
POLITECNICO DI MILANO

Corso di Laurea Magistrale in Ingegneria Informatica Dipartimento di Elettronica e
Informazione

DEVELOPMENT OF A
ROUGH TERRAIN WHEG ROBOT WITH

MORPHOLOGICAL COMPUTATION

AI & R Lab

Laboratorio di Intelligenza Artificiale e Robotica del Politecnico di Milano

Relatore: Prof. Giuseppina Gini

Tesi di Laurea di:

Vittorio Lumare, matricola 722312

Anno Accademico 2011-2012

2

3

Table of Contents
Preface..7
Abstract..8
Estratto in italiano..9
Introduction..10

Chapter 1 State of the Art..16
1.1 Three Legs wheg...16
1.2 Single Leg wheg...19
1.3 Curved Leg wheg..20
1.4 Star wheg..21

Chapter 2 Simulations and Model Design...22
2.1 First simulation...23
2.2 Longer body, better results..24
2.3 Obstacles big like robot..25
2.4 New model..26

Chapter 3 Real Robot Implementation..28
Chapter 4 Hardware...34

4.1 Servomotors..34
4.2 Control Board..35
4.3 Sensors..36

4.3.1 Infrared Rangefinders..37
4.3.2 3-axis Accelerometer..39

4.4 Power..41
Chapter 5 Firmware...42

5.1 Read and Communicate Sensors Data..43
5.1.1 Reading Sensors..43
5.1.2 Communicating sensor data..44

5.2 Set Speed According to Body Inclination...44
5.3 Main Behaviors...45

5.3.1 Jump Down Behavior..46
5.3.2 Terrain Check Behavior..46
5.3.3 Approaching Obstacle Behavior...47
5.3.4 Adapt to Floor Behavior..47

5.4 Walking Actions..48
5.4.1 Go Backward...49
5.4.2 Turn Left ...49
5.4.3 Turn Right ..50
5.4.4 Restart Walking...50
5.4.5 Stop Walking...50

5.5 Tail Control Section..51
5.5.1 Tail Behaviors Manager..51
5.5.2 Tail Behavior 1: Avoiding Falling Backward..51
5.5.3 Tail Behavior 2: Climbing...52

5.6 Flow Chart..54
Chapter 6 Software..55

4

6.1 Player framework..55
6.2 Serial Connection..55
6.3 Three Plugins..55

6.3.1 Position plugin..56
6.3.2 Ranger Plugin..57
6.3.3 Robot Plugin..58

Chapter 7 Experiments..59
7.1 Walking upstairs indoor..59
7.2 Overcoming a big obstacle indoor..60
7.3 Climbing over a big obstacle outdoor...62
7.4 Overcoming a small obstacle outdoor...63
7.5 Walking up stairs outdoor...64
7.6 Walking down obstacle outdoor..65
7.7 Walking uphill outdoor ..66
7.8 Walking on rough terrain ...67
7.9 Walking on natural terrain ..68
7.10 Walking on wild terrain...69

Chapter 8 Conclusions and Future Work...71
Bibliography...73
Web Resources...76
Appendix A : Wheg Mechanical Drawing...77
Appendix B : Firmware..78
Appendix C : Software...91

Illustration Index
Illustration 1: Bioinspired Perception System...11
Illustration 2: Climbing with Tail - Part 1...12
Illustration 3: Climbing with Tail - Part 2...13
Illustration 4: Three Legs Wheg..16
Illustration 5: Whegs I...17
Illustration 6: Whegs II..17
Illustration 7: Autonomous Whegs..17
Illustration 8: Mini Whegs I..18
Illustration 9: DAGSI Whegs..18
Illustration 10: Climbing Mini-Whegs..19
Illustration 11: Single Leg wheg..19
Illustration 12: Prolero...20
Illustration 13: Curved Leg wheg..20
Illustration 14: Rhex..21
Illustration 15: Star wheg..21
Illustration 16: Ratasjalg..22
Illustration 17: EMBOT...22
Illustration 18: First Simulation - Step 1...23
Illustration 19: First Simulation - Step 2...23

5

Illustration 20: First Simulation - Falling 1...24
Illustration 21: First Simulation - Falling 2...24
Illustration 22: First Simulation - Falling 3...24
Illustration 23: Second Simulation - Step 1...25
Illustration 24: Second Simulation – Last Step...25
Illustration 25: Third Simulation - Step 1..26
Illustration 26: Third Simulation - Falling..26
Illustration 27: Third Simulation - Robot Failed...26
Illustration 28: 4-th Simulation - Start...27
Illustration 29: 4-th Simulation - Success..28
Illustration 30: Structural parts from BIOLOID Robotis KIT...28
Illustration 31: First Robot Implementation – Photo 1..30
Illustration 32: First Robot Implementation - Photo 2..30
Illustration 33: New Wheg Model with New Feet..31
Illustration 34: New Wheg - Complete Design...31
Illustration 35: Builded Wheg...33
Illustration 36: Aluminum support bar..33
Illustration 37: Aluminium Neck...33
Illustration 38: Final Robot - LionHell McMillan - Photo 1...34
Illustration 39: Final Robot - LionHell McMillan - Photo 2...34
Illustration 40: Final Robot - LionHell McMillan - Photo 3...35
Illustration 41: Final Robot - LionHell McMillan - Photo 4...35
Illustration 42: Servomotor - Dynamixel AX-12..36
Illustration 43: Control Board - CM-510 ..37
Illustration 44: Accelerometer Multiplexer Board..38
Illustration 45: Rangefinders Multiplexer Board...39
Illustration 46: Rangefinder - Sharp GP2D120X..39
Illustration 47: Rangefinder Characteristic..40
Illustration 48: Sensor Bar...41
Illustration 49: Accelerometer - MMA7361..41
Illustration 50: AC-DC Transformer...43
Illustration 51: Li-PO Battery..44
Illustration 52: Firmware - Main Control Loop Flow Chart...56
Illustration 53: Experiment 1 - Walking Upstairs indoor - pt1..61
Illustration 54: Experiment 1 - Walking Upstairs indoor - pt2..62
Illustration 55: Experiment 2 - Overcoming a big obstacle indoor - pt1.........................62
Illustration 56: Experiment 2 - Overcoming a big obstacle indoor - pt2.........................62
Illustration 57: Experiment 2 - Overcoming a big obstacle indoor - pt3.........................63
Illustration 58: Experiment 2 - Overcoming a big obstacle indoor - pt4.........................63
Illustration 59: Experiment 2 - Overcoming a big obstacle indoor - pt5.........................63
Illustration 60: Experiment 3 - Climbing over a big obstacle outdoor - pt1...................64
Illustration 61: Experiment 3 - Climbing over a big obstacle outdoor - pt2...................64
Illustration 62: Experiment 3 - Climbing over a big obstacle outdoor - pt3...................64
Illustration 63: Experiment 4 - Overcoming a small obstacle outdoor - pt1...................65
Illustration 64: Experiment 4 - Overcoming a small obstacle outdoor - pt2...................65
Illustration 65: Experiment 5 - Walking up stairs outdoor..66

6

Illustration 66: Experiment 6 - Walking down obstacle outdoor - pt1............................67
Illustration 67: Experiment 6 - Walking down obstacle outdoor - pt2............................67
Illustration 68: Experiment 6 - Walking down obstacle outdoor - pt3............................67
Illustration 69: Experiment 7 - Walking uphill outdoor..68
Illustration 70: Experiment 8 - Walking on rough terrain - pt1.......................................69
Illustration 71: Experiment 8 - Walking on rough terrain - pt2.......................................69
Illustration 72: Experiment 9 - Walking on natural terrain..70
Illustration 73: Experiment 10 - Walking on wild terrain - pt1......................................71
Illustration 74: Experiment 10 - Walking on wild terrain - pt2......................................72

Index of Tables
Table 1: Servomotor - Dynamixel AX-12...36
Table 2: Control Board – CM-510...37
 Table 3: Rangefinder - Sharp GP2D120X...39
 Table 4: Accelerometer - MMA7361..41

Attachments
Drawing 1: Wheg Mechanical Drawing..89
Text 1: Firmware Code..90
Text 2: Position Plugin Code...103
Text 3: Ranger Plugin Code...106
Text 4: Robot Plugin Code..109
Text 5: Position Plugin - Configuration File Example...113
Text 6: Ranger Plugin - Configuration File Example...114
Text 7: Robot Plugin - Configuration File Example...114

7

Preface
Mobile robots on Earth are increasing in number, this is a fact.
Althought many of this robots have been purely developed to foster academic research,
some of them find a place in other fields: see NASA rovers, or the new floor-cleaning
robots available in all electronics stores around the world.

This project thesis is dedicated to mobile robotics, and I worked on it thinking that in
the near future mobile robots will be ever more used in real applications over time.

I was been fortunate, in my university studies, because I had the opportunity to watch
several robotics courses, thing that is not possible in all universities.

I discovered this world and I love it.

I want to thank all the professors and associates who transmitted to me the love for
robotics and believed in me, giving me the possibility to do my best in this pioneristic
field.

I want to thank in particular way : Michele Folgheraiter and Giuseppina Gini.
Big thanks even to: Andrea Bonarini and Matteo Matteucci.
Other thanks to Paolo Belluco and Giulio Fontana, who gave me a big help in preparing
me for my first thesis discussion in 2007.

And, obviously, I am grateful to all those people in AIRLab Lambrate, who were all
working on their projects and made of that Lab an exciting and stimulating place:
Alessandro Nava, Ahmed Ghozia, Davide Medei, Francesco Cartella, Francesco Milli,
Maurizio Mercurio, Simone Ceriani and Simone Laurenzano.

I would like to dedicate this work to some people important to me. Without them I
would never had been successful:

my parents: Maria De Sena, Antonio Lumare.

My best teachers: Maria Voce, Giuseppe Sicilia, Marilù Cammariere, Pippo Olivo,
Francesca Maiorano, Ferdinando Amendola.

My friends: Antonio Maggio, Giovanni Maggio, Domenico Ranieri e Alessandro
Sala.

People who ever believed in me: Silvano Tricoli, Antonio Ursoleo.

8

Abstract

This report is a master thesis in robotics, and is about building and testing a mobile
robot equipped with a new concept locomotion system: wheg.

I’ve built a mobile robot, equipped with 6 whegs , a tail and a body joint (which
permits more flexibility and adaptation to terrain) , a 3-axis accelerometer and a
head containing an infrared sensors array used to perceive terrain.

Several experiments have been made, and a final structure has been found, permitting
robot to overcome obstacles bigger than itself.

The sensorial perception system has been tested and modified several times, finally
finding a solution that allows robot to perceive terrain, in order to position itself in the
best way to approach terrain unevenness.

The final builded robot has been tested outdoor on rough terrain, with positive
outcome: the robot has been able to overcome several types of obstacles, even taller
than itself.

Finally, three software plugins for the Player server (it's a server used for mobile
robotics applications) have been implemented, in order to make simulations in all
supported rendering evironments, like Stage and Gazebo, or to make real
experiments, allowing to control the robot with a software brain that can be
implemented in several programming languages.

9

Estratto in italiano
In questa tesi di robotica mobile fornirò una descrizione dettagliata del lavoro svolto nel
progettare, implementare e testare un nuovo modello di robot mobile per terreni
accidentati basato sul mezzo di locomozione Wheg (che sta per wheel + leg).

Il robot costruito è equipaggiato con sei whegs, una coda e un giunto corporeo centrale
(che permette più flessibilità e adattamento al terreno), un accelerometro a 3 assi e una
testa contenente un'array di sensori di distanza a infrarossi usato per percepire il
terreno.

Per mezzo di un simulatore bidimensionale ho creato un modello di robot testandolo e
modificandolo iterativamente, fino a giungere ad una versione che permettesse al robot
di scavalcare ostacoli più grandi di lui nel più semplice e immediato dei modi.

L'apparato sensoriale che si occupa della percezione del terreno è stato modificato e
testato più volte , fino a giungere ad una versione che permettesse al robot di percepire
il terreno, con lo scopo di posizionare sé stesso nel migliore dei modi e poter così
affrontare le irregolarità del terreno.

Il robot finale costruito è stato testato all'aperto su terreni accidentati, con esito positivo:
il robot è riuscito a scavalcare diversi tipi di ostacoli, anche più alti di sé stesso.

Infine, sono stati sviluppati tre plugin software per il server per applicazioni robotiche
chiamato Player, in modo da poter accedere alle risorse del robot da remoto e poter
effettuare simulazioni negli ambienti supportati, come Stage e Gazebo, o anche
esperimenti reali. Il server Player infatti permette di pilotare i robot da remoto (o anche
in locale) con un cervello implementato sotto forma di programma, che puo' essere
scritto in diversi linguaggi di programmazione.

Sono stati fatti diversi esperimenti indoor e outdoor con il robot costruito. I risultati
ottenuti sono positivi per quanto riguarda la struttura ideata e implementata. L'apparato
sensoriale si è rivelato insufficiente per una corretta rilevazione delle asperità del
terreno.

Lavori futuri possono essere lo sviluppo di un controllo ad alto livello per pianificazione
del percorso, lasciando all'attuale firmware il controllo a basso livello dei movimenti e
dei comportamenti principali.

Il servomotori usati possono essere sostituiti con modelli economici, per sviluppare una
flotta di robot economici e poter così sviluppare applicazioni swarm.

10

Introduction

If we restrict our view to outdoor mobile robots, we can easily see that the most
important aspects are: locomotion and environment perception.

In this work we focus on both these aspects, concentrating our attention a bit more on
the former.

Nature teaches us that locomotion is an aspect intrinsically related to the body.

Body, perception and mind are strictly related, and this concept is well expressed by the
term embodiment. [1]

This revolutionary concept, mainly used in psychology, has been succesfully applied to
autonomous robotics systems, and the key concept is that, in a physical thinking
entity, the body has a strong role in determining the way environment is perceived by
senses.

This principle guided me in the design of the Sensorial system.

The sensorial system functioning has been conceived to be intrinsic to the body.

It’s bioinspired, because it acts in the same way in which animals perceive the terrain
and other external entities using baffles.

• each sensor is located in the frontal part of the head, and is very near to the
perceiving area it should sense, which is in front of the robot, and in this way it
interact with the terrain before the rest of the body

• the sensor bar is disposed horizontally with respect to the robot, is large as the
robot body, and this is strictly related to the way the robot interact with terrain
surface: it needs, in front of itself, an horizontal planar surface parallel to the
body orientation, large at least as the body width.

Illustration 1: Bioinspired Perception System

Robot body Sensor bar

11

Locomotion system, in an outdoor mobile robot, is critical, and it must ensure a robust
movement control that preserves robot stability.

The faster and most reliable control is given by morphological computation [1].

This concept express the fact that the morphology and the materials can take over the
functions normally attributed to control.

This concept is perfectly incarnated by the new locomotion system called wheg [2][3]
[4][5][6][7][8][9][10][11].

As we will se in further reading, the morphology of this component release the control
from the effort to perform the walking.

Another property of this locomotion system is the easiness of construction and
actuation: it has no moving parts and a single motor is sufficient to drive it.

The objective of this work is to discover and test a structural design that simplifies
the control of a wheg robot on rough terrains.

Consequent purpose of this work is to better understand the potentiality and usefulness
of the wheg locomotion system.

Since the agility on rough terrains would have been a key feature of the robot I was
going to build, I needed to design the whole robot focusing on this aspect.

In order to adapt the robot to uneven terrain surfaces, its structure should have had
some flexibility. This has been obtained putting a joint in the center of robot, allowing
it to tilt up or down. Adaptation to environment using a body joint has been addressed
in other recent works [9] [12].

In rough terrain robots terrain adaptation is an essential aspect, and it has been
addressed in several studies. In recent works on this topic, track was the most used
locomotion system [13][14].

The task of climbing a small obstacle has been performed quite easily with this
structure, but robot stability improvement made necessary in order to climb bigger
obstacles.

12

Robot stability has been improved adding a tail to the robot.

When tail lowers down, robot body lifts up consequently.

When robot tries to overcome a big obstacle, lifting the frontal part of the body, it starts
falling backwards due to the gravity action: here the tail comes into game. Lowering
the tail until it reaches the terrain, the robot can find a support to prevent falling
backwards.

