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Sommario

Il futuro dell’esplorazione spaziale è legato alla capacità di collocare grandi strutture
spaziali in punti strategici del campo gravitazionale in sistemi multi-corpo. In questa
tesi viene sviluppato e studiato il modello dinamico del problema circolare ristretto dei
tre corpi, includendo le peculiarità di queste architetture: estesa distribuzione di massa,
grandi superfici esposte alla radiazione solare, maggior livello di flessibilità. In partico-
lare, l’analisi è ristretta nel piano orbitale dei due attrattori, lungo le orbite di Lyapunov.
Innanzitutto, si è sviluppato un accurato modello che includesse l’accoppiamento tra la
meccanica orbitale e quella di assetto, attraverso l’azione del gradiente di gravità sulla
distribuzione di massa. Ne compare un quadro nuovo e inatteso della dinamica, che of-
fre svariati spunti per un più efficace progetto delle grandi strutture spaziali destinate ad
uno scenario gravitazionale multi-corpo. Successivamente, la perturbazione ambientale
dominante nelle regioni di interesse, ovvero la pressione di radiazione solare, è incorpo-
rata nella formulazione del moto. Si dimostra che è possibile ammaestrare la dinamica
accoppiata per avanzare astute strategie di missione. I benefici di queste soluzioni sono
chiaramente mostrati, senza tralasciare di verificarne la robustezza rispetto alle variabili
di progetto. In questo contesto è stato anche identificato un disturbo esterno partico-
larmente critico, che sarà battezzato anomalia del secondario. Infine, anche la dinamica
elastica della struttura è aggiunta alle equazioni di moto. Dopo un prima discussione degli
effetti nell’ambito di un problema multi-corpo, l’analisi della dinamica naturale suggerisce
nuove possibilità di controllo e manovra di architetture distribuite attraverso variazioni di
geometria della configurazione stessa.

Parole Chiave: Grandi Strutture Spaziali, Problema Ristretto dei Tre Corpi, Dinamica
Accoppiata, Pressione di Radiazione Solare, Strutture Spaziali Flessibili.



Abstract

The ability to place large space structures in strategic points of the gravitational field
of multi-body systems represents the future of space exploration. In the present thesis, a
dynamical model of the circular restricted three body problem is developed to include the
special features of these architectures: an extended mass distribution, a larger surface ex-
posed to solar radiation, a higher level of flexibility. In particular, the analysis is restricted
to the orbital plan of the two attractors along Lyapunov periodic orbits. Firstly, an accu-
rate model is developed by the inclusion of the action exerted by the gravity gradient over
the mass distribution. A novel and unexpected portrait of the dynamics appears, which
offers several suggestions for a more effective design of large space structures intended
for a multi-body gravitational scenario. Subsequently, the dominant environmental dis-
turbance of the regions concerned, i.e. the solar radiation pressure, is incorporated in
the formulation of motion. Then, it is demonstrated that the coupled dynamics can be
mastered to advance smart mission strategies. The benefits of these solutions are clearly
displayed without forgetting to verify their robustness with respect to design variables.
In this context, an external critical disturbance is also identified and is addressed as sec-
ondary anomaly. Finally, the elastic dynamics of the structure are added to the equations
of motion. Following a preliminary discussion of its effects in the multi-body problem, the
analysis of the natural response suggests new chances to control and maneuver distributed
architectures via geometry changes of the configuration itself.

Key Words: Large Space Structures, Restricted Three-Body Problem, Fully-Coupled Dy-
namics, Solar Radiation Pressure, Flexible Spacecrafts.
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Estratto in Lingua Italiana

Molte delle future missioni per avanzare le frontiere dell’esplorazione spaziale
sono proposte in punti di equilibrio del campo gravitazionale generato da
più attrattori. In particolare, c’è grande attenzione ai sistemi Terra-Luna
e Sole-Terra. Il punto di svolta consisterebbe nella capacità di collocare
avamposti di grandi dimensioni e lunga vita operativa in prossimità di tali
punti. Si tratterebbe di strutture destinate all’osservazione del nostro uni-
verso, così come a servire da spazioporto per missioni in tutto il Sistema
Solare. E’ ben nota l’esistenza di orbite periodiche, che ben rispondereb-
bero allo scopo, attorno ai punti di interesse, ma purtroppo la dinamica
in un problema multi-corpo è caratterizzata dal caos. Più correttamente,
si parla di alta sensitività alle condizioni iniziali; ciò implica anche che
piccole perturbazioni possono facilmente distruggere la traiettoria nomi-
nale. Inoltre, il problema non concerne solo la meccanica orbitale, ma
anche quella di assetto non è ancora stata completamente e sistematica-
mente caratterizzata in questo ambiente. Pertanto, una più profonda com-
prensione delle dinamiche naturali può sicuramente migliorare la proget-
tazione delle sopraddette missioni; in ultima istanza, sarà anche in grado
di suggerire nuove modalità, di progetto prima, di controllo poi. Le grandi
strutture spaziali sono per definizione architetture di considerevole esten-
sione. È quindi lecito chiedersi quali siano gli effetti del gradiente di gravità
sulla distribuzione di massa. Quindi, rinunciando all’ipotesi, comunemente
adottata nella meccanica orbitale, di corpo puntiforme, in questa tesi viene
sviluppata una formulazione dinamica che includa gli effetti del gradiente
di gravità sull’estensione del velivolo. Normalmente studiate separata-
mente, la dinamica orbitale e di assetto risultano ora accoppiate. Analoga-
mente, le grandi strutture spaziali esporranno una superficie maggiore alla
pressione di radiazione solare rispetto a satelliti classici. Quindi, anche
questo disturbo è aggiunto al modello. Normalmente questa perturbazione
è sufficiente a far perdere la traiettoria nominale in un’intervallo tempo-
rale relativamente piccolo; tuttavia, in questo lavoro sono proposte astute
contromisure, completamente basate sulla dinamica naturale del sistema.
Queste soluzioni permettono una notevole riduzione del controllo richiesto
su entrambi i moti orbitale e di assetto, all’estremo che potrebbe anche non
essere necessario. Infine, grandi strutture spaziali possiedono verosimil-
mente un maggiore livello di flessibilità, sia come struttura nel complesso
o a causa di alcune sue componenti. Perciò la dinamica elastica entra a far
parte delle equazioni di moto. Nonostante ciò, la sollecitazione provocata
dal gradiente di gravità è minima nelle regioni interplanetarie di interesse,
con la conseguenza che, per classiche architetture spaziali, le deformazioni
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sono piccole e incapaci di alterare la dinamica di corpo rigido. Tuttavia,
configurazioni elementari con un più elevato grado di deformabilità pos-
sono essere utilizzate per esplorare questo scenario. Tali modelli possono
rappresentare facilmente anche formazioni di volo o sistemi intreconnessi
da giunti elastici. I risultati mostrano interazioni inaspettate tra moto or-
bitale, di assetto ed elastico; suggeriscono inoltre nuove modalità di con-
trollo e manovra dell’assetto del velivolo che sfruttino il cambiamento di
geometria della struttura.

Dinamica Accoppiata di Corpo Rigido

Come anticipato, in questo lavoro è documentato un nuovo studio degli
effetti del gradiente di gravità sulla distribuzione di massa. Il contesto
è quello del problema ristretto dei tre corpi, con le ulteriori assunzioni di
moto planare e orbite circolari degli attrattori attorno al centro di massa del
sistema. La chiave di una dinamica più accurata è lo sviluppo del poten-
ziale gravitazionale in serie di Taylor almeno fino ai termini di secondo
ordine. Il gradiente di gravità non solo influisce sulla meccanica orbitale
e di assetto della struttura, ma anche ne accoppia le dinamiche, che gen-
eralmente sono affrontate indipendentemente. Per la prima volta, e non
senza una certa meraviglia, i suoi effetti sono osservati sulle orbite di Lya-
punov. A differenza di quanto osservato in un problema a soli due corpi,
questa perturbazione è in grado di distruggere la traiettoria nominale en-
tro un arco di tempo relativamente breve, comparabile a pochi periodi or-
bitali. Tutto questo è stato studiato nei sistemi Terra-Luna e Sole-Terra,
riportando conseguenze più critiche nel primo caso. Inoltre, lo scosta-
mento radiale finale risulta maggiore su orbite periodiche della famiglia
L2, rispetto a quello riportato sulla rispettiva controparte attorno ad L1.
Più complesso è l’andamento della deriva finale in funzione delle dimen-
sioni dell’orbita: la curva del legame non è monotona, così che il corrispet-
tivo minimo non corrisponde ne all’orbita più piccola della famiglia, ne
tanto meno a quella più grande. Infine, viene mostrato la sensitività del
fenomeno ad altri parametri quali l’orientamento, la velocità angolare e la
topologia del satellite. In particolare, strutture con distribuzione di massa
altamente anisotropa amplificano il disturbo; per converso strutture assial-
simmetriche lo minimizzano, ma non lo nullificano.

Da queste considerazioni è possibile estrarre un nuovo ritratto della
dinamica in un ambiente gravitazionale multi-corpo, il quale potrebbe riv-
elarsi sicuramente utile nella progettazione di missioni basate su grandi
strutture spaziali; ma ancor più sorprendente è la geometria frattale della
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risposta. Lo scostamento dell’orbita periodica di riferimento sembra possedere
due proprietà indicate come auto-similarità e cross-similarità. La prima in-
dica che la soluzione si ripete su scale di grandezza diverse con l’aumentare
del tempo; la seconda significa invece che lo stesso andamento è osser-
vato su scale diverse a seconda delle dimensioni della lunghezza caratter-
istica del velivolo. L’auto-similarità conferma che è sufficiente attendere
un adeguato intervallo temporale per vedere l’errore sul riferimento am-
plificato al punto tale che l’orbita di Lyapunov è abbandonata rapidamente
negli istanti successivi. In aggiunta, grazie alla cross-similarità, questo vale
a prescindere dalla dimensione della struttura spaziale, che funge solo da
fattore di amplificazione. Specificatamente, è dimostrato che lo scosta-
mento radiale finale è proporzionale, entro il limite di errori piccoli, al
quadrato della lunghezza caratteristica del satellite.

Recentemente, l’interesse sulla dinamica di assetto in un sistema grav-
itazionale a tre corpi ha suscitato un nuovo grande interesse nella co-
munità scientifica. Questo lavoro prosegue il percorso indicato dagli ul-
timi articoli pubblicati sull’argomento, che sottolineano l’importanza di
considerare un rappresentazione completamente non lineare delle orbite
di Lyapunov. Infatti, si dimostra che la non linearità del moto orbitale
può fare la differenza anche su quello di assetto. Se si considerassero or-
bite quasi lineari, la risposta naturale di beccheggio sarebbe oscillatoria,
e l’ampiezza delle oscillazioni limitata. La sola e unica circostanza che
porterebbe alla divergenza della soluzione è la condizione di risonanza
tra meccanica traslatoria e rotazionale. Al contrario, su un’orbita real-
mente non lineare, è molto facile che il velivolo inizi a ruotare indefini-
tamente. Questo comportamento è governato essenzialmente dalle dimen-
sioni dell’orbita e dal rapporto di inerzia del corpo. L’indagine dimostra
che, selezionata la grandezza dell’orbita, il rapporto di inerzia può es-
sere diminuito per ottenere librazioni limitate. Viceversa, dato il rapporto
di inerzia, la riduzione dell’ampiezza orbitale raggiunge lo stesso scopo.
Nello scenario di strutture spaziali destinate ad orbitare attorno ai punti
Lagrangiani, questo risultato è di notevole importanza per un miglior pro-
getto del velivolo, così come nella selezione della traiettoria nominale.

Dinamica Accoppiata di Corpo Rigido con Pressione di Ra-
diazione Solare

La pressione di radiazione solare è il disturbo ambientale dominante nelle
regioni prossime ai punti di equilibrio in un sistema multi-corpo. Unita
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alla intrinseca instabilità delle orbite di Lyapunov, è sufficiente a far di-
vergere il moto dalla traiettoria nominale in poche rivoluzioni e, in alcuni
casi, non se ne conta nemmeno una. Tuttavia, un progetto più ponderato
del moto di riferimento può risolvere completamente, o almeno in parte,
il problema. Includendo la radiazione solare nel modello dinamico, due
strategie sono proposte per affrontare due scenari completamente diversi:
si tratta di due casi di missione intorno al punto L1, rispettivamente del sis-
tema Sole-Terra e Terra-Luna. Nel primo sistema planetario, la costruzione
dell’orbita operativa si basa sulla teoria delle vele solari. Dalla precedente
letteratura, è noto infatti che una vela fotonica può muoversi lungo una or-
bita artificiale di Lyapunov, che risulta semplicemente traslata rispetto alla
soluzione naturale. Ovviamente, questo è possibile solo se si vede rispet-
tato un certo impianto di assunzioni preliminari. Ciò che non è banale,
è intuire che un velivolo spaziale standard, dotato di pannelli solari, è in
grado di emulare il volo di una vela solare piana e perfettamente riflettente.
A tal fine, tra i vari arrangiamenti necessari, è importante sottolineare che
è indispensabile garantire un puntamento verso la nostra stella. Ancora
una volta riprendendo una vecchia idea per la propulsione solare e trasfer-
endola ad architetture classiche, si dimostra che l’assetto del velivolo può
essere stabilizzato passivamente, attorno alla direzione della radiazione in-
cidente, tramite una lieve inclinazione dei pannelli solari (che potrebbero
essere schematizzati con una forma a V). La robustezza della soluzione
presentata è infine verificata per ampie variazioni dei parametri critici del
sistema. In particolare, la sua validità è confermata per strutture forte-
mente anisotrope (soggette ad un maggiore momento gravitazionale) ed
inclinazioni ragionevoli dei pannelli solari, che evitino riduzioni insosteni-
bili della potenza elettrica erogata. Durante la sopraddetta indagine, si è
anche identificata un brusca variazione della coppia di gradiente di gravità
lungo grandi orbite periodiche, che introduce un disturbo improvviso ed
intenso dell’assetto del sistema. A causa della sua correlazione con la vici-
nanza di P2, questo fenomeno verrà detto anomalia del secondario.

Una strategia volta a mantenere una struttura spaziale in orbita attorno
ad L1, non ricavata da alcuna teoria precedente, viene proposta anche nel
sistema Terra-Luna. Questo approccio inizia con l’estrazione di un’orbita
con periodo pari al mese sinodico lunare della famiglia delle Lyapunov. Per
motivi evidenti, viene battezzata orbita periodica di Lyapunov quasi elio-
sincrona. La seconda fase prevede invece che un particolare asse solidale
al corpo sia costantemente puntato al Sole. Sotto queste condizioni, si è
scoperto una fase solare iniziale che garantisce errori estremamente limi-
tati della condizione di attraversamento dell’orbita periodica, nonostante
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la presenza di radiazione solare. Purtroppo, questa tecnica da sola non
è sufficiente a mantenere sul lungo periodo la traiettoria originale, ma lo
sforzo del cosiddetto station-keeping è sicuramente ridotto. A seguire, la
robustezza della soluzione sviluppata è, con soddisfazione, verificata per
un’ampio spettro di variazione dei parametri di sistema. In altri termini,
viene offerta una flessibilità adeguata all’analista. Per concludere, come
nella precedente strategia, la dinamica accoppiata offre soluzioni naturali
anche sotto gli effetti della pressione di radiazione solare; soluzioni che si
rivelano nuovi ed efficaci strumenti di progetto per future missioni verso i
punti di librazione.

Dinamica Accoppiata di Corpo Flessibile

La parte finale del presente lavoro tratta la dinamica di corpo elastico.
La flessibilità della struttura è incorporata nella formulazione dinamica
tramite la rappresentazione modale della variazione di forma. Considerando
le caratteristiche di sonde spaziali classiche, nessuna alterazione apprezz-
abile della meccanica, predetta dal modello di corpo rigido, è osservata
a seguito dell’introduzione delle componenti elastiche del moto. Si è in
seguito realizzato che le regioni di equilibrio corrispondono a un minimo
generale del carico ambientale sulla struttura, e quindi le deformazioni non
sono tali da interagire di fatto con i moti di traslazione e rotazione del sis-
tema. Invertendo la prospettiva, si può però giungere alla conclusione che,
architetture altamente deformabili possono sopportare le sollecitazioni di
quelle regioni interplanetarie, al contrario di quanto avverrebbe in prossim-
ità della Terra. Per gettare le basi dello studio della dinamica di corpi super-
elastici nel problema multi-corpo, è opportuno iniziare considerando con-
figurazioni elementari. Ancora una volta, l’analisi conferma che bassi valori
di rigidezza, ben al di sotto del livello delle strutture standard, garantiscono
un comportamento rigido in termini di moto orbitale e di assetto. Al con-
trario, se la configurazione è sufficientemente deformabile, l’interazione
tra le dinamiche emerge. In realtà, è più corretto esplicitare che solo le
componenti rotazionali ed elastiche del moto interagiscono mutualmente,
mentre il cammino orbitale influenza si la soluzione elastica, ma non vicev-
ersa. La prima configurazione studiata è un satellite a manubrio. Diversi
risultati sono presentati e discussi. Nello specifico, è interessante notare
che le vibrazioni elastiche lungo l’asse del manubrio sembrano in grado di
stabilizzare l’orientamento del sistema. Su piccole orbite periodiche, più la
rigidezza diminuisce, più le oscillazioni di beccheggio vengono smorzate.
Analogamente, su grandi orbite, il rateo di divergenza della equivalente
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configurazione rigida può essere significativamente ridotto introducendo
un certo grado di deformabilità. Tuttavia, bisogna anche prendere in con-
siderazione che, un collegamento troppo debole tra le masse di estremità
provoca la rottura del manubrio (la distanza tra le suddette masse diverge
rapidamente verso infinito). In secondo luogo, si è studiata una configu-
razione a croce. In questo caso, il sistema è sensibile a parametri critici,
quali la rigidezza interna o il rapporto di inerzia del corpo, al punto tale
che la natura stessa della soluzione può essere modificata. Il comporta-
mento è evidente negli effetti provocati dalla anomalia del secondario: il
velivolo può infatti aumentare la sua velocità di rotazione, invertirne il
verso o addirittura arrestare il moto angolare. In quest’ultima circostanza,
l’anomalia del secondario innesca un trasferimento critico di energia dalla
dinamica di assetto a quella elastica. Ognuna delle precedenti risposte di
beccheggio è anche caratterizzata da una diversa storia della deformazione
della configurazione. Inoltre, si è scoperto che, su orbite periodiche di
grandi dimensioni appartenenti alla famiglia L2, le oscillazioni dei bracci
della croce sono in grado di stabilizzare l’orientamento iniziale del veliv-
olo; senza di esse, l’angolo di beccheggio divergerebbe rapidamente dalla
condizione iniziale lungo la traiettoria. In conclusione, diversi meccanismi
alla base della dinamica di corpi super-elastici sono portati alla luce. Oltre
a fornire un conoscenza più profonda del fenomeno, possono servire, a
fronte di ulteriori sviluppi, come nuove tecniche di manovra e controllo di
architetture distribuite, tra cui voli in formazione o sistemi multi-elemento
con giunti elastici.
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1
Introduction

Io stimo più il trovar un vero, benchè di cosa leggiera, ché l’ disputar
lungamente delle massime questioni, senza conseguir verità nissuna.

(G. Galilei, Opere, IV p.738)

Contents
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . 4
1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Scope of the Present Work . . . . . . . . . . . . . . . . 11

In this work the dynamics of large space structures are investigated in
a multi-body gravitational environment. Given the ever increasing interest
in the multi-body problem, with special focus on the three-body case, this
work tries to envision the next generation of large space structures, which
could take great advantage of the presence of a complex gravitational field.
We can imagine for instance, large telescopes placed in strategic points of
the gravitational configuration (i.e. periodic orbits around the Lagrangian
points), as this already occurs for smaller vehicles; likewise those points
appear suitable for new space stations that would be the most remote out-
post of human colonization and serve as a base for further explorations.
Moreover, in the future we could exploit large solar sails to ply particu-
lar channels of motion (i.e. manifolds) related to the three-body dynamics.
Telescopes, space stations, solar sails, antennas and deployable appendages
(e.g. solar panels) are only a sample of large space structures, some of
which are already flying. Rather than reducing the dynamics of these ar-
chitectures to a rough model, it would be better to consider an advanced
formulation of their motion in order to facilitate the design of missions that

3
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may otherwise be infeasible.

1.1 Problem Definition

The goal of this research is to examine the dynamics of Large Space Struc-
tures (LSS) under a multi-body gravitational environment. The subjects
of this investigation (i.e. the Large Space Structures) as well as the back-
ground scenario (i.e. the multi-body gravitational field) possess unique
characteristics and are promising directions for the next developments in
space exploration and astronautics. Therefore, overlapping the two is sup-
posed to offer interesting and novel results that will improve the basis for
the LSS mission design. They will also add a deeper insight into the space-
craft dynamics.

Firstly, corresponding to Balas [1], the Large Space Structures retain the
following distinctive characteristics:

1. they are distributed parameters systems;

2. they have an higher degree of flexibility;

3. their natural damping is significantly low, even if poorly estimated;

4. the possibility to test their dynamical behavior on-Earth is quite lim-
ited;

5. they usually undergo stringent requirements on shape, orientation,
alignment, vibrations suppression and pointing accuracy.

Secondly, when more than two bodies interact gravitationally the result-
ing motion can present a "chaotic" behavior. This possibility was already in-
ferred by Poincaré when discussing the dynamics nearby the "now-called"
transverse homoclinic points in his essay about the three bodies [2]. One
century later, the "theory of chaos" was broadly spread among the scientific
community and widely applied (sometimes unnecessarily) to different dis-
ciplines. Plenty of papers exist in this field, and it is beyond the scope of
this work to review them. It will be enough to recall Holmes [3], who sum-
marizes the arguments presented in the 270 pages of the Poincaré’s essay
from a more modern point of view and offers an introduction to "chaos"
with examples from the celestial mechanics. For a dynamical system to be
classified as chaotic, it must be high sensitive to the initial conditions (a
necessary but not sufficient condition) [4]. This means that, two trajecto-
ries departing from very similar initial conditions will separate rapidly and
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will result in totally different paths despite the initial vicinity. From another
perspective, such behavior implies that extremely small perturbations can
dramatically alter the system response.

Hence, the basic idea underlying this project is to couple the peculiari-
ties of the Large Space Structures with the particular dynamics in a multi-
body problem, so the once neglected secondary phenomena can rise to the
level of primary relevance. In more details, the research objectives are as
follows:

i) Investigate the coupled orbital and attitude dynamics for extended bodies.
The current knowledge of the orbital dynamics in a multi-body system
has been mainly built focusing on a point mass model to represent the
actually extended space vehicle. The presented study waives the as-
sumption of a zero-dimensional space vehicle and looks at the effects
of the mass distribution of extended flying vehicles on both orbital
and attitude motions in the framework of the multi-body problem.
To this end, the gravitational force is computed including the effect
of a distributed mass. This naturally leads the orbital motion to be
coupled with the attitude dynamics.

ii) Compare the effects with other perturbations. The insight gained through
the previous point is applied to a scenario approaching real design
studies. Thus, other perturbations than the gravity gradient are ac-
counted and discussed. The primary purpose is answering the ques-
tion if the identified gravity disturbance can be exploited as effective
tool to maneuver and control both the orbital and attitude time his-
tory. In the negative event, other strategies will be proposed to design
missions under the fully-coupled dynamics imposed by the dominant
perturbation.

iii) Introduce and examine the effect of structure flexibility. As long as LSS
are accounted for, it is known that the spacecraft possesses a higher
degree of flexibility due to both the structure size and the materials
used. Thereafter, a formulation to introduce elastic bodies is pro-
posed. Then, effects of flexibility are presented and discussed.

1.2 Previous Work

The problem of coupling between the attitude libration and the orbital mo-
tion was known from the dawning of analytical mechanics as Lagrange was
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concerned about the libration of the Moon. In fact, in his work "Théorie de
la Libration de la Lune" [5] a first discussion about the effects of the body
libration (i.e. the Moon) on its orbit is reported. After that, one of the
first recent contributions came from Duboshin [6], who delivered a gen-
eral form for the equations describing the coupled attitude and orbital mo-
tions of gravitationally attracting bodies. Those equations are subsequently
specialized employing spherical and axisymmetric body mass distributions,
while the assumptions to separate the translational and rotational dynam-
ics are investigated for such cases. An actual implementation of the cou-
pled dynamics for a dumbbell satellite in circular orbit was accomplished by
Moran [7]. He studied the effects of plane librations on the orbital motion,
showing that they produce a sinusoidal perturbation on the original orbit.
Debra [8] extended the analysis to a body with an arbitrary mass distribu-
tion, focusing on the conditions to obtain bounded free librations. Along
with different body shape, elliptical orbits can be selected as basic trajecto-
ries [9, 10, 11]. In particular, Yu [9] provided the spacecraft with damping
on the attitude motion and studied its effect on the long-term. Mohan [11]
instead addressed the interchange of energy between the translation of the
center of mass and the body rotations in the near-resonant condition for
the pitch oscillations.

So far, the interest arisen for the fully coupled models have been marginal
from an engineering perspective. The main reason beyond this scant inter-
est is the nature itself of the interaction. As a matter of fact, both the orbit
and attitude motions depend on the mass distribution and orientation, but
the order of perturbations incorporated in a purely gravitational coupled
model are extremely small, especially for the center of mass motion. Their
magnitude is function of the spacecraft size relative to the orbital radius
in a quadratic or higher order fashion. The mutual influence of orbit and
attitude dynamics under a Newtonian central gravitational field is shown
explicitly by expanding the gravitational force and torque in a Taylor series
in the small parameter ε = L/r0, where L is characteristics of the spacecraft
size and r0 is the orbital radius. The gravitational coupling appears when
terms at least of the second order (ε2) are retained. The usual practice for
common spacecraft is to neglect terms of order higher than ε2 [12, 13, 11].
But, for very large spacecraft (as for example solar power stations or solar
sails) also terms up to the four order (ε4) could be considered for studying
the coupled problem. In this event, higher-order moments of inertia would
show up in the expression of the gravity force and torque. These higher-
order moments of inertia as well as the gravitational forces and torque in
ε4 can be derived following various papers [14, 12, 15, 10]. Thus, as it has
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been observed the gravitational interdependence of rotational and trans-
lation motions in the classical Keplerian dynamics affect clearly only the
attitude dynamics (in the form of the well-known gravity torque), while it
appears negligible in the orbital motion for any practical purpose [16]. To
provide the reader with a concrete feeling of that, it can be recalled the
study of Misra and Modi [17]. They computed the orbital perturbation for
the Radio Astronomy Explorer (RAE) satellite (launched by NASA in July
1968). RAE had to measure longwave radio signals from the outer space,
so it was composed by four long stem-type antennas, as depicted in Figure
1.1. Other important proprieties are listed in Table 1.1. With a character-
istic length l = 460m (1500ft) and a semi-major axis a0 = 12200km (7600
miles) the radial oscillatory perturbation of RAE after a year has an ampli-
tude of 4.87m (16ft).

Figure 1.1: RAE sketch from
[17].

Mass = 147 kg (326 lb)
Inertia = 367.4 ×103 kg m2

(271 ×103 slug ft2)
Length = 460 m (1500 ft)
Semi-axis = 12 200 km
(7600 miles)
Eccentricity = 0.001
Period = 224.4 min

Table 1.1: RAE data.

Large Space Structures are usually designed as the aggregation of more
components, some of them of considerable extension or even thought as
inflatable or deployable appendages. So, considered the size of the over-
all structure as well as that of the single components and the materials
adopted, it seems necessary to account the effect of flexibility in the dy-
namics of such architectures. For this reason, many approaches has been
developed since the 60s to incorporate the elastic deformation in the dy-
namic analysis of complex structures. This problem (known as Flexible
Multi-Body1 Dynamics) does not concern only the design of spacecrafts, but

1Throughout the work, Multi-Body refers to the dynamical problem due to the gravi-
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is an extremely general issue in the engineering science: it easily includes
the study of ground, air transportation vehicles, manufacturing machines,
manipulators, robots and even bio-dynamical systems. As consequence, a
huge amount of publications infests the literature to the extension that the
difficulty is shifted from findings previous materials on the topic to select-
ing the most significant contributions. The status up to 2003 and some
recent developments in computational modeling of flexible multi-body sys-
tems are summarized in the review Wasfy and Noor [18]. In the author’s
opinion, this review is well organized presenting many tables to compare
several methods and can be an optimal starting point for any general pur-
pose research dealing with the multi-body dynamics. In addition, the num-
ber of references accounted in this article (i.e. 877) gives a clue of the size
of the literature written on the Flexible Multi-Body Dynamics. A more con-
cise, but not less effective review effort is offered by Shabana in [19]. In
particular, the main strategies available for the formulation of the problem
are here discussed more extensively. This work is also useful to understand
the basis of the algorithms developed in this thesis.

