
POLITECNICO DI MILANO
Corso di Laurea in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

Detecting Data Access Patterns in OpenMP
Parallel Loops

Formal Languages and Compiler Group
Politecnico di Milano

Relatore: Ing. Giovanni Agosta
Correlatore: Ing. Ettore Speziale

Tesi di Laurea di:
Maggioni Marcello, matricola 754531

Anno Accademico 2011-2012

Abstract

The increasing difficulty in improving single thread performance has led to a major

shift towards multi-processor and multi-core systems. Shared memory architectures

provide the best programmability features for multi-processor systems, due to the

simple abstraction provided by the shared memory. Due to the technology con-

straints in the scalability of memory access, Non Uniform Memory Access (NUMA)

architectures have been proposed. NUMA architectures aim at reducing memory

bus stalls by providing a separate bus from each processor to a portion of the mem-

ory (”local” to that processor). Access to that portion of the memory from other

(”remote”) processors is guaranteed, but remote processors need to pass through the

local processor, leading to an increased access latency. The locality of memory ac-

cess, therefore, becomes pivotal to performance.Thread schedulers unaware of data

locality assign threads to processors randomly, leading to sub-optimal solutions. To

improve over this baseline, it is necessary to take into consideration which memory

addresses are accessed by each iteration of a loop — the data access pattern of that

loop. With this knowledge, it is possible to select the best NUMA node for the

execution of each loop iteration, and schedule the threads accordingly.In state of

the art solutions, the data access pattern information is encoded manually by the

programmer by means of extensions of the OpenMP parallel for directive. The

goal of this work is to automatically derive the necessary information, speeding up

the development of parallel code and reducing the need for the developer to have a

deep understanding of the performance of the program.

To this end, we have developed compiler analysis and transformation passes that

compute the data access pattern information and provide it to the lower stages of

the compilation process. The development of this pass is the objective of this Thesis.

i

Abstract

La difficolta’ crescente nell’ aumentare le performance single-thread ha portato allo

sviluppo sempre crescente dei sistemi multi-processore e multi-core. Le architet-

ture con memoria condivisa offrono la migliore programmabilita’ sui sistemi multi-

processore, grazie alla uniformita’ dello spazio di memoria. A causa di difficolta’

di scalabilita’ dei sistemi con molti nodi nell’accesso di memoria, sono state svilup-

pate le architetture Non Uniform Memory Access (NUMA). Le architetture NUMA

puntano a ridurre gli stalli del bus di memoria offrendo un bus separato, per ogni

processore, a una porzione della memoria (”locale” a quel processore). L’accesso a

quella porzione di memoria da altri (”remoti”) processori e’ garantita , ma i proces-

sori remoti devono passare attraverso il processore locale, portando ad una latenza

incrementata. La localita’ dell’ accesso di memoria, quindi, diventa un importante

fattore per le performance delle applicazioni su questi sistemi. Gli scheduler dei

thread, non a conoscenza di informazioni riguardo la localita’ della memoria acce-

duta nel thread, assegnano i thread ai processori spesso in maniera non ottimale.

Per migliorare la situazione e’ necessario conoscere quali indirizzi di memoria sono

acceduti da ogni iterazione di un loop - ossia lo schema di accesso alla memoria di

quel loop. Con questa conoscenza, e’ possibile selezionare il miglior nodo NUMA

per l’esecuzione di ogni iterazione assegnando i thread in maniera ideale. Le attuali

soluzioni allo stato dell’arte permettono di specificare manualmente lo schema di

accesso della memoria dei thread attraverso estensioni alla sintassi della direttiva

OpenMP parallel for. L’obiettivo di questo lavoro e’ di riuscire a derivare le in-

formazioni necessarie automaticamente, facilitando lo sviluppo di codice parallelo e

riducendo la necessita’ per una profonda conoscenza delle interazioni con la memoria

da parte del programmatore.

A questo scopo, e’ stata sviluppata una serie di passi di analisi e trasformazione

del codice che calcola lo schema di accesso dei dati ed e’ in grado di fornirla agli

stadi successivi del processo di compilazione o direttamente al programmatore. Lo

sviluppo di questi passi e’ l’obiettivo di questa tesi.

Contents

Cover 1

I Introduction 1

1 Motivation 2

1.1 Issues in Parallel Program Development 2

1.2 Beyond the limit of SMP systems . 3

1.3 Parallelization for NUMA systems . 5

1.4 Objective of the Thesis . 5

1.5 Structure of the Thesis . 5

II Tools 6

2 OpenMP 7

2.1 Execution Model . 7

2.2 Memory Model . 10

2.3 Loop Parallelization . 11

3 The Polyhedral Model 13

3.1 SCoPs . 13

3.1.1 Scattering . 15

3.1.2 Memory Accesses . 15

4 LLVM and Polly 17

4.1 High level structure of LLVM . 17

4.2 Polly . 18

ii

4.2.1 Polly internal representation and ISL 18

III Solution 20

5 Data Access Pattern Detection 21

5.1 OpenMP Loop parallelization . 21

5.2 Memory access patterns . 22

5.3 Finding the patterns . 23

5.3.1 SCoP loops bound detection 23

5.3.2 Access function computation 24

5.3.3 Array dimensions bounds computation 24

5.3.4 Slices and Ranges computation 24

6 Polly Analysis Relaxation 28

6.1 Polly SCoP Extraction Process . 29

6.1.1 Polly SCoP Detection Process 29

6.1.2 Polly SCoP Control-Flow Analysis 31

6.1.3 Polly SCoP Polyhedral representation construction 33

6.2 Ignoring Non-affine memory accesses 34

6.2.1 Changes to the Detection pass 35

6.2.2 Changes to the Control-flow analysis pass 35

6.2.3 Changes to the Polyhedral construction pass 35

6.3 Ignoring Non-Affine branches . 35

6.3.1 Changes to the Detection pass 36

6.3.2 Changes to the Control-flow analysis pass 41

6.3.3 Changes to the Polyhedral construction pass 41

6.4 Dealing with casts in OpenMP loops 43

6.4.1 Dealing with Trunc instructions 44

6.4.2 Dealing with Bit-Casts . 44

7 Pattern Computation 52

7.1 The OpenMPData pass . 54

7.2 The OpenMPNorm pass . 55

7.3 The OpenMPDetection pass . 58

7.4 The OpenMPRegionTree pass . 62

7.4.1 The Call Graph . 63

7.4.2 Building the Region Tree . 63

iii

7.5 The OMPNUMAIdentify pass . 71

7.5.1 SCoP Validation . 71

7.5.2 Array dimensional access functions determination 73

7.5.3 Result computation . 79

8 Experimental Results 91

8.1 Code preparation . 91

8.2 Analysis results . 93

8.2.1 Test application 1 . 93

8.2.2 Test application 2 . 94

8.2.3 LU Decomposition Algorithm 94

8.2.4 Jacobi method implementation 96

8.2.5 Alternating Direction Implicit method algorithm 96

iv

List of Figures

1.1 A typical SMP system . 4

1.2 A typical NUMA system . 4

2.1 OpenMP parallel directive. Here the text is displayed twice. 8

2.2 Fork-Join model . 8

2.3 Example of usage of the sections directive. Each thread prints it’s

own id number. 9

2.4 Memory model . 10

2.5 OpenMP parallel loop example. Each loop iteration is dispatched to

a thread (the number of them may vary) 11

3.1 An example of a SCoPs . 14

3.2 Statement instances for S2 (red) and S3 (blue) in the SCoP 14

3.3 Example of an affine memory access 16

4.1 High level LLVM structure . 18

5.1 Example of nested OpenMP loops. Only the red highlighted for is

parallelized . 21

5.2 Example of translated OpenMP loop with dynamic scheduling into

LLVM-IR . 26

5.3 Example of access pattern on a 2-dimensional array 27

5.4 Example of simple parametric bound loop with two statements 27

6.1 Polly SCoP detection process . 31

6.2 Inheritance graph for LLVM SCEV class 33

6.3 Example of conditional code . 33

6.4 Inheritance graph for LLVM SCEV class 41

v

6.5 LLVM cast instructions . 45

6.6 Example of code generated from a parallel block 46

6.7 Example of memory access in the generated OpenMP parallel function 47

6.8 Example of memory access in the generated OpenMP parallel func-

tion with OpenMPCastRemoval . 51

7.1 Pass usage relationship. Solid arrow means ”uses”, dashed arrow

means ”may use”. 53

7.2 A function containing OpenMP runtime calls before OpenMPNorm

is run. 58

7.3 A function containing OpenMP runtime calls after OpenMPNorm is

run. 59

7.4 LLVM-IR code implementing the code of an OpenMP loop. 61

7.5 An OpenMP loop inside a function. 62

7.6 Example of an OpenMP C program with its Call Graph 64

7.7 Result of an analysis with OpenMPRegionTree 70

7.8 The OpenMPRegionNode class . 71

7.9 Example of usage of an alloca instruction 74

7.10 The LLVM Type system class heirarchy. 75

7.11 Example of C code accessing a bi-dimensional array. 78

7.12 Example of C code accessing a 4-dimensional array. 79

7.13 Example of an OpenMP C loop accessing a 2-dimensional in blocks

array. 85

7.14 Example of an OpenMP C loop accessing a 2-dimensional array with

a parameter and a constant. 86

7.15 The UML diagram for the MemoryAccessResult class. 89

7.16 The UML diagram for the AnalysisResult class and its sub-classes. . . 89

7.17 The UML diagram for the BoundExpression and Parameter classes. . 90

8.1 Code for Analysis test application number 1. 93

8.2 Access pattern for test application 1. 94

8.3 Code for Analysis test application number 2. 95

8.4 Access pattern for test application 2. 95

8.5 Code for Analysis test application number 3. 97

8.6 Code for Analysis test application number 4. 98

8.7 Code for Analysis test application number 5. 99

vi

Nomenclature

API Application Programming Interface

ccNUMA Cache-coherent Non-Uniform Memory Architecture

CFG Control-flow graph

GEP GetElementPtr

ISL Integer Set Library

LLVM Low-Level Virtual Machine

LLVM-IR LLVM Intermediate Representation

NUMA Non Uniform Memory Access

OpenCL Open Computing Language

OpenMP Open Multiprocessing

SCEV Scalar Evolution

SCoP Static Control Part

vii

Part I

Introduction

1

Chapter 1
Motivation

Moore’s law [1] has always been a driving force for microprocessor development.

This law has been followed very closely in the past years by adding, to each new

generation of microprocessors, components like branch predictors , larger caches,

additional scalar and vector execution units. All these new components brought

massive performance increases in the single threading domain, but in the recent

years a wall has been hit because of difficulties found in rising operating frequencies

of high performance microprocessors and new extensions to these already mentioned

components aren’t enough to reach the expected increase of performance. Now the

development shifted toward multicore/multiprocessor systems. These systems try

to deliver increased performance by using multiple processors on the same system

or adding more processors in the same chip package. This approach works well , but

may be problematic, in particular because of two problems:

• Multithreading programming isn’t easy to do and more often than not programs

are not optimized for multithreading systems by having big single threaded

parts that limit the performance in the terms of the Amdahl’s law. [2]

• Symmetric Multicore/Multiprocessor systems scale very well with small num-

bers of processors, but start to lag behind when a lot of processors access the

same bus

1.1 Issues in Parallel Program Development

Parallelizing the code of a program is not an easy task. Identifying different compo-

nents to parallelize is complex, threading APIs aren’t straight forward and, usually,

aren’t cross platform (because they are strictly tied to the OS), in addition the

2

interaction between parallel sections of a program may bring up race conditions,

deadlocks and other typical problems of parallel code. Because of this there has

been work by software engineers in the recent years towards making it easier for

programmers to produce parallel code by developing easier programming APIs and

tools. Like the first compilers helped early programmers in making serial program-

ming easier thanks to the employment of high-level programming languages instead

of machine languages, these APIs aim to let the programmers concentrating more on

the solution they have to develop and less on the lower level matters of paralleliza-

tion. Examples of these new tools are OpenMP (Task parallelism) and OpenCL

(Data and Task Parallelism). In particular OpenMP is specific for CPU program

parallelization while OpenCL is more focused on heavily parallelized devices, like

GPUs (but many implementations also support CPU devices). These provide tools

to define parallel Task and Data domains.

Loop Parallelization OpenMP has an interesting feature that is loop parallelization.

This feature makes it possible to schedule loop iterations over multiple threads with

just a line of code and needs little human intervention (that is what makes this

feature so interesting). Loops with many data independent iterations can get very

big speedups thanks to this.

Loop parallelization is explained later in greater detail in Chapter 5

1.2 Beyond the limit of SMP systems

Faster buses and larger caches have been used to avoid performance problems related

to memory bus accesses as much as possible. After a certain amount of nodes these

solutions are not enough. The solution that is used in big multiprocessor systems

is called ccNUMA . In NUMA systems, the memory address space is shared with

all the other processors, like in SMP, but the difference with SMP is that memory

is not directly connected to all the nodes through a common bus, but each NUMA

node (that can be composed of one or more processors) have only a certain amount

of memory directly connected to their local bus. The memory connected to the

other nodes is accessed through an interconnect bus that is much slower. The whole

memory address space is available in both SMP and NUMA systems, but in the

latter the access cost of different parts of the address space is different and not

uniform (hence the name).

NUMA helps in reducing the bus race conditions that usually happen in large

SMP systems by partitioning it into smaller nodes.

3

Core 0 Core 1

Package 0

Core 0 Core 1

Package 1

Package level cache Package level cache

Shared Memory

Figure 1.1: A typical SMP system

Interconnect Bus

Numa Node 0Numa Node 0

Core 0 Core 1

Package 0

Package level cache

Core 0 Core 1

Package 1

Package level cache

Shared Memory

Numa Node 0Numa Node 1

Core 0 Core 1

Package 2

Package level cache

Core 0 Core 1

Package 3

Package level cache

Shared Memory

Figure 1.2: A typical NUMA system

4

1.3 Parallelization for NUMA systems

For the best performance results NUMA programs should be hand-tuned in order to

leverage the better performance of local memory compared to the one connected to

other NUMA nodes. This requires deep knowledge of the system and of the access

patterns to memory of the various threads composing the program. When loop

parallelization is used on NUMA systems the generated code might not be optimal,

because of the uninformed and automatic nature of this approach, which usually

produces inefficient code for these systems. Some steps to solve this have already

been done. Some researchers at Politecnico di Milano developed a modified OpenMP

runtime that is able to accept additional information, fed by the programmer, about

the memory access patterns inside OpenMP loops and to schedule the loop threads

to the best system node.[9] The problem of this approach is that it would be better

if the programmer isn’t burdened with the task of determining the memory access

patterns of the program, because of the inherent low-level nature of the task and

the effort it takes.

1.4 Objective of the Thesis

The final objective of this Thesis is to find a way to expand on the previous work on

this subject and remove this requirement by producing a compiler analysis pass that

determines the memory access patterns of the program and produces the the meta-

data that the programmer had to determine by himself using polyhedral analysis of

the parallelized OpenMP loops.

1.5 Structure of the Thesis

In the next chapters will be given an introduction to the tools and the concepts used

to reach the stated objective. The introduction will help in better understanding

the choices made in developing the solution. After this the solution itself and the

work produced will be presented in detail.

5

Part II

Tools

6

Chapter 2
OpenMP

The work in this Thesis targets OpenMP. OpenMP is an API that provides to pro-

grammers a portable , shared-memory model interface to build parallel applications

for a broad range of devices, from desktops to supercomputers. The OpenMP spec-

ification is publicly available on the OpenMP website 1 and is maintained by an

Architecture Review Board (ARB) composed of some of the most important players

in the computing field , like Microsoft, IBM, Intel and AMD. The ARB is respon-

sible for the future developments of the OpenMP specification. OpenMP uses the

traditional operating system threading API to parallelize the program, so it can be

thought as a portable and simplified interface to that same API.

2.1 Execution Model

The execution model of OpenMP is based on a model called fork-join[3]. When

an OpenMP program starts it spawns a thread like any other program: that thread

is called the Master Thread and it is the main thread of the program. An OpenMP

C++ program is instrumented through the use of special preprocessor pragma di-

rectives that the compiler uses to determine how to handle and parallelize the code.

The most important of all these directives is the parallel directive. When a parallel

directive is reached OpenMP spawns new threads (the default number of threads is

implementation dependent and can be specified by the user). The code contained in

the code block next to the parallel directive is executed by all the threads concur-

rently. At the end of the code block a barrier joins all the spawned threads together

and then the execution continues with only the master thread surviving the join

event. It is easy in this way to spawn new threads and execute sections of code

1http://www.openmp.org

7

concurrently.

int main()

{
#define omp parallel num_threads(2)

{
printf("Multithread Hello World!");

}
return 0;

}

Figure 2.1: OpenMP parallel directive. Here the text is displayed twice.

