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Abstract

Nowadays, applications are more and more realized as service composi-
tions, that is, assembling small, independent, accessed on-demand, possibly
heterogeneous pieces of code in an easy and flexible way. Cloud computing
takes the service abstraction one step further and applies it to new kinds of
resources, both hardware and software. On the other hand, service-based
applications are way more complex to manage than traditional ones. They,
in fact, are naturally structured on multiple, interdependent layers. This
means we need a new way to control their performance, which would take
into account all the functional and non-functional dependencies and would
be able to react to the frequent changes of services.

There are many existing runtime service management solutions. How-
ever, in the context of cloud computing, they can only be considered partial
solutions: some of them intervene at specific levels only, while others do not
consider the adaptation process in its totality. This thesis refers to a project
in which runtime management is obtained through a multi-level MAPE cy-
cle. The approach consists of four phases that are applied concurrently to
multiple layers. The four phases are: monitoring and correlation; analy-
sis of adaptation needs; identification of cross-layer strategies; adaptation
enactment.

This thesis focuses on the realization of the first phase in the cycle: mon-
itoring. The work proposes an approach in which we extract independent
execution data from each layer, and correlate them to obtain a clear and
holistic representation of the application’s functional and non-functional be-
haviour. In addition, the thesis presents two performance visualization tools.
The first is real-time, and can show live trends. The second uses historical
data to allow the designer to “drill down” to discover the reasons behind past
application failures. The entire approach has been tested with various load
simulations on a distributed application.
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Descrizione della tesi

Oggigiorno, le applicazioni vengono sempre più spesso realizzate tramite
composizioni di servizi, ovvero combinando tra loro blocchi di codice soli-
tamente piccoli, tecnologicamente eterogenei, indipendenti e utilizzabili “on
demand”. Per facilitare ciò, negli ultimi anni sono state realizzate diver-
se tecnologie, e molte altre ne arriveranno in futuro. Il cloud computing,
poi, ha comportato un’ulteriore innovazione, estendendo di fatto il concetto
di “affitto” a qualunque tipo di risorsa informatica, dal comune programma
software fino all’infrastruttura vera e propria.

Le applicazioni basate sui servizi, però, sono molto più difficili da con-
trollare di quelle tradizionali. La loro struttura naturale, infatti, si articola
su più livelli: da un livello “generale”, astratto, al culmine, ogni aspetto
dell’applicazione (struttura interna dei processi, dipendenze) viene appro-
fondito discendendo la gerarchia, fino ad arrivare all’ultimo strato in cui
sono contenuti gli effettivi elementi implementativi. Assumendo una base
“cloud”, inoltre, anche l’infrastruttura fisica sottostante deve essere presa in
considerazione, aggiungendo un ulteriore livello in fondo allo stack. Tutto
questo rende decisamente più complicato il mantenimento delle prestazio-
ni, in quanto i diversi livelli applicativi sono legati indissolubilmente tra di
loro, e operare modifiche ad uno di essi influenza inevitabilmente anche gli
altri. Occorre, perciò, adottare un processo che tenga conto della struttura
multi-livello e di tutte le possibili dipendenze, funzionali e non, tra i com-
ponenti dell’applicazione. In secondo luogo, i servizi stessi sono soggetti a
continue evoluzioni, che non possono certo essere monitorate completamente
da un analista “umano”: per questo motivo, quindi, un ipotetico middleware
di controllo deve anche fare in modo che l’applicazione si adatti “da sé”,
reagendo automaticamente a tutti i possibili cambiamenti.

Le soluzioni che sono state presentate fino ad ora sono solamente parzia-
li, specialmente se considerate nell’ambito “cloud”: alcune, sulla base delle
applicazioni tradizionali, si occupano di un singolo livello e trascurano gli al-
tri; altre, invece, si focalizzano su una specifica fase del processo adattativo,
curando poco il resto. Il progetto di cui questa tesi è parte definisce un ap-
proccio integrato basato su un ciclo real-time di auto-adattamento, suddiviso,
sulla base del noto modello MAPE (Monitor, Analyse, Plan and Execute),
in quattro macro-fasi: raccolta di informazioni dall’applicazione; determina-
zione dei requisiti di adattamento; identificazione della strategia multi-livello
da adottare; effettuazione della strategia sull’applicazione. Ognuna di tali
fasi opera nell’ambito multi-livello, definendo perciò delle strategie che siano
attente a tutti gli elementi possibilmente condizionati da ciascuna azione.
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Il contributo pratico dato da questa tesi al progetto consiste nella rea-
lizzazione del primo dei quattro blocchi, delegato alla fase di monitoring.
Quella che è stata implementata è un’architettura flessibile, costituita da
piccoli sotto-blocchi funzionali, disaccoppiati tra loro, in grado di estrar-
re dati da ogni strato dell’applicazione, processarli per ottenerne indici di
prestazione più rilevanti e, soprattutto, produrre informazioni correlate, in
modo da poter avere una rappresentazione chiara e completa del comporta-
mento dell’applicazione stessa. In aggiunta, esulando dagli scopi del ciclo,
sono stati sviluppati due tool di visualizzazione, uno operante in tempo reale
e l’altro differito, “storico”, che permettono all’analista di, rispettivamente,
osservare l’andamento “live” dell’applicazione e/o effettuare un’analisi appro-
fondita, avendo a disposizione tutti i dati correlati, del suo comportamento
in un dato periodo nel passato. L’intero sistema è stato poi accuratamente
verificato su una reale composizione distribuita, operandovi dei test di carico
ed analizzando i dati registrati dal sistema.

X



Credits

Al professor Sam Guinea, per le svariate mattinate perse a spulciare codici
indecifrabili e, più in generale, per tutto l’aiuto datomi durante tutto l’arco
di questo lavoro nonché per avermi permesso di fare questa bella e interes-
sante esperienza.

Alla mia famiglia, per l’ormai consueta fiducia incondizionata.

Ai miei amici universitari, per i momenti di divertimento passati insieme
in questi sei anni.

Ai miei due nonni, per l’onore di essere stato loro nipote.

A me stesso, che forse era il caso che sacrificassi un po’ meno per questa
(in fondo) stupida università.

XI





Chapter 1

Introduction

Services have subverted the traditional dogmas of Information Technology,
leading to a more sustainable use of computer resources. To become a stan-
dard for everyone, though, they first have to resolve several problems, the
most important being performance uncertainty. This thesis aims to provide
a valuable solution to it.

The chapter is divided in three sections. Section 1.1 explains what ser-
vices are in the IT world and which challenges they bring. Section 1.2 gives
a brief illustration of the proposed approach. Section 1.3 summarizes the im-
plementation work at the center of the thesis. Section 1.4 sketches instead
the arguments treated in the various chapters of the essay.
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2 Introduction

1.1 Problem

Until (relatively) few years ago, IT was a strictly personal concept. Every-
one, from single individuals to huge organizations, used to build his system
entirely by himself, following the “in-house” policy. The costs to be sus-
tained to maintain this situation, though, soon became prohibitive, while
at the same time the rapid diffusion of the Internet, along with reusability-
enabling languages (as Java, C/C++, XML and so on), made cooperation
through digital media incredibly easy and cheap. This context encouraged
the take-off of on-demand services, in which the user could request and ac-
cess a (Web) resource at a time specified by himself; since he did not acquire
the actual resource, but rather its utilization, he was able to manage his
costs much more efficiently, and reduce waste. Due to that, the on-demand
business grew larger and larger, and IT officially entered the “service-based
era”.

An excellent definition of services, with regard to the IT environment,
has been given by Prof. Mike Papazoglou and Dr. Dimitrios Georgakopoulos
[1], two of the most eminent personalities in this field:

Services are self-describing, open components that support rapid,
low-cost composition of distributed applications. Services are of-
fered by service providers –organizations that procure the service
implementations, supply their service descriptions, and provide
related technical and business support. Since services may be
offered by different enterprises and communicate over the Inter-
net, they provide a distributed computing infrastructure for both
intra- and cross-enterprise application integration and collabora-
tion. Service descriptions are used to advertise the service capa-
bilities, interface, behavior, and quality. Publication of such in-
formation about available services provides the necessary means
for discovery, selection, binding, and composition of services.

Let’s clarify the most important points in such statement:

• a service is basically a component, that is, a reusable unit of compo-
sition with a specific interface contract. In addition, it must include
a document, written using an appropriate paradigm, which illustrates
its capabilities (self-descriptiveness), and must be accessible through
publicly available standards (openness);

• services ensure distributed computing, that is, the splitting of the ap-
plication in several smaller tasks to be executed independently by dif-
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ferent entities, even unaware of each other, communicating over the
Internet;

• all the information a service consumer needs to know in order to uti-
lize it are contained in its description, which must be supplied by the
provider itself.

Evolution in this area has ultimately brought to cloud computing1. This
can be seen as a new way to intend a generic computer resource, both soft-
ware and hardware: no longer a product, which is owned and thus entirely
controlled by the customer who bought it, but rather a service (in the broad
sense of the term), which is managed by another subject and accessed on de-
mand by the user through the Internet (or “the cloud”, from which the name).
Three types of resources can be provided: application (software as a service
or SaaS), that is, any specific-purpose software program; platform (PaaS),
that is, a fully-equipped execution environment in which to run a custom
application; and infrastructure (IaaS), that is, hardware devices as virtual
machines, storage systems and so forth. The success of this technology is so
big that almost all IT giants are now “moving to the cloud”, some starting to
sell web-based versions of their trademark products (as Microsoft’s Office),
others irrupting in the market with brand-new, apposite offers (as Google’s
Chrome OS).

Applications based on services, though, are much more complicated to
manage than traditional ones. In fact, they have a multi-level nature, be-
cause their structure is realized as a stack, in which each tier (or layer)
presents the application from a different perspective. The top layer in such
a stack is also the most abstract one, providing a general, high-level schema
of the composition; going down the hierarchy, the content of layers becomes
more detailed and concrete, inspecting the sub-processes internal to each
service; at the very bottom, finally, the actual implementation artefacts are
found. There is not a fixed paradigm to implement the hierarchy: as we
will see in Chapter 2, application developers can create their own structure,
deciding how many tiers it is made of and which information to put at each
of them.

Figure 1.1 gives a graphical idea of this fact, by means of a simple ap-
plication example. In this case, the top layer, called Application schema,
contains a representation of the composition; this, as can be seen, is made
by three services, A B and C respectively, that are executed in sequence. The
bottom layer (Service implementations) includes the actual entities used to

1http://en.wikipedia.org/wiki/Cloud_computing
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carry out each service. A and B are both integrated projects (C++ and Java
ones respectively); service C, instead, is in fact a service-based application
itself: therefore, the hierarchy features at least one more level in the middle.
The physical devices (three virtual machine in the figure) on which the ser-
vices are executed must be taken into account as well, and thus constitute
the ultimate, deepest tier.

Figure 1.1: Multi-layer nature of a Service-based application

Service compositions generally imply much more complex monitoring and
adaptation. First of all, each service in a composition can be implemented
with a different technique, and thus requires a different control approach;
this problem, however, is in part mitigated by their loose coupling, which
allows to treat them independently. Second, most services are provided by
external suppliers, and only their interface is available; while being ready to
use, thus allowing the developer to avoid implementing the entire application
by himself, they are like black, unopenable boxes, on which control can be
performed from the outside only. Third, services evolve continually, with a
rate so high that human overseeing is not possible; it is the application itself
that must keep up with all the changes.

Multi-layering, in addition, makes matters even harder: in case a perfor-
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mance anomaly is detected, the analysis could have to “drill” down various
levels to find the actual reason. Moreover, application layers are nearly al-
ways dependent on each other, and thus limiting the fixing to the single
level not only is not enough to resolve the problem, but could even worsen
the situation, causing new problems at other levels. To operate valuable
maintenance, a self-executing, integrated approach is thus required, which
would take into account all the cross-layer dependencies that can be pos-
sibly found to effectuate a correlated analysis and auto-operate complete
adaptation strategies.

1.2 Solution

Maintaining adequate performance is an essential prerogative for every ser-
vice provider. Being Web services a quite new technology, though, expertise
on their adaptation is still at an embryonal stage: so far, loads of studies
have been conducted about the problem, but none of them has led to a
satisfactory solution. In particular, they are all somewhat partial in their
content, privileging certain application layers, or adaptation steps, at the ex-
pense of the not-less-important others. The solution proposed in this work,
instead, devises an architecture providing a fully-comprehensive, end-to-end,
multi-layer adaptation process suitable for service compositions.

The studied approach consists of an appropriate variant of the well-known
MAPE (acronym of Monitor, Analyse, Plan and Execute) loop [2], which
provides a paradigm for applications to auto-adapt themselves. Figure 1.2
shows the high-level diagram of the projected system.

The picture represents a cycle (included in the dashed box) which is
attached to the application and operates “beneath” it, transparently to its
users. Each iteration of such cycle schedules four sequential, independent
macro-phases (each corresponding to a single MAPE stage):

• Monitoring and correlation, where information about performance is
retrieved from the application;

• Analysis of adaptation needs, where performance is examined to find
out what is not working correctly;

• Identification of multi-layer adaptation strategies, where a sequence of
adjustments is planned which would fix the malfunctioning components
and all the ones influenced by them;

• Adaptation enactment, where the strategy is finally operated into the
application.
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Figure 1.2: Self-adaptation system overview

Two distinct macro-layers are identified in the controlled application: the
software layer, corresponding to the application in its strict meaning (that
is, its code); and the infrastructure layer, regarding all the hardware devices
involved, be them virtual or not. This is actually a simplification, since an
application can be made of any number and type of layers.

Each of the four “blocks” has been here extended, with regard to the
“classical” MAPE one, to be able to deal with multi-layer service compo-
sitions. The monitoring block encapsulates all the data regarding entire
dependency chains in a single information unit. The analysis block uses a
top-down procedure to get to the real source of the problem. The identi-
fication block (perhaps the most important one) considers the adaptation
actions at a dependency-chain scope, looking for all the components possi-
bly affected by an action and integrating the strategy to fix them as well.
The enactment block, finally, produces two sets of adaptation actions, one
for each application layer.

The innovation brought by this project is that it provides a complete ar-
chitecture for self-adaptation in the service framework, covering all the steps
from detection of failures (violations of SLAs or other application objectives)
to enforcement of the actions correcting them. Such an architecture improves
both the performance and robustness of service-based applications, in fact
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amplifying their pros and attenuating the effect of their major cons. On
the other hand, having to include a huge amount of reasoning within itself,
especially in the identification block, the cycle could be particularly slow in
its iterations, possibly conditioning in negative the application as well. It
will be fundamental, therefore, to reach a compromise between completeness
and complexity.

1.3 Practical contribution

This thesis focus on the first phase of the cycle, that is on "Monitoring
and correlation". The purpose of a monitoring system, when attached to a
service composition, is to take data from all its layers and turn them into
useful information for the next step; this information, as the second part of
the label reads, must be correlated, that is, it must join values of cross-layer,
interdependent components in the same structure.