Narrowing the horizon to space systems, the first application of multi-
body dynamics to a spacecraft was published in 1965 by Hooker and Mar-
gulies [20]. The first spacecraft considered was a set of rigid bodies inter-
connected in the so-called tree topology, where no closed chains of bodies
exist. Their dynamics equations were delivered firstly using the Newton-
Euler method. Later, Ho introduced the capability of modeling the terminal
bodies of the tree configuration as flexible structure and wrote the equa-
tions of motion by the procedure he developed and named Direct Path
Method [21, 22, 23]. This method was used to simulate a spinning Skylab
(with flexible booms) and the interplanetary probe Viking (with flexible
solar panels and thrust vector control) [24]. In doing so, Hooker assumed
elastic modes to represent appendages elastic deformation and included
the expression for the kinetic energy and the angular momentum as a tool
to monitor the accuracy of the simulations. The tree topology with flex-
ible appendages was also addressed by Linkins [25], where the flexible
bodies were not restricted to small deformations. A complementary class
of problems was investigated by Hughes [26], who considered a chain of
structurally elastic bodies with two rigid bodies at the extremities. The au-
thor applied his equations to simulate the dynamics of the Shuttle remote

tational field exerted by multiple attractors. However, in this Chapter only, the expression
will address also the dynamics of architectures consisting of several components, which
are connected by any kind of mechanical joints. The meaning of Multi-Body should be
clear from the context.
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manipulator arm. A review of the early flexible multi-body formulations
in the spacecraft dynamics literature was accomplished by Jerkovsky in
[27], where the tree topology is widely adopted among several methods.
The beam theory was also largely employed to incorporate flexibility in the
space structures dynamics. Both the whole spacecraft [28, 29, 30] or only
its attachments can be modeled as beam-like structures [31, 32]. In par-
ticular, the formulation used by Simo and Vu-Quoc in [30] was extended
to open-chain as well as closed-loop configurations [33]. But, the possi-
bility to reproduce non-linear deformations of the spacecraft (also referred
as geometrical exact structure) with their algorithm [34, 35, 33] is even
more interesting. Another important category of possible spacecraft con-
figuration was deeply explored by Meirovitch, who focused on gyroscopic
systems and spinning bodies containing elastic parts [36, 37, 38]. He finally
delivered with Quinn in [39] the equations of motion for studying the slew-
ing and the vibrations suppression of a flexible spacecraft, both in orbit and
in an Earth-based laboratory. They proposed an approach known as pertur-
bation method; in fact the large rigid-body maneuvers are assumed to be
the unperturbed motion and the effects of flexibility are computed as per-
turbations of that motion. The librations dynamics of spacecrafts account-
ing a certain degree of flexibility has been considered of primary impor-
tance since the early stage of astronautics, as demonstrated by the works
reviewed by Modi in [40]. Modi himself with other authors presented a
Lagrangian formulation for both the orbital [17] and the libration [32]
dynamics of cluster type spacecraft with an arbitrary number of flexible
appendages. The direct Lagrangian approach may seem inappropriate to
the multi-body dynamics, as it involves extremely lengthy expressions, such
as the kinetic energy, and many intermediary equations that are discarded
when the final dynamic system is written. Nonetheless, this approach ex-
perienced a significant success thanks to the symbolic manipulation avail-
able with the advent of high speed computers. Thus, the above model
was developed by including shift in the center of mass, changing of the
central body inertia during deployment operations and the offset of the ap-
pendages attachment point [41]. Further contributions [42] extended the
formulation to deal with more complex configurations, incorporate ther-
mal deformations and allow appendages deployment maneuvers. Hence,
the method was applied to study the dynamics of different proposed space
structures [16, 43]. It is worth to recall that all the aforementioned works
are based on well-known - even historical - formulations of the dynamics:
from the Newton/Euler equations through the D’Alembert principle to the
Lagrangian formalism. But a new method was introduced in the last cen-
tury due to Kane in a first series of three papers [44, 45, 46]. The method
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derives from new kinematic quantities discovered by Kane and nowadays
called partial angular velocities and partial velocities. This method and its
advantage are compared with all the other existing formulations by Kane
itself [47] or by other authors like Banerjee in a recent review [48]. In par-
ticular, it is claimed that the method leads directly to the simplest form of
the dynamic equations. Besides that, it is really inspiring noticed that the
novel Kane’s method was originally thought to overcome the challanges im-
posed by the design of complex spacecraft configurations, along with beign
naturally suitable for symbolic manipulation and numerical implementa-
tion. An example of its employment for a generic large mechanical system
is presented by Singh et al. in [49].

The dynamics explored by the authors earlier mentioned is limited to
the presence of a single attractor (in the most of cases the Earth). But the
next generation of Large Space Structures will be likely placed in area of
the cosmic space where more gravitational fields act on the orbiting vehi-
cle. So far, only few works addressed the motion of extended spacecrafts
in a multi-body gravitational problem. The model adopted in the follow-
ing studies is the Restricted Three Body Problem (CRTBP). Thus, Kane and
Marsh first published a research on the attitude stability of a symmetric
satellite [50]. The spin axis of the satellite corresponds to its symmetry
axis and is normal to the orbital plane of the two attractors. Furthermore
the satellite is assumed to rest artificially at the equilibrium points, so only
the attitude dynamics is considered. The same framework was adopted by
Robinson except for the shape of the spacecraft. In fact he started with
the examination of a dumbbell satellite [51] and then proposed the linear
stability diagram for an asymmetric body at the equilibrium points [52].
A similar analysis was also conducted by Barkin in [53]. Abad et al. [54]
introduced quaternions to study the rotations of a spacecraft in the equi-
lateral equilibria. Recent papers came from Bucker et al. [55], Wong et
al. [56] and Knutson et al. [57]; Bucker employed the Poincarè maps to
trace the libration motion of a satellite artificially fixed at the equilibrium
points; Wong dismissed the assumption of spacecraft held in the equilibria
and investigated the attitude dynamics of a rigid body on the periodic orbits
of the Sun-Earth system, using a linear approximation for both Lyaponouv
and halo orbits; Knutson instead explored the attitude motion in a non-
linear regime, using numerically computed Lyapunov orbits. In particular,
the scope of the latter work is to develop a general framework for the fully
coupled dynamics in the restricted three body problem by the application
of the Kane method, but as the previous studies it remains mainly focused
on the rotational motion, while the implications on the orbital dynamics
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are only preliminarily delineated.

1.3 Scope of the Present Work

The scope of the present work is the fully-coupled dynamics of Large Space
Structures (LSS) in the framework of the Planar Circular Restricted Three-
Body Problem (PCR3BP). To begin with, a formulation is developed to pre-
dict the dynamics of rigid structures including the gravity gradient effects
on both the orbital and attitude motion. Hereafter, the analysis is focused
on the Lyapunov periodic orbits belonging to the L1 and L2 family in the
Sun-Earth as well as Earth-Moon system. Then, the gravity gradient pertur-
bation is compared to the solar radiation pressure, which reveals to be the
dominant disturbance, especially when addressing the orbital dynamics.
Hence, a mission design strategy based on the solar sails theory is proposed
to place standard spacecrafts around the Sun-Earth L1 point, despite the
aforementioned perturbation. Similarly, a solution is advanced also for the
L1 point in the Earth-Moon system, but it employs a totally novel approach.
Eventually, flexibility is incorporated into the dynamics formulation and,
after a preliminary discussion of its effects, two deformable architectures
are chosen to dive into this new scenario. The study is organized as follows:

Chapter 2: The dynamical models used in the investigation are intro-
duced. In the first section the PCR3BP is presented, and the characteris-
tics of the differential equations of motion are examined. In particular, the
identification and the construction of Lyapunov periodic orbits is explained.
In the second Section, the general framework of methodologies to describe
the dynamics of LSS is discussed. Every model is basically consisting of
three parts (elastic discretization, kinematics and dynamics) and each of
those elements is separately detailed.

Chapter 3: the rigid body formulation of the fully-coupled motion in the
the PCR3BP is delivered. Firstly, the kinematics representation, the coordi-
nate systems and the variables adopted are clearly displayed; then, the La-
grangian function of the system is computed. Specifically, the gravitational
potential is expanded in Taylor series up to the second order terms to ac-
count the effects of the gravity gradient over the mass distribution. Finally,
the equations of motion are derived via the Lagrangian procedure. The
part of the differential system describing the orbital motion is rearranged
accordingly to the Encke’s method in order to predict more accurately the
perturbation introduced with the gravity gradient.
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Chapter 4: the analysis of the fully-coupled rigid motion is presented.
Briefly, evidence to assess the reliability and the accuracy of the algorithm
implemented are furnished. Then, the dynamical behavior is deeply in-
vestigated. In the second Section, the drift from the reference trajectory
provoked by the gravity gradient disturbance is characterized as function
of the different variables of the overall system (e.g. environment, initial
conditions, spacecraft size and topology). In the third Section, the bound-
edness of the attitude solution is studied. The parameters that mostly gov-
ern this phenomenon are identified and explored to draw an useful insight
into the design of LSS on Lyapunov orbits. In the last Section, the novel
perturbation is compared to the solar radiation pressure to understand if
there is the chance to employ the former to maneuver the vehicle.

Chapter 5: the analysis of the fully coupled motion under the solar radi-
ation pressure is presented. To begin with, an accurate model of the radia-
tion interaction with the spacecraft surfaces is presented. On that basis, the
dynamics around the L1 Sun-Earth point is studied and a strategy derived
from the solar sails theory is proposed for the passive station keeping of so-
lar arrays powered vehicles. Outcomes related to the attitude motion reveal
an interesting phenomenon appearing on large Lyapunov orbits, that will
be named secondary anomaly. After this short digression, the Earth-Moon
system will be considered too. Here, the dynamics is significantly different
from the Sun-Earth environment. In this scenario, a entirely novel strategy
is advanced to mitigate the effects due to the solar radiation pressure. This
solution is based on the intuition to couple a particular trajectory (quasi
sun-synchronous) with a specific spacecraft pointing. A sensitivity cam-
paign over the design parameters is performed to prove the flexibility and
the robustness of the approach devised.

Chapter 6: the flexible body formulation of the fully-coupled dynamics
in the PCR3BP is delivered. The method presented in Chapter 3 is rear-
ranged to incorporate the structure deformability. Above all, the discretiza-
tion of the elastic problem is discussed and the method adopted is stated.
The outline of the remaining part is basically the same as Chapter 3: analo-
gous steps are perfomed and eventually the equations of motion including
the elastic dynamics are written and detailed.

Chapter 7: the analysis of the flexible spacecrafts dynamics in vicinity of
the librations points is reported. In the first Section, the major concerns for
reproducing a rigid motion mutually coupled to its elastic counterpart are
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expressed. In the latter Sections, the investigation is specialized to two very
simple and very flexible configurations: a dumbell and a cross. A huge set
of simulations is run to survay the possible responses and the most mean-
ingful results are exposed for both the architectures. It is studied how the
reference orbit, the internal stiffness and the spacecraft topology affect the
attitude as well as the elastic motion. Specifically, the analysis of dumb-
ell satellite is focused on orbits around the L2 Sun-Earth point, while the
cross-satellite is mostly assumed about both the L1 and L2 points of the
Earth-Moon system.

Chapter 8: Concluding remarks are offered along with recommenda-
tions for future research.
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In this Chapter the background knowledge of the present research is
recalled. In the first part of the Chapter the multi-body gravitational sce-
nario adopted is defined. Hereafter, the dynamics connected to the se-
lected model is discussed. In the second part of the Chapter the general
methodologies to describe the motion of flexible interconnected bodies are
reviewed.

2.1 The Circular Restricted Three-Body Problem

Consider three masses that interact gravitationally. The first and more mas-
sive body P1 defines the primary attractor, so it can also be referred as pri-
mary; in the same way, the second attractor in order of mass P2 is called

15
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secondary. Finally, the third body P3 is supposed to represent the space-
craft. The motion of P3 is addressed under the following assumptions:

• The mass distribution of each body is considered perfectly spheric.

• P1 and P2 are on circular orbit around their common center of mass.

• P1 is more massive than P2.

• The mass of P3 is negligible compared to P1 and P2 and does not
affect their motion.

• The motion of P3 is limited to the plane identified by the circular
orbits of P1 and P2.

The resulting problem is universally known as the Planar Circular Restricted
Three-Body Problem (PCR3BP). Most of the books on orbital mechanics
widely present this problem, such as [58, 59]. So far, the PCR3BP may
seem inappropriate to describe the dynamics of particles in the solar sys-
tem. Above all, the solar system objects rarely retain exact circular orbits or
spherical distribution of mass. Nonetheless, this model is largely adopted
even for real mission analyses as it still provides a valuable approximation
of the qualitative behavior of certain systems, that surely represent possi-
ble scenarios for different space missions (e.i.the Earth-Moon or Sun-Earth
systems) [60]. Further details of the PCR3BP are summarized in the next
sections.

2.1.1 Equations of Motion

To begin with, the problem geometry is set out. Since the two attractors
rotate with a constant angular velocity on circular orbits, it is commonly
adopted a rotating coordinate system to write the equations of motion for
the remaining particle P3. This frame is placed in the common center of
mass of P1 and P2 and rotates with a constant angular velocity Ω with re-
spect to an inertial reference system, so that the two primary bodies always
lie on the rotating x-axis. As Ω is the orbital angular velocity of P1 and P2

about their center of mass, the rotating frame is called synodic frame. In
this Chapter the synodic frame is also denoted as the xy-frame, while the
inertial reference is the XY -frame. Hence, the position of P3 relative to the
system center of mass is indentified in the synodic frame using the coordi-
nates (x, y) or otherwise the position vector r. It is also useful to define the
position vectors r1 and r2, which represent the location of P3 relative to P1

and P2 respectively. The system is normalized with the following quantities
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Figure 2.1: Geometry of the R3BP.

appearing as unit: the total mass system m, the distance between the two
attractor centers d, the angular frequency Ω of the circular motion of P1,
P2 and the universal constant of gravity G. When appropriate, the quan-
tities can be converted in dimensional units of the problem scale. Length,
velocity and time are converted as follows

[Length] `′ = L`

[Velocity] v′ = V v

[Time] t′ =
T

2π
t ,

where the primed quantities are dimensional, while the unprimed are nor-
malized; L is the distance between P1 and P2, V is the orbital velocity of
P1 and T is the orbital period of P1 and P2. Such quantities are tabled for
different systems in [60]. Otherwise, the only parameter of the system left
after the normalization is the mass parameter

µ =
m2

m1 +m2

, (2.1)

where m1, m2 are the masses of P1 and P2. The mass parameter defines
the positions in non-dimensional units of the primary as well as of the sec-
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ondary in the synodic frame; thus, recalling the assumption m1 > m2, P1 is
located in (−µ, 0) while P2 is in (1− µ, 0). The geometry described so far is
depicted in Figure 2.1.

There are several ways to derive the equations of motion of a spacecraft
within the PC3BP. Here, the Lagrangian approach is employed. According
to this method the equations of motion for a general holonomic mechanical
system are

d

dt

(∂L
∂q̇i

)
− ∂L
∂qi

= Qi , (2.2)

where L is the Lagrangian function, qi denote the generalized coordinates
and Qi the generalized non-conservative forces. In the rotating frame,
(x, y) are adopted as generalized coordinates and the Lagrangian function
results as

L(x, y, ẋ, ẏ) =
1

2
((ẋ− y)2 + (ẏ + x)2)− U(x, y) , (2.3)

with the gravitational potential represented by

U(x, y) = −µ1

r1

− µ2

r2

− 1

2
µ1µ2 . (2.4)

The terms appearing in eq. (2.4) are defined as

µ1 = 1− µ (2.5)
µ2 = µ (2.6)

r1 =
√

(x+ µ)2 + y2 (2.7)

r2 =
√

(x+ µ− 1)2 + y2 . (2.8)

Assuming no other actions than gravity and substituting eq. (2.3), (2.4) in
(2.2), it yields to the system of equations describing the spacecraft motion{

ẍ− 2ẏ = −Ū/x
ÿ + 2ẋ = −Ū/y

, (2.9)

where the subscript /(·) denotes the partial derivative respect to the vari-
able (·) and the augmented or effective potential Ū has been introduced to
incorporate the effects due to a non-inertial frame

Ū = −1

2
(x2 + y2) + U(x, y)

= −1

2
(µ1r

2
1 + µ2r

2)− µ1

r1

− µ2

r2

. (2.10)
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2.1.2 Jacobi Constant

The expression of the Lagrangian function (2.3) does not depend explicitly
on time (i.e ∂L/∂t = 0) and the equations (2.9) are an Hamiltonian system.
Therefore, an energy integral of motion exists. Straightforwardly, that is
the mechanical energy E of the particle P3

E(x, y, ẋ, ẏ) = Ū(x, y) +
1

2
v2 , (2.11)

where v2 = ẋ2 + ẏ2. But for historical reasons, the energy integral is formu-
lated in a slight different way for the CR3BP; in astronautics is commonly
used the Jacobi constant

JC(x, y, ẋ, ẏ) = −2E . (2.12)

Due to the different sign of JC and E, it is worth to notice that when the
Jacobi constant decreases the mechanical energy increase, and vice versa.
The existence of an integral of motion it is an extremely valuable tool to
test the correctness of any numerical algorithm and even to estimate its
accuracy.

2.1.3 Equilibrium Points

Figure 2.2: Geometry of the equilibrium points.

In particular positions of the configuration space the centrifugal force
associated with the rotation of the synodic frame and the gravitational at-
traction balance each other, so that a spacecraft located in those coordi-
nates will rest fixed relative to the synodic frame. To seek for the location
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of the equilibria points ones have to compute the gradient of the effective
potential. The coordinates where the gradient ∇Ū = 0 correspond to the
equilibrium points. Those equilibria are divided in two classes (see Figure
2.2):

• three equilibrium solutions lie on the x-axis and are referred as collinear
points. Specifically, the point between the two attractor is labeled L1;
the point behind the secondary is L2; the point located before the
primary is called L3.

• two equilibrium solutions retain an unit distance (in non-dimensional
units) from both the primary and the secondary. As each of these
points forms a equilateral triangle with the attracting bodies, they
are known as the equilateral points L4 and L5.

It is straightforward to demonstrate that Ū(r1, r2) has the same critical
points of Ū(x, y) [60] when y 6= 0. It yields

Ū/r1 = −(1− µ)r1 +
(1− µ)

r2
1

= 0

Ū/r2 = −µr2 +
µ

r2
2

= 0
. (2.13)

The unique solution of eq. (2.13) is r1 = r2 = 1, which necessarily
leads to the equilateral configuration for P1, P2, P3. For the present work,
the collinear points are more interesting, because currently considered for
many space missions. These equilibria correspond to the critical points of

Ū(x, 0) = −1

2
x2 − 1− µ

|x+ µ|
− µ

|x+ µ− 1|
. (2.14)

The computation of dŪ(x, 0)/dx = 0 leads to a quintic equation after sim-
plification. Thus, the distance of Li , i = 1, 2 from the secondary results
from the unique positive zero γi of the polynomial

γ5 ∓ (3− µ)γ4 + (3− 2µ)γ3 − µγ2 ± 2µγ − µ , (2.15)

where the upper sign is for γ1, the lower for γ2. The zeros of (2.15) shall be
solved numerically (e.g. by the Newton method), but a good first guess can
be obtained with a series expansion of the solution. One largely adopted is
from Szebehely [61]

γ1 = rh(1−
1

3
rh −

1

9
r2
h + . . .) , (2.16)
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γ2 = rh(1 +
1

3
rh −

1

9
r2
h + . . .) , (2.17)

with rh = (µ/3)1/3. Finally, it is worth to point out that the equilibrium
points are also called Lagrangian points (in memory to their discoverer) or
libration points (in correlation to the periodic motion around them - see
next section).

2.1.4 Lyapunov Periodic Orbits

Writing eq. (2.9) into the first order form and linearizing them it is possi-
ble to study the stability of the libration points. The reduction to a linear
system means that results are accurate when the motion is limited to the
vicinity of the equilibrium point, but some considerations about the stabil-
ity of the non-linear system can be drawn too. The linear version of eq.
(2.9), written as first order differential equations, is

ẋ = vx

ẏ = vy

v̇x = 2vy + ax

v̇y = −2vx − by

, (2.18)

where

a = 2µ̄+ 1 (2.19)
b = µ̄− 1 (2.20)
µ̄ =µ|xe − 1 + µ|−3 + (1− µ)|xe + µ|−3 (2.21)

and xe is the position of the equilibrium point. For the collinear libra-
tion points, the eigenvalues analyses of the system (2.18) reveals two real
eigenvalues and other couple purely imaginary [60]. Among the real eigen-
values, one is positive, which means that the motion near the equilibrium is
diverging. By the way, the presence of two purely imaginary values indicate
the possibility of strictly oscillatory motion. In the spatial case, complete
families of three dimensional periodic orbits - and even quasi-periodic - ap-
pear around the libration points [62]. The geometry of these families is
quite complex or at least varied, but for the purpose of this work it is suf-
ficient to restrict our-selves to the orbits in the plane of the system, known
as Lyapunov orbits.
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2.1.5 Computation of Lyapunov Periodic Orbits

Once assessed the presence of planar periodic orbits, it is practical interest
to compute such trajectories. For the linear system a close solution exists
as direct consequence of the eigenvalue analysis in the form [60]ξ = −Ax cos(λt+ φ)

η = +κAx sin(λt+ φ)
, (2.22)

where ξ = x− xe, η = y − ye and λ, φ are the planar frequency and phase,
respectively. Ax, κ are two constants denoting the planar amplitude of the
orbit in the x direction, and its ratio with the amplitude in the orthogonal
direction. An improved model was developed by Richardson [63], who
proposed a third order solution for periodic orbits. Despite a considerable
progress in the analytical computation of periodic orbits, no solutions seem
enough accurate when tested in the fully non linear system. As soon as the
trajectory is numerically integrated, it quickly diverges from the linearly-
predicted path. So special techniques are required to assure the precise
identification of the Lyapunov orbits. To this end, a differential correction
method is usually employed [64]. The basic idea underlying the method
is to make use of the linearly approximated dynamics to target particular
initial conditions, that generate a periodic orbit. The easiest condition to
target is the perpendicular crossing of the x-axis, that is certainly neces-
sary - but not sufficient - for a Lyapunov orbit (because of the problem
symmetry with respect to the x-axis). The perpendicular crossing does not
automatically lead to a Lyapunov orbit, so the linear or higher order ap-
proximation of those orbits is extremely useful: it is exploited to generate
an initial guess close enough to the actual solution to make the differential
correction convergent. The outline of this procedure is the following [60]:

1. Utilize an analytical approximation of the Lyapunov orbit to guess a
first set of initial conditions (x0, 0, 0, vy0). The initial position lies on
the x-axis and the initial velocity is orthogonal to the same axis.

2. Integrate the non-linear system with strict tolerance (e.g. 10−14) until
y changes sign.

3. Change the time step to target the crossing condition as accurately as
possible (e.g |y(t)| < 10−11).

4. Compute the state transition matrix at the crossing time t1, which is
the linear relationship between small initial and final displacement

δx(t1) = [Φ(t1, t0)]δx0 ,
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where x is the state vector.

5. Compute the velocity component in the x direction vx(t1) at the cross-
ing.

6. Check if |vx(t1)| < tol, where tol is your desired accuracy. An exact
perpendicular crossing is supposed to possess vx(t1) = 0. If the toler-
ance is not satisfied go to the next step, otherwise quit the procedure.

7. Correct the initial velocity using the state transition matrix. So the
correction is equal to

δvy0 ≈
(

Φ34 −
1

vy(t1)
Φ24

)−1

vx(t1) ,

where Φij is the element of the state transition matrix at the row i
and column j.

Unfortunately the differential correction alone works properly for small
amplitude orbits, as the linear approximation does. To extend the algo-
rithm to very non-linear orbits the differential correction shall be coupled
with another procedure known as numerical continuation. This allows to
reach large amplitude orbits gradually increasing the energy level. Basi-
cally, the steps of the numerical continuation are

1. Find two closed initial conditions for small periodic orbits x0
(1),x0

(2).

2. Compute the difference ∆ = x0
(2) − x0

(1).

3. Extrapolate the initial guess for a larger orbit

xg
(3) = x0

(2) + ∆ .

4. Use differential correction to obtain a proper initial state x0
(3).

5. Keep track of energy and repeat the procedure until the final energy
level is achieved with the desired accuracy. Refinement steps may be
required in the neighborhood of the solution.

In this work a simpler but not less effective method is adopted [65].
The complexity of two coupled algorithm can be overcome by the intro-
duction of a Poincaré map. The Poincaré map is a surface of section S of
the flow generated by a n-dimensional system. It is obtained by fixing cer-
tain variables so that the order of the problem is reduced. Then, the map is
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Figure 2.3: Surface Section S intercepting in x1 the flow generated by x0.

generated by emanating trajectories from S and intersecting the flow with
the surface again, as in Figure 2.3. The system (2.9) defines a four dimen-
sional flow in the state variables (x, y, ẋ, ẏ). To target the periodic orbit,
the perpendicular crossing condition is still sought. Therefore, it appears
logical to slice the flow on the x-axis, which means fixing y = 0. In this
case, the surface of section S has a real location in the configuration space,
which is y = 0 indeed, but it is worth to stress that S could be generally
located in all the hyper-space defined by the state variables. Following the
selection of S, the flow of trajectories is generated imposing an orthogonal
departure, that is achieved by ẋ0 = 0. In addition, the Jacobi constant J
can be arbitrarily settled and one of the initial state variables left is conse-
quently derived. For the current purposes, ẏ0 is the best option,

ẏ0 =
√
−(2Ū + JC) .

Hence, the set of initial conditions that produces the flow is only parametrized
in the initial position x0, after that the energy level has been decided. So,
the Poincaré mapM is defined as

M : (x0, 0, 0, ẏ0(x0, J))→ (x1, 0, ẋ1, ẏ1) .

For a periodic orbit shall be ẋ1 = 0, that yields also to x1 = x0, ẏ1 = ẏ0.
The initial conditions that evolve into a periodic orbit can be sought on
M, depicted as a 2D maps in the variables (x1, ẋ1) (see Figure 2.4). One
only needs to find where the maps cross ẋ1 = 0: the corresponding value
of x1 belongs to a periodic orbit. As shown in Figure 2.4, the function
has multiple zeros, it is up to the analyst to pick out the Lyapunov orbit.
A bisection method may be applied to the map M near the selected zero
to establish an accurate value of the Lyapunov orbit initial condition x0.
Figure 2.4 displays different periodic orbits (including the Lyapunov class)
propagated from the zeros obtained from the map in Figure 2.5. Despite
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the necessity of an human operator, the periodic orbits with the desired
energy level can be addressed directly and quickly by this method, without
any iterative process.
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Figure 2.4: Visualization of the Poincaré map.
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Figure 2.5: Possible periodic orbits in the Sun-Earth system (in blue a Lya-
punov type orbit).

2.2 Large Space Structures Dynamics

As long as Large Space Structures (LSS) are considered, it is clear that
the mass-point approximation or even the single rigid body model may
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reveal inappropriate to describe accurately their dynamics. In fact, LSS
are more correctly a distributed system and most likely consist in a set
of interconnected entities and deployable appendages (such as antennas,
solar arrays, deployable arms). Moreover, the inherent flexibility of both
the single entities and the architecture as a whole may not be negligible.
The importance of an adequate model of the problem is threefold:

1. Furnish a rational representation, necessary to understand the prob-
lem.

2. Serve as basis for numerical simulation of the problem.

3. Led to the successful prediction of the motions of the space vehicles.

Selecting the algorithm is anything but a trivial task; it frequently happens
that the chosen procedure is so much complex, in terms of either the effort
required to deliver the equations of motion or the final form of the equa-
tions their-selves, to be prohibitive [47]. Anyway, the general framework
is represented by the analysis of Flexible Multi-Body System (FMS). Sev-
eral approaches exists to address the dynamics of FMS (as discussed in the
next Section), but basically any mechanical problem can be written in the
well-known fashion

[M ]q̈ + [K]q = Q+Qv(q) , (2.23)

where q represents the set of generalized coordinates used to describe rigid
translations and rotations as well as relative deformations, [M ] is the sys-
tem mass matrix and [K] denotes the stiffness matrix due to the energy
built up in elastic deformation. Qv is the quadratic velocity vector contain-
ing gyroscopic and Coriolis effects whileQ are the generalized components
of external actions. The matrix form of eq. (2.23) should be preferred in
order to smooth the way for a numerical implementation. When special-
ized to the dynamics of large space structures, the model described by eq.
(2.23) has the following characteristics:

• the mass matrix [M(q)] depends on the generalize coordinates, due
to variations of the moments of inertia.

• [M ] is a full matrix while [K] works only for the sub-set of generalized
coordinates describing elastic displacements.

• The generalized forces Q = Qg(q) result from the interaction with
the gravity field as functions of body position, attitude and shape.
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• The overall motion is described by large translations and rotations.
On the contrary, the structure undergoes small deformations.

• Different dynamics coexist in the system: elastic fast dynamics versus
orbital/attitude slow dynamics.

The aforementioned considerations suggest caution to numerically solve
the motion. In fact, the variables to be integrated have significantly dif-
ferent order of magnitudes, from millimetric elastic displacements to an
orbital radius of thousands of kilometers. Furthermore, a two-velocities dy-
namics is present. Thus, the problem may prove ill-conditioned and numer-
ical instability may appear if proper integration schemes are not adopted.
This will negatively affect the computational effort required. Here, it is
worth to clarify how flexibility affects the orbital motion. Equations de-
scribing the rigid translational motion are coupled to elastic dynamics by
two terms in eq. (2.23): the mass matrix [M(q)] and the generalized grav-
ity action Qg(q). But the two terms originate a coupling of different mean-
ing. The coupling due to the mass matrix [M(q)] derives from the kinemat-
ics adopted (i.e. degrees of freedom and coordinate systems used) and can
disappear according to a proper choice of the generalized coordinates q.
The coupling caused by Qg(q) retains instead a physical nature: variations
in the body shape can alter the resultant of gravity forces which governs
the orbital motion.

2.2.1 Model Formulations

The procedure to deliver equations (2.23) is composed of the following
steps (highlighted in Figure 2.6):

1. Discretization of the Elastic Problem. Once flexibility has been
introduced the theoretical number of degrees of freedom (dofs) re-
quired to capture the spacecraft dynamics is boosted up to infinity.
But for practical purpose accurate results may still be achieved by an
adequate discretization of the elastic problem.

2. Kinematics. Several viable reference frames and their attendant in-
dependent coordinates can be implemented to describe the system
configuration and its motion. Usually more choices are combined
to attain the final representation. The kinematic approach selected
is closely connected to the method adopted to discretize the elastic
problem.
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Figure 2.6: Model Formulation Framework (upper and right insets from
[16]).

3. Dynamics. A series of physical principles can be used to write the
final equations of motion. Depending on the kinematics used certain
approaches are more convenient than other.

2.2.2 Elastic Discretization

s

u s , t  w s , t 

dm

Figure 2.7: Diagram of the elastic displacement field on an elastic body.

As any infinitesimal mass point dm of a flexible structure moves inde-
pendently from the others, the number of kinematic variables theoretically
necessary to predict the motion is infinite. Thus, the displacement field
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relative to the undeformed shape of the flexible body is better described
by a continuous function u(s, t), where s denotes the position of the dm as
depicted in Figure 2.7 and t is the temporal instant. Even so, a mechanical
problem ruled by differential equation like eq. (2.23) surely requires the
computation of integrals written in a general fashion as

R =

∫
V

w(s, t)un(s, t)dV , (2.24)

with V representing the structure volume, un the nth spatial derivative of
the displacement field u(s, t) and w(s, t) a generic weight function (as could
be the body density, its elastic proprieties or the function un(s, t) itself). In-
tegrals like (2.24) are functions of the solution itself u(s, t) of the differen-
tial problem, so they cannot be solved directly (the problem should be more
correctly addressed as integro-differential). To that end, an approximation
ũ(s, t) of the solution u(s, t) is employed instead. The approximation is
built in order to reduce the number of elastic degrees of freedom to a finite
value ne (i.e. discretization) and split the temporal-spatial dependence of
the elastic displacements u(s, t) (i.e. variables separation). Different tech-
niques are possible. Every method involves a different degree of accuracy
as well as of arbitrariness left to the analyst. Basically, four wide classes of
approximations are available (also listed in Table 2.1):

• Finite Segment Method. u(s, t) and w(s, t) are assumed to be a sum-
mation of delta-Dirac functions

u(s, t) =
ne∑
i

ai(t)δi(s− si) .

Physically, the structure considered as a distributed system transforms
into a set of rigid bodies, springs and dumpers. This may be con-
venient since rigid bodies methodologies can be easily employed to
formulate the equations of motions. On the other hand, the selection
of the discrete parameters, such as springs stiffness, rigid bodies size
and their location, may be a serious issue for the convergence and the
accuracy of the method.

• Ritz Method. u(s, t) is expressed as a linear composition of admissi-
ble functions ψi(s) (referred as shape functions)

u(s, t) =
ne∑
i

ai(t)ψi(s) .
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Admissible means that the functions used to represent the spatial vari-
ation of the elastic displacement have to respect the essential condi-
tions of the problem. This reveals unsuited for complex geometry.
The approximation usually adopted is a polynomial or trigonometric
series. It should be considered that high order polynomials lead to
ill-conditioning.

• Modes Method. It is the same as the Ritz method, but deserves a
dedicated class because of the importance among the structural dy-
namics analysis methodologies. The sharp difference with the other
method lies in the particular choice of the shape functions ψi(si): the
auto-solutions of the problem (i.e. modes) are selected. According to
the essential conditions and the modeling criteria, either normal or
constrained modes are used as well as global or local. The severity of
this approach may rely on the modal shapes that rarely are known as
analytical expressions but more likely have to be computed numeri-
cally.

• FEM. A breakthrough in structural analysis is beyond doubt the ad-
vent of the Finite Elements Method in the last century. Instead of
evaluating the integral (2.24) along the entire domain, it is approxi-
mated as the summation of the same integral on smaller sub-domains
(i.e. elements)

R =
∑
V

∫
Vi

wi(s)u
n
i (s, t)dVi .

In the same way, also u(s, t) is approximated using shape function
ψi(s) defined just on the single sub-domain. The shape functions
largely adopted on the sub-domains are the interpolation polynomi-
als of the displacements in points belonging to the element itself (i.e.
nodes). The success of the FEM was due to the ability to solve geome-
try of arbitrary complexity while automatically satisfying the essential
conditions.

All the classes previously reported are equally applicable to linear prob-
lems. On the contrary, limitations to their validity occur when non-linear
effects are introduced in terms of both large rigid motions or large de-
formations. Spacecrafts naturally experience rigid translations and rota-
tions. Furthermore, highly flexible large space structures may prove false
the assumption of small deformations underlying the linear structural the-
ory. Therefore, it is worth to carefully examine the circumstances where
the elastic model is used. Here, it should be highlighted that the FEM for-
mulation is particularly sensitive to the former kind of non-linearity: some
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Table 2.1: Discretization Methods of the Elastic Problem.

METHOD DISCRETIZATION NOTES

Finite Segment
Method

Rigid Bodies con-
nected by Springs or
Dumpers

1) Rigid Bodies Methodologies.
2) Problem of selection of num-
ber, size and position of Rigid
Bodies. 3) Inertia Coupling.

Ritz Series: trigonomet-
ric/polynomial

1)Require admissible functions.
2)High order polynomial may
lead to ill-conditioning. 3) Un-
suited for complex domains.

Modes Normal/Constrained
and Local/System
Modes

1) Require to be previously
computed (analytical forms are
known only simple cases).

FEM Finite Elements +
Shape Functions

1) Infinitesimal displacements.
2) Not exact modeling of rigid
body motion.
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Figure 2.8: Sketch of a 90 degrees rigid rotation of the element.

elements are not able to exactly predict rigid motion and non-zero strain
appears during an arbitrary rigid displacement. For instance, image an el-
ement undergoing a 90 degrees rigid rotation like in Figure 2.8. Assuming
linear shape functions to represent the element relative motion, the rigid
rotation would result as ux = y − x

uy = x− y , (2.25)

but when computing the strain on the elementεx = ux/x = −1

εy = uy/y = −1
, (2.26)
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a non-zero field comes out, despite just a rigid motion has been imposed.
One of the most popular procedure to solve non-linearities in the FEM is
known as incremental finite element approach. It basically considers conse-
quent configurations of the structure close enough to remain in the limit
of small displacements (regardless they are due to rigid motions or de-
formations, so it is applicable to different kinds of non-linearities). Then,
the solution is approached iteratively. Nonetheless, the representation of
rigid motion is still an approximation in many incremental formulations,
especially when the structure rotates as a rigid body [66]. Thus, differ-
ent efforts, as discussed briefly in the next section, have been done to seek
kinematics variables able to exactly track rigid translations and rotations.

2.2.3 Kinematics

s

u s , t w s , t 

dm

X

Y X '

R

r

Y '

u0

u f

P

Figure 2.9: Floating Frame (in blue) and its attendant location vectors.

No better introduction for this section than the words of Shabana [19]:

"The shape of deformation of the body is defined in its coordinate system,
and as a consequence, the selections of the deformation shapes and the body
coordinate system cannot be considered as two independent issues".

In fact, the selection of discrete generalized coordinates to reproduce
the elastic deformation naturally affects the choice of the local reference
system, and vice versa. The most widely adopted formulation in the flexi-
ble multi-body dynamics is currently the Floating Frame [19]. The Floating
Frame is the same kinematics framework generally adopted to describe the
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rigid body dynamics and that is also the likely reason of its success. Dif-
ferent formulations of the Floating Frame are possible, but all are based on
two set of coordinates: one set defines the location and the orientation of
a local body coordinate system (i.e. the Floating Frame), while the second
represents elastic displacement relative to the local body reference previ-
ously defined. According to this description, with reference to Figure 2.9,
the global position vector r of an arbitrary point on a deformable body can
be written as [67]:

r = R+ [A](u0 + uf ) , (2.27)

where R is the vector locating the Floating Frame and [A] is the rotation
matrix that defines its attitude; u0 and uf refer respectively to the unde-
formed position in the Floating Frame and the elastic displacement in the
last mentioned frame. It should be stressed that the Floating Frame formu-
lation leads to the exact description of completely rigid motions. It is also
worth to mention that there is no guarantee of separation between rigid
and flexible dynamics with this approach. The possible decoupling depends
on the selected local body reference. Many investigations in flexible body
dynamics addressed a coordinate system that minimize the relative kinetic
energy with respect to an observer stationed on the body [19]. Thus, the
rigid and elastic dynamics result weakly coupled. The set of coordinates
that minimizes the coupling are known as mean axis [68].

Otherwise, especially along with the FEM, a convected coordinate sys-
tem is employed. In this approach the kinematics variables are defined in
the element reference frame with the further assumption that the element
coordinate system remains fixed despite the motion of the element itself.
Shape functions used to describe general displacements are clearly unable
to capture large rotation if defined in such a frame. The convected coordi-
nate system was born in the context of static analysis under the assumptions
of the linear structural theory and it is not proper for structures, like space-
crafts, undergoing large motions. Therefore, different attempts were pros-
ecuted to develop a kinematic formulation able to bring the computation
power of the FEM into the multi-body dynamics. A set of different coor-
dinate reference system may be thought to overcome the issue [69, 66].
Briefly, the set should consist of a global fixed frame, a body frame (sim-
ilar to the floating frame), a intermediate element frame whose origin is
the same as the previous body frame and finally the usual element frame.
To avoid using so many frames, element nodal coordinates may be defined
in the global coordinate system and large rotation vectors could be used
to identify the element configuration [70, 34, 71]. But, as pointed out in
[19] this kind of formulation can lead to singularity problems. Finally a
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Table 2.2: Kinematics Approaches.

METHOD REFERENCES NOTES

Floating Refer-
ence

Modi, Misra et al.
(1978) [17]

Two sets of coordinates are used:
1) one set describes the loca-
tion and the orientation of an ar-
bitrary body coordinate system
(i.e the floating frame), 2) an-
other set describes the deforma-
tions w.r.t. the floating frame.

Direct Path Ho (1977) [22] Vectorial oriented path from the
main body directly toward the
appendages.

Rotationally
Fixed Floating
Frame

Vu-Quoc,Simo
(1987) [33]

The floating reference is a trans-
lational frame parallel to the in-
ertial one, placed in the instanta-
neous center of mass.

Convected
Coordinate
System

Associated to the incremental fi-
nite element approach. Kinemat-
ics equations are defined in the
element coordinate system.

Large Rotator
Vectors

Vu-Quoc,Simo
(1980) [34]

Avoid displacements lineariza-
tion. Element nodal coordinates
are expressed w.r.t. the global
coordinate system.

Absolute Nodal
Coordinate

Shabana (1997) [19] Absolute displacements and
global slopes are used as the
element coordinates.
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more recent approach, named absolute nodal coordinates, suggests to use
as nodal coordinates neither infinitesimal nor finite rotations. Instead, ab-
solute displacements and global slopes are selected as kinematics variables
[72, 73, 67]. This method employs geometrically exact non-linear strain
theories and is applicable to structures undergoing large overall displace-
ments regardless their origin, either rigid or elastic. Methods discussed
in this Section are summarized in Table 2.2, where also references to two
other more specific formulation are accounted.

2.2.4 Dynamics

Basically, eigth approaches yield to the equations of motion of a mechanical
system [47, 48]:

1. Newton-Euler equations. Derived from the use of momentum princi-
ples. They describe the combined translational and rotational dynam-
ics of a rigid body.

2. D’Alembert principle. It introduces forces generated by the inertial
acceleration of every single particles. Considering these so-called in-
ertia forces along with the other actions the system always appears as
null system.

3. Lagrange procedure. The evolution of the system is described by the
solutions to the Euler–Lagrange equations.

4. Hamilton’s canonical equations. The Hamiltonian function is used to
derive the equations of motion.

5. Virtual works. Weak formulation of the problem. Based on the equiv-
alence of virtual works.

6. Boltzmann-Hamel equations. Similar to Lagrange procedure, but the
dependent variables are not constrained to the form of generalized
coordinates.

7. Gibbs method. Based on the Gibbs’ equations. It offers the same
advantages of the Boltzmann-Hamel algorithm, but the procedure is
simpler and much more systematic.

8. Kane’s method. Based on the projection of forces and torques along
the directions defined by the "partial velocity" and "partial angular
velocity" vectors. It claims to be the most direct method to achieve
the simplest equations form.
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Table 2.3: Common drawbacks of the dynamics formulations.

ISSUE METHODS

Non-automatic elimination
of constrain/non-contributing
forces and moments

Newton-Euler, D’Alembert prin-
ciple

Operationally challenging Virtual works
Lengthy scalar functions Lagrange, Hamilton, Boltzmann-

Hamel, Gibbs
Limited choice of independent
variables

Lagrange, Hamilton

Direct final equations not in the
simplest form

Lagrange, Hamilton, Boltzmann-
Hamel

Despite based on different principles, the aforementioned methods eventu-
ally lead to the same dynamics. It is straightforward to see that it could not
be otherwise. Even so, the methods are not equivalent at all. In fact, many
practical issues may arise while following some of those procedures for
complex systems: multiple intermediate steps may be required and make
the algorithm extremely long, equations may turn out to be too complex to
be handled, final expressions or selected variables may retain an obscure
meaning. While choosing a dynamics formulation, one needs to be aware
of the following aspects at least:

1. The number of steps required to deliver the final equations.

2. The length and the complexity of the expressions to be handled (some-
times even symbolic manipulator run out of their memory).

3. The meaning of the kinematics variables adopted, as well as of the
expressions encountered during the procedure.

4. The effort required to numerically implement the algorithm.

Table 2.3 summarizes some drawbacks frequently faced using the meth-
ods here recalled. The aspects enumerated should be firstly considered,
but according to the specific problem addressed other issues may reveal as
important as those here mentioned. For instance, the readiness of the al-
gorithm for the control design, the direct availability of integral of motions
or simply the familiarity of the analyst with some procedures are other
indexes to select the proper formulation.
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In this Chapter the formulation adopted to reproduce the planar dy-
namics of large rigid space structures in the vicinity of libration points is
presented. In the first Section, the coordinate reference systems and the
kinematics variables are introduced. The kinematics is based on the float-
ing reference method mentioned in the previous Chapter. Secondly, the
last Section reports the procedure used to derive the equations of motion.
These equations are obtained in the Euler-Lagrange form and are succes-
sively manipulated accordingly to the Encke’s Method.

3.1 Kinematics

In this work the dynamics of Large Space Structures (LSS) on planar Lya-
punov periodic orbits is investigated within the framework of the Circular
Planar Restricted Three-Body Problem (CPR3BP). Further details about the
CPR3BP or the computational procedure of the periodic orbits have been
presented in the previous Chapter. Before addressing directly the develop-
ment of the equations of motion, the kinematics framework deserves to be

37
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Figure 3.1: Kinematic Representation. (a) Global frames and vectors. (b)
Body frame location and orientation. (c) Local position vector.

explained. In order to identify the position and the attitude of a spacecraft,
as well as its linear and angular velocity, different sets of frames can be
employed, as shown in the second part of Chapter 2. The choice of the
kinematic degrees of freedom should consider the effort to deliver the dif-
ferential equations of motion in such variables as well as the meaning that
they might possess, in order to reduce the cost of both producing and in-
terpreting results. Presently dealing with rigid bodies, the adoption of the
Floating Frame it is straightforward. But considering that also deformable
structures in space undergo mainly large translations and rotations, it will
prove to be a convenient choice also when flexibility is incorporated. In
the Floating Frame formulation basically two coordinate systems have to
be defined: a global system is used to describe the body position and a lo-
cal system to track the body attitude. To properly define these coordinate
systems in the PCR3BP more reference frames are introduced and below
explained.
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For sake of clarity, each coordinate systems mentioned is identified by a
letter, and the attendant versors by the same letter with a proper subscript:
so the X-frame will be established by the (x̂1, x̂2, x̂3) tern of versors. Firstly,
a inertial frame denoted as I-frame is fixed in the center of mass of the
planetary system. The Î1 versor of the I-frame is initially aligned with the
axis through the primary P1 and the secondary P2, but the I-frame does
not rotate with the planetary system. The `-frame rotates instead. The
`-frame at the time t = 0 is oriented as the I-frame, but its origin O′ is lo-
cated on the libration point, L1 or L2 accordingly to the Lyapunov periodic
orbit considered. Then, the `-frame rotates with the planetary system an-
gular velocity Ω, so that the ˆ̀

1 versor always matches with the P1−P2 line,
and translates maintaining its origin attached to the libration point. The
`-frame represents the global coordinate system for the Floating Frame for-
mulation, so it is also intended for being the common vector basis. Finally,
the local coordinate system, referred as b-frame, is attached to a general
point B. The origin B of the b-frame does not necessarily belong to the
body, or equivalently B it is not needed to have mass. The point, where the
floating frame is attached, has only to retain a constant position with re-
spect the undeformed mass distribution. In a similar way, the undeformed
mass distribution must appear still if observed in the b-frame. Hence, the
attitude of the body is defined via the b-frame by the angle φ, which is the
angle of rotation between the local coordinate system and the global co-
ordinate system. Throughout this work, only the planar dynamics in the
orbital plane of the two attractors is addressed, so a single angle is suffi-
cient to define the orientation of the spacecraft. The angle φ will be also
referred as pitch angle or simply pitch. Figure 3.1 depicts all the coordinate
systems presented.

Thus, the position of an infinitesimal mass dm in the point P is defined
in the `-frame (i.e. the global coordinate system) by the vector

rP = R+ [A]u0 , (3.1)

where R is the position vector of the origin B of the b-frame (i.e. the
local coordinate system), u0 is the undeformed position vector of P in the
b-frame and [A] stands for the rotation matrix from the b-frame to the `-
frame. This matrix appears as

[A] =

[
cosφ − sinφ
sinφ cosφ

]
. (3.2)

Since the body is assumed rigid, the only generalized coordinates q neces-
sary to describe the motion are the rigid set qr, which defines the position
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and the orientation of the b-frame. So

q =
[
qr
]

=

[
R
φ

]
. (3.3)

It is also important to be able to write the temporal derivative of the posi-
tion vector, in order to later develop the kinetic energy of the body,

ṙP = Ṙ+ [Ȧ]u0 , (3.4)

with
[Ȧ] = φ̇[A]/φ .

The subscript /• denotes the derivative relative to the variable •. Finally, as
stressed by Shabana in [67], some integral quantities are function of the
distribution of mass, but do not depend on the generalized coordinates q. It
means that such integrals can be computed in advance of the solution of the
dynamics and will remain constant parameters of the problem for a given
mass configuration. That propriety will be particularly useful when the
deformations of the body will be accounted in Chapter 6. Shabana named
these quantities Inertia Shape Integrals. The Inertial Shape Integrals for a
rigid body are

[I1] =

∫
V

ρu0 dV (3.5)

and
I00 =

∫
V

ρuT0u0 dV . (3.6)

It is worth to recall that the vector [I1] is null when the origin B of the
b-frame is fixed to the body center of mass.

3.2 Dynamics

In this Section the fully-coupled equations of motion for a spacecraft or-
biting in the vicinity of libration points are delivered via the Lagrangian
procedure. Firstly, all the terms present in the Lagrangian function L of the
system are derived; secondly, the equations of motions obtained are rear-
ranged using the Encke’s method.

The following motivations support choice of adopting the Lagrangian
procedure among the seven methods presented in the previous Chapter:

• Widely implemented and large author’s experience using this method.
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• Clear physical meaning in terms of contributing forces.

• Readily amenable to stability study and well suited for control design.

Thus, the Lagrangian function of the system is

L = Trel + T1 + T2 − U1 − U2 , (3.7)

where Trel is the kinetic energy of the body as observed in the `-frame and
U1, U2 denote the gravitational potential due to the fields generated from
the primary and the secondary; the terms T1 and T2 are the generalized po-
tential of the fictitious forces (respectively the centrifugal and the Coriolis
force) that are observed in the `-frame. As it should be clear, the global co-
ordinate system adopted is not an inertial reference (since it rotates with a
constant angular velocity Ω and also possesses a translational acceleration).

To study the dynamics of LSS incorporating the effect of a finite di-
mensional mass distribution, the gravitational potential has to be properly
formulated. Considering the field generated by the attractor Px (where the
subscript x = 1, 2 is adopted to address respectively the primary or the
secondary), the general expression for the gravitational potential is

Ux = −µx
∫
V

ρ(rx)

|rx|
dV , (3.8)

where µx is the planetary gravitational constant of Px, ρ is the mass density,
V is the undeformed volume of the mass configuration and rx is the posi-
tion vector of the infinitesimal mass dm = ρdV relative to the attractor Px.
In classical orbital mechanics the integral in eq. (3.8) is solved assuming
rx constant over the volume of integration and equal to the center of mass
position. This assumption also implies the followings:

• the vehicle is represented as a zero-dimensional mass-point; the whole
mass of the configuration is collapsed in its center of mass.

• The spacecraft center of mass corresponds to its center of gravity.

Otherwise, dropping these assumptions, there is no close solution of eq.
(3.8) for a body with arbitrary topology. Thus, the argument of the inte-
gral 1/|rx| is expanded in Taylor series in order to resolve the gravitational
potential of the configuration in a close form. Firstly, rx is expressed as the
sum of two components: the position vector of a reference point r0 and the
small variations vector δr with respect to the reference,

rx = r0 + δr .
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Then 1/|rx| is expanded around r0 up to terms of the second order

1

|rx|
∼=

1

|r0|
+
δr · r̂0
|r0|2

+ 3
(δr · r̂0)2

|r0|3
− (δr · δr)

|r0|3
. (3.9)

with
r̂0 =

r0

|r0|
.

The second order is the lowest possible to introduce changes in the gravita-
tional potential as consequence of an extended distribution of mass. Given
the kinematic framework earlier presented, r0 can be expressed as

r0 = Rx ,

where Rx is the vector drawn from the attractor Px to the origin B of the
b-frame, while δr is equal to

δr = [A]u0 .

It yields to the Taylor series written in the adopted kinematic variables

1

|rx|
∼=

1

|Rx|
− u

T
0 [A]T R̂x

|Rx|2
+

3

2

(uT0 [A]T R̂x)
2

|Rx|3
− 1

2

uT0 [A]T [A]u0

|Rx|3
, (3.10)

with
R̂x =

Rx

|Rx|
.

Substituting the expansion (3.10) into eq. (3.8) and solving the integral,
the general expression of the gravitational potential for a body with total
mass m becomes

Ux(Rx) = −µx
[
m

|Rx|
− 1

|Rx|2
lTx [I1]− 1

2

1

|Rx|3
I00 +

3

2

1

|Rx|3
lTx [JJ00]lx

]
(3.11)

where it has been introduced the director cosine of Rx in the b-frame

lx = [A]T R̂x

and a new inertia shape integral

[JJ00] =

∫
V

ρu0u
T
0 dV . (3.12)

The overall gravitational field caused by two attractors P1 and P2 is finally
represented by the potential

U = U1(R1) + U2(R2) . (3.13)
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The relative kinetic energy with respect to an observer on the `-frame is

Trel =
1

2

∫
V

ρṙTP ṙPdV . (3.14)

Substituting the expression (3.4) for ṙP and resolving the integral in eq.
(3.15), the kinetic energy is rearranged as function of the derivative of the
generalized coordinates q̇

Trel = q̇T [M ]q̇ , (3.15)

where

[M ] =

[
mRR mRφ

symm. mφφ

]
(3.16)

is the mass matrix of the system, which is a symmetric matrix. The compo-
nents of [M ] are defined as

mRR =

∫
V

ρ[I] dV

mφφ = [I00]

mRφ = [A]/φ[I1]

where [I] denotes the identity matrix.

So far, only the generalized potential of the fictitious forces remains
in order to be derived to complete the Lagrangian function of the system
(3.7). As already mentioned, the `-frame used as a common basis of the
generalized coordinates is not an inertial reference. Therefore, each point
P of the spacecraft observed from the inertial coordinate system I-frame
possesses a further component of velocity besides the relative term ṙP , no-
ticeable in the `-frame. As the principles of dynamics hold true only in a
inertial coordinate system, it is necessary to account this discrepancy when
the equations of motion are delivered on the basis of a non-inertial refer-
ence. The further component of the velocity vector provoked by the motion
of the `-frame relative to the I-frame results as

vT (P ) = v(O′) + ω ∧ rP , (3.17)

where v(O′) and ω are respectively the translational and angular velocity
vectors of the `-frame relative to an inertial coordinate system. For con-
venience in handling the following developments, the cross product in eq.



44 Formulation for the Rigid Fully-Coupled Motion

(3.17) can be turned into a matrix form

ω ∧ rP =

 0 −ωz −ωy
ωz 0 −ωx
−ωy ωx 0

 rP = [ω̃]rP , (3.18)

where a planar dynamics yields to

ω =

0
0
Ω


and

[ω̃] =

[
0 −Ω
Ω 0

]
.

Hence substituting eq. (3.18) in eq. (3.17) and making explicit rP , it gives

vT (P ) = v(O′) + [ω̃]R+ [ω̃][A]u (3.19)

The expression (3.19) is used to compute the generalized fictitious poten-
tial T1 + T2. Firstly, T1 is generally defined as

T1 =
1

2

∫
V

ρvTTvT dV . (3.20)

Inserting the expression (3.19) in the former equation, after some algebra,
the generalized potential representing the centrifugal action appears as

T1 =
1

2
mv(O′)Tv(O′) + mv(O′)T [ω̃]R + v(O′)T [ω̃][A]I1 +

1

2
Ω2mR

+ Ω2RT [A]I1 +
1

2
Ω2I00 . (3.21)

Secondly, T2 is generally defined as

T2 =

∫
V

ρṙTPvT dV . (3.22)

As previously, by inserting the expression (3.19) in the definition of T2, after
some algebra, the generalized potential representing the Coriolis action
appears as

T2 = mṘ
T
v(O′) + mṘ

T
[ω̃]Ṙ+ Ṙ

T
[ω̃][A]I1

+ IT1 [Ȧ]T (v(O′) + [ω̃]R) + Ωφ̇I00 . (3.23)
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Given the Lagrangian function of the system L in eq. (3.7), the motion
of the spacecraft depicted by the generalized coordinates q is the solution
of the well-known Lagrange-Euler equations

d

dt

(
∂Trel
∂q̇

)
− ∂Trel

∂q
= −∂U

∂q
+
∂T1

∂q

∂T2

∂q
− d

dt

(
∂T2

∂q̇

)
, (3.24)

that can be presented in a more compact fashion as

[M ]q̈ = Qν +Qg +QΩ , (3.25)

where Qν is the so called quadratic velocity vector [67]

Qν =

[
(Qν)R
(Qν)φ

]
= [M ]q̈ − d

dt

(
∂Trel
∂q̇

)
+
∂Trel
∂q

, (3.26)

Qg is the action caused by the gravitational field

Qg =

[
(Qg)R
(Qg)φ

]
= −∂U

∂q
(3.27)

and QΩ is the action provoked by the fictitious accelerations

QΩ =

[
(QΩ)R
(QΩ)φ

]
= +

∂T1

∂q
+
∂T2

∂q
− d

dt

(
∂T2

∂q̇

)
. (3.28)

The notation (V )• simply stands for the components of the vector V re-
lated to the equations describing the dynamics •, where • = R denotes the
orbital motion and • = φ the attitude motion.

In the orbital motion it is straightforward to expect the perturbation in-
duced by the mass distribution to be extremely small if compared to the
gravitational forces on the center of mass. Therefore, the numerical inte-
gration of the overall motion as stated in eq. (3.25) would result in a very
poor accurate picture of the phenomena investigated. In fact, the prob-
lem formulated in the fashion of eq. (3.25) is dominated by the dynamics
of zero order (i.e. the spacecraft collapsed in its center of mass), mak-
ing almost impossible to discern dynamics of higher order (i.e. perturbed
motions due to extended mass configuration of the spacecraft) from inte-
gration errors. To overcome this issue, the Encke’s method is implemented
[74]. The basic idea of the Encke’s method is to assume known the un-
perturbed dynamics and subtract such motion from the overall problem,
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in order to emphasize the perturbing effects on a reference trajectory. It
is also assumed that the nominal and the actual trajectory correspond at
the initial instant t = 0 (for this reason the reference trajectory will be also
referred as osculating orbit). To begin with, the orbital equations of motion
are extracted from the system (3.25)

[mRR]R̈+ [mRφ]φ̈ = (Qν)R + (Qg)R + (QΩ)R , (3.29)

then such equations are specialized for the zero order dynamics

[mRR]R̈0 = −∂U
0

∂R0

+
∂T 0

1

∂R0

+
∂T 0

2

∂R0

− d

dt

(
∂T 0

2

∂Ṙ0

)
= (Qν)R0+(Qg)R0+(QΩ)R0 .