Figure 2.2: Fork-Join model

8

Inside a parallel region many different OpenMP directives can be inserted. Each

of these statements have a different meaning and interact with the currently available

threads spawned by the the parallel directive distributing work between them or

synchronizing them. An example of these additional directives are the sections and

section directives that can be used to define code blocks that have to be executed

by only one thread of the group of threads spawned by the parallel directive so that

the code blocks defined can be distributed between the worker threads.

int main()

{
#pragma omp parallel num_threads(2)

{
#pragma omp sections

{
#pragma omp section

{
printf ("id = %d, \n", omp_get_thread_num());

}

#pragma omp section

{
printf ("id = %d, \n", omp_get_thread_num());

}
}

}
return 0;

}

Figure 2.3: Example of usage of the sections directive. Each thread prints it’s own id number.

The OpenMP execution model can so be summarized in this way:

1. Define a parallel section that spawns a new team of threads to be used for task

execution

2. Write code that needs to be run multiple times (in multiple threads) or specify

other OpenMP directives to distribute the work between the threads in the

team.

3. If needed synchronize between the threads using the barrier OpenMP directive

or other synchronization OpenMP directives.

9

2.2 Memory Model

The memory model is how OpenMP manages memory and how the various threads

share it. The OpenMP memory model is quite simple and is very similar to the

traditional threading model found in the most famous operating systems, where the

memory is shared between the threads but it is possible for threads also to have

private memory. It is possible to specify which variables must be private at the

definition of specific OpenMP directives, in which case each reference inside the

block for the directive will refer to a private copy of the variable created for each

of the threads. Accessing to shared memory doesn’t necessarily mean that memory

is immediately updated, but OpenMP uses a relaxed-consistency memory model

that gives to the implementations the freedom to create a local memory view even

for shared memory variables accesses that are periodically synchronized with the

shared memory. This mechanism is transparent to the user and can’t be controlled,

with the exception of a specific OpenMP clause , the flush clause, that can be used

to synchronize the global memory with the local view.

Figure 2.4: Memory model

10

2.3 Loop Parallelization

One of the most performance critical parts of program code are loops. Loops are

parts of code executed multiple times, so they are the perfect target for optimization,

and where usually performance hogs are found. Of the many possible ways to in-

crease loop performance, Loop Parallelization is one of particular interest thanks

to the recent widespread adoption of multi-core architectures.[4] In loop paralleliza-

tion the various loop iterations are distributed to different threads for execution.

While there are some compilers that execute this optimization automatically the

optimization is still usually hand-made. The reason is that compilers have to do

memory dependence analysis on the loop iterations in order to determine which

iterations can be parallelized and which must be executed serially. This is a com-

plex task to do and not all optimization opportunities are exploited from compilers.

OpenMP helps the programmer in doing this optimization manually by providing

syntactical facilities.

Here is provided an example of usage of OpenMP to define parallel loops:

void simple(int n, float *a, float *b)

{
int i;

#pragma omp parallel for

for (i=1; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;

}

Figure 2.5: OpenMP parallel loop example. Each loop iteration is dispatched to a thread (the
number of them may vary)

11

This code snippet produces a for loop whose iterations are distributed among the

spawned threads by the parallel directive. In this case the parallel and the for

directives (which is the OpenMP loop directive for C/C++ code) have been fused

together in one single ”parallel for” directive. OpenMP permits this kind of fusion

between parallel and other statements that are often the only ones present inside a

single parallel block.

12

Chapter 3
The Polyhedral Model

The Polyhedral Model is a way of representing and manipulate loop structures

and statements. The iteration space is modeled through a polytope.[7] A huge

number of loop transformations can be implemented using the polyhedral model

, like loop fusion, loop fission, strip-mining and data dependence analysis. In the

Polyhedral Model each statement of the loop is represented as one point inside the

bounds of a polytope for each time it is executed. The bounds of the polytope

are the representation of the loop bounds. Not all loops are suitable to polyhedral

analysis, because they need to have some specific features to make them compatible

with this kind of analysis, in particular:

1. The loop bounds must be defined (so while loops usually are not suitable to

polyhedral analysis)

2. The loop bounds must be affine functions of the loop iterators

3. Conditions contained in the loop must be affine

4. Loop iterators can’t be passed as modifiable parameters (through pointers or

references) to a function

5. Loops must have a constant stride

If a loop has these properties then it can be represented through the polyhedral

model and can be part of a SCoP (Static Control Part).

3.1 SCoPs

A SCoP is the maximal set of consecutive statements without while loops where

loop bounds and conditionals may only depend on invariants within this set of

13

statements[10]. These invariants include symbolic constants, formal function pa-

rameters and surrounding loop counters. These are called global parameters of the

SCoP.

int i;

for (i=0; i < n; i++) {
//-- SCoP 1 begins here -- three statements, Iterators: i,j Parameters: m,n,k

S1

int j;

for (j = 0; j < m; j++) {
S2

if (j < k)

S3

}
}

Figure 3.1: An example of a SCoPs

The SCoP in the example above defines two polytopes. An one dimensional

polytope for S1 and a two dimensional polytope of rectangular shape for S2 and

S3. Each point inside the polytope defines an iteration of the loop modeled by the

SCoP. A statement may or may not execute when a specific iteration of the loop is

executed. In Figure 3.2 are represented statement instances for statements S2 and

S3. A point is present in the graph when a certain statement is executed at loop

iterators values i and j.

0

m

n

j

i
k

Figure 3.2: Statement instances for S2 (red) and S3 (blue) in the SCoP

The values for which a SCoP statement is executed are called the domain of the

statement. For example for statement S1 the domain is {i|i ≥ 0, i < n} while for

S2 the domain is {i, j|i ≥ 0, i < n, j ≥ 0, j < m} and for S3 is {i, j|i ≥ 0, i < n, j ≥
0, j < m, j < k}.

14

3.1.1 Scattering

The statements are also characterized by the order in which they execute, with

respect to each other, that is called scattering. The scattering determines the

scheduling of execution of statements. Statements with lower scattering values are

executed before statements with higher values. The scattering is usually repre-

sented through vectors of multiple elements like S2s = (0, i, 1, j, 0), which can be

a representation of the scattering for statement number 2. For statement num-

ber 3 a possible scattering would be S3s = (0, i, 2, j, 0). The S3 vector has an

higher lexicographical value than that of S2, signifying that statement 3 is exe-

cuted after statement 2. The amount of elements of the scattering vector is usually

2 ? NumberOfLoopsOfTheSCoP + 1, but the format of the scattering vector may

be arbitrary and is not standardized. At last a valid scattering for statement number

1 could be S1s = (0, i, 0, 0, 0). These scattering vectors define the correct execution

order for the statements in the SCoP. Changing values contained in the scattering

vectors changes the execution order of the various statements and it is what trans-

formation passes actually do when the aim of the transformation is changing the

execution order of statements in the loop.

3.1.2 Memory Accesses

Considering that reordering statements may also change the order of memory ac-

cesses (because usually statements access memory in some way, either by reading or

writing it) these are important components that define statements. Memory accesses

may be dependent from one another and because of this usually transformations that

involve swapping the statements execution order must take in consideration memory

dependencies to make transformations that do not change the semantics of the pro-

gram. A statement may do zero, one or many memory accesses. Of all the memory

accesses the best ones for the polyhedral model are those with a pattern that can be

represented through an affine function (with respect to the loop iterators). Affine

memory accesses can be easily analyzed and the dependency between accesses can

be derived.

15

int i,j, A[100][100];

for (i=0; i < 100; i++) {
for (j = 0; j < 100; j++) {
A[i][j] = i;

}
}

Figure 3.3: Example of an affine memory access

In the example of Figure 3.3 memory is accessed with an affine access function.

The access function is A(i, j) = 100? j + i+BASE where BASE is the base pointer

of the data structure being accessed, in this case the address of the first element of

array A. Example of non-affine memory accesses are those using a non-affine access

function of the loop iterators. Function calls may also be considered potential non

affine memory accesses, because they may make arbitrary memory accesses that

can’t be known in advance (the code for the function itself may not be available at

compile time, like for example those in external dynamically-linked libraries).

16

Chapter 4
LLVM and Polly

The LLVM compiler infrastructure and it’s polyhedral analysis tool called Polly are

the main tools used in this Thesis. LLVM is a set of libraries developed specifically

for compiler development, written in C++ and originally developed at the University

of Illinois. [6] Later, the core development has been taken over by Apple that uses

it as the main compiler technology for their systems like the MacOS and iOS.[5] It

is an Open Source project open to anyone to contribute under a BSD-like license

and actively developed. LLVM has not been created as a complete compiler itself,

but it provides the basis to build front-ends, optimizers and code generators both

for static and dynamic compilation.

4.1 High level structure of LLVM

LLVM is a set of libraries aimed at compile-time, link-time and run-time optimiza-

tion of code.[8] In order to do that in a machine independent way LLVM com-

ponents interact with the code (almost) completely when it is converted into its

internal LLVM-IR (LLVM Intermediate Representation). The LLVM-IR is a RISC-

like register-based assembly language used as an intermediate representation for the

LLVM optimization passes. Program code in LLVM-IR can be constructed through

a specific API that is part of LLVM. After the code is generated it can be altered

through the various LLVM optimization passes. LLVM provides interfaces to build

different kinds of optimization passes depending on the level it has to work on. For

example if the optimization has to work at the Loop level then a LoopPass can be

built, if instead it has to consider the compilation unit as a whole then a ModulePass

can be used. After the code has been analyzed and altered by the various optimiza-

tion passes then the code can be translated to native code through the native code

17

generators. The generated code can either be stored on the hard-drive and linked

to form a static native executable or it can be directly executed (this enables the

development of JITs through LLVM).

Figure 4.1: High level LLVM structure

The overall structure of a compiler built on LLVM is then:

1. A Front-End that parses and translates the original source code to LLVM-IR

code using the LLVM API to construct the basic-blocks.

2. Optimization passes to be run on the generated IR code.

3. The native code generator that outputs the native code eventually applying

native code optimizations to the generated code.

This project is itself a collection of LLVM optimization passes (both analysis and

transformation passes for code normalization).

4.2 Polly

Polly is a polyhedral analysis tool for LLVM.[11] It is a collection of LLVM transfor-

mation and analysis passes that find the valid SCoPs inside the program, construct

their representation (statements domain, scattering,memory accesses and dependen-

cies), apply transformations to the code and regenerate the code from the modified

polyhedra to obtain the optimized code from the representation. Optimizations

based on the polyhedral model can be built on top of Polly by writing specific Polly

passes that are run once for every valid SCoP detected. This project uses Polly as

a base for analyzing the memory accesses inside loops and determining, from their

polyhedral representation, the access patterns of memory access.

4.2.1 Polly internal representation and ISL

When Polly analyzes a SCoP it extracts all the relevant information of it like the

global parameters, the statements domain, scattering and memory accesses and

stores them in internal data structures using ISL objects (Integer Set Library). ISL

18

is a C library for manipulating sets and relations of integer points bounded by

affine constraints.[12] The library supports a wide range of operations on integer

sets and relations and operations on affine functions (like addition, subtraction,

multiplication). ISL is used by this project to do actual computations on affine

memory access functions using the data collected by Polly.

19

Part III

Solution

20

Chapter 5
Data Access Pattern Detection

5.1 OpenMP Loop parallelization

When OpenMP parallelizes a loop it basically assigns the execution of the loop

body to a thread spawned by an OpenMP parallel directive. A special function is

automatically generated by the compiler containing the the code of the loop and

used as the thread run function. If there are nested loops only the most external of

the loops is parallelized. The nested loops are executed serially as part of a single

iteration of the external loop.

int i,j, A[100][100];

#pragma omp parallel for schedule(dynamic)

for (i=0; i < 100; i++) {
for (j = 0; j < 100; j++) {
A[i][j] = i;

}
}

Figure 5.1: Example of nested OpenMP loops. Only the red highlighted for is parallelized

The main consequence of this is that the interesting part is only the memory

access pattern of the most external loop of the nest. In particular the objective is to

find the range of memory addresses that each iteration of the external loop visits in

some way (either by reading or writing it). This information can then be supplied

to the OpenMP runtime that can then produce an adequate schedule.

OpenMP supports different scheduling schemes for dispatching loop iterations to

the threads. The only scheduling scheme that will be supported is the dynamic

scheduling (that is enabled by specifying the clause schedule(dynamic) at the defi-

21

nition of the OpenMP for directive). The dynamic scheduling approach distributes

each loop iteration to the various threads as they are requested. To do so the com-

piler instruments the loop code adding function calls to the OpenMP runtime that

inform it that the thread is ready to execute a loop iteration. The runtime returns

to the thread if there are more iteration chunks to be executed and the values of the

iteration counter for which to execute the loop code.

In Figure 5.2 is shown the translation of an example of a simple OpenMP dynamic

for loop into the LLVM intermediate representation. The green basic block is the

actual loop body, while the red basic blocks contains calls to a function called

GOMP loop dynamic next() that is an OpenMP runtime function used to obtain

new loop iterations to execute. Depending on the value returned by this function

the control flow executes the green basic block or the yellow basic block that instead

contains a call to the GOMP loop end nowait() function that informs the runtime

that this thread finished its share of the loop workload and is exiting. Before passing

control to the green basic block a red basic block is always executed to determine

if the loop body has to be executed or the thread function has to terminate (by

branching to the yellow block). The actual loop body can then be roughly defined

as the sequence of basic blocks dominated by the two red ones.

5.2 Memory access patterns

The final objective is to extract information about the access patterns of multidi-

mensional arrays of known dimensions. For multidimensional arrays each dimension

can be accessed in different ways for each iteration of the OpenMP for loop. In Fig-

ure 5.3 an example of a possible access to a 2-dimensional array is presented. For

each of the external loop iterations the nested loops access each element in dimen-

sion 1 between the interval of elements 1 and 3 and this access pattern is replicated

in direction of dimension 2 two times. Dimension 2 is accessed through the iter-

ator of the most external loop. The result of this is that Dimension 2 gets sliced

horizontally. At the end of the execution of all the iterations of the most external

loop the whole Dimension 2 is covered. We can say that dimension 2 is visited in

slices of size 2. The final result here is that for each iteration of the external loop:

1. Array dimension 1 is accessed in the range of elements 1-3

2. Array dimension 2 is accessed in slices of size 2

A Range is then defined as the interval of elements accessed by each iteration

of the most external loop for a particular array dimension. This array dimension is

22

not visited through the iterator of the most external loop.

A Slice is defined as the size of the chunk of elements visited by each iteration of

the most external loop for a particular array dimension. This array dimension is

visited through the iterator of the most external loop.

5.3 Finding the patterns

Polly provides data about the loops of the program being compiled in the form of

SCoPs with all the information about the domain of the statements, their scatter-

ing and the memory accesses that each statement makes. Polly constructs a new

statement for each basic block contained in the SCoP. All the instructions in a basic

block are bound to be executed when the control flow passes through it, so all the

instructions in a basic block share the same domain and scattering information.It is

perfectly reasonable then to match basic blocks with SCoP statements in the poly-

hedral representation. For each memory access of a statement (in the form of a load

or store instruction, that are the only LLVM instructions that access memory) Polly

extracts the affine access function that represents the memory access.

5.3.1 SCoP loops bound detection

Using the data provided by Polly, the first step to extract pattern information is to

find the upper bounds (UB) and lower bounds (LB) of each loop iterator for

the statement we are currently analyzing. Because the SCoP is compatible with

polyhedral analysis each loop contained in it must have definite lower and upper

bounds. These don’t need to be numerical constant bounds, but they must be some

affine function of the SCoP global parameters. In Figure 5.4 is presented a simple

example of a loop with a parametric upper bound and two statements. For loop

iterator ”i” the affine functions representing the upper and the lower bounds for

statement 1 are LBi(ϑ) = 0 and UBi(ϑ) = n− 1 while for statement 2 the bounds

are LBi(ϑ) = 0 and UBi(ϑ) = 4 : n 6 4 or UBi(ϑ) = n − 1 : n > 4 where ϑ is the

set of the global parameters of the SCoP. In the case of statement 2 we have two

possible upper bound values depending on the value of the parameter ”n”.

The iterator bounds can be derived from the domain of the SCoP statements. For

statement 1 the domain for iterator ”i” is D1 = {i|i > 0, i < n} while for statement

2 the domain is D2 = {i|i > 0, i < n, i < 5}. The ISL library provides facilities

to actually compute upper and lower bound of loop iterators given the domain of

the statements (represented as n-dimensional integer sets in ISL. The number of

dimensions of the set is the number of loop nests in the SCoP).

23

5.3.2 Access function computation

When Polly extracts memory access functions it linearizes them losing information

about array dimensions. For example, if we consider the loop and the array in

Figure 5.3 we can see that the array is multidimensional (2-dimensional to be exact)

and for each array dimension we can identify an access function proper to that

dimension. Dimension 1 is accessed through the function A1(k) = k + 1 while

dimension 2 is accessed through A2(i, j) = i+ j. What Polly does is linearizing the

access transforming it into A(i, j, k) = 5 ? i+ 5 ? j + k + 1. It is needed ,then, to get

back each array dimension access function from the linearized one. This can be done

by factorizing the linearized access function with the size of each array dimension.

The algorithm to do this will be explained in greater detail later in the appropriate

chapter.

5.3.3 Array dimensions bounds computation

After having derived the access functions for each array dimension the next step is to

compute the lower and upper bounds of these access functions. The upper and lower

bounds determine the range of values which the access functions span during each

iteration of the most external loop. These functions have as arguments the iterators

of the loop, substituting the upper and lower bounds of the loop iterators into these

expressions returns respectively their upper and lower bounds. The iterator of the

most external loop , though, must not be taken into consideration (it has to be

treated as a constant). Going back to the example of figure 5.3 we have three loop

iterators:

1. ”i” that has an UB of 5 and an LB of 0 (this is the external loop iterator)

2. ”j” that has an UB of 1 and an LB of 0

3. ”k” that has an UB of 2 and an LB of 0

The access functions for the 2-dimensional array A are A1(i, j) = i + j and

A2(k) = k + 1. Substituting the UB and LB values of the iterators inside the

expressions produces the UB and LB values for the access functions that are UB1 = 1

LB1 = 0 for dimension 1 and UB2 = 3 LB2 = 1 for dimension 2. For loop iterator

”i”, zero has been used instead of the actual UB and LB values.

5.3.4 Slices and Ranges computation

Once the UB and LB have been computed for each array dimension we can compute

the slices size and range intervals. This can be done easily by executing these two

24

simple passes once for each array dimension:

1. If the dimension being considered is iterated through the most external loop

iterator then the value computed is a slice of size Slice = UB − LB + 1.

2. If the dimension is not a slice then it is a range. The interval bounds are the

same UB and LB of the array dimension.

25

int test_func() {
int i;

#pragma omp parallel for private(i) schedule(dynamic)

for (i = 0; i < 10; ++i)

printf("%d\n", i);

return 0;

}

Figure 5.2: Example of translated OpenMP loop with dynamic scheduling into LLVM-IR

26

int i,j,k, A[6][5];

#pragma omp parallel for private(i,j,k) schedule(dynamic)

for (i = 0; i < 6; i+=2)

for (j = 0; j < 2; ++j)

for (k = 0; k < 3; ++k)

A[i+j][k+1] = 0;

Dimension 1

D
im

e
n
si
o
n
2

Figure 5.3: Example of access pattern on a 2-dimensional array

int i, n, *A;

n = returnsIntFunc();

for (i = 0; i < n; ++i) {
A[i] = 0; //Statement 1

if (i < 5) //This is a branch that creates a new basic block, hence a new statement

A[i] = 1; //Statement 2

}

Figure 5.4: Example of simple parametric bound loop with two statements

27

Chapter 6
Polly Analysis Relaxation

Polly is the polyhedral analysis tool used to analyze the code and extract SCoP

information from source code. Polly is aimed at analysis, transformation and code

generation. Code generation means being able to translate a loop nest , represented

in polyhedral form, back into proper LLVM-IR code. The need for code generation

capabilities forces Polly into being very strict about which kinds of SCoPs it accepts

for analysis. At its current level Polly is too strict for being used as an analysis

tool. The main limits that have been found while using Polly for this project are

the following:

- Polly discards all SCoPs containing non-affine memory accesses. This

means that even if the SCoP being analyzed contains affine memory accesses

that could be analyzed it is discarded anyway. The reason behind this is that

non-affine accesses pose potential problems for memory dependence analysis.

[13]

- Polly discards all SCoPs containing non-affine branches. Branches add

to a SCoP statement domain additional constraints. All the constraints that

can be added to polytope domains must be affine as a requirement. This is a

problem that affects in particular code generation. Solutions for this has been

target of studies and a solution exist using Control Predicates in order to embed

the affine branch inside the statement itself [7]. This solution is, however, not

suitable for analysis purposes, because it targets specifically code generation,

which is not needed for this project.

- Polly discards all SCoPs containing any type of cast expression. Cast

expressions introduce ambiguities to memory accesses. Memory aliasing be-

comes an issue when cast expressions are present. The compiler frontend used

28

to compile C code into LLVM-IR generates many LLVM bitcast instructions

inside OpenMP thread routines generated for the implementation of parallel

blocks. One Bitcast instruction is added by the compiler for each memory ac-

cess, invalidating almost all the SCoPs in an OpenMP worker function. The

compiler also generates LLVM trunc instructions when dealing with indexing

through loop iterators. Trunc is another kind of cast instruction that converts

a type into a smaller one (fewer amount of bits).

To enable Polly accepting these cases it has to be modified accordingly and to

do so it is needed to know about the process Polly uses to collect data.

6.1 Polly SCoP Extraction Process

Polly collects SCoP information in three phases like it is represented in Figure 6.1.

Each phase passes information to the next in a pipeline manner. The steps are:

1. Identifying a SCoP inside the source code.

2. Collecting control-flow information about the identified SCoP

3. Constructing the polyhedral representation of the SCoP.

6.1.1 Polly SCoP Detection Process

The first step is to identify a Region comprising the SCoP. A Region is defined as

”... a connected sub-graph of a control flow graph that has exactly two connections

to the remaining graph. It can be used to analyze or optimize parts of the control

flow graph” [14] . The nodes of this graph are basic blocks. The objective of this

pass is to find regions that are compatible with the definition of SCoP and that

also respect the additional limitations imposed by Polly. The Scop Detection pass

of Polly is implemented as a single LLVM FunctionPass.

29

This algorithm (presented in pseudocode) is executed for each function in the

code:

ScopList S;

findScops(Region R) {
if (isValidScop(R)) {

S.add(R);

return;

}

foreach (SubRegion in Sub-Regions of R) {
findScops(SubRegion);

}

bool isValidScop(Region R) {
if (R is a top-level Region)

return false;

if (R is not a simple Region)

return false;

foreach (BasicBlock BB in R) {
if (BB.Terminator is ReturnInstruction)

return false;

if (Branch condition for BB is non-affine)

return false;

//Invalid instructions are casts, function calls ...

if (BB contains invalid instructions)

return false;

if (BB is part of a loop)

if (Loop of BB has non-affine bounds)

return false;

}
return true;

}

Polly starts by taking the top-level region of each function in the program and

30

checks if the subregions contained in it are valid SCoPs regions. There are several

rules that a SCoP has to obey to be accepted. Top-level regions (a region repre-

senting the whole function) are not accepted as SCoPs. Non-simple regions (regions

connected to the control flow graph by more than two edges) also are discarded.

Then each basic block of the region is checked. The branch exiting from the block

can’t be a return instruction and the condition of the branch, if it is a conditional

branch, must be affine. The branch must also not contain certain instructions, like

call and cast instructions. All access to memory (using LLVM load and store in-

structions) must be done through affine access functions. If the block is part of a

loop the loop must have affine bounds. If just one of the blocks does not respect

all the rules then the region is not suitable to be a SCoP region. It is then splitted

in its subregions and the algorithm is repeated on each of the subregions. In this

way Polly can find smaller suitable regions. The regions that are compatible with

polyhedral analysis are then passed to the next step.

SCoP Region
 Detection

SCoP Control-Flow
 Detection

SCoP Polyhedral
 Representation
 Construction

SCoP

Figure 6.1: Polly SCoP detection process

6.1.2 Polly SCoP Control-Flow Analysis

This pass is aimed at gathering information about the SCoP to construct its poly-

hedral representation in the latest pass. This process is implemented as an LLVM

FunctionPass that relies on the detection pass for SCoP region definitions. The

detection pass provides as output a list with all the regions suitable to be SCoPs.

The main data that are going to be gathered in this pass are:

1. Memory access functions

2. Basic-Blocks branch conditions

31

3. Bounds of loops contained in the SCoPs

Memory access functions. Information about Memory access functions are stored as

SCEV (Scalar Evolution) expressions. These are simply gathered through the SCEV

engine that LLVM provides. Originally only affine access functions were expected to

be found in this phase. A SCEV expression represents an analyzed expression in a

program. It can represent an unknown value (like a program variable) or a constant

(a value known at compile time) or an operation over these, like arithmetic or cast

operators. SCEV expressions representing operations have other SCEV expressions

as operands. Depending on the type of the operation the expression may have one

or multiple operands. The complete inheritance graph for the classes that represent

SCEV expressions in LLVM can be found in Figure 6.2.[16] SCEV expressions can

be visited and analyzed using a Visitor Pattern [17], expoiting the class hierarchy

of the SCEV classes. LLVM provides also a template class in order to simplify the

development of SCEV visitors. It is called SCEVVisitor, and to construct a SCEV

expander through this template is enough to just inherit from it and define visit

methods for each type of SCEV expression that LLVM supports. Each of these

visit method is called visit*() where * is a placeholder for the type of the SCEV

that the method handles (for example visitConstant() is the method that handles

constant SCEV expressions). The types of SCEV classes supported by LLVM can

be seen in Figure 6.2. Calling then the generic visit() method with a SCEV object

as parameter will automatically call the right handling method depending on the

actual type of the SCEV class being analyzed.

Branch conditions. Branch conditions for a basic block are gathered by constructing

the dominator tree of the basic block being considered (more info about Dominator

Trees in LLVM can be found in Section 7.4.2, paragraph The Dominator tree). The

dominator tree is then walked from the basic-block back toward the entry point of

the region (the entry block of the region is unique being the region simple) using

the immediate dominators of the tree nodes. Every condition found on the path

(in the form of a SCEV expression connected to a compare instruction used by the

branch terminators of a basic block) is analyzed and the condition and predication

type are extracted and stored. In the example of Figure 6.3 we have two basic-

blocks, one that executes the assignment b = 5 and one that executes c = 6. The

former basic block has an execution condition of a > 5 , while the latter has two

execution conditions that have to be true at the same time: a > 5 and a < 10.

This pass stores for each basic-block all the conditions that must be true for it to

32

execute. Each condition expression has an associated predicate (the equality sign of

the expression), a right hand side expression and a left hand side expression. In the

case of a > 5 ”>” is the predicate, ”a” is the left hand side expression while ”5” is

the right hand side. These are stored as SCEV expressions.

Figure 6.2: Inheritance graph for LLVM SCEV class

Loop bounds. Loop bounds are gathered through the Scalar Evolution engine of

LLVM using a tool the engine itself provides that computes the backedge taken

count of a loop (amount of times a loop executes). The loops accepted by Polly are

only normalized loops (going from zero to a certain value, the BackedgeTakenValue

in this case). BackedgeTakenValue is a SCEV expression, not necessarly a constant

value.

int a, b, c;

if (a > 5) {
b = 5; // This is executed if a > 5

if (a < 10) {
c = 6; // This is executed if a > 5 and a < 10

}
}

Figure 6.3: Example of conditional code

6.1.3 Polly SCoP Polyhedral representation construction

After all the data has been gathered Polly proceeds into constructing the polyhedral

representation of the SCoP transforming the data into ISL data structures. For each

basic block of LLVM-IR code in a SCoP, Polly constructs a SCoP statement. Each

33

SCoP statement has a domain , a scattering vector and a certain number of memory

accesses. Polly begins by constructing the space in which the SCoP statement lives.

The space specifies the amount of induction variables and parameters on which the

SCoP statement depends on. All the subsequent data structures containing poly-

hedral information are constructed on the space created here. From the branch

conditions gathered in the previous pass Polly constructs the domain of the SCoP

statement. The domain is the collection of values of the SCoP induction variables or

parameters for which the basic block of the SCoP statement is executed. It is rep-

resented as an integer-set of points , living in the SCoP space, using the isl set data

structure. Then the scattering is constructed. The scattering represents the sched-

ule of the SCoP statement in respect to the others. It is devised from the CFG of the

program and is represented using a relation. The relation is between the induction

variables of the SCoP loops and a scattering vector representing the schedule of the

SCoP statement (more info about scattering vectors in Section 3.1.1). This relation

is expressed in code using an isl map data-structure. At last the memory accesses

are constructed. For each memory access contained in the statement Polly analyzes

the SCEV expression gathered in the previous pass and transforms it in an affine

expression using a SCEVVisitor class. It constructs an isl aff object representing

this access and then converts it into an isl map. All this data is stored in a class

called Scop that can then be used by transformation or analysis passes to query

about polyhedral information.

6.2 Ignoring Non-affine memory accesses

Non-affine memory accesses are not supported directly by Polly and a SCoP con-

taining any number of these accesses is immediately discarded. To overcome this

limitation Polly has been modified so that instead of discarding SCoPs containing

non-affine memory accesses it ignores and flags them as ”non-affine” , continuing the

analysis. Ignoring non-affine memory accesses inside SCoPs may be an unwanted

behavior. To avoid this becoming the default behaviour of Polly it has been de-

cided (after discussing with Polly main developer) that the best approach would be

adding a flag that can be checked by Polly when the passes are run. If the flag is

present Polly accepts SCoPs containing non-affine memory accesses marking them

as ”potentially accessing the whole memory space”. if the flag is not present Polly

default behaviour remains the same. The result of this work has being tested and

transformed into a patch that has been integrated into LLVM in December 2011

[15].

34

6.2.1 Changes to the Detection pass

During the detection pass, when a LLVM load or store instruction is found, the

access function (in the form of a SCEV expression) is analyzed and is determined if

it is affine or not. A SCEVVisitor class is used for this. Normally if it is affine then

it is accepted and if it isn’t the whole SCoP containing it gets discarded. After the

change the detection pass does not discard the SCoP anymore and both it and the

memory access get accepted to the next step.

6.2.2 Changes to the Control-flow analysis pass

During the control-flow analysis pass memory access information is gathered and

provided to the next pass. Polly didn’t support non-affine memory accesses and

didn’t expect them in this phase so all of the memory accesses gathered were au-

tomatically flagged as affine. After the change the access function is checked for

affinity again, and if it isn’t affine then this condition is notified to the next pass.

6.2.3 Changes to the Polyhedral construction pass

This pass receives the description of memory accesses from the previous pass and

constructs their polyhedral representation. Non-affine accesses cannot have a poly-

hedral representation. If the memory access being constructed isn’t affine then the

relation that describes the memory access is set to the universe relation. For the

affine memory accesses their polyhedral representation is constructed normally.

6.3 Ignoring Non-Affine branches

Non-Affine branches are not supported by Polly. Polly needs to construct the do-

main of a SCoP statement from the affine conditions that need to be satisfied to

execute that statement. If one of these condition is non-affine Polly can’t do that

and discards the whole SCoP, because it can’t completely represent them in polyhe-

dral from. The solution that has been implemented is to transform any non-affine

condition into a true condition. This has the same effect as removing the condition

itself. Because our analysis does not require to be an exact analysis, but aims to

generate only a tip for the compiler this is a valid solution. The same approach

used for non-affine memory accesses has been used by adding a boolean flag to Polly

that, when enabled, enables the new functionality.

35

6.3.1 Changes to the Detection pass

During the detection pass, Polly checks for the affinity of basic blocks terminator

conditions in the SCoP and it discards all the SCoPs containing block terminators

that depend on non-affine conditions. To make this check Polly calls a function

called isAffineExpr() that takes the SCEV expression representing the basic-block

terminator condition and extracts its composing parts checking that all the con-

ditions for affinity are met. Polly isAffineExpr() function simply calls the visit()

method of an instance to a SCEVValidator class. SCEVValidator is a class that

inherits from the LLVM SCEVVisitor template and is used to analyze and validate

the SCEV expression. Depending on the type of SCEV expression that is passed to

the visit method, one of the many handling method is called. Should the type of the

SCEV expression be a value (like an unknown value or a constant) then its affinity

is evaluated and the method returns the result as a boolean. Should the type be

instead an operational SCEV expression (like an arithmetic operation composed of

many operands or a cast expression) then the handling method calls recursively the

visit method once for each of the operands of the expression, checking that each of

them is affine. An expression is affine only if each of the operands that compose it

are affine themselves. The class diagram for the SCEVValidator class can be found

in Figure 6.4.

Polly requires that some extra conditions are met other then the standard SCoP

affinity constraints explained in Chapter 3. Cast expressions are not allowed and

neither are unsigned operations, like unsigned multiplication or division (at the

moment Polly does not support unsigned operations). It is still required , then,

to discard SCoPs that have conditions that contain casts or unsigned operations.

To do so a new SCEVVisitor class has been created that just checks that no un-

signed operation or cast expressions are contained in the SCEV expression, without

checking for the actual affinity of the expression. The new class has been called

BrSCEVValidator, while the new check function (that uses this new visitor class) is

called isAffineExprBr(). The new check function is used instead of the original one

if the flag is enabled.

36

Here is presented the pseudo-code for the SCEV expressions handling functions

of the BrSCEVValidator class:

//The visit() method calls one of the appropriate handling

//method below depending on the real type of the SCEV expression

AffinityResult visitConstant(SCEVConstant *Constant) {
//Constants are always affine

return CONSTANT;

}

AffinityResult visitTruncateExpr(SCEVTruncateExpr *Expr) {
AffinityResult result = visit(Expr->getOperand());

return result;

}

bool visitZeroExtendExpr(SCEVZeroExtendExpr *Expr) {
AffinityResult result = visit(Expr->getOperand());

//Accept only if the operand of the cast is constant

if (result is a CONSTANT)

return CONSTANT;

return INVALID;

}

AffinityResult visitSignExtendExpr(SCEVSignExtendExpr *Expr) {
//Sign extend is a NO-OP, invalid only if the operand is unsigned

AffinityResult Op = visit(Expr->getOperand());

return Op;

}

37

AffinityResult visitAddExpr(SCEVAddExpr *Expr) {
AffinityResult Return = CONSTANT;

foreach (SCEV *ExprOperand in Expr->getOperands()) {
AffinityResult result = visit(ExprOperand);

if (result is INVALID)

return INVALID;

//Update the type of the result

if (Return is CONSTANT and (result is a PARAMETER or

result is an INDUCTION_VARIABLE))

Return = result;

if (Return is a PARAMETER and result is an INDUCTION_VARIABLE)

Return = result

}
return Return;

}

AffinityResult visitMulExpr(SCEVMulExpr *Expr) {
AffinityResult Return = CONSTANT;

foreach (SCEV *ExprOperand in Expr->getOperands()) {
AffinityResult result = visit(ExprOperand);

if (result is CONSTANT)

continue;

//Multiplication between more than one variable values are not supported

if (Return is not CONSTANT)

return INVALID;

//Update the type of the return

if (Return is CONSTANT and (result is a PARAMETER or

result is an INDUCTION_VARIABLE))

Return = result;

if (Return is a PARAMETER and result is an INDUCTION_VARIABLE)

Return = result

}
return Return;

}

38

AffinityResult visitUDivExpr(SCEVUDivExpr *Expr) {
AffinityResult LHS = visit(Expr->getLHS());

AffinityResult RHS = visit(Expr->getRHS());

//Only divisions between constants are supported (treated as parameters)

if (LHS is CONSTANT and RHS is CONSTANT)

return PARAMETER;

return INVALID;

}

AffinityResult visitAddRecExpr(SCEVAddRecExpr *Expr) {
if (Expr is not Affine) {

return INVALID;

}

AffinityResult Start = visit(Expr->getStart());

AffinityResult Recurrence = visit(Expr->getStepRecurrence());

//Only recurrent expressions with affine start

//and constant recurrence are supported

if (Start is INVALID or Recurrence is not CONSTANT)

return INVALID;

if (SCOPRegion contains Expr->getLoop())

return INDUCTION_VARIABLE;

if (Start is CONSTANT)

return PARAMETER;

return INVALID;

}

39

AffinityResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
ValidatorResult Return = CONSTANT;

foreach (SCEV *ExprOperand in Expr->getOperands()) {
ValidatorResult Result = visit(ExprOperand);

if (Result is INVALID)

return INVALID;

//Update the type of the return

if (Return is CONSTANT and (result is a PARAMETER or

result is an INDUCTION_VARIABLE))

Return = result;

if (Return is a PARAMETER and result is an INDUCTION_VARIABLE)

Return = result

}
return Return;

}

AffinityResult visitUMaxExpr(SCEVUMaxExpr *Expr) {
ValidatorResult Return = PARAMETER;

foreach (SCEV *ExprOperand in Expr->getOperands()) {
ValidatorResult Op = visit(ExprOperand);

if (Op is INVALID)

return INVALID;

//Update the type of the return

if (Return is CONSTANT and (result is a PARAMETER or

result is an INDUCTION_VARIABLE))

Return = result;

if (Return is a PARAMETER and result is an INDUCTION_VARIABLE)

Return = result

}
return Return;

}

AffinityResult visitUnknown(const SCEVUnknown *Expr) {
//Unknowns treated as parameters

return PARAMETER;

}

40

<<interface>>

SCEVVisitor <SCEVExpander, RetVal>

+visit(S:const SCEV*): RetVal

SCEVValidator

+visitConstant(S:const SCEVConstant*): ValidatorResult
+visitTruncateExpr(S:const SCEVTruncateExpr*): ValidatorResult
+visitZeroExtendExpr(S:const SCEVZeroExtendExpr*): ValidatorResult
+visitSignExtendExpr(S:const SCEVSignExtendExpr*): ValidatorResult
+visitAddExpr(S:const SCEVAddExpr*): ValidatorResult
+visitMulExpr(S:const SCEVMulExpr*): ValidatorResult
+visitUDivExpr(S:const SCEVUDivExpr*): ValidatorResult
+visitAddRecExpr(S:const SCEVAddRecExpr*): ValidatorResult
+visitSMaxExpr(S:const SCEVSMaxExpr*): ValidatorResult
+visitUMaxExpr(S:const SCEVUMaxExpr*): ValidatorResult
+visitUnknown(S:const SCEVUnknown*): ValidatorResult
+visitCouldNotCompute(S:const SCEVCouldNotCompute*): ValidatorResult

<<SCEVValidator, ValidatorResult>>

Figure 6.4: Inheritance graph for LLVM SCEV class

6.3.2 Changes to the Control-flow analysis pass

No changes are needed to the control-flow analysis, because this pass just collects

the SCEV expressions of the execution conditions for each basic-block. No analysis

of the SCEV expressions occur in this pass, therefore no special treatment for affine

or non-affine expressions is needed.

6.3.3 Changes to the Polyhedral construction pass

This pass constructs the polyhedral description of the execution conditions of the

SCoP statements and merge them to generate the domain of the SCoP statements.

Non-affine conditions cannot be transformed into polyhedral form and added to the

domain, so these need special handling. When a new SCoP statement is to be

constructed each execution condition gathered at the previous pass is transformed

to polyhedral form. Non-affine conditions must be identified and transformed into

41

an always true condition (like 1 == 1 for example). A condition is composed of

two parts: a left hand side part (LHS) and a right end side part (RHS). The two

parts are connected together by the predicate of the condition. If the flag is enabled

then the affinity of the two parts is checked and , if one of them is not affine an

universe set (equivalent to an always true condition) is constructed and returned.

If the condition is affine, instead, the polyhedral representation of the two parts

is constructed and they are composed together constructing the truth set of the

condition. The pseudo-code for this part of the pass is:

PolyhedralAffineExp L, R;

if (NonAffineBranchFlag is true) {
if (LeftHandSidePart is not affine or RightHandSidePart is not affine) {

return UniverseSet;

}
}

L = Polyhedral representation of the LeftHandSidePart;

R = Polyhedral representation of the RightHandSidePart;

return composeCondition(L,R, ConditionPredicate);

42

6.4 Dealing with casts in OpenMP loops

As stated at the beginning of this chapter Polly does not support any kind of cast

expressions inside the body of a SCoP. LLVM provides many different kinds of cast

instructions that can be used inside LLVM-IR code to convert the type of some

memory pointers to different types. The types of cast instructions found in LLVM

are:

- Trunc Instructions. These are used to truncate the integer or floating-point

types to a smaller type. For example it is possible to truncate a 64-bit integer to

a 32-bit integer. Truncate may generate information loss, because truncation to

a smaller type may alter the values of the data accessed. The Trunc instruction

has both an integer and a floating-point version.

- Bit-Cast Instructions. These are no-op casts that simply reinterpret the

type of a memory pointer from a type to another.

- Zero Extension Instructions. These are instructions that convert integer

or floating-point types to bigger types by filling the additional bits with zeroes.

There are both an integer and a floating-point version of this instruction.

- Sign Extension Instructions. These are instructions that convert integer or

floating-point types to bigger types by filling the additional bits with the sign

bit of the original value. There are both an integer and a floating-point version

of this instruction.

- Floating-point to integer conversion. These instructions convert floating-

point types to integer types. It is possible to convert to both signed and un-

signed integer types.

- Integer to Floating-point conversion. These instructions convert signed

or unsigned integer types to floating-point types.

- Floating-point Extension Instruction. This instruction converts a floating-

point type to a bigger one.

- Integer to pointer and pointer to integer conversion. These instruction

convert an integer to a pointer type and vice versa.

A class diagram for LLVM cast instructions can be found in Figure 6.5.

The OpenMP compiler generates some cast instructions inside the code , in par-

ticular Trunc and Bit Cast instructions. Trunc instructions are generated when

43

dealing with loop iterators, while Bit Casts are generated for each memory access

inside the generated parallel OpenMP function (more info about the OpenMP loop

translation process can be found in section 5.1). This produces SCEV expressions

for memory access functions and SCoP statements execution conditions containing

casts not supported by Polly. This prevents Polly from analyzing successfully most

of the SCoPs containing an OpenMP loop.

What is needed is finding a way to deal with these newly introduced cast in-

structions, in order to make Polly accept the SCoP anyway, even if the compiler

introduces these casts.

A first observation that can be made about Trunc casts is that, because we are

not interested in code generation, these casts can be pretty much ignored and treated

as no-ops. In the case a trunc instruction actually causes the overflow of an index

,for example , it may produce a wrong analysis of the loop structure, but this is a

very rare event. The only consequence of this happening is a non optimal analysis.

Bitcasts are more complicated, because in order to allow them into Polly it would

be required to make deep changes to the core of Polly itself. It has been decided

then to take another approach to this problem by removing the bitcasts introduced

by the compiler through a transformation pass that takes as input the generated

compiled LLVM-IR code and outputs normalized code with the bitcasts removed.

6.4.1 Dealing with Trunc instructions

As stated above, to deal with Trunc instructions it is required to make Polly accept

code containing Trunc instructions and treat them as no-ops. Trunc instructions are

represented in SCEV form as a Trunc SCEV expression (using the class SCEVTrun-

cateExpr). The original SCEVValidator used by Polly to validate SCEV expressions

discards any SCoP containing Trunc constructs (and any other kind of cast expres-

sion). We already created a new SCEVValidator as part of the solution for non-affine

branches (check Section 6.3 for more information), to make Polly accept Trunc ex-

pressions it is enough to make our new BrSCEVValidator class ignore them, the

result of the analysis of the Trunc instruction becomes the result of the analysis on

the operand. The pseudo-code presented in Section 6.3 already has this modification

integrated.

6.4.2 Dealing with Bit-Casts

Bitcasts can’t be ignored. The strategy used to solve the problem of compiler

generated bit-casts consists in removing the bit-casts from the code itself using

44

Figure 6.5: LLVM cast instructions

a peculiarity on how the compiler translates OpenMP C code into LLVM-IR.

Details on OpenMP loop translation When an OpenMP parallel directive is trans-

lated to LLVM-IR the compiler creates a new function that contains the code of the

parallel section to execute. This function is used as the thread routine that each

new spawned thread executes. To pass arguments to the parallel code (like pointers

to shared data structures) it is used a structure data type. A new structured type

is created for each parallel function that the compiler generates. For example if the

parallel block accepts as input a 32-bit integer value and the pointer to an array of

10 32-bit integers then the type generated will look like this (in LLVM-IR code):

//The syntax to define named aggregate types in LLVM-IR is

//%typename = type { list of types separated by comma }
%struct..omp_data_s.0 = type { [10 x i32]*, i32 }

A pointer to an instance of this type is passed as argument to the generated

function. The function then uses this to access the shared data. An example of the

code generated from the compiler for a parallel block is shown in Figure 6.6. The

45

OpenMP parallel function is highlighted in green, while the shared data structures

that are passed to the function as parameters are highlighted in red. The generated

function is called both by the main thread of the program and from the new threads

that are spawned using the GOMP parallel loop dynamic start() function.

Figure 6.6: Example of code generated from a parallel block

What the compiler does is creating a function that accepts as parameter a byte

pointer (i8* in LLVM-IR). Then the data structure , when passed to the function,

is bitcasted from its actual type to i8*. This kind of pointer acts similarly to a void

pointer in C, that is used as a generic pointer type. In the function, when data is

accessed through the data structure, the i8 pointer is casted back to the actual type

contained in the data structure just before being used in a load or store instruction.

An example of this is shown in Figure 6.7. Here the memory access to shared data

is shown in green , the bitcast that convert back the data from an i8 pointer to the

actual type is shown in red.

Bitcast removal process The compiler generates bitcasts for each load and store

instruction because it needs to convert the i8 pointer to the actual data type of

the memory accessed. If instead of accepting an i8 pointer the generated function

46

Figure 6.7: Example of memory access in the generated OpenMP parallel function

accepted a pointer of the correct type then the bitcasts wouldn’t be necessary and

could be removed. The solution that has been used is creating a new function with

a signature that accepts as parameter a pointer to the actual structure data type

(instead of an i8 pointer) and cloning the code of the compiler generated function

into this new function. The complete step list for this process is:

1. Add a bitcast at the entry block of the OpenMP generated function converting

the function argument from a generic i8 pointer to the actual structure data

type.

2. Substitute all the usages of the function argument with new instructions refer-

ring to the newly generated bitcast instruction.

3. Create a new function signature for the OpenMP function accepting as param-

eter a pointer to the actual data type.

4. Clone the original function code into this newly generated function.

5. Substitute all the usages of the bitcast instruction introduced at point 1 with

the function argument and remove the bitcast.

6. Make all the references to the old OpenMP function point to the new one

instead.

7. Remove the old OpenMP function.

In point number 2 the usages of the function argument, at this stage, can only

be of two kinds. The first kind is Bitcast instructions. Bitcast instructions are

47

used to obtain a pointer of the real type of the data that is going to be accessed.

The second kind is GetElementPtr instructions [18]. GetElementPtr instructions

are used in LLVM to do pointer arithmetics. Using GetElementPtr instructions it

is possible to address arbitrary elements inside a data type. This instruction does

not make any memory access by itself, but it is just used to compute addresses. In

Figure 6.7 the usage of a GetElementPtr instruction is in yellow. In this Figure the

entire process of accessing shared data in an OpenMP parallel function has being

highlighted in different colors. First the address of the variable being accessed is

computed by the GetElementPtr instruction (yellow). In this case a variable distant

4 bytes from the beginning of the shared data structure is going to be accessed.

After the computation of the target address, the type of the pointer returned from

the GetElementPtr instruction is converted from i8* to the actual data type being

accessed through a bitcast (red). Then the memory access is performed through

the pointer returned from the bitcast instruction (green). If the data that has to be

accessed has offset zero from the beginning of the data structure the GetElementPtr

instruction is skipped and the Bitcast is performed directly on the function argument

(orange). There are, then, two different cases to handle:

1. The data that is going to be accessed has a non-zero offset from the beginning

of the shared data structure. In this case a GetElementPtr instruction uses

the function argument as operand to compute the address of the data and the

successive Bitcast instruction uses the GetElementPtr as its operand

2. The data that is going to be accessed has a zero offset from the beginning of the

shared data structure. In this case the GetElementPtr instruction is skipped

and the Bitcast instruction uses directly the function argument as its operand.

In case number 1 it is needed to substitute the existing GetElementPtr instruction

with a new one that uses as operand the newly added Bitcast instruction in step

number 1. The indexing of the new GetElementPtr instruction is not computed in

bytes as in the old one, but as an element offset inside the shared data structure.

The Bitcast instruction can then be removed and all the references to the Bitcast

instruction substituted with references to the new GetElementPtr instruction.

Case number 2 is easier. It is possible to directly remove the Bitcast instruction

and substitute it with a GetElementPtr instruction pointing to the first element the

shared data structure.

The whole procedure is implemented as a LLVM Transformation Module pass

called OpenMPCastRemoval. A Module Pass is a kind of LLVM pass that works

on the entire compilation unit as a whole. This is needed, because we need to work

48

on more than one function at once. In particular we need to add new functions to the

compilation unit and delete other ones, as well as modifying the code of functions

referring to the functions we have removed. This pass also uses other two LLVM

passes developed for this project that are the OpenMPData and OpenMPRegionTree

passes. These are two analysis passes used to gather information for other passes.

In particular the OpenMPRegionTree pass constructs a Region Tree that represents

the connection between OpenMP compiler generated functions and the functions

that call them (the ones containing the OpenMP parallel block). These passes are

explained in greater detail in Chapter 7.

The pseudo-code for this transformation pass is presented in the next page.

49

node_vector = Empty vector of OpenMP Region Tree nodes;

foreach (RegionNode in OpenMP Region Tree)

if (RegionNode.Function is OpenMP Generated Function)

Add RegionNode to node_vector;

foreach (RegionNode in node_vector) {
BitcastInst = New Bitcast At EntryPoint of RegionNode.Function

from i8 to Actual Data Type;

foreach (ArgUser in List Of Users Of RegionNode.Function Argument) {
//Case 1

if (ArgUser is GetElementPtr) {
NewGetElementPtr = New GEP instruction That References BitcastInst;

foreach (Bitcast in List Of Bitcasts using ArgUser) {
Replace all uses of Bitcast with NewGetElementPtr;

Erase Bitcast;

}
Erase ArgUser;

} else { //Case 2

NewGetElementPtr = New GEP instruction that references first element

of structure pointed by BitcastInst;

Replace all uses of ArgUser with NewGetElementPtr;

Erase ArgUser;

}
}
NewFunction = Create new function signature with

a signle Actual Data Type pointer argument instead of i8*;

Clone RegionNode.Function code into NewFunction;

BitcastInst = Bitcast at the beginning of NewFunction;

Replace all uses of BitcastInst with the argument of NewFunction;

Erase BitcastInst;

ParentNode = Parent Node of RegionNode;

foreach (User of RegionNode.Function) {
Replace all uses of RegionNode.Function in User with NewFunction;

Pass the correct argument to User instead of a bitcasted argument to i8*;

}
Erase RegionNode.Function;

}

50

In Figure 6.8 it is possible to see how the code in Figure 6.7 changed after the

transformation pass was enabled. It is easy to notice how all the bitcasts contained

in the block have disappeared.

Figure 6.8: Example of memory access in the generated OpenMP parallel function with OpenM-
PCastRemoval

51

Chapter 7
Pattern Computation

The process of pattern computation is a multi step process that produces as output

the patterns of all the affine memory accesses in OpenMP loops. The process is

implemented as a set of LLVM analysis and transformation passes that work together

like a pipeline (the output of one pass is the input for the next one). The types of

these passes can be divided in three pass categories:

- Data pass

- Transformation pass

- Analysis pass

A Data pass has the purpose of maintaining data structures for the other passes.

Data passes do not work on the code itself, but are simply containers of useful infor-

mation for the other passes. Transformation passes modify the code, restructur-

ing it, with the objective of making the successive analysis passes possible or easier

to do. Analysis passes analyze the code and gather information to be used for

later passes. These are the core of the project, because our objective is an analysis

of the code. The final pass of the pipeline (OMPNUMAIdentify) is an analysis pass

that produces the pattern information’s as its output. The project is composed of

a total of 6 passes:

1. OpenMPData: this is a Data pass whose purpose is to store LLVM data

structures commonly used from the other passes. In particular this pass stores

pointers to LLVM Function objects representing the OpenMP runtime functions

(for example GOMP dynamic loop start()) that can be found throughout the

code that will be analyzed.

52

2. OpenMPNorm: this is a Transformation pass whose purpose is to apply

common transformations to normalize the LLVM-IR code of the program so

that subsequent passes can make certain assumptions about the structure of

the code they will encounter.

3. OpenMPCastRemoval: this pass is a Transformation pass whose purpose is

to remove bitcasts introduced by C compilers inside the LLVM-IR code. This

pass is explained in detail in Section 6.4.2

4. OpenMPDetection: this is an Analysis pass whose purpose is to determine

the position of OpenMP parallel and loop blocks inside the code.

5. OpenMPRegionTree: this is an Analysis pass whose purpose is to construct

the Region Tree of the various parallel and loop blocks. The Region Tree defines

the parent-child relationship between these blocks. The pattern construction

pass uses this tree to find the regions to analyze.

6. OMPNUMAIdentify: this is an Analysis pass whose purpose is to build the

accesses pattern data. This is the main pass of the set. All the other passes

exist only to allow this pass computing the pattern information.

The relationship of usage between the various passes is represented in Figure 7.1.

The OpenMPCastRemoval pass is not always used from the OMPNUMAIdentify

pass, because not all compilers introduce bitcasts. For example the Fortran compiler

does not and in that case OpenMPCastRemoval is not run.

OpenMPData OpenMPNorm

OpenMPDetection OpenMPRegionTree

OpenMPCastRemoval

OMPNUMAIdentify

Figure 7.1: Pass usage relationship. Solid arrow means ”uses”, dashed arrow means ”may use”.

Each pass will now be explained in detail.

53

7.1 The OpenMPData pass

The OpenMPData pass is a container pass for immutable data structures used

throughout the whole process. In particular the OpenMPData pass contains LLVM

Function pointers representing OpenMP runtime functions. Through the LLVM

API it is possible to interact with LLVM-IR compiled programs, modifying them

or analyzing them.[27] Each part of an LLVM-IR program (like Basic-Blocks, Func-

tions, Values and so on) has its respective LLVM data structure representing it in

code. LLVM Function data structures, for example, represent LLVM-IR compiled

functions [19]. LLVM objects are unique. This means that there will be no multiple

LLVM objects representing the same LLVM-IR code part. So if there is an LLVM

Function object representing a function named func() in the current Module, then

can be assured that there will be only one instance of a Function object represent-

ing that function. This is quite advantageous for the programmer. It is possible

to compare two LLVM objects just from their respective pointer values. If they

represent the same LLVM code component then the pointer will be the same. This

property is used in this project and by LLVM passes in general. In particular in this

project it is needed to identify the presence of certain OpenMP runtime function

calls inside the program. As explained in Section 5.1 we can identify regions of code

containing OpenMP loop code by looking at certain specific runtime function calls

that surround these regions.

These functions are:

1. GOMP parallel start() : This function identifies the beginning of a parallel

code block.

2. GOMP parallel end() : This function identifies the end of a parallel code

block.

3. GOMP loop dynamic start() : This function identifies the beginning of an

OpenMP loop code block.

4. GOMP loop dynamic next() : This function identifies the beginning or the

end of a loop iteration code. Loop code is usually wrapped by two basic-blocks

containing calls to this function or between a call to a GOMP loop dynamic start()

function and this one.

5. GOMP loop end() : This function identifies the end of an OpenMP loop

block.

54

6. GOMP parallel loop dynamic start() : This function is the combination

of a call to the GOMP parallel start() function with a call to GOMP loop dynamic start()

in a loop block. It is used by the compiler in the case of combined ”parallel”

and ”loop” constructs.

7. GOMP loop end nowait() : The same as GOMP loop end(), but does not

synchronize the loop threads between them.

This pass stores the pointers to the LLVM Function objects representing the

functions described above and these will be used by the other passes to identify the

presence of calls to these in the code.

7.2 The OpenMPNorm pass

The OpenMPNorm pass is a transformation pass with the purpose of normalizing

LLVM-IR code to a common form so that the subsequent passes can make certain

assumptions about the structure of the code they will receive as input. As stated in

the previous section OpenMP code regions are usually contained between pairs of

OpenMP runtime function calls. It is easier to identify these regions inside the code

if these runtime calls are always at the beginning or at the end of a basic-block (just

before the basic-block terminator). What the OpenMPNorm pass does is assuring

that calls to the OpenMP runtime functions are always either at the beginning or

at the end of a basic-block for easier retrieval.

An example of the input and the output of the OpenMPNorm pass can be seen

in Figures 7.2 and 7.3. In this example is represented the LLVM-IR code (in graph

form) of a function containing a Parallel Block that is identified by the pair of func-

tion calls highlighted in green: GOMP parallel start() and GOMP parallel end().

Between these two function calls is contained the code of the parallel block (a call to

the compiler-generated function implementing the parallel block). The pass splits

the basic block such that the first instruction of the basic-block is the call to the

GOMP parallel start() function and the last instruction (the one before the termi-

nator of the block) is the call to the GOMP parallel end() function. The entire

Parallel Block gets contained in a single basic block exactly the size of the Parallel

Block itself. It becomes then easy to identify a parallel block in the code. It is just

necessary to iterate over all the basic blocks in a function and find a basic-block

having a call to a GOMP parallel start() function as the first instruction and a call

to a GOMP parallel end() function as its last. Without this pass it would have been

necessary to iterate over all the instructions in a basic block to find the calls to

55

the runtime defining the Parallel Block. The pass splits the blocks following certain

rules:

- When a call to GOMP loop dynamic next(), GOMP loop dynamic start(), GOMP loop end()

or GOMP loop end nowait() is encountered the pass splits the basic-block in

which the call is found twice creating a basic-block containing only the call to

the runtime function and the block terminator.

- If a call to either GOMP parallel start() or GOMP parallel loop dynamic start()

is encountered then the basic-block is split only once and the pass tries to check

for a call to a GOMP parallel end() or GOMP parallel end nowait() function,

in order to create a single basic-block containing an entire parallel block (as in

the example of Figure 7.3).

56

The following pseudo code describes this pass behaviour:

bool SkipNextInstruction = false;

foreach (Function in CurrentModule) {
foreach (BasicBlock in Function) {

foreach (Instruction in BasicBlock) {
if (SkipNextInstruction)

continue;

if (Instruction is a Call instruction) {

CalledFunction = Function Called by Instruction;

if (CalledFunction is GOMP loop dynamic next or

GOMP loop dynamic start or GOMP loop end or GOMP loop end nowait) {
Split block at Instruction;

Instruction = First instruction of the next Block;

Split block at Instruction;

} else if (CalledFunction is GOMP parallel start or

GOMP parallel loop dynamic start) {
Split block at Instruction;

SkipNextInstruction = true;

break;

} else if (CalledFunction is GOMP parallel end or

GOMP parallel end nowait) {
Split block at Instruction;

break;

}
}

}
}

}

57

Figure 7.2: A function containing OpenMP runtime calls before OpenMPNorm is run.

7.3 The OpenMPDetection pass

The OpenMPDetection pass is an analysis pass that is used to identify and feed

to the subsequent passes information about OpenMP code regions. It expects

code that has already been normalized by the OpenMPNorm pass. This pass

identifies and stores two kinds of code regions: Parallel Blocks and Loop Re-

gions. Parallel Blocks are LLVM-IR basic blocks that implement OpenMP parallel

statements. Parallel Blocks begin with either a call to a GOMP parallel start()

or GOMP parallel loop dynamic start() function and terminate with a call to a

GOMP parallel end() or GOMP parallel end nowait() function. An example of Par-

allel Block can be seen in Figure 7.3. Loop Regions are LLVM-IR basic blocks pairs.

These two basic-blocks define a single entry/single exit region. The code in between

these two basic-blocks is the code of an OpenMP loop. An example can be seen in

Figure 7.4, where the first red block and the yellow block form a Loop Region.

58

Figure 7.3: A function containing OpenMP runtime calls after OpenMPNorm is run.

59

The process is simple and can is described by the following pseudo-code:

ParallelBlocks = Empty Vector of ParallelBlock objects;

LoopRegions = Empty Vector of LoopRegions objects;

foreach (Function in CurrentModule) {
foreach (BasicBlock in Function in Depth-First order) {

bool IsNotParallelLoopCombo = false;

foreach (Instruction in BasicBlock) {

if (Instruction is a Call instruction) {

CalledFunction = Function Called by Instruction;

if (CalledFunction is GOMP parallel start or

GOMP parallel loop dynamic start) {
Add a new ParallelBlock(Function, BasicBlock) object to ParallelBlocks;

} else if (CalledFunction is GOMP loop dynamic start) {
EndBlock = Final Block containing GOMP loop end or GOMP loop end nowait;

IsNotParallelLoopCombo = true;

Add a new LoopRegion(BasicBlock, EndBlock) object to LoopRegions;

} else if (!IsNotParallelLoopCombo &&

CalledFunction is GOMP loop dynamic next) {
EndBlock = Final Block containing GOMP loop end or GOMP loop end nowait;

Add a new LoopRegion(BasicBlock, EndBlock) object to LoopRegions;

break;

}
}

}
}

}

60

Figure 7.4: LLVM-IR code implementing the code of an OpenMP loop.

61

7.4 The OpenMPRegionTree pass

The OpenMPDetection pass identifies Parallel and Loop Regions, but does not pro-

vide any information about how they are structured together. The OpenMPRegion-

Tree pass is an analysis pass that constructs a tree representing the parent-child

relationship between Parallel Blocks and Loop Regions.

The relationship between Parallel Blocks and Loop Regions is such that the

latter are usually contained inside the former, because to parallelize loops it is

necessary to spawn threads through a parallel directive. Loop Regions not contained

inside Parallel Blocks are not interesting, because the resulting loop would not be

parallelized. OpenMP loops may be directly contained inside a parallel block , but

they may also be put inside a function called inside a parallel block, like in the

program shown in Figure 7.5 .

int function() {
int i;

#pragma omp for schedule(dynamic)

for (i = 0; i < 10; ++i) {
printf("TID: %d\", omp_get_thread_num());

}
}

int main() {
#pragma omp parallel

function();

return 0;

}

Figure 7.5: An OpenMP loop inside a function.

While finding the relationship between a Parallel block and an OpenMP loop

directly defined inside it is easy, the situation presented in Figure 7.5 is more com-

plicated. In the former case we know that the OpenMP compiler-generated function

for the parallel block contains the OpenMP loop implementation. In the latter case

it is impossible to know in advance how many layers of function calls can be found

between the parallel block and the loop implementation. It is needed, then, a way

to track calls between functions and connect the OpenMP code structures through

multiple function calls.

62

7.4.1 The Call Graph

A Call Graph is a directed graph where each node represents a function in the pro-

gram, while each edge represents a caller-callee relationship between two functions.

LLVM provides an Analysis pass that can be used to construct a Call Graph. An

example of an OpenMP program and its associated Call Graph is shown in Fig-

ure 7.6 [20]. A Call Graph has a root node. If the program has an entry point

(like a main() function) then the root node is the entry point of the program, oth-

erwise, if the program does not have an entry point (like a library for example), the

external node becomes the root node. The external node is a special node (not asso-

ciated with any function) that represents functions not present in the module being

analyzed by the LLVM Call Graph analysis pass. Functions in the module with

external linkage (non static functions in C) may be called by functions outside the

module itself. The external node models this possibility by having an edge pointing

to each of the external functions in the module. There is another special node in

the Call Graph. In Figure 7.6 it is the only node represented with an ellipse and

it is used to represent unknown functions to the module. For example, there is no

access to the source code for dynamically linked functions (like C standard library

or OpenMP runtime functions) and because of that is not possible to know what

functions these may call. This special node represents all the unknown functions

that may be called by these non-analyzable library functions. The Call Graph may

have cycles , representing recursive function calls. Each node in the call graph is

represented by an instance of the CallGraphNode class [21]. This class keeps track

of all the functions called by the routine the node represents thanks to a vector that

references the children nodes. Together with the reference to the children nodes this

class also stores a reference to the instruction that performs the call in the LLVM-IR

code.

7.4.2 Building the Region Tree

The input from the previous pass (OpenMPDetection) is a list of all the Loop Regions

and Parallel Blocks detected. The output of this pass is a graph arranging all these

elements depending on their relationship in a tree. For the example in Figure 7.6 we

would obtain a graph with two nodes: one node representing the Parallel Block in

the main() function and one representing the loop in the func() function. The nodes

would be arranged as in Figure 7.7. This pass stores the data about the structure

of the OpenMP regions through a class called OpenMPRegionNode that represents

the nodes of the region tree. The UML diagram for this class is shown in Figure 7.8.

63

int func() {
int i;

#pragma omp for schedule(dynamic)

for (i = 0; i < 5; ++i) {
int tid = omp_get_thread_num();

printf("TID: %d\ n", tid);

func2();

}
}
void func2() {

func();

}

int main() {
#pragma omp parallel

{
func2();

}
return 0;

}

Figure 7.6: Example of an OpenMP C program with its Call Graph

The contents of this class are:

- The Type field, that is used to store the type of the region (either a Parallel

block or a Loop Region) that the node represent.

- The ContainingFunction field, that is used to store a pointer to the LLVM

Function object representing the function containing this region in the LLVM-

IR code.

- The BeginBlock field, that is used to store a pointer to the LLVM BasicBlock

object that represents the starting block of the region. Because Parallel regions

are composed of only one block this is the same as EndBlock in case the Node

represents a Parallel region.

64

- The EndBlock field, that is used to store a pointer to the LLVM BasicBlock

object that represents the ending block of the region. Because Parallel regions

are composed of only one block this is the same as BeginBlock in case the Node

represents a Parallel region.

- The ArgumentType field, that is used to store a pointer to the LLVM Type

object that represents the type of the data structure holding the arguments

passed to the implementation function of a parallel directive. It is NULL if the

region represents a Loop.

- The Children field, that is a C++ set holding pointers to other OpenMPRe-

gionNode instances that are children of this node.

To build the graph the pass executes these steps:

1. Constructs the Nodes representing each OpenMP region we are interested into.

For each of the parallel blocks and the loop pairs found by the OpenMPDe-

tection a new OpenMPRegionNode is constructed. The Node is then stored in

a map with a key equal to the pointer to the LLVM Function object of the

function that contains the region.

2. The Call Graph is visited in a depth first manner, starting from the root node.

The visit is performed through a recursive function , that takes as input the

current Call Graph node being visited, a set of all the functions already visited

by the routine (used to avoid cycles) and a pointer to the last OpenMPRe-

gionNode object added to the region tree on this path of the call graph.

3. When visiting a new function it is checked if it has been already visited and in

that case the visit function returns immediately (to avoid recursion cycles).

4. All the OpenMP regions contained in the function are collected from the map

constructed at step 1 and each of their representing OpenMPRegionNode in-

stances is added to the children set of the previous region node object passed

as parameter to the visit function (see step 2).

5. For each function call in the current function the visit function is called recur-

sively, to visit the next node of the call graph. If the call instruction performing

the function call is contained inside an OpenMP region then a pointer to that

region node is passed as a parameter to the next call to the visit function, oth-

erwise , if the call instruction is not contained in an OpenMP region, then the

region node parameter of the current call to the visit function is forwarded.

65

In step number 5 it is needed to determine if a certain function call is performed

inside or outside an OpenMP region. If a function call is inside an OpenMP region,

than this region will be the parent of all the OpenMPRegionNodes inside the called

function. In the example of Figure 7.6 the parallel region in the main() function

contains a function call to func2(). All the OpenMP regions contained in func2() (or

in the functions it calls) will have to be added as children to the OpenMPRegionNode

of the parallel region in main(). Determining if a call is contained into an OpenMP

region or not is easy in the case of Parallel Regions. Parallel Regions are composed of

only one basic block. From the CallGraphNode representing the function call we can

obtain a pointer to the instruction that performs the function call inside the LLVM-

IR code. If the call instruction is contained inside the only basic-block composing

the Parallel Region then the function call is contained inside that OpenMP region.

Only one function call (that is not an OpenMP runtime call) can be found in Parallel

Regions. This is a call to the compiler-generated function that implements the

parallel block. Loop Regions are usually composed of multiple basic blocks and of

all these blocks only the entry block and the exit block of the region are known.

Because of this the method used for Parallel Regions is not applicable to Loop

Regions. It is needed to know if the basic-block containing the call instruction

is positioned in between the entry block and the exit block of the Loop Region.

Because a Loop Region is a single entry/single exit region then if the basic-block

containing the call is dominated by the entry block and post-dominated by the exit

block it is assured that it is contained in the region. This can be found out by using

a Dominator Tree and a Post-Dominator Tree.

66

The Dominator Tree. Dominance is a concept of graph theory. A node ”a” dom-

inates another node ”b” if every path that goes from the start node of the graph

to ”b” has to pass through ”a” [22]. A related concept to Dominance is Post-

Dominance. A node ”a” post-dominates another node ”b” if every path that goes

from the node ”a” to the exit node of the graph has to pass through ”b”. Domi-

nance and Post-Dominance are often used in compilers to do Control-Flow graph

analysis. Dominator and Post-Dominator Trees are usually used to store informa-

tion about dominance in a graph. In a Dominator tree the children of a node are

the nodes it immediately dominates. When a Dominator Tree is used to analyze a

control-flow graph the nodes of the tree are the basic-blocks of the program. The

Dominator tree can then be used to determine dominance between basic-blocks of

a program. LLVM provides analysis passes that construct Dominator and Post-

Dominator Trees. These passes are called DominatorTree and PostDominatorTree

[23] [24].

67

The pseudo-code for step 1 of the algorithm is:

void buildMaps() {
foreach (ParallelRegion in OpenMPDetection region list) {

ContainingFunction = Function containing ParallelRegion;

ParallelRegionsMap[ContainingFunction] = new OpenMPRegionNode

representing the parallel region;

}
foreach (LoopRegion in OpenMPDetection region list) {

ContainingFunction = Function containing LoopRegion;

LoopRegionsMap[ContainingFunction] = new OpenMPRegionNode

representing the loop region;

}
}

68

The pseudo-code for the visit function that explores the call-graph is:

void visit(CallGraphNode, Visited, CurrentRegionNode) {
CurrentFunction = Function currently represented by CallGraphNode;

ParallelRegionsVector = Vector of parallel regions contained in this function

obtained querying ParallelRegionsMap;

LoopRegionsVector = Vector loop regions contained in this function

obtained querying ParallelRegionsMap;

CallVisitedVector = Empty vector of CallGraphNodes;

NodeSet = Pointer to the children set of CurrentRegionNode or

the RootNode if CurrentRegionNode is NULL;

if (Visited contains CurrentFunction) {
Add all the ParallelRegions and LoopRegions objects in this function to NodeSet;

return;

}
Add CurrentFunction to Visited;

foreach (ParallelRegion in ParallelRegionsVector) {
Node = OpenMPRegionNode representing ParallelRegion

Add Node to NodesSet;

foreach (CalledNode in CallGraphNode)

Call visit(CalledNode, Visited, Node) if the call

is contained in the ParallelRegion;

}
foreach (LoopRegion in LoopRegionsVector) {

Node = OpenMPRegionNode representing LoopRegion

Add Node to NodesSet;

foreach (CalledNode in CallGraphNode)

Call visit(CalledNode, Visited, Node) if the call is contained in a block

that is Dominated by Node->BeginBlock and PostDominated by Node->EndBlock;

}
foreach (CalledNode in CallGraphNode)

if (CalledNode function has no body (is external) ||

CalledNode is contained into CallVisited)

continue;

visit(CalledNode, Visited, CurrentRegionNode);

Remove CurrentFunction from Visited;

}

69

And finally the pseudo-code that uses the algorithms described in the buildMap()

and visit() functions to build the Region tree:

RootNodeSet = Empty Set of region root nodes;

ParallelRegionsMap = Empty Multimap of OpenMPRegionNodes with Function as keys;

LoopRegionsMap = Empty Multimap of OpenMPRegionNodes with Function as keys;

void buildRegionTree() {
buildMaps();

buildTree();

}

void buildTree() {
CallGraph = The Module CallGraph;

CallGraphRoot = Root of CallGraph;

VisitedFunctions = Empty set of functions;

visit(CallGraphRoot, Visited, NULL);

}

Parallel Node:
 (main())

Loop Node:
 (func())

Figure 7.7: Result of an analysis with OpenMPRegionTree

70

OpenMPRegionNode
+Type: RegionNodeType
+ContainingFunction: Function*
+StartBlock: BasicBlock*
+EndBlock: BasicBlock*
+ArgumentType: StructType*
+Children: std::set<OpenMPRegionNode*>

Figure 7.8: The OpenMPRegionNode class

7.5 The OMPNUMAIdentify pass

The OMPNUMAIdentify pass is the last pass run and the one that constructs the

actual analysis of the loop. OMPNUMAIdentify is a SCoP pass. This is a special

kind of pass introduced by Polly that is run once for every SCoP detected. This

pass implements the the ideas explained in Section 5.3.

The steps executed by the pass are:

1. Validating the ScoP being analyzed. In order for a SCoP to be eligible for

analysis it must be entirely contained in a Loop Region.

2. For each memory access contained in the SCoP extract its access function data.

3. Reconstruct the access functions for each array dimension.

4. Construct the ISL representation of the access functions for each array dimen-

sion.

5. Generate the result of the analysis from the dimensional access functions and

the domain of the SCoP statement containing the memory access.

7.5.1 SCoP Validation

It is of interest analyzing only those SCoPs that are actually part of an OpenMP

parallel loop. Using the tree constructed with the OpenMPRegionTree pass it is

possible to check easily if a SCoP is contained in a parallel loop region. A SCoP is

completely contained in a Parallel Loop region if all the basic blocks of the SCoP are

dominated by the entry block and post-dominated by the exit block of an OpenMP

loop region. If the loop region containing the SCoP has a parallel region as a parent

in the RegionTree then it is a parallel loop region.

71

The pseudo code for SCoP validation is now presented:

RootNodeSet = OpenMPRegionNode set obtained

by the OpenMPRegionTree pass;

bool validateSCoP(Scop) {
foreach (Node in RootNodeSet) {

Result = visitNode(Node, Scop);

if (Result is true)

return true;

}
return false;

}

bool visitNode(Node, Scop) {
if (Node is Loop Region &&

Node is contained in a Parallel Region) {
IsValid = true;

foreach (BasicBlock in Scop) {
if (!Node->BeginBlock dominates BasicBlock ||

!Node->EndBlock post-dominates BasicBlock) {
IsValid = false;

break;

}
}
if (IsValid is true)

return true;

}

foreach (Child in Node) {
IsValid = visitNode(Node, Scop);

if (IsValid is true)

return true;

}
return false;

}

72

7.5.2 Array dimensional access functions determination

As explained in Section 5.3 Polly provides the access function for memory accesses

as a single mono-dimensional affine function. If the original memory structure was a

multidimensional array the information about the multiple dimensions of the array

is lost. The targeted OpenMP runtime benefits from knowing how the multidi-

mensional arrays are accessed in each dimension. It is possible to reconstruct the

original array dimensional access functions by factorizing the access function pro-

vided by Polly using the array dimensions sizes.

This step can be divided in two parts:

1. Obtain the size of each Array dimension.

2. Factorize the memory access function provided by Polly to derive the dimen-

sional array access functions.

Obtaining the array dimension sizes It is possible to derive the number of dimen-

sions of an array and the size of each dimension directly from the LLVM-IR code

through the LLVM API. In LLVM-IR code an array is defined through an Alloca

instruction. The Alloca instruction reserves space for a data structure and returns

a pointer to that space. Figure 7.9 shows an example usage of an alloca instruction

that allocates a two dimensional array of 32-bit integers with each dimension of size

10. The alloca instruction contains information about the type of the data that

is allocated by the instruction. The type is clearly visible in the example and is

specified as [10 x [10 x i32]]. This type can be queried through the LLVM API.

The LLVM type system Types in LLVM are represented through an hierarchy

of classes that has its root in the Type class. Each specific type is then represented

by a specialized subclass of the Type class. There are sub-classes used to represent

integral types, function types, structured data types, vector types and, finally, array

types. Figure 7.10 shows the class hierarchy for the LLVM type system. The sub-

class representing array types is the ArrayType class. The ArrayType class provides

a method called getNumElements() that returns the number of elements the array

contains. The type of the elements contained in the array can be queried using

the getElementType() function provided by the super-class SequentialType. Multi-

dimensional arrays aren’t directly supported by the ArrayType class, that is able to

represent only one dimensional arrays. Multidimensional arrays can be represented

73

by the LLVM type system treating them as arrays of arrays. A two dimensional

array of integers is none other than an array of arrays of integers. Using this notion

LLVM represents the type of a multidimensional array as an ArrayType that has as

element type another ArrayType. The algorithm used to extract the array sizes for

each dimension from an ArrayType object is (in pseudo-code):

ArrayDimensionSizes = Empty vector of integers;

Type = Type of the Array;

while (Type is an ArrayType) {
Add Type->getNumElements() to ArrayDimensionSizes;

Type = Type->getElementType();

}

Obtaining the type of the ArrayType object of the array Polly stores the load

and store instructions used to read or write memory for each memory access it

detects in the SCoP. This instruction refers to the array allocated through the Alloca

instruction from which we can obtain the ArrayType object of representing the

accessed array type.

%memtmp = alloca [10 x [10 x i32]], align 4

Figure 7.9: Example of usage of an alloca instruction

Extracting the dimensional memory access functions Polly provides to the pass the

memory access function as an ISL map object. The affine function is of the form:

f(i0, i1, ...iX, p0, ...pX) = a ? i0 + b ? i1 + ... + c ? iX + k ? p0 + l ? pX + C

where iX are the value of the iterators of the loops surrounding the access, pX

are the value of the parameters of the SCoP statement and a,b,c,k,C are constant

integer values. As explained in Section 5.3.2 multiple dimension access functions

are fused into a single one dimensional access function of the form above. The array

access in Figure 7.11 would be translated to this one-dimensional access function

74

Figure 7.10: The LLVM Type system class heirarchy.

(the example is written in C):

f(i, j) = 15 ? i + 1 ? j

Multidimensional array elements are placed in memory at contiguous addresses.

Different languages may dispose the elements in different ways in memory. For

example C and C++ use a row-major order for arrays [25]. This means that each

row of the array is disposed contiguously in memory. Other languages , like Fortran

and Matlab use a column-major order for arrays. In the example iterator ”i” is

multiplied by the constant 15 because, being C a row-major language increasing

by one the value of iterator ”i” skips a whole row of dimension 15 . If the size

of each array dimension is available it is possible to reconstruct each dimension

access function by applying factorization to the mono-dimensional affine relation.

Factorization also helps in identifying which iterators are involved in which array

dimension. For the example of Figure 7.11 it is need to find out, from the access

function above, that iterator ”i” is accessed from the second dimension of the array

and iterator ”j” from the first one. If an iterator is accessed from an array dimension

then we are sure that its coefficient is a multiple to all the array dimensions

sizes that come before that dimension. In the case of the access in Figure 7.11

iterator ”i” is multiple to the size of the first array dimension (that is 15), while the

coefficient of iterator ”j” is multiple to no other dimension size , because it is used

in the rightmost dimension (so no other dimension are before it).

The factorization process can be outlined by these steps:

1. Compute the product between all the array dimensions sizes with the exception

of the most significant dimension (the left most dimension in the array definition

75

in the case of row-major languages).

2. For each array dimension (from the most-significant to to the least-significant)

it is needed to divide each of the loop iterator and parameter coefficients in the

mono-dimensional access function by the value computed at step 1.

3. At each step the coefficient of the iterator/parameter for that array dimension

is the result of the division between the value computed at step 1 and the co-

efficient itself. The coefficients values of the mono-dimensional access function

are updated as the modulo between themselves and the value computed at step

1.

4. After the computation for a certain dimension is done the value obtained at

step 1 has to be updated dividing it by the size of the the array dimension that

has just being considered.

76

The pseudo-code for this process is the following:

IteratorsCoefficients[] = Array containing the coefficients

for the memory access function iterators;

ParametersCoefficients[] = Array containing the coefficients

for the memory access function parameters;

Constant = Integer representing the constant of the affine access function;

IteratorsForDimension[][] = Array containing the coefficients of

iterators for each array dimension;

ParametersForDimension[][] = Array containing the coefficients of

parameters for each array dimension;

ConstantForDimension[] = Array containing the constants for each

array dimension;

ArrayDimensionsSizesNoLast = Vector of integers containing the size in

elements of each dimension with exception of

the last dimension (the most external one);

ArraySize = 1;

foreach (Size in ArrayDimensionsSizesNoLast)

ArraySize = ArraySize*Size;

//Starting from the most significant dimension to the least significant ...

for (int i = NumberOfArrayDimension-1; i >= 0; --i) {
for (int j = 0; j < NumberOfLoopIterators; ++j)

if (IteratorsCoefficients[j] >= ArraySize) {
IteratorsForDimension[i][j] = IteratorsCoefficients[j] / ArraySize;

IteratorsCoefficients[j] = IteratorsCoefficients[j] % ArraySize;

}
for (int j = 0; j < NumberOfLoopParameters; ++j)

if (IteratorsCoefficients[j] >= ArraySize) {
ParametersForDimension[i][j] = ParametersCoefficients[j] / ArraySize;

ParametersCoefficients[j] = ParametersCoefficients[j] % ArraySize;

}
if (Constant >= ArraySize) {

ConstantForDimension[i] = Constant / ArraySize;

Constant = Constant % ArraySize;

}
ArraySize = ArraySize / Size of array dimension i;

}

77

In Figure 7.12 there is a more complex example of array access in C. It is an

array with four dimensions and the array is accessed through the three iterators

i,j,k. Iterator ”i” is used twice. Even in this situation (with iterators used multiple

times) the algorithm behaves correctly. ArraySize in this case would be:

15 ? 20 ? 25 = 7500

and the mono-dimensional access function:

f(i, j, k) = 7500 ? k + 500 ? j + 26 ? i

After executing the the first iteration of the above algorithm over this access func-

tion, the access function for the most-significant dimension is returned as result:

D4(i, j, k) = 1 ? k + 0 ? j + 0 ? i

This is obtained by dividing the coefficient of each loop iterator by 7500, that is

the value of ArraySize at the first iteration. The computed access function for

dimension 4 is correct , as memory is accessed through only iterator ”k”. After

the first iteration each coefficient in the access function is updated with the modulo

between the old value and the value of ArraySize. The updated mono-dimensional

function then becomes:

f(i, j, k) = 0 ? k + 500 ? j + 26 ? i

And in the end ArraySize is updated dividing it by the size of the current dimension

being considered which is 15. This process is repeated for each dimension and at

the end the result for each array dimension is the correct memory access function

for that specific dimension.

int A[10][15], i, j;

//...

A[i][j] = 0;

Figure 7.11: Example of C code accessing a bi-dimensional array.

78

int A[10][15][20][25], i, j,k;

//...

A[k][j][i][i] = 0;

Figure 7.12: Example of C code accessing a 4-dimensional array.

7.5.3 Result computation

After the previous step the memory access functions for each array dimension are

computed. These will now be used to compute the result of the analysis.

Access function coefficients to ISL conversion The ISL library is used to compute the

result of the analysis. To make use of ISL it is needed to convert the computed access

functions coefficients to an ISL data structure that can be used with ISL functions to

make the actual computations. The data structure to which the computed memory

access functions will be converted into is the isl aff type . The isl aff type represents

quasi-affine expressions in ISL. The process consists into:

1. Creating one empty ISL affine object for each iterator coefficient.

2. Set the value of the of the ISL affine objects to the constant value representing

the coefficient that they represent

3. Store the result into a vector.

One ISL affine object is constructed for each coefficient of the loop iterators for each

dimension of the array. If the array has 2 dimensions and it is nested in a loop of

depth 3 the number of ISL objects constructed is 6. While the ISL representation of

the coefficients is constructed it is also checked if the iterator of the most external

loop iterator has a non-zero coefficient in that access function. In Section 5.2 is

mentioned the difference between Slices and Ranges. What differentiates a Slice

from a Range is that a Slice is obtained when the dimension is accessed through

the iterator of the most external loop, while a Range is obtained otherwise. The

information about the presence of the external loop iterator in the dimensional access

function is used to decide if the result will be a Range or a Slice.

79

The pseudo-code for this step is now presented:

AffineIteratorCoefficients[][] = 2-dimensional array of the affine function

coefficients in ISL form;

foreach (Dimension of the Array) {
AffineFunction = Empty ISL object representing an Affine Function;

HasExternalLoopIterator = false;

foreach (Iterator of the loop) {
if (Iterator of the external loop && IteratorCoefficient != 0)

HasExternalLoopIterator = true;

Set AffineIteratorCoefficients[Dimension][Iterator]

as a constant affine function of the value of IteratorCoefficient;

}

Flag this dimension with HasExternalLoopIterator;

}

After this process the iterator coefficients of each access function derived at the

previous step is now expressed in ISL form. For example, if one of the access

functions have the form:

f(i, j) = 10 ? i + j + 5

where ”i” and ”j” are two loop iterators (not parameters) the algorithm will produce

two ISL affine objects one containing the value 10 and the other containing the value

1.

Iterator bounds computation The next step consists in computing the maximum

and minimum values of the memory access functions. A prerequisite in doing so is

computing the upper and lower bounds of each loop iterator in the SCoP statement

we are considering. Each memory access the pass analyzes is contained into a SCoP

statement. As explained in Section 3.1 each SCoP statement has its own domain

that specifies the value of the loop iterators for which the statement is executed.

The memory access relations are functions of the loop iterators, by finding the upper

bounds and lower bounds of the loop iterators, with respect to the domain of the

statement, it is possible , by substituting these bounds into the function expression,

to find the upper and lower bounds of the memory access relation. For the com-

80

putation of the iterator bounds ISL provides functions that compute the upper and

lower bound of the variables that live in a domain. These are the isl set dim max()

and isl set dim min() functions, that can be used to determine the upper and lower

bounds of dimensions in an ISL set object (SCoP statement domains are expressed

as ISL sets by Polly). These two functions return an isl pw aff object. This data

structure represents piecewise quasi-affine functions in ISL that are aggregations of

quasi-affine functions. The isl pw aff data structure can be seen as an aggregation

of isl aff objects. These functions return objects that don’t live in the same space as

the domain set (they don’t have the same number of iteration variables or parame-

ters), so it is needed to correct them by adding the missing dimensions. The number

of dimensions must be comparable with the dimensions of the domain or it won’t be

possible to use these objects in the next steps (ISL supports operations only between

affine functions with a comparable number of dimensions and parameters).

81

The pseudo-code for this process is:

BoundsVector = Vector of Pairs of affine functions;

foreach (Iterator in SCoPStatementDomain) {
UpperBound = Compute Upper bound of Iterator through ISL;

Fix the dimensions of UpperBound to match with those of SCoPStatementDomain;

LowerBound = Compute Lower bound of Iterator through ISL;

Fix the dimensions of LowerBound to match with those of SCoPStatementDomain;

Add the UpperBound/LowerBound pair to BoundsVector;

}

Access functions bound computation With the loop iterator bounds computed at

the previous step it is possible to evaluate the bounds of the memory access functions.

In Section 7.5.2 memory access functions for each of the array dimensions have been

constructed. The available information about memory access functions at this stage

are:

1. The coefficients of the iterators.

2. The upper bounds and lower bounds of the iterators in the SCoP statement

domain.

To compute the upper and lower bounds we substitute the bounds of the loop

iterators computed at the last step (with the exception of the bounds of the external

loop iterator, that are considered as zero) inside the access function expression. The

external loop iterator bounds values are considered as zero, because the objective of

the analysis is to determine the amount of elements each external loop iteration visits

(as explained in Section 5.2). By taking into account also the bounds of the external

loop iterator in the computation the resulting upper and lower bounds of the access

function would refer to the whole loop execution instead of only one iteration of

the external loop. The example in Figure 7.13 has the following mono-dimensional

access function:

f(i, j) = 100 ? i + 100 ? k + j + q

while the access function for dimension 1 is:

D1(i, j) = 0 ? i + 0 ? k + j + q

82

and the access function for dimension 2 is:

D2(i, j) = i + k + 0 ? j + 0 ? q

After the lower and upper bound computation for the loop iterators the result would

be for loop iterator ”i”:

UBi = 90

LBi = 0

for loop iterator ”j”:

UBj = 90

LBj = 0

for loop iterator ”k”:

UBk = 9

LBk = 0

and for loop iterator ”q”:

UBq = 9

LBq = 0

Substituting these bounds inside the dimensional access functions gives for dimen-

sion 1:

UB1 = 0 ? 0 + 0 ? 9 + 90 + 9 = 99

LB1 = 0 ? 0 + 0 ? 0 + 0 + 0 = 0

and for dimension 2:

UB2 = 0 + 9 + 0 ? 99 + 0 ? 9 = 9

LB2 = 0 + 0 + 0 ? 0 + 0 ? 0 = 0

83

Here is the pseudo code for this step:

UpperBounds = Vector containing the upper bound affine

expressions for each array dimension;

LowerBounds = Vector containing the lower bound affine

expressions for each array dimension;

foreach (Dimension of the Array) {

LowerBound = Zero affine expression;

UpperBound = Zero affine expression;

//The add and multiply operations here are

//Operations performed on affine functions

foreach (Iterator of the Loop nest) {
LowerBound = LowerBound +

Coefficients[Iterator] * IteratorLowerBound[Iterator];

UpperBound = UpperBound +

Coefficients[Iterator] * IteratorUpperBound[Iterator];

}

Append LowerBound To LowerBounds;

Append UpperBound To UpperBounds;

}

Slices and Ranges computation With the data derived until this point it is possible

to determine the Slices and Ranges for each dimension. The definitions of Slices

and Ranges have been explained in Section 5.2. Before computing and storing the

results for the Slices and the Ranges there’s still another missing part that needs to

be added to the access function bounds. The bound data still misses information

about parameters and constants of the access functions. Constants and parameters

do not change during loop iterations, and are called loop invariants. Considering

loop invariants during bound computation is superfluous and complicates the process

as these can be added to the Slice and Range results just before storing them. Loop

84

#define VBLOCK 10

#define HBLOCK 10

int A[100][100], i, j, q, k;

#pragma omp parallel

{
#pragma omp for private(i,j,k,q) schedule (dynamic)

for (i=0; i < 100; i+=VBLOCK)

for (j=0; j < 100; j+=HBLOCK)

for (k=0; k < VBLOCK; ++k)

for (q=0; q < HBLOCK; ++q)

A[i+k][j+q] = j;

}

Figure 7.13: Example of an OpenMP C loop accessing a 2-dimensional in blocks array.

invariants are added to the affine expressions of the bounds by constructing an

affine expression containing only the values of the loop invariants and adding this

expression to the lower and upper bound expressions of the access functions. In

the example of Figure 7.14 can be seen a memory access with a parameter and a

constant value added in the first dimension. The access function for dimension 1 is:

D1 = 0 ? i + j + n + 5

where ”i” and ”j” are loop iterators, while ”n” is a parameter of the SCoP and 5

is a constant. The parameter ”n” and the constant 5 are loop invariants. After the

upper and lower bounds computation for dimension 1 the result would be:

UB1 = UBj = 14

LB1 = LBj = 0

The loop invariants affine expression for dimension 1 is:

LI = n + 5

Adding this expression to the bounds would give these final bounds:

FinalUB1 = UB1 + LI = 14 + n + 5

FinalLB1 = LB1 + LI = 0 + n + 5

85

These are the true final results for the upper and lower bounds of dimension number

1. These bounds can now be used directly to store the Slices and Ranges values for

each dimension. For the Ranges the final values of the upper and lower bounds are

directly stored in a data structure as the result of the analysis. Slice computation

requires one extra step, because the result for the Slice size is the difference between

the upper and the lower bounds values.

#define VBLOCK 10

#define HBLOCK 10

int A[10][15], i, j, n;

n = foo();

#pragma omp parallel

{
#pragma omp for private(i,j) firstprivate(n) schedule (dynamic)

for (i=0; i < 10; ++i)

for (j=0; j < 15; ++j)

A[i][j+n+5] = j;

}

Figure 7.14: Example of an OpenMP C loop accessing a 2-dimensional array with a parameter
and a constant.

The result of the analysis of a memory access is stored inside a class called Mem-

oryAccessResult. MemoryAccessResult is a container class that stores two objects:

- A pointer to the LLVM Instruction object that does the memory access.

- A vector containing the result for each dimension of the array (either a Slice

result or a Range result)

The UML diagram representing the MemoryAccessResult class is showed in Fig-

ure 7.15. As shown in the diagram there are methods implemented to get or set the

information stored in the class. The vector (a SmallVector, that is an optimized im-

plementation of the C++ vector class inside LLVM) contains pointers to instances

of the AnalysisResult class. AnalysisResult is the base class for two classes used to

store the actual results. These sub-classes are called SliceResult and RangeResult.

RangeResult is used to store the data about a Range of an array dimension, while

SliceResult stores the data for Slices. The UML diagram for these classes can be

seen in Figure 7.16. Slices are represented with a single value, while Ranges are a

pair of values representing the lower and upper bound of the range. These classes

86

store the values through the use of another class called BoundExpression. SliceRe-

sult implements a getSliceSize() method to get the Slice size expression contained

in the class, while RangeResult implements two methods, getUpperBound() and get-

LowerBound(), that return respectively the Upper and Lower bound expressions of

the range. The format of values stored by a BoundExpression class is:

Expr = C + a ? p0 + b ? p1 + ... + k ? pN

where C is a constant value and p0 to pN are the parameters of the SCoP statement

in which the memory access that has been analyzed lives into. BoundExpression

stores the constant value in an integer variable, while the parameters are stored in

a vector of Parameter objects. The Parameter class is a simple container class that

stores the coefficient and the index of a SCoP parameter. The UML diagram for

these two classes is represented in Figure 7.17. The BoundExpression class provides

methods to inspect the value it represents:

- isConstant() is a method that can be used to know if the value represented

by the class is a completely constant value or it involves any parameter.

- begin() is a method that is used to obtain the begin iterator to the list of

parameters in the expression.

- end() is a method that is used to obtain the iterator to the end of the list of

parameters in the expression.

- printToStr() is a method used to obtain a string representation of the expres-

sion.

Each instance of the MemoryAccessResult class is then stored inside a vector con-

tained in the OMPNUMAIdentify pass instance. This vector can be retrieved by

other analysis or transformation passes to be used to instrument code with the nec-

essary OpenMP runtime calls that inform the runtime of the data access patterns

of the program.

87

This is the pseudo-code for this last part of the pass:

UpperBoundsVector = Vector of affine functions representing

the computed upper bounds;

LowerBoundsVector = Vector of affine functions representing

the computed lower bounds;

MemoryAccessResult = Object storing the results of the analysis;

foreach (Dimension of the Array) {
LoopInvariantExpression = The affine Loop invariant

expression for this Dimension;

UpperBound = Upper bound from UpperBoundsVector for Dimension;

UpperBound = UpperBound + LoopInvariantExpression;

LowerBound = Lower bound from LowerBoundsVector for Dimension;

LowerBound = LowerBound + LoopInvariantExpression;

if (Dimension is flagged with HasExternalLoopIterator) {
//It is a Slice

Result = UpperBound - LowerBound;

Store Result into MemoryAccessResult for Dimension;

} else {
//It is a Range

UBLBPair = A pair object containing the UpperBound

and LowerBound expressions;

Store UBLBPair into MemoryAccessResult for Dimension;

}
}

88

MemoryAccessResult
-AccessInstruction: Instruction*
-Results: SmallVector<AnalysisResult*>

+appendResult(Result:AnalysisResult*): void
+getResult(): SmallVector<AnalysisResult*>
+getInstruction(): Instruction*

Figure 7.15: The UML diagram for the MemoryAccessResult class.

AnalysisResult
-Type: ResultType

+getResultType(): ResultType

SliceResult
-SliceSize: BoundExpression

+getSliceSize(): BoundExpression

RangeResult
-LowerBound: BoundExpression
-UpperBound: BoundExpression

+getLowerBound(): BoundExpression
+getUpperBound(): BoundExpression

Figure 7.16: The UML diagram for the AnalysisResult class and its sub-classes.

89

BoundExpression
-Constant: int
-ParameterVector: SmallVector<Parameter>

+isConstant(): bool
+begin(): ParameterIterator
+end(): ParameterIterator
+printToStr(): string

Parameter
+Coefficient
+Index

Figure 7.17: The UML diagram for the BoundExpression and Parameter classes.

90

Chapter 8
Experimental Results

In this chapter will be presented some experimental results. The OMPNUMAId-

entify pass will be run on the code implementing some OpenMP parallelized algo-

rithms. The aim of this chapter is to show how the analysis works on some test

programs and known real world algorithms. The analysis will return the size of the

Slices or the Ranges of the arrays accessed in the parallel loops of the analyzed al-

gorithms. To execute the pass as a standalone application it is used a self-developed

tool that runs the passes outside of the LLVM compiling pipeline directly on some

LLVM-IR Assembly code (denoted by the .ll file extension).

8.1 Code preparation

The code in these examples is compiled into LLVM assembly code using the GCC

compiler 1 with the addition of the DragonEgg plugin [28], that gives GCC the ability

to emit LLVM code or use LLVM as a backend. The command used to compile C

code into LLVM assembly through GCC+DragonEgg is the following one:

$ gcc -fopenmp -S -c -O0 -o $OUTPUT.ll $INPUT.c -fplugin=$PATHTODRAGONEGG/dragonegg.so -flto

The -fopenmp flag is used to enable the GCC OpenMP frontend support, the -S

flag is used to tell GCC to emit assembly code instead of producing object code and

the -c flag is used to make GCC skip the linking phase. -O0 is given to disable all

optimization , because we want to run optimizations in a later phase. The -fplugin

flag is used to load the DragonEgg plugin into GCC, while the -flto flag tells the

1http://gcc.gnu.org/

91

plugin to generate LLVM assembly code instead of LLVM object code (that is not

human readable).

Now the LLVM assembly code has been compiled into a file and can be passed

through the LLVM optimizer. The optimizer can be run as a standalone program

called opt. The opt application outputs a version of the LLVM program code modi-

fied by the optimizations specified to the opt command line. This stage of optimiza-

tion is used to prepare the code for Polly analysis. Polly requires the code to be

normalized into a specific form for analysis and to transform the code into this form

some transformations passes have to be run before handing the code to Polly. These

transformation passes are run automatically by the -O3 level of optimization of opt

, but running -O3 optimizations changes the code shape pretty heavily, making it

difficult to show similarities between the original C code and the compiled LLVM

code so, for the sake of clarity, the required LLVM optimizations for Polly analysis

will be run manually through opt, avoiding those -O3 optimizations that heavily

change the code shape. The opt command used to generate the normalized LLVM

code for Polly is:

$ opt -S -load $PATH_TO_POLLY_LIB/LLVMPolly.dylib --debug-pass=Structure -no-aa -targetlibinfo \
-tbaa -basicaa -preverify -domtree -verify -mem2reg -instcombine -simplifycfg -tailcallelim \
-simplifycfg -reassociate -domtree -loops -loop-simplify -lcssa -loop-rotate -instcombine \
-scalar-evolution -loop-simplify -lcssa -indvars -polly-prepare -postdomtree -domfrontier \
-regions -polly-region-simplify -scalar-evolution -loop-simplify -lcssa -indvars -postdomtree \
-domfrontier -regions -loop-simplify -indvars -enable-iv-rewrite -dce INPUT.ll > OUTPUT.ll

The command specifies a lot of LLVM passes to optimize the code. Most of

them are standard simplification passes for loops and the CFG (-loop-simplify and -

simplifycfg), while some others normalize the code into forms more easily analyzable

(-enable-if-rewrite and -polly-prepare). The meaning of most these passes can be

found on the LLVM website 1.

After opt has been run with the command above the OUTPUT.ll file is ready to

be passed to the analysis tool.

1http://www.llvm.org

92

8.2 Analysis results

8.2.1 Test application 1

The first program presented as a test is a simple OpenMP loop accessing a two

dimensional array linearly. The code and the analysis results for the test program

are presented in Figure 8.1. The external loop is driven by iterator ”i” and the the

most internal loop is driven by iterator ”j”. The array accessed at SCoP statement

1 is a two dimensional array with both dimensions of size 10. The whole array is

accessed linearly row by row. The result of the analysis shows a Slice found for

Dimension 0 (the left-most dimension) of size 1 and a Range found for Dimension

1 that spans between the constant values 0 and 9. The access can be be seen

in Figure 8.2, where the strong-green elements are those accessed after the first

iteration of the external loop. That access pattern is replicated through the rest of

Dimension 0 to cover the entire array (as shown in light-green).

int main() {

int A[10][10], i,j;

#pragma omp parallel

{
i = 0;

//SCoP 1 begins here

#pragma omp for private(i,j) schedule(dynamic)

for (i = 0; i < 10; ++i) {
for (j = 0; j < 10; ++j) {
A[i][j] = 0; //SCoP statement 1

}
}

}
return 0;

}

Analysis Result:

1) Found memory access at line: 11

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 9

Figure 8.1: Code for Analysis test application number 1.

93

D
im

e
n
s
io

n
 0

Dimension 1

Figure 8.2: Access pattern for test application 1.

8.2.2 Test application 2

Test program number 2 is an OpenMP loop nest accessing a two dimensional array

in blocks of size 4. The code for this program and the analysis result is presented

in Figure 8.3. The array is accessed in 2x2 blocks skipping the first two columns.

The program introduces a parameter for the SCoP. The parameter is the variable

”h”, that is constant throughout the execution of the only SCoP in the program.

The access pattern for this memory access is shown in Figure 8.4 (with respect to

one iteration of the external loop). The access has a Slice for Dimension 0 of size 2

, while Dimension 1 is a Range with parametric bounds. The lower bound is equal

to the parameter called p2, while the upper bound is p2 + 7. The parameter p2 is

none other than the variable ”h” in the source code. The result is correct, because

when all the iterators of the loops are zero we have the lower bound for the access

function of Dimension 1, which leave ”h” as the only addend in the equation if ”f”

and ”k” are substituted with 0. When iterators ”f” and ”k” reach their maximum

value we have the upper bound for Dimension 1 access function. The sum between

the two iterators at their maximum value gives 7 as result, which brings to the final

result of 7 + p2 for the upper bound value.

8.2.3 LU Decomposition Algorithm

The third test program is a C implementation of the dense LU Decomposition

algorithm[26][30], run on a 100x100 matrix of floating point values (implemented

as a two dimensional array). The code and result for the algorithm is presented in

Figure 8.5. This algorithm has many memory accesses (7 accesses in total). Each

access is simple, with only one iterator or parameter involving each array dimension.

Most of the accesses seen here are similar to the ones analyzed in the two already

proposed test programs. Access number 6 and number 3 have some differences worth

an explanation. Access number 6 corresponds to the access LU[i][i] that takes place

94

int main()

{
int a[10][10];

int i,j,k,f,h = 2;

//SCoP 1 begins here

#pragma omp parallel for private(i,j,k,f) firstprivate(h) schedule(dynamic)

for (i=1; i < 5; ++i)

for (f=0; f < 4; ++f)

for (j=0; j < 2; ++j)

for (k=0; k < 2; ++k)

A[2*i+j][2*f+k+h] = 0; //SCoP Statement 1

return 0;

}

Analysis Result:

1) Found memory access at line: 10

Dimension 0 Slice of size: 2

Dimension 1 Range with LB: p2 UB: 7 + p2

Figure 8.3: Code for Analysis test application number 2.

in SCoP statement 1. It is a constant memory access (accessing always to the same

element). Parameter p1 is the variable ”i” in SCoP 1. Access 6 has two Ranges,

both with lower and upper bounds exactly equal to p1 (denoting that the exact

same memory area is accessed for each loop iteration). Access number 3 is a mem-

ory access with two Ranges. When an array is accessed only through ranges means

that the ranges define an area inside the array that is accessed completely from each

iteration of the external loop of the SCoP. The area accessed by each iteration of

the external loop is always the same, because the memory access pattern does not

depend from the external loop iterator.

D
im

e
n
s
io

n
 0

Dimension 1

Figure 8.4: Access pattern for test application 2.

95

8.2.4 Jacobi method implementation

Test program number 4 shows an implementation of the Jacobi iterative matrix equa-

tion solution method [29]run for 100 iterations on a matrix (implemented through

an array of double precision floating point values) 10x10 in size. The code and the

results of the analysis are shown in Figure 8.6. The code clearly identifies 3 different

SCoPs. Many memory accesses are performed in this algorithm.. The results in this

case are even constant values (no parameters). An algorithm like this fits really well

OpenMP parallelization.

8.2.5 Alternating Direction Implicit method algorithm

Test program number 5 shows an implementation of the ADI algorithm , used for

solving parabolic and elliptic partial differential equations equations.[31] This is

another instance of an easily parallelizable algorithm that works well with OpenMP.

The program accesses two matrices of 10000 elements. Also for this algorithm the

analysis brings results by exactly computing the memory access pattern for each

memory accesses in the program. The program code and the result of the analysis

can be seen in Figure 8.7.

96

void lu() {
float LU[100][100];

int i,j,k;

#pragma omp parallel for private(i,j,k) schedule(dynamic)

for (i = 0; i < 100; ++i) {
#pragma omp single

{
//SCoP 1

for (j = i+1; j < 100; ++j)

LU[i][j] = LU[i][j] / LU[i][i]; //SCoP Statement 1 (SCoP 1)

}
//SCoP 2

#pragma omp for private(j,k) schedule(dynamic)

for (j = i+1; j < 100; ++j)

for (k = i+1; k < 100; ++k)

LU[j][k] = LU[j][k] - LU[i][j]*LU[i][k]; //SCoP Statement 2 (SCoP 2)

}

}

Analysis Result:

1) Found memory access at line: 16

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: p2

2) Found memory access at line: 16

Dimension 0 Range with LB: p5 UB: p5

Dimension 1 Slice of size: 1

3) Found memory access at line: 16

Dimension 0 Range with LB: p5 UB: p5

Dimension 1 Range with LB: 0 UB: p2

4) Found memory access at line: 16

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: p2

5) Found memory access at line: 11

Dimension 0 Range with LB: p1 UB: p1

Dimension 1 Slice of size: 1

6) Found memory access at line: 11

Dimension 0 Range with LB: p1 UB: p1

Dimension 1 Range with LB: p1 UB: p1

7) Found memory access at line: 11

Dimension 0 Range with LB: p1 UB: p1

Dimension 1 Slice of size: 1

Figure 8.5: Code for Analysis test application number 3.

97

#define ITER 100

#define SIZE 10

void Jacobi() {
double A[SIZE][SIZE];

double B[SIZE][SIZE];

int i,m,n;

for (i = 0; i < ITER; ++i) {
#pragma omp parallel default(shared) shared(A,B) private(i)

{
//SCoP 1

#pragma omp for private(m,n) schedule(dynamic)

for (m = 0; m < SIZE; ++m)

for (n = 0; n < SIZE; ++n)

A[m][n] = 1.0; //SCoP Statement 1 (SCoP 1)

//SCoP 2

#pragma omp for private(m,n) schedule(dynamic)

for (m = 0; m < SIZE-2; ++m)

for (n = 0; n < SIZE-2; ++n)

//SCoP Statement 2 (SCoP 2)

A[m][n] = B[m][n-1] + B[m][n+1] + B[m-1][n] + B[m+1][n];

//SCoP 3

#pragma omp for private(m,n) schedule(dynamic)

for (m = 0; m < SIZE-1; ++m)

for (n = 0; n < SIZE-1; ++n)

B[m][n] = A[m][n]; //SCoP Statement 3 (SCoP 3)

}
}

}

Analysis Result:

1) Found memory access at line: 57

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 8

2) Found memory access at line: 57

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 8

3) Found memory access at line: 50

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 1 UB: 8

4) Found memory access at line: 50

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 7

... EQUAL TO ACCESS 4 ...

8) Found memory access at line: 44

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 9

Figure 8.6: Code for Analysis test application number 4.

98

float A[100][100];

float B[100][100];

void ADI() {

int i,j;

#pragma omp parallel

{
#pragma omp for private(i,j) schedule(dynamic)

for (i = 0; i < 100; ++i)

for (j = 0; j < 100; ++j)

A[i][j] = A[i][j] - B[i][j] * A[i-1][j];

#pragma omp for private(i,j) schedule(dynamic)

for (j = 0; j < 100; ++j)

for (i = 0; i < 100; ++i)

A[i][j] = A[i][j] - B[i][j] * A[i][j-1];

}

}

Analysis Result:

1) Found memory access at line: 18

Dimension 0 Range with LB: 0 UB: 99

Dimension 1 Slice of size: 1

2) Found memory access at line: 18

Dimension 0 Range with LB: 0 UB: 99

Dimension 1 Slice of size: 1

3) Found memory access at line: 18

Dimension 0 Range with LB: 0 UB: 99

Dimension 1 Slice of size: 1

4) Found memory access at line: 18

Dimension 0 Range with LB: 0 UB: 99

Dimension 1 Slice of size: 1

5) Found memory access at line: 13

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 99

6) Found memory access at line: 13

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 99

7) Found memory access at line: 13

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 99

8) Found memory access at line: 13

Dimension 0 Slice of size: 1

Dimension 1 Range with LB: 0 UB: 99

Figure 8.7: Code for Analysis test application number 5.

99

Bibliography

[1] Moore, Gordon E. (1965). Cramming more components onto integrated circuits

[2] Amdahl, Gene M. (1967). Validity of the single processor approach to achieving

large scale computing capabilities

[3] OpenMP Architecture Review Board (2011). OpenMP Application Program In-

terface Specification

[4] Mark Murphy. Loop Parallelism

[5] LLVM Website. http://llvm.org/Users.html

[6] LLVM Website. http://llvm.org/

[7] Mohamed-Walid Benabderrahmane, Louis-Noel Pouchet, Albert Cohen and

Cedric Bastoul. The Polyhedral Model Is More Widely Applicable Than You

Think

[8] Chris Lattner (2002). The LLVM Instruction Set and Compilation Strategy

[9] Andrea Di Biagio, Ettore Speziale, Giovanni Agosta. Exploiting Thread-Data

Affinity In OpenMP with Data Access Patterns

[10] Cdric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, Olivier Temam.

Putting Polyhedral Loop Transformations to Work

[11] Tobias C. Grosser. Enabling Polyhedral Optimizations in LLVM

[12] Sven Verdoolaege. Integer Set Library Manual

[13] Louis-Nol Pouchet.

http://www.cse.ohio-state.edu/ pouchet/software/polyopt/doc/htmltexinfo/Specifics-

of-Polyhedral-Programs.html

[14] LLVM Documentation. http://llvm.org/docs/doxygen/html/classllvm 1 1Region.htm

[15] Polly git repository commit log.

http://repo.or.cz/w/polly-mirror.git/commit/615bd548f769f944739506fd01f653ee41ec333f

100

[16] LLVM Documentation. http://llvm.org/docs/doxygen/html/classllvm 1 1SCEV.html

[17] The ”Gang of Four”. Design Patterns:Elements of Reusable Object-Oriented

Software

[18] LLVM Assembly Language Reference. http://llvm.org/docs/LangRef.html

[19] LLVM Documentation. http://llvm.org/docs/doxygen/html/classllvm 1 1Function.html

[20] LLVM Documentation. http://llvm.org/docs/doxygen/html/classllvm 1 1CallGraph.html

[21] LLVM Documentation.

http://llvm.org/docs/doxygen/html/classllvm 1 1CallGraphNode.html

[22] Reese T. Prosser. Applications of Boolean matrices to the analysis of flow dia-

grams

[23] LLVM Documentation.

http://llvm.org/docs/doxygen/html/classllvm 1 1DominatorTree.html

[24] LLVM Documentation.

http://llvm.org/docs/doxygen/html/structllvm 1 1PostDominatorTree.html

[25] Donald E. Knuth. The Art of Computer Programming Volume 1: Fundamental

Algorithms, third edition

[26] Zhenying Liu, Barbara Chapman, Yi Wen, Lei Huang, Tien-Hsiung Weng, Os-

car Hernandez. Analyses for the Translation of OpenMP Codes into SPMD Style

with Array Privatization

[27] Chris Lattner, Dinakar Dhurjati, Gabor Greif, Joel Stanley, Reid Spencer, Owen

Anderson. LLVM Programmer’s Manual

[28] Duncan Sands. Reimplementing llvm-gcc as a gcc plugin

[29] Louis A. Hageman, David M. Young. Applied iterative methods

[30] Paht Juangphanich. LU Factorization C code

[31] Ryan Nong, Danny C. Sorensen. A Parameter Free ADI-like Method for the

Numerical Solution of Large Scale Lyapunov Equations

101

	Cover
	I Introduction
	
	Issues in Parallel Program Development
	Beyond the limit of SMP systems
	Parallelization for NUMA systems
	Objective of the Thesis
	Structure of the Thesis

	II Tools
	
	Execution Model
	Memory Model
	Loop Parallelization

	
	SCoPs
	Scattering
	Memory Accesses

	
	High level structure of LLVM
	Polly
	Polly internal representation and ISL

	III Solution
	
	OpenMP Loop parallelization
	Memory access patterns
	Finding the patterns
	SCoP loops bound detection
	Access function computation
	Array dimensions bounds computation
	Slices and Ranges computation

	
	Polly SCoP Extraction Process
	Polly SCoP Detection Process
	Polly SCoP Control-Flow Analysis
	Polly SCoP Polyhedral representation construction

	Ignoring Non-affine memory accesses
	Changes to the Detection pass
	Changes to the Control-flow analysis pass
	Changes to the Polyhedral construction pass

	Ignoring Non-Affine branches
	Changes to the Detection pass
	Changes to the Control-flow analysis pass
	Changes to the Polyhedral construction pass

	Dealing with casts in OpenMP loops
	Dealing with Trunc instructions
	Dealing with Bit-Casts

	
	The OpenMPData pass
	The OpenMPNorm pass
	The OpenMPDetection pass
	The OpenMPRegionTree pass
	The Call Graph
	Building the Region Tree

	The OMPNUMAIdentify pass
	SCoP Validation
	Array dimensional access functions determination
	Result computation

	
	Code preparation
	Analysis results
	Test application 1
	Test application 2
	LU Decomposition Algorithm
	Jacobi method implementation
	Alternating Direction Implicit method algorithm