This is achieved through an appropriate composition of three different
kinds of components. Collectors are software sensors that are attached to
the application’s various layers. They are used to collect raw execution data
from the system. Calculators elaborate these raw data into more significant
metrics. Finally, correlators merge metrics coming from different layers to
construct a holistic understanding of the system’s behaviour. To communi-
cate with one another, instances exchange messages (here called events) by
means of a publish-and-subscribe middleware; this way, users can easily cre-
ate all the processing sequences they need, using a common, loosely coupled
mechanism to link adjacent instances.

This thesis also presents two advanced monitoring visualization tools.
The first tool provides live tracking of metrics, allowing the user to control the
statistics about his application as soon as they are extracted. The second tool
is instead a more functional dashboard, in which the past trends of correlated
metrics can be retrieved from a database and displayed together. This latter
instrument is of particular importance, because it permits business analysts
to perform a drill-down process, getting to the actual source of the problem;
at the same time, moreover, they can verify whether the metrics they decided
to keep tracked represent good indicators for the application and, in the
negative, refine the monitoring configuration.
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1.4 Thesis content

Chapter 2 summarizes some of the studies conducted on the subject so far,
grouping them according to the loop phase they focus on. Reading it, it can
be seen how a complete solution, which would take all the key factors into
account and would be clearly delineated at the same time, does not exist
yet.

Chapter 3 allows the reader to understand “the real deal”, that is, the
infrastructure proposed to face the problem. First, it is described how the
structure of applications is represented in this work; then, for each cycle
block, it is explained the contribute it brings, along with the operations
carried out in order to accomplish it.

Chapter 4 regards the practical aspect of the thesis, in which the first
block of the cycle (that is, the one in charge of monitoring) has been re-
alized. The implemented system is here illustrated exhaustively, from the
applications it can be operated on to the components it is made of and how
they are combined together.

Chapter 5 documents the tests executed to demonstrate the functioning
of the implemented system. Precisely, the setup of the test-bed application
is elicited, the adopted strategy is depicted and the correspondent results
are commented. Also, the impact of monitoring on the performance is here
discussed.

Chapter 6 closes the thesis with general considerations about the work
as well as some indications about future efforts in this field.



Chapter 2

State of the art

Service-based computing is in continuous evolution and expansion, and so
are the studies of its possible adaptation techniques. So far, though, most
of them concentrate on one phase of the previously depicted cycle, paying
too little attention to the other ones. Others, instead, do treat the entire
adaptation process, but they do so in a very high-level, abstract way, leaving
too many important questions unresolved. Here, the content of some of such
studies is presented, tacitly asserting the innovativeness of the work treated
in this report.

The chapter is divided in four sections. Sections from 2.1 to 2.3 con-
tain studies regarding the first three phases of the loop respectively (the
fourth phase, adaptation enactment, is a “pure-action” stage where the stud-
ied strategy is simply applied, and as such it is implicitly included in every
study). Section 2.4 describes instead a complete solution based on something
else than the four-step cycle.

9
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2.1 Monitoring and correlation

2.1.1 Monere

Monere [4] is an online monitoring system for cross-domain Web service com-
positions. Developed at University College London, its purpose is to improve
the availability of applications by shortening the time to diagnose their pos-
sible failures; in particular, it exploits the properties of single components
to get as much knowledge as possible about the application structure and
performance, and to provide analysts with useful information that will let
them locate problems faster.

The architecture of Monere is the same for each domain it runs within,
and consists of three key components: a Monere server, a set of Monere
agents and the Monere Information Service (MIS). The agents perform the
operative task, that is, they are in charge of gathering metric measurements
and discovering all the possible dependencies among application elements;
the server receives all the information from agents operating within its do-
main, persists them and shows them through a detailed user interface; the
Information Service allows cross-domain interaction by making available in-
formation about components in its domain to agents running in remote do-
mains. To carry out its function, an agent is attached a set of plug-ins, each
of them representing a particular resource type and including the instruc-
tions to discover it and retrieve its metrics; several resources operating at
any level have their plug-in representation, making it possible to monitor a
huge number of indicators, from latency of Web services down to utilization
of OS devices.

What really allows to exploit such a great amount of data to the fullest,
though, is dependency discovery. Monere, in fact, looks for all the possible
relations between the application components and builds the related de-
pendency tree, which makes metric correlation immediate. There are three
stages in the dependency discovery process: first, the agents, thanks to their
plug-ins, discover all the components running in their own domain; next,
components are analysed to identify the services, executed in the same do-
main or not, they rely on, and establish the respective dependencies; finally,
agents send all the information they obtained to their server, which puts
them together to determine the application tree.

A great quality of Monere is that it does not require modification on
the monitored application, as it makes use of already included component-
specific APIs. In terms of performance, instead, experiments run to confront
the two cases of Monere enabled and disabled, respectively, found a relative
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slowdown of about 8%, which is neither an excessive nor a negligible value.
Other reliable comparative tests, though, showed an increase of failure de-
tections as well as an average reduction in diagnose time, both of about
22%.

2.1.2 SOA4All Analysis Platform

SOA4All1 is an EU-funded project aimed at building a scalable, distributed
infrastructure allowing its users an easier utilization of services through the
Web. The key element of this infrastructure is the Distributed Service Bus
(DSB), a middleware dispatching messages in order to provide transparent
access to all the services registered to the platform as well as communi-
cation between the services composing the platform itself. Users interact
with SOA4All by means of its Studio component, which includes three sub-
platforms, each addressing a specific set of functionalities; among them, the
Analysis Platform (AP) [5] supplies functionalities to monitor the service
performance and retrieve knowledge from it.

The AP is made by five components:

• Monitoring Mediator (or MM), which is the interface between the AP
and the DSB. It takes events from the data collectors within the bus
and forwards them for processing and, in the opposite direction, it
communicates the management decisions that are taken in the module
to the bus;

• Basic Event Processor (BEP), which can be seen as the operative el-
ement. First, it computes basic metrics from events as soon as they
arrive from the MM; then, it sends both raw and derived data to high-
level processing components, and updates the graphical features dis-
played in the User Interface. Furthermore, it manages the storage of
events into the analysis warehouse;

• SENTINEL, providing a deeper analysis of the business process. It
collects events from monitoring logs and puts them into a complex
event processing (see Section A.3 for more details on this technology)
tool, where they are correlated and/or further elaborated to generate
new, higher-level-format data in real time. Such data will be then
examined with the aid of semantic technologies to extract business-
level knowledge;

1http://www.soa4all.eu/
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• Knowledge Analytics (K-Analytics), which gathers data from several
sources, from the BEP to user feedbacks, and then uses ontologies to
abstract it and obtain more condensed, more conceptual information,
in such a way that users can have a better comprehension of their ap-
plications. Differently from that of SENTINEL, thus, its input consists
of a much bigger amount of data, its output is targeted at end-users
(instead of analysts) and its execution takes place at batch-time rather
than “live”;

• UI widgets, presenting all computed information to the user in a graph-
ical way.

In order to achieve a good compromise between computation and scal-
ability, the SOA4All infrastructure has been studied to be deployed in a
distributed fashion. With regard to monitoring in particular, each user do-
main runs its own Studio component, in which the Analysis Platform cares
only about the services used within the domain itself. Finally, a flexible
visualization of monitoring data is provided, that is, each user can specify,
according to his role and his needs, the information he wants to monitor as
well as the means for its representation.

2.1.3 Instance/Class monitoring

Barbon et al. [12] have devised an architecture to monitor service composi-
tions implemented in BPEL2 (Business Process Execution Language). This
tool has three interesting properties: it is non-intrusive, that is, it does not
require modifications to the application code; it supports both single-instance
monitoring and class monitoring (aggregating values from all the instances
of a class); and it provides a high-level language for its configuration, from
which it then generates the appropriate (Java) code.

The architecture is in fact an extension of a BPEL engine (precisely, the
Active BPEL one), which is a system able to read and execute processes
written in BPEL. In particular, three components have been added:

• a Runtime Monitor (RTM), which manages the monitoring process.
It contains a Monitor Inventory, storing all the deployed monitor in-
stances, and two Monitor Handlers to handle the execution of cur-
rently running Instance- and Class-Monitor Instances (IMs and CMs
respectively), each of which controls the value of a specific application
property;

2http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
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• a Mediator (perhaps the most important element), which links the
BPEL engine with the extension system by intercepting all the relevant
events and messages and handing them over to be processed by the
RTM;

• an Extended Admin Console, enriching the web-based administration
interface in order to visualize information about monitor instances.

Instance and Class Monitors descend from the same interface, called
IMonitor, which includes methods to retrieve general process attributes;
however, their purpose is significantly different. An Instance Monitor is
attached to a single process instance: it is instantiated when a new instance
starts; it updates its internal status as the instance evolves; and, finally, it is
stopped after the instance stops. A Class Monitor, instead, aggregates infor-
mation from all the instances of a specific class; therefore, it is instantiated
only once, at the beginning, and never terminates.

When a message is received by the BPEL engine, a copy of it is gotten by
the Mediator, which forwards it to the RTM; in here, the Instance Monitor
Handler operates first, passing the message to the right IMs to compute their
new property values; subsequently, the Class Monitor Handler is invoked to
do the same for the involved CMs. To update its status, a CM must collect
values from all the respective IMs, via a request/response mechanism, and
aggregate them into a single parameter.

The language projected to specify the desired monitoring structure is
called RTML (Run-Time Monitor specification Language). The document
provides its grammar, which indicates the categories of elements recognized,
that is, events, IMs and CMs, along with their formatting rules. An event is
the basic unit of processing of the system; it could represent the start/end of a
process, a message exchanged between two process activities, or a particular
situation within the execution (when a variable assumes a certain value or
a process reaches a certain state). An IM can monitor either a boolean
property, obtained by combining events logically, or a numeric one, resulting
from an algebraic formula. A Class Monitor, finally, is defined through the
IM grammar extended with aggregate operations.

2.2 Analysis of adaptation needs

2.2.1 Influential factor analysis

Branimir Wetzstein and Florian Rosenberg of University of Stuttgart, to-
gether with other people from Vienna University of Technology [10] and
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FBK-Irst (Trento) [9] respectively, have elaborated a system which monitors
several application metrics and analyses them in order to find interdepen-
dencies, extract adaptation requirements and subsequently determine the
adaptation strategy to enact. In fact, since it covers all the steps of the
self-adaptation cycle shown in Section 1.2, this work could be classified as
an overall solution; yet, it concentrates much more on the analysis one, and
thus it fits this section best.

The depicted process consists of four cyclic steps. First, at design time,
models of the metrics to monitor and the available adaptation actions must
be defined. Relevant KPIs and their target values are defined along with
the parameters possibly influencing them, distinguishing between Process
Performance Metrics (PPMs), which are collected from runtime process in-
stances, and infrastructure QoS indexes. For each action, instead, it must
be specified the technique it uses and its impact on the application metrics,
that is, which ones are affected positively and which ones are worsened by
its enactment. This stage differs from all the others in the fact it takes place
off-line and, due to that, it is not physically wired with the blocks immedi-
ately upstream and downstream of it; still, the links, and subsequently the
inclusion of the modelling block in the cycle, make sense if considered from
a “conceptual” point of view.

The next phase includes both monitoring and analysis. It is divided in
two major sub-tasks, each of which is subject of one of the studies mentioned
above: in the first one, metrics are collected and dependencies are found; in
the second one, dependencies are examined and adaptation requirements are
extracted. In the former, the integrated application is structured on three
layers: process runtime, monitoring and analysis. The process runtime layer
contains the process description and the required services. The monitoring
layer contains all the tools necessary to gather the metrics from the appli-
cation, make them available (via publish-and-subscribe, see Section A.2 for
more details on this technology) to be treated, store the results and even
display them into a dashboard. Finally, the analysis layer includes the pro-
cess analyser component, which takes the entries from the database and puts
them into machine learning; precisely, a decision tree is generated, in which
the influential factors that lead to a success (represented by a green leaf)
rather than a failure (red leaf) are highlighted.

Once a dependency tree is delivered, it must be examined. Initially, the
tree paths leading to undesired behaviours are identified, and the relevant
ones, that is, the ones it is more important to prevent, are chosen among
them based on predefined criteria. Next, from each selected path, critical
factors are retrieved in its nodes, along with their range of values in its
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branches, and a logical expression (a conjunction of clauses) is created to
describe the violation. In the end, all such expressions are logically negated
and jointed together in a single one, which goes into a specific tool that
outputs its solutions (there could be more than one).

Differently from the upstream two, the third and fourth steps correspond
to the ones in the MAPE loop, explained in Sections 3.2.3 and 3.2.4 respec-
tively: in them, indeed, the possible strategies are identified and ranked to
pick the best one, which will be finally applied. For each adaptation option
received from the previous block, a set of suitable, non-objective-conflicting
actions (that is, no action in the set has a negative impact on any metric to be
fixed) is generated; if it is empty, the option is automatically discarded. The
so-created strategies are then confronted based on the “amount” of negative
impact they bring: the one with less negative effects wins.

Experimentations ran on the dependency analysis task by simulating in-
fluential factors verify the theoretical expectations almost completely. The
only problem arisen in some tests is the non-consideration of indirect influ-
ences, that is, when a KPI violation is due to factor A, which in turn is
due to factor B, the influence of B on the violation itself is neglected. To
resolve this question, it is possible to “drill down”, performing dependency
analysis on factor A, or alternatively to remove factor A from the metric
set. Furthermore, it has been found that the number of nodes in the tree
increases with that of the instances taken into account, and thus pruning
techniques, or again metric removal, could be necessary to eliminate likely
marginal factors.

2.2.2 MoDe4SLA

MoDe4SLA (Monitoring Dependencies for SLAs) [11] is an approach study-
ing the impact of single services in compositions to ensure an easy analy-
sis of failures at runtime. In particular, the work focuses on violations of
SLAs (acronym of Service Level Agreements), which are provider-consumer
contracts indicating a certain number of constraints (called Service Level
Objectives, SLOs) regarding service performance.

The described approach is applied in two distinct phases of the service
composition life cycle. First of all, at design time, all the SLAs contracted
by the provider (the ones stipulated with customers as well as those did with
suppliers) must be interpreted. An SLA document contains a list of points,
the SLOs, which details the terms of the contract with regard to the cost
and quality of the exchanged service. The very initial operation, hence, is
to link each of the SLOs in the consumer SLA with those, contained in the
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other documents, affecting it: for every single point, the involved elements
are identified, formalized and put into a graph, which must represent the de-
pendency structure as accurately as possible. There is no imposed modelling
language to implement such a graph.