(3.30)
Naturally, eq. (3.30) are equivalent to those governing the PCR3BP and the
solution R0(t) represents the reference trajectory (that in this work will be
a Lyapunov periodic orbit in vicinity of the Lagrangian points). Let’s now
introduce the displacement of the perturbed motion from the osculating
orbit

δ = R−R0 (3.31)

and its second time derivative

δ̈ = R̈− R̈0 . (3.32)

Hence, subtracting eq. (3.30) from eq. (3.29) the problem is rearranged in
such a way that the unknown of the system is the displacement vector δ

[mRR]δ̈ + [mRφ]φ̈ = (δQν)R + (δQg)R + (δQΩ)R . (3.33)

The differential actions (δQ•)R appearing in the former equation are fur-
ther developed in the following of the paragraph. Specifically, the differen-
tial quadratic velocity vector results in

(δQν)R = φ̇2[A][I1] (3.34)

and the differential gravity action appears as

(δQg)R = −
(
∂U1

∂R
− ∂U0

1

∂R0

)
−
(
∂U2

∂R
− ∂U0

2

∂R0

)
, (3.35)

where (
∂Ux
∂R
− ∂U0

x

∂R0

)
= µx

m

|R0
x|3

(δ + f(h)Rx) + axP . (3.36)

with

f(h) = h
3 + 3h+ h2

1 + (1 + h)3/2
, (3.37)
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h =
δTδ − 2δTRx

|Rx|2
, (3.38)

axP = −µx

[
2

|Rx|3
∂|Rx|
∂R

lTx [I1]− 1

|Rx|2

(
∂lx
∂R

)T
[I1] +

3

2

1

|Rx|4
∂|Rx|
∂R

I00

−9

2

1

|Rx|4
∂|Rx|
∂R

lTx [JJ00]lx + 3
1

|Rx|3
lTx [JJ00]

∂lx
∂R

]
. (3.39)

The former of the two right-hand terms of eq. (3.36) describes the zero-
order effects consequent to the drift of the center of mass from the refer-
ence trajectory and it is written in a form avoiding the direct subtraction
of nearly identical numbers (see [74] for details). The latter term axP is
instead the actual spacecraft distributed mass perturbation exerted by Px.
It represents the force due to the gravity gradient over the structure. Lastly,
the differential action of the fictitious forces is

(δQΩ)R =

(
∂T1

∂R
− ∂T 0

1

∂R0

)
+

(
∂T2

∂R
− ∂T 0

2

∂R0

)
−
(
d

dt

(
∂T2

∂Ṙ

)
− d

dt

(
∂T 0

2

∂Ṙ0

))
, (3.40)

with (
∂T1

∂R
− ∂T 0

1

∂R0

)
= Ω2[A][I1] + Ω2mδ , (3.41)

(
∂T2

∂R
− ∂T 0

2

∂R0

)
= m[ω̃]T δ̇ + [ω̃]T [Ȧ][I1] , (3.42)

d

dt

(
∂T2

∂Ṙ

)
− d

dt

(
∂T 0

2

∂Ṙ0

)
= m[ω̃]δ̇ + [ω̃][Ȧ][I1] . (3.43)

So far, has been fully described eq. (3.33), which refers to the orbital mo-
tion of the space vehicle. Thus, for sake of completeness, also the attitude
equation is extracted from the system (3.25)

[mφφ]φ̈+ [mRφ]T R̈ = (δQν)φ + (δQg)φ + (δQΩ)φ , (3.44)

where the attitude component of the quadratic velocity vector and the grav-
ity action are respectively

(Qν)φ = 0 (3.45)
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and
(Qg)φ = −∂U1

∂φ
− ∂U2

∂φ
, (3.46)

with

∂Ux
∂φ

= −µx
[
− 1

|Rx|2

(
∂lx
∂φ

)
[I1] +

3

|Rx|3
lx
T [JJ00]

lx
∂φ

]
. (3.47)

The derivative of the gravitational potential with respect to the attitude an-
gle in eq. (3.47) is the well-known torque induced by the gravity gradient.
Finally, also the attitude component of the fictitious actions is expressed

(QΩ)φ =
∂T1

∂φ
+
∂T2

∂φ
− d

dt

(
∂T2

∂φ̇

)
, (3.48)

where computing the derivatives yields to

∂T1

∂φ
= vT (O′)[ω̃][A]/φ[I1] + Ω2RT [A]/φ[I1] , (3.49)

∂T2

∂φ
= Ṙ

T
[w̃][A]/φ[I1] + [I1]T [Ȧ]T/φ(v(O′) + [ω̃]R) , (3.50)

d

dt

(
∂T2

∂φ̇

)
= [I1]T

d

dt

(
[Ȧ]/φ̇

)T
(v(O′) + [ω̃]R) + [I1]T [Ȧ]/φ̇[ω̃]Ṙ , (3.51)

with
[Ȧ]/φ̇ = [A]/φ .

The representation of the attitude dynamics can be heavily simplified adopt-
ing as body coordinate system (i.e. b-frame) the principal axes of inertia.
Doing so, the inertia shape integral [I1] is null and [JJ00] becomes a diago-
nal matrix; if [I1] = 0, (QΩ)φ disappears and (Qg)φ is elementary. Further-
more, this formulation leads to understand that the spacecraft topology, in
planar dynamics, can be fully described by a single parameter, known as
inertia ratio

k3 = (I22 − I11)/I33 (3.52)

where I11, I22 are the principal moments of inertia around the axes in the
plane of motion and I33 is the principal moment of inertia around the out-
of-plane axis, which is actually equal to I33 = I11+I22 for a planar geometry.

Before extensively studying the dynamics of Large Space Structures, it
is worth to notice that eq. (3.33) and eq. (3.44) form a set of mutually
coupled equations. The main factors accountable for the coupling are
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• the mass matrix [M ], which is a full-matrix in a general kinematic
formulation. Thus, the cross components of the matrix [mRφ] and
[mRφ]T shown in eq. (3.33) and (3.44) are evidence of the coupling.

• the gravity actionQg, since the orbital component (δQg)R depends on
the spacecraft attitude through the term lx, which appears in the ex-
pression of the perturbation force (3.39); similarly, the attitude com-
ponent (Qg)φ is function of the vehicle orbital position relative to the
attractor as shown in (3.47).

The two origins of the mutual coupling between orbital and attitude dy-
namics consist of a significant different nature. The coupling introduced by
the mass matrix [M ] is only a mere consequence of the kinematic frame-
work employed. In fact, if the rigid motion is described using a local co-
ordinate system (i.e. the b-frame) fixed to the body center of mass, the
cross components of the matrix [mRφ] and [mRφ]T vanish and with them
the coupling too. On this basis, there is no apparent reason to not take
advantage of a diagonal mass matrix, which seriously reduces the effort of
numerically integrating the motion. Therefore, the origin of the b-frame
will be located in the configuration center of mass throughout this work.
On the contrary, the interdependence generated by the gravitational action
has a physical connotation. It states that both the orbital and the attitude
response are coupled by an external action. Such interaction can not be
eliminated modifying the kinematic representation.
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One of the main goals of this thesis is about the effect of the spacecraft
mass distribution on its fully-coupled dynamics. In the previous Chapter
the equations of motion incorporating that perturbation have been derived
for a rigid body in vicinity of a reference trajectory. In this Chapter, the
dynamic analysis is performed after the numerical implementation and so-
lution of the formulation developed. The results here presented provide a
deeper understanding of the motion of the Large Space Structures (LSS)
in the PCR3BP and suggest some directions for their mission design. Thus,
the Chapter organizes into a brief presentation of some examples to assess
the reliability of the code employed and later reports in succession the most
interesting results for the orbital and the attitude motion.

4.1 Validation

Throughout the developing of a numerical code several tests and compar-
isons shall be made to assess the reliability and the accuracy of the solutions

51
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obtained. To satisfy this claim, some evidence to prove the validity of the
code employed are reported in this section. Basically, the validation relies
on the comparison with other works in literature and another code inde-
pendently developed for similar purposes. Furthermore, the system has an
energy integral of motion that can support the consistence of the simula-
tion when no other comparisons are available.
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Figure 4.1: Comparison between the coupled motion predicted by Mohan
[11] and by the author.
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Figure 4.2: Comparison between the coupled motion predicted by Mohan
[11] and by the author in the near resonant condition.

In 1972, Mohan et al. derived the fully-coupled equations for a rigid
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Figure 4.3: Beats phenomena in the near resonant condition.

body in a near keplerian orbit of low eccentricity [11]

r̈ −
(
θ̇2 − µ

r3

)
r =

3G2
3

2r2

µ

r2

[
r1 + r2 − 2

2
− 3k3

2
cos 2φp

]
(4.1)

2ṙθ̇ + rθ̈ =
3G2

3

2r2

µ

r2
sin 2φp (4.2)

φ̈p + θ̈ = − 3µ

2r2
k3 sin 2φp , (4.3)

where r is the orbital radius, θ denotes the true anomaly and φp the pitch
angle measured from the radial direction; the parameter G2

3 is the mo-
ment of inertia of the body about the pitch axis per unit of mass and
k3 = (G22 − G11)/G33, with Gii representing the moment of inertia about
i-th inertia principal axis per unit of mass (i = 3 identify the pitch axis).
The numerical solution of the system of differential equations (4.1)-(4.3)
is compared with the motion predicted by the code implementing the for-
mulation developed in this work. Neglecting the contribution of the sec-
ondary, the equations of motions presented in Chapter 3 can reproduce the
dynamics near a reference orbit in the R2BP as well. Figure 4.1 reports
the perturbed trajectory from a geostationary orbit in terms of the radial
displacement and the shift of the true anomaly. In particular, those results
refer to a spacecraft configuration defined by k3 = 0.7519, r1 = 0.1241,
r2 = 0.8759, G2

3 = 1.632×107m2. In Figure 4.1 the trends obtained with the
author’s model well match the evolution predicted by Mohan in eq. (4.1)-
(4.3).

A further evidence is provided studying the resonant condition k3 = 1/3
on a low eccentricity orbit. The reference case is set by the configuration
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parameters k3 = 0.3323, r1 = 0.3339, r2 = 0.6661, G2
3 = 3.9935 × 106 m2

on a orbit with semi-major axis a = 42164 km and eccentricity e = 0.01.
A good agreement between the outcome from the two different sources
adopted (i.e. author’s formulation and Mohan’s equations) is still clear for
both the orbital and the attitude response, as shown in Figure 4.2. In par-
ticular, the attitude oscillations plotted in Figure 4.2-(b) seem to undergo
a secular increase of amplitude as expected from the linear analysis in the
resonant condition. But, considering a longer time of integration, an inter-
esting phenomenon appears, as depicted in Figure 4.3. In fact, as the pitch
oscillations increase the non-linear effects of the coupling limit their am-
plitude, leading to the beats phenomenon evident in Figure 4.3. The beats
are an unambiguous proof of the periodic interchange of energy between
the orbital motion and the attitude motion in the resonant or near resonant
condition. Further details on this behavior can be sought in [11].
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Figure 4.4: Comparison of the attitude angle response (B-orbit, φ0 =
{−45◦, 45◦, 90◦}, φ̇0 = 0) from different algorithms.

In the CR3BP environment the algorithm is validated setting the re-
sponse against the outcomes from a code with similar purposes. The data
reported in this section originated from an internal correspondence with A.
Knutson from the Purdue University. Knutson has been developing a code
to simulate the spatial attitude dynamics in vicinity of the libration points.
She adopts the Kane’s method and the algorithm is coded in Fortran. Up
to two interconnected body can be introduced in the Knutson’s simulator.
In order to use the Knutson’s work as comparison, the differences with the
author’s formulation should be highlighted. Firstly, the author of this thesis
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Figure 4.5: Comparison of the angular velocity response (A-orbit, φ0 = 0,
φ̇0 = φ̇0 = {0.1ωref , ωref , 10ωref}) from different algorithms.

investigates only the dynamics in the orbital plane of the system, while the
Knutson’s dynamics is three-dimensional. Secondly, the author includes the
perturbation force exerted by the mass distribution into the orbital dynam-
ics but Knutson does not. The general parallel between the two algorithms
is summarized in Table 4.1.

Table 4.1: Parallel between the algorithms developed by Knutson and
Guzzetti.

Knutson Guzzetti

Coded in Fortran Coded in MATLAB
Kane’s formulation Lagrangian formulation
Spatial Dynamics Planar Dynamics

No mass distribution perturbation Include mass distribution perturbation
Two-body architecture Single body architecture

Given the differences earlier mentioned, only the pitch motion can be
reasonably compared. Nonetheless, very few papers are published on the
attitude dynamics in the CR3BP, so this analysis is extremely valuable for
both the algorithms under development. Moreover, most of the works as-
sume the spacecraft hovering exactly on the libration points or employ a
linear approximation of the Lyapunov orbit in the very vicinity of the equi-
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libria. On the contrary, in the study with Knutson actual Lyapunov periodic
orbits are considered, including the effects of the orbital non-linearities in
the attitude response. Thus, several simulations are performed on the basis
of common parameters. Throughout the analysis the spacecraft is shaped
as a parallelepiped with the following dimensions: 100 m long, 30 m wide,
0.4 m deep. The origin of the b-frame is in the center of mass and the
longest side of the parallelepiped is aligned with b̂1. The total mass of the
flying vehicle is 140 tons, uniformly distributed. At the initial time the
spacecraft lies on the line connecting P1 and P2, placed on the left crossing
of the Lyapunov trajectory relative to the Lagrangian point. Two planar
Lyapunov periodic orbits about L1 of the Earth-Moon system are selected
as the nominal orbital path. They are chosen being significant different in
size, in order to compare the attitude motion on both a nearly linear orbit
and a truly non-linear orbit. The larger trajectory, labeled as orbit-A, has a
period of 19.98 days; the smaller trajectory, labeled as orbit-B, has a period
of 11.75 days. Finally, a set of different initial conditions is created by four
initial attitude angles φ0 = {−45◦, 0◦, 45◦, 90◦} and three initial angular
velocities φ̇0 = {0, 0.1ωref , ωref , 10ωref}, where ωref = 2π/Torb and Torb de-
notes the orbital period. For any simulation in the framework delineated,
the pitch libration response from the author’s code proves to well fit the
Knutson’s outcome and vice-versa. For sake of brevity, only few analysis
are reported here. Figure 4.4 shows the pitch temporal evolution on the
orbit-B for different initial orientations (with φ̇0 = 0), while Figure 4.5 re-
ports the angular velocity trend on the orbit-A for different initial values of
the angular velocity itself (with φ0 = 0). Again, Figures 4.4 and 4.5 demon-
strate the reliability of both the algorithms, in particular considering that
they are independently developed and implement different formulations in
different code language.
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Figure 4.6: Energy Integral Conservation.
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Lastly, it is always good practice to identify possible quantities that re-
main constant during the whole motion. In fact, they represent an inherent
mean of the problem to prove the consistence, sometimes even the accu-
racy, of the analysis without resorting to external data. At least, they are
a necessary condition that shall be verified each time the existence of such
quantities is known. In a mechanical system a quantity that may stay un-
changed is the energy integral of motion. In particular, if the equations of
motions are derived via the Lagrangian formulation is quite effortless at-
testing the energy conservation, even for complex dynamics. As matter of
fact, if

∂L
∂t

= 0 (4.4)

then
H = pT q̇ − L with p =

∂L
∂q̇

(4.5)

is an integral of motion. For the Lagrangian function L defined in eq. (3.7)
it yields to

H = Trel + U1 + U2 − T1 . (4.6)

In the former expression of the energy integral of motion (4.6) the energy
of the reference orbit is accounted as well. But, as the energy of the ref-
erence orbit is the major contribution to the total amount, the evaluation
of (4.6) turns out to be misleading. The perturbing action incorporated
derives from the higher terms of the gravitational potential expansion, so
it still retains a conservative nature and the total energy shall be constant
during the motion. Nonetheless, even if the implementation of perturba-
tion is not consistent with the energy conservation it may be not noticed
observing the total energy of the system, which is in large part due to the
reference orbit and only in a minimal amount to the terms of higher or-
der. Therefore, if the former contribution is constant, inconsistence in the
latter becomes unnoticeable. A practicable solution consists in subtracting
the energy of the osculating orbit Eosc, which is constant, to the total value
Etot, which is constant too. The difference shall be constant throughout
the evolution of the system as well, as shown in Figure 4.6. Its standard
deviation from the mean value can be an index of the integration accuracy.

4.2 Orbital Dynamics

The topic of the research detailed in this section is the dynamic analysis of
rigid mass-distributed architectures under a multi-body gravitational field
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from the orbital motion perspective. The scope of the investigation con-
cerns the drift from a Lyapunov periodic orbit in the PCR3BP after the
introduction of a more accurate description of the gravity action on Large
Space Structures, as described in Chapter 3. To this end, a sensitivity cam-
paign is performed varying the gravitational environment, the body shape
and dimension and the initial conditions.

The drift from the nominal path is particularly interesting because of the
direct correlation with the orbit stability. In fact, the zero-order dynamics of
the CR3BP is well-known to be chaotic, implying that small perturbations of
the reference conditions lead to significant alteration of the motion. Thus,
under a natural dynamics, even small errors in position (e.g. in the order
of meters) will easily provoke the divergence of the trajectory from the
periodic orbit within a limited time window, comparable to few periods. In
the following results the shift from the osculating orbit is represented as
the radial displacement

δr(t) = |R(t)| − |R0(t)| , (4.7)

where R(t) is the actual position vector of the spacecraft and |R0(t)| de-
notes the position vector on the osculating orbit at the same temporal in-
stant. Specifically, the final radial displacement δrf = δr(tf ) after 2.5 revo-
lutions around the Lagrangian point will be monitored.

To begin with, the responses are compared for different Lyapunov peri-
odic orbits from families around L1 and L2. The Earth-Moon and the Sun-
Earth are the planetary systems addressed. The complete set of osculating
orbits is summarized in Table 4.2 for the Earth-Moon system, in Table 4.3
for the Sun-Earth system. The size variation of these trajectories is designed
to cover the transition from the nearly linear to the truly non-linear orbital
dynamics in vicinity of the libration points. Hence, in this gravitational
environment study the spacecraft is assumed to be a parallelepiped 100 m
long, 30 m wide, 0.4 m deep, with a total mass of 140 tons uniformly dis-
tributed. The origin of the b-frame is in the center of mass and the longest
side of the parallelepiped is aligned with b̂1. For each simulation, the space-
craft is initially located on the left crossing of the Lyapunov periodic orbit
relative to L1 or L2 equivalently. At the starting point, the body attitude
angle φ0 may be varied while the angular velocity ω0 = φ̇(t = 0) observed
in the `-frame is always null.

The results of this first analysis can be stated in the following consider-
ations:
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Table 4.2: Vertical Amplitude Ay and Period Tosc for the set of osculating
Lyapunov orbits in the Earth-Moon system.

L1 L2

Ay [km] Tosc [days] Ay [km] Tosc [days]
145761 22.17 146446 23.12
123640 19.97 124948 20.83
87593 16.13 92279 17.41
64011 13.95 69637 15.82
42351 12.61 43959 15.00
32208 12.21 28348 14.79
13213 11.78 15386 14.69
6593 11.72 6125 14.67

Table 4.3: Vertical Amplitude Ay and Period Tosc for the set of osculating
Lyapunov orbit in the Sun-Earth system.

L1 L2

Ay [km] Tosc [days] Ay [km] Tosc [days]
4030245 321.53 4031849 322.56
3250533 282.19 1410349 282.93
1716542 200.76 1725303 202.26
1081877 183.45 1084845 185.45
810258 179.47 806328 181.63
711690 178.4 691964 180.49

1. Despite the slightness of the perturbation added, the consequences on
the orbital motion over few periods are appreciable and large enough
to eventually destroy the nominal trajectory.

2. The attitude and the orbital motion prove to be sensibly coupled, as
different initial spacecraft orientations lead to different final orbital
positions.

3. The phenomenon is visible for reasonable body dimensions (structure
size comparable to the International Space Station).

4. The final radial displacement δrf is not a monotonic function of the
orbit size. Thus, the minimum does not correspond neither to the
largest nor smallest orbit.

5. The final shift from periodic orbits around L2 is larger than around
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L1.

6. The perturbation is weaker in the Sun-Earth system than in the Earth-
Moon system.

Figures 4.7 and 4.8 are reported as evidence of the aforementioned points.
Examining the Earth-Moon environment, Figures 4.7 presents the final ra-
dial displacement δrf as function of the orbit size, which is easily deducible
from the period of the osculating trajectory in abscissa. The trend in vicin-
ity of the both L1 and L2 is plotted. Different curves refer also to different
initial attitude angles. In Figures 4.7 can be noticed that the worst case in
the set (i.e. the maximum δrf) corresponds to a spacecraft in the smallest
Lyapunov orbit about L1 and initial φ0 = 0◦. Likewise, Figure 4.8 de-
picts the δrf fashion in the Sun-Earth system, although only the curve for
φ0 = 0◦ is shown. It is worth to remark that the conclusions drawn earlier
and later hold true within the scenario analyzed and shall not be regarded
as universal arguments. Further efforts and demonstrations are required to
achieve a boarder range of validity due to the complexity of the dynamics
addressed.
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Figure 4.7: Final radial displacement δrf after 2.5 revolutions as function
of the osculating orbit period Tosc and the initial attitude angle φ0 in the
Earth-Moon system.

A second campaign of simulations is carried out to investigate the in-
fluence of the body shape on the perturbed orbital motion. Assuming a
planar dynamics and a gravitational potential expansion up to the second
order, the spacecraft mass distribution topology can be parametrized by a



4.2 Orbital Dynamics 61

150 200 250 300 350
−80

−60

−40

−20

0

20

40

T
osc

 [days]

δ 
r f [m

]

+ L
1
 p.o.

o L
2
 p.o.

Figure 4.8: Final radial displacement δrf after 2.5 revolutions as function
of the osculating orbit period Tosc with φ0 = 0◦ in the Sun-Earth system.

single quantities k3 = (I22 − I11)/I33, where I33 is the principal moment of
inertia around the axis normal to the orbital plane and I11, I22 are the prin-
cipal moments of inertia around the axes in the plane of motion. k3 = 0
represents an axisymmetric body, while k3 = ±1 means that the body col-
lapses along one of the principal inertia directions in the plane. The body
is still assumed to be a parallelepiped and the shape is varied maintaining
constant the length L = 100 m of the side aligned with the versor b̂1 of
the local coordinate system. As the b-frame is also placed in the center of
mass of the configuration, the three body axis (b̂1, b̂2, b̂3) are the principal
directions. So, k3 = 0 means that both sides are equal to 100 m; conversely,
if k3 = 1, one side is null and the structure collapses in a 100 meters-long
beam lying on b̂1. The sensitivity campaign is based on mass distributions
in the whole range k3 = [0, 1]. Next, the analysis is conducted in the Earth-
Moon system, using the set of orbits in Table 4.2. Lastly, the spacecraft
is initially on the P1-P2 line, to the left of the equilibrium point, with b̂1

aligned to ˆ̀
1. Figure 4.9 offers a comprehensive picture of the dynamics in

this scenario. For different values of k3, it shows the trend of δrf as func-
tion of the orbital size. In this study the largest perturbation on the orbit
is observed for k3 = 1, while the weakest is observed for k3 = 0. In the
latter case, the effects are minimal but do not disappear as happens for the
gravity torque. Both the gravity gradient force introduced in this work and
the well-known gravity gradient torque arise from the second-order term
in the gravitational potential Taylor series. But, unlike the gravity gradi-
ent torque, the gravity gradient force can not be nullified by designing an
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axisymmetric spacecraft, as demonstrated in Figure 4.9. In that case, the
only -still significant- achievement is the minimization of the perturbation.
Fixed the osculating orbit (i.e around L1 with period 22.17 days), a deeper
understanding on the response is provided by Figure 4.10. It is evident
from Figure 4.10 that, as k3 increases, not only the final displacement δrf ,
but the entire response is amplified. Furthermore, the orbital response ap-
pearing in the Figure is not radically altered by fundamental changes in the
spacecraft topology (k3 varies from 0 to 1). On the contrary, as discussed in
the next section, the attitude behavior is strongly affected by the ratio be-
tween the principal inertia moments or, in other words, by the body shape.
Thus, the rotational motion of the vehicle may considerably differ between
the cases creating Figure 4.9.
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Figure 4.9: Final radial displacement δrf after 2.5 revolutions as function
of the osculating orbit period Tosc and the spacecraft topology in the Earth-
Moon system.

So far, the initial angular velocity ω0 = φ̇(t = 0) has been kept equal to
zero. To avoid misinterpretations, it should be recalled that the attitude is
defined as the angle φ between the b-frame and the `-frame. In this work,
the angular velocity attributed to the body refers to the temporal derivative
of φ. Therefore, when the angular velocity ω = φ̇ is null, it does not imply
that the spacecraft is not rotating. In fact, it shall be noted that the `-frame
is not an inertial coordinate system, but rotates with rate Ω. It follows that
the spacecraft rotates with the same rate Ω when observed from an inertial
coordinate system, as the I-frame. The effects of imposing a non-zero ini-
tial angular velocity ω0 are depicted in Figure 4.11. Figure 4.11 deserves
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Figure 4.10: Radial displacement evolution δrf as function of the spacecraft
topology in the Earth-Moon system.

further explanations. Firstly, ω0 is expressed as multiple of ωosc, which is de-
fined as the mean angular rate of the spacecraft on the orbit ωosc = 2π/Tosc.
Secondly, large periodic orbit refers to the largest orbit of a specific family
in Table 4.2; likewise, small periodic orbit refers to the smallest orbit of a
specific family in Table 4.2. Only trajectories in the Earth-Moon system are
considered. It appears quite clearly in Figure 4.11 that the increase of ω0

leads eventually to a reduction of the perturbation. It also seems that, after
a certain threshold, a further growth of the initial angular velocity does not
lead to any noticeable decrease of the final radial displacement. As the ratio
between the body angular velocity ω0 and the orbital angular rate ωosc rises
up to several orders of magnitude, the attitude dynamics becomes much
faster than the orbital motion. Here, it can be inferred that high frequen-
cies of rotation emulate an axisymmetric distribution of mass. Roughly, the
mass occupies uniformly each achievable place around the spinning axis
before that the body changes its position. This explains the diminution of
δrf (it has been previously demonstrated that k3 → 0 lessen the perturba-
tion) and the plateau visible in Figure 4.11. In fact, once the spacecraft
rate of rotation is large enough to practicably reproduce an axisymmetric
distribution of mass, it is straightforward to see that the situation can not
improve anymore in this direction. The behavior as function of ω0/ωosc
could be also interpreted in reason of the coupling between the orbital and
attitude dynamics. A large ratio between the frequency of the motions im-
plies that their dynamics is decoupled. The greater is the frequency gap,
the less the two motions mutually interfere. From this perspective, k3 = 0
could be considered a special case of decoupling: as the attitude is constant
(the gravity gradient torque is the only external moment on the system and
is null when k3 = 0), there is no chance to transfer energy between the
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orbital and attitude motions.
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Figure 4.11: Final radial displacement δrf after 2.5 revolutions as function
of the initial angular velocity ω0 in the Earth-Moon system.

The last study advanced in this section aims at understanding the role of
the spacecraft characteristic dimension. As the novel dynamics addressed
relays on modeling the mass distribution itself, it is important to correlate
the response of the system to the extension of such distribution. It is obvi-
ous to notice that Large Space Structures distinguish them-selves because
of the size of the flying vehicle. To that end, the spacecraft is modeled as
a beam of length L along the b̂1 axis, with the b-frame fixed to the center
of mass, while the starting orbital and attitude conditions are the same as
the previous analysis, besides the specification of a null angular velocity
ω0. Before discussing the outcomes from the entire campaign of simula-
tions, it is worth to analyze a sample case. In Figure 4.12 there are the
typical trends of the radial displacement over the orbit for different space-
craft lengths. The dynamics in the example takes place on a large Lyapunov
orbit (Tosc = 22.17 days) about L1 in the Earth-Moon system. Figure 4.12
plots curves describing the departure from the nominal path that seem to
be identical, or more correctly show the same fashion projected on different
scales. This evidence of cross-similarity (or quasi cross-similarity, as further
studies are required to prove the patterns to be exactly identical) has a rel-
evant impact on the understanding of the mechanisms that underlie the
phenomenon. It means that the body size does not alter the nature of the
orbital dynamics response, but only amplifies the effects. It follows that,
small satellites as well as Large Space Structures undergo the same orbital
motion, just on different scales. Likewise, a closer inspection of a single
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time history reveals that, not only the responses from different values of
L are similar, but also the single trend for a given length repeats itself on
different scales as the time increases. The propriety of auto-similarity (or
quasi auto-similarity) is clearly visible in Figure 4.13, where the dynamics
is integrated for a longer period, considering a 100 meters-long beam or-
biting a large Lyapunov of L1 in the Earth-Moon system. The most direct
consequence of auto-similarity is that, no matter how small are the drift-
ing effects on the first orbit, they will reappear identical but increased on
each following revolutions and the trajectory will eventually diverge from
the Lyapunov orbit. In other words, even normal sized satellite orbiting in
vicinity of the librations points will depart from their locations after few
periods. Figure 4.13 shows that a spacecraft with a characteristic length of
100 m will be displaced by 40 km in 4 revolutions, so in the next one or
two orbits will be likely far away from the nominal path.

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

4
x 10

−4

rev [ ]

δ 
r 

[m
]

 

 

(a) L = 1 m.

0 0.5 1 1.5 2 2.5
−0.02

−0.01

0

0.01

0.02

0.03

0.04

rev [ ]

δ 
r 

[m
]

 

 

(b) L = 10 m.

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

4

rev [ ]

δ 
r 

[m
]

 

 

(c) L = 100 m.

0 0.5 1 1.5 2 2.5
−200

−100

0

100

200

300

400

rev [ ]

δ 
r 

[m
]

 

 

(d) L = 1000 m.

Figure 4.12: Cross-similarity of different responses for variations of the
spacecraft characteristic length.

In addition to the examples recalled, an overview of the of entire in-
vestigation is depicted in Figure 4.14. Figure 4.14 plots the final radial
displacement δrf over 4 periods as function of the spacecraft length

L [m] = {1, 2, 5, 10, 20, 50, 100, 200, 500 1000, 2000, 5000} .
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Figure 4.13: Auto-similarity of the response.

The trend is studied for large, medium, small periodic orbits, which have
respectively period: 22.17 days, 16.13 days, 11.72 days, around L1 and
23.12 days, 15.82 days, 14.67 days, in vicinity of L2. In Figure 4.14 appears
distinctly that a relationship between the final radial displacement and the
spacecraft size exists. As shown by the data fitting in the plot (please notice
the axes logarithmic scale), the relationship seems to be parabolic and can
be written in the form

δrf = AL2 , (4.8)

where A is a scaling factor which is function of the osculating orbit and
the period of integration. Beside the quantitative and accurate prediction
of the final displacement through the fit (4.8), it is important to notice the
order of the relationship between the shift from the osculating orbit and
the spacecraft characteristic dimension. A second-order means that as the
spacecraft size is doubled the perturbation is quadrupled. Finally, an atten-
tive observer of Figure 4.14 might notice that the fit proposed in eq. (4.8)
is valid up to a certain value of δrf (in the order of 108m). Likely, when
the trajectory departs sufficiently from the osculating orbit, the trajectory
is not governed any more by the perturbation, but instead the dynamics of
the center of mass alone regains possession of the motion. In that event,
the fit proposed naturally ends its validity.
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Figure 4.14: Final radial displacement δrf as function of the spacecraft
characteristic length.

4.3 Attitude Dynamics

The topic of the research detailed in this section is the dynamic analy-
sis of rigid mass-distributed architectures under a multi-body gravitational
field from the attitude motion perspective. The scope of the investigation
concerns the identification of bounded (its not proper to use the word sta-
ble) angular motions and to outline the conditions that guarantee such re-
sponses on a Lyapunov periodic orbit in the PCR3BP, after the introduction
of the gravity torque, as described in Chapter 3. To this end, a sensitiv-
ity campaign is performed varying the gravitational environment, the body
shape.

The most of the studies on the natural attitude dynamics in the CR3BP
assume the spacecraft fixed in the Lagrangian point [50, 51, 52, 53, 54, 55].
So the influence of the orbital motion on the attitude response is basically
neglected. Wong et al. [56] introduce in their work the translational mo-
tion of the spacecraft by considering a linear approximation of the Lya-
punov periodic orbits. They discover a resonant condition of the spacecraft
librations in the synodic plane due to the coupling between the attitude
and orbital motion. This condition is expressed in terms of a critical value
for the inertia ratio k3 = kcrit, which leads the rotational dynamics to have
the same frequency as the linear Liapunov orbit approximation. In L2 of
the Sun-Earth system kcrit ≈ 0.3579, while in L2 of the Earth-Moon system
kcrit ≈ 0.364. Considering Lyapunov orbits in the linear form, that repre-
sents the only case where the vehicle natural oscillations grow indefinitely.
However, since the Lyapunov orbits are linearly approximated, these results
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are only valid for relatively small orbits close to the equilibrium points.
Knutson et al. [57] in her recent paper studies the rotational dynamics on
non-linear numerically-computed Lyapunov and Halo periodic orbits. She
shows that the nonlinear regime of the orbital motion can seriously affect
the stability of the attitude motions. Thus, the current investigation con-
tinues along this direction to improve the understanding of the rotational
behavior of a spacecraft in a fully coupled nonlinear regime.

What is still pending in the Knutson work [57] is the evidence, and in
the event the definition, of thresholds between bounded and unbounded
pitch responses as function of the orbit size and spacecraft topology, which
are the two governing parameters of the phenomenon. Here, it is worth
to spend some words on a little digression. It the investigation presented
in this section the words stable or instable will never be used as attributes
of the pitch response observed. That would not be correct. By definition,
the stability refers to the solutions of a system as the capacity of those
solutions to remain indefinitely close to them-selves against small pertur-
bations. Therefore, the solution shall not be confused with its propriety.
A response limited over time does not tell us anything about its stability,
since further analysis are required to prove the solution to not explode un-
der small perturbations (at least the solution should be perturbed!). So the
pitch response we observe is just the solution of the natural dynamics of the
system, but we do not know its sensitivity to perturbations. Misinterpreta-
tions may arise because the most of us are used to study trajectories nearby
the equilibrium points of a general system and the boundedness of those
trajectories is the proof of the stability of the system; nonetheless, it should
be realized that the equilibrium point represents the actual solution of the
system and we are observing the perturbed motion nearby that solution.
In conclusion, the analysis in this section aims only at the boundedness or
unboundedness of the pitch solutions, not to their stability or instability.

Two main factors affect the natural attitude dynamic of the space struc-
ture: the orbital path and the distribution of mass. Therefore, to seek
bounded solutions these are the first parameters to be explored. Three
characteristic samples of Lyaponouv orbits are selected in the analysis: a
fully nonlinear orbit labeled as large; a nearly linear orbit labeled as small;
an orbit in the middle of the formers labeled as medium. Nonetheless the
small orbit might be approximated with the linear solution, all the orbits
are numerically computed following the procedure in Chapter 2, account-
ing for the nonlinear behavior, regardless whether it is dominant or not.
The simulations campaign takes place in the Earth-Moon system, even if
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can be easily moved to other systems, such as the Sun-Earth environment.
The periods of the sample orbits are detailed in Table 4.4 for both the fam-
ilies around L1 and L2. Secondly, the dependence of the gravity gradient
torque on the body distribution of mass is function only of the inertia ratios.
Specifically, this is truly correct when the gravity moment is derived from
a second-order expansion of the potential: an higher order series will ac-
count further details of the spacecraft topology and more parameters may
be needed. However, since that is not the current case and additionally the
motion is planar, the inertia ratio k3 alone is sufficient to characterize the
spacecraft shape.

Table 4.4: Sample orbits period for the attitude dynamics campaign.

Orbit Size Tosc [days]

L1 Family L2 Family
Large 22.17 23.12
Medium 12.61 15.82
Small 11.72 14.67

In this analysis the pitch motions is considered bounded when the space-
craft does not overturn it-self. Technically, the solution is bounded when
φ ∈ [−90◦, 90◦] ∀t < t̄. An adequate window of observation is set by
t̄ = 2.5Tosc, where Tosc is the period of the Lyapunov orbit. The space-
craft may actually undergo larger rotation on a longer period, that would
change the classification of the motion, but the selected temporal span can
be judged an adequate sample of the attitude time history, as unlikely the
spacecraft will remain totally uncontrolled for a such long period. Then,
the results of the simulation survey can be effectively summarize in a table
by combining the test parameters and marking the solutions which appear
to be limited. Doing so, Table 4.5 is created for the family of orbit about
L1 and Table 4.6 for the family of orbit about L2. The responses related to
each row of the aforementioned Tables are plotted in the Figures referred
in the last column of the Tables them-selves.

The examination of outcome for the L1 family in Table 4.5 leads to the
following conclusions:

1. As noticed by Knutson [57], nonlinearities of the orbital motion affect
the pitch response to the extend that the spacecraft generally starts
to spin indefinitely, in particularly after a close approach of the sec-
ondary at t = 0.5Tosc. However, a complete exploration of the possible
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Table 4.5: Analysis map of the bounded pitch responses in vicinity of L1.

Orbit k3 Ref.
Size 0.05 0.20 kcrit 0.80 0.95 Figure

Large x x 4.15-(a)
Medium x x 4.15-(b)
Small x x x x 4.15-(c)

x: the symbol denotes a pitch response within ±90◦ limit.

Table 4.6: Analysis map of the bounded pitch responses in vicinity of L2.

Orbit k3 Ref.
Size 0.05 0.20 kcrit 0.80 0.95 Figure

Large 4.16-(a)
Medium x 4.16-(b)
Small x x x x 4.16-(c)

x: the symbol denotes a pitch response within ±90◦ limit.

mass configurations demonstrates, as shown in Figure 4.15-(a), that
for k3 → 0 (i.e. the body approach an axisymmetric topology) the
motion can return to be confined.

2. A sharp-edge variation of the pitch angle is evident in Figure 4.15-(a)
as soon as the spacecraft approaches the secondary at t = 0.5Tosc or
t = 1.5Tosc. This rapid change in the φ derivative is lessen for k3 → 0,
but do not disappear even for very small values of k3. Instead, it does
not occur when the orbit size is reduced, as noticeable in 4.15-(b),
which refers to a medium size orbit.

3. The results proposed by Wong [56] are still valid on numerically com-
puted Lyaponuv periodic orbits, if they are close enough to the lin-
ear approximation. As shown in Figure 4.15-(c), the response for
k3 = kcrit actually respect the limits for the φ angle, but it will not
be marked as bounded since the oscillations are known from [56] to
increase endlessly.

Likewise, the study for he L2 family in Table 4.6 adds considerations as
follows:

1. Unlike the sample from the L1 family, the selected large orbit about
L2 seems to not allow bounded motions even for k3 close to zero.



4.3 Attitude Dynamics 71

2. The chance to obtained limited solution for k3 → 0 is retreived by
decreasing the orbit size, as reported in Figure 4.16-(b).

All considered, there is a clear indication that a threshold between the
bounded and unbounded pitch responses exists and it is function of the
orbit size and spacecraft topology. Specifically, as the orbit dimension in-
creases and nonlinear effects of the orbital dynamic are accounted, the
spacecraft shall approach an axisymmetric mass distribution (i.e. k3 → 0)
in order to guarantee limited attitude librations over a certain time win-
dow. Large Lyapunov orbits are the first extreme of this behavior, since
they lead to the unbounded response even for values of k3 close to zero,
as observed in the L2 family. The second is represented by small Lyapunov
orbits, which always guarantee limited natural oscillations, with the excep-
tion of the resonant condition k3 = kcrit.

The understanding gained with the previous analysis makes a signifi-
cant contribution to the design of Large Space Structures or even classical
satellites. It allows to predict if the natural pitch librations of the vehicle
will be bounded and suggests how to alter either the orbit size or the mass
distribution in order to contain the motion into the desired limits. A natu-
ral bounded solution is desired when it is related to control requirements.
In fact, it is likely that the control effort will be smaller and also controlling
devices with saturation issues, such as reaction wheels, will be more effec-
tive. So, for instance, considering the large Lyaponuv orbit of the family
around L1, the threshold between a limited or diverging solution might be
sought. It results that configurations with k3 < 0.32 undergo a bounded
pitch libration, while structures with k3 > 0.33 start to spin perpetually
in one direction. Otherwise, instead of varying the inertia ratio, the orbit
size could be changed keeping fixed the spacecraft topology. For example,
assuming k3 = 0.8 the orbit size can be reduced until a bounded pitch mo-
tion appears. This happens between an orbit of period Tosc = 12.21 days
and other with Tosc = 11.78 days. Figure 4.17 compares the bounded and
unbounded solutions of this example and for the case k3 = 0.95.
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Figure 4.15: Pitch response on periodic orbits about L1.
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Figure 4.16: Pitch response on periodic orbits about L2.
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4.4 Comparison with other perturbations

One of the initial ideas of this work was to exploit the effects of a fully-
coupled dynamical model as an effective tool to actively maneuver the
spacecraft. In particular, the main interest was to maintain the reference
orbit against other perturbations by controlling the attitude dynamics. To
this end, it is preliminarily necessary to establish that the mass distribution
induced force:

1. can be arbitrarily directed, regardless the position on the orbit;

2. is enough strong to reject common external perturbations.

For a beam-like (k3 → 1) spacecraft, it can be demonstrated that, on large
Lyapunov orbits of the L1 family, the body attitude controls the force ori-
entation allowing to target any desired direction in any position on the
trajectory. Nevertheless, the order of magnitude of such force results to
be negligible when compared with other perturbations, that certainly af-
fect the system. First of all, the solar radiation pressure is the dominant
disturbance of the orbital dynamics in vicinity of the libration points. In
fact, it is straightforward to see that no atmospheric drag survives at such
distance from the attractors, and for the same reason, the influence of the
attractor oblateness decades very rapidly. To have a rough approximation
of the acceleration provoked by the the solar radiation pressure aSRP in the
Earth-Moon system, it could be recalled a formula from Wertz [75]:

aSRP = −4.5× 10−6(1 + c)A/m , (4.9)

where A is the satellite cross-sectional area exposed to the sun in m2, m
is the satellite mass in kg, c is a reflection factor (c = 0 for absorption,
c = 1 for specular reflection, c ≈ 0.4 for diffuse reflection). The solar
pressure acceleration estimated with eq. (4.10) is compared with both
the mean and maximum value of the acceleration adm induced by the mass
distribution (with k3 = 1), as function of the spacecraft characteristic length
L. adm is computed, fixing φ = 0, along a large periodic orbit about L1 in
Figure 4.18 and along a small one about L1 in Figure 4.19. In neither
the former nor the latter case, adm results to be in the least comparable to
aSRP , derived by eq. (4.10) assuming reasonable values of the ratio A/m
(the International Space Station has A/m ≈ 0.01 m2/kg). Therefore, there
are no credible chances to control the weaker perturbation to reject the
stronger disturbance.
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Figure 4.18: Comparison of accelerations aSRP and adm provoked respec-
tively by the solar radiation pressure and the gravity gradient force along a
large Lyapunov orbit about L1.

Unlike the orbital components, the angular acceleration due to a dis-
tributed mass may still be comparable to the action of the solar radiation
pressure. Hence, eq. (4.10) can be rearranged to provide an estimation of
the angular acceleration exerted by the solar radiation pressure:

hSRP = −4.5× 10−6(1 + c)Ar/I , (4.10)

where r is the distance between the center of pressure and the center of
mass of the configuration and I is the spacecraft inertia around the spin
axis. Thus, hSRP is compared with the angular acceleration hdm due to
the distribution of mass as function of the inertia ratio k3: in Figure 4.20
for a body on a large orbit from the L1 family, in Figure 4.21 for body
on a small orbit from the L1 family. This time, in both Figure 4.20 and
4.21 the gap among the two perturbations is significantly reduced to the
extend that hdm overcomes hSRP in certain situations. Furthermore, more
horizontal lines for lower values of Ar/I could be plotted. In fact, it is
not unlikely to have a center of pressure very close to the center of mass,
resulting in r → 0. Finally, it is worth to note in Figure 4.20 the serious
difference between the mean and the maximum value of hdm over a large
Lyapunov orbit (also present on the transitional acceleration adm in Figure
4.18). This contrast among the mean and the maximum value is an index
of the nonlinear nature of the large Lyapunov orbits.
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Figure 4.19: Comparison of accelerations aSRP and adm provoked respec-
tively by the solar radiation pressure and the mass distribution force along
a small Lyapunov orbit about L1.
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The parallel with the solar radiation pressure in the previous Chapter
has stressed the influence of such perturbation on the spacecraft dynamics
(especially on the orbital component). Moreover, it becomes truly critical
for Large Space Structures (LSS) in three-body gravitational scenario. The
solar radiation always affects the motion of satellites close enough to the
Sun, since it is intrinsic of the operative environment; however, further
factors makes this disturbance challenging in the mission analysis of LSS.
Trivially, the solar radiation pressure is the strongest external perturbation
in vicinity of libration points. In addition, the orbital motion around those
points is well-know to be highly instable, making the station keeping prob-
lem one of the principal causes of fuel consumption, especially on long
operative life. Finally, it can be plausibly assumed that LSS require large
amount of power, that is likely to be provided by solar arrays, so the cross-
sectional area exposed to the solar radiation increases quickly for these
architectures. With these premises, it would be of great interest to identify
solutions of the uncontrolled fully-coupled dynamics under the solar dis-
turbance which drastically reduce the station keeping cost. To this end, in

79
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the Section 5.1 of this Chapter, the model of the solar radiation pressure
is described; then, in Section 5.2, the design of periodic orbits for LSS in
vicinity of the L1 point of the Sun-Earth system is presented. Likewise, the
same problem is addressed in Section 5.4 for the Earth-Moon system, but
radically different strategies are proposed.

5.1 Solar Radiation Pressure Model

ni ni ni

s s s

Specular Reflection Diffuse Reflection Absorbed Radiation

Figure 5.1: Possible interactions of the incident radiation.

The solar radiation incident on the exposed surfaces of the spacecraft
exerts a pressure that surely transforms into a disturbing force and probably
into an external moment as well, according to the relative position between
the center of pressure and the center of mass. The total pressure depends
on the type of interaction between the radiation and the surface. Assuming
opaque surfaces for the rest of this work, three kinds are classified and
depicted in Figure 5.1: specular reflection, diffuse reflection, absorption of
the radiation. Each one introduces a different force on an infinitesimal area
dAi of the i-th surface exposed:

dFa = −Pcia cosαiŝ dAi αi ∈ [−π/2, π/2] (5.1)

dFd = Pcid

(
−2

3
cosαin̂i − cosαiŝ

)
dAi αi ∈ [−π/2, π/2] (5.2)

dFs = −2Pcis cos2 αin̂i dAi αi ∈ [−π/2, π/2] (5.3)

where the subscripts a, d, s, denote respectively the absorbed, diffusively
reflected and specularly reflected radiation; P is the mean radiation pres-
sure at a given distance from the Sun rAU , computed from the value at one
astronomical unit (AU) P1AU = 1358W/m2 as

P =
P1AU

r2
AU

, (5.4)
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with rAU expressed in astronomical units; αi is the angle between the inci-
dent direction ŝ and the surface normal n̂i, defined by

αi = cos−1(ŝ · n̂i) ; (5.5)

cia, c
i
d, c

i
s represent the radiation coefficients of the opaque surface and shall

fulfill the relationship
cis + cid + cia = 1 . (5.6)

Adding up all the contributions due to different types of interaction from
eq. (5.1)-(5.3) and exploiting eq. (5.6), the total force provoked by the
solar radiation on the i-th surface is given by

Fi
SRP = −P

∫
Ai

[
(1− cis)ŝ+ 2

(
cis cosαi +

1

3
cid

)
n̂i

]
cosαi dAi . (5.7)

The attendant moment of Fi is found by the cross product

Mi
SRP = bi ∧ Fi

SRP , (5.8)

where bi is the position vector of the center of pressure on the ith surface
relative to the spacecraft center of mass.

5.2 Sun-Earth System

In this section is presented the construction of displaced solar Lyapunov
periodic orbits for solar arrays powered space stations with passive sta-
tion keeping in vicinity of the Sun-Earth L1 point. A spacecraft orbiting
the first Sun-Earth equilibrium point would have constant and generous
supplying of power via solar arrays, which are a completely reliable tech-
nology. Additionally, the thermal environment would be easily predictable
and controllable. These reasons are sufficient to consider the L1 neighbor-
hood a profitable site for gateway stations, Sun observers and even solar
plants. Unfortunately, the same source of power is also the source of the
main orbital disturbance, which combined with a truly unstable dynamics,
leads to the challenge of keeping the designed trajectory. To solve this is-
sue without adopting active techniques, it is exploited a model for the solar
sails dynamics and it is demonstrated applicable to the mission analysis of
space stations in the L1 Sun-Earth point. The orbital-attitude fully coupled
dynamics is leveraged to obtain a passive station keeping of the solution.

Describing the design process developed in this work, a specific vehicle
configuration will be referred, whose characteristics are close to those of
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the International Space Station. This choice should not only guarantee
clearness of explanation but also provide an useful quantitative picture of
the results for a general purpose architecture. As it will be evident at the
end, it is straightforward reproducing the process with configurations of
major concern for the reader. Anyway, the addressed space station layout
is sketched in Figure 5.2. Basically, it is consisting of a central rectangular
module (assuming uniform distribution of mass) and two identical massless
branches of solar arrays; their features are tabled in 5.1, where m, L, w,
Asa, b denote in the order mentioned: the total spacecraft mass, the central
module length and width, the solar array area for a single branch and the
distance between the branch center of solar pressure Cp and the spacecraft
center of mass CoM . The two centers of pressure and the configuration
center of mass are hypothesized to be aligned along the b̂2 axis of the b-
frame, whose origin corresponds to CoM . The adopted pattern of surfaces
exposed to the solar radiation pressure is such that the attendant torque
is null. Because of its I shape, this configuration will labeled as I-Shaped
Station (I-SS).

w

L

b

b1

b2

CoM

C P

Figure 5.2: Schematic picture of the I-SS configuration.

Table 5.1: I-SS configuration data.

Spacecraft Solar Array

m [tons] 400 Asa [m2] 2000
L [m] 100 b [m] 80
w [m] 100 cs [ ] 0.4
k3 [ ] 0 cd [ ] 0.4

If the I-SS is placed on a Lyapunov periodic orbit of the L1 Sun-Earth
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family, the station will certainly depart from the unperturbed trajectory
within an orbital period as consequence of the solar radiation pressure.
This happens regardless the orbit size as shown in Figure 5.3.
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Figure 5.3: Drift from classic Lyapunov orbits about L1 induced by the solar
radiation pressure.

Despite the solar radiation pressure cannot be annihilated without a
active rejection, at least it can be incorporated in the dynamic model and
provide meaningful solutions under certain conditions. The mere addiction
of the perturbation as an external action to the equations of motion does
not lead to an useful insight, but simply alters the proprieties of the original
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system. Above all, the problem is no longer conservative. However, it is
still autonomous because the solar radiation has a constant direction when
observed in the rotating frame. From this basis, McInnes shows [76] that
the equation of motions developed to study the dynamics of solar sails can
be derived by a potential expression modified to account the solar force.
Unfortunately, this is possible only with a specif framework of assumptions:

1. the solar sail is flat and perfect reflective (no absorption or diffusive
reflection).

2. the solar sail is modeled as a infinitesimal mass point and its attitude
dynamics is not accounted in the equations of motion.

3. the solar sail normal is always direct toward the Sun and aligned with
the Sun-Spacecraft line.

4. the solar sail area is constant during the whole motion.

These hypothesis lead to the equation of motions
ẍ = 2ẋ+ x− (1− µ)(1− β)

x+ µ

r3
1

− µx− 1 + µ

r3
2

ÿ = −2ẏ + y − (1− µ)(1− β)
y

r3
1

− µ y
r3

2

, (5.9)

which are expressed in the non-dimensional coordinates x, y of the classi-
cal synodic frame defined in Chapter 2 (whose origin is fixed in the center
of mass of the planetary system rather than in the Lagrangian point, as for
the `-frame). r1 and r2 represents the distance from P1 and P2 respectively,
while µ is the mass parameter. The variable describing the solar sail in-
teraction with the radiation is β, the so-called dimensionless sail lightness
parameter. β is defined as the ratio of the solar radiation pressure acceler-
ation to the solar gravitational acceleration. The lightness parameter does
not depend on the distance from Sun, because both accelerations are as-
sumed to be inversely proportional to that distance.

As anticipated earlier, the system of equations (5.9) relies on the modi-
fied pseudo-potential

Ūβ =
1

2
(x2 + y2) +

(1− µ)(1− β)

r1

+
µ

r2

, (5.10)

which has three stationary solution on the axis y = 0, given by solving the
roots of

f = x− (1− µ)
(1− β)(x+ µ)

(x+ µ)3
− µ x− 1 + µ

(x− (1− µ))3
. (5.11)
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Detailed in [77], the equilibrium positions of solar sails in the RC3BP
does not necessarily lie on the P1-P2 line, but are function of the sail orien-
tation respect the radiation direction. On the other hand, when the exposed
surface is perpendicular to the Sun-spacecraft line, the equilibrium points
are located at y = 0 as in the classical problem and can be computed as the
zeros of eq. (5.11). It turns out that they are just displaced forward the Sun
by a shift subordinate to the β value. These particular solutions are often
referred as artificial on-axis libration points. The name itself anticipates
that periodic orbits still exist around the new equilibria. In fact, a proper
stability analysis demonstrates [76] that the original qualitative nature of
the problem is preserved and periodic orbits survive in a modified form.
For example, Figure 5.4 depicts a planar Lyapunov periodic orbit around
the artificial L1 (clearly moved forward respect its classical location) for
β = 0.051689 and the Jacobi constant JC = 2.8956695 (which is calculated
accounting the modified version of the pseudo-potential). As proof of va-
lidity, in the plot the same orbit appears also as computed by Farres in [78].
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Figure 5.4: Displaced Lyapunov periodic orbit around the artificial L1 point.
Configuration space on the basis of the standard synodic frame.

Although periodic orbits result to be a possible solution of the equation
of motions (5.9), similarly to the unperturbed dynamical model, they are
owing to the set of hypothesis developed specifically for the solar sails dy-
namics. Thus, further considerations are necessary before extending their
employment to standard vehicles without sails. First of all, the perfect re-
flection of the solar radiation on the exposed surface (i.e cs = 1) is not
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authentic for a general opaque covering. In fact, other two types of inter-
actions occur beside the specular reflection: the absorption or the diffusive
reflection of part of the total incident radiation. As discussed in the pre-
vious Section, each type of interaction translates into forces different for
magnitude and direction; adding up all the contributions, the total force
on a general surface is not equal to the force on the equivalent specular
area, both in terms of intensity and orientation. If the force exerted by the
solar radiation pressure changes, the solution and even the equations of
motions will do too. Therefore, the periodic orbits may disappear in the
dynamics of classical spacecraft. But, if it is possible to demonstrate that a
space structure with general surfaces exposed to the solar radiation and an
equivalent flat specularly reflective solar sail result in the same solar force
vector during the entire motion, eq. (5.9) and their solutions will be true
again. In other words, the total force shall correspond in magnitude and
direction between the two models of radiation interaction. To this end, the
lightness parameter β shall be computed according to the actual force on
each exposed surface

β =
|R1|2

µ1m

nS∑
i

|Fi
SRP | , (5.12)

where nS is the total number of surfaces, Fi
SRP is defined in eq. (5.7), |R1|

denotes the distance from the Sun and µ1 its planetary constant; m stands
for the total spacecraft mass. The range of β for configurations without
solar sails is about [10−6, 10−4], while a design range for sails is between a
conservative β ≈ 0.03 and an optimistic β ≈ 0.3 [76]. Figure 5.5 shows
the displacement of the artificial L1 point (solution of eq. (5.11)) for the
effective β in the range of a standard spacecraft.

So far, given an arbitrary spacecraft, the resultant exerted by the solar
pressure is equivalent in terms of euclidean norm to the force generated
by a solar sail with lightness factor computed from eq. (5.12), but not
in terms of orientation. Let us consider two surface: a perfectly specular
surface (like the solar sail) and another non-perfectly specular. On the per-
fectly specular surface the solar radiation pressure provokes a force in the
direction of the normal n̂i of the surface; on the non-perfectly specular sur-
face the resultant is made up of components in the direction n̂i and in the
direction of the incident radiation ŝ, as obvious from eq. (5.1). Therefore,
considering these two type of surfaces, the only chance to obtain the same
orientation of the resultant is when n̂i matches ŝ. This happens when the
surface is orthogonal to the incident radiation. Luckily, this condition is
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Figure 5.5: Displacment of the artificial L1 point as function of the lightness
parameter for solar arrays powered satellites.

contained in the framework of hypothesis leading to the model presented
for solar sails (i.e equations of motion (5.9)). Hence, as long as the surface
is perpendicular to the Sun-spacecraft line and the lightness parameter is
computed properly, the solutions of the model (i.e. periodic orbits) remain
legitimate for a non-perfectly reflective surface too. The concept is easily
applicable also to a typical satellite constituted by different surfaces: the
configuration of exposed surfaces is required to be symmetrical respect to
an arbitrary axis. At this point, it is sufficient to have such axis aligned with
the solar radiation vector, so that the total effective cross-sectional area of
the configuration becomes normal to the Sun-spacecraft line. The symme-
try is a sufficient condition to cancel all the components not directed as ŝ.

The periodic orbits generated including the thrust due to the solar ra-
diation F SRP =

∑nS

i Fi
SRP assume no external torques on the spacecraft,

and its orientation perfectly controllable in order to maintain F SRP ≡ ŝ.
However, this may not be the case for an arbitrary space structure under
its uncontrolled fully-coupled dynamics. The natural evolution of the at-
titude motion may lead to slight deviations from the correct alignment of
the vehicle with respect to the Sun-spacecraft line. To appreciate the con-
sequences of attitude misalignments on the orbital trajectory, it is worth to
recall the I-SS configuration. Accordingly to data in Table 5.1, it is hypoth-
esized that the solar arrays are the only surfaces interacting with the solar
radiation. Additionally, the body is axisymmetric (k3 = 0), therefore the
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gravity gradient torque is null, and the local body coordinate system, the
b-frame, corresponds to the principal axes of inertia. Next, the study ad-
dresses three sizes of artificial Lyapunov periodic orbits: a large orbit with
period 311 days, a medium orbit with period 198 days and a small orbit
with period 177 days.
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Figure 5.6: Misalignment angle αb.

The exposed surfaces of the I-SS are a symmetrical configuration rela-
tively to the b̂1 axis, therefore it is necessary to maintain b̂1 aligned with ŝ
in order to satisfy the conditions underlying the existence of the artificial
Lyapunov orbit. However, small variations occur around the desired point-
ing condition when the actual uncontrolled attitude dynamics is studied.
Figure 5.6-(a) reports the misalignment angle αb of b̂1 relative to ŝ (see
Figure 5.6-(b)), defined positive when counterclockwise. Introducing this
pointing error the spacecraft undergoes an evident departure from the ar-
tificially displaced periodic orbit. In fact, the final radial displacement after
one period, see Table 5.2, is smaller than that experienced in the classical
formulation of the problem, but it is still large enough to lose the nominal
trajectory in the following revolution.

Table 5.2: Final Radial Displacement of the I-SS for different artificial Lya-
punov orbits.

Large Medium Small

Classic 1.4× 107 m −1.8× 108 m −4.5× 107 m
Artificial 1.8× 106 m 1.5× 105 m 1.2× 105 m

To enable the spacecraft to passively target the Sun, an idea proposed
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for the solar sails design is exploited again. In fact, different recent papers
[79, 80] suggest tailoring the sail shape as an effective passive mean to
impose the desired attitude along the orbit. The concept employed here is
the simplest possible and it is inspired by the work of Kirpichnikov et al.
[81]: the attitude of a conic surface exposed to the solar radiation is stable
around the direction of the incident radiation. In the plane, this is equiv-
alent to a two-folding surface formed by two equally inclined branches.
Thus, the I-SS is modified rotating symmetrically both the solar arrays
around their center of pressure by an angle δsa, as sketched in Figure 5.7.
Without need to explain the name, the vehicle in its new configuration will
be referred as V-Shaped Station (V-SS). In the following investigation, this
configuration will replace the I-SS on the same orbits chosen earlier. At
this point, after the rotation δsa, the solar arrays area shall be increased
to keep the effective lightness parameter equal to the original value of the
I-SS, otherwise the aforementioned periodic orbits would not represent the
exact nominal trajectory. As a matter of fact, each artificial periodic orbit
is uniquely linked to a value of β. Also, let us introduce the gravity gradi-

w

L

b

b1

b2

CoM

C P
w

L

b

b1

b2

CoM

C P

sa

I-SS V-SS

Figure 5.7: Schematic picture of the V-SS configuration.

ent torque, waiving the constrain of axisymmetric distribution of mass. For
this purpose, the width of the central module can vary from 0 m (beam-
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like geometry, k3 = 1) to 100 m (axisymmetric geometry, k3 = 0). Initially,
simulations are performed for the V-SS with δsa = 45◦. Results shown in
Table 5.3 demonstrate that the drift after one revolution of the V-SS from
the periodic orbit is minimal, regardless the orbit size or the inertia ratio of
the analyzed cases. This is an indirect clue that V-SS is able, at least for the
examined conditions, to passively aim at Sun along the entire orbit. There-
fore, all the assumptions underlying the existence of the periodic orbit are
satisfied during the entire motion, and straightforwardly the dynamics re-
spects the prediction of the model. A periodic orbit has been eventually
designed fully incorporating the solar radiation pressure both in terms of
orbital and attitude motion.

Table 5.3: Final Radial Displacement of the V-SS (δsa = 45◦) for different
artificial Lyapunov orbits.

k3 = 0 k3 = 0.5 k3 = 1

Large −10 m −105 m −153 m
Medium −3 m −77 m −111 m
Small −2.5 m −119 m −177 m

Despite the V-SS with δsa = 45◦ proves to adequately maintain both the
desired trajectory and pointing, such inclination of the solar arrays is highly
inefficient, as the effective area to generate electric power is considerably
smaller than the actual array extension, because of the inclination itself
relative to the incident radiation (directed as b̂1). However, δsa is reduced
down to 5◦ without sensibly making things worse, as confirmed by the
values of the radial displacement after one period in Table 5.4. Of course,
a lower δsa reduces the promptness of control with consequent larger shift
from the orbit, especially under a stronger gravity gradient (see Figure 5.8).
Stated in other terms, larger attitude errors result in larger orbital errors.
But again, even in the worst case faced, the orbital errors are intangible as
shown in Figure 5.9.

The last part of the study aims at figuring out how the inclination of
the solar arrays affects the libration dynamics around the nominal pointing
condition toward the Sun. Furthermore, fixed the inclination, the response
may still vary considerably according to the mass distribution topology and
the orbit size. For inertially axisymmetric spacecrafts (k3 = 0) the oscil-
lations around αb = 0◦ are guaranteed to be extremely small, regardless
either the orbit size or the solar arrays tilt. Something different is observed
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Table 5.4: Final Radial Displacement of the V-SS (δsa = 5◦) for different
artificial Lyapunov orbits.

k3 = 0 k3 = 0.5 k3 = 1

Large 196 m 2890 m 3850 m
Medium 79 m 1510 m 2230 m
Small 68 m 2320 m 3490 m
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Figure 5.8: Radial Displacement of the V-SS on a large artificial Lyapunov
orbit.

for truly anisotropic mass distribution (k3 = 1). On small or medium size
orbit the dissimilarity is meager: the oscillations are not exactly around the
nominal pointing, but there is a tiny bias, function of the orbital position
of the spacecraft. The more the orbit size increases or the solar array angle
decreases, the more the phenomenon becomes tangible, as shown in Fig-
ure 5.10. Not surprisingly, if the control is soften because of a lower solar
arrays tilt or the disturbance is strengthen because of a larger orbit, then
the bias error is augmented.

Unlike for small and medium orbit sizes, the attitude response of an
highly anisotropic body is characterized by a critical dependence on the
solar array inclination. To begin with, it is worth to recall the behavior
of an axisymmetric spacecraft. Referring to Figure 5.11-(a), the solar ar-
rays tilt changes only the frequency and the amplitude of the pitch motion,
without altering the nature of the solution. The reduction in frequency and
the simultaneous amplification of the oscillation for δsa = 5◦ only suggests
that a lower solar arrays inclination leads to a weaker and slower control.
Conversely, in Figure 5.11-(b) can be noticed a totally different trend when
a anisotropic space structure on a large orbit is equipped with solar array
mounted at δsa = 5◦ or at δsa = 45◦. In the former case, the motion starts
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Figure 5.9: Large artificial Lyapunov orbit in the most critical configuration
of the V-SS (δsa = 5◦, k3 = 1). Configuration space on the basis of the
`-frame.

similarly to the other responses discussed, but at half revolution the ampli-
tude of librations rises abruptly; in the latter case, it is instead only notice-
able a perturbation of the oscillations that is rapidly reabsorbed. However,
in both the circumstances the cause is the close encounter of the secondary
and the P1-P2 line crossing. An alternative picture of the phenomenon is of-
fered observing the phase diagrams in Figure 5.12. For δsa = 45◦ the phase
pattern is altered but not destroyed by the events at 0.5 revolutions; on
the contrary, for δsa = 5◦ the destruction of the initial structure of motion
(shown in Figure 5.13) is evident and leads to a new cycle of oscillations.
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Figure 5.10: Attitude pointing error of an anisotropic spacecraft (k3 = 1)
along Lyapunov periodic orbits with different size.

(a) Axisymmetric (k3 = 0).

(b) Anisotropic (k3 = 1).

Figure 5.11: Attitude pointing error along a large Lyapunov periodic orbit
for different spacecraft topology.
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Figure 5.12: Attitude phase portrait of an anisotropic spacecraft (k3 = 1)
orbiting a large Lyapunov periodic orbit, considering different solar arrays
tilt.

Figure 5.13: Zoom of the attitude phase portrait of an anisotropic space-
craft (k3 = 1) orbiting a large Lyapunov periodic orbit, considering a solar
arrays tilt δsa = 5◦.
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5.3 The Secondary Anomaly
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Figure 5.14: Evolution of the external acceleration on different Lyapunov
periodic orbits.

By concluding the preceding Section, it was noticed that the attitude
phase portrait related to a large Lyapunov orbit was critically altered after
the crossing of the attractors line nearby P2. As the size of the orbit in-
creases, it is known that the orbital motion relies upon a truly nonlinear
dynamics; thus, to have a deeper insight on the coupled attitude dynamics
in a nonlinear regime, the angular acceleration trend due to gravity and
fictitious momenta is studied along the trajectory. This acceleration is ba-
sically the action exerted by the external actions, which, recalling the eq.
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(3.44), is given by

aφ =
(Qg)φ + (QΩ)φ

mφφ

. (5.13)

The orbital position will be identified in terms of anomaly θsc, which is de-
fined as the spacecraft angular position relative to the `-frame; specifically
θsc = 0 represents the vehicle on the right of the libration point and aligned
with P1 and P2.

Regardless considering the L1 or the L2 family, a serious evolution of the
solicitation regime is related to the orbit dimension. Along small nearly-
linear orbits the aφ trend experienced is characterized by a positive maxi-
mum and a negative minimum located respectively almost on θsc = ±90◦,
which corresponds to the maximum distance from the axis through the pri-
mary and the secondary; the trend is symmetric about the origin and the
transition between the two picks is doubtlessly smooth. Enlarging the tra-
jectory, the observed fashion undergoes a purely nonlinear mutation. Not
only the singularity points strengthen their intensity, but also they move
along the orbit, approaching θsc = 0◦ in the L1 family and θsc = 180◦ in the
L2 family. That is, the picks shift from the point of maximum distance from
the axis to the closest location to the secondary. This behavior is qualita-
tively displayed in Figure 5.14 for both the periodic orbits around L1 or L2.
In particular, the plot is obtained assuming k3 = 1 and φ = 0 along the en-
tire path. Furthermore, it should be noted that the curves referring to small
and medium orbits are amplified in order to depict a clear visualization.

The phenomenon brought to light will be named Secondary Anomaly.
More correctly, the name will be employed to address the circumstance of
large Lyapunov periodic orbits where the intensity and the proximity of the
singularities are such as to represent a serious and abrupt variation of the
external momentum. In those cases, as a matter of fact, the solicitation
changes from its maximum positive value to its negative minimum in a rel-
atively short span of time; as shown in Figure 5.14, close to the anomaly,
the slope of aφ is almost vertical. The effects of a rapid mutation of the
external action are assimilable to an impulsive disturbance, which is capa-
ble of transferring large amount of energy to all the oscillatory frequencies
of the system. Thus, the secondary anomaly will be likely responsible for
critically perturbing the spacecraft attitude and increasing the attendant
control effort. Moreover, it might trigger significant vibrations of the most
flexible elements of the structure too. For example, the orientation passive
control by means of the solar radiation pressure, studied earlier, introduces
a pseudo-elastic dynamics and the unexpected lowering of the pointing ac-
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curacy is indeed due to the secondary anomaly.

5.4 Earth-Moon System

The design solution presented in the previous Section is not applicable in
the Earth-Moon system. In the Earth-Moon system the dynamics is com-
pletely different from the Sun-Earth system because in the synodic frame
the source of radiation is not fixed but rotates once per synodic lunar pe-
riod. Mathematically, the dynamical system is no longer autonomous. To
date, the only artificial periodic orbits incorporating the solar pressure in
the Earth-Moon system have been identified for solar sails orbiting above
the synodic plane [82]. In this Section, a particular orbit in the plane of the
system will be proposed and studied for classical spacecrafts. The discov-
ered orbit cannot be classified as periodic, but retains a surprising stability
under the solar disturbance.

The intuition that will be investigated is to relate as much as possi-
ble the variation of the Sun position, which leads the system to be non-
autonomous, and the spacecraft motion. To this end, the orbit with a pe-
riod equal to the mean synodic lunar month is extracted from the Lyapunov
periodic orbits family around L1. Assuming in addition to neglect the incli-
nation of the Sun above the Earth-Moon orbital plane and the annual vari-
ations of the synodic lunar month, each point of that orbit observes after a
period the Sun in the same initial relative angular position ∆θ. Of course,
as the orbital angular rate θ̇sc is not constant, ∆θ varies along the trajec-
tory before returning to its initial value after a revolution. This particular
solution of the L1 family will be named quasi sun-synchronous Lyapunov
periodic orbit. The quasi sun-synchronous Lyapunov periodic orbit is repre-
sented in Figure 5.15, where also the meaning of some frequently recalled
notation appears clearly.

Then, a further assumption is introduced: the configuration of the ex-
posed surfaces has to be symmetrical with respect to an axis aligned with
the Sun-spacecraft line throughout the motion. For convenience, the V-SS
architecture (refer to the previous Section) will be initially considered. At
t = 0 the V-SS is placed on the orbit left crossing of the P1-P2 axis and b̂1 is
pointed exactly opposite to the Sun. In order to identify possible periodic
orbits the difference between the initial and final state is monitored after
one period Tosc in function of the initial solar phase θsun(t = 0). Trivially, if
the discrepancy turns out to be null for a certain θsun(t = 0), it is a periodic
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Figure 5.15: Quasi sun-synchronous Lyapunov periodic orbit from the L1

family.

solution. The priority is given to errors in position

∆x = x(Tosc)− x(0)

∆y = y(Tosc)− y(0)

and velocity
∆̇x = ẋ(Tosc)− ẋ(0)

∆̇y = ẏ(Tosc)− ẏ(0) ,

with x,y representing the coordinates of the spacecraft position in the con-
figuration space; however, to address exact periodicity also the attitude and
the sun position errors should be considered. Unexpectedly, a quite regular
relationship between the initial Sun angular position and the errors in po-
sition and velocity appears in Figure 5.16. Moreover, all the curves seem to
cross the zero in the neighborhood of two symmetric values of θsun. Unfor-
tunately, the close inspection shown in Figure 5.17 reveals that each curve
has different zeros; it means that the errors cannot be simultaneously null,
implying the non-existence of periodic solutions. Despite that, the proxim-
ity of the zeros is still an excellent result. In fact, while selecting a value
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of θsun to cancel one of the errors, the others will remain close to zero as
well; likewise, an arbitrary objective function that weight each error may
be minimized instead. Anyway, the obvious consequence of picking up a
initial solar phase from the neighborhood, is the critical reduction of the
station keeping effort, as all the errors to be corrected are much smaller.
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Figure 5.16: Position and velocity errors as function of the initial Sun
phase.

Figure 5.17: Near zero region of position and velocity errors.

It is particularly useful to express the errors at the next positive (ẏ > 0)
crossing of the line joining the attractors, instead of considering one nom-
inal period after the initial instant. Due to the disturbance of the solar
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radiation the two events do not correspond as in the unperturbed dynam-
ics. This slight change of perspective is motivated by the reason that the
simplest algorithm of station keeping targets the perpendicular crossing of
the axis through P1-P2. Therefore, monitoring the crossing in place of the
nominal period offers a more meaningful picture of the strategy proposed.
Hence, the new errors are defined as

εx = x(t̄)− x(0)

εvx = ẋ(t̄)

εvy = ẏ(t̄)− ẏ(0) ,

where t̄ is the crossing temporal instant. It will also be considered the
variation of the Sun angular position

εθsun = θsun(t̄)− θsun(0) .

The parallel of the crossing errors between typical periodic orbits of the L1

family and a quasi sun-synchronous Lyapunov perturbed by the radiation
pressure is reported in Table 5.5. Obviously, the initial solar phase required
by the quasi sun-synchronous solution is chosen from the near-zero region
of Figure 5.17. In Table 5.5 it is self-evident the effectiveness of the strategy
proposed. Specifically, the solution presented is based on θsun = 36.01613◦.
Exploiting this case, it is worth to depict in Figure 5.18 the difference be-
tween the solar and the vehicle angular position along the orbit, in order to
offer a further insight of a quasi sun-synchronous Lyapunov orbit. It should
be observed that even if the trend of ∆θ = θsc − θsun is not constant dur-
ing the orbit, it is limited and eventually returns to its initial value (within
a small tolerance); also, the fashions corresponding to the upper and the
lower arc of orbit are specular.

Table 5.5: Comparison between crossing errors.

Small Medium Large Sun-Syn.

εx [m] 1287732.10 804863.52 -198780.17 -116.62
εvx [m/s] 10.09 5.68 -1.27 -0.44
εvy [m/s] -3.59 -2.05 0.84 -0.07
εθsun [deg] 149.213 170.332 89.800 0.070

The solar phase angle θsun ≈ 36◦, that guarantees a drop in the cross-
ing errors on a quasi Sun-synchronous Lyapunov periodic orbit, has been
discovered considering a precise vehicle configuration: the V-SS, see data
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Figure 5.18: Difference between the Sun and spacecraft angular positions
along a quasi sun-synchronous Lyapunov periodic orbit.

in Table 5.6. The scope of the following research is to prove the effective-
ness of such mission design for a wide range of architectures. Meanwhile,
the limits of this strategy will be drawn. To this end, four parameters are
identified changing the dynamical response:

• The ratio of the total effective area and the total spacecraft massA/m.
This parameter controls the ratio of the solar radiation pressure over
the inertia forces.

• The ratio Ab/I, where b is the distance between the spacecraft center
of mass and the center of pressure of the exposed surfaces above the
axis of symmetry, I is the moment of inertia about the pitch axis. This
parameter controls the ratio of moments due to the solar radiation
pressure and the inertia of the system.

• The solar arrays inclination δsa. This parameter affects the stability of
the attitude around the equilibrium position.

• The moments of inertia ratio k3. This parameter affects the gravity
gradient torque and its disturbing impact.

Table 5.6: VSS characteristic data.

A/m [m2/kg] Ab/I [m/kg] δsa [deg] k3

0.0228 0.0114 45 0

The first analysis evaluates the crossing errors for noteworthy varia-
tion of the parameter A/m, assuming the set of values A/m [m2/kg] =
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Figure 5.19: Sensitivity to the parameter A/m - 1.

{0.01, 0.1, 1, 10}. To start with, Figure 5.19-(a) shows that acceptable po-
sition errors are obtained for an order of magnitude of A/m up to O(10−1)
m2/kg. On the contrary, for values well above the unity (i.e. A/m = 10
m2/kg) the force exerted by the solar radiation pressure is likely compa-
rable, or even overcomes, the translational inertia forces and the orbital
motion is seriously altered, as visible in 5.19-(b). A clearer trend appears
for the velocity and Sun phase errors in Figure 5.20: they both increase
monotonically with the ratio A/m. Figure 5.20 confirms again that, up
to the order O(10−1) m2/kg (which includes standard satellites or space
stations), the vehicle experiences incredibly small errors of the crossing
condition. The attitude motion is affected by A/m as well. In all the case
addressed the motion remains oscillatory around the nominal pointing con-
dition αb = 0◦, but the amplitude of librations may rise quickly with A/m
for configurations equipped with highly inclined solar arrays, see Table 5.7.

The second analysis investigates how the inclination angle of the solar
arrays acts on the success of the strategy. Basically, Figures 5.21 and 5.22
demonstrate that for any axisymmetric distribution of mass (i.e. k3 = 0)
the only value of δsa ∈ [0◦, 45◦] leading to critical crossing errors is δsa = 0◦,
which means no passive control on the pointing orientation. The efficacy
may turn out to be weakened for low solar arrays inclinations if the space-
craft is not inertially axisymmetric; however, the same performances will
likely be recovered increasing another parameter Ab/I, discussed in the
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Figure 5.20: Sensitivity to the parameter A/m - 2.

Table 5.7: Maximum oscillation amplitude in function of A/m

A/m [m2/kg] Maximum amplitude [deg]

δsa = 45◦ δsa = 5◦

0.01 4.49 8.78
0.1 11.10 0.90
1 25.22 3.36
10 78.97 2.23

next paragraph. The results for δsa also highlight that the coupling be-
tween the attitude and the orbital dynamics cannot be neglected. In fact,
as long as the desired spacecraft orientation is lost, also the orbital trajec-
tory drifts from the designed path.
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Figure 5.21: Sensitivity of the position error to the arrays inclination δsa.
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Figure 5.22: Sensitivity of other errors to the arrays inclination δsa.

The last study aims at providing a deeper insight on the parameterAb/I.
Since this ratio controls the moment provoked by the solar pressure, or
rather the moment responsible for rejecting disturbance on the pointing
condition, it is worth to include in this analysis also the last parameter k3,
which affects instead the perturbation due to the gravity gradient torque.
The simulations are performed for Ab/I [m/kg] = {0.01, 0.001, 0.0001} and
k3 ∈ [0, 1]. As in the study of A/m, the focus is on variation of the order
of magnitude of the parameter. At a first glance of the velocity crossing
errors in Figure 5.23, it seems that not significant alterations of the dy-
namics exist. In fact, Figure 5.23 reports extremely low errors of both
the velocity components (ε̇x < 0.2 m/s, ε̇y < 0.07 m/s) for any combina-
tion of Ab/I and k3. From that, it can be inferred the robustness of the
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orbital solution against variation of the parameters considered. On the
other hand, the attitude response should be examined as well. Figure 5.24
points out the different sensitivity of the orbital and attitude motion to
Ab/I and k3 in terms Sun phase and aiming respectively. Figure 5.24-(a)
shows the attitude angle relative to the Sun spacecraft-line at the crossing
instant. The large values noticeable in the chart indicate that the spacecraft
started to spin and rotations accumulate throughout the motion; hence, the
space structure is not rotationally stable around the equilibrium condition
αb = 0◦ because of the gravity gradient torque. In fact, the mentioned
cases correspond to high anisotropic distributions of mass (k3 → 1) and
low values of Ab/I. Surprisingly, a divergence of the attitude motion does
not correspond to a divergence of the orbital motion. Not trivially, when
the spacecraft reaches a certain spin rate, the attitude dynamics becomes
much faster than the orbital response. As consequence, the force exerted by
the solar pressure that really affects the orbital motion is equivalent to the
mean value over a certain number of spacecraft’s revolutions. Eventually,
the direction of the mean force is very likely to match the sun-spacecraft
line, since all the transversal components tend to annihilate each other;
the condition assumed to deliver the nominal solution is indeed satisfied
within a reasonable tolerance.
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Figure 5.23: Sensitivity of the velocity errors to the parameters Ab/I and
k3.

The best insight on both orbital and attitude maintenance is probably
offered by the chart of the position error in Figure 5.25. The overall trend
is quite obvious: the best condition is given by the maximum value of Ab/I
and k3 = 0; on the contrary, the worst case is given by the minimum value
of Ab/I and k3 = 1. These circumstances simply represent the maximum
control action coupled to the minimal disturbance and vice-versa. How-
ever, some information is hidden behind the general apparency. Despite,



106 Rigid Fully-Coupled Motion under Solar Radiation Pressure

0
0.10.20.30.4

0.50.60.70.80.9
1

0.01
0.001

0.0001

−1

0

1

2

3

x 10
4

Ab/I [m/kg]k
3
 [ ]

α b [d
eg

]

(a) Pointing angle.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0.01
0.001

0.0001

0

0.02

0.04

k
3
 [ ]

Ab/I [m/kg]

ε θs
un

 [d
eg

]

(b) Solar phase error.

Figure 5.24: Sensitivity of other errors to the parameters Ab/I and k3.

as already discussed, there are not critical errors, slight discrepancies in
the magnitude are sufficient to predict variations of the attitude response
nature. Letters in the plot recall different attitude responses depicted in
Figure 5.26. The lowest εx corresponds to the spacecraft oscillating around
the equilibrium orientation αb = 0◦ (see 5.26-(a)); conversely, the greatest
εx relates to a quick divergence of αb (see 5.26-(d)). An interesting atti-
tude behavior emerges for A/m = 0.01 m2/kg and the interval of inertia
ratio k3 ∈ [0.7, 0.9]: as shown in Figure 5.26-(b), for k3 = 0.7 the spacecraft
spins clockwise; for k3 = 0.8 the spacecraft oscillates around αb = 0◦; for
k3 = 0.9 the spacecraft spins counterclockwise. A similar bifurcation of the
response nature can be noticed in Figure 5.26-(c) for A/m = 0.001 m2/kg
; this time, only one turning point occurs for k3 increasing from 0.8 to 1.
The phenomenon has not been fully understood yet, so further research is
required to provide a proper explanation.
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Figure 5.25: Sensitiviy of the position error to the parameters Ab/I and k3.
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0.5 0.6 0.7 0.8 0.9 1
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

rev [ ]

α b [d
eg

]

 

 
k
3
 = .7

k
3
 = .8

k
3
 = .9

(b) Ab/I = 0.01m/kg , k3 = 0.7, 0.8, 0.9.

0.5 0.6 0.7 0.8 0.9 1
−500

0

500

1000

1500

2000

2500

3000

rev [ ]

α b [d
eg

]

 

 
k
3
 = .8

k
3
 = 1

(c) Ab/I = 0.001m/kg , k3 = 0.8, 1.

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

4

rev [ ]

α b [d
eg

]

 

 

(d) Ab/I = 0.0001m/kg , k3 = 1.

Figure 5.26: Pointing angle history.
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Chapter 3 has presented the formulation adopted to reproduce the pla-
nar dynamics of large rigid space structures in the vicinity of the libration
points. In this Chapter the hypothesis of rigid body is dropped and the
structure deformation is included in the system dynamics. In the first Sec-
tion, the elastic discretization of the problem via modal shapes is described.
Secondly, the kinematics necessary to introduce the elastic displacements
is developed. Finally, the equations of motion incorporating the spacecraft
flexibility are derived in the Euler-Lagrange form and are successively ma-
nipulated accordingly to the Encke’s Method.

6.1 Elastic Discretization

When the structure becomes flexible, any infinitesimal mass point does not
retain a fixed location in the local coordinate system (the b-frame) any-
more. It shall be accounted the chance of a further relative displacement
because of the body deformation. Thus, the position vector of an infinites-
imal mass in the point P , as shown in Figure 6.1, consists of two contribu-

109
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Figure 6.1: Local position vector on the deformed body.

tions
u = u0 + uf , (6.1)

where u0 is the undeformed position and uf is the elastic displacement;
both vectors are written on the basis of the b-frame. Recalling the dis-
cussion in Chapter 2, the elastic dynamics of the spacecraft shall be ap-
proximated by a finite number of elastic variables. Therefore, the shape
functions [S] are introduced to express the elastic displacements uf as a
linear composition of known spatial functions

uf = [S]qf , (6.2)

where qf is the weights vector. This representation also separates the spa-
tial and the temporal variables of the problem and assumes a-priori the
spatial solution through the shape functions [S]. Thus, qf represents the
actual elastic generalized coordinates of the dynamics, that join those em-
ployed in Chapter 3 to describe the rigid motion

qr = [RT φ]T , (6.3)

where R is the position vector of the b-frame origin relative to the La-
grangian point and φ denotes the orientation of the former coordinates
system with respect to the `-frame. Hence, substituting eq. (6.2) into eq.
6.4, the overall location of P in the b-frame is given by

u = u0 + uf = u0 + [S]qf . (6.4)
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As mentioned in Chapter 3, the shape functions are arbitrary with the
only requirement of being admissible. However, arbitrary choices also may
lead to extremely poor accuracy, especially when the selected shapes are
not an adequate representation of the body deformation. In this work the
dynamics addressed is natural under a multi-body gravitational field. In
particular, neither external concentrate loads or actions are introduced.
The focus is on natural global shape changes rather than on induced lo-
cal deformations. Likewise, the spacecraft is assumed being in its operative
configuration, so the deployment phase, that may be necessary for a large
space structure, is not presently considered. Give that, it seems reasonable
adopting the assumptions of the linear elastic theory and consequently em-
ploying the normal modes of the structure as shape functions. The reasons
to adopt the modal forms are several:

• Modes automatically satisfy the essential conditions.

• A proper selection of modes usually guarantees a prediction of the
natural response more accurate than any other arbitrary set of func-
tions, given the same number of elastic degrees of freedom.

• Modes are orthogonal with respect to the mass and the stiffness ma-
trix.

• They are a representation suitable for the floating frame, as the rela-
tive displacements can be expressed referring to a single coordinate
system.

• Modes can be numerically computed for any arbitrary spacecraft us-
ing a finite element model.

For the concern of this study, the modal formulation can be divided into
two classes: the free-modes and the constrained-modes. The free-modes
denote a modal representation of the deformed geometry where no points
of the structure, observed from the b-frame, are necessary fixed. On this
basis, the free-modes are able to guarantee no relative shift of the center of
mass. It follows that, the three dynamics (orbital, attitude, elastic) can be
inertially decoupled by placing the origin of the floating frame (i.e. the b-
frame) in the configuration center of mass. This means that the mass matrix
is diagonal, but the overall system is still fully coupled by the gravity gra-
dient. Nonetheless, a diagonal mass matrix critically reduces the computa-
tion effort. In the current work only the free-modes will be adopted, but in
further developments may be convenient to shift to the constrained coun-
terpart. Constrained-modes are the solution of the natural elastic dynamics
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obtained by imposing the displacement (usually null) of some parts of the
structure. This is particularly useful to describe joints, multi-body archi-
tectures and local deformations. Despite that, the constrained-modes are
not able to decouple the elastic dynamics from the rigid motions, roughly
because the center of mass cannot be represented as a fixed point in the
floating frame. Therefore, the numerical solution of the equations of mo-
tion might turn out to be challenging. Optionally, the floating frame can be
redefined according to the mean-axis condition, which is based on the min-
imization of the deformation kinetic energy and leads to a weakly-coupled
formulation. An insightful explanation of the mean-axes as floating frame
as well as a clear comparison between free and constrained modes is deliv-
ered by Nikravesh in [68]. Besides the benefits of the modal formulation,
there are drawbacks too. The major limit is the assumption of linear be-
havior; this implies that the method is inapplicable in circumstances which
require large deformations (e.g. the deployment of elements of the space-
craft). The geometrically exact representation of shape change requires
other approaches to the problem, such as those developed by Shabana et
al. [83] or by Vu-Quoc and Simo [33]. Secondly, a relatively large num-
ber of elastic modes may be needed to accurately predict the vehicle’s high
flexibility.

6.2 Kinematics

The reader is strongly invited to refer to the rigid formulation developed
in Chapter 3 and the attendant discussions before proceeding through the
next two Sections; the general framework is the same of the preceding
Chapter and, for sake of brevity, definitions and considerations already
mentioned will be omitted in the followings. Conversely, the arrangements
necessary to incorporate the structure flexibility in the model delivered in
Chapter 3 will be highlighted.

To begin with, the local position u of an infinitesimal mass dm in the
point P considers also the contribution of the elastic displacement as for-
mulated in eq. (6.4); thus, the global position vector expressed in the
`-frame becomes

rP = R+ [A]u = R+ [A](u0 + [S]qf ) . (6.5)

In turn, the temporal derivative of the position vector shall consider varia-
tions of the elastic generalized coordinates qf that describe the deformed
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geometry, so
ṙP = Ṙ+ [Ȧ]u+ [A][S]q̇f . (6.6)

Straightforwardly, also the set of generalized coordinates is redefined to
incorporate the new variables qf as

q =

[
qr
qf

]
=

Rφ
qf

 . (6.7)

In Chapter 3 was anticipated that certain integrals function of the dis-
tribution of mass are a constant parameter of the motion. Given the sepa-
ration of variables due to the elastic discretization, the spatial component
of the elastic solution is known a-priori. Thus, even if the mass distri-
bution changes in function of the elastic generalized coordinates qf , the
spatial integrals can be computed in advance. The only assumption, in
accordance with the linear elastic theory, is to considered the volume of in-
tegration undeformed. The possibility to solve all the integrals appearing in
the equations of motion is fundamental, because integro-differential equa-
tions are transformed in a set of ordinary differential equations. Shabana
[67] named the aforementioned quantities Inertia Shape Integrals. For the
flexible formulation new inertia shape integrals have to be defined: firstly
those that describe the inertial coupling between rigid and elastic dynamics

[S̄] =

∫
V

ρ[S]dV , (6.8)

[I0f ] =

∫
V

ρuT0 [S]dV , (6.9)

and

[I0] =

∫
V

ρ[S]Tu0dV , (6.10)

which are all equal to zero when the local frame is in the center of mass
and [S] are derived from the free-modes; then, those used to represent the
variation of the mass matrix

[mff ] =

∫
V

ρ[S]T [S]dV , (6.11)

[S̃] =

∫
V

ρ[S]T [Ĩ][S]dV , (6.12)
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with

[Ĩ] =

[
0 1
−1 0

]
, (6.13)

and

[S̃0] =

∫
V

ρuT0 [Ĩ][S]dV . (6.14)

If [S] is computed on the modal basis, eq. (6.11) is equivalent to the matrix
of the modal masses of the deformable system.

6.3 Dynamics

In the analogous Section of Chapter 3 the fully-coupled equations of motion
for a spacecraft orbiting in the vicinity of the libration points are delivered
via the Lagrangian procedure. Here, all the energies have to be rewritten
to account the body deformation and consequently new terms add to the
equations of motion.

The gravitational potential is rearranged to incorporate the geometry
changes of the spacecraft as well

Ux(Rx) = −µx
[
m

|Rx|
− 1

|Rx|2
lTx ([I1] + [S̃]qf ) (6.15)

−1

2

1

|Rx|3
(I00 + 2[I0f ]qf + qTf [mff ]qf )

+
3

2

1

|Rx|3
lTx

(
[JJ00] +

ne∑
i

([JJ0i] + [JJi0])qi +
ne∑
i

ne∑
j

[JJij]qiqj

)
lx

]

where qi/j stand for the ith/jth components of the vector qf , ne is the
number of elastic degrees of freedom and three new inertia shape integrals
are defined as

[JJ0i] =

∫
V

ρu0S
T
i dV , (6.16)

[JJi0] =

∫
V

ρSiu
T
0 dV , (6.17)

[JJij] =

∫
V

ρSiS
T
j dV . (6.18)
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Similarly, the elastic displacements contribute toward the fictitious poten-
tial due to the centrifugal force

T1 =
1

2
mv(O′)Tv(O′) + mv(O′)T [ω̃]R + v(O′)T [ω̃][A](I1 + [S̄]qf )

+
1

2
Ω2mR + Ω2RT [A](I1 + [S̄]qf )

+
1

2
Ω2(I00 + 2[Iof ]qf + qTf [mff ]qf ) (6.19)

and due to the Coriolis force

T2 = mṘ
T
v(O′) + mṘ

T
[ω̃]Ṙ+ Ṙ

T
[ω̃][A](I1 + [S̄]qf )

+(I1 + [S̄]qf )
T [Ȧ]T (v(O′) + [ω̃]R) + Ωφ̇(I00 + 2[Iof ]qf + qTf [mff ]qf )

+q̇Tf [S̄]T [A]T (v(O′) + [ω̃]R) + Ω([S̃0] + qTf [S̃])q̇f . (6.20)

Also the relative kinematic energy with respect to an observer on the `-
frame should be recomputed, however it can be easily derived from the
definition given in eq. (3.15) adopting the augmented version of the gen-
eralized coordinates in eq. (6.7) and the mass matrix reported later in this
Section.

Additionally, the deformation energy shall be included in the Lagrangian
function eq. (3.7). It appears as

Uf =
1

2

∫
V

σTεdV , (6.21)

where ε are the structural strain defined via the matrix differential operator
[D] as

ε = [D]uf = [D][S]qf . (6.22)

The structural stress σ are written in function of the elastic coordinates too,
assuming a linear-elastic costitutive relation

σ = [E]ε = [E][D][S]qf , (6.23)

where [E] is the stiffness tensor. Substituting eq. (6.22) and eq. (6.23) into
eq. (6.21), it yields to

Uf =
1

2

∫
V

qTf ([D][S])T [E][D][S]qfdV . (6.24)

The former equation is rearranged as

Uf =
1

2
qTf [Kff ]qf (6.25)
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in order to make esplicit the elastic stiffness matrix

[Kff ] =

∫
V

([D][S])T [E][D][S]dV , (6.26)

which can actually be considered a inertial shape integral in a broad sense,
since it is an integral that can be computed in advance of the system solu-
tion.

Once the Lagrangian function is known for the deformable system too,
the equations of motion can be obtained in the Euler-Lagrange form as in
Chapter 3. For convenience, they are presented in matrix fashion

[M ]q̈ + [K]q = Qν +Qg +QΩ , (6.27)

where the mass matrix is augmented

[M ] =

 mRR mRφ mRf

mφφ mφf

symmetric mff

 (6.28)

including new terms

mφφ = [I00] + 2[I0f ]qf + qTf [mff ]qf ,

mRφ = [A]/φ([I1] + [S̄]qf ) ,

mRf = [A][S̄] ,

mφf = [S̃0] + qTf [S̃] ,

and system stiffness matrix is given by

[K] =

0 0 0
0 0 0
0 0 [Kff ]

 . (6.29)

Also the right-hand terms of eq. (6.27) are defined consistently with the
introduction of the elastic variables qf

Qν =

(Qν)R
(Qν)φ
(Qν)f

 = [M ]q̈ − d

dt

(
∂Trel
∂q̇

)
+
∂Trel
∂q

, (6.30)

Qg =

(Qg)R
(Qg)φ
(Qg)f

 = −∂U
∂q

, (6.31)
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QΩ =

(QΩ)R
(QΩ)φ
(QΩ)f

 = +
∂T1

∂q
+
∂T2

∂q
− d

dt

(
∂T2

∂q̇

)
. (6.32)

The notation (V )• simply stands for the components of V related to the
equations describing the dynamics •, where • = R denotes the orbital mo-
tion, • = φ the attitude motion and • = f the elastic motion.

This last paragraph provides detailed developments of the equations of
motion (6.27). Each dynamics is presented separately. Firstly, the Encke’s
method is recalled from Chapter 3 to formulate the orbital motion in terms
of drift δ from a reference trajectory

[mRR]δ̈ + [mRφ]φ̈+ [mRf ]q̈ = (δQν)R + (δQg)R + (δQΩ)R . (6.33)

Terms in the preceding equation have the following expressions:

(δQν)R = φ̇2[A]([S̄]qf + [I1])− 2φ̇[A]/φ[S̄]q̇f ; (6.34)

(δQg)R = −
(
∂U1

∂R
− ∂U0

1

∂R0

)
−
(
∂U2

∂R
− ∂U0

2

∂R0

)
, (6.35)

where (
∂Ux
∂R
− ∂U0

x

∂R0

)
= µx

m

|R0
x|3

(δ + f(h)Rx) + axP , (6.36)

with

f(h) = h
3 + 3h+ h2

1 + (1 + h)3/2
, (6.37)

h =
δTδ − 2δTRx

|Rx|2
, (6.38)

and

axP = −µx
[

2

|Rx|3
∂|Rx|
∂R

lTx ([I1] + [S̄]qf ) (6.39)

− 1

|Rx|2

(
∂lx
∂R

)T
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1

|Rx|4
∂|Rx|
∂R

(I00 + 2[Iof ]qf + qTf [mff ]qf )

−9

2

1

|Rx|4
∂|Rx|
∂R
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(
[JJ00] +

ne∑
i

([JJ0i] + [JJi0])qi +
ne∑
i

ne∑
j

[JJij]qiqj

)
lx

+3
1

|Rx|3
lTx

(
[JJ00] +

ne∑
i

([JJ0i] + [JJi0])qi +
ne∑
i

ne∑
j

[JJij]qiqj

)
∂lx
∂R

]
;



118 Formulation Including Flexibility

(δQΩ)R =

(
∂T1

∂R
− ∂T 0

1

∂R0

)
+

(
∂T2

∂R
− ∂T 0

2

∂R0

)
−
(
d

dt

(
∂T2

∂Ṙ

)
− d

dt

(
∂T 0

2

∂Ṙ0

))
, (6.40)

where (
∂T1

∂R
− ∂T 0

1

∂R0

)
= Ω2[A]([I1] + [S̄]qf ) + Ω2mδ , (6.41)(

∂T2

∂R
− ∂T 0

2

∂R0

)
= m[ω̃]T δ̇ + [ω̃]T [A][S̄]q̇f + [ω̃]T [Ȧ]([I1] + [S̄]qf ) (6.42)

and

d

dt

(
∂T2

∂Ṙ

)
− d

dt

(
∂T 0

2

∂Ṙ0

)
= m[ω̃]δ̇ + [ω̃][A][S̄]q̇f + [ω̃][Ȧ]([I1] + [S̄]qf ) .

(6.43)
The equations describing the attitude dynamics are simply extracted from
the system (6.27)

[mRφ]T R̈+ [mφφ]φ̈+ [mφf ]q̈ = (Qν)φ + (Qg)φ + (QΩ)φ (6.44)

and the various right-hand active components are made explicit:

(Qν)φ = −2φ̇qf
T ([mff ]qf + [I0]) ; (6.45)

(Qg)φ = −∂U1

∂φ
− ∂U2

∂φ
, (6.46)

where

∂Ux
∂φ

= −µx
[
− 1

|R1|2

(
∂lx
∂φ

)
([I1] + [S̄]qf ) (6.47)

+
3

|Rx|3
lx
T

(
[JJ00] +

ne∑
i

([JJ0i] + [JJi0])qi +
ne∑
i

ne∑
j

[JJij]qiqj

)
lx
∂φ

]
;

(QΩ)φ =
∂T1

∂φ
+
∂T2

∂φ
− d

dt

(
∂T2

∂φ̇

)
, (6.48)

where

∂T1

∂φ
= vT (O′)[ω̃][A]/φ([I1] + [S̄]qf ) + Ω2RT [A]/φ([I1] + [S̄]qf ) , (6.49)

∂T2

∂φ
= Ṙ

T
[w̃][A]/φ([I1] + [S̄]qf ) + ([I1] + [S̄]qf )T [Ȧ]T/φ(v(O′) + [ω̃]R)

+q̇f
T [S̄]T [A]T/φ(v(O′) + [ω̃]R) , (6.50)
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d

dt

(
∂T2

∂φ̇

)
= ([I1] + [S̄]qf )T

d

dt

(
[Ȧ]/φ̇

)T
(v(O′) + [ω̃]R) (6.51)

+([I1] + [S̄]qf )T [Ȧ]/φ̇[ω̃]Ṙ+ q̇f
T [S̄]T [Ȧ]T

/φ̇
(v(O′) + [ω̃]R) .

Finally, the dynamics of the generalized elastic coordinates is governed by

[mRf ]
T R̈+[mφf ]

T φ̈+[mff ]q̈f +[kff ]qf = (Qν)f +(Qg)f +(QΩ)f . (6.52)

Terms in the preceding equation have the following expressions:

(Qν)f = φ̇2([mff ]qf + [I0]) + 2φ̇[S̃]q̇f ; (6.53)

(Qg)f = −∂U1

∂qf
− ∂U2

∂qf
, (6.54)

where

∂Ux
∂qf

=



∂Ux/∂q1
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...

∂Ux/∂qi
...

∂Ux/∂qne


(6.55)

and
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∂qi
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|Rx|3
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T [mff ])
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+
3

|Rx|3
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(
1

2
([JJ0i] + [JJi0]) +

ne∑
j

([JJij] + [JJji])qi

)
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; (6.56)

(QΩ)f =
∂T1

∂qf
+
∂T2

∂qf
− d

dt

(
∂T2

∂q̇f

)
, (6.57)

where

∂T1

∂qf
= [S̄]T [A]T [ω̄]Tv(O′) + Ω2[S̄]T [A]TR+ Ω2[I0f ]

T + Ω2[mff ]qf , (6.58)

∂T2

∂qf
= [S̄]T [A]T [ω̃]T Ṙ+ [S̄]T [Ȧ]T (v(O′) + [ω̃]R)

+2Ωφ̇[I0f ]
T + 2[mff ]Ωφ̇qf + Ω[S̃]q̇f , (6.59)
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d

dt

(
∂T2

∂q̇f

)
= [S̄]T [Ȧ]T (v(O′) + [ω̃]R) + [S̄]T [A]T [ω̃]Ṙ+ Ω(q̇f

T [S̃])T .

(6.60)

If the free-modes are employed to discretize the elastic problem, the eq.
(6.44) results strongly simplified. In fact, [mRf ] and [mφf ] are null while
[mff ] and [kff ] are diagonal matrix, where their i-th diagonal terms (mff )i,
(kff )i represent respectively the modal mass and stiffness of the i-th shape.
On this bases, it also easy to introduce a modal damping matrix [cff ] to em-
ulate energy dissipations due to the internal elastic motion of the structure.
It yields to

[mff ]q̈f + [cff ]q̇f + [kff ]qf = (Qν)f + (Qg)f + (QΩ)f . (6.61)

where the matrix [cff ] is diagonal and the damping related to each modal
shape (cff )i is expressed through the nondimensional damping factor ξi as

(cff )i = 2ξi

√
(mff )i(kff )i .
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In the previous Chapter, the rigid fully-coupled formulation has been
extended to integrate the elastic motion with the translational and rota-
tional dynamics. In this Chapter, the effects of flexibility will be discussed.
The first Section presents the two main concerns of simulating elastic mo-
tion in the vicinity of the Lagrangian points. The following Sections report
the most interesting outcomes from the investigation of two basic configu-
rations: a dumbbell and a cross satellite.

7.1 Two main issues

There are two main concerns that should be considered before simulat-
ing the motion of flexible space structures in orbit around the libration
equilibria: the frequency of the elastic dynamics and the magnitude of the
spacecraft deformations. The former is purely a numerical challenge while
the latter will suggest also a physical conclusion.

Since the scope of this work is to study the coupling effects between dif-

121
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Figure 7.1: Natural angular frequency of the first mode for a free-free
beam.

ferent dynamics, the integration of motion shall consider the characteristic
velocity of each part included. In order to understand the range of frequen-
cies typical of the elastic response, let us consider the angular frequency of
the first normal mode of a free-free uniform beam

ωf = λ2
1

√
E

ρ

Γ

L2
, (7.1)

where λ1 = 4.73 is a parameter associtated to the first mode, E and ρ de-
note respectively the Young’s module and the density of the material, Γ is
the inertia radius of the cross-section and L represents the beam length. In
Figure 7.1 the angular frequency is plotted versus the beam topology (ex-
pressed by the ratio Γ/L2) for a spectrum of

√
E/ρ that reasonably covers

the existing materials. In the contour, the value of
√
E/ρ for the aluminum

is highlighted in black. Likewise, the vertical dashed line shows the pos-
sible frequencies for beam a 100 m long with unitary Γ. Generally, the
angular frequency of the first mode never goes below a rate of 10−2 rad/s.
On the contrary, the frequency of the orbital motion is well smaller than
this value; in Table 7.1, a low Earth orbit (LEO) may get close to it, but
the gap between the natural frequencies of the elastic and orbital dynamics
grows larger on a geostationary orbit (GEO) and becomes enormous for
the Lyapunov periodic orbits. From the numerical perspective, as long as
the two motions have to be solved together, the time step of the numerical
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integration is determined by the faster dynamics. This means that, the in-
tegration step is reduced to the order of seconds (or even below) in order
to correctly predict the elastic response. On the other hand, to investigate
the coupling with the orbital motion, the simulation shall run at least for a
time span comparable to the orbit period. Since the time span will be mea-
sured in days and the time step in seconds, it is straightforward to see that
a critical numerical effort is required, in terms of the both memory request
and computational time. Moreover, the distance between the frequencies
shyly suggests that, under the natural dynamics, the rigid response will be
likely decoupled from the elastic one; this would make badly used the com-
putational resources required to simulate the coupled motion.

Table 7.1: Typical orbital angular frequencies.

Orbit Type ωorb [rad/s]

LEO 1.20× 10−3

GEO 7.27× 10−5

L1 Earth-Moon, Large 3.28× 10−6

L1 Earth-Moon, Small 6.20× 10−6

L1 Sun-Earth, Large 2.27× 10−7

L1 Sun-Earth, Small 4.08× 10−7

The structure deformations affect the orbital motion because changes
in the mass distribution alter the resultant gravitational force. Thus, deter-
mining the order of the elastic displacements is useful to get a clue about
their level of influence on the rigid dynamics. The stress and then the defor-
mations (assuming a linear elastic relationship) are provoked by the gravity
gradient over the space structure. For example, let us consider a dumbbell
satellite, consisting of two equal masses at initial distance L; in addition,
the two masses are located on the line through P1-P2. Considering each
attractor by one, the two massive tips of the spacecraft undergo a different
gravitational force, since they are not at the same distance from the source;
expressing the force gradient in a first order series of the distance, it yields
to

∆F ∝ 2µi
L

r3
i

, (7.2)

where µi is the planetary constant of Pi and ri is the radius measured from
Pi. Of course, the same fashion of eq. (7.2) holds true for both the primary
and the secondary. As depicted in Figure 7.2, the gravity gradient fields
generated by P1 and P2 are either added or subtracted, but the neighbor-
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Figure 7.2: Trend of the gravity gradient magnitude.

hood of L1 always represents a zone of minimal gravitational stress. For
example, the solicitations exerted by the variation of the gravity field over
the body extension in GEO are at least 100 times stronger than those ex-
perienced in vicinity of L1. Additionally, this consideration can be applied
to the gravity gradient torque, which is inversely proportional to the ra-
dius cubed as well as ∆F . As consequence, it is likely to predict small
deformations of the vehicle, even if large space structure are addressed.
Firstly, this leads the numerical problem to be ill-conditioned. In fact, the
elastic displacements will be in the order of centimeters (or even smaller),
while the orbital variables in the order of thousand of kilometers and the
both belong to the same system of coupled equations supposed to be nu-
merically integrated. However, this issue is partially solved employing the
Encke’s formulation of the orbital dynamics: integrating only the drift from
the osculating trajectory, the orbital variables result adequately close to the
elastic variables in terms of magnitude. Secondly, despite numerical dif-
ficulties of the coupled dynamics may be overcome, deformations of the
mass distribution apparently remain too small to affect the rigid motions in
vicinity of the libration equilibria.
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In conclusion, arguments in this Section demonstrated that, the rigid
and the elastic dynamics in vicinity of the Lagrangian points take place on
critically different scales, from the both temporal and spatial perspectives.
Thus, the coupling, that exists theoretically, could be practically ineffective.
For this reason, the continuation of the work drops the plan of studying ac-
tual space structures and instead focus on investigating the dynamics of
very flexible and very simple configurations. Since it has been realized
that the gravitational stress is minimal in the area of the Lyapunov orbits,
an extremely low level of stiffness (not sustainable nearby Earth) can be
introduced in a structure orbiting inside that zone. Thus, the values of
stiffness that will assumed next do not clearly refer to any existing materi-
als or typical concrete structure. Alternatively, they can be interpreted as
the preliminary model of some mechanism or control action; moreover, the
structure itself does not necessarily correspond to an unique vehicle, but
may represent a flying formation as well. The choice of elementary archi-
tectures is instead motivated to have a more meaningful insight, focusing
on the main peculiarities of the phenomenon, without the complication of
a arbitrary topology.

7.2 Dumbbell Configuration

m1 m2k

L

b1

b2

Figure 7.3: Skecth of the dumbbell satellite.

Figure 7.3 shows the simplest flexible configuration: two masses joined
by a spring, the well-known dumbbell satellite. Because of the lack of so-
phistication, the results are more easily interpretable, making this pattern
ideal to start a novel investigation. In addition, its shape variation can be
fully described by a linear field of elastic displacements, which respects the
assumptions of the formulation developed in Chapter 6, without any sort
of approximation. It means that, large variation of shape can be studied
without violating the model. Specifically, the deformation is axial and cor-
responds to vary the configuration characteristic length.
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r

Figure 7.4: Kinematic scheme in the R2BP.

The dumbbell is already common in the Restricted Two-body Problem
(R2BP), since it was the basic model for tether satellites. This configura-
tion was particularly used to experiment new forms of control that exploit
the interaction between shape and orbital dynamics [84, 85], shape and
attitude dynamics [86] or all three dynamics coupled [87]. Adopting the
Lagrangian formulation, the fully-coupled equations of motion in the R2BP
can be derived with few algebra. To this end, the generalized coordinates
are defined as depicted in Figure 7.4: r is the radial distance from the celes-
tial body, θ is the true anomaly, φ is the angle relative to the radial, positive
when counterclockwise. The elastic degree of freedom is denoted with l, so
that 2l is the length of the dumbbell. Given these generalized coordinates,
the Lagrangian function of the system is

L = m(ṙ2 + l̇2 + lφ̇2 + 2l2φ̇θ̇ + (r2 + l2)θ̇2)− Ug − 2k(l − l0)2 , (7.3)

where m = m2 = m2 stands for the tip mass and l0 is defined such that 2l0
is the initial length of the dumbbell; the gravitational potential is

Ug = − µm√
l2 + r2 − 2lr cosφ

− µm√
l2 + r2 + 2lr cosφ

, (7.4)

with µ being the planetary constant. It should be noticed that

∂L
∂θ

= 0 , (7.5)

then the angular momentum

p =
∂L
∂θ̇

= 2m(l2φ̇+ (r2 + l2)θ̇) (7.6)
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is conserved. Hence, the equations of motion can be written, after some
math, in the reduced form as [86]

r̈ =
rl4

(r2 + l2)2
θ̇2 +

p2r

4m2(r2 + l2)2
− rl2p

m(r2 + l2)2
φ̇

−µ r − l cosφ

2(r2 + l2 − 2lr cosφ)3/2

−µ r + l cosφ

2(r2 + l2 − 2lr cosφ)3/2
(7.7)

φ̈ =
2(l3ṙ + r3l̇)

rl(r2 + l2)
φ̇− µ (r2 + l2) sinφ

2lr(r2 + l2 − 2lr cosφ)3/2

+µ
(r2 + l2) sinφ

2lr(r2 + l2 + 2lr cosφ)3/2
− p(rl̇ − lṙ)
mrl(r2 + l2)

(7.8)

l̈ =
r4l

(r2 + l2)2
φ̇2 +

p2l

4m2(r2 + l2)2
+

r2pl

m(r2 + l2)2
φ̇

−µ q − r cosφ

2(r2 + l2 − 2lr cosφ)3/2
− µ q + r cosφ

2(r2 + l2 + 2lr cosφ)3/2

−2k

m
(l − l0) . (7.9)

The numerical solution of eq. (7.7), (7.8), (7.9) can be compared to the re-
sults obtained from the general algorithm developed in the previous Chap-
ter. For instance, consider a dumbbell spacecraft defined by m1 = m2 = 200
kg, initial length 100 m and spring stiffness 10 N/m, flying on a circular
orbit with semi-major axis a = 7000 km and possessing an initial angular
velocity φ̇0 = −θ̇0. Figure 7.5 reports a satisfactory agreement between the
two responses produced. Note that the elastic motion is plotted as length
variation relatively to the undeformed geometry qf = l − l0.

Recently, a lot of interest has risen for dumbbell or tether spacecrafts
in the R3BP as well. They are sought as possible alternatives to formation
flight missions that require an extremely accurate formation control, such
as interferometry missions [88, 89]. So far, many of the papers published
have focused on demonstrating the feasibility and improving the perfor-
mance of varying-length tether systems to control the unstable nature of
the collinear Lagrangian points [90]. Others have investigated the deploy-
ment and the station-keeping of dumbbells at L2, in a fully coupled regime
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Figure 7.5: Comparison of attitude and elastic motions of a dumbbell satel-
lite in Earth orbit.

using approximations of the orbital motion [90]. In this work, it will be
addressed the natural dynamics of a very flexible dumbbell architecture
describing the orbital motion without simplifications of the CR3BP.

First of all, it is necessary to express the elastic deformation in terms
of displacement from the undeformed geometry using the normal modes.
Trivially, the dumbbell has only one elastic degree of freedom qf (which
physically represents the distance variation between the two masses) and
the displacement of m1 results, on the basis of the b-frame, as

uf = [S1]qf =

[
− m2

m1 +m2

0

]
qf , (7.10)

while for the other mass m2

uf = [S2]qf =

[ m1

m1 +m2

0

]
qf . (7.11)

As done before, a reference configuration is convenient to identify the most
distinguishing behaviors of a dumbbell structure on Lyapunov periodic or-
bits. Then, the parameters of the configuration will vary to study the novel
mechanisms revealed. The staring parameters of the dumbbell are reported
in Table 7.2. There, k refers to the stiffness of the connection between the
massesm1, m2 and ξ denotes the damping factor of the unique modal shape
of this structure.
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L [km] m1 [kg] m2 [kg] k [N/m] ξ [ndim]

500 300 300 1×10−4 0.001

Table 7.2: Parameters of the reference dumbbell configuration.
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Figure 7.6: Attitude of a flexible dumbbell satellite on a small Lyapunov
orbit.

The first analysis explores the operative environment. On large Lya-
punov orbits, it is noticed that the reference spacecraft cannot withstand
the angular acceleration provoked by the gravity gradient torque and the
elastic part diverges (the distance between the two mass grows toward in-
finity). Conversely, on small size orbits the elastic response is oscillatory
with bounded amplitude around a mean elongation trend. The overall
stretching of the dumbbell causes the damping of the attitude motion as
consequence of the Coriolis effect, as shown in Figure 7.6. This mechanism
appears in both the Sun-Earth (SE) and Earth-Moon (EM) system, regard-
less the family the orbit is picked up from. Now as later, the only concern is
on the coupling between attitude and elastic dynamics, since in none of the
simulations performed the orbital motion seems to be noticeably affected
by flexibility, even for significant shape variation (elongations ∼ km).

To proceed further, the attitude damping discovered on small Lyapunov
orbits is examined as function of the dumbbell stiffness. The equilibrium
point L2 of the Sun-Earth system is selected for this study, because largely
indicated as the ideal location of binary flight formations to observe the
universe, such as the O-labeled baseline of the Terrestrial Planet Finder
[91]. Secondly, the values of stiffness used in this analysis are related nei-
ther to any existing material nor monolithic structure, but instead can be
interpreted as the gain of a proportional controller, that employs electric
thruster to keep the length of a binary flying formation within a certain
tolerance (assuming no transversal errors). For example, the NASA Next
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thruster offers a maximum force of 200 mN [92], that reasonably matches
the gains here assumed. As appears in Figure 7.7, the lower is the stiffness,
the greater is the damping. The stiffness regulates the distribution of en-
ergy between the attitude and the elastic motion: softer architectures store
more easily energy in the shape axial deformation rather than in rigid rota-
tion. The mutual influence of attitude and length variation of the dumbbell
should be keep in mind while designing the configuration and could be
exploited as a possible tool of passive control (at least from the attitude
perspective). It is also worth to notice in Figure 7.7 that, for k = 0.01 N/m
the curve is practically indistinguishable from the rigid solution. Such stiff-
ness is undoubtedly much smaller than any value attributable to a concrete
classic structure. Therefore, it is justified the choice of stepping back on
structures in the narrow sense of the word, since the coupling effects of
the natural dynamics, associated to their equivalent stiffness, would be ex-
tremely faint. On the other hand, this also means that Large Space Struc-
tures do not really need an elastic coupled analysis, as long as common
stiffness and structures are considered.
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Figure 7.7: Attitude of a dumbbell satellite on a small Lyapunov orbit vary-
ing the internal stiffness.

Hence, it is verified that parameters such the dumbbell length or the
mass ratio between the two tips do not trigger radical changes of the re-
sponse nature. Of course, they affect the elastic motion, but those variation
have slight repercussions on the rigid solution. Actually, the unique alter-
ation of the pitch response, related to modifications of the initial distance
between m1 and m2, is observed when the dumbbell departs from the nom-
inal orbit as consequence of its extension (see Figure 7.8-(a) and its inset).
The ratio among masses m1/m2 has limited effects on the attitude solution
as well. Close curves can be observed in Figure 7.8-(b). More interesting
is noticing that, despite the substantial initial length (i.e. 500 km), the
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Figure 7.8: Attitude of a dumbbell satellite on a small Lyapunov orbit vary-
ing the configuration parameters.

mean elongations are about few dozen of meters, reinforcing the assump-
tion of small deformations. All considered, the dynamics of a dumbbell
configuration offers a good robustness to the both initial length and mass
distribution, that can be exploited as design flexibility. In other words, the
qualitative dynamics of the dumbbell can be predicted quite reliably, even
if the exact details of the architecture are not known at that point of the
design process.

In Chapter 4, it has been shown that a distribution of mass extended
in a single direction (k3 = 1) undergoes a divergence of the pitch angle
along large Lyapunov orbits. The dumbbell falls within this category. Thus,
the last part of this study is aimed at understanding whether is possible
or not to exploit the coupling between the attitude and elastic dynamics
as a mean to limit the spacecraft rotational motion on a large Lyapunov
periodic orbit. The idea follows the observation of the attitude damping
effects on smaller orbits; in that case, the stiffness demonstrated an effec-
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tive parameter to tune the phenomenon. Therefore, the dumbbell is made
progressively more flexible as reported in Figure 7.9. The general trend
does not differ from that discovered on small Lyapunov orbits: an increase
level of damping corresponds to a softening of the stiffness. Honestly, the
rigid divergence is avoided, but the resultant solution cannot be really con-
sidered as bounded. A better insight may be offered by a longer period of
integration. Unfortunately, it is not possible to lower the stiffness any fur-
ther to get a stronger damping effect, because the aforementioned elastic
divergence appears. Trivially, if the bond between the two masses is too
weak, it cannot withstand the solicitations generated during the motion.
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Figure 7.9: Attitude of a dumbbell satellite on a large Lyapunov orbit vary-
ing the internal stiffness.

A last attempt with the same purpose is made acting on the internal
damping factor of the dumbbell. However, the internal damping proves an
ineffective parameters for the stated intention. In fact, the desired objective
is not achieved even exploring a large range of ξ. On the contrary, Figure
7.10 demonstrates that large variations may lead to undesired behaviors
or be simply useless. On one hand, a damping factor too low cause the
motion to diverge, on the other, above a certain limit, ξ does not alter the
response anymore. Both the phenomena are clearer in the inset of Figure
7.10, that depicts the elongations of the dumbbell. It should be noted as
the oscillations amplitude increases indefinitely for ξ = 0.0001, while it
is quickly damped down for ξ = 0.01. In the latter, the initial transitory
is a marginal part of the response, so greater levels of internal damping
can only make this component of the solution more marginal. This is the
reason why no modifications of the coupling effects appear above a certain
threshold of ξ.
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varying the internal damping.

7.3 Cross Configuration
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Figure 7.11: Skecth of the cross satellite.

The cross-satellite is the second elementary configuration selected after
the dumbbell topology. The dumbbell has been chosen because of its sensi-
tivity to the gravity gradient force in the positions space (it can be demon-
strated that, for a given structure, the maximum axial solicitation exerted
by spatial gravity gradient is much stronger than the maximum transversal
action); likewise, the cross shape is ideal to test relative rotations between
parts of the structure which are subject to a different gravity gradient. In
fact, each component undergoes a distinct torque according to its orienta-
tion and so an own motion, if it is free to rotate. Hence, the architecture
shown in Figure 7.11 is employed: two uniform branches with mass m1,
m2 and length L1,L2 respectively, that are joined in their centers of mass
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Table 7.3: Parameters of the reference cross configuration.

L1 [m] L2 [m] m1 [kg] m2 [kg] δ1 [deg] δ2 [deg] k [Nm] ξ [ndim]

50 50 100 100 0 90 0.001 0

by a torsional spring k. Eventually, it will also be accounted an internal
dissipation of the joint, that is expressed through the damping factor ξ of
the unique modal shape of this structure. The b-frame is located as usual in
the center of mass of the spacecraft and the position of the two segment of
the cross is determined by the angles δ1, δ2. For convenience, the reference
configuration detailed in Table 7.3 is selected ; when not explicitly stated,
the simulation assumes the data presented in the latter Table. The nominal
cross has no internal damping. Furthermore, the satellite at the time t = 0
is conventionally aligned to the `-frame, with null angular velocity and
placed at the crossing of the P1-P2 line, on the left of the libration point.
To incorporate shape changes of the body in the formulation developed in
Chapter 6, it is necessary to express the elastic displacements in the linear
form using the normal modes; thus, written in the b-frame they appear as

uf = [S1]qf = − 1

χ

[
− sin δ1

cos δ1

]
s qf (7.12)

for the first branch and

uf = [S2]qf =

(
1− 1

χ

)[
− sin δ2

cos δ2

]
s qf (7.13)

for the second branch, where s is the arc length along the axis of each
single segment and

χ = 1 +
m1L

2
1

m2L2
2

. (7.14)

The generalized elastic coordinate qf is physically the relative rotation be-
tween the cross branches qf = ∆δ2 − ∆δ1, where ∆δ1, ∆δ2 are the tilt
changes of each segment relatively to the undeformed geometry. It should
be noticed that, in this representation, elastic rotations are linearized and
therefore its applicability is limited to small angles.

The first analysis addresses the operative environment in the Earth-
Moon system. In this scenario, the most fascinating outcome is the evo-
lution of the elastic behavior summarized in Figure 7.12. The solution of
the internal rotation, along a small Lyapunov orbit, presents clearly two
superposed oscillations, regardless the belonging to the L1 or L2 family:



7.3 Cross Configuration 135

one global fluctuation follows the orbital motion, the other represents the
local elastic transitory. Starting with orbits around L1, the size increase
initially leads the global component to overcome distinctly the amplitude
of the local transitory oscillations. It is evident from Figure 7.12-(c) that,
the deformation acts in accordance with the fashion of the gravity gradient
torque (discussed in Chapter 5). In fact, the peaks of qf are larger and
closer than those reported in the previous case (i.e. small Lyapunov), in
agreement with the evolution of the gravitational momentum trend. How-
ever, a further enlargement of the orbit provokes a new alteration of the
solution nature: the secular component is dominant in the first half of the
orbital path, while the local transitory prevails in the second half. The
secondary anomaly triggers sudden elastic oscillations, whose amplitude
is surprisingly greater than the other observed so far. Actually, since no
damping is accounted, referring to this component as transitory part of the
solution is misleading, because these fluctuations remain throughout the
subsequent motion. To understand this mechanism, it is worth to recall the
secondary anomaly. In this work has been discovered (see Chapter 5) that,
the gravity gradient torque has a truly non linear trend along large periodic
orbits; specifically, its maximum and minimum values are both extremely
close to the crossing of the attractors axis, in vicinity of the secondary. This
means that the solicitation varies from the peak to the gorge in a small
span of time, to the extend that the curve slope almost approaches the 90
degrees. This instantaneous local variation excites the vibrations to a level
much greater than the mean global motion does, so they become the only
visible trend after the critical event. A similar outcome appears also on the
L2 family with some slight diversity. In this case, the peaks move toward
the sides of the plots simply because the initial position is the closest to the
secondary; hence, oscillations due to the secondary anomaly start imme-
diately, rather than at half revolution. In addition, it is noticed that their
amplitude is one order of magnitude larger than the equivalent reported
for the orbit around L1.

The reference cross configuration is axisymmetric (i.e. k3 = 0), so the
attitude is not of any concern for the first part of this study. The gravity
moment is null on the undeformed spacecraft: its orientation is actually
perturbed by the small shape changes, but always remains in close proxim-
ity of the initial orientation. The current focus is on the coupling between
the orbital and elastic motion. It is worth to remark that the influence is
mostly directed from the orbital dynamics to the elastic dynamics; it holds
true the conclusion of the previous section: no real alterations of the orbital
motion are discovered in relationship with the spacecraft flexibility among
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(a) L1 family, Large.
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(b) L2 family, Large.
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(c) L1 family, Medium.
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(d) L2 family, Medium.
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(e) L1 family, Small.
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(f) L2 family, Small.

Figure 7.12: Cross satellite. Elastic coordinate along Lyapunov orbits dif-
fering by size and family.

the large number of cases examined. In the following, it is demonstrated
that the opposite coupling (i.e. orbital input on elastic response) changes
nature during the stiffness increase. The phenomenon appears clearly on
a small Lyapunov orbit. As discussed earlier, the solution is composed by
global and local oscillations, the former related to the orbital motion, the
latter related to the elastic transitory. In a highly flexible structure the am-
plitude of the global fluctuation prevails on the local oscillations. It is ob-
served in Figure 7.13 that as the joint between the cross branches becomes
stiffer, the ratio will be inverted. For example, in the first shift of stiffness
form k = 0.001 Nm/[rad] to k = 0.1 Nm/[rad], the orbital driven fluctua-
tion is still faintly visible in the transitory oscillations, but it disappears in
the next increase to k = 10 Nm/[rad]. Figure 7.13 also shows the effects
of stiffness variations on a large Lyapunov orbit. Here, form k = 0.001
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Nm/[rad] to k = 0.1 Nm/[rad] the librations triggered by the secondary
anomaly are critically reduced, but the peaks remain evident and eventu-
ally, for k = 10 Nm/[rad], the anomaly vanishes too.
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(a) Large, k = 0.001 Nm/rad.
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(b) Small, k = 0.001 Nm/rad.
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(c) Large, k = 0.1 Nm/rad.
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(d) Small, k = 0.1 Nm/rad.
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(e) Large, k = 10 Nm/rad.
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(f) Small, k = 10 Nm/rad.

Figure 7.13: Cross satellite. Influence of the internal stiffness on the elastic
coordinate along Lyapunov orbits from the L1 family.

Introducing a non-axisymmetric distribution of mass, the secondary
anomaly has unexpected consequences on a flexible cross-satellite. Specif-
ically, on a large Lyapunov orbit from the L1 family, the anomaly excites
wide elastic vibrations of the structure, that in turn freeze the spacecraft
spin. Figure 7.14 surely describes better what occurs to the attitude mo-
tion for several values of k3 (kcrit refers to the resonant value of a rigid
body, when the orbit is linearly approximated, see Chapter 4). The energy
seems to be suddenly transfered to the elastic dynamics. The phenomenon
is not completely understood yet, and further studies are encouraged. Pre-
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liminarily, it may be advanced the hypothesis that the angular momentum
relocates from rigid rotations into relative rotations and deformation en-
ergy. It can be inferred observing the rigid response in Figure 7.14 that, the
system prefers to allocate the energy into the elastic dynamics rather than
inverting the spin direction (suggested by the curve slope). The next Fig-
ure 7.15 shows that this mechanism exists for any arbitrary topology with
k3 6= 0, but the nature of the solution changes again with k3 → 1: subse-
quently to the anomaly the motion neither inverts the direction nor freezes.
On the contrary, the response curve retains an opposite concavity and the
pitch motion diverges. Not surprisingly, the elastic dynamics, depicted in
the inset of Figure 7.15, is mutated too.
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Figure 7.14: Cross satellite. Pitch angle along a large periodic orbit about
L1 for different inertia ratios.
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Figure 7.15: Cross satellite. Pitch angle along a large periodic orbit about
L1 for k3 = 0.88.

Given a specific value of k3, the joint stiffness of the cross controls the
qualitative fashion of the solution as well. It is meaningful to observe the
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same general behaviors noticed varying k3 with k fixed. Since k3 deter-
mines the frequency of the attitude natural dynamics and k the frequency
of the elastic vibrations, discovering the same mechanisms is a further proof
of the mutual coupling and also leads to aim new studies at characterizing
the response as function of the ratio between the aforementioned frequen-
cies. Presently, the two parameters are addressed separately. For example,
Figure 7.16 reports the different rotational motions for a structure defined
by k3 = 0.28 and variations of the stiffness level. In the case of k = 0.1
Nm/[rad] the trend is extremely close to the rigid response; it confirms
that, the stiffness required to essentially reproduce the dynamics of a rigid
body is far smaller than the effective stiffness of any common monolithic
spacecraft. One order of magnitude below, the dynamics changes again and
the pitch angle departs toward infinity after the secondary anomaly (notice
the parallel to k3 → 1). A further downgrade to k = 0.001 Nm/[rad] makes
the plateau to reappear, which means that the orientation of the space-
craft remains practically constant in the `-frame, once past the P2 closest
encounter. In summary, three different dynamics, which depend on both
the spacecraft topology and internal stiffness, may take place due to the
secondary anomaly:

1. the vehicle continues to spin in the same direction.

2. the vehicle inverts the direction of spin.

3. the vehicle stops spinning.

It is not still known if other possible dynamics exist in the transition be-
tween those mentioned. So far, the investigation focused on varying the
order of magnitude of the governing parameters, but the exact identifica-
tion of the bifurcation points of the dynamics would be certainly important.

It should be noticed from Figure 7.16 that the simulations run for a pe-
riod long enough to allow at least two close passages nearby the secondary.
The effects of the multiple encounters on the attitude dynamics are already
manifest in Figure 7.16. In particular, when the cross-satellite freezes its
orientation because of the first passage, the pitch angle remains constant
even after the subsequent one. Considering this case, it would be interest-
ing to figure out the evolution of the elastic deformations. Thus, chosen
k3 = 0.28, the elastic solution is offered by Figure 7.17. The oscillations
of the undamped system alternate between increase and decrease of their
amplitude each time the spacecraft passes through the secondary anomaly.
However, this conclusion cannot be extend beyond the example presented;
as matter of fact, also subsequent increases of the amplitude are detected



140 Analysis of the Dynamics of Flexibile Configurations

0 0.5 1 1.5 2 2.5

−50

0

50

100

rev [ ]

φ 
[d

eg
]

 

 

k=.01 Nm/[rad]

RIGID

k=.0001 Nm/[rad]

k=.001 Nm/[rad]

k=.1 Nm/[rad]

Figure 7.16: Cross satellite. Effect of the internal stiffness on the pitch
angle along a large periodic orbit about L1 for k3 = 0.28.

for other inertial ratios. A more predictable scenario is obtained intro-
ducing a damping of the elastic rotation; if the oscillations are sufficiently
smoothed between two consecutive passages, the secondary anomaly al-
way boosts up the vibrations.
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Figure 7.17: Cross satellite. Elastic coordinates along a large periodic orbit
about L1 for k3 = 0.28 and k = 0.001 Nm/[rad].

So far, the two branches of the cross have been assumed orthogonal.
Thus, it is worth to investigate other relative angular positions of the cross
segments. To this end, the angle δ2 will vary and δ1 will remain equal to
zero. Looking at Figure 7.18, δ2 reveals to be a powerful parameter to tar-
get a desired frozen pitch angle after the secondary anomaly. Additionally,
despite the fact that no evidence are shown for sake of brevity, it is observed
that the structure vibrations are not any more around the undeformed ge-
ometry, but instead there is a mean trend to reduce the angle between the
two branches, in order to align every components of the architecture along
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the stable direction of the gravity gradient torque.
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Figure 7.18: Cross satellite. Pitch angle along a large periodic orbit about
L1 for different cross shapes.

Finally, it is discussed the most relevant outcome of an analogous anal-
ysis campaign in the L2 family of Lyapunov periodic orbits. The result
concerns the attitude dynamics along a large orbit and is obvious in Figure
7.19: the introduction of a sufficient degree of flexibility is able to convert
the pitch solution from diverging to bounded. Even if not appreciable on
the axis scale of Figure 7.19, the motion is restrained within ±20 degrees
for k = 0.001 Nm/[rad]. On one hand, this is another clear proof that
the elastic dynamics is mutually coupled to the rigid dynamics (at least to
the rotational component); on the other, it suggests novel means of passive
stabilization of the vehicle orientation, based on the elastic oscillation of el-
ements of the structure itself. To demonstrate that the oscillations are really
responsible for keeping the attitude stable, a damping factor is added in the
response presented Figure 7.20. The comparison shows beyond doubt that,
as long as the vibrations are extinguished enough rapidly, the pitch angle
returns to grow indefinitely.
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Figure 7.19: Cross satellite. Effect of the internal stiffness on the pitch
angle along a large periodic orbit about L2 for k3 = 0.88.
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Figure 7.20: Cross satellite. Response along a large periodic orbit about L2

for k3 = 0.88 and different damping.
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Many of the future missions to move up in space exploration are pro-
posed in vicinity of the Lagrangian points of the both Earth-Moon and Sun-
Earth systems. The breakthrough would be placing long-life large struc-
tures in such locations to serve as fertile points of observation of the uni-
verse or as space dock for missions in the Solar System. In this scenario, the
dynamics is highly nonlinear and characterized by high sensitivity to initial
conditions, so even small perturbations may force the spacecraft to depart
from the nominal trajectory. Furthermore, the attitude response in such
an environment is not yet fully and systematically portrayed. Therefore, a
deeper insight into the natural dynamics will surely improve the design of
the aforementioned missions and will be eventually able to advance new
design and control strategies. Large Space Structures are by definition ar-
chitectures of considerable extension. Thus, the effects of the gravity gra-
dient over the mass distribution are included in the dynamics formulation.
This leads the orbital and attitude dynamics to mutually interact. Similarly,
the area of the exposed surfaces to the solar radiation pressure is likely
greater than other cases. At this point, the solar radiation pressure is in-
cluded into the model as well. Then, astute solutions of the fully-coupled
dynamics under the solar radiation pressure are proposed. These solutions

143
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significantly abate the control effort on both the orbital and attitude mo-
tions to the extent that it may not be even required in some circumstances.
Finally, Large Space Structures likely possess a higher level of flexibility
either as a whole or because of some components. Hence, the elastic dy-
namics are added to the differential equations of motion. Since the stress
provoked by the gravity field is minimal in the neighborhood of the first
two libration points, the deformations are consequently small and do not
apparently alter the rigid-body solution of the classic structure. However,
very flexible and very simple configurations are employed to explore this
scenario. Such configurations may represent formation flying vehicles as
well as interconnected systems. The results show some unexpected mutual
interactions between orbital, attitude and elastic motions and suggest pos-
sible novel ways to exploit shape changes as effective tools to control the
spacecraft orientation.

8.1 Rigid Fully-Coupled Motion

A novel study on the gravity gradient over the spacecraft mass distribu-
tion in the Planar Circular Restricted Three-Body Problem is reported in
this work. Expanding the gravitational potential in Taylor series up to (at
least) the second order terms supplies the key to develop a more accurate
dynamical model. The gravity gradient not only affects both the orbital
and attitude motion, but also coupled two dynamics usually addressed in-
dependently. Its effects on Lyapunov periodic orbits are observed for the
first time. Unlike in the Restricted Two-Body Problem, this perturbation
is able to push the spacecraft away from the nominal trajectory within a
relatively short span of time, comparable to a few orbit periods. This per-
turbation is analyzed in the Earth-Moon and Sun-Earth systems, resulting
stronger in the former. Additionally, the final radial displacements observed
on periodic orbits of the L2 family are greater than those reported on the
L1 counterpart. However, the final drift is not a monotonic function of the
orbit size. Thus, the minimum does not correspond neither to the largest
nor smallest orbit of the family. It is also displayed that the spacecraft ori-
entation, angular velocity and shape have sensible consequences on the
orbital perturbation. In particular, highly anisotropic structures amplify the
disturbance; conversely, it could be minimized, but not canceled, by adopt-
ing an axisymmetric mass distribution. These considerations draw a new
picture of the dynamics in a multi-body gravitational environment, that
might prove useful in the design of large spacecraft missions. Surprisingly,
this picture reveals a fractal geometry of the response. The displacement
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from the reference Lyapunov orbit seems to possess the proprieties named
as auto-similarity and cross-similarity. The former means that the solution
repeats itself on different scales as the time increase; the latter means that
the same trend is observed on different scales depending on the spacecraft
characteristic length. The auto-similarity confirms that it is sufficient to
wait a certain time period to see the drift amplified to the point when the
Lyapunov orbit is shortly left. Furthermore, thanks to the cross-similarity,
this holds true regardless the spacecraft size, which acts only as an amplify-
ing factor. Specifically, it is demonstrated that, within a certain maximum
value, the final radial displacement is proportional to the square of the
spacecraft characteristic length.

Recently, interest in the attitude dynamics in three-body gravitational
field has risen as well. In this context, this work follows the path paved by
the last papers published, which stress the importance of accounting a fully-
nonlinear representation of the Lyapunov periodic orbits. Non-linearities in
the orbital motion make the difference also in the attitude dynamics. As a
matter of fact, the pitch response on nearly linear orbits is oscillatory and
the amplitude of libration limited. The only circumstance leading to diver-
gence of the pitch angle is the resonant condition. On the other hand, it is
easy for a spacecraft to start spinning indefinitely along a truly nonlinear
orbit. This behavior is mainly governed by the orbit size and the body in-
ertia ratio. The investigation demonstrates that, when selecting the orbit
size, the inertia ratio can be decreased to obtain bounded librations. Vice
versa, given the inertia ratio, the orbit amplitude reduction achieves the
same purpose. In the scenario of spacecrafts flying about the Lagrangian
point, this result is a valuable understanding for the vehicle design and
orbit selection.

8.2 Rigid Fully-Coupled Motion under Solar Ra-
diation Pressure

The solar radiation pressure is the dominant environmental disturbance
in the regions near the equilibrium points. Combined to the intrinsic in-
stability of Lyapunov periodic orbits, it guarantees the departure from the
nominal trajectory in few, perhaps not even one, revolutions. Nonethe-
less, a more thoughtful design of the reference orbit can totally or at least
partially solve this issue. Including the solar radiation into the dynamical
model, two strategies are proposed to address completely different scenar-
ios: a spacecraft about the L1 Sun-Earth point and another vehicle about
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the L1 Earth-Moon point. In the former, the orbit design is based on the
solar sails theory. In the Sun-Earth system, a solar sail can fly along an arti-
ficial Lyapunov orbit that is simply displaced from the natural solution. Of
course, this holds true under a precise set of assumptions. Not obviously, a
standard solar-arrays-powered spacecraft can emulate the aforementioned
dynamics of flat and perfectly reflective solar sails. Of course, some ar-
rangements need to be considered. Among them, it is required to point
toward the Sun. To this end, the solar arrays are tilted (they can be pic-
tured as a V shape) in order to obtain a passive stabilization of the desired
orientation. The robustness of the solution presented is verified varying
the critical parameters of the system. Specifically, its validity is preserved
even for fully anisotropic structures and reasonable inclinations of the solar
arrays, in order to prevent critical reduction of the electric power supplied.
During this investigation, it is also identified an abrupt variation of the
gravity gradient torque along large periodic orbits, that will be referred as
secondary anomaly because of its correlation with the vicinity to P2. The
secondary anomaly introduces a sudden and intense disturbance of the at-
titude motion.

A strategy not derived from any other previous theory is advanced in
the Earth-Moon system to maintain a spacecraft orbiting around L1. This
approach starts with the extraction from the L1 family of an orbit with pe-
riod equal to one synodic month. For evident reasons, this orbit is rightfully
named quasi sun-synchronous Lyapunov orbit. As second step, the space-
craft is assumed to constantly aim at the sun. Upon these conditions, an
initial solar phase is discovered that guarantees extremely small errors of
the periodic orbit at the crossing condition, despite the presence of the so-
lar radiation pressure. This technique alone is not sufficient to preserve the
nominal trajectory on the long period, but the attendant station keeping
effort is surely reduced. Then, the robustness of the identified solution is
verified for a satisfactorily wide range of the dominant system parameters.
In other words, an adequate project flexibility is offered to the analyst. In
conclusion, as in the earlier strategy, the natural fully-coupled dynamics
under the solar radiation pressure are mastered to provide new helpful
tools to design the future missions toward the libration points.

8.3 Dynamics of Flexible Configurations

The structure flexibility is incorporated in the dynamical formulation via
the modal representation of the shape variations. Considering the pro-
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prieties of standard spacecrafts, no visible alterations of the natural flight
mechanics predicted with the rigid body model are observed. It is realized
that the neighborhood of the equilibria corresponds to a general minimum
of the environmental load on the structure; in turn, the deformations are
not sufficiently large to practically interact with the translational and ro-
tational dynamics. From the reverse perspective, it means that highly de-
formable architectures, not feasible near Earth, can instead withstand the
solicitations in those regions. Hence, two elementary and highly flexible
configurations are adopted to preliminarily understand the fully-coupled
response, including the elastic dynamics. The analysis confirms that low
levels of stiffness, well below the levels of classical structures, guarantee
a rigid behavior in terms of orbital and attitude motion. Otherwise, if the
configuration is deformable enough, the interplay of the dynamics emerges.
Actually, only visible mutual interactions between the attitude and elastic
components are reported. Conversely, the orbital path affects the elastic
solution, but not vice versa. The first configuration investigated is a dumb-
bell satellite. Different results are reported and discussed. In particular,
the elastic vibrations of the dumbbell seem to stabilize the spacecraft ori-
entation. On small periodic orbits, the more the stiffness is decreased, the
more the attitude oscillations are damped. Similarly, on large orbits, the
pitch divergence of the equivalent rigid configuration can be limited by in-
troducing a certain degree of flexibility. However, it also observed that,
if the link is too weak, the dumbbell blows up (the distance between the
tip masses grows quickly toward infinity). Secondly, a cross satellite is
studied. Here, the system is sensitive to the extend that the major system
parameters, such as the internal stiffness or the body inertia ratio, can alter
the nature of the solution itself. Specifically, the effects of the secondary
anomaly can be totally different: the spacecraft might increase its spin ve-
locity, reverse the rotation direction as well as arrest its angular motion.
In the latter circumstance, the secondary anomaly even triggers a critical
transfer of energy from the attitude to the elastic dynamics. Each of the
previous attitude responses is paired off with a specific elastic dynamics
as well. Additionally, it is discovered that, on large Lyapunov orbits be-
longing to the L2 family, the oscillations of the cross branches are able to
stabilize the vehicle initial orientation; otherwise, the pitch angle along the
trajectory would quickly depart from the initial condition. In conclusion,
several mechanisms underlying the very elastic body dynamics are brought
to light. Besides providing a deeper insight, with further studies they may
serve as novel means to maneuver and control distributed architectures,
in the broad sense of the term, including formation flights or multi-body
systems with elastic joints.
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8.4 Recommendations for Future Works

Given that the present thesis concerns many novel phenomena and presents
a number of results addressed for the first time, any further in-depth anal-
ysis of those topics will be strongly encouraged. However, some directions
deserve a greater consideration:

• Investigate the spatial dynamics. The current study is limited to the
orbital plane of the two attractors. Besides the planar Lyapunov fam-
ily, many other types of periodic or quasi periodic orbits exist in the
out-of-plane regions. Furthermore, not only the fully spatial repre-
sentation of the spacecraft attitude is mandatory for any practical
purposes, but also the yaw and roll dynamics may reveal interesting
behaviors in a multi-body gravitational field.

• Develop a theoretical framework of the fractal response. It has been
shown that the orbital drift from the reference orbit induced by the
gravity gradient may possess a fractal geometry. The quasi auto-
similarity and quasi cross-similarity should be more rigorously con-
firmed by developing theoretical basis of the phenomenon and cogent
demonstrations of these proprieties.

• Systematic analysis of the rigid body attitude dynamics. The orbit size
and the inertia ratio proves to be the main governing parameters of
the pitch dynamics. A threshold between bounded and unbounded
solution has been partially delineated as a function of the aforemen-
tioned variables, but a refinement of that borderline would be recom-
mended. It is also suggested to develop stronger theoretical basis of
the phenomenon. Considering bounded solutions, would be also nice
to seek for any sort of periodicity in attitude response. To this end,
maps of the trajectories of the attitude states could be as useful as
they are in the orbital dynamics.

• Introduce an active Station Keeping. So far, the strategies proposed
to more easily keep the nominal trajectory under the solar radiation
pressure are passively controlled. They are completely based on the
natural dynamics. Especially in the solutions advanced in the Earth-
Moon system, the introduction of an active station keeping policy
is essential to maintain the orbit for a long period. In the event,
standard actuators may be employed, otherwise the solar pressure
itself might be exploited to generate the desired thrust. Finally, it is
also suggested to compare the costs of novel and standard mission
design.
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• Investigate the dynamics of more complex elastic configurations. Two
elementary architectures are addressed in this study. This paved the
way to more sophisticated systems that can be a closer representa-
tion of the mission concept as well as can bring to light unexpected
dynamical behaviors. In turn, a new manner to control and maneuvre
the system might be founded on geometry mutations.





Symbols and Notations

Symbols Meaning

αb Angle between the versor b̂1 and ŝ.
αi Angle between the i-th surface normal n̂i and the

radiation incident direction.
β Spacecraft lightness factor.
δ Drift from the nominal trajectory.
δr(t) Radial displacement at time t relative to the nominal

trajectory.
δrf Final radial displacement relative to the nominal tra-

jectory.
δsa Solar arrays tilt.
εx Position crossing error in terms of the coordinate

along ˆ̀
1.

εvx Velocity crossing error in terms of the coordinate
along ˆ̀

1.
εvy Velocity crossing error in terms of the coordinate

along ˆ̀
2.

εθsun Solar phase error after a period.
θsun Solar phase.
θSC Spacecraft angular position in the `-frame.
µ Mass parameter of the P1-P2 system.
µx Gravitational planetary constant of the attractor Px.

Continued on next page.
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Continued from previous page.

Symbols Meaning

φ Spacecraft attitude angle in the orbital plane (also
referred as pitch angle).

ξi Modal damping of the i-th shape (subscript omitted
in the event of a single mode).

∆θ Angular phase of the spacecraft relative to the Sun.
∆x Position error after a period in terms of the coordi-

nate along ˆ̀
1.

∆y Position error after a period in terms of the coordi-
nate along ˆ̀

2.
ω Angular velocity vector of the `-frame observed in

the I-frame.
ω0 Spacecraft initial angular velocity.
ωosc Angular frequency of the nominal Lyapunov orbit
[Φ(t1, t0)] State transition matrix between the initial time t0

and the final time t1.
Ω Angular velocity of the P1-P2 system.
axP Perturbation force due to the gravity gradient related

to the attractor Px.
b Distance between the solar array center of pressure

and the spacecraft center of mass for the I-SS and
V-SS configurations.

b-frame Local coordinate system to track the spacecraft posi-
tion and orientation.

(b̂1, b̂2, b̂3) tern of versor defining the b-frame.
bi Position vector center of pressure of the i-th surface

relative to the spacecraft center of mass.
k3 Out-of-plane inertia ratio.
kcrit Critical inertia ratio on quasi-linear Lyapunov peri-

odic orbit.
ki Modal stiffness of the i-th shape (subscript omitted

in the event of a single mode).
lx cosine directors of Rx in the b-frame.
`-frame Global non-inertial coordinate system fixed on the

Lagrangian point Li.
(ˆ̀

1, ˆ̀
2, ˆ̀

3) tern of versor defining the `-frame.
m Spacecraft total mass.

Continued on next page.
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Continued from previous page.

Symbols Meaning

n̂i Normal of the i-th surface exposed to the solar radi-
ation pressure.

r1 Location of P3 relative to P1.
r2 Location of P3 relative to P2.
rP Position vector of the mass point P in the `-frame.
rx Location of the mass point P relative to the attractor

Px.
q Vector of generalized coordinates.
qi i-th generalized coordinates.
qf Vector of elastic generalized coordinates.
qr Vector of rigid generalized coordinates.
t time variable.
ŝ Direction of the incident solar radiation.
u0 Position vector of the mass point P in the b-frame.
uf Elastic displacement of the mass point P relative to

the undeformed position in the b-frame.
vT Velocity vector of a mass point P , fixed in the `-

frame, when observed from the I-frame.
v(O′) Translational velocity vector of O′.
w Spacecraft width.
x, y Coordinates of the configuration space.
A Total spacecraft cross-sectional area exposed to the

solar radiation.
[A] Rotation matrix from the b-frame to the `-frame.
B Origin of the b-frame.
[Cff ] Modal damping matrix.
F SRP
i Force exerted by the solar radiation pressure on the

i-th surface.
H Hamiltonian function.
I Spacecraft moment of inertia around the spin axis.
I-frame Inertial coordinate system fixed on the center of

mass of the P1-P2 system.
(Î1, Î2, Î3) tern of versor defining the I-frame.
Iii Moment of inertia about the i-th principal inertia

axis.
L Spacecraft length.
[K] Stiffness matrix.

Continued on next page.
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Continued from previous page.

Symbols Meaning

JC Jacobi constant.
L Lagrangian function.
M Poincaré map.
[M ] Mass matrix.
MSRP

i Moment on the space center of mass exerted by the
solar radiation pressure on the i-th surface.

O Origin of the I-frame.
O′ Origin of the `-frame.
P Arbitrary mass point belonging to the spacecraft.
P1 Primary attractor.
P2 Secondary attractor.
P3 Body representing the spacecraft.
Px Primary attractor for x = 1, secondary attractor for

x = 2.
Qν Quadratic velocity vector.
QΩ Generalized action provoked by fictitious forces.
Qg Generalized action provoked by the gravitational

field.
R Position vector of B in the `-frame.
R0 Position vector of B in the `-frame along the refer-

ence trajectory.
Rx Location of B relative to the attractor Px in the `-

frame.
[S] Shape functions matrix.
Trel Kinetic relative energy observed in the `-frame.
T1 Generalized potential of the centrifugal force.
T2 Generalized potential of the Coriolis force.
Tosc Period of the nominal Lyapunov orbit.
Ux Gravitational potential of the attractor Px.

Ended from previous page.
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