Due to the big result obtained by this very simple reaction, this can be considered
another case of morphological computation.[1]

Illustration 2: Climbing with Tail - Part 1

Tail

Robot body

Illustration 3: Climbing with Tail - Part 2

Ta
il

Robot body

13

The involved morphological features are :

• tail and body connection through rotation joint
• length of tail proportioned to body length
• rotational movement of tail with respect to the body

Another effect of this morphological computation is to increase the grip on terrain of
the frontal whegs, allowing the robot to pull its body up and over the obstacle.

The whegs , and all the other moving parts of robot, have been drived by servo motors.

The used servos were used in two different ways: continuous rotation mode (for the
six whegs) or position mode (for the body joint and the tail).

Another stability issue arise when robot is not balanced : if the left part of body is at
different height with respect to the right part, the robot will fall laterally.

Since robot has no lateral flexibility (it can only flect his body up and down along his
“spine”) the best way to face this problem is prevention: the robot must be able to
detect the terrain in front of itself, and then decide what to do.

If the robot detect an (almost) perfectly horizontal terrain edge in front of itself, it tries
to walk on it, otherwise it turn left or right in order to find a more suitable terrain
configuration.

Terrain detection is performed through a sensor array.

The sensors used are infrared rangefinders.

In order to better react to the current situation a 3-axis accelerometer has been
mounted in the center of robot. It is primarily used to roughly detect the robot
orientation with respect to the gravity force vector.

The central processing unit of robot is a microcontroller, hosted by a board. The
board is equipped with several connectors, allowing a limited number of connections,
so some multiplexing has been necessary to connect all the peripheral sensors.

In the first chapter of this thesis, “State of the Art” , I’ll start describing the state of the
art of wheg robots. I have classified wheg robots depending on which kind of wheg
they use, starting from the most widely used type.

In the chapter entitled “Simulations and Model Design” I’ll show you the method I
used to design the robot structure. All my decisions about design are based on

14

simulation phases, in which I test the robot model with the help of a bidimesional
simulation tool. After each simulation I analyze the behavior and the limits of the
model, improving it and then testing the new model in the next simulation. This
simulation / model-improvement sequence is repeated iteratively until the robot
model become succesful in his task.

In the following chapter “Real Robot Implementation”, as the name suggests, I’ll show
you the implementation of the real robot . This is an adaptation of the best robot
model I’ve found in the design phase, made necessary due to the fact that I couldn’t
build all the needed parts as I wanted. You’ll fine here photos of the two version of the
robot, in fact the first version has been soon modified in order to accept a different
wheg type.

In the following chapter “Hardware” you will find all information about the electronic
and electromechanical components used to build the robot.

In this section are described :

• sensors
• servomotors
• control board
• powering system

For each component I’ll list the main technical specifications, and the way I used it.

In the following chapter “Firmware” I’ll describe the main control loop of the
embedded code running on the control board. Control loop is divided in sections, each
of which acts like a behavior. Each behavior will be explained, both with words both
showing you the implemented code.

Then, in the “Software” chapter I’ll talk about the plugins developed for the Player
server [15][16], showing you the information each plugin manages. Player is a server
for robot interfacing and simulation, and has been chosen because of several reasons:
it's open source, it's quite reliable and in constant upgrade.

 I’ll show you the output data each plugin produces when connecting to it, using the
client tool playerprint.

The next chapter is called “Experiments” and I think it’s the most exciting, because you
will find there all the photos of the robot in action. I made some experiments on the
field, trying to discover the strength and the limits of the builded robot system. The
environment chosen is the more rough and wild I could find in Milano's parks. I
searched for natural terrain surfaces with strong unevenness and natural obstacles .

15

Finally I used as test fields some structured places containing interesting obstacles like
stairs.

In the final chapter , “Conclusion and Future Work” I’ll comment the results obtained,
describing the limits of the current system. Then I’ll try to give you some ideas for
eventual future work on this project.

16

Chapter 1 State of the Art

Wheg is an acronym standing for Wheel + Leg .

It’s a kind of wheel that emulates the legs behavior.

A wheg is composed by a central rotating element, to which one or more bars are
fixed. This bars works as legs.

1.1 Three Legs wheg
The typical wheg is composed by three bars, displaced at 120° one from the other,
around the central body.

Robots equipped with this wheg:

Whegs I [2]

Illustration 4: Three Legs Wheg

Illustration 5: Whegs I

http://biorobots.cwru.edu/projects/whegs/
http://biorobots.cwru.edu/projects/whegs/
http://biorobots.cwru.edu/projects/whegs/

17

Whegs II

Autonomous Whegs II [3][4]

Mini Whegs I [5]

Illustration 7: Autonomous Whegs

Illustration 8: Mini Whegs I

Illustration 6: Whegs II

http://biorobots.cwru.edu/projects/whegs/
http://biorobots.cwru.edu/projects/whegs/
http://biorobots.cwru.edu/projects/whegs/
http://biorobots.cwru.edu/projects/whegs/
http://biorobots.cwru.edu/projects/whegs/
http://biorobots.cwru.edu/projects/whegs/

18

DAGSI Whegs

Climbing Mini-Whegs™ [6][7][8][9]

Illustration 9: DAGSI Whegs

Illustration 10: Climbing Mini-Whegs

http://biorobots.cwru.edu/projects/climbing/cmwhegs/
http://biorobots.cwru.edu/projects/whegs/

19

1.2 Single Leg wheg
Wheg comes even in a simpler fashion: one leg only.

The typical robot that uses this kind of whegs has three whegs each side , for a total of
six whegs.

The single leg wheg is rapidly actuated, in order to ensure that its end ever touches the
floor, giving stable sustain to the robot.

This is the first kind of wheg ever built.

Robots equipped with this wheg:

PROLERO (1996) [10]

Illustration 11: Single Leg wheg

Illustration 12: Prolero

http://biorobots.cwru.edu/projects/whegs/

20

1.3 Curved Leg wheg
This kind of wheg has a single curved leg.

It ensures a better grip to terrain.

Same as in single leg wheg, it’s actuated with fast movements, and we can find it in
robots in a six wheg configuration (three whegs for each side of the robot).

In some robots, leg concavity is oriented in the frontal direction of robot movement, in
others in the opposite direction, as we can see in the figure below.

Robots equipped with this wheg:

Rhex (concavity towards forward movement direction) [2]

Illustration 13: Curved Leg wheg

Illustration 14: Rhex

http://en.wikipedia.org/wiki/Rhex

21

1.4 Star wheg
This is the most complex wheg ever built.

It’s a wheg that can change its shape: when it is closed it is like a standard circular
wheel, when it’s opened it has a star shape. Legs are slightly curved in order to ensure a
better grip .

This wheg has been conceived principally to climb stairs (if mounted on an
appropriately designed robot).

The star wheg allows to reach fast speeds on plain surface terrains (circular
configuration) and a good behavior on rough terrains (star configuration).

Robots equipped with this wheg: Ratasjalg [11]

Illustration 15: Star wheg

Illustration 16: Ratasjalg

https://www.etis.ee/portaal/isikuCV.aspx?PersonVID=37610&lang=et
https://www.etis.ee/portaal/isikuCV.aspx?PersonVID=37610&lang=et

22

Chapter 2 Simulations and Model Design

Before building the robot, I decided to make some simulations, in order to anticipately
detect potential design errors.

The starting design has been taken from a previous wheg robot prototype: EMBOT.

EMBOT stands for Electro-pneumatic Mobile roBOT.

This robot was conceived in order to improve the wheg locomotion system with
electro-pneumatically extensible bars. The used wheg were six three-legs-whegs,
three for each robot side.

The following simulations have been made with a shareware version of Working Model
2D. The simulated robot has been designed within the simulation tool, respecting real
mass values and dimensions of the real robot.

Since the aim is to test a wheg-robot in a rough terrain environment, in order to
understand the robot’s limit of movement , has been designed an hard obstacle: a stair.
The difficulty of climbing over such an obstacle is due to the long sequence of single
steps, each of which is not so hard to be climbed, but the whole sequence is really
problematic for the robot.

The purpose was not to build a stair-climbing robot but, designing a robot capable of
climbing over a stair, the final real robot surely it would have been able to move
flawlessly on a very rough terrain.

Another recent work on the topic of climbing over obstacles in mobile robotics has been
made by Hyungseok Kim, Taehun Kang, Vo Gia Loc and Hyouk Ryeol Choi [17].

Illustration 17: EMBOT

23

2.1 First simulation
This is the first simulation and, as we can see from the images, the robot is too short to
climb over obstacles even smaller than itself.

At the beginning Embot climbs over the first step succesfully.

Even here the robo is able to go on.

Here its center of mass has been moved too much to the right: Embot starts falling
backward.

Illustration 20: First Simulation - Falling 1

Illustration 19: First Simulation - Step 2

Illustration 18: First Simulation - Step 1

24

Due to the high motum quantity reached, Embot is unable to invert the march
direction, and continue falling down the stairs..

..until it reaches the ground.

We can easily understand the reason of this failure: Embot is too short to overcome
obstacles that are smaller than itself.

I modified its model increasing the robot body length of about five centimeters.

2.2 Longer body, better results
First step succesfully climbed over.

Illustration 23: Second Simulation - Step 1

Illustration 22: First Simulation - Falling 3

Illustration 21: First Simulation - Falling 2

25

Embot easily reaches the last step.

Simply extending of a very small quantity the robot body has made possible for Embot
to overcome flawlessly each single step of the stairs.

But, as we know, steps are smaller than the robot, and we want it to be able to climb
over obstacles bigger than itself.

In the next simulation we will see what happens with bigger obstacles.

2.3 Obstacles big like robot
Embot starts climbing over the first step...

Illustration 26: Third Simulation - Falling

Illustration 25: Third Simulation - Step 1

Illustration 24: Second Simulation – Last Step

26

Despite its longer body, the robot is unable to climb over the step.

This happens because it has no support in the back: when the back wheg (we see only
one back wheg because of the 2D simulation) rotates, the mechanical support of the
servomotor is the robot chassis, which starts rotating clockwise, making the robot
falling backwards. The solution to this problem is to avoid the chassis rotation.

How to avoid the chassis rotation? A simple approach is to add a fixed link in the back ,
such a kind of tail, so that when the chassis starts rotating clockwise , the tail will touch
the ground surface blocking the rotation.

The next robot design was conceived thinking to all this issues we have seen in these
simulations.

In order to give more grip on the terrain , another wheg has been added to the
bidimensional model, so that the real wheg would have had a total of six whegs.

In the next simulation we’ll see this new concept model at work.

2.4 New model

Model changes:

• New central wheg
• New link added to body
• Joint in the body center
• Tail added to the back

Illustration 27: Third Simulation - Robot Failed

27

• Wheg foot design improved to give better grip

Note: in this setting the tail has been fixed to the last servomotor, so that when it starts
rotating, all the rotating force is transmitted to the tail, which consequently transimits it
to the ground, giving stable support to the robot .

We can see the forces vectors in the simulation (red arrows)

The stair-climbing task simulation has been abandoned in favor of a more real-like
simulation. I modeled a very rough surface , full of high spikes and pits.

As we can see , the robot is able to walk on very rough surface terrain.

He goes on even in presence of high surface spikes, thing that would have been not
possible for the previous robot model. This better behavior is principally due to the
new central wheg added to the model, and to the slight body flexibility, due to the
action of a spring and a damper in the body center.

Thanks to the tail action, robot never falls on his back.

Illustration 29: 4-th Simulation - Success

Illustration 28: 4-th Simulation - Start

28

Chapter 3 Real Robot Implementation

The first real robot design has been based on the model design obtained from the
results of the previous simulations.

The key features are:

• tail
• 3 whegs each side
• central body joint

Since the Embot structure was too different from this new model, I and the prof. Gini
thinked to build a new robot from scratch.

Using some plastic parts contained in Bioloid Basic Kit (produced by Robotis) I’ve
built all the structure. This parts integrate perfectly with the Dynamixel servos.

On the first attempt, I ended up with this:

Illustration 30: Structural parts from BIOLOID Robotis KIT

Illustration 31: First Robot Implementation – Photo 1

29

As we can see, the robot had been equipped with a new type of wheg.

We call it: Two Legs Wheg.
At the end of each feet has been fixed a piece of rubber, in order to obtain more grip on
terrain.

This robot design had some problems:

• The two-leg-whegs caused the robot to fall during the climbing phase.
• Whegs material was plastic: too easily breakable.
• Legs where too short

So the next step of my work was to change the whegs with bigger and stronger ones,
and of another type.

I ended up with classic three-legs-whegs.

I thinked to equip this wheg with the best feet I could build, in order to give more grip
on terrain:

This wheg was conceived to be cutted from a single plexiglass sheet.

Illustration 33: New Wheg Model with New
Feet

Illustration 32: First Robot Implementation - Photo 2

30

The complete design is shown in the next figure:

Unfortunately, plexiglass was too weak for the purpose, so I changed material again. I
chosen aluminium, because stronger and lighter.
Since I could not find any aluminium sheet at affordable price, I decided to abandon the
idea of cutting the wheg from a single sheet.

I found some aluminum bars in a brico-center, and then assembled them with nuts and
bolts:

At the end of each bar, I fixed a car-carpet rubber to be used as a feet.

Illustration 34: New Wheg - Complete Design

Rubber

Plexiglass

Illustration 35: Builded Wheg

31

Due to the bigger dimension of this wheg, the whole robot had been changed in size.

Whegs have been spaced apart from each other horizontally , in order to prevent self
collisions during wheg rotation.

The robot’s has been increased in size to permit a stabler equilibrium (robot grew in
height, and this caused an elevation of the robot’s center of mass).

I’ve modeled some aluminium bars through flame shaping, and then I added them to
the robot frame.

One bar has been putted between the central part of structure and the frontal whegs.

Another aluminium bar has been putted between the sensor-bar and the frontal whegs.
The last bar assolves the same function of the neck of humans and animals.

Another element to increase in size has been the tail: the bigger size of body structure
imposed the adoption of a longer tail in order to prevent the robot falling backward.

The final robot, I called LionHell McMillan, is shown in the following photos:

Illustration 36: Aluminum
support bar

Illustration 37: Aluminium
Neck

32

Illustration 38: Final Robot - LionHell McMillan - Photo 1

Illustration 39: Final Robot - LionHell McMillan - Photo 2

33

Illustration 40: Final Robot - LionHell McMillan - Photo 3

Illustration 41: Final Robot - LionHell McMillan - Photo 4

34

Chapter 4 Hardware

In this section all the hardware components will be illustrated, excluding structure
because it was yet discussed in the previous chapters.

4.1 Servomotors

In this robot the servomotors are the only actuators.
These servos have been taken from a Robotics kit called Bioloid, commercialized by
Robotis.

The servomotor model is Dynamixel AX-12.

Dynamixel servos are very versatile, quite strong and can be used in two modes:

• Continuous Rotation mode
• Position mode

The only limit of these servos causing some problem in this work is a 60° dead-band .

When motor shaft falls in this range, position is not retrievable from the internal
potentiometer . This was a problem in continuous rotation mode, because I could not
control the servo position in that range. This limit avoided me to synchronize all the six
whegs to obtain a perfect control in climbing over obstacles. In fact I ended up with a
simple open-loop motor control.

The other 3 servos were used in Position Mode: Two servos for the joint in the center
of robot One servo for the tail

Illustration 42:
Servomotor - Dynamixel
AX-12

Table 1: Servomotor - Dynamixel AX-12

35

In this case the dead band did not cause any problem, because a 180° movement was
sufficient for the purpose.

I had to use two servos for the body joint, because of the high torque needed to move
the head and the frontal pair of whegs.

At a first time I tried to use one servo, but it was subject to overheating, until it burned.

Using two servos in parallel, mechanically coupled, permitted a perfect control of the
joint, without overheating.

4.2 Control Board
The central processing unit used is a CM-510.

It’s a development board producted by Robotis, and its fully compatible with
Dynamixel AX-12 servos.

CM - 510
Weight 51.3g

Controller ATMega2561

Working Voltage • Allowed Range : 6.5V ~ 15V

• Recommended Voltage : 11.1V (Li-PO 3cell)

Consumed Current • When IDLE : 50mA

• External I/O Maximum Current : 0.9A

• Total Maximum Current : 10A (Fuse)

Table 2: Control Board – CM-510

Illustration 43: Control Board - CM-510

36

This board is featured with standard Dynamixel ports, plus 6 other general purpose
ports.

Each general purpose port is featured with 4 usable pins:

• Ground
• Power (5V)
• Digital I/O
• Analogue Input (0V– 5V)

I used these ports to connect all peripheral sensors.

Since I had too many sensors for the available ports, I had to built two multiplexer
boards:

• One board to multiplex 4 rangefinders
• One board to multiple 3-axis accelerometer

The boards inputs have not been fully used, so there are available channels for an
eventual future use.

4.3 Sensors
The most critical aspects of perception in this robot are: Terrain sensing.

• Robot inclination with respect to gravity force vector.

Illustration 45: Rangefinders
Multiplexer Board

Illustration 44: Accelerometer Multiplexer
Board

37

4.3.1 Infrared Rangefinders
Terrain need to be analyzed in order to know if it's possible to walk over it or less.

If the terrain roughness is high, it is avoided: the robot turns left or right searching for a
better path.

The key concept adopted to detect if a terrain is too rough is this: robot needs a planar
surface in order to climb over it without possibility of falling.

In order to understand if terrain is planar, some IR rangefinders have been used.

This sensors are produced by SHARP, and the model is GP2D120X.

Main specifications GP2D120X

Measuring distance range 3 - 40 cm

Output terminal voltage 0.25 – 0.55

Average supply current 33 - 50 mA

Operating supply voltage 4.5 – 5.5 V

Table 3: Rangefinder - Sharp GP2D120X
The output distance characteristics of sensor is shown in the picture below.

As we can see , the characteristic is not linear.

In order to take correct distances (in
cm) from the sampled values, I
wrote a lookup table with 17 values
and the corresponding tension value
(represented as number)
unsigned short sharp_calib[17][2] =

{
{63,40},

{71,35},

{85,30},

{106,25},

{132,20},

{153,18},

{165,16},

{192,14},

{214,12},

{257,10},

{286,9},

{319,8},

{360,7},

{415,6},

{480,5},

{562,4},

{613,3}

}

A
na

lo
g

vo
lta

ge
 o

ut
pu

t [
V

]

Illustration 46:
Rangefinder -
Sharp
GP2D120X

Illustration 47: Rangefinder Characteristic

Distance to reflective object [cm]

38

The C function (used in the firmware code):

float readSharp_cm(unsigned char addr) interpolates the values in the lookup
table, converting the tension value to distance in centimeters.

Four rangefinders are disposed onto a bar horizontally fixed on the head of the robot.

Three of these sensors point straight towards the terrain in front of robot, analyzing
terrain’s surface by sensing the distance from bar in three different points.

One sensor points in the march direction and is used to detect obstacles.

The sensors are disposed in this way:

• two in the center of the bar (one pointing down, one pointing forward)
• on in the left limit of the bar (pointing down)
• one in the right limit of the bar (pointing down)

Robot takes samples from all three sensors, and then compares them: If the distances are
all the same (with a little tolerance), terrain is walkable. If the difference between right
and center distances is high, robot turns slightly right If the difference between left and
center distances is high, robot turns slightly left

Before using this approach, I tried to take distances with a single sensor turret, actuated
by another Dynamixel servo, but this solution has revealed to be too slow and power
consuming, and was abandoned.

As said before in the Introduction of this thesis, this sensor-bar has been conceived
thinking at the embodiment concept: it moves with the robot body, giving
automatically the sensors the best point of view (in order to have a good perception of
terrain and obstacles) automatically. Sensor-bar position and orientation change
according to the body configuration, which in turn changes according to the interaction
with the environment.

Illustration 48: Sensor Bar

39

4.3.2 3-axis Accelerometer

In order to know the robot inclination with respect to gravity force vector, a 3-axis
accelerometer has been used.

This sensor is produced by Freescale Semiconductor and the model is MMA7361 .

MMA7361

Low Voltage Operation 2.2 V – 3.6 V

High Sensitivity 800 mV/g @ 1.5g

Selectable Sensitivity (±1.5g, ±6g)

Low Current Comsumption 400 µA

Table 4: Accelerometer - MMA7361

I bought a ready to use “breakout-board” with sensor yet mounted on: you can see it in
the photo above.

In this application the selected sensitivity is ±1.5g

It has been mounted on the chassis, the most possible near to the center of mass of
robot.

The robot center changes as the central joint moves, so a perfect positioning of the
accelerometer has not been possible, but this was not a problem.

The accelerometer orientation is:

• x axis points towards robot forward sense of march, horizontally with respect to
floor

• y axis is disposed horizontally with respect to floor, pointing to the left of robot
• z axis exactly in vertical position, pointing against gravity force vector.

The convention I used is to consider each axis in standard orientation when it is parallel

Illustration 49:
Accelerometer -
MMA7361

40

to the floor.

For each axis, the implemented controller computes the displacement_angle from
standard orientation.

The method used to determine this displacement_angle is very simple: Each of three
channels values are normalized with respect to the gravity force When robot is in
standard position, values are 0 for y,x channels, 1 (100% gravity force) for the z
channel.

1. The orientation of each axis is computed as:
displacement_angle = arcsin(channel_value_N)

where channel_value_N is channel value normalized to gravity module.

I’ll explain this: each channel value is equal to cosin(gamma), where gamma is the
angle between the axis and the gravity vector.

channel_value = g * cosin(gamma)
but we want to know the normalized value , so channel_value_N = channel_value /

g = cosin(gamma)

The standard position is 90° wrt gravity vector, so the displacement_angle, we call it
delta, is:

delta = 90° - gamma
so

gamma = 90° - delta
so

channel_value_N = cosin(90° - delta)

Knowing that

sin(delta) = cosin(90° - delta)
we can say

channel_value_N = sin(delta)
and finally

displacement_angle = delta = arcsin(channel_value_N)

41

4.4 Power

Robot has been powered by AC-DC transformer during the development phase.

The transformer I used has this specifications: Output Voltage 12V

• Max current 5A max

When the robot development has been completed, robot has been equipped with a 2
cells lithium polymer battery.

Battery specifications:

• Output Voltage 7.5V
• Battery capacity 2500 mAh

Due to the lower tension of battery with respect to transformer, servo’s speed has been
slightly increased in order to ensure a sufficient torque.

Illustration 50: AC-DC Transformer

Illustration 51: Li-PO Battery

42

Chapter 5 Firmware

The implemented firmware was initially conceived to be the only program to control the
robot.

After some testing, the used microcontroller has revealed to be too less powerful in
order to obtain an acceptable loop speed and a sufficiently complex computational
capability. A complex control like motion planning needs a more performant
computational system.

I decided to mantain a fast reactive behavior based control in the main loop, adding a
serial communication phase in order to allow data exchange with external control
hardware, like a PC. A deep analysis of the behavior based control in mobile robotics
can be found in a recent work from L. De Silva and H. Ekanayake [18]: they discuss
several behavior control paradigms, including the subsumption.

In remote control applications, a simple control like this will act as a cerebellum,
assisting the remote user in the motion control. A recent work on this topic has been
made by Shigang cui, Zhengguang lian, Li zhao, Zhigang bing, Hongda chen [19].

They discuss several behavior control paradigms, including the subsumption.

The implemented loop resulted to be very fast, and sufficient to manage the most
critical behaviors, like falling prevention and obstacle climbing.

The main control loop consists of this macro blocks:

• Read and Communicate Sensors Data

• Set Speed According to Body Inclination

• Main Behaviors

◦ Jump Down Behavior

◦ Terrain Check Behavior

◦ Approaching Obstacle Behavior

◦ Adapt to Floor Behavior

• Walking Actions

◦ Go Backward

◦ Turn Left

◦ Turn Right

◦ Restart Walking

43

◦ Stop Walking

• Tail Control Section

◦ Tail Behaviors Manager

◦ Tail Behavior 1: Avoiding Falling Backward

◦ Tail Behavior 2: Climbing

5.1 Read and Communicate Sensors Data

The first thing to do in the main loop is reading sensors, and communicating them to the
eventual external hardware through the serial-usb link.

5.1.1 Reading Sensors
This is done using this funcion:

• void readAllSensors(Sensors *s);
It reads all sensors data saving them into a Sensors structure.

The above function calls a specific read function for each sensor:

• float readSharp_cm(unsigned char addr);
It reads the value of Sharp sensor mapped at address addr and convert it to distance
in centimeters.

Each address indicates a channel on the distance sensors multiplexer.

• float readAccDeg(unsigned char addr);
It reads the angle value from the Accelerometer Channel at address addr, and
converts it to degrees.

Each address indicates a channel on the accelerometer multiplexer, and each
multiplexer channel correspond to a single channel on the accelerometer.

Accelerometer, as seen before, has 3 channels, one for each axis.

44

5.1.2 Communicating sensor data

The communication is performed through a serial link in asynchronous mode, at a
baudarate of 57600 bps.

The serial format is 8bit, no parity, 1 stop bit.

The data format is the following:

FC <FC>\tGC <GC>\tGL <GL>\tGR <GR>\tZ <Z>\tX <X>\tY <Y>\tAD <AD>\tTD
<TD>\n

and this is the meaning of the tags:

<FC> : Distance in cm from Central Front Sensor

<GC> : Distance [cm] from Central Ground Sensor

<GL> : Distance [cm] from Left Ground Sensor

<GR> : Distance [cm] from Rigth Ground Sensor

 <Z> : Normalized [adim] value from Z axis Channel on Accelerometer

 <X> : Normalized [adim] value from X axis Channel on Accelerometer

 <Y> : Normalized [adim] value from Y axis Channel on Accelerometer

<AD> : Abdomen Inclination angle [deg] with respect to the robot body

<TD> : Tail Inclination angle [deg] with respect to the robot body

This data is intended to be read from the serial-usb interface using a sscanf function
implemented in any programming language.

All transmitted values are integers (%d in C, C++ format).

This is the output we get connecting to it :
...
FC 39 GC 17 GL 19 GR 19 Z 932 X -24 Y 43 AD -34 TD -37

FC 39 GC 16 GL 18 GR 18 Z 1000 X 48 Y 92 AD -34 TD -37

FC 39 GC 15 GL 18 GR 19 Z 1000 X 54 Y 37 AD -34 TD -37

...

5.2 Set Speed According to Body Inclination

45

In order to adapt the servomotors torque to the current ground surface, the robot must
increase their speed according to the vertical inclination of the robot body.

If the inclination value is high and positive, the robot is walking uphill, so the torque
must be increased.

The following instruction sets the nominal speed for all whegs servos: dnspeed
(Desidered Nominal Speed) :

dnspeed = (600 + 4 *sensors.body_inclination_xg);

Dynamixel servos accept a speed value from 0 to 1023.

Here we set 600 as base-speed, then adding a variation proportional to inclination.

If the inclination is negative (robot walking downhill) the added variation will be
negative, ending up with a speed value smaller than base-speed.

5.3 Main Behaviors

This behaviors determine the commands that will be sent to the whegs in the following
Walking Actions section.

All this behaviors are exclusive, and they have descending priority, so that the first has
the high one and the last has the lower one.

Each behavior has a trigger event that I call “situation”.

Before going to process the behaviors, some data must be prepared.

float ld = abs((int)(sensors.distance_floor_left –
sensors.distance_floor_center));

float rd = abs((int)(sensors.distance_floor_right –
sensors.distance_floor_center));

The above two instructions compute two difference values: ld : Left Difference

This is the difference value between the left terrain distance sensor and the

46

center terrain distance sensor
• rd : Right Difference

This is the difference value between the right terrain distance sensor and the
center terrain distance sensor.

This difference values will be used within the following behaviors in order to detect the
current situation.

5.3.1 Jump Down Behavior

Situation 1: Robot’s head is facing floor with an abdomen inclination inferior to -45 °
with respect to gravity force vector AND distance from floor along the view axis is
less than 30 cm.

In this situation the robot will probably crash his head to the floor if it doesn’t lift it
instantly, so the first command is to stop walking.

This situation requires that the distance from floor is less than 30 cm, so that the robot
could “jump” toward floor without destroying itself.

Behavior 1 : Then the robot lift up the abdomen until it exits from this situation.

if (sensors.abdomen_inclination_g < -45 && sensors.distance_front_center < 30){

stop(); //STOP ROBOT

while(sensors.abdomen_inclination_g < -45 &&

sensors.distance_front_center < 30)

 {
//LIFT ABDOMEN

dpAbd = dpAbd + 1;

setAbdomenDeg(dpAbd, 1000);//Lift

sensors.abdomen_inclination_g = getAbdomenDegG();

sensors.distance_front_center = readSharp_cm(4);

}

}

5.3.2 Terrain Check Behavior

47

This behaviors uses the Left Difference (ld) and Right Difference (rd) described before
in chapter 5.3.

Situation 2: Left Difference or Right Difference is greater than 8 cm.

This means that terrain is not uniform.

Behavior 2 : turn where the difference is smaller.

if(ld > 8 || rd > 8)

{
if (ld >= rd) {turnR = 1; turnL=0;}

if (ld < rd) {turnL = 1; turnR=0;}

}

5.3.3 Approaching Obstacle Behavior
Situation 3 : There is an obstacle near in front of the robot in central position.

Obstacle is considered near if distance is less than 15 cm.

Behavior 3 : climb over the osbtacle.

The sequence of actions to perform is :

1. stop walking

2. lift head (abdomen) until obstacle diappears and abdomen inclination doesn't

exceed 80°. This limit has been imposed in order to avoid vain climbing efforts

on almost perpendicular walls.

if (sensors.distance_front_center < 15)

{
stop();

while(sensors.distance_front_center < 15 && sensors.abdomen_inclination < 80)

{
if (dpAbd > 80)dpAbd = 80; //Upper Bound setAbdomenDeg(dpAbd, 200);//Lift up
abdomen sensors.distance_front_center = readSharp_cm(4); //read distance

}
}

5.3.4 Adapt to Floor Behavior

Situation 4 : Distance from floor is greater than 23 cm

48

This happens when the abdomen is too high, or when robot approaches a descent .

In order to have a good sensing of the terrain the sensors array should point the floor
perpendiculary (and so abdomen should be parallel to terrain).

Due to the geometry of robot (his height is about 23 cm), lowering abdomen until it's 23
cm distant from floor will put it parallel to floor surface.

Behavior 4 : Lower the abdomen until distance from floor is less than 23 cm.

if(sensors.distance_floor_center > 23){ // Floor too distant ..

stop(); //stop walking

while(sensors.distance_floor_center > 23 && sensors.abdomen_inclination > -75)

{
dpAbd = dpAbd – 1; // Lower down Abdomen

if (dpAbd < -75)dpAbd = -75; // Limit value

setAbdomenDeg(dpAbd, 200);//send command to servomotor

sensors.distance_floor_center = readSharp_cm(6);

}
}

5.4 Walking Actions

The purpose of this section is to send commands to servomotors, in order to perform the
movements requested by the previous behaviors section.

The first instruction of this section is a control statement that checks if the robot should
be walking or not.

This is accomplished by reading the value of a condition variable called walking.
This condition variable is set within the previous behaviors section.

if (walking==1)

{
…

}

The other condition variables used to control this section are:

49

TurnL //Turn Left

turnR //Turn Right

5.4.1 Go Backward

The way behaviors inform this section that the robot must bo backward is just
enabling both turn condition variables : turnL and turnR.

If(turnL && turnR)

{
int i ;

for (i=0;i<3;i++){//Go Back

dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 1424);
dxl_write_word(whegs_dx[i], P_MOVING_SPEED_L, 400);

_delay_ms(20000);//Mantain behavior

//Disable behavior..

turnL = 0;

turnR = 0;

 }
}

5.4.2 Turn Left

Turning Left is accomplished by going backward with the left train of whegs, keeping
still the right one.

Behavior is mantained for a while, and then condition variable are cleared.

if(turnL)

{
int i ;

for (i=0;i<3;i++) //iterate on all servos {

dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 1424);
dxl_write_word(whegs_dx[i], P_MOVING_SPEED_L, 0);

50

_delay_ms(20000);//Mantain behavior

//Disable behavior..

turnL = 0;

turnR = 0;

 }
}

5.4.3 Turn Right

Same as Turn Left.

if(turnR){

int i ;

for (i=0;i<3;i++){

//dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 400);
dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 0);
dxl_write_word(whegs_dx[i], P_MOVING_SPEED_L, 400);

_delay_ms(20000);//Mantain behavior

//Disable behavior..

turnL = 0;

turnR = 0;

}
}

5.4.4 Restart Walking

This section is needed to make the robot restart walking in two cases:

• it was stopped before

• it was turning

if (!(turnL + turnR)){//If not turning go_fwd();//Go forward

}

5.4.5 Stop Walking

If the walking condition variable is not set, the robot just stops walking.

If (walking==1)

{

51

…
}

else

{
stop(); //Stop Walking

}

5.5 Tail Control Section

In this section we control the tail, in order to help robot to accomplish some tasks.

This part is located after the Walking Actions section, because it do not modifies any
walking control variable.

5.5.1 Tail Behaviors Manager

This section acts like a behavior manager, it mantains a behavior until it accomplishes
its task.

It checks if tails has reached (with little toelrance) the desidered position and, in positive
case, it disables the torque on tail servomotor.

Then it disables all tail behaviors by clearing dpTail control variable.

// Check if desidered Tail position (if it was set) has been reached

if(dpTail != -1 && abs((int)dpTail - (int)pTail) < 50)

{
dxl_write_word(1, P_TORQUE_ENABLE, 0);

 //Disable Torsion Servo

// Needed to shut off tail behaviors //activated in previous loop cycle

dpTail = -1; //disable desidered Tail position

}

5.5.2 Tail Behavior 1: Avoiding Falling Backward

Situation 5 :

• Tail is high
• Abdomen isn't high
• Body is tilted up more than 45° with respect to gravity vector

52

In this situation the robot is likely to fall backward, so robot body must be put in a less
dangerous configuration.

Behavior 5 : Lower the tail until it’s about in line with body (horizontal position)

Putting tail in line with body makes the back of the robot to lift up.

In this way robot’s center of mass is moved forward, towards the central position,
putting the whole body in a safer position.

if (parallel && pTail < 300 && // Tail is high

getAbdomenDeg() >-10 && // Abdomen isn’t high

readAccDeg(1) > 45) // Body is tilted up more than 45 deg wrt g

{
//avoid falling backwards

dpTail = 500;

dxl_write_word(1, P_GOAL_POSITION_L, dpTail); dxl_write_word(1, P_MOVING_SPEED_L,
210);

}

5.5.3 Tail Behavior 2: Climbing

Situation 6 :

• Tail is slightly up
• Abdomen is slightly low
• Body is tilted up more than 45° with respect to gravity vector

In this situation, robot's body is very tilted up, and abdomen is slightly tilted down.

This means that robot is climbing over an obstacle.

Behavior 6 : Lower the Tail until it’s quite off from horizontal position.

If the tail is slightly upper than the horizontal position, it should be lowered down, in
order to help robot in the climbing task.

Lowering tail helps because in this way the robot’s back is lifted up, and this moves
the center of mass forward, causing the frontal whegs to exert a greater pressure on
terrain.

Great pressure on terrain ensures more grip, and so robot can easily bring its body
forward, accomplishing the climbing task.

53

 if (parallel && pTail < 450 && // Tail is slightly up

getAbdomenDeg() < -20 && // Abdomen is slightly low

readAccDeg(1) > 60) // Body is tilted up more than 60 deg wrt g

{ //climb

dpTail = 712;

dxl_write_word(1, P_GOAL_POSITION_L, dpTail); dxl_write_word(1,
P_MOVING_SPEED_L, 210);

}

5.6 Flow Chart

54

Illustration 52: Firmware - Main Control Loop Flow Chart

55

Chapter 6 Software

As said before, three plugins for the Player framework [15][16] have been implemented.

6.1 Player framework

Player is as server, and can interact with other software thru tcp/ip.

The host on which Player is installed is often located on the robot itself.

Other times , due to space and weight constraints, this host is not integrated into the
robot, but runs on an external machine, connected to the robot in some way.

The Player server offers several interfaces to external programs that connects to it.

When an external program connects to the Player server, it subscribes to all interfaces
it needs.

Each interface is bound to a driver.
Each driver is implemented into a plugin.

6.2 Serial Connection

Due to the small robot dimensions, I decided to run Player on an external pc, connected
to the robot through serial-usb cable.

The current cabled connection system can be replaced in the future with a zigbee
radio serial connection.

6.3 Three Plugins

The three implemented plugins are intended to be used on a linux environment, but only
small modifications should be needed in order to adapt the code to other systems like

56

windows or osx.

These plugins have been implemented as standard dynamic linux libraries.

The programming language adopted is C++.

These plugins retrieve information from robot through usb-serial link, and then
publish it into the Player framework, making it available to all eventual subscribers.

Players plugins can support several types of messages.

Current version of implemented plugins supports only this type of message:

PLAYER_MSGTYPE_DATA :

A data message.
Such messages are asynchronously published from devices, and are usually used to
reflect some part of the device’s state.

6.3.1 Position plugin

This plugin implements the position3d interface.

Position3d is a Player interface conceived to inform subscribers about the current
position of robot in three dimension.

There is also a position2d interface, but I decided to use the 3d one because LionHell is
intended to walk on very rough rurfaces, and the tridimensionality of environment is
an important aspect.

The plugin is implemented into a library called: libplayerLionHell_pos.so

Current version is only a partial implementation.

In order to determine the robot position some addtional sensors are needed, like
gyroscope or GPS.

The currently used accelerometer alone is not sufficient to localize the robot.

The output produced by this plugin, obtained connecting to it with the client tool

57

playerprint (provided by the Player project) , is this:

#Position3d (30:0)

#X Y Z Roll Pitch Yaw

Pos: 0 0 0 0 0 0

Vel: 0 0 0 0 0 0

6.3.2 Ranger Plugin

This plugin implements the ranger interface.

Ranger is a Player interface conceived to inform subscribers about the current distance
values of one or more rangefinders mounted on a robot.

The plugin is implemented into a library called: libplayerLionHell_ranger.so

This interface provides even other information relative to each mounted rangefinder
sensor:

• geometry of sensor.
• position of sensor.
• orientation of sensor.
• configuration of sensor

The current version of plugin supports the following information: ranger values
• geometry
• position
• orientation

Plugin output is this:

#Ranger (62:0)

Device pose: (0.296845, 0, -0.0188897), (0, -42, 0) Device size: (0.015, 0.045, 0.013)

Configuration:

Minimum angle: 0 Maximum angle: 0 Angular resolution: 0 Minimum range: 0
Maximum range: 0Range resolution: 0 Scanning frequency: 0

4 range readings:

[32, 14, 15, 17]

58

6.3.3 Robot Plugin

This plugin is a wrapper to the other two plugins, and its purpose is to group all
plugins into one, permitting an easy way to acces all robot functionalities from the
Player server.

The interfaces offered by this plugins are:

• position3d
• ranger

The plugin is implemented into a library called: libplayerLionHell_robot.so

The output is the same of the other two plugins.

As we can see in the Software Code section in the Appendix C of this thesis, this plugin
connects to the other two, retrieving information continuously and publishing it to all
the eventual subscribers.

59

Chapter 7 Experiments

In this section I'll show you the robot behavior indoor and outdoor.

7.1 Walking upstairs indoor

Illustration 53: Experiment 1 - Walking Upstairs indoor - pt1

60

In the stair-climbing task, five behaviors acts iteratively: Approaching Obstacle, Adapt
to Floor, Climb and Avoid Falling Backwards

7.2 Overcoming a big obstacle indoor

Active behavior: Approaching Obstacle

Active behavior: Adapt to Floor

Illustration 56: Experiment 2 - Overcoming a big obstacle indoor - pt2

Illustration 55: Experiment 2 - Overcoming a big obstacle indoor - pt1

Illustration 54: Experiment 1 - Walking Upstairs indoor - pt2

61

Active Behavior: Climb

Active behavior: Jump Down

Illustration 59: Experiment 2 - Overcoming a big obstacle indoor - pt5

Illustration 58: Experiment 2 - Overcoming a big obstacle indoor - pt4

Illustration 57: Experiment 2 - Overcoming a big obstacle indoor - pt3

62

7.3 Climbing over a big obstacle outdoor

Here the active behavior is Approaching Obstacle

Abdomen is lowered due to the Adapt to Floor behavior, in order to touch the obstacle
surface with frontal whegs, and tail is lifted up by the Climb behavior.

Illustration 62: Experiment 3 - Climbing over a big obstacle outdoor - pt3

Illustration 61: Experiment 3 - Climbing over a big obstacle outdoor - pt2

Illustration 60: Experiment 3 - Climbing over a big obstacle outdoor - pt1

63

7.4 Overcoming a small obstacle outdoor

Robot slightly lower down the abdomen due to the Adapt to Floor behavior.

In the last part of this experiment the robot lift slightly up its abdomen, due to the Adapt
to Floor behavior.

Illustration 64: Experiment 4 - Overcoming a small obstacle outdoor - pt2

Illustration 63: Experiment 4 - Overcoming a small obstacle outdoor - pt1

64

7.5 Walking up stairs outdoor

Behaviors: Approaching Obstacle, Adapt to Floor, Climb, Avoid Falling Backwards
Illustration 65: Experiment 5 - Walking up stairs outdoor

65

7.6 Walking down obstacle outdoor

Robot flex its abdomen down during the first part of the descent: this is due to the
Adapt to Floor behavior (figure above).

In the second part of the descent robot lifts up its abdomen: it's hard to understand the
involved behavior. It could be both Adapt to Floor both Approaching Obstacle.(figure
above)

Illustration 68: Experiment 6 - Walking down obstacle outdoor - pt3

Illustration 67: Experiment 6 - Walking down obstacle outdoor - pt2

Illustration 66: Experiment 6 - Walking down obstacle outdoor - pt1

66

7.7 Walking uphill outdoor

Robot reaches the top of the small hill . No behaviors have been activated.

Illustration 69: Experiment 7 - Walking uphill outdoor

67

7.8 Walking on rough terrain

Please note the surface unevenness: it acts as an obstacle. Robot is able to overcome it.
Behaviors involved: first Approaching Obstacle and then Adapt to floor.

Illustration 71: Experiment 8 - Walking on rough terrain - pt2

Illustration 70: Experiment 8 - Walking on rough terrain - pt1

68

7.9 Walking on natural terrain

Robot walks without any problem.

Illustration 72: Experiment 9 - Walking on natural terrain

69

7.10 Walking on wild terrain

Illustration 73: Experiment 10 - Walking on wild terrain - pt1

70

Robot walks without any problems for a while, then, in this frame, the robot is
completely stuck. Wheg system has problems in these kind of surfaces: due to the
rotational movement, legs easily get entagled in the weed.

Illustration 74: Experiment 10 - Walking on wild terrain - pt2

71

Chapter 8 Conclusions and Future Work

The designed and implemented robot structure is able to overcome several types of
obstacles, which can be found on rough terrain environments.

The developed system, based on morphological computation [1], permits robot to
adapt to terrain using tail and body joint.

The new locomotion system , called wheg, has several benefits with respect to wheels
or legs.
Whegs are poor on rough terrain, but very easy to control.
Legs are highly adaptive to terrain, but they need too much control complexity, and
need more then one actuators.
Whegs combine both of these features into a single component that's easy to build and
to control.

The new wheg-robot model developed has more degrees of freedom than the previous
wheg robots [2][3][4][5][6][7][8][9][10][11], it's the wheg robot with more sensors on
board and this is the first wheg robot using both tail both body-joint features.
In other wheg robots only one of these features at time has been adopted, but never both
simultaneously.
On the Ratasjalg robot only the tail has been used , and it's not actuated [11].
In Whegs II , in Climbing-miniwhegs B31 and in Climbing-miniwhegs B00 [9] , only
body joint has been used.

The task of overcoming big obstacles is accomplished with minimal control
complexity.

The current robot control does not permit a perfect management in all situations, and
this is due to the limited elaboration complexity of sensor data, other than the limited
number of sensors used.

The specific limit is the poor terrain perception that makes hard for robot to choose a
safe path to walk on.

Another aspect to be improved is robot stability: using orientation data (with respect to
gravity) from accelerometer, a short-range path planning algorithm focused on robot
stability can be developed.

72

Using the Player framework it is possible to develop a more complex control system
capable of managing a broader set of situations [15][16].
Future work can extend the implementation of Player’s plugin, in order to develop a
control system on a higher level of abstraction.

Another possibility is to develop swarm applications: the used servomotors could be
easily replaced with cheaper models (digital or analog servomotors with continuous
rotation feature) , ending up with a low cost wheg robot and permitting to build a fleet
of robots at a small price.

Recent studies have been made on swarm applications in rough terrain environments
[20][21].

73

Bibliography
1 Pfeifer, R. and Hoffmann M., Embodiment, morphological computation,

and robot body schemas,(Zurich, 2010)

2 Quinn, R. D. Nelson, G.M., Bachmann, R.J., Kingsley, D.A., Offi, J. And
Ritzmann, R. E., Insect Designs for Improved Robot Mobility.,In Proc. Of
Climbing and Walking Robots Conference (CLAWAR01)(Germany, 2001)

3 Lewinger, W.A., C.M. Harley, R.E. Ritzmann, M.S. Branicky, and R.D.
Quinn, Insect-like Antennal Sensing for Climbing and Tunneling Behavior
in a Biologically-inspired Mobile Robot., IEEE International Conference on
Robotics and Automation (ICRA’05) Proceedings(Barcelona, Spain, 2005)

4 Lewinger, W.A., M.S. Watson, and R.D. Quinn, Obstacle Avoidance
Behavior for a Biologically-Inspired Mobile Robot Using Binaural
Ultrasonic Sensors,(Beijing, China,)

5 Jeremy M. Morrey, Bram Lambrecht, Andrew D. Horchler, Roy E.
Ritzmann, Roger D. Quinn, Highly Mobile and Robust Small Quadruped
Robots,(Cleveland, Ohio, U.S.A.,)

6 Daltorio K.A., Horchler A.D., Gorb S., Ritzmann R.E. And Quinn R.D. , A
Small Wall-Walking Robot with Compliant, Adhesive Feet,Int. Conf. On
Intelligent Robots and Systems (IROS ‘05)(Edmonton, Canada, 2005)

7 Daltorio K.A., Gorb S., Peressadko A., Horchler A.D., Ritzmann R.E. And
Quinn R.D., A Robot that Climbs Walls using Micro-structured Polymer
Feet,International Conference on Climbing and Walking Robots
(CLAWAR)(London, U.K., 2005)

8 Kathryn A. Daltorio, Terence E. Wei, Stanislav N. Gorb, Roy E. Ritzmann,
Roger D. Quinn, Passive Foot Design and Contact Area Analysis for
Climbing Mini-Whegs,Proceeding of the IEEE International Conference on
Intelligent Robots and Systems (ICRA’07) (Roma, Italy, 2007)

9 Kathryn A. Daltorio, Timothy C. Witushynsky, Gregory D. Wile, Luther R.
Palmer, Anas Ab Malek, Mohd Rasyid Ahmad, Lori Southard, Stanislav N.
Gorb, Roy E. Ritzmann, Roger D. Quinn, A Body Joint Improves Vertical to
Horizontal Transitions of a Wall-Climbing Robot.,Proceeding of the IEEE
International Conference on Intelligent Robots and Systems (ICRA’08)
(Pasadena, CA, U.S.A., 2008)

10 A. Martin-Alvarez, W. De Peuter, J.Hillebrand, P.Putz, A.Matthyssen, J.F.
de Weerd, Walking Robots for Planetary Exploration Missions,WAC'96,
Second World Automation Congress(Montpellier, France, 1996)

74

11 Raivo Sell, Mati Kaeeli, Invention Patent :Wheel Stand,,priority number:
P200700027, priority date: 01.06.2007(, 2007)

12 Hitoshi KIMURA, Shigeo HIROSE, Development of Genbu : Active wheel
passive joint articulated mobile robot,Proceedings of the 2002 IEEURSJ
Intl. Conference on Intelligent Robots and Systems EPFL(Lausanne,
Switzerland, 2002)

13 Zhiqing Li, Shugen Ma, Bin Li, Minghui Wang and Yuechao Wang, Design
and Basic Experiments of a Transformable Wheel-Track Robot with Self-
adaptive Mobile Mechanism,The 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems(Taipei, Taiwan, 2010)

14 J. Suthakorn, S.S.H. Shah , S. Jantarajit , W. Onprasert and W. Saensupo,
S. Saeung, S. Nakdhamabhorn,V. Sa-Ing, and S. Reaungamornrat, On the
Design and Development of A Rough Terrain Robot for Rescue
Missions,Proceedings of the 2008 IEEE International Conference on
Robotics and Biomimetics (Bangkok, Thailand, 2009)

15 Toby H.J. Collett, Bruce A. MacDonald, and Brian P. Gerkey, Player 2.0:
Toward a Practical Robot Programming Framework,Proceedings of the
Australasian Conference on Robotics and Automation (ACRA 2005)
(Sydney, Australia, 2005)

16 Brian Gerkey, Richard T. Vaughan and Andrew Howard, The Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor Systems,In
Proceedings of the 11th International Conference on Advanced Robotics
(ICAR 2003)(Coimbra, Portugal, 2003)

17 Hyungseok Kim, Taehun Kang, Vo Gia Loc and Hyouk Ryeol Choi, Gait
Planning of Quadruped Walking and Climbing Robot for Locomotion in 3D
Environment,Proceedings of the 2005 IEEE International Conference on
Robotics and Automation(Barcelona, Spain, 2005)

18 L. De Silva and H. Ekanayake, Behavior-based Robotics And The Reactive
Paradigm, A Survey,Proceedings of International Workshop on Data Mining
and Artificial Intelligence (DMAI’ 08) (Khulna, Bangladesh, 2008)

19 Shigang cui, Zhengguang lian, Li zhao, Zhigang bing, Hongda chen,
Design and Path Planning for a remote-brained Service Robot,Third
International Conference on Natural Computation (ICNC 2007)(Haikou,
Hainan, China, 2007)

20 Schmickl Thomas, Möslinger Christoph, Thenius Ronald, Crailsheim Karl,
Bio-inspired Navigation of Autonomous Robots in Heterogenous
Environments,(,)

75

21 Alejandro Ramirez-Serrano, Giovanni C. Pettinaro, Navigation of
Unmanned Vehicles Using a Swarm of Intelligent Dynamic
Landmarks,Proceedings of the 2005 IEEE International Workshop on
Safety, Security and Rescue Robotics (Kobe, Japan, 2005)

76

Web Resources

Builded Robot (LionHell McMillan)

Project page on AIRWiki :

 http://airlab.elet.polimi.it/index.php/LionHell_McMillan

Wiki page on RobotGarage.org :

 http://www.robotgarage.org/wiki/index.php?title=LionHell_McMillan

Datasheets

Servomotors
Model: Dynamixel AX-12
Manufacturer: Robotis
http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm

Control Board
Model: CM-510
Manufacturer: Robotis
http://support.robotis.com/en/product/auxdevice/controller/cm510_manual.htm

Microcontroller on Control Board
Model: ATMega2561
Manufacturer: Atmel
http://www.atmel.com/Images/2549S.pdf

IR rangefinders
Model: GP2D120X
Manufacturer: Sharp
http://www.sharpsma.com/webfm_send/1205

Accelerometer
Model: MMA7361L
Manufacturer: Freescale Semiconductor
http://www.freescale.com/files/sensors/doc/data_sheet/MMA7361L.pdf

http://www.freescale.com/files/sensors/doc/data_sheet/MMA7361L.pdf
http://www.sharpsma.com/webfm_send/1205
http://www.atmel.com/Images/2549S.pdf
http://support.robotis.com/en/product/auxdevice/controller/cm510_manual.htm
http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm
http://www.robotgarage.org/wiki/index.php?title=LionHell_McMillan
http://airlab.elet.polimi.it/index.php/AIRWiki

77

Appendix A : Wheg Mechanical Drawing

Drawing 1: Wheg Mechanical Drawing

78

Appendix B : Firmware

An updated version of this firmware can be downloaded from the LionHell McMillan
page hosted on RobotGarage.org (see the Web Resources Chapter).

This code is intended to be used on CM-510 board.
Required libraries and include files can be downloaded from Robotis website under the
section Embedded C :
http://support.robotis.com/en/software/embeded_c/cm510_cm700.htm

The compiler used is AVRGCC.
The system on which has been developed is Mac OS X 10.5.

/*
 * AVRGCC1.c
 *
 * Created: 24/11/2011 20.33.13
 * Author: venom
 */

#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include "dynamixel.h"
#include "serial.h"
#include <math.h> //libm.a (doesn't work for me in winavr, but works in avr-gcc).

//Time Vars
#define TIME_SEC 15625
#define TIME_DECSEC 1563
#define TIME_CENTSEC 156
#define TIME_MILLISEC 16

// AX-12+ Control table addresses
#define P_GOAL_POSITION_L 30
#define P_GOAL_POSITION_H 31
#define P_PRESENT_POSITION_L 36
#define P_PRESENT_POSITION_H 37
#define P_PRESENT_SPEED_L 38
#define P_PRESENT_SPEED_H 39
#define P_PRESENT_LOAD_L 40
#define P_PRESENT_LOAD_H 41
#define P_MOVING 46
#define P_MOVING_SPEED_L 32
#define P_MOVING_SPEED_H 33
#define P_TORQUE_ENABLE 24

// AX S1 Control table addresses
#define LEFT_IR_SENSOR_DATA 26
#define CENT_IR_SENSOR_DATA 27
#define RIGH_IR_SENSOR_DATA 28
#define OBSTACLE_DETECTION_FLAG 32
#define OBSTACLE_DETECTED_COMPARE_VALUE 20 //Obstacle Detection Threshold
#define OBSTACLE_DETECTED_COMPARE 52 // 0: Low Dist Sens, 1: High Dist Sens
#define CENTER_LUMINOSITY 30

Text 1: Firmware Code
Embedded C Code

http://support.robotis.com/en/software/embeded_c/cm510_cm700.htm

79

//Button defines
#define BTN_UP 0x10
#define BTN_DOWN 0x20
#define BTN_LEFT 0x40
#define BTN_RIGHT 0x80
#define BTN_START 0x01

// Default setting
#define DEFAULT_BAUDNUM 1 // 1Mbps
#define DEFAULT_ID 1

struct ServoData{
int id;
unsigned short lastP[7];//Master Servo: Present Position data
_Bool db;//Dead Band state: 0 = not in db; 1 = in db;
unsigned short spd; //Master Servo: Present Speed Data

};

//
// Structure used to containthe parameters of the IR distance sensors
//
typedef const struct
{

const signed short a;
const signed short b;
const signed short k;

}
ir_distance_sensor;

/* All sensor values */
typedef struct

{
float distance_front_center; //= readSharp_cm(4);
float distance_floor_center; //= readSharp_cm(6);
float distance_floor_left; //= readSharp_cm(5);
float distance_floor_right; //= readSharp_cm(7);
short body_inclination_xg; //= readAccDeg(1);
short body_inclination_yg; //= readAccDeg(2);
short body_inclination_zg; //= readAccDeg(0);
short abdomen_inclination; //= getAbdomenDeg();
short abdomen_inclination_g; //= getAbdomenDegG();

}
Sensors;

void init_OC1A(void);
void initTimer1(void);
unsigned int Timer1Read(void);
void Timer1Write(unsigned int i);
void Timer1Pause(unsigned int flag);/*Pause using timer 1 (warning: it resets timer!) */
void PrintCommStatus(int CommStatus);
void PrintErrorCode(void);
unsigned char readAXS1cd(void);
void go_fwd(void);
void stop(void);
void torque(unsigned char val);
int checkDxlConn(void);
void adc_init(void);
uint16_t adc_start(unsigned char channel);
float ir_distance_calculate_cm(ir_distance_sensor sensor, unsigned short adc_value);
unsigned short mirror(unsigned short speed);/* Mirror Speed: 0 to 1023, 1024 to 2047 */
unsigned short mirrorPos(unsigned short pos);/* Mirror Position: 0 to 1023 */
unsigned short pos2deg(unsigned short pos); /* deg: 0 to 300 */
unsigned short deg2pos(unsigned short deg); /* deg: 0 to 300 */
short getTailDeg(void);
void setTailDeg(short deg, unsigned short speed);
short getAbdomenDeg(void);/* deg: -75 to +80 */
short getAbdomenDegG(void); /* Gets inclination wrt g-plane. deg: -150 to +150 */
void setAbdomenDeg(short deg, unsigned short speed); /* deg: -75 to +80 */
unsigned short dist2cm(unsigned short dist);
float cosML(float x);
float readHeight(void);
void frontLine_READ_ARRAY(void);
void setupAcc(void);/* Configure MCU bits to use Accelerometer */
uint16_t readAcc(unsigned char addr);
float readAccNorm(unsigned char addr);/* read calibrated and normalized (0-1) value from Accel Channel @ addr */
float readAccDeg(unsigned char addr);/* read deg value from Accel on channel @ addr */
void setupSharp(void);/* Configure MCU bits to use Sharp IR Sensors Board */
uint16_t readSharp(unsigned char addr); /* Read value of Sharp sensor mapped on address "addr" */
float readSharp_cm(unsigned char addr); /* Read value of Sharp sensor mapped on address "addr" and convert to cm

80

distance */
void readAllSensors(Sensors *s); /* Read all sensor values and put into struct s */
void printAllSensors(Sensors sensors);

//// Globals ------------------------

//Communication Dynamixel
_Bool comm_err = 0; //Used to ensure correct communication with dynamixel
//SHARP Sensor
// This var contains the parameters of GP2Y0A21YK sensor
const ir_distance_sensor GP2Y0A21YK = { 5461, -17, 2 };

//Communication
int CommStatus;

//Whegs
int whegs_sx[3] = {6,3,14};
int whegs_dx[3] = {8,7,12};

//Desired Nominal Speed
unsigned short dnspeed = 0;//280;

struct ServoData sdata[7];
unsigned char dCIR; //Center IR Sensor Distance
unsigned char dLIR; //Left IR Sensor Distance
unsigned char dRIR; //Right IR Sensor Distance
unsigned char lCIR; //Center IR Sensor Luminosity
_Bool parallel = 1; //Parallel Mode for Whegs
int parallel_time = 0;//Parallel Config Time var
int frontLift_time = 0;//FrontLift Config Time var
int whegBlocked_time = 0;//Wheg Blocked Time var
_Bool wheg_blocked = 0 ; //Wheg Blocked state
short dpAbd = 0;//Desired Abdomen Inclination wrt Body in [deg]
unsigned short pTail ;//Tail Servo Position
int dpTail = -1; //-1 : no desidered position (any is good)
_Bool dir15 = 0; //sensor servo (id 15) direction. 0 = CW, 1= CCW.
Sensors sensors; /* Holds all sensors values */
float x_speed = 0; /* X direction speed , 2 be calc'd from x_acc */

//Button vars
_Bool btn_switch1 = 0;
_Bool btn_switch2 = 0;

//Behaviors Controllers
unsigned short turnL = 0;
unsigned short turnR = 0;
_Bool walking = 1;

int main(void)
{

serial_initialize(57600);
dxl_initialize(0, DEFAULT_BAUDNUM); // Not using device index
sei(); // Interrupt Enable
printf("\n\n Venom Whegs Sync Master\n\n");
_delay_ms(20000);
// Enable Continuous Turn on whegs servos
int i;
for (i=0;i<3;i++){

dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 0);
dxl_write_word(whegs_dx[i], P_MOVING_SPEED_L, 1024);
dxl_write_word(whegs_sx[i], 8, 0);
dxl_write_word(whegs_dx[i], 8, 0);

}

//Disable Continuous Turn for Body Torsion Servo and Tail Servo
dxl_write_word(10, 8, 1023);//Disable Continuous Turn Mode
dxl_write_word(10, P_TORQUE_ENABLE, 0); //Disable Torsion Servo
dxl_write_word(1, 8, 1023);//Disable Continuous Turn Mode
dxl_write_word(1, P_TORQUE_ENABLE, 0); //Disable Tail Servo
// Write moving speed
//dxl_write_word(6, P_MOVING_SPEED_L, 150);
//dxl_write_word(8, P_MOVING_SPEED_L, 1174);

//Prepare servos data
sdata[0].id = whegs_sx[0];
sdata[1].id = whegs_sx[1];
sdata[2].id = whegs_sx[2];

81

sdata[3].id = whegs_dx[0];
sdata[4].id = whegs_dx[1];
sdata[5].id = whegs_dx[2];
sdata[6].id = 15; //Distance Sensor Servo

dxl_write_word(15, 8, 1023); //Position Mode for Sensor Servo

//Button Init
DDRE = 0x0C;
PORTE = 0xF0;

//Prepare Sensor
dxl_write_byte(100, OBSTACLE_DETECTED_COMPARE, 1);//High Dist Sens
//dxl_write_byte(100,OBSTACLE_DETECTED_COMPARE_VALUE, 50) ;
//50 is detection threshold

adc_init();
setupAcc();
setupSharp();
initTimer1();
walking = 1;
while(1){

//Read and Communicate Sensors Data
readAllSensors(&sensors);
printAllSensors(sensors);

// Set Speed According to Body Inclination
dnspeed = (600 + 4 *sensors.body_inclination_xg); //set speed according to terrain inclination(more speed =

more force)

//Main Behaviors Section
//Vars for Behaviors
float ld=abs((int)(sensors.distance_floor_left -sensors.distance_floor_center));
float rd=abs((int)(sensors.distance_floor_right -sensors.distance_floor_center));

//Jump Down Behavior
if (sensors.abdomen_inclination_g < -45 && sensors.distance_front_center < 30){

//..isFalling, TerrainIsNear -> JUMP!
stop();
comm_err = 0; //communication error
while(sensors.abdomen_inclination_g < -45 &&

sensors.distance_front_center < 30){//JUMP
//printf("\nJUMP\n");
if (comm_err == 0)dpAbd = dpAbd + 1;
//LIFT BODY
comm_err = 0;//reset communication error
setAbdomenDeg(dpAbd, 1000);//Lift
if (checkDxlConn()==-1)

comm_err = 1;
else{

int isMoving = 1;
while(isMoving == 1) {//reach pos

isMoving = dxl_read_byte(13,P_MOVING);
if (checkDxlConn()==-1){

comm_err = 1;
isMoving = 0; //permits exiting from while

}
}

}
sensors.abdomen_inclination_g = getAbdomenDegG();
sensors.distance_front_center = readSharp_cm(4);

}
}else
//Terrain Check Behavior
if(0&& (ld > 8 || rd > 8)) { //terrain not uniform //last=4

//printf("ld:%d,rd:%d\n",(int)ld,(int)rd);
if (ld >= rd) {turnR = 1; turnL=0;}
if (ld < rd) {turnL = 1; turnR=0;}

}else
if (sensors.distance_front_center < 15){//Near Center Obstacle..

stop();//STOP WALKING
//Approaching Obstacle Behavior
comm_err = 0; //communication error
while(sensors.distance_front_center<15 && sensors.abdomen_inclination<80)
{//LIFT UP..

//printf("\nLIFT UP TO CLIMB\n");
if (comm_err == 0)dpAbd = dpAbd + 1;
if (dpAbd > 80)dpAbd = 80;

82

//LIFT BODY
comm_err = 0;//reset communication error
setAbdomenDeg(dpAbd, 200);//Lift
if (checkDxlConn()==-1)

comm_err = 1;
else{

int isMoving = 1;
while(isMoving == 1) {//reach pos

isMoving = dxl_read_byte(13,P_MOVING);
if (checkDxlConn()==-1){

comm_err = 1;
isMoving = 0; //permits exiting from while

}
}

}
sensors.distance_front_center = readSharp_cm(4);

}
}
else //Adapt to Floor Behavior
if(sensors.distance_floor_center > 23){ // Floor too distant ..

stop();
comm_err = 0; //communication error
while(sensors.distance_floor_center > 23 &&

sensors.abdomen_inclination > -75)
{// LOWER DOWN..

//printf("\nLOWERING TO THE FLOOR\n");
if (comm_err == 0)dpAbd = dpAbd - 1;
if (dpAbd < -75)dpAbd = -75;
comm_err = 0;//reset communication error
setAbdomenDeg(dpAbd, 200);//Lower Abdomen
if (checkDxlConn()==-1)

comm_err = 1;
else{

int isMoving = 1;
while(isMoving == 1) {//reach pos

isMoving = dxl_read_byte(13,P_MOVING);
if (checkDxlConn()==-1){

comm_err = 1;
isMoving = 0; //permits exiting from while

}
}

}
sensors.distance_floor_center = readSharp_cm(6);

}
}
//End of Behaviors
//Walking Actions
if (walking==1){

if(turnL && turnR){
int i ;
for (i=0;i<3;i++){//Go Backward

dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 1624);
dxl_write_word(whegs_dx[i], P_MOVING_SPEED_L, 600);

_delay_ms(40000);//Mantain behavior
//Disable behavior..
turnL = 0;
turnR = 0;

}

}else
if(turnL){//Turn Left

int i ;
for (i=0;i<3;i++){

dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 1624);
//dxl_write_word(whegs_dx[i], P_MOVING_SPEED_L, 1624);
dxl_write_word(whegs_dx[i], P_MOVING_SPEED_L, 0);
_delay_ms(40000);//Mantain behavior
//Disable behavior..
turnL = 0;
turnR = 0;

}
}else
if(turnR){//Turn Right

int i ;
for (i=0;i<3;i++){

//dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 600);
dxl_write_word(whegs_sx[i], P_MOVING_SPEED_L, 0);
dxl_write_word(whegs_dx[i], P_MOVING_SPEED_L, 600);

83

_delay_ms(40000);//Mantain behavior
//Disable behavior..
turnL = 0;
turnR = 0;

}
}else
if (!(turnL + turnR)){//If not turning

go_fwd();//Restart walking
}

}else{//Stop Walking
stop();

}
//Tail Control Section
pTail = (unsigned short)dxl_read_word(1, P_PRESENT_POSITION_L);
//printf("%d ",pTail);

//Tail Behaviors Manager
// Check if desidered Tail position (if was set) has been reached
if(dpTail != -1 && abs((int)dpTail - (int)pTail) < 50){

dxl_write_word(1, P_TORQUE_ENABLE, 0);
//This ^^^ disables Torsion Servo
// Needed to shut off tail behaviors
// activated in previous loop cycle
dpTail = -1; //disable desidered Tail position (any will be good)

}

//Tail Behavior 1: Avoiding Falling Backward
//If tail is high and abdomen is'n lowand body is tilted up of at least 45°
if (parallel && pTail < 300 && getAbdomenDeg() >-10 && readAccDeg(1) > 45)
{ //avoid falling backward

//printf("\navoid falling backward\n");
dpTail = 500;
dxl_write_word(1, P_GOAL_POSITION_L, dpTail);
dxl_write_word(1, P_MOVING_SPEED_L, 210);

}

//Tail Behavior 2: Climbing
//If tail is a slightly high and abdomen is slightly low and body is tilted up
//of at least 60°
if (parallel && pTail < 450 && getAbdomenDeg() < -20 && readAccDeg(1) > 60)
{ //climb

//printf("\nclimb\n");
dpTail = 712;
dxl_write_word(1, P_GOAL_POSITION_L, dpTail);
dxl_write_word(1, P_MOVING_SPEED_L, 210);

}else

//Working on timer..
// time = Timer1Read();
// //printf(" %u ", time/(unsigned int)TIME_MILLISEC);
// printf(" %u ", time);

//printf(" main ");
//printf("\n");

if(0){//STOP MOTION
//printf("PRESS KEY\n");
torque(0);
unsigned char ReceivedData = getchar();
torque(1);

}
} //main loop
return 0;

}

void printAllSensors(Sensors sensors){
//printf("dnspeed:\t%d\t",dnspeed);
printf("FC %d\t",(int)(sensors.distance_front_center));
printf("GC %d\t",(int)(sensors.distance_floor_center));
printf("GL %d\t",(int)(sensors.distance_floor_left));
printf("GR %d\t",(int)(sensors.distance_floor_right));
printf("Z %d\t",(short)(1000*readAccNorm(0)));
printf("X %d\t",(short)(1000*readAccNorm(1)));
printf("Y %d\t",(short)(1000*readAccNorm(2)));
printf("AD %d\t",getAbdomenDeg());
printf("TD %d\n",getTailDeg());

}

84

// Print communication result
void PrintCommStatus(int CommStatus)
{

switch(CommStatus)
{
case COMM_TXFAIL:

printf("COMM_TXFAIL: Failed transmit instruction packet!\n");
break;

case COMM_TXERROR:
printf("COMM_TXERROR: Incorrect instruction packet!\n");
break;

case COMM_RXFAIL:
printf("COMM_RXFAIL: Failed get status packet from device!\n");
break;

case COMM_RXWAITING:
printf("COMM_RXWAITING: Now recieving status packet!\n");
break;

case COMM_RXTIMEOUT:
printf("COMM_RXTIMEOUT: There is no status packet!\n");
break;

case COMM_RXCORRUPT:
printf("COMM_RXCORRUPT: Incorrect status packet!\n");
break;

default:
printf("This is unknown error code!\n");
break;

}
}

// Print error bit of status packet
void PrintErrorCode()
{

if(dxl_get_rxpacket_error(ERRBIT_VOLTAGE) == 1)
printf("Input voltage error!\n");

if(dxl_get_rxpacket_error(ERRBIT_ANGLE) == 1)
printf("Angle limit error!\n");

if(dxl_get_rxpacket_error(ERRBIT_OVERHEAT) == 1)
printf("Overheat error!\n");

if(dxl_get_rxpacket_error(ERRBIT_RANGE) == 1)
printf("Out of range error!\n");

if(dxl_get_rxpacket_error(ERRBIT_CHECKSUM) == 1)
printf("Checksum error!\n");

if(dxl_get_rxpacket_error(ERRBIT_OVERLOAD) == 1)
printf("Overload error!\n");

if(dxl_get_rxpacket_error(ERRBIT_INSTRUCTION) == 1)
printf("Instruction code error!\n");

}

unsigned int Timer1Read(void)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
cli() ;//__disable_interrupt();
/* Read TCNTn into i */
i = TCNT1;
/* Restore global interrupt flag */
SREG = sreg;
return i;
}

void Timer1Write(unsigned int i)
{
unsigned char sreg;

85

/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
cli();//__disable_interrupt();
/* Set TCNTn to i */
TCNT1 = i;
/* Restore global interrupt flag */
SREG = sreg;
}

void Timer1Pause(unsigned int flag){/*Pause using timer 1 */
Timer1Write(0);
unsigned int time = Timer1Read();
while(time < flag){

time = Timer1Read();
}

}

void initTimer1(void){
TCCR1B = (1<<CS12)|(1<<CS10);//Prescaler to Sys Clock / 1024 = (16MHz / 1024)

}

void init_OC1A(void)
{
//ASSR= 1<<AS2; // Enable asynchronous mode
TCCR1B = (1<<CS12)|(1<<CS10);//Prescaler to Sys Clock / 1024 = (16MHz / 1024)
TIFR1 = 1<<OCF1A; // Clear OCF1/ Clear pending interrupts
TIMSK1= 1<<OCIE1A; // 1:Enable (0:Disable) Timer1 Output Compare Mode Compare Match Interrupt
OCR1A= 48; // Set Output Compare Value to 32
//Timer1Write((unsigned int) 0);//Resets Timer
//DDRB= 0xFF; // Set Port B as output
//while (ASSR&(1<<OCR2UB)); // Wait for registers to update
}

//Interrupt Function

ISR(TIMER1_COMPA_vect){
// Clear timer on compare match (now manually)
Timer1Write((unsigned int) 0);//Resets Timer
float deltaT = 1000/dnspeed; //msecs per count (AX12 has 1023 counts for 300 deg)
OCR1A = TIME_MILLISEC * deltaT;// set compare interval

}

unsigned short mirror(unsigned short speed){//calc specular speed
if (speed > 1023)

return speed - 1024;
else

return speed + 1024;
}

void adc_init(void) // Function used to initialise the ADC feature
{

ADMUX=0X40; // 0x40 for 10bit //0x60 for 8bit
ADCSRA=0X87; // We have set the ADSC bit to start a conversion, and the
// ADPS bits are set so that the prescaler is 128
//ADCSRA=0X80; // ADEN is set, to enable the ADC

}

uint16_t adc_start(unsigned char channel)// Function to perform an ADC conversion, Takes 0-8 as input
// to select which input to convert

{
unsigned char i;

i=channel&0x07; // Decide which line to perform ADC conversion on
//ADMUX=i|0x60; // Enter which line to perform in the ADC control register (for 8 bit)
ADMUX=i|0x40; // Enter which line to perform in the ADC control register (for 10 bit)
ADCSRA|=1<<ADSC;

while(ADCSRA & (1<<ADSC)); // wait for conv. to complete
//unsigned char temp=ADCH; //for 8-bit
unsigned short temp;
temp=ADC;//for 10-bit
return temp;

}

int checkDxlConn(void){
CommStatus = dxl_get_result();
if(CommStatus != COMM_RXSUCCESS){

86

 PrintCommStatus (CommStatus);
 PrintErrorCode();

 return -1;
}
return 1;

}

unsigned short mirrorPos(unsigned short pos){/* Calc pos for upside-down servo */
pos = 1023 - pos;
return pos;

}

unsigned short pos2deg(unsigned short pos){ /* deg : 0 to 300 . 150 is center */
if(pos > 1023)return -1; /* Error: out of range */
//printf(" p%u ",pos);
uint32_t deg;
//unsigned int deg;
deg = (uint32_t)pos;
//printf(" d%u ",deg);
deg = deg * 293; //it was 29.3
//printf(" d%u ",deg);
deg = deg / 1000;
//printf(" d%u ",deg);
return (unsigned short)deg;

}
unsigned short deg2pos(unsigned short deg){/* deg : 0 to 300 . 150 is center */

if (deg > 300) return -1 ; /* Error: out of range */
//printf(" p%u ",deg);
uint32_t pos;
//unsigned int deg;
pos = (uint32_t)deg;
//printf(" d%u ",pos);
pos = pos * 1000;
//printf(" d%u ",pos);
pos = pos / 293;//it was 29.3
//printf(" d%u ",pos);
return (unsigned short)pos;

}

short getTailDeg(void){
short deg = (short)pos2deg(dxl_read_word(1, P_PRESENT_POSITION_L)) - 150;
return -deg; //servo is mounted upside-down

}
void setTailDeg(short deg, unsigned short speed){

deg = - deg; //servo is mounted upside-down
if (deg < -90 || deg > 90){/* Error: out of range */

printf("\nError: deg must be in the -90 to 90 deg range.\n");
} else{

unsigned short posTail = -1;//holds abdomen joint position
posTail = deg2pos((unsigned short)(deg + 150));
//printf ("1pos:\t%d\t",posAbdomen);
dxl_write_word(1, P_MOVING_SPEED_L, speed);
dxl_write_word(1, P_GOAL_POSITION_L, posTail);

}
}

short getAbdomenDeg(void){
return (short)pos2deg(dxl_read_word(13, P_PRESENT_POSITION_L)) - 150;

}

short getAbdomenDegG(void){ /* Gets inclination wrt g-plane */
return getAbdomenDeg() + (short)readAccDeg(1);

}

void setAbdomenDeg(short deg, unsigned short speed){
if (deg < -75 || deg > 80){/* Error: out of range */

printf("\nError: deg must be in the -75 to + 80 deg range.\n");
} else{

unsigned short posAbdomen = -1;//holds abdomen joint position
posAbdomen = deg2pos((unsigned short)(deg + 150));
//printf ("13pos:\t%d\t",posAbdomen);
dxl_write_word(13, P_MOVING_SPEED_L, speed);
dxl_write_word(13, P_GOAL_POSITION_L, posAbdomen);
posAbdomen = mirrorPos(posAbdomen) ;
//printf ("19pos:\t%d\n",posAbdomen);
dxl_write_word(19, P_MOVING_SPEED_L, speed);
dxl_write_word(19, P_GOAL_POSITION_L, posAbdomen);

87

}
}

unsigned short dist2cm(unsigned short dist){//Convert distance from SHARP GP2Y0A21YK sensor to cm
uint32_t cm = (uint32_t)dist;
cm = 12344 * cm ;
return cm;

}

//
// Converting the values of the IR distance sensor to centimeters
// Returns -1, if the conversion did not succeed
//
float ir_distance_calculate_cm(ir_distance_sensor sensor, unsigned short adc_value){

if (adc_value + sensor.b <= 0)
{

return -1;
}
float dist_cm;
dist_cm = (float)sensor.a / (float)(adc_value + sensor.b) - (float)sensor.k;
//dist_cm = 5461 / (adc_value + -17) - 2;
//printf("cm%d ",dist_cm);
return dist_cm;

}

float cosML(float x){ //cosine MacLaurin 4 term (GOOD from 0∞ to 45∞ ,need to improve to 50∞)
//deg 2 rad
x = x * 0.017453;
//printf("r%d ",(int)(x*10));
//cos(x): 1-0.5x^2 + 0.04167 * x^4
float cosine;
cosine = 1- 0.5 * x*x + 0.04167 * x *x *x *x ;
//printf("cos%d ",(int)(cosine*10));
return cosine;

}

float readHeight(void){
//Read Sensor
uint16_t result=adc_start(6); // cHANNEL 6
//printf("r%u ", result);
float dist_cm;
dist_cm = ir_distance_calculate_cm(GP2Y0A21YK, result);//Convert
//printf("cm%d ", (int)(dist_cm*10));
float height ;
height = 4.5 + (float)dist_cm;//Add sensor stand length to Height
if(height<10) height = 10;
else if(height>80) height = 80;
return height ;

}

void go_fwd(void){
int i;
for (i=0;i<3;i++)

dxl_write_word(sdata[i].id, P_MOVING_SPEED_L, dnspeed);
for (i=3;i<6;i++)

dxl_write_word(sdata[i].id, P_MOVING_SPEED_L, mirror(dnspeed));
}

void stop(void){
int i ;
for (i=0;i<3;i++)

dxl_write_word(sdata[i].id, P_MOVING_SPEED_L, 0);
for (i=3;i<6;i++)

dxl_write_word(sdata[i].id, P_MOVING_SPEED_L, mirror(0));
}

void torque(unsigned char val){
int i ;
for (i=0;i<3;i++)

dxl_write_word(sdata[i].id, P_TORQUE_ENABLE, val);
for (i=3;i<6;i++)

dxl_write_word(sdata[i].id, P_TORQUE_ENABLE, val);
}

unsigned char readAXS1cd(void){//Read AX-S1 Sensor Center Distance Filtering Errors and Compensating Ambient Light
int i,dCIR,lCIR,cdCIR,dCIRmin;//corrected distance

88

dCIRmin = 255;
for(i=0;i<10;i++){//Collect min val (avoid ambient ir-modulated interferences)

do{ dCIR = (unsigned char) dxl_read_byte(100, CENT_IR_SENSOR_DATA);}
while (dxl_get_result()!=COMM_RXSUCCESS);

if (dCIR < dCIRmin) dCIRmin = dCIR;
}//using dCIRmin as distance value
do{lCIR = (unsigned char) dxl_read_byte(100,CENTER_LUMINOSITY);}

while (dxl_get_result()!=COMM_RXSUCCESS);
cdCIR = dCIRmin - 2*lCIR ;//Compensate Ambient Luminosity
if(cdCIR <0)cdCIR = 0;//Lower bound
//printf("dCIRmin %d \t",dCIRmin);
//printf("lCIR %d \t",lCIR);
//printf("cdCIR %d \n",cdCIR);
//if(dCIRmin > 100)printf(" >100 \n");
return cdCIR;

}

void setupAcc(void){/* Configure MCU bits to use Accelerometer */
//Configure MCU outputs to interface Acc inputs
DDRA |= (1<<PA7)|(1<<PA6) ;//MCU PIN A6 and A7 set as Output

}

uint16_t readAcc(unsigned char addr){
/* Note: All PORTA pin values are inverted (1 is LOW, 0 is HIGH)
 * This is due to cm-510 output transistor, I guess
 */
switch (addr){
case 0 :

// Choosing Z Accel.
PORTA = (1<<PA7)|(1<<PA6); //MPLEX: ADDR 00 (0)
//printf("\n00:Z \t");
break;

case 1 :
// Choosing X Accel.
PORTA = (1<<PA7)|(0<<PA6); //MPLEX: ADDR 01 (1)
//printf("\n01:X \t");
break;

case 2 :
// Choosing Y Accel.
PORTA = (0<<PA7)|(1<<PA6); //MPLEX: ADDR 10 (2)
//printf("\n10:Y\t");
break;

case 3 :
// Chosing Free Address
PORTA = (0<<PA7)|(0<<PA6); //MPLEX: ADDR 11 (3)
//printf("\n11:F\t");
break;

default:
printf("\nWrong Address (%d) Selected on channel 2\n", addr);
return -1;

}

//Pause before acquiring..
Timer1Write(0);
int time = Timer1Read();
while(time < TIME_MILLISEC){

time = Timer1Read();
//printf("time=%d\n",time);

}
int16_t result=adc_start(2); //Channel 2
//printf("result : \t%d\n",result);
return result;

}

void setupSharp(void){/* Configure MCU bits to use Sharp IR Sensors Board */
//Configure MCU outputs to interface Board inputs
DDRA |= (1<<PA2)|(1<<PA3);//MCU PIN PA2 and PA3 set as Output
DDRF |= (1<<PF4) ;//MCU PIN PF4 set as Output

}

uint16_t readSharp(unsigned char addr){ /* Read value of Sharp sensor mapped on address "addr" */
/* Note: All PORTA pin values are inverted (1 is LOW, 0 is HIGH)
 * This is due to cm-510 output transistor, I guess
 */
switch(addr){

case 0: //MPLEX: ADDR 000 (0)

89

PORTA = (1<<PA3)|(1<<PA2); //BIT1:0 = 00
PORTF = (0<<PF5);//BIT2 = 0
break;

case 1: //MPLEX: ADDR 001 (1)
PORTA = (1<<PA3)|(0<<PA2); //BIT1:0 = 01
PORTF = (0<<PF5);//BIT2 = 0
break;

case 2: //MPLEX: ADDR 010 (2)
PORTA = (0<<PA3)|(1<<PA2); //BIT1:0 = 10
PORTF = (0<<PF5);//BIT2 = 0
break;

case 3: //MPLEX: ADDR 011 (3)
PORTA = (0<<PA3)|(0<<PA2); //BIT1:0 = 11
PORTF = (0<<PF5);//BIT2 = 0
break;

case 4: //MPLEX: ADDR 100 (4)
PORTA = (1<<PA3)|(1<<PA2); //BIT1:0 = 00
PORTF = (1<<PF5);//BIT2 = 1
break;

case 5: //MPLEX: ADDR 101 (5)
PORTA = (1<<PA3)|(0<<PA2); //BIT1:0 = 01
PORTF = (1<<PF5);//BIT2 = 1
break;

case 6: //MPLEX: ADDR 110 (6)
PORTA = (0<<PA3)|(1<<PA2); //BIT1:0 = 10
PORTF = (1<<PF5);//BIT2 = 1
break;

case 7: //MPLEX: ADDR 111 (7)
PORTA = (0<<PA3)|(0<<PA2); //BIT1:0 = 11
PORTF = (1<<PF5);//BIT2 = 1
break;

default :
printf("\nWrong Address (%d) Selected on channel 2\n", addr);
return -1;

}
//Pause before acquiring..
Timer1Write(0);
int time = Timer1Read();
while(time < TIME_MILLISEC){

time = Timer1Read();
//printf("time=%d\n",time);

}
int16_t result = adc_start(6); //Channel 6
//filtering : pass only 0.3V (64) - 3V (613)
if (result < 64)

result = 64;
if (result > 613)

result = 613;
//printf("result : \t%d\n",result);
return result;

}

unsigned short sharp_calib[17][2]={
{63,40},
{71,35},
{85,30},
{106,25},
{132,20},
{153,18},
{165,16},
{192,14},
{214,12},
{257,10},
{286,9},
{319,8},
{360,7},
{415,6},
{480,5},
{562,4},
{613,3}
};

float readSharp_cm(unsigned char addr){ /* Read value of Sharp sensor mapped on address "addr" and convert to cm
distance */

float val_cm;
unsigned short val_10bit = readSharp(addr);
int i;
for(i = 0; i<17; i++){

if (val_10bit >= sharp_calib[i][0] && val_10bit < sharp_calib[i+1][0]){
val_cm = (float)sharp_calib[i][1] + (float)((float)val_10bit - (float) sharp_calib[i][0])* (float)

90

((float)((float)sharp_calib[i+1][1]- (float)sharp_calib[i][1])/(float)((float)sharp_calib[i+1][0] -
(float)sharp_calib[i][0]));

return val_cm;
}

}
return -1; /* Error, data is out of range */

}

float readAccNorm(unsigned char addr){/* read calibrated and normalized (0-1) value from Accel Channel @ addr */
float norm_val = 0;
if (addr == 1){ /* Calibr for X */

norm_val = (float)((float)readAcc(addr) - (float)325)/(float)164; //325 : 0-val , 164 : mod(g)
}else
if (addr == 2){ /* Calibr for Y */

norm_val = (float)((float)readAcc(addr) - (float)338)/(float)162; //339 : 0-val , 164 : mod(g)
}else
if (addr == 0){ /* Calibr for Z */

norm_val = (float)((float)readAcc(addr) - (float)286)/(float)164; //286 : 0-val , 164 : mod(g)
}
else{/* Wrong Channel (addr) selected */

return -1;
}
/* If you are here then the channel was valid .. */
//Perform value bounding..
if (norm_val > 1) norm_val = 1;
else if (norm_val < -1) norm_val = -1;
return norm_val;

}

float readAccDeg(unsigned char addr){/* read deg value from Accel on channel @ addr */
float val = readAccNorm(addr);
//printf("\n\tnormval=%d\n", (int)(1000*val));
val = asin(val);
//printf("\n\tasinval=%d\n", (int)(1000*val));
val = val * 57.296739;//rad2deg
return val;

}

void readAllSensors(Sensors *s){
s->distance_front_center = readSharp_cm(4);
s->distance_floor_center = readSharp_cm(6);
s->distance_floor_left = readSharp_cm(5);
s->distance_floor_right = readSharp_cm(7);
s->body_inclination_xg = readAccDeg(1);
s->body_inclination_yg = readAccDeg(2);
s->body_inclination_zg = readAccDeg(0);
s->abdomen_inclination = getAbdomenDeg();
s->abdomen_inclination_g = getAbdomenDegG();

}

int facingAbyss(void){
//TODO
return -1;

}

91

Appendix C : Software

In this section there are:
• the source code of the three plugins for the Player server.
• The configuration files needed to use plugins

Source Code

Plugin: LionHell_pos.so
Filename: LionHell_pos.h

#include <libplayercore/playercore.h>

class LionHell_pos : public ThreadedDriver{
private:

player_position3d_data_t data , prev_data ;

//Serial data
int fx, fy, fz; //Forces/g_force ratios along x,y,z axes [adimensional]

/* FUNCTIONS */

//Publish state data .
void PutData (void) ;

public:
LionHell_pos(ConfigFile *cf, int section);
~LionHell_pos(void);

//Thread Life-Cycle
virtual void Main();
virtual int MainSetup();
virtual void MainQuit();

//Message Handling
virtual int ProcessMessage(MessageQueue* queue, player_msghdr* msghdr, void* data);

};

Filename: LionHell_pos.cpp

#include <LionHell_pos.h>
#include <iostream>
int LionHell_openSerial(void);
int LionHell_configSerial(int fd);
static int LionHell_getSerial(int *fx, int *fy, int* fz);

LionHell_pos::LionHell_pos(ConfigFile *cf, int section)
: ThreadedDriver(cf, section, false, PLAYER_MSGQUEUE_DEFAULT_MAXLEN,

PLAYER_POSITION3D_CODE)
{

/* Init data */
memset(&data, 0, sizeof(data));
data.pos.px = 0;
data.pos.py = 0;
data.pos.pz = 0;
data.pos.proll = 0;
data.pos.ppitch = 0;
data.pos.pyaw = 0;
data.vel.px = 0;
data.vel.py = 0;
data.vel.pz = 0;

Text 2: Position Plugin
Code

C++ Code

92

data.vel.proll = 0;
data.vel.ppitch = 0;
data.vel.pyaw = 0;
data.stall = 0;
std::cout<<std::endl<<"LionHell_pos instance Constructed"<<std::endl;

}

LionHell_pos:: ~LionHell_pos(void)
{

std::cout<<std::endl<<"LionHell_pos instance Destructed"<<std::endl;
}

int LionHell_pos::MainSetup(){
std::cout<<std::endl<<"Setup"<<std::endl;
return 0 ;

}

void LionHell_pos::MainQuit(){
std::cout<<std::endl<<"Shutdown"<<std::endl;

}

void LionHell_pos::Main(void){
while(1){

pthread_testcancel();
std::cout<<std::endl<<"Main"<<std::endl;

if (LionHell_getSerial(&fx, &fy, &fz) == 9) {
/* Do something with data *
 * Accelerometer alone is not sufficient
 * to calc pos,vel data.
 * We need other sensors to know
 * orientation wrt gravity vector.
 *
 * ACCELEROMETER EQUATIONS:
 * fx = gx + fmx
 * fy = gy + fmy
 * fz = gz + fmz
 *
 * Notation:
 * fx: force from accelerometer
 * gx: force due to gravity
 * fmx: force due to movement
 * */

}
ProcessMessages(); //process incoming messages
PutData();
usleep(10000);

}
}

void LionHell_pos::PutData (void){
std::cout<<std::endl<<"PutData"<<std::endl;
Publish(device_addr, PLAYER_MSGTYPE_DATA, PLAYER_POSITION3D_DATA_STATE, (void *) &data, sizeof(data)) ;
std::cout<<std::endl<<"Publish done"<<std::endl;

}

int LionHell_pos::ProcessMessage(MessageQueue* queue, player_msghdr* msghdr, void* data){
std::cout<<std::endl<<"ProcessMessage"<<std::endl;
//PLAYER_WARN("unknown_message");
//return -1;
return 0;

}

Driver* LionHell_pos_Init(ConfigFile* cf, int section){
std::cout<<std::endl<<"LionHell_pos - Init"<<std::endl;
return (Driver*) (new LionHell_pos(cf, section));

}

void LionHell_pos_Register(DriverTable* table)
{
 table->AddDriver("LionHell_pos", LionHell_pos_Init) ;
}

extern "C" {
int player_driver_init(DriverTable* table){

PLAYER_MSG0 (1, "Registering LionHell_pos driver.");
LionHell_pos_Register(table);
return 0 ;

}
}

93

#include <fcntl.h> // File control definitions
#include <termios.h> // POSIX terminal control definitionss
static int LionHell_getSerial(int *fx, int *fy, int* fz){

//momentarily here only to read scanf
int i; //to be ignored

 char buf[BUFSIZ];
 int fd, ret;

fd = LionHell_openSerial();
LionHell_configSerial(fd);

 ret = read(fd, buf, sizeof(buf)); /* <-- IL PROBLEMA E' QUI ! */
printf("\nret = %d\n", ret);
printf("\nbuf = %s\n", buf);

 if (ret > 0) {
ret = 0;
ret = sscanf(buf, "FC %d\tGC %d\tGL %d\tGR %d\tZ %d\tX %d\tY %d\tAD %d\tTD %d\r\n", &i, &i, &i, &i, fz , fx,

fy, &i, &i);
printf("\nsscanf: ret = %d\n", ret);

 }else if (ret < 0) {
PLAYER_ERROR1("error reading: %s", strerror(errno));

 }else {
 PLAYER_ERROR("Failed to read position");
 ret = 1;
 }

 if (close (fd))
 PLAYER_ERROR1("error closing: %s", strerror(errno));

 return ret;
}

int LionHell_openSerial(void){
int fd; // file description for the serial port

fd = open("/dev/ttyUSB0", O_RDWR | O_NOCTTY | O_NDELAY);

if(fd == -1) // if open is unsucessful
{

//perror("open_port: Unable to open /dev/ttyS0 - ");
printf("open_port: Unable to open /dev/ttyUSB0. \n");

}
else
{

fcntl(fd, F_SETFL, 0);
printf("port is open.\n");

}

return(fd);
} //open_port

int LionHell_configSerial(int fd) // configure the port
{

struct termios port_settings; // structure to store the port settings in
memset(&port_settings,0,sizeof(port_settings));
cfsetispeed(&port_settings, B57600); // set baud rates
cfsetospeed(&port_settings, B57600);

port_settings.c_iflag=0;
port_settings.c_oflag=0;
port_settings.c_cflag=CS8|CREAD|CLOCAL; // 8n1, see termios.h for more information
port_settings.c_lflag=ICANON;//original: 0 , others: ICANON
port_settings.c_cc[VMIN]=255; //was 1 //line length is 75
port_settings.c_cc[VTIME]=5;

tcsetattr(fd, TCSANOW, &port_settings); // apply the settings to the port
return(fd);

} //configure_port

94

Plugin: LionHell_ranger.so

Filename: LionHell_ranger.h

#include <libplayercore/playercore.h>

class LionHell_ranger : public ThreadedDriver{
private:

player_ranger_data_range_t data;
player_ranger_geom_t geom;

//Serial data
double fc, gc, gl, gr; //Distances [cm]
int ad;//abdomen angle. positive is up [deg]

//Common geometry data
double PI; //PI : PIGRECO. Used in deg2rad conversion.
double servo_center_x;//[m]

//Following Sensors Geometry Data are wrt robot center
//LionHell center is ..need a picture?

//Front Center Sensor geometry data
double servo_link_length_to_fc;//[m]
double servo_link_angle_offset_to_fc; //[deg]
double fc_pose_y ; //[m]
double fc_deg_x ; //[deg]
double fc_deg_z ; //[deg]
double fc_pose_x ; //[m]
double fc_pose_z ; //[m]
double fc_deg_y;//[deg]

/* FUNCTIONS */
void updateRanges(void);
void updateGeometry(void);

//Publish state data .
void PutData (void) ;

public:
LionHell_ranger(ConfigFile *cf, int section);
~LionHell_ranger(void);

//Thread Life-Cycle
virtual void Main();
virtual int MainSetup();
virtual void MainQuit();

//Message Handling
virtual int ProcessMessage(MessageQueue* queue, player_msghdr* msghdr, void* data);

};

Filename: LionHell_ranger.cpp

#include "LionHell_ranger.h"
#include <iostream>
#include <math.h>
int LionHell_openSerial(void);
int LionHell_configSerial(int fd);
static int LionHell_getSerial(double* fc, double* gc, double* gl, double* gr, int* ad);

LionHell_ranger::LionHell_ranger(ConfigFile *cf, int section)
: ThreadedDriver(cf, section, false, PLAYER_MSGQUEUE_DEFAULT_MAXLEN,

PLAYER_RANGER_CODE)
{

memset(&data, 0, sizeof(data));
data.ranges_count = 4;

Text 3: Ranger Plugin
Code

C++ Code

95

data.ranges = new double[data.ranges_count];
for(unsigned int i = 0; i < data.ranges_count; i++){

data.ranges[i] = -1;
}
memset(&geom, 0, sizeof(geom));

//Following Sensors Geometry Data are wrt robot center
//LionHell center is ..need a picture?

/* Geometry data setup */
PI = 3.14159265;

/* Set sensor's size */
geom.size.sw = 0.015; //along x axis
geom.size.sl = 0.045; //along y axis
geom.size.sh = 0.013; //along z axis

/* Set sensors geom. */
/* Common geometry data */
servo_center_x = 0.143 ;//[m]

/* Front Center Servo */
/* Fixed Data */
servo_link_length_to_fc = 0.155 ;//[m]
servo_link_angle_offset_to_fc = 35 ; //[deg]
fc_pose_y = 0; //[m]
fc_deg_x = 0; //[deg]
fc_deg_z = 0; //[deg]
/* Variable data : will be updated by getSerial(..) */
/* Suppose Abdomen joint angle is 0 deg.*/
fc_pose_x = servo_center_x + servo_link_length_to_fc; //[m]
fc_pose_z = 0; //[m]
fc_deg_y = 0; //[deg]

std::cout<<std::endl<<"LionHell_ranger instance Constructed"<<std::endl;
}

LionHell_ranger:: ~LionHell_ranger(void)
{

delete[] data.ranges;
std::cout<<std::endl<<"LionHell_ranger instance Destructed"<<std::endl;

}

int LionHell_ranger::MainSetup(){
std::cout<<std::endl<<"Setup"<<std::endl;
return 0 ;

}

void LionHell_ranger::MainQuit(){
std::cout<<std::endl<<"Shutdown"<<std::endl;

}

void LionHell_ranger::Main(void){
while(1){

pthread_testcancel();
std::cout<<std::endl<<"Main"<<std::endl;

if (LionHell_getSerial(&fc, &gc, &gl, &gr, &ad) == 0) {
printf("\ngetSerial SUCCEDEED\n");
printf("\n pose.px: %g\n", geom.pose.px);

}
updateRanges();
updateGeometry();
ProcessMessages(); //process incoming messages
PutData();
usleep(10000);

}
}

void LionHell_ranger::PutData (void){
std::cout<<std::endl<<"PutData"<<std::endl;
Publish(device_addr, PLAYER_MSGTYPE_DATA, PLAYER_RANGER_DATA_RANGE, (void *) &data, sizeof(data)) ;
Publish(device_addr, PLAYER_MSGTYPE_DATA, PLAYER_RANGER_DATA_GEOM, (void *) &geom, sizeof(geom)) ;
std::cout<<std::endl<<"Publish done"<<std::endl;

}

int LionHell_ranger::ProcessMessage(MessageQueue* queue, player_msghdr* msghdr, void* data){
std::cout<<std::endl<<"ProcessMessage"<<std::endl;
//PLAYER_WARN("unknown_message");
//return -1;

96

return 0;
}

Driver* LionHell_ranger_Init(ConfigFile* cf, int section){
std::cout<<std::endl<<"LionHell_ranger - Init"<<std::endl;
return (Driver*) (new LionHell_ranger(cf, section));

}

void LionHell_ranger_Register(DriverTable* table)
{
 table->AddDriver("LionHell_ranger", LionHell_ranger_Init) ;
}

extern "C" {
int player_driver_init(DriverTable* table){

PLAYER_MSG0 (1, "Registering LionHell_ranger driver.");
LionHell_ranger_Register(table);
return 0 ;

}
}

void LionHell_ranger::updateGeometry(void){
if (ad != -1){

//Update Front Center Sensor Pose data
fc_pose_x = servo_center_x + servo_link_length_to_fc * cos((ad + servo_link_angle_offset_to_fc) * PI/180);

//[m]
fc_pose_z = servo_link_length_to_fc * sin((ad + servo_link_angle_offset_to_fc) * PI/180); //[m]

fc_deg_y = ad;

/*
printf("\nfc_pose_x = %g\n", fc_pose_x);
printf("\nfc_pose_y = %g\n", fc_pose_y);
printf("\nfc_pose_z = %g\n", fc_pose_z);
*/
geom.pose.px = fc_pose_x;
geom.pose.py = fc_pose_y;
geom.pose.pz = fc_pose_z;
geom.pose.proll = fc_deg_x;
geom.pose.ppitch = fc_deg_y;
geom.pose.pyaw = fc_deg_z;

}
}

void LionHell_ranger::updateRanges(void){
data.ranges[0] = fc;
data.ranges[1] = gc;
data.ranges[2] = gl;
data.ranges[3] = gr;

}

//#include <stdio.h>
//#include <string.h> // string function definitions
//#include <unistd.h> // UNIX standard function definitions
#include <fcntl.h> // File control definitions
//#include <errno.h> // Error number definitions
#include <termios.h> // POSIX terminal control definitionss
//#include <time.h>
static int LionHell_getSerial(double* fc, double* gc, double* gl, double* gr, int* ad){

//momentarily here only to read scanf
int i; //to be ignored by sscanf

 char buf[BUFSIZ];
 int fd, ret;

fd = LionHell_openSerial();
LionHell_configSerial(fd);

 ret = read(fd, buf, sizeof(buf));
//printf("\nret = %d\n", ret);
//printf("\nbuf = %s\n", buf);

 if (ret > 0){
ret = 0;
int sscanf_ret;
sscanf_ret = sscanf(buf, "FC %lf\tGC %lf\tGL %lf\tGR %lf\tZ %d\tX %d\tY %d\tAD %d\tTD %d\r\n", fc, gc, gl,

gr, &i , &i, &i, ad, &i);
printf("\nscanf_ret = %d\n", sscanf_ret);

 } else if (ret < 0) {
 PLAYER_ERROR1("error reading: %s", strerror(errno));

 } else {

97

 PLAYER_ERROR("Failed to read position");
 ret = 1;
 }

 if (close (fd))
 PLAYER_ERROR1("error closing: %s", strerror(errno));

 return ret;
}

int LionHell_openSerial(void){
int fd; // file description for the serial port

fd = open("/dev/ttyUSB0", O_RDWR | O_NOCTTY | O_NDELAY);

if(fd == -1) // if open is unsucessful
{

//perror("open_port: Unable to open /dev/ttyS0 - ");
printf("open_port: Unable to open /dev/ttyUSB0. \n");

}
else
{

fcntl(fd, F_SETFL, 0);
printf("port is open.\n");

}

return(fd);
} //open_port

int LionHell_configSerial(int fd) // configure the port
{

struct termios port_settings; // structure to store the port settings in
memset(&port_settings,0,sizeof(port_settings));
cfsetispeed(&port_settings, B57600); // set baud rates
cfsetospeed(&port_settings, B57600);

/*
port_settings.c_cflag &= ~PARENB; // set no parity, stop bits, data bits
port_settings.c_cflag &= ~CSTOPB;
port_settings.c_cflag &= ~CSIZE;
port_settings.c_cflag |= CS8;

*/

port_settings.c_iflag=0;
port_settings.c_oflag=0;
port_settings.c_cflag=CS8|CREAD|CLOCAL; // 8n1, see termios.h for more information
port_settings.c_lflag=ICANON;//original: 0 , others: ICANON
port_settings.c_cc[VMIN]=255; //was 1 //line length is 75
port_settings.c_cc[VTIME]=5;

tcsetattr(fd, TCSANOW, &port_settings); // apply the settings to the port
return(fd);

} //configure_port

Plugin: LionHell_robot.so

Filename: LionHell_robot.h

#include <libplayercore/playercore.h>

class LionHell_robot : public ThreadedDriver{
private:

// My position3d interface
player_devaddr_t my_position3d_addr;
// My ranger interface
player_devaddr_t my_ranger_addr;

// Address of and pointer to the position3d device to which I'll subscribe
player_devaddr_t position3d_addr;

Text 4: Robot Plugin
Code

C++ Code

98

Device* position3d_dev;

// Address of and pointer to the ranger device to which I'll subscribe
player_devaddr_t ranger_addr;
Device* ranger_dev;

//My Ranger Interface data
player_ranger_data_range_t ranger_data_range; //ranger ranges
player_ranger_geom_t ranger_data_geom; //ranger geom
player_position3d_data_t position3d_data_state; //position3d state

/* FUNCTIONS */

//Publish state data .
void PutData (void) ;
//Update my data
void update_position3d_state(void* data);
void update_ranger_range(void* data);
void update_ranger_geom(void* data);

public:
LionHell_robot(ConfigFile *cf, int section);
~LionHell_robot(void);

//Thread Life-Cycle
virtual void Main();
virtual int MainSetup();
virtual void MainQuit();

//Message Handling

virtual int ProcessMessage(QueuePointer & resp_queue,
 player_msghdr * hdr,
 void * data);

//virtual int ProcessMessage(MessageQueue* queue, player_msghdr* msghdr, void* data);
};

Filename: LionHell_robot.cpp

#include <LionHell_robot.h>
#include <iostream>

LionHell_robot::LionHell_robot(ConfigFile *cf, int section)
: ThreadedDriver(cf, section)

{

// Create my position3d interface
if (cf->ReadDeviceAddr(&(this->my_position3d_addr), section,

 "provides", PLAYER_POSITION3D_CODE, -1, NULL) != 0){
this->SetError(-1);
return;

}
if (this->AddInterface(this->my_position3d_addr)){

this->SetError(-1);
return;

}

// Create my ranger interface
if (cf->ReadDeviceAddr(&(this->my_ranger_addr), section,

 "provides", PLAYER_RANGER_CODE, -1, NULL) != 0){
this->SetError(-1);
return;

}
if (this->AddInterface(this->my_ranger_addr)){

this->SetError(-1);
return;

}

// Find out which position3d I'll subscribe to
if (cf->ReadDeviceAddr(&(this->position3d_addr), section,

 "requires", PLAYER_POSITION3D_CODE, -1, NULL) != 0)

99

{
this->SetError(-1);
return;

}

// Find out which ranger I'll subscribe to
if (cf->ReadDeviceAddr(&(this->ranger_addr), section,

 "requires", PLAYER_RANGER_CODE, -1, NULL) != 0)
{

this->SetError(-1);
return;

}

//prepare data
memset(&ranger_data_range, 0, sizeof(ranger_data_range));
ranger_data_range.ranges_count = 4;
ranger_data_range.ranges = new double[ranger_data_range.ranges_count];
for(unsigned int i = 0; i < ranger_data_range.ranges_count; i++){

ranger_data_range.ranges[i] = -1;
}
memset(&ranger_data_geom, 0, sizeof(ranger_data_geom));
memset(&position3d_data_state, 0, sizeof(position3d_data_state));

puts("LionHell_robot instance Constructed");
}

LionHell_robot:: ~LionHell_robot(void)
{

std::cout<<std::endl<<"LionHell_robot instance Destructed"<<std::endl;
}

int LionHell_robot::MainSetup(){
puts("LionHell_robot driver initialising");

// Subscribe to the position3d device
if(!(this->position3d_dev = deviceTable->GetDevice(this->ranger_addr)))
{

PLAYER_ERROR("unable to locate suitable position3d device");
return(-1);

}
if(this->position3d_dev->Subscribe(this->InQueue) != 0)
{

PLAYER_ERROR("unable to subscribe to position3d device");
return(-1);

}

// Subscribe to the ranger device
if(!(this->ranger_dev = deviceTable->GetDevice(this->ranger_addr)))
{

PLAYER_ERROR("unable to locate suitable ranger device");
return(-1);

}
if(this->ranger_dev->Subscribe(this->InQueue) != 0)
{

PLAYER_ERROR("unable to subscribe to ranger device");
return(-1);

}

// Here you do whatever else is necessary to setup the device, like open and
// configure a serial port.

puts("LionHell_robot driver ready");
return(0);

}

void LionHell_robot::MainQuit(){
puts("Shutting LionHell_robot driver down");

// Unsubscribe from the position3d
this->position3d_dev->Unsubscribe(this->InQueue);

// Unsubscribe from the ranger
this->ranger_dev->Unsubscribe(this->InQueue);

// Here you would shut the device down by, for example, closing a
// serial port.

}

void LionHell_robot::Main(void){
while(1){

100

pthread_testcancel();
std::cout<<std::endl<<"Main"<<std::endl;
ProcessMessages();
PutData();
usleep(10000);

}
}

void LionHell_robot::PutData (void){
std::cout<<std::endl<<"PutData"<<std::endl;
this->Publish(this->my_ranger_addr,

 PLAYER_MSGTYPE_DATA, PLAYER_RANGER_DATA_RANGE,
 (void*)&ranger_data_range, sizeof(ranger_data_range), NULL);

this->Publish(this->my_ranger_addr,
 PLAYER_MSGTYPE_DATA, PLAYER_RANGER_DATA_GEOM,
 (void*)&ranger_data_geom, sizeof(ranger_data_geom), NULL);

this->Publish(this->my_position3d_addr,
 PLAYER_MSGTYPE_DATA, PLAYER_POSITION3D_DATA_STATE,

 (void*)&position3d_data_state, sizeof(position3d_data_state), NULL);
puts("Publish done");

}

int LionHell_robot::ProcessMessage(QueuePointer & resp_queue,
 player_msghdr * hdr,
 void * data)
{
 // Handle new RANGE data from subscribed RANGER interface
 if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_DATA, PLAYER_RANGER_DATA_RANGE,
 this->ranger_addr)){

update_ranger_range(data);
return(0);

 }
 // Handle new GEOM data from subscribed RANGER interface
 if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_DATA, PLAYER_RANGER_DATA_GEOM,
 this->ranger_addr)){

update_ranger_geom(data);
 return(0);
 }
 // Handle new STATE data from subscribed POSITION3D interface
 if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_DATA, PLAYER_POSITION3D_DATA_STATE,
 this->ranger_addr)){

this->update_position3d_state(data);
 return(0);
 }
 if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ, PLAYER_RANGER_REQ_GET_GEOM,
 this->ranger_addr)){

puts("RANGER GEOM REQ RECVD");
 return(0);
 }
 if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ, PLAYER_RANGER_REQ_GET_CONFIG,
 this->ranger_addr)){

puts("RANGER GET_CONFIG REQ RECVD");
 return(0);
 }
 if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ, PLAYER_RANGER_REQ_SET_CONFIG,
 this->ranger_addr)){

puts("RANGER SET_CONFIG REQ RECVD");
 return(0);
 }
 if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ, PLAYER_RANGER_REQ_POWER,
 this->ranger_addr)){

puts("RANGER POWER REQ RECVD");
 return(0);
 }
 if(Message::MatchMessage(hdr, PLAYER_MSGTYPE_REQ, PLAYER_RANGER_REQ_INTNS,
 this->ranger_addr)){

puts("RANGER INTNS REQ RECVD");
 return(0);
 }
 // Tell the caller that you don't know how to handle this message
 return(-1);
}

void LionHell_robot::update_position3d_state(void* data){
this->position3d_data_state.pos.px = ((player_position3d_data_t*)data)->pos.px;
this->position3d_data_state.pos.py = ((player_position3d_data_t*)data)->pos.py;
this->position3d_data_state.pos.pz = ((player_position3d_data_t*)data)->pos.pz;
this->position3d_data_state.pos.proll = ((player_position3d_data_t*)data)->pos.proll;
this->position3d_data_state.pos.ppitch = ((player_position3d_data_t*)data)->pos.ppitch;

101

this->position3d_data_state.pos.pyaw = ((player_position3d_data_t*)data)->pos.pyaw;
this->position3d_data_state.vel.px = ((player_position3d_data_t*)data)->vel.px;
this->position3d_data_state.vel.py = ((player_position3d_data_t*)data)->vel.py;
this->position3d_data_state.vel.pz = ((player_position3d_data_t*)data)->vel.pz;
this->position3d_data_state.vel.proll = ((player_position3d_data_t*)data)->vel.proll;
this->position3d_data_state.vel.ppitch = ((player_position3d_data_t*)data)->vel.ppitch;
this->position3d_data_state.vel.pyaw = ((player_position3d_data_t*)data)->vel.pyaw;
this->position3d_data_state.stall = ((player_position3d_data_t*)data)->stall;

};
void LionHell_robot::update_ranger_range(void* data){

this->ranger_data_range.ranges_count = ((player_ranger_data_range_t*)data)->ranges_count;
for(unsigned int i = 0 ; i < this->ranger_data_range.ranges_count; i++){

this->ranger_data_range.ranges[i] = ((player_ranger_data_range_t*)data)->ranges[i];
}

}
void LionHell_robot::update_ranger_geom(void* data){

this->ranger_data_geom.pose.px = ((player_ranger_geom_t*)data)->pose.px;
this->ranger_data_geom.pose.py = ((player_ranger_geom_t*)data)->pose.py;
this->ranger_data_geom.pose.pz = ((player_ranger_geom_t*)data)->pose.pz;
this->ranger_data_geom.pose.proll = ((player_ranger_geom_t*)data)->pose.proll;
this->ranger_data_geom.pose.ppitch = ((player_ranger_geom_t*)data)->pose.ppitch;
this->ranger_data_geom.pose.pyaw = ((player_ranger_geom_t*)data)->pose.pyaw;
this->ranger_data_geom.size.sw = ((player_ranger_geom_t*)data)->size.sw;
this->ranger_data_geom.size.sl = ((player_ranger_geom_t*)data)->size.sl;
this->ranger_data_geom.size.sh = ((player_ranger_geom_t*)data)->size.sh;

};

Driver* LionHell_robot_Init(ConfigFile* cf, int section){
std::cout<<std::endl<<"LionHell_robot - Init"<<std::endl;
return (Driver*) (new LionHell_robot(cf, section));

}

void LionHell_robot_Register(DriverTable* table)
{
 table->AddDriver("LionHell_robot", LionHell_robot_Init) ;
}

extern "C" {
int player_driver_init(DriverTable* table){

puts("doing player_driver_init");
PLAYER_MSG0 (1, "Registering LionHell_robot driver.");
LionHell_robot_Register(table);
return 0 ;

}
}

Configuration Files

This files are used as parameters of player command, that execute the Player server.

Example:
$ > player LionHell_robot.cfg

Configuration file for LionHell_pos.so plugin
Filename: LionHell_pos.conf
driver
(
 name "LionHell_pos"
 provides ["position3d:0"]
 plugin "libplayerLionHell_pos"
)

Configuration file for LionHell_ranger.so plugin
Filename: LionHell_ranger.conf

Text 5: Position Plugin -
Configuration File
Example

C++ Code

102

driver
(
 name "LionHell_ranger"
 provides ["ranger:0"]
 plugin "libplayerLionHