On the right a zoom of the upper
impermeable layer cut by the fault: XFEM allow us to reproduce a permeability field with
discontinuities within the elements of the grid.

The permeability field is redefined as K (x) = K (x) I, with

K (x) =


10−15 if 200 < z < 400 and x ∈ Ω1,

10−15 if 1600 < z < 1800 and x ∈ Ω2,

10−10 otherwise ,

and

KΓ,τ (x) = KΓ,n (x) =

10−15 if 750 < x < 2750,

10−10 otherwise.
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We point out that the extended finite element formulation allows us to represent
a permeability coefficient K (x) that is discontinuous across γ even if the grid
is non conforming with the interface, see Figure 5.35, for further details see [38]
and [45]. Since the problem in subsection 5.1.1 is a time dependent problem we
here consider the pressure fields at the initial time t = 0, i.e. we solve equation
(2.31) at k = 0, with the same boundary conditions as in Table 5.1. Results
are shown in Figure 5.36. The pressure field obtained with the fine mesh is well
reproduced with the coarse mesh and the reduced model for the flow along the
fault. There is a slight mismatch at the top and bottom boundary, where the
imposition of the natural boundary condition is less precise with a coarse grid
since pressure is approximated as piecewise constant on each tetrahedron.

The reduced model has been, so far, applied only in the single-phase case,
therefore a complete comparison of the resolved and reduced approaches is not
possible, nevertheless the pressure fields computed at given saturation in an
IMPES framework are in good qualitatively agreement.

Figure 5.36: On the left, the pressure field of the problem in subsection 5.1.1 at initial time.
On the right, the pressure field computed with a coarse mesh and the reduced model for the
fault. The domain is clipped at y = 100 to visualize the pressure in the medium surrounding
the fault.

Reduced Darcy model with intersection

We present a schematic example of a schematic sedimentary basin, where the
flow takes place, in presence of three horizons and a fault which intersects them.
The computational domain Ω, reported in Figure 5.37, is the unit square with
boundary ∂Ω discretized with 2738 triangles. The horizons are represented by

γ1 = {(x, y) ∈ Ω : y = 0.85} , γ3 = {(x, y) ∈ Ω : y = 0.51} ,
γ2 = {(x, y) ∈ Ω : y = 0.1 sin(7x+ 0.2) + 0.72} ,

while the fault is

γ4 = {(x, y) ∈ Ω : y = −2x+ 1.4} .

The boundary ∂Ω is divided into two parts where we impose for the medium
and the fractures the same conditions: top and bottom homogeneous natural
condition while right and left homogeneous essential condition. The source term
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Figure 5.37: Schematic representation of the computational domain with four intersecting
fractures.

q, present only in the medium, is

q (x, y) =

4 if 0.1 < y < 0.35,

0 otherwise.

The permeability tensor is discontinuous in the domain

K =

[
1 0
0 K2,2

]
with K2,2 (x, y) =

0.1 if 0.35 < y < 0.51,

1 otherwise,

where, in Figure 5.37, we indicate with Kb the smaller value of K. All the
fractures have thickness equal to d = 0.01 and shape parameter equal to ξ0 =
0.25 while their permeability and space discretization N are reported in Table
5.12. In Figure 5.38 is reported the net of the fractures with their pressure.

γ1 γ2 γ3 γ4

ηγ d 100d 100d d
η̂ 1/d 1/d 1/d 0.01/d
N 41 81 41 41

Table 5.12: Different values of the permeability and space discretization for the horizons
and the fault.

We can see that the pressure is discontinuous across the intersection points ip,
furthermore the model can handle more then one intersection point ip with the
constraint that at most one intersection point ip belongs to an element of the
porous medium grid. Figure 5.39 compares the pressure field obtained with
the reduced model, where also the fractures are presented, and the pressure
field neglecting the fractures. We notice that the results are macroscopically
different, therefore is important to describe accurately the horizons and the
faults in simulations of subsurface flow.

Reduced transport model

We present a realistic example [36] for the reduced model of a tracer in the
domain QT cut by the fracture γ, see Figure 5.40. The computational domain

156



Figure 5.38: Pressure field in the intersecting fractures.

Figure 5.39: Comparison of the pressure field with, left, and without, right, the fractures.
In the left figure also the pressure in each fracture is present.
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Figure 5.40: Computational domain with the data to obtain the velocity u and û.

QT has spatial dimensions lx× ly, where lx = 6km and ly = 3km, while the end
time of the simulation is T = 1013s, i.e. ∼ 0.95My. The fracture has thickness
d = 10m and the shape parameter is ξ0 = 0.25. To obtain the external velocity
field u in the porous medium and in the fracture û we solve a Darcy problem
coupled with the reduced model in the fracture, presented in Problem 3.3. The
data to obtain the velocity are reported in Table 5.13, where Ki = KiI and
q = −9.81e2. Note that the fracture acts as a preferential path for the flux
in the tangential direction and as a barrier in the normal direction. In both
problem we impose µ = 5 |lx| |ly| for the penalty parameter of the Nitche’s
method, because we use realistic dimensions of the domain Ω.

Figure 5.41 shows the pressure field in the domain and in the fracture for this
problem.
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K1 = 10−15m2 K2 = 10−18m2 K3 = 10−17m2 Kτ = 10−13m2

Kn = 10−17m2 p1 = 34.53MPa p2 = 29.53MPa p3 = 0.1MPa

Table 5.13: Data for the Darcy problem to obtain the external field u and û.

Figure 5.41: Pressure field of the problem.

The molecular diffusion of the tracer is homogeneous in the domain D = DI,
with D = 10−8m2/s, while in the fracture we impose Dn = Dd and Dτ = D/d,
i.e. the fracture has the same equivalent molecular diffusion of the medium. We
impose homogeneous essential condition on the left and the right part of ∂Ω and
homogeneous natural condition on the top and the bottom of ∂Ω. Finally the
initial condition is c0 = 0.3 in the blue ellipse presented in Figure 5.40. We use
∆t = 5 · 1010s as the time step for the temporal scheme. We present in Figure
5.42 the concentration at two different times, on the left for t = 1.87 · 10−2My
and on the right for t = 0.1105My. The figures at the top are the solutions
without the fracture in both the fracture and the concentration problem, while
on the bottom figures are the solutions with the fracture. We can notice that
the solutions are different confirming the necessity to handle in an efficient and
accurate way the fracture.

Figure 5.42: Comparison, in two different times, between the solution obtained without
the fracture, the top figures, and the solution with the fracture and the reduced model, the
bottom figures.

5.3 Examples of high performance computing

A very important aspect in high performance computing simulations is the scal-
ability of the code and load balancing. Scalability is the gain we obtain if we
increase the number of processes in a parallel setting. There are several differ-
ent ways to measure this index. Strong scalability measures the ratio between
elapsed time and number of processors for a fixed problem. To be significant
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we need a problem large enough to have reasonable sized sub-problems even
when the number of process is high. This often implies that the problem is too
large to be solved on a single processor then the concept of weak scalability has
been introduced. Weak scalability uses problems which scale as the number of
processors. In this case the major difficulty is the proper scaling of the size of
the problems. Our test cases involve some hundreds of processors so we can use
the strong scalability concept.
The second important index is the load balancing which measures, for each part
of the code, the amount of time each core requires. The best scenario is when
all the processors use the same time so no time is wasted. In practice is difficult
to have a perfect load balancing so we analyse the ratio between the minimum
and the maximum time.
Both indices are taken into consideration for the solution of a two-phase flow
and a transmission problem using LifeV.

5.3.1 Scalability

The examples we present are performed on the so called Lagrange super com-
puter of the Italian computer centre CILEA with the following specifications

Type HP Cluster Intel Xeon
Nodes 208
CPU two processors Intel Xeon QuadCore 3.166GHz for each node
RAM 16 GB for each node
Hard-Disk total storage 13TB

We want to compare the strong scalability of the two-phase solver for the ex-
ample presented in the subsection 5.1.1. Figure 5.43 shows the scalability, in
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Figure 5.43: Scalability of the IMPES solver with gnu compiler.

term of speed-up, of the solver when the GNU C++ compiler version 4.1.2 is
used, with and without the exporting of the solution in the HDF5 format. The
speed-up is the ratio between the total time in the serial simulation and the total
time in the simulation with more processors. We can see that the code scales
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well, with a gain of ∼ 20%, except when the number of processors grows up to
one hundred and the solution is exported, this is mainly due to the overhead of
I/O operations. Figure 5.44 shows the scalability of the solver, with the same
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Figure 5.44: Scalability of the IMPES solver with intel compiler.

problem, if we use the intel compiler 11.1. In contrast with the previous case,
we have no problems with the exporting of the solution even if the number of
processors grows. With the intel compiler we have the same gain as with the
GNU compiler. In Figure 5.45 we present the strong scalability of the transmis-
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Figure 5.45: Scalability of the XFEM solver with gnu compiler.

sion problem presented in subsection 5.1.3. In this case the speed-up is greater
then linear because there are some bottle necks in the serial version of the code.
The gain is greater then ∼ 40% in the central part of the graph, for both the
compilers.
Similar behaviour are obtained with other types of super-computers like IBM
BlueGene/P and IBM pSeries 575 from CINECA centre.
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Processor Id 1 2 3 ratio
Read and partition the mesh 2.05 2.1 2.09 0.98
Create FEMs 1.08 1.08 1.08 1

Time step 0

Create pressure matrix 7.86 7.86 7.86 1
Solution linear system 12.51 12.51 12.5 1
Reconstruct p and u 7.42 7.43 7.43 1
Interpolation of the u 1.1 1.1 1.1 1
Compute CFL 2.19 1.9 2.3 0.83
Solution of hyperbolic part of saturation 2.38 2.47 2.61 0.91
Solution export 0.31 0.88 0.92 0.34

Time step 1

Create pressure matrix 7.98 7.98 7.99 1
Solution linear system 12.35 12.35 12.35 1
Reconstruct p and u 7.53 7.53 7.53 1
Interpolation of the u 1.09 1.09 1.09 1
Compute CFL 1.95 1.95 1.95 1
Solution of hyperbolic part of saturation 2.1 2.1 2.1 1
Solution export 0.31 0.75 0.77 0.4

Table 5.14: Load balancing of three processors to solve the two-phase flow. The time
reported are in seconds.

We point out that in all of these cases we did not tune all the possible parameter
to obtain the best performance but we used the standard ones. This is very
encouraging because even better gain can be obtained with an optimal tuning.

5.3.2 Load balancing

We present the load balancing of the two-phase flow solver of the example
presented in subsection 5.1.1. In particular we want to compare the balancing
when three processors are used to solve the problem. In Table 5.14 we report
the results for the first two time steps and the computational costs for the pre-
process operations such as reading and partitioning the mesh and creating the
finite elements spaces. Since we use a sub-loop to solve the hyperbolic part of
the saturation equation in the table we report the average values for both the
computation of the CFL condition and the solution of the hyperbolic equation.
In the last column the table reports the ratio between the minimum time and
the maximum time. The values suggest that the code is well balanced in almost
all of its parts, in particular the solution of the pressure equation is perfectly
balanced and also the solution of the hyperbolic equation in the second time
step. Nevertheless the exceptions are the exporting of the solutions, where the
cost grows with respect the process Id, and the hyperbolic solver in the first
time step where the balance on the three processors is not perfect.

We present now the load balancing for the transmission problem presented in the
subsection 5.1.3. Since the partitioning in LifeV is based on the computational
grid it can happen that the level set cuts the mesh just in some sub-regions
generating an unbalanced problem even if the grid is balanced. We have modi-
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Weighted [s] Not weighted [s]
Processor Id 1 2 1 2

Mesh reading 0.27 0.27 0.25 0.26
Mesh partitioning 0.23 0.24 0.24 0.25
Stiffness matrix 1.26 1.2 0.88 1.61
Penalty matrix 0.06 0.06 0 0.12
Jump terms 0.28 0.23 0.01 0.53
Forcing term 0.77 0.79 0.56 0.96
Global assemble 2.82 2.88 3.79 3.76
Solution 0.69 0.79 0.6 0.7

Table 5.15: Load balancing for a transmission problem with a weighted and not weighted
mesh partitioning. Values taken from [45].

fied the partitioning procedure keeping the possibility to assign weights to the
elements. The policy we choose is to assign weight one if the element is uncut
while for the cut elements we assign weight one plus the number of level sets
which intersect the element. In Table 5.15 we present the load balancing using
two processors in the cases of weighted and non-weighted mesh partitioning.
We tune the level set in such a way that the un-weighted case the processor 2
contains all the cut elements. We can see that the construction of all the matri-
ces and vectors becomes unbalanced between two processors while it is balanced
if we use the weighted partitioned. Also the assembly of the matrix, which is
the procedure where the local parts of the global matrix are communicated to
the other processors, has a greater cost in the case of the unbalanced simula-
tion. These results suggest that the simple policy we adopted for balancing the
partition is effective to recover a well balanced simulation.
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Conclusion and future
developments

In this thesis we developed an original numerical method for the simulation of
Darcy flows at the basin scale. In particular we addressed the problem of oil
migration from source to trap, which can be modelled as a two-phase flow of
oil and water occurring through the sedimentary basin and focused, in particu-
lar, along strongly localized heterogeneities such as faults and horizons between
layers. Following the approach proposed in [57] and [24] we adopted a model re-
duction strategy to account for the presence of the faults, whose thickness is very
small compared to the length scale of the basin. Instead of refining the compu-
tational grid the faults are replaced by surfaces immersed in a three-dimensional
domain, or lines in a bidomensional domain, yielding a coupled problem for the
flow in the porous matrix and along the fractures. Moreover, following [24] we
allowed the grid to be non-matching with these surfaces adopting the extended
finite element method (XFEM) to this type of problems.

To extend the work of [24] to realistic cases we derived a reduced model that
is able to take into account the effect of gravity, or of a generic vector source
term. Moreover we extended the reduced model to the case of a domain crossed
by several intersecting fractures, deriving suitable interface conditions in the
intersection points, which are again non-conforming with the grids of the frac-
tures. We presented the correct functional setting and generalized the XFEM
enrichment of the finite element spaces in this general case.

Finally, we applied the same strategy used for the Darcy problem to derive
a reduced model for the problem of the advection and diffusion of a tracer
transported in the porous medium by a given vector field. This problem is very
interesting as it can model pollutant transport in water-bearing strata. For
all the mentioned problems we have presented some analytical results and a
wide number of numerical simulations to support the theoretical findings. The
comparison of the reduced model with the results of the classical model on a
very fine grid showed that the reduced model yields correct results with a low
computational cost since it does not require a mesh that is able to resolve the
fractures. The error analyses showed that, as the mesh is refined the error decays
as predicted by the theory. We analysed the behaviour of the condition number
of the problem as a function of the position of the interface with respect to the
grid finding that if the area of a sub-element tends to zero the problem becomes
ill-conditioned. The development of effective preconditioners will be the subject
of further investigations with a view to applying the method to complex realistic
geometries. Finally we applied the reduced models to problems with realistic
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data to assess the robustness of the method with real values of the coefficients
and obtained solutions that exhibited the correct qualitative behaviour.
In addition to the development of reduced models a parallel and complementary
work consisted in the implementation, in the framework of the LifeV library, of a
two-phase solver that is three-dimensional and fully parallel. Modern program-
ming and numerical techniques were used to obtain a general, robust solver.
Some realistic problems were presented such as the flow of oil along a fault or
the trapping under an impermeable cap-rock. We also tested the scalability of
the code on super-computer machines.
As mentioned above, the effectiveness of the proposed models could be improved
introducing stabilization techniques or appropriate preconditioners to obtain a
condition number which is independent of the position of the fractures. In ad-
dition, for the transport of the tracer an important improvement would be the
inclusion of stabilizations to handle advection-dominated problems without re-
sorting to mesh refinement. Analytical properties such as well-posedness, mass
conservation properties, positivity and convergence rates deserve further inves-
tigation in the case of intersecting fractures and for the scalar tracer transport
model. Finally, a reduced model for the saturation equation should be derived
following the work by [46] and implemented in an XFEM framework in order to
obtain a two-phase solver that can be applied at the basin scale accounting for
the presence of faults with a low computational cost.
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