The next step in the design phase is impact evaluation: the graph is
“parsed” in order to numerically quantify the weight of dependencies included
in it. To do that, some kind of handbook must be provided which associates
each block in the graph with the correspondent algebraic formulas. Once for-
mulas have been generated, parameter values are put into them to compute
the expected impact of each factor. At design time, though, some values
are undefined: for example, the number of times an item already obtained
will be reused instead of re-invoking the respective service, or the ratio with
which a service is preferred to another one in a mutually exclusive choice;
in cases like these, estimates calculated using previous process instances are
exploited.

The second phase takes place during service execution. Data about run-
ning instances is stored in the database, which is made by three tables:
Composite Service, Service and Message. Then, all the entries related to
the same process instance are put together to compute SLOs and compare
them to the agreed thresholds; for each parallel, the respective service in the
dependency graph is coloured green, yellow or red according to its outcome.
In addition, estimations are evaluated against “real-life” data, and impact
factors are taken into account. These three elements allow a simple detec-
tion of the services violating their SLA, and thus enhance management of
service compositions.

2.3 Identification of multi-layer adaptation strate-
gies

2.3.1 Taxonomy-driven adaptation

Popescu et al. [7] have studied an adaptation approach based on taxonomies.
In their work, they identify all the possible constraint violations, called mis-
matches, that can take place in an application, classifying them into specific
hierarchies and resolving them using predefined templates. Applications,
and subsequently mismatches and templates, are structured on three layers:
the organisational layer, which illustrates the application in terms of its ac-
tors and the relations among them; the behavioural layer, which includes the
flow of execution; and the service layer, which presents the actual services
exploited in the process along with their providers.
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This approach is based on three key concepts: event, taxonomy and
template. Events are used to signal the occurrence of mismatches and start
the adaptation process. Taxonomies group same-layer mismatches in tree
hierarchies, each with the most general mismatch at the root and the most
specific mismatches at the leaves. Templates, instead, are BPEL processes
which are activated when a particular mismatch must be solved. Linking
taxonomies, templates and the application logic itself to one another by
means of events allows great flexibility: each of the three elements can be
developed autonomously and rearrange interactions by simply changing the
events it uses. Likewise, the use of hierarchies grants efficiency, as the most
appropriate template is always operated, and robustness at the same time,
as more general templates are available when no exact ones can be found.

The adaptation procedure is carried out in three steps. Initially, when a
mismatch occurs, the respective event is triggered and a message is sent to
start recovery. Next, a component called Adaptation Matchmaker looks for
an appropriate template in the repository. The research leads to one of the
following results, from best to worst:

• exact: the template found fixes that precise mismatch, that is, it is
associated with its tree node;

• plug-in: the template deals with a more general mismatch, that is, it
is associated with a node above in the tree;

• subsume: the template fixes a more specific mismatch (a node deeper
in the tree);

• failed: no compatible templates are found.

If a template is found, its action sequence is finally started in order to en-
act the adaptation. Such actions can themselves trigger new mismatches,
which launch their own adaptation process and in turn can trigger more
mismatches, and so on; the more “external” process, thus, waits for all its
dependencies to be solved to resume its execution. Since mismatches can
arise at any layer, this mechanism automatically ensures cross-layer adapta-
tion. It is fundamental, however, that dependencies among templates do not
form loops, because that would cause a deadlock; to avoid that, the whole
template-dependency chain is always checked prior to its actual activation.

2.3.2 Cost-based optimization

Leitner et al. [8] analysed the issue of finding the best adaptation strategy
in service composition on a mathematical basis. In their work, they rank



18 State of the art

action sequences according to their cost, a broader indicator including not
only the penalties due to possible violations of the SLOs indicated in the
agreement between customer and provider, but also the price to pay in order
to carry out the strategy. Considering this second factor is very important:
it is not uncommon, in fact, that performing adaptation costs more than
paying penalties, and to take into account only the options complying with
SLA can actually imply a much higher expense for the provider.

Since optimization is a proactive task, that is, it must prevent SLO vio-
lations rather than fixing them a posteriori, its main challenge is that not all
the information are available: indeed, it is not possible to know in advance
whether requirements will be violated or not. To solve this problem, the
optimizer gets part of its input from a component named Violation Predic-
tor, which uses machine learning to estimate future SLO values from those
of historical application instances. Downstream of the optimization process,
instead, adaptation actions can be of three types: data manipulation, in
which only some attributes are changed without altering the composition;
service rebinding, which can be more or less difficult depending on the nature
of the replacing service; and structural adaptation, in which the composition
is somehow redesigned.

The strategy research is thus formalized as an optimization problem:
given a set of SLOs, each with its penalty and measure functions; a set of
possible adaptation actions and related (constant, for simplicity) costs; and
a transformation function, describing the effect of an action sequence on a
composition instance; the objective is, obviously, to minimize the total cost,
obtained by the sum of penalties for violated objectives and costs of applied
actions, without breaking any application constraint.

Three typologies of algorithms have been contemplated in the study:
branch-and-bound, local search and genetic algorithm. Branch-and-bound
is a deterministic algorithm which examines all the possible action combina-
tions following a tree path with pre-pruning of suboptimal solutions, which
means it avoids deepening the tree if either the current solution already fixes
all the SLOs or a conflict has arisen between two actions. Local search, in-
stead, heuristically takes an initial solution and tries to improve it by looking
in its neighbourhood, that is, adding or removing one single action at a time.
Finally, genetic algorithm (GA) mimics the processes of evolution in biology
(selection, crossover and mutation), iterating them a fixed number of times
(or generations) to refine the solution action set.

Experimentations performed on all the algorithms basically confirm the
theoretical expectations: branch-and-bound, while always finding the opti-
mal solution, requires a huge amount of instances to be examined, and thus
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is best suitable (with optimizations) for small problems, in which the number
of possible sets is limited; both the other two approaches are much faster,
and two optimizations of theirs, GRASP for local search and Memetic Algo-
rithm (MA) for GA respectively, provide solutions of good quality as well.
Furthermore, and most importantly, it has been demonstrated the utility
of both predicting SLA violations and considering prices of adaptation ac-
tions into strategy selection, which lead to better performance as well as a
significant cost reduction.

2.3.3 VieDAME

VieDAME (Vienna Dynamic Adaptation and Monitoring Environment) [6] is
a system extending BPEL functionalities to provide monitoring and runtime
adaptation. In this case, runtime adaptation means that, for each activity
of the BPEL process, its service (partner link in the BPEL terminology)
is determined dynamically, during the execution of the process itself, based
on specific QoS attributes. Including monitoring as well, VieDAME could
be also regarded as an overall solution; actually, though, the study details
the adaptation part much more. Both the new features are added in a non-
intrusive way, without changing neither the BPEL process nor the involved
services.

The VieDAME system is split in two parts: the VieDAME Core, which
takes care of communication among components, and the VieDAME Engine
Adapter, which injects the extensions into the BPEL engine using Aspect-
Oriented Programming (AOP), a paradigm allowing to force additional code
at specific points into the base system. Also, the BPEL description of partner
links is extended, so that to include replaceability (boolean attribute), some
QoS parameters and a list of services alternative to it. When VieDAME is
enabled, partner service invocations (performed via SOAP3) are caught by
a new device, called Interception and Adaptation Layer (IAL), which effec-
tively puts the Engine Adapter between the engine and the actual services,
giving it the possibility to manipulate the requests.

The first component operating in the VieDAME execution flow is the
Monitor, in charge of pulling QoS information out of the process. Initially,
this element identifies the current BPEL activity, retrieving its name and
invocation context; then, it starts a timer to measure its execution time
and hands over the invocation to the next component; finally, after either a
result is returned or an exception is raised, it stops the timer and persists
the invocation instance along with its duration and outcome.

3http://www.w3.org/TR/soap/
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If the original partner service needs to be replaced by a better one, and if
its description marks it as replaceable, the Monitor forwards the invocation
to the Selector. This latter must pick the best possible alternative according
to a specific criterion, be it availability, response time, or even a simple
round-robin policy. Very often, the interface of the alternative service, while
being semantically equivalent, mismatches that of the original one in the
number or nature of required parameters: in this case, invocations must be
further treated by the Transformer component, which exploits appropriate
tools to transform the SOAP request and make it compliant with the new
interface.

In summary, the VieDAME system provides monitoring by means of its
Monitor component, while the runtime adaptation task is carried out by the
Selector and Transformer ones. Several load tests have been run to evaluate
the impact of each of the three components on a BPEL-based application,
detecting a significant performance degradation only upon the inclusion of
Transformer.

2.4 Other approaches

2.4.1 QUA for SOA

QUA is a technology-agnostic adaptation framework, that is, an architecture
providing application adaptation in a way it is independent of the implemen-
tation. To do that, it first analyses the application requirements at a higher,
abstract (namely, technology-agnostic) level, and then performs adaptation
by exploiting the appropriate technology-specific mechanisms. In [13], the
QUA middleware has been applied to Service-Oriented Architectures (see
Section 4.2) to achieve multi-layer self-adaptation for them.

The system is divided in three frameworks: the Service Meta-Object Pro-
tocol (MOP), the Planning Framework and the Platform Framework. The
Service MOP is the key element, as it is responsible of actually abstracting
all the technology-specific data from services to produce a minimal set of
standardized information. Those include:

• implementation blueprints, that is, “documents” describing the service
architecture (in terms of the artefacts composing it);

• a service platform, that is, the runtime environment needed to interpret
the blueprint;

• a list of the service’s dependencies.
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Furthermore, a quality predictor function is used to evaluate the performance
of a blueprint in terms of QoS parameters, and a number of utility functions
can be exploited by the user to rate the service.

Both the other frameworks exploit the Service MOP in their execution.
The Planning Framework must compare all the possible implementations for
the application, putting together each service composition and calculating
its quality, so to determine the one to be used. Once this is found, the
respective Service Platforms in the namesake framework must translate the
blueprints referring to its services and finally execute them.

To comply with SOAs, QUA must be able to work across several layers
and, at the same time, not to influence its trademark properties, among oth-
ers loose coupling and interoperability. For the former requirement, a two-
layer model has been considered, made by a service interface layer, regarding
the inter-communication between services, and an application layer, dealing
with the implementation of each service. QUA satisfies this requirement, as
in quality analysis (within the Planning Framework) it takes into account
the whole application structure to allow the development of cross-layer adap-
tation strategies, which can then be enacted by means of technology-specific
mechanisms at both levels.

To respect the second requirement, QUA must instead bear four char-
acteristics: it must not depend on technology-specific adaptation actions; it
must be able to work with loosely as well as tightly coupled systems; it must
allow the inclusion of adaptation-specific interfaces, if those are available;
and it must allow the inclusion of autonomous systems. A practical exper-
iment, documented in the study, demonstrates all these properties for the
system.





Chapter 3

Solution

This study is part of a broader project, documented in [3], which has actually
delineated the multi-layer cycle. Precisely, it indicates the guidelines for
its four stages, that is, for each of them, what it must produce and how
its process should take place. This chapter, therefore, provides a detailed,
phase-by-phase description of the loop, while the next one will talk about
the implemented monitoring block, on which the work has focused on.

The chapter is divided in two sections. Section 3.1 briefly explains the
general structure of service-based applications which has considered in the
project. Section 3.2, instead, describes in depth the internal architecture of
each macro-block in the cycle.

23
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3.1 Target applications

Service-based applications (SBAs) are intrinsically organized on several log-
ical layers. The minimum number of layers in an SBA is two: in fact, there
always are a top level, containing the description of the composition as a
whole, in terms of the flow of activities it must follow (BPEL process) rather
than the components in it and the relations among them (SCA composite,
see Section 4.2), and a bottom level, containing the actual implementations
for each piece of the composition. Very often, though, a single service could
be itself a composition, and thus rely itself on other services: in such a case,
a further layer can be identified and put in between. Repeating this rea-
soning recursively, it can be easily deduced that there is no fixed limit to
the number of layers in an SBA. In this work, the hierarchy of an applica-
tion will be always referred to as a single macro-layer named the software
layer; nevertheless, its multi-level structure will be considered throughout
the adaptation cycle.

In an application, though, bad performance could also be determined by
the physical infrastructure on which it runs: for example, a service could
be slowed down by the saturation of the memory, or by that of the CPU,
or even by the network card having to manage a number of packets bigger
than usual. It is thus very important to keep controlled the underlying
machines as well; in particular, should they itself be provided as services in
a cloud environment (IaaS, see Section 1.1), their monitoring has a double
importance, as it also allows to verify the respect of possible SLAs pre-
agreed with the IaaS provider. In this work, to include in the analysis all the
hardware devices and their intrinsic relations with each service they host,
and to possibly adapt their performances in case of failure, a further layer
named the infrastructure layer has been “artificially” appended underneath
the application stack.

In summary, multi-layer in this context means “software layer on top of
infrastructure layer”, with the software layer implicitly structured on several
interdependent levels, the number of which varies depending on the specific
configuration of each SBA.

3.2 Multi-layer self-adaptation cycle

3.2.1 Monitoring and correlation

At the beginning of the control loop, application performance must be tracked.
The input of the first block must thus be taken directly from the application,
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and elaborated to produce and output the needed performance indicators,
along with as much information about the context in which they were com-
puted as possible. Such data must be expressed and formatted so to be quick
to parse and understand, allowing processing blocks downstream of this to
easily find the sources of requirement violations.

First of all, data must be physically extracted from running application
instances. Therefore, some sensor-like devices are needed; in particular, since
they must deal with software entities, rather than real, “touchable” ones, such
devices must be software as well. A software sensor is a standalone program,
or a piece of code inserted in the application, which is able to intercept data
at specified points in its execution. An ideal software sensor would be just
like a standard “physical” one: small (that is, lightweight), non-invasive (at
least as less as possible) and easy to use. In the multi-layer application model
considered in this work, two types of sensors (one for each layer) are needed.
At the software layer, a sensor must “capture” the instants of time at which
an instance is created, services are invoked, a critical section terminates and
so on. At the infrastructure layer, instead, a sensor should record metrics
as CPU usage, memory allocation, network traffic etc. on a periodical basis.
For both the categories, different implementations can be required depending
on the technologies exploited in the application.

Once “raw” data is available from sensors, it must be put in the appropri-
ate processes and mathematical formulas in order to compute the required
quality indexes (technically called Key Performance Indicators, KPIs). Since
such operations have to take place at runtime, usually on a huge amount of
values, and some of them (as, for instance, aggregate functions) can be quite
complex, the devices employed in this task will have to feature a significant
computing power, capable of supporting high loads and working at high
frequencies.

Finally, calculated KPIs must be actually put together with their context-
related factors, and that is the job of a correlator. A correlator simply gets
values from multiple sources and produces a single element (a data structure
rather than a file) containing all of them. This task is as simple in its
execution as it is fundamental in the economy of the entire loop: indeed,
it highlights all the dependencies across the application tiers, producing all-
inclusive records which allow an earlier discovery of failure sources in the
analysis phase as well as a prime identification of cross-layer “paths” in the
strategy selection phase, that is, all the components that, being related to
each other, could require to be modified in order to fix a specific problem.
Elements at different layers that need to be correlated are not discovered
autonomously by a correlator; rather, they must be indicated as its inputs
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by the user at design time.
A typical flow of execution requires all the three subtasks: collection,

computation and correlation, strictly in this order. In general, however,
the only mandatory operation is collection, which (evidently) has to be per-
formed at the beginning of the process; the other two blocks, instead, are not
subject to any kind of restriction: in some cases, it could be necessary, for
example, to pass through two back-to-back computation blocks before per-
forming correlation; in others, computation could not be necessary at all; or
even, it could take to first operate a correlation block to be able to compute
a KPI. The entire architecture, therefore, should be realized in a modular
way, so that components implementing each step are independent of each
other; in particular, it should be possible to dispose them in whatever order
according to the needs, that is, their linkings should be defined in a common,
loosely coupled fashion. Moreover, elements should be reusable, in order to
be exploited in more than one “chain”.

Figure 3.1 represents possible flows of execution in the monitoring step,
determined by the paths going from the application to the output KPIs. The
blocks internal to this stage (that is, those included in the “Collection” and
“Computation and correlation” boxes) have been coloured according to the
subtask they relate to.

Figure 3.1: Monitoring and correlation

Let’s explain the concepts just elicited with an example. Let’s say we
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have to calculate the value of the average response time of the application
in the last hour of execution and correlate it with the same metric of each
of the n services composing it. To do that, the software-layer sensors must
initially get the start and end instants of all the related invocations. Then,
n+1 computation blocks are necessary, one for the whole application plus
one for every single service; each of them must perform two operations: first,
respective instants of the invocations occurred in the last one-hour time
window must be subtracted (end - start) to obtain their response times;
then, the arithmetic mean must be extracted from them. Finally, all the
averages enter in a correlation device, where they are put together in a
unique KPI object. This way, the services provoking a possible slowdown
can be recognized in no time. Another common need could be to associate
the response time of a particular service with utilization data coming from
the infrastructure it is running on, to discover which parts of the machine
are in charge for its bad performance.

3.2.2 Analysis of adaptation needs

Correlated KPIs become the input of the next block, which is required to
examine them and check whether the application is doing fine or, otherwise,
there have been anomalies and some constraints have been violated. In
case failures have occurred, the block must find their causes and, after the
analysis, it must define and deliver a set of adaptation actions (even empty,
in case no problems are detected), which have to be applied to the system
in order to restore its performance.

Incoming metric values are first “studied” and assigned a category, within
a subtask called influential factor analysis. This procedure is automated, as
it uses a dataset, filled with both values from past process instances and
ones opportunely created (by the user), passed through machine learning in
order to generate a plausible representation of the application structure. A
decision tree is thus generated, in which internal nodes represent attributes,
branches coming out of a node represent conditions on that attribute and
leaves represent “categories”, each indicating a specific status. However, if the
application structure is well known a priori and changes in it do not happen
frequently, the whole machine learning step could be avoided, predefining
the tree at design time and adapting it only when necessary.

At the end of influential factor analysis, it is clear how things are going
and, if they are going bad, the reasons have already been determined. Next,
it is necessary to define what has to be done to fix the situation. This stage,
called adaptation needs analysis, gets the decision tree (specifically, the path
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that current data has followed) and an adaptation actions model, contain-
ing all the possible modifications that can be enforced into the application
structure and the improvement they bring to the performance. Such list is
thus scanned, looking for appropriate possible actions according to the tree
result; if found, they are output to the next phase. In general, the more
flexible the application structure is, the more solution options are available.

This approach exploits the study described in Section 2.2.1. As can be
deduced, the flow of actions in the block is strictly fixed, and thus can be
performed entirely by a single component. It is important, though, that
such component is fully reusable, not depending in any way on the imple-
mentation of the application the cycle runs onto. This property, actually,
is not that easy to achieve: elements such the historical dataset and the
adaptation actions model, as well as incoming data itself, could have several
forms according to the type of data they must deal with. For each of these
elements, therefore, it is crucial to define a unique way of representation: for
the dataset, for example, a fixed, application-independent structure should
be imposed or, preferably, a standard, high-level configuration mechanism
should be defined for the machine-learning block; the adaptation model, in-
stead, should be provided with a specific language to describe actions in
it.

Figure 3.2 shows the flow of execution just explained. Here, the blocks
corresponding to the two tasks have been coloured, to be distinguished from
those representing data structures.

Figure 3.2: Analysis of adaptation needs
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3.2.3 Identification of multi-layer adaptation strategies

The third block is responsible of evaluating the practicability of an adapta-
tion action set on the application. First, the analysis of a set produces a list
of feasible strategies; each of them is then evaluated, and the one that gets
the best score is selected. The solution consists of two distinct action sets,
one for each application macro-layer, which are output and will be enforced
in the final stage.

Adaptation actions, along with the current application model, are input
to a component called the model updater, which simply produces the model-
to-be after the enactment of such actions. The new model is taken by the
next element, named cross-layer rule engine; this can be seen as the core
element for the purpose of the entire study, since it must verify the compat-
ibility of a model with regard to the application constraints imposed by its
cross-layer dependencies. To do that, it identifies the components involved
in the update and, subsequently, the layers affected along with the respec-
tive constraints to be tested. It then calls a series of checkers, one for each
constraint, and waits for their response. Meanwhile, it keeps an adaptation
tree, where all the developing strategies are tracked; in such tree, each node
represents a single action, and thus each path identifies a possible strategy.

A checker is in charge of testing the new model against a specific con-
straint that must be respected at a specific layer. When invoked, checkers
make the opportune verifications, exploiting the appropriate application-
dependent adaptation capabilities, and return their verdicts to the rule en-
gine. There are three possible checker responses:

• the model is compatible and no further actions are required;

• more actions are necessary to comply with the constraint;

• the model is not compatible and no actions can be applied to make it
so.

When a checker returns a positive answer, the rule engine marks the
respective action-node in the tree as a green leaf, thus indicating the path
leading to it as a feasible strategy; in the opposite case, the node is marked
as a red leaf. In the middle case, instead, the rule engine adds the new
actions to the path in the tree and send them back to the updater in order
to re-adapt the model, in fact starting the whole loop over again; iterations
continue until no new actions are triggered by the checkers, so that all the
tree paths are identified as either a valid or an invalid strategy. At the end
of this process, all the possible strategies must have been considered.
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The so-generated adaptation tree is then passed to the last component
in the block, that is, the adaptation strategy selector. Its role is to put the
pursuable strategies together on a common scale, by evaluating a number of
high-level, predefined metrics on each of them. The strategy which, accord-
ing to such metrics, turns out as the best one is finally chosen and made
available in output.

Figure 3.3 represents the components operating in the task and the in-
teractions among themselves. As it can be seen, in this case communication
with entities external to the loop takes place in two situations: when the up-
dater operates on the application model, which clearly must be first defined
at design time; and when checkers test their constraints by exploiting plug-
gable, application-specific capabilities. It is necessary, therefore, to devise a
universal language for the application model, and also to project a unique
interface for the checker “sockets”, to which the appropriate functionalities
will be plugged.

Figure 3.3: Identification and selection of multi-layer strategies

3.2.4 Adaptation enactment

In the fourth and final step, adaptation is physically operated on the ap-
plication. Specific devices at both software and infrastructure layers are
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responsible of translating the input strategy into effective commands on the
target components. Though this block communicates with the application
with reversed roles as compared to the monitoring one (sender the former,
receiver the latter), both have the main challenge in common: dealing with
multi-language compositions, that is, applications made by services possibly
implemented in different ways. Indeed, while the other blocks can work on
data that is abstracted from the low-level implementation details, the first
and fourth ones must necessarily use technology-specific instructions. One
device for each possible implementation paradigm type should thus (ideally)
be provided to achieve a more extensive adaptation.

At software layer, enacting a strategy basically means rewriting the pro-
cess description, that is, editing component definitions, rather than the link-
ages between them, to alter the flow of execution. This can be done, for
example, by switching the order of execution of two components, or by
adding/removing one ore more components, or even by replacing the service
used by a component with another one which would still allow to respect the
constraints. Two modalities of enactment should be available: at runtime
(that is, affecting currently running instances), if adaptation has to be forced
immediately and/or for a limited period of time (that is, only the process
instances operating in such period would be affected; after it, the standard
configuration will be applied again); or “structurally”, if it is necessary to
modify the composition in a permanent way. Obviously, what modality is
best depends on the specific case and is not to be decided in this stage, but
rather falls within the plans of the needs analyser.

At infrastructure layer, two categories of actions should be possible. The
first category regards relocation of services, that is, moving services between
machines (virtual or not), even new ones, to balance the load-per-node factor,
or simply to transfer part of the execution to a faster processor. The second
category operates instead at a lower level, probably the lowest one possible,
as it provides instructions to improve the features of machines themselves
(more memory, a more powerful CPU and so forth). In this latter case,
adaptation techniques are totally different according to the context: in the
virtual one, indeed, it is possible to tune up a machine by just, say, resetting
a parameter in a configuration file; at the opposite, dealing with physical
servers is much more laborious, as everything must be substituted manually.

Naturally, it should be possible to combine actions from both the cate-
gories in the same strategy. Most IaaS providers include automatic scaling,
load balancing and many other capabilities among their options, allowing
developers not to worry about the underlying system; however, since the
pricing of cloud-based services usually follows the pay-as-you-go policy (see
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Section 1.1), it is always better to keep an eye on the infrastructure as well,
in order to reduce resource waste and optimize costs.



Chapter 4

Implementation

The practical contribution given in this work has been to the first phase of
the cycle, that is, the “Monitoring and correlation” one, in which data is
pulled out from the multi-layer application and processed into usable infor-
mation. Unlike the next two ones, the monitoring phase does not contain
any intelligence; nonetheless, it is equally as important, as it must produce
a set of complete, understandable and uniformly structured indicators out
of raw, meaningless numbers coming from technologically different sources.

The chapter is divided in three sections. Section 4.1 provides a brief
overview, both graphical and textual, of the implemented architecture. Sec-
tion 4.2 describes instead the type of applications that can be monitored by
the realized system. Finally, Section 4.3 provides a detailed illustration of
the architecture components: what their meaning is, how they have been
implemented and how they operate.

33
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4.1 The Big Picture

This work concentrates on the first phase of the loop, that is, monitoring
and correlation. Figure 4.1 shows the architecture of the system projected
to exploit such phase.

Figure 4.1: Architecture of the implemented features

Besides the (SCA, see next section) application (which provides the input
of the phase) and the KPIs (representing its output), seven elements can be
distinguished in the picture:

• Software-layer sensor: intercepts performance data at the software
layer;

• collectd: retrieves information from the infrastructure layer;

• ECoWare: operates the computing and correlation subtasks;

• ECoWarePersistence and the MySQLDatabase: store KPI values;

• ECoWareDashboard: displays the calculated metrics on charts;
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• SIENA: enables communication among all the elements.

The flow of execution in the system coincides with the one depicted in
the theory (Section 3.2.1). At first, data is pulled out of the application
by the software-layer sensor and collectd; then, data is picked by ECoW-
are, which transforms it into complete, meaningful information. In addition,
here, ECoWarePersistence stores produced KPIs in a database and ECoW-
areDashboard shows them through appropriate graphs.

Three things can be noticed in the picture. First, the box containing
the two sensor blocks (that is, the Collection box) is dashed. That is to
say that they can be put together conceptually, with regard to the subtask
they operate (and so they correspond to the collection instances in Figure
3.1), but they are distinct and independent in practice: there is not a “macro-
component” supervising the subtask and handling their execution. Secondly,
the ECoWarePersistence and ECoWareDashboard components are not in-
cluded in the bigger box, the one named “Monitoring and correlation”: in
fact, they are not necessary to carry out the task, but rather serve to provide
a graphical tracking of the performance, facilitating the analyst on keeping an
eye on the application and also allowing us to validate the study. Finally, the
SIENA-labelled rectangle crosses the borders of the box. This component,
indeed, distributes the messages exchanged between the blocks, and so it
does with the newly-produced KPI metrics: therefore, ECoWarePersistence
and ECoWareDashboard, but primarily the elements that will implement
the next phase, must connect to it in order to access data.

4.2 SCA

Before starting to implement the self-adaptation cycle, it has been necessary
to decide what applications to self-adapt. Indeed, while the high-level de-
scription of the loop, provided in Section 1.2, is a universally valid model,
its implementation depends strongly on that of the controlled application,
because the two entities must interact continually with each other. Look-
ing at the diagrams of each cycle phase, it can be seen that there are three
specific points in which communication with the application, direct or indi-
rect, must take place: at the very beginning, when performance data must
be gathered from the application; (indirectly) in the strategy identification
phase, when some checkers may use external, application-dependent capa-
bilities to find further corrective actions; and at the very end, when the
adaptation strategy must be actually operated. Components acting at these
points, hence, must be necessarily realized according to the technologies and
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communication protocols used by the application.
The purpose of service-based applications is to put together separate and

independent pieces of code, regardless of their language and of the platform
they run onto. To make interaction among services possible and simplify
the realization of such applications, an architecture, named SOA1 (Service-
Oriented Architecture), has been designed. SOA defines the principles and
methodologies to implement a middleware allowing simple integration and
orchestration of software of different nature (Java/C++ programs, HTML
pages, even legacy systems). Principles consist of the basic properties a
service must have to be included, among which loose coupling, abstraction,
reusability, statelessness, discoverability and composability. In the SOA phi-
losophy, the user should only provide a high-level description of the com-
position, indicating its elements and the protocols for their interactions by
means of appropriate metadata, and the middleware would take care of the
rest, carrying out the actual communication logic.

In this work, analysed applications must be based on the Service Com-
ponent Architecture2 (SCA) model. This technology has been created by
a major-vendor partnership, including among others IBM, Oracle, Sun Mi-
crosystems and Siemens, with the aim to provide a solid, unified platform
as a basis for would-be SBA-handling software. For this purpose, therefore,
SCA implements the SOA notions, defining a set of specific directives to rep-
resent and execute a service composition. In the SCA model, an application
consists of elements belonging to three categories:

• composite: the project container and the unit of deployment for SCA
(that is, the unit needed to make an SCA-based application available
over the Internet);

• component: an independent block of execution;

• service: the basic unit of the process, representing a functionality
(usually consisting of one or more APIs) provided by the component
it is included into.

Figure 4.2 provides a diagram of an SCA project. As can be seen, a
composite contains one or more components (two in this case, named Ac-
countServiceComponent and AccountDataServiceComponent respectively),
each of them exposing one or more services as their entry points. In ad-
dition to its own services, a component must indicate the ones it exploits

1http://en.wikipedia.org/wiki/Service-oriented_architecture
2http://oasis-opencsa.org/sca
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from other components, and that can be done by declaring one or more
references; wires linking references with entry points, therefore, symbolize
inter-component communication. In this case, each component exposes one
service, and AccountServiceComponent also includes a reference to the ser-
vice of AccountDataServiceComponent. Both services and references can be
“elevated” to the composite scope, in order to, respectively, make them avail-
able to the outside (considering them the application’s “real deal”, that is,
its actual functionalities) and access a service of an external application;
this operation is called “promotion”. Finally, components can require some
global properties to be set prior to their execution, and those can be pro-
moted as well. In the example, AccountServiceComponent has its service
promoted, and the name of the promoted service is AccountService; it also
has a property, named currency.

Figure 4.2: Sample diagram of an SCA application

The entire application structure must be described, using appropriate
XML features, and saved in a .composite file. Such a file must be struc-
tured in the same way as the application diagram would, exploiting the tags
related to each artefact. Precisely, in the composite section must be listed
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the descriptions of all included components as well as all the promoted ser-
vices/references/properties; in the component section, in turn, it must be
indicated the implementation technology (Java, C++, but also BPEL or
SCA composite itself, thus allowing multi-layering) and the location of the
actual resource; the service section must contain the information about the
service interface, and in both the service and reference sections it must be
specified the underlying communication protocol.

Listing 4.1 shows the configuration file for the previous example. XML
tags corresponding to the various elements have been here highlighted. It
can be noted that in this occasion, in both the component sections, services
have not been declared explicitly; that is not necessary, since the particular
implementations of the components, which are realized by means of a Java
class, allows to automatically consider all the (public) methods included in
it as service APIs. As can also be seen, the wire linking a reference with
the related service is defined through its target attribute, and a promotion
is identified by the promote one.

<composite xmlns=" ht tp : //www. osoa . org /xmlns/ sca /1 .0 "
targetNamespace=" ht tp : // account "
name="Account">
<service name="AccountService "

promote="AccountServiceComponent"/>
<component name="AccountServiceComponent">

<implementation . java
c l a s s="bigbank . account . AccountServiceImpl "/>

<reference name=" accountDataServ ice "
t a r g e t="AccountDataServiceComponent"/>

<property name=" currency ">USD</property>
</component>
<component name="AccountDataServiceComponent">

<implementation . java
c l a s s="bigbank . accountdata . AccountDataServiceImpl "/>

</component>
</composite>

Listing 4.1: Sample .composite file of an SCA application

So far, four major independent SCA-based systems have been realized:
Apache’s Tuscany3, OW2’s FraSCAti4, Fabric35 and ServiceConduit6. They
all implement the basic SCA concepts, differing in the amplitude of the
included functionalities. Being SCA a relatively recent technology, each of

3http://tuscany.apache.org/
4http://wiki.ow2.org/frascati/Wiki.jsp?page=FraSCAti
5http://www.fabric3.org/
6http://www.service-conduit.org/
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them is in continuous development, every updated version including new
component implementation possibilities, binding protocols and management
features. Further tools will sure be conceived in the future. In this work, it
has been analysed compositions put together and executed on top of either
FraSCAti (version 1.4) or Tuscany (version 1.6.2), both written in Java.

4.3 Components

4.3.1 Data collection

As can be seen in figure 4.1, two distinct elements (one for each level) have
been used in this implementation to gather data from the application. In
particular, the software-layer sensor has been realized itself in two versions,
to comply with each of the SCA middlewares employed. At the infrastructure
layer, instead, only one tool has been exploited.

Neither FraSCAti nor Tuscany provide specific monitoring APIs among
their functionalities. With FraSCAti, though, sensors can be easily forced
by means of so-called intents. An intent is an independent SCA composite,
which is associated to one or more entities (components, services or refer-
ences) of the application and activated every time each of such entities is
about to be invoked; at that moment, precisely, the code of the intent is
injected amid that of the application, so that to be executed just before the
invocation is sent and just after its result is returned. To include an intent in
the application, the .composite file must be modified, adding the following
attribute among those of the interested elements:

requires=”intent-composite-name”

where intent-composite-name is the name given to the SCA composite rep-
resenting the intent.

To realize an intent, FraSCAti offers the IntentHandler interface; this,
in particular, contains only one method, named invoke(), which is exactly
the one called by the middleware when an invocation is triggered. Having
the intent to be an SCA composite, the usual, less intrusive and “cleanest”
way of packaging it would be a separate Java project; however, it is also
possible to merely include the respective classes, along with the .composite
file, together with those of the actual application. Practically speaking, there
is no difference between the two approaches; the first one, though, is much
more preferable, since it is more adherent to the software-sensor guidelines
expressed in 3.2.1.



40 Implementation

Listing 4.2 shows the skeleton implementation of an intent class. The
point at which the invocation is done is the instruction ijp.proceed(), and
thus, as indicated, the monitoring code must be written immediately above
and immediately below such instruction. For the purposes of this work, it
has been necessary to create only one intent, which, both before and after
the invocation, first identifies the invoked operation in terms of composite,
component, service and method by using appropriate FraSCAti APIs, and
then forwards the information to SIENA along with the current timestamp;
the only difference between the two moments is that information is labelled
as “StartTime” in the first case, “EndTime” in the second (the meaning of
all these operations will be clearer in Section 4.3.2).

public class FooIntentHandler
implements IntentHandler {

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Implementation o f the IntentHand ler i n t e r f a c e
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

public Object invoke ( IntentJo inPo int i j p ) throws Throwable {
Object r e t ;
//
// PUT HERE CODE TO RUN BEFORE THE JOINPOINT PROCESSING
//
r e t = i j p . proceed ( ) ;
//
// PUT HERE CODE TO RUN AFTER THE JOINPOINT PROCESSING
//
return r e t ;

}
}

Listing 4.2: Sample intent class

Tuscany, on the other hand, does not provide functionalities to integrate
external sensors (or, at least, it does not indicate them clearly in its docu-
mentation). The only way, therefore, would be to physically insert opportune
lines either into the application code or into that of the middleware itself. In
order not to modify the application, the latter option has been chosen and
the source of Tuscany has been inspected, to comprehend how it handles
invocations and subsequently find the right locations in which monitoring
instructions should have been placed. In so doing, it has been found that
Tuscany includes a separate Java project for each component implementa-
tion and service binding at runtime, and all such projects contain a class
implementing the Invoker interface and overriding its invoke() method. In-
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vocations take place in such method: hence, once the respective instruction is
localized, the monitoring procedure can be written “around” it as previously
seen with FraSCAti. To retrieve the information identifying an invocation,
it has been necessary to look for opportune APIs in this case as well.

From the analysis just delineated, it can be easily deduced that, when it
comes to monitoring, FraSCAti is undoubtedly preferable over Tuscany: to
include sensors in the latter, indeed, it has been necessary to alter its own
implementation. In addition, since Tuscany (and FraSCAti as well) is real-
ized as an SCA-based application itself, adding those instructions directly in
its source code results in intercepting all the invocations passing from there,
even those referring to internal Tuscany components: this fact, besides cap-
turing a lot of uninteresting service calls, can potentially lead to a significant
slowdown in the application. Finally, it can also be noted that, despite of-
fering a much better approach, FraSCAti requires to modify the application,
precisely its .composite file, while Tuscany does not; this aspect, though, is
surely negligible, because such a modification is operated at the highest level
possible, and thus it does not go to alter neither the flow of execution nor
the implementation of components.

At infrastructure layer, the focus is not on the application, but rather
on the machines it runs onto: a (possibly) lightweight program is therefore
needed on each of them to periodically acquire information about memory
consumption, network traffic and/or whatever parameters it is important to
monitor according to the specific situation. Last, and perhaps most impor-
tantly for the purpose of this work, such a program must also make available
the gathered data for post-processing. A bunch of free tools, usually dae-
mons (that is, small programs running in background) can be found that
are able to collect data and (almost all of them) display performance graph-
ically; furthermore, major IaaS providers come with their own monitoring
capabilities. Only few options, however, allow the data they collect to be
accessed in a simple and immediate way. collectd is one of them, and that
is why it has been chosen to operate in this context.

Figure 4.3 shows a detail about the infrastructure-layer data collection
flow, taken from the general schema of Figure 4.1. A new component, called
InfrastructureSensor, is here highlighted; this is a Java project, developed
outside collectd and then inserted into it in order to gather the metrics
intercepted by the tool, translate them into Java data structures and forward
them to SIENA. A close description of collectd, explaining its internal flow
and how it has been possible to include InfrastructureSensor in it, is provided
in Section A.1.

Data collected from the application is then forwarded to be processed
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Figure 4.3: Data collection at infrastructure layer

and produce KPIs. As mentioned above, communication among operating
elements is carried out by SIENA, which is a Java tool implementing the
publish-and-subscribe technology. Publish-and-subscribe can be represented
by a channel, or bus, and by several entities connected to it. Such entities,
as the protocol name itself suggests, are divided in two groups: publishers,
which generate items and place them on the bus; and subscribers, which
instead wait for the specific items they are interested in and get a copy
of them as soon as these are available on the bus. The main advantage
of publish-and-subscribe is that entities act in complete independence (and
unawareness) of each other: in fact, the only thing they need to know is
the structure of the data they will exchange (that is, the number and type
of attributes in it). That is just how relations among components in the
monitoring task should be, and that is also why it has been decided to
exploit this paradigm to make them interact.

Figure 4.4 details how SIENA enables communication among any two
generic system elements. The component acting as the publisher, at the
end of its processing, passes the data to a block named SienaOutputAdapter
(consisting of a Java class), which translates the data in the SIENA format
and then performs the actual publication on the bus. At the subscriber
end, the SienaInputAdapter block operates in the opposite direction: after
retrieving the item from the bus, it de-parses it and finally hands it over to
its related processing component. Note that the two communication actors
are completely decoupled from each other: the publisher does not care about
who will receive its data, and so does the subscriber about senders of the
items it gets. Section A.2 provides a close description of SIENA.
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Figure 4.4: SIENA integration in the system

4.3.2 KPI computing and correlation

The computing and correlation subtasks are both performed by ECoWare
(the word is a merger of Event, Correlation and middleWare). The decision
to include both the operations in a unique (Java) component comes from the
fact that, despite being substantially different with regard to their function-
alities, they can be carried out through the same process. The bottom line
consists of considering all the data flowing into the system as events, each of
them uniquely identified by: its type; an alphanumeric code indicating the
entity that has produced that event; and a progressive number to distinguish
events of the same type generated by the same entity. From this perspec-
tive, a calculator is an entity which takes an event, applies some formulas to
it and outputs the result in a new event; a correlator, instead, is an entity
which gathers two or more different events, encloses them together in a single
structure and finally outputs them in a new event instance. Therefore, both
can be seen as devices which wait for events, treat them and release new
events, the only difference being the specific treatment they operate.

Figure 4.5 illustrates the internal composition, as well as the flow of exe-
cution, of a generic instance running in ECoWare. First, events are received
from SIENA and translated by the SienaInputAdapter block; parsed events
are next sent to ESPER, a very powerful event processor, which performs the
requested operations on them and outputs the so-generated new events; such
output is delivered to the UpdateListener, which acts as the ESPER equiv-
alent of a SIENA subscriber and does nothing other than passing all the
received data to its embedded SienaOutputAdapter block; the latter encap-
sulates the data into fresh SIENA events which finally publishes. It can be
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immediately seen that instances internal to ECoWare are loosely coupled to
each other, as each single one of them operates in complete autonomy and
communicates with outside by means of SIENA. Thanks to that, the two
should-have characteristics depicted in the high-level description for such
block (Section 3.2.1) have been realized: instances in ECoWare, indeed, can
be combined in any (compatible) order and, at the same time, they can be
part of multiple processing chains. ESPER is here represented as a black
box: Section A.3 describes how it works.

Figure 4.5: Processing flow in an ECoWare component

Three categories are possible for instances in ECoWare: there are calcu-
lators and correlators, which role have been already described, and there are
also filters. A filter is an entity taking an event and letting it “pass” (which,
in this case, means outputting a new event identical to the one received in
input) only if its attributes are into a specific range; with regard to this work,
this can be useful to detect constraint violations: all the events indicating a
good behaviour do not require to be analysed an thus will not pass through
the filter, while the other, bad ones will be forwarded. Filtering is in fact
one of the operations that can be included among computation features and,
therefore, filter blocks can be seen as complementary to calculator ones.

Figure 4.5 shows that all the ECoWare blocks execute a common set
of operations, although they differ in the events they process and in how
they process them. This led us to define them through a hierarchy. This
promotes modularity and allows designers to easily add, update, or remove
blocks without a significant impact on the EcoWare infrastructure. The cor-
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responding UML class diagram is illustrated in Figure 4.6. All instances
extend from a top KPIManager class, which is used to define their common
characteristics. The KPIManager provides: one or more identifiers for sub-
scribing to event sources; one publication identifier for outputting events; and
one abstract launch() method that needs to be extended by each subclass.
The second level in the hierarchy presents three ECoWare instance cate-
gories: computation (StandardKPICalculator and CustomKPICalculator),
filtering (StandardKPIFilter and CustomKPIFilter) and correlation (Aggre-
gator). StandardKPICalculator is an abstract class that adds a time interval
for incoming events that will be considered in the formula, and a rate at which
the computation will be performed. The time interval is defined in terms
of a time unit and an amount, indicated by intervalUnit and intervalValue
respectively. The output rate is similarly defined in terms of an outputUnit
and an outputValue. The CustomKPICalculator defines a completely open
canvas for designers that want to create new KPI calculation blocks. Stan-
dardKPIFilter is an abstract class that has been extended by HPFilter, a
high-pass filtering block, and LPFilter, a low-pass filtering block. Finally,
correlation components are all similar in the sense that they all perform the
same operation, and only differ in the events they receive as input; this is
why we implemented a single class, called Aggregator.

Table 4.1 provides instead an explanation of the calculator, filter and
correlator implementations that can be seen in the figure, in terms of events
processed and operation performed. The letters X Y and Z in the event-
related columns refer to generic events. What the table shows is, first of
all, that calculator instances process and produce specific-type events only,
while filters and aggregators, on the contrary, can treat every kind of event;
secondly, that a filter (as expected) does not modify the event content, but
rather compares it with a predefined pattern and then decides whether to
discard it or send it through; finally, that a single aggregator can operate on
two events, the first being identified as primary and the other as secondary,
and outputs new data only when a new primary event instance arrives.

With the exception of correlators, which can be attached to (at most) two
event sources, each instance running in ECoWare processes events coming
from a single source; therefore, if it is necessary to, say, compute the average
response time of two application components, the same number of RTCal-
culator objects must be instanced, that is, one for each component. Figure
4.7 shows an example of a complete KPI production chain. In this case, the
software-layer sensor captures the start and end instants of the invocations
for service A, generates the respective StartTime and EndTime events and
publishes them with ID “A”. Such events are picked by an RTCalculator in-



46 Implementation

Figure 4.6: ECoWare components hierarchy

Name
Input Output

Description
events event

RTCalculator StartTime RT AV G(EndTime− StartT ime)

EndTime
ReliabilityCalculator StartTime Reliability COUNT (EndTime−StartT ime<timeout)

COUNT (StartT ime)EndTime
ArrivalRateCalculator StartTime ArrivalRate COUNT (StartT ime)

HPFilter X X Retransmits only the events in which the value of
the target attribute is greater than the cutoff.

LPFilter X X Retransmits only the events in which the value of
the target attribute is less than the cutoff.

Aggregator X, Y Aggregator Every time a new event X (primary) arrives, out-
puts it along with each of all the Y events occurred
in the specified period.

Table 4.1: Functionalities of sample ECoWare instances
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stance, which in turn produces and forwards an RT event marked with “Y”,
its own publication ID. The RT event is then passed through a high-pass
filter, which checks it against its cutoff (100 ms in this case); if the value
is bigger, the event is republished with the filter ID (“Z”). At last, an ag-
gregator correlates the filter-made event with those, labelled by “X”, coming
from collectd and the application infrastructure layer, and outputs several
Aggregator tuples with ID “A1”. The figure also highlights how easy it is,
in this context, to put blocks in cascade with one another: in fact, the only
thing to do is make publication and subscription IDs of every two adjacent
blocks (the one upstream and the one downstream respectively) match.

Figure 4.7: Sample KPI production chain

4.3.3 Output visualization

As said at the beginning of the chapter, visualizing the application perfor-
mance into graphs is not among the purposes of the cycle. In this particular
context, though, this extra-feature can be useful, as it permits to validate
the entire monitoring structure, allowing to easily verify experimental results
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against theoretical expectations. In addition, charts are still a helpful instru-
ment for eventual business analysts, letting them understand the situation
quickly and perhaps fix small problems in less time than the self-adaptation
cycle itself.

The component in which KPI trend visualization has been implemented
is called ECoWareDashboard. Two displaying modalities are provided: live,
to observe the evolution of metrics in real time; and off-line, to bring all the
correlated data together in a single view and thus obtain a more complete
comprehension. To realize all the graphical tools, a Java library named
JFreeChart7 has been exploited. This is a very good plug-in, including a
great amount of APIs to draw and manipulate several types of charts; among
those, the one fitting the purpose of this work best has been the time series
chart, allowing to display sets of (time, value) pairs on a Cartesian plane.

Live graphs are implemented by the KPIVisualizer class. Instances of
such class operate in an extremely simple and straightforward way: first, they
subscribe to SIENA for the event of interest; as new data arrives, they extract
the timestamp and the value of the target attribute, create the respective
(time, value) pair and add it to the chart. Since the only aim of a live chart is
to show data in quasi-real time, that is, as soon as it is computed, there is no
need for storage or any other additional features. Figure 4.8 illustrates the
layout of a live chart. Some parameters can be configured in it, as the bounds
for its Y-axis (if not specified, the chart will automatically resize according
to the dataset) and, more importantly, the dimension of its dataset, that
is, how many values to keep displayed. If the latter is fixed, the dataset is
treated as a finite, first-in-first-out (FIFO) queue: when a new event arrives
and the dataset is already full, the temporally oldest value is removed; this
way, the chart becomes a sliding time-window, representing the concept of
“live data” even better.

An off-line (also, historical) graph, instead, is much more functional, as it
allows to visualize the past trend of a particular metric in conjunction with
those of all the factors implied in its calculation; this kind of dashboard pro-
vides an all-inclusive KPI displaying system, allowing an immediate recog-
nition of the culprits in case of failures. To realize such a tool, however,
extra-computation must be included, in order to persist the data of interest
and made them retrievable for future examination.

As can be guessed from Figure 4.1, the persistence task is performed
in the ECoWarePersistence block. Its flow of execution consists merely of
connecting to SIENA to get the opportune events and, subsequently, storing

7http://www.jfree.org/jfreechart/
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Figure 4.8: Live chart

them into a MySQL database. However, there is a tricky question. The dash-
board must show complete graphs for the primary KPI and all its correlated
metrics; often, though, ECoWare correlators take their primary input from
filters, which provide only a part of all the computed values (that is, the
ones matching their patterns). To resolve this point, two separate classes
has been defined: KPIPersistenceManager, which takes and stores all the
original, unfiltered values of the primary event; and AggregatorPersistence-
Manager, which extracts secondary metrics from correlated events and links
them to the respective primary item. Likewise, the database, which E-R dia-
gram is depicted in figure 4.9, includes two tables: KPIItem, storing primary
events, and SecondaryEventItem, which describes KPI-correlated metrics (in-
dicating the name of the related attribute to distinguish it among all the ones
possibly contained in the same Aggregator event). The technology exploited
for operating the persistence is JPA8 (Java Persistence API), provided by
the EclipseLink9 plug-in.

Persistent data is retrieved and displayed on a complete panel by ECoW-
areDashboard’s AggregatorVisualizer. Figure 4.10 illustrates the features of

8http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
9http://www.eclipse.org/eclipselink/
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Figure 4.9: Entity-Relationship diagram of the database

such a panel and how the user can interact with it. Usually, the user first gets
a textual list of all the occurred failures; then, he selects a period in which
failures took place, specifying its start and end hours (feature provided by
the JCalendar10 plug-in) and gets the respective primary-KPI trend on the
bottom-left chart; finally, he can choose a particular failure value, through
the top-right drop-down menu, and examine the trend of the factors leading
to it.

4.3.4 Block configuration

Each distinct macro-block operating in the system must be preconfigured
according to the needs of the overlying application. collectd and its em-
bedded InfrastructureSensor must be told what devices of the infrastructure
they have to “suck” information from, plus the rate at which they must do
that; in ECoWare, all the required calculator, filter and aggregator instances
must be declared along with the parameters “shaping” them; ECoWarePer-
sistence must be given details about the primary and secondary events to be
persisted; and ECoWareDashboard, similarly, must know the number and
type of the charts to launch, as well as the metrics they will contain. Only
exception with regard to this aspect are the sensors at software layer, which
consists of few, application-agnostic code lines and need to know just where
to send the data they acquire (that is, the location of the SIENA server, see
Section A.2).

Apart from collectd, which provides its own configuration file to be set
(see Section A.1), all the other elements must be input a file containing the
configuration parameters, so that, as soon as the element is started, such file
is parsed and the appropriate instances are created and launched. However,
since all the elements have been implemented in an ECoWare-like fashion,
that is, they are all made by independent objects, configuration is delegated

10http://www.toedter.com/en/jcalendar/
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Figure 4.10: Historical dashboard

to such objects themselves. Doing so, modularity is further enhanced: in
each component, the “scaffolding” is developed once and remains nearly un-
changed, while specific internal entities are managed in autonomy.

The format chosen for the configuration files is XML, for two reasons: first
of all, it allows to define data structures, even complex ones, in a simple and
understandable way; second, it can be easily handled in the Java environment
via the Document Object Model11 (better known as DOM) APIs, already
included in the Java standard library. In this work, the XML configuration
file of a generic block must be organized in sections (or nodes), each of

11http://www.w3.org/DOM/
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which profiling one of the instances required in the block; when a section is
encountered during the parsing of the document, the block first recognizes
the class therein treated (usually by looking at its name), and thus invokes
the respective constructor, passing the section itself (that is, an XML Node)
among the parameters so that it can auto-configure itself.



Chapter 5

Case study

The behaviour of the implemented system must be verified within a plausi-
ble environment, in which the main characteristics and challenges of a real
service composition are reproduced. For this reason, a test application has
been taken and separated in four pieces, each run at a distinct location in
the Internet. A simulation has been executed and then repeated with in-
creased application load. Finally, all the information extrapolated from the
runs have been interpreted.

The chapter is divided in three sections. Section 5.1 gives a complete
description of the test application. Section 5.2 provides the details about
the experiments, first showing the testing tool exploited and explaining how
the entire system (application plus monitoring) has been configured, and
then reporting the two runs in all their aspects. At last, Section 5.3 analyses
the statistics collected by the testing tool, to determine the overhead caused
by monitoring and compare it to other factors.

53
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5.1 Application overview

Figure 5.1 illustrates the SCA diagram of the application on which the mon-
itoring infrastructure has been tested. It is one of the possible variants of
Tuscany’s tutorial, store, a simple program simulating an online food shop.

Figure 5.1: SCA diagram of the test application

As can be seen, the application is made by two composites: store, the
front-end one, allowing users to select and order products, and warehouse,
the back-end one, memorizing the committed orders. The orchestration com-
ponent is Store, a mono-page Web site; for its purposes, Store makes use of
two components: Catalog, which lists all the store items, putting together
the ones contained in FruitCatalog with those in VegetableCatalog (here rep-
resented as a Web service external to the composite; actually, it is included in
it), and in turn exploits the CurrencyConverter component to determine the
price for items according to the chosen currency (which has to be specified
in the Catalog property); and ShoppingCart, which represents the cart where
the user puts the items that he wants to purchase. The warehouse compos-
ite contains itself an HTML interface, allowing only to visualize the pending
orders in the depot (realized by means of Java, not Spring1 as written in the

1http://www.springsource.org/
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figure); both the components are named Warehouse in the figure.
Apart from the two HTML pages, all the components are implemented

in Java; each of them features a single service except ShoppingCart, which
provides Cart, allowing to modify the content of the cart (adding/removal
of items etc.) and Total, confirming final orders and sending them to the
warehouse. The red words in the figure indicate the protocols used to access
the referred service: both the Web pages are obviously reached through
HTTP requests; Store communicates with Catalog and the second service of
ShoppingCart, Total, by means of JSON2-based RPCs3 (Remote Procedure
Calls), as the two warehouse components do with each other; ShoppingCart ’s
Cart is exposed in the Atom4 format; ShoppingCart itself calls the warehouse
via JMS5 (Java Messaging Service); the unlabelled wires refer instead to a
standard interaction among two Java classes.

Figure 5.2, instead, exploits the application diagram to highlight (even
if in horizontal) its hierarchy. In this case, three layers can be determined
according to the inter-component relationships, with Store at the top, Cat-
alog and ShoppingCart just underneath it and the rest at the bottom. It
can be also noted that the Warehouse Web page has been removed from the
picture: it does not have a functional role in the store process (indeed, its
service is not used by any component) and can be thus neglected.

Finally, Figure 5.3 indicates on the diagram how the application has
been deployed in this work, identifying how many nodes have been employed
and which capabilities are hosted on each of them. Precisely, the main
node contains the Store component and constitutes the application access
point; the second node includes the ShoppingCart component; the third node
provides Catalog along with all its subordinate entities; the fourth and last
node is entirely dedicated to the warehouse.

5.2 Tests

5.2.1 soapUI

A good instrument that can be used to perform exhaustive tests on service-
based applications and simulate critical scenarios is soapUI6, a software able
to generate SOAP requests to access Web resources given the location of their

2http://www.json.org/
3http://json-rpc.org/
4http://tools.ietf.org/html/rfc5023
5http://java.sun.com/developer/technicalArticles/Ecommerce/jms/
6http://www.soapui.org/
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Figure 5.2: Test application - hierarchy

WSDL7 (Web Services Description Language) document. soapUI makes it
possible to operate valuable load experiments, invoking the application for
a certain number of times rather than over a specified interval.

Figure 5.4 shows the window for such capability and its possible config-
uration parameters. Besides the test duration, these include: the number of
threads which perform the invocations in parallel; the time a thread must
wait before issuing a new invocation after the previous one has terminated;
and a random parameter, between 0 and 1, indicating the probability with
which such delay is respected. In the central panel, general statistics about
the test can be visualized in real time.

To be accessed by soapUI, an application must thus be deployed, along
with its WSDL, and exposed as a Web service at a specific address. Doing
so is not that easy: a WSDL document, in fact, must include every single
detail about the services, and thus writing it is quite laborious, even for small
services; moreover, making resources available over the Internet requires to
activate a Web server and load the files onto it, which is not difficult but still
demands additional effort. Both FraSCAti and Tuscany, however, perform

7http://www.w3.org/TR/wsdl20/
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Figure 5.3: Test application - deployment

such tasks by themselves: their execution environments, indeed, include a
server, which takes the deployment address of the service and operates the
loading automatically, generating its WSDL as well.

5.2.2 System setup

The store application was created by the developers of Tuscany with the
only purpose to provide a helpful example, which would easily introduce
users to the capabilities of both their product and, more generally, SCA.
The program, in fact, can be launched in no time (with two command-line
instructions), runs entirely in local and offers a very poor and basic Web
interface. Hence, in order to use it as a valid test bed for the monitoring
architecture, it has been necessary to intervene and make it “trickier” by
modifying some implementation details, still leaving (most of) its business
logic unchanged.

First of all, as shown in the previous section, it has been decided to
deploy the application on four separate locations. As many composites have
been thus created (as the SCA deployment unit is the composite, see Section
4.2), dividing the store one in three parts and keeping the warehouse one
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Figure 5.4: soapUI load test window

unaltered. This, actually, is not a difficult task: it is enough, indeed, to copy
the .composite file of the application on each node, and comment everything
in it except the tags referring to the components to be deployed there. Once
distribution has been completed, the services needed to be accessible from
outside have been exposed; this is an easy job too, since it just takes to
correct, in the .composite file again, the address fields of the related service
and reference tags.

Secondly, the original application requires user interaction, not allowing
in fact to perform load simulations easily. The HTML-made Store compo-
nent has been therefore replaced with an automatized process encapsulated
in a Java class, which has then been exposed as a Web service to be invoca-
ble via soapUI. The flow of execution in such class reflects what a standard
transaction would be: first, the entire store catalog is retrieved (method get()
in the Catalog service); then, a number (randomly picked between 1 and 10)
of casual items is chosen, and each of them is added to the cart, one at a
time (Cart ’s post() method); finally, the so-generated order is confirmed and
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dispatched to the warehouse (using confirmTotal() from Total, which in turn
calls addOrder() on Warehouse). The introduction of the new component,
though, has required to make further adjustments: Tuscany, indeed, does not
support the JSON-RPC protocol among two Java artefacts, so the binding
of the Catalog and Cart services have been changed to WSDL; moreover, the
Atom format caused Total to fail over extensive use, and thus it has been
switched to WSDL as well.

The four nodes used for the application deployment consist of the lo-
cal computer plus three virtual machines provided through Amazon’s EC28

(acronym of Elastic Compute Cloud) service. The local PC is an Acer Aspire
5738ZG notebook, featuring:

• OS: Windows 7;

• CPU: Intel Pentium T4400 (2.2 GHz, 800 MHz FSB);

• memory: 4 GB;

• disk: 500 GB;

• Internet access: 54-Mbps wireless DSL router.

All the virtual machine are instead EC2 Micro instances, set up as follows:

• OS: 64-bit Linux Ubuntu 10.04;

• CPU: up to 2 EC2 Compute Units, for short bursts (one EC2 Com-
pute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor);

• memory: 613 MB;

• storage: 8 GiB (1 GiB = 230 B) on an independent EBS9 (Elastic Block
Storage) volume;

• I/O performance: low.

From this latter data, it is clear that a Micro machine is not really suitable
to host a service; such category, though, is the only one which Amazon
provides, if kept under fixed usage thresholds, for free. In this particular
case, moreover, services are not that complex, and created no problem for
the instances. Each instance must be accessed from the local machine via

8http://aws.amazon.com/ec2/
9http://aws.amazon.com/ebs/
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the SSH (Secure SHell) protocol using putty10; to handle it more easily via
its GUI, instead, the remote-desktop tool TightVNC11 has been exploited.

The monitoring system, too, has been organized to work in a distributed
context. A collectd instance has been installed on each virtual machine,
tracking statistics about the use of CPU, memory and network interface; no
infrastructure monitoring has been run on the local node, because all the op-
eration contained in the Store component are invocations to the other entities
it is linked to. To forward all the gathered information, a SIENA network
has been configured: one server has been operated on each peer, with all
those running on the virtual machines linked to the “master” server installed
in local. This has been decided to reduce the impact of monitoring on the
application: doing so, indeed, publication of metric-events is decoupled from
its transfer to the processing stage (entirely demanded to SIENA), limiting
the application-SIENA communication to a local scope and thus diminishing
the overhead due to publish-and-subscribe. Finally, all the ECoWare-related
blocks (the processor, the dashboards and the database) have been executed
on the local instance.

5.2.3 Ordinary scenario

The first test has been operated in order to measure the performance of
the application and its services under “normal” circumstances. The tracked
software-layer parameters are:

• the response time of the whole application;

• the arrival rate of the whole application;

• the response time of Catalog ’s get() method;

• the response time of Cart ’s post() method;

• the response time of Total ’s confirmTotal() method;

• the response time of Warehouse’s addOrder() method.

The appropriate monitoring code has thus been added to Tuscany, and the
related ECoWare calculators have been configured. For all the metrics, the
values chosen for the interval and output values (see Section 4.3.2 for an
explanation of such values) are, respectively, 2 minutes and 20 seconds. From

10http://www.putty.org/
11http://www.tightvnc.com/
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now on, the metrics referring to specific methods will be identified with the
name of the service they belong to.

Five macro-correlations have been considered:

• the response time of the whole application with the response times of
Catalog and ShoppingCart as well as with the arrival rate;

• the response time of Catalog with the parameters of the underlying
infrastructure;

• the response time of Cart with the parameters of the underlying in-
frastructure;

• the response time of Total with the response time of Warehouse and
the parameters of the underlying infrastructure;

• the response time of Warehouse with the parameters of the underlying
infrastructure.

The same number of off-line charts have been delineated in ECoWareDash-
board. Plus, a live graph have been configured for the tracking of the arrival
rate in real time.

The parameters used to define the normal circumstances mentioned above,
with which soapUI has been configured to run the load test (see Section
5.2.1), are instead:

• test duration: 600 seconds (10 minutes);

• n. of parallel threads: 5;

• delay between invocations: 1000 milliseconds;

• random factor: 0.5.

Figure 5.5 shows the evolution of the arrival rate during the test. Even
though the chart bounds are not sized perfectly, it can be seen that its trend
is rather regular, with the obvious exception of the initial and final segments.

Figures 5.6 and 5.7 show instead the off-line dashboard representing a
snapshot of the first macro-correlation (that is, the one between the response
time of the entire application, its arrival rate and the response times of single
services), illustrating the first two and last two secondary factors respectively.
Likewise, Figure 5.8 shows the trend of Cart compared with those of the CPU
allocated to the user and the packets received by the network interface. The
units of measure are: milliseconds for every time metric, units of scheduling
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Figure 5.5: Ordinary scenario: arrival rate

for CPU usage, octets per seconds for interface packets. Some of the graphs
here may seem very variable, but looking at the Y-axis it can be noted that
the range in which points float is actually quite narrow.

Finally, Table 5.1 lists the values which, after evaluating the test re-
sults, have been decided as average and peak ones for the monitored met-
rics. These will be highlighted in the charts of, respectively, secondary and
primary events of the appropriate dashboards. All the metrics are expressed
in milliseconds except the arrival rate, depicted in number of requests.

Metric Average Threshold
Response time (Store) - 1000
Arrival rate (Store) 250 -
Response time (Catalog) 115 125
Response time (Cart) 114 120
Response time (Total) 120 125
Response time (Warehouse) 8 15

Table 5.1: Ordinary benchmarks for monitored metrics
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Figure 5.6: Ordinary scenario: AVGRT(Store) vs arrival rate and AVGRT(Catalog)

5.2.4 Altered scenario

Once the parameters defining normal application performance have been
established, it is possible to introduce opportune ECoWare filters in the
system, to signal when a service exceeds its critical threshold. Therefore, five
high-pass filter instances have been configured, each associated to a different
response-time metric; no threshold has been defined for the arrival-rate one,
thus no filters have been attached to it. Moreover, all the correlators have
been modified so to take their primary input no longer from the respective
calculator blocks, but rather from the filters themselves, in a way they could
operate only in case of failures.

Subsequently, the load test has been repeated worsening the conditions,
that is, increasing the frequency of contemporary requests. The values en-
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Figure 5.7: Ordinary scenario: AVGRT(Store) vs AVGRT(Cart) and AVGRT(Total)

tered in soapUI are:

• test duration: 600 seconds (unchanged);

• n. of parallel threads: 10;

• delay between invocations: 0 (within a thread, a new invocation is sent
as soon as the previous one finishes);

• random factor: 0 (no delay randomization).

Figure 5.9 shows the arrival rate registered in the new scenario. As can
be seen, the average here is less than the norm (indicated by a horizontal
line on the chart). This could seem surprising, even wrong, given that the
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Figure 5.8: Ordinary scenario: AVGRT(Cart) vs user-scheduled CPU and received pack-
ets

number of invocations has been augmented. In fact, this is perfectly right:
the arrival rate, as shown in Table 4.1, is calculated as the count of all the
occurred StartTime events generated by the service (Store in this case), not
the amount of SOAP requests to the application; therefore, since there is
more traffic and response times are very likely to be higher, its decrement is
more than plausible. The question can arise on the formula itself, which pos-
sibly does not reflect the real meaning of “arrival rate”; under these particular
circumstances, though, it can be said that the result meets the theoretical
expectations.
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Figure 5.9: Altered scenario: arrival rate

Figure 5.10 reveals how the overall application performance has worsened:
all the values in the primary chart overcome the 1-second alert threshold,
which, since the chart auto-scales if no bounds are specified, is not even
shown. On the right-hand side of the figure, it can also be noted how both
the services of ShoppingCart have slowed down, with response times well
over their normal average. The behaviour of Catalog, not visualized here,
is instead good, even better than before. These results meet the theory
too: indeed, being called on average 5.5 times in a single invocation, Cart
is the application’s most solicited service, and thus it will be the first one
dropping; belonging to the same component, hence being executed at the
same location, the Total one will be negatively affected as well.

Figure 5.11 shows why the Total performance, and more generally of the
ShoppingCart component, is not as good as before. In this case, the response
time is rather unstable, with about half of the points over the limit. Focusing
on one of such points and analysing the correlated factors, the (predictable)
reason is soon found: the number of incoming packets is enormously higher
(about three times if compared to Figure 5.8, in which the infrastructure data
regards the same component). The improvement of Warehouse’s response
time (not illustrated in the figure) further demonstrates that the slowdown
motivation had to be searched within ShoppingCart.
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Figure 5.10: Altered scenario: AVGRT(Store) vs AVGRT(Cart) and AVGRT(Total)

5.3 Monitoring impact

Both the experiments just documented have been replicated with monitoring
disabled, so to have a rough evaluation of the influence of the monitoring
structure on the application performance. Table 5.2 reports the values reg-
istered by soapUI in the four tests in terms of response time (minimum,
maximum and average) and requests executed, comparing the results of the
related cases. Such values are significantly bigger than the ones appraised by
ECoWare, as they take into account the “complete” response time, including
the time required to issue the SOAP request and receive the response.

Three considerations can be done on such data:

• SOAP has a huge impact on performance. If we compare the average
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Figure 5.11: Altered scenario: AVGRT(Total) vs user-scheduled CPU and received
packets

Scenario Min Max Avg Total requests
Ordinary with monitoring 450 9921 1746.09 1199
Ordinary without monitoring 437 3337 1579.35 1283
Differential -2,9% -66,4% -9,5% +7%
Altered with monitoring 482 44151 5681.09 1050
Altered without monitoring 465 15126 5097.35 1173
Differential -3,5% -65,7% -10,3% +11,7%

Table 5.2: soapUI test results

values in the table with those from the Store charts, the amount of
time due the SOAP protocol is around 50% in the ordinary case and
80% in the altered one, and the latency due to SOAP sees a fivefold
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increase between the two tests, which is impressive if compared to the
1.27 increase seen by Store;

• the minimum response time is almost the same for all the cases, while
the maximum response time presents a much higher variability. This
latter metric, though, is not fully indicative in itself, as usually soapUI’s
first invocation is significantly much slower than the rest; however, it
is evident that it grows very rapidly with the traffic;

• apparently, the monitoring system has an equal impact in both the
cases. While poor with regard to the minimum value, it gradually goes
up to an average 10%, a percentage that certainly can not be neglected.
However, after running the tests multiple times, we have seen that the
response times can sometimes be worse with monitoring disabled than
with monitoring enabled.

Given these arguments, it can be finally deduced that, in this case at least,
performance is more dependent on the network conditions than it is on the
monitoring architecture. In fact, attaching monitoring to the application
contributes to degrade such conditions, as a huge number of SIENA-event
packets is added to the traffic; this overhead, though, is much less than that
caused by SOAP. The third point empowers this theory, clearly showing
that, at least in the ordinary scenario, monitoring has a negligible influence
compared to the Internet. More generally, however, values rise very quickly
as the request rate increases, even alarmingly considering the maximum one.





Chapter 6

Conclusions

This chapter closes the work.
The chapter is divided in two sections. Section 6.1 recaps what has been

treated and learned. Section 6.2 talks instead about the work that is yet to
be done, with regard to service-based computing in general and this project
in particular.

71
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6.1 Final considerations

In this work, it has been approached the problem of performance adaptation
in service-based applications, a question more and more important as they
are likely to replace traditional ones. In fact, while services are rapidly
spreading all over the IT world, valuable monitoring solutions for them are
yet to be found; this lack is bad for both the provider, who needs to detect
and remove the weaknesses in the application (points of failure, bottlenecks
and so on) in order to improve it and get more competitive on the market,
and the customer, who needs to keep the QoS well monitored and verify
that the SLAs he agreed for are respected. The project at the base of this
study presents a self-adaptation process tailored for SBAs, which takes into
account their multi-layer nature to devise a complete strategy; here, the very
first stage of such process, that is, monitoring, has been realized.

The content of this thesis can be divided in three parts. In the first one,
the problem has been introduced by explaining the concept of services in
the IT context, identifying the motivations of their rather immediate success
as well as the challenges they come with, and giving an initial idea of the
overall solution and the monitoring implementation. In particular, it has
been argued how a service composition is in its nature structured on more
levels (or layers), going from the general application schema at the top down
to the physical software and hardware resources at the bottom; it is easy to
understand that this complicates adaptation a lot, because it creates several
dependency sub-chains which can not be ignored in an adaptation process.
Then, the MAPE-like, four-step, self-adaptation cycle has been delineated,
with a brief description of the stages it is made of and the interactions it
has with the supervised application, and the realized system has been briefly
anticipated. Finally, a roundup of some related studies has been presented,
implicitly showing that, despite each of them has interesting features that
could be exploited, there is no technology capable of solving the issue in a
satisfying way at the moment, and thus making evident the innovation that
the approach here discussed brings to this field.

The second part has instead provided a detailed illustration of the cy-
cle. Each of the four macro-blocks has indeed been “opened”, describing the
passages it goes through in order to get its task done and indicating the
properties that its optimal implementation should have. Here, it can be seen
that every single stage constitutes a fundamental piece for the purpose of
the work, and it is also made clear the difference between (self-)controlling a
conventional “flat” application and doing the same with a multi-layer SBA:
in the first case, the second and third blocks (respectively, the analysis and
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identification ones) would not even be required, as problems could be de-
tected directly in the monitoring phase (which, besides, would not need data
correlation functionalities), and thus immediately resolved by enacting a sin-
gle set of opportunely predefined actions.

In the third part, the practical (and central) aspects of the work have
been described. Initially, the implemented monitoring-and-correlation ar-
chitecture has been graphically introduced; next, it has been analysed in
depth, first indicating what kind of applications it can take care of (that
is, SCA-based ones), then entering the architecture itself and explicating
it component by component. Finally, the (two) experiments run to demon-
strate its behaviour have been documented, presenting all the characteristics
of the test program, the conditions in which the tries have been executed as
well as their results, and a rough impact evaluation. In summary, it can be
concluded that the experiments confirm the main downside of an SBA, that
is, unstable and strongly network-dependent performance; the influence of
monitoring has instead proved to be rather limited.

6.2 Future developments

The world of services is still in its developmental age: new technologies break
into the market without interruption, while existing ones update their ver-
sions on a regular basis. The general tendency is to reduce complexity, by
devising more agile communication protocols, defining less costly descrip-
tion languages and making services themselves smaller and smaller in order
to maximize flexibility. The future is far from clear at the moment; however,
one consideration can be done: to assess themselves permanently, services
need to find reliable ways to make their performances immune to the in-
evitable uncertainties characterizing the IP network. Given that, a rather
simple prediction sees research in the adaptation field continue to grow ex-
ponentially, at least in the same measure as services themselves do.

Much has yet do be done with regard to the here-presented project too,
as the remaining part of the loop must be implemented. From the previous
reflection, it can be deduced that the blocks most challenging to realize will
be those interacting with the application, as they must be able to deal with
several different technologies, each coming with its own interface and adapta-
tion APIs; a fundamental factor, therefore, will be the degree of abstraction
in such blocks: the more technology-independent they will be, the more
reusable and versatile the cycle will. Interesting insights in this direction
could be taken from [13] (see Section 2.4.1).

It is equally evident, though, that the current middleware solutions, in
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the first place, have to grow and improve on this aspect. In the implemen-
tation chapter, it has been shown how laborious it is to put monitoring into
Tuscany, which in addition does not provide any functionality for run-time re-
arrangement of compositions; with FraSCAti, the situation is surely better,
considering the (few) APIs it comes with to insert intents and dynamically
reconfigure composites, but it is still too little. What each SOA-enabling
tool should include is complete, simple interfaces allowing to operate perfor-
mance monitoring as well as, at execution time, all the possible structural
changes according to the paradigm it implements.

With regard to the monitoring system in particular, a really useful im-
provement could instead be to define a unique, high-level configuration lan-
guage for all its blocks, through which the user can specify all the capabilities
he needs in a single document, without having to know how the file of each
block should be compiled. This would require to add a new block, taking
in input such “global” document and producing the appropriate XML files,
that by now have to be created by hand; this way, neither changes should be
made to the pre-existing architecture nor application performance would be
affected at all, as the new block would have to be run only once, at the launch
of the system. About validation, moreover, although the base provided by
this work is quite good, it would be opportune to test the system within a
more realistic context, that is, on a complex, highly distributed application,
in extremely critical traffic conditions and having to run a huge number of
ECoWare instances.
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A.1 collectd

collectd1 is a lightweight application capable of gathering information about
various aspects of the machine on which it is executed. It operates as a
daemon (and that is where the final “d” comes from), that is, a program
which runs in background instead of under the user control, and it can work
on Linux as well as most UNIX-derived systems, among which MAC OS X,
but not on Windows ones. In this work, the 5.1 version of collectd has been
used.

The architecture of collectd consists of a small core, acting almost ex-
clusively as a communication medium, and a huge number of attachable
plug-ins, which carry out the actual functionalities. Some of them are listed
in Table A.1. As can be seen, plug-ins belong to, at least, one category: Read
plug-ins, for instance, are the one retrieving data from specific devices into
the system and sending it to the core, while Write plug-ins receive collected
data from the core and put it into specific-format files; the Network plug-in,
instead, belongs to both the categories, as it allows remote instances of the
daemon to exchange information.

Name Type Description
CPU plugin Read Records the time spent by the CPU in various states.
Memory plugin Read Monitors memory utilization.
Interface plugin Read Collects information about the traffic of interfaces.
Load plugin Read Observes the system load.
CSV plugin Write Stores all the collected values in CSV files.
RRDtool plugin Write Writes collected values on RRD files.
Network plugin Read, Write Enables communication with other collectd instances on

different machines.
Java plugin Binding Allows Java user-made programs to be run into collectd

and communicate with it.

Table A.1: Main collectd plug-ins

The reason why collectd has been preferred to all the other tools, though,
is the last plug-in listed in the table, that is, the Java one. This, in fact,
embeds a Java Virtual Machine (JVM) into the tool, thus giving the user
the possibility to include custom-made programs to achieve specific func-
tionalities. The plug-in also exposes a set of collectd APIs, allowing to
communicate with the core in both directions; among them, the Collect-
dWriteInterface interface, which write() method is called by collectd every
time a new metric has been acquired, has been the perfect instrument to link

1http://collectd.org/
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the sensor with the rest of the monitoring system. Precisely, such interface
has been implemented in the InfrastructureSensor project by the DataSen-
sor class, which write() method simply takes the notification metrics in the
ValueList parameter and transforms them into SIENA events which will be
finally published.

collectd must be set up by writing an appropriate file, in which one must
enable and configure all the plug-ins he wants to be included, as well as global
parameters like the frequency of metric collection and the name of the host.
In this work, only the basic Read plug-ins have been included, as the ones in
the table, which do not have any configuration parameters to be specified.
To configure the Java plug-in and run a custom program, instead, two oper-
ations must be done: first, the program must be exported as a .jar file; then,
in the plug-in configuration section, it is necessary to indicate the location of
the archive and the names of all the classes in the project which implement
a collectd-provided interface (only DataSensor in this case). Once collectd
is started, each class must be instantiated and registered with the daemon:
for this reason, its constructor must be non-parametric, and specify as first
instruction the appropriate registration method of the Collectd class, accord-
ing to the implemented interface; in this case, since DataSensor implements
CollectdWriteInterface, the registerWrite() method has been used.

A.2 SIENA

SIENA2 (acronym of Scalable Internet Event Notification Architecture) is
a small Java program which implements the publish-and-subscribe technol-
ogy, thus allowing different, loosely coupled applications to communicate
without having to know about one another (that is, without caring about
IP addresses). The paradigm constituting the foundation of SIENA (and
of publish-and-subscribe in general) is content-based networking, which es-
tablishes interaction among peers in a network based on the content of the
exchanged messages rather than the physical location of the nodes. In this
work, the 1.5.5 version of SIENA has been used.

The architecture of SIENA follows the client/server model, which is very
similar to the collectd core/plug-ins one: indeed, it makes use of a standalone,
lightweight server, acting as a message dispatcher (that is, what in the fig-
ures is represented as the bus) to which publishers and subscribers (clients)
connect to, respectively, provide and retrieve messages, called events. The
server can be started by simply executing the StartServer class, specifying

2http://www.inf.usi.ch/carzaniga/siena/
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the port for the service in input; clients, instead, must be included and con-
figured in the respective applications, according to the role operated in the
system and the events of interest. Servers running on different machines
can also be connected together, in order to create a unique, transparently
distributed server and provide multiple access points.

A generic SIENA client exploits the capabilities offered by the ThinClient
class, which must be instantiated passing the address of the server as a
textual parameter in the ”protocol:address:port” format; the default SIENA
protocol, used in this case as well, is TCP. A publisher must invoke its
publish() method in order to generate an event, passing the event itself as the
only parameter. A subscriber, instead, uses the subscribe() and unsubscribe()
methods to, respectively, connect to and disconnect from the server; in the
first method (at least), it must provide as first parameter the pattern that
the events of interest must match. That can be made by means of either the
Pattern or the Filter class; in this work, the latter has been used. A Filter
defines a list of attribute constraints, each of which can be added via the
addConstraint() method, passing the name of the attribute and the target
value for it. Before attaching itself to the server, therefore, a subscriber must
declare and opportunely configure a Filter instance.

Despite making use of the same class, publishers and subscribers are
substantially different entities. A publisher, in fact, is activated only “in
case of necessity”, that is, when a new event is to be delivered; on the other
hand, a subscriber is an independent thread, constantly waiting for events
and handling them as soon as they arrive. To do that, it must implement the
Notifiable interface and override its notify() method, which is the one called
by the server in order to dispatch the events it receives. As already explained
in Section 4.3.1 and shown in Figure 4.4, the realized system implements the
publisher functionalities through the SienaOutputAdapter class and those
of the subscriber through the SienaInputAdapter class; in particular, the
launch of components which need to receive data, ECoWare calculators as
an example, merely consists of starting a new SienaInputAdapter thread.

The class which encapsulates the messages exchanged within SIENA is
called Notification. Publishers must translate data into a Notification in-
stance before sending it, while subscribers perform in the opposite way to
retrieve the original events from it. A SIENA notification is very similar to a
Java Map, including a set of (attribute name, attribute value) pairs; to add
an attribute along with its value to a Notification, the putAttribute() method
must be used; specularly, the getAttribute() method is provided to retrieve
the value of an attribute given its name; finally, a list of all the attribute
names in the notification can be obtained through attributeNamesIterator(),
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returning an Iterator instance. Attributes of the Java primitive types can
be included in a notification directly, while complex data structures must be
first serialized into byte sequences.

A.3 ESPER

ESPER3 (version 4.4.0 has been used in this work) is a Java program provid-
ing Complex Event Processing (CEP), that is, it gets streams of messages,
called events, and elaborates them in real time. CEP works in the opposite
way as classical Relational Database Management System (RDBMS) pro-
cessing does: indeed, while in the latter the database is already populated
(and changes on it are usually small compared to its dimension) and is ac-
cessed through variable queries, in CEP it is the queries itself at the center,
since they are fixed (predefined at design time) and operate as functional
blocks, receiving events as soon as they are generated and outputting the
result of their manipulation as new events. Having to deal with real-time
computing, CEP tools must guarantee high throughput and low latency, as
well as support a wide range of operations, including complex ones as pattern
detecting, filtering, joins, data windows and so forth.

Intra-ESPER communication is carried out, again, following the pub-
lish/subscribe paradigm. The architecture of the program is thus identical
to the SIENA one: a central server (here called engine) and several clients
attached to it. There are two differences, though. The first one is in the
nature itself of the applications: ESPER, in fact, provides not only message
dispatching, but also, and primarily, event processing, and thus its server
includes the logic necessary to elaborate events on top of communication.
Secondly, the ESPER engine, differently from the SIENA server, is not a
standalone component, but rather must be contained in the application us-
ing it, together with all its clients; this also explains why it has been necessary
to use SIENA in this work, that is, to allow inter-component communication.

In ESPER, the engine is represented by the Configuration class, con-
taining all the execution parameters. An instance of such class must thus
be created in the initialization phase of the application, which is also the
only point at which it can be profiled directly (that is, by exploiting the
Configuration APIs). In modular applications like ECoWare, though, each
block has its own needs in terms of engine features, and must specify them
within its scope in an independent way; for that reason, engine configura-
tion in ECoWare is distributed between single components, which receive

3http://esper.codehaus.org/
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the Configuration instance allocated at initialization time among the input
parameters of their constructors.

The first properties a block must configure are the events needed for
its processing. In ESPER, an input event can be represented in several
ways, as a Map instance, an XML Node, or even a specific POJO (Plain
Old Java Object), while output events are usually encapsulated into Maps
only; in this work (and later it will be clear why), it has been decided to
use the Map representation universally. To include a new event definition
into the engine, the Configuration’s addEventType() method must be called,
providing its name and the related attribute map. For each event, it is not
necessary to define its structure entirely, but rather it is enough to indicate
the attributes that will be explicitly used in the computations; this ensures
a greater flexibility in event representation, allowing to change the structure
of an event without having to modify the code of the blocks operating on it.
In ECoWare, furthermore, calculator and aggregator blocks define also their
output events, so that to make eventual downstream filters independent from
event types.

As said before, though, after the initialization phase the engine config-
uration can no longer be accessed directly; still, it is possible to edit it via
the EPServiceProvider interface, an instance of which can be obtained by
calling the getProvider() method on the EPServiceProviderManager class,
passing the configuration itself as a parameter. From a provider, the con-
figuration is reached in two steps: first, the getEPAdministrator() method
must be called to get an EPAdministrator instance; second, a Configura-
tionOperations object must be retrieved, invoking getConfiguration(). Con-
figurationOperations, finally, allows to add new event descriptions through
its addEventType() method, which has the same signature of the “original”
one.

Once all the required events have been specified, it is necessary to define
the operations to process them, which is done in ESPER by declaring and
activating one or more statements. An ESPER statement is none other than
a query, stored in the engine, which waits for events and, as soon as a new
one arrives, performs its operations and output the result. A statement must
be written in EPL (Event Processing Language), a query language extending
traditional SQL to deal with real-time streams. The most important features
added by EPL are:

• event windows (or views): queries can be set to consider a limited
group of events in a stream rather than all of them. For example,

FROM event-name.win:length(x)
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operates only on the last x events of event-name,
FROM event-name.win:time(x)

takes only the event-name events occurred in the last x seconds,
FROM event-name.win:length_batch(x)

batches events and releases them when their count is x (can be done
with time as well). If nothing is specified after the stream name, the
statement operates on new events only; to retain all of them, it is
necessary to add the keepall() instruction;

• fixed output rate: the OUTPUT clause can be added at the end of the
statement to stabilize the output rate, so that the query will output a
result at fixed time intervals rather than when specific conditions are
met;

OUTPUT (FIRST|LAST|. . . ) EVERY x (seconds|minutes|. . . )
OUTPUT . . .AT date

OUTPUT . . .WHEN trigger-expression
are all examples of such clause;

• row limit: the number of tuples to be output can be limited by the
LIMIT clause. For instance,

LIMIT x
returns no more than x rows;

• unidirectional joins: when two streams are joined, if nothing is spec-
ified after the stream name in the FROM clause, the query operates
every time a new event arrives in any stream. Adding the UNIDIREC-
TIONAL keyword after one of them, as in

FROM x UNIDIRECTIONAL, y,
it will produce an output only when the new event comes from x, sim-
ply retaining the event if it comes from y ; this feature has been used
in ECoWare to implement correlators.

Statements can be added to the ESPER runtime by means of, again, the
EPAdministrator interface: its createEPL() method, precisely, includes a
statement, passed as a textual parameter, into the engine, which activates it
immediately.

Listing A.1 shows the EPL statement exploited in ECoWare to calculate
the average response time of several invocations on the same service. In this
case, a new (time stamp, value) pair is produced every outputTime, in which
the first number is obtained via the ESPER’s current_timestamp() single-
row function, while the second number is the KPI value computed over the
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invocations occurred in the last intervalTime. The WHERE clause specifies
the requirements used to join the two events referring to a single invocation:
they must come from the same source (here identified as x ) and have equal
invocation numbers (which of course must be unique within service x ). The
SNAPSHOT keyword in the OUTPUT clause indicates instead to consider
in the computation all the events included in the windows; in this situation,
though, that would not have been necessary, since it is done automatically
with aggregate functions.

SELECT AVG( et . timestamp − s t . timestamp ) AS value ,
current_timestamp ( ) AS timestamp

FROM StartTime . win : time ( interva lTime ) AS st ,
EndTime . win : time ( interva lTime ) AS et

WHERE st . o r i g in ID = ’x ’ AND et . o r i g in ID = ’x ’ AND
st . processNumber = et . processNumber

OUTPUT SNAPSHOT EVERY outputTime

Listing A.1: Sample ESPER statement

To get the events produced by a statement, a listener must be attached
to it. An ESPER listener is an object implementing the UpdateListener
interface, which is the equivalent of the Notifiable interface in SIENA; in
this case, though, the method called by the engine to communicate updates
is named update() (opposed to SIENA’s notify()) and has two parameters,
containing the insert stream (that is, the events just output) and the remove
stream (the events which just left the window) respectively. Elements in
both arrays implement the EventBean interface, from which data can be
retrieved in two ways: by de-parsing it into the original structure, through
the getUnderlying() method, or by getting the value of each single attribute,
given its name, through several invocations of get().

In ECoWare, as shown in Figure 4.5, each block includes exactly one
UpdateListener instance, which is attached to the “final” statement, that is,
the one producing the block output events. Every block works only on newly
generated events, and thus the second parameter of update() is never used.
From the figure can be also deduced that the task of UpdateListeners in
all ECoWare blocks is solely to transfer received events to SIENA: for this
reason, a unique listener class, named EventListener, has been implemented
to comply with all blocks. An instance of such class simply takes each event,
retrieves its parameters, puts them into an aptly labelled Map and finally
passes it to its SienaOutputAdapter module. The choice of using Maps to
represent the events makes is now clarified: with Maps, in fact, the pro-
cessing of EventListener can be written in a block-independent way, that is,
without the need to know the details of each block; POJOs, instead, would
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have required to define a different listener for every block, to deal with the
specific structure of its output event. Moreover, events created from aggre-
gated functions (that is, the type of operations provided by most ECoWare
calculators), of which ESPER does not know the underlying structure, are
automatically stored into a Map: this further justifies the decision.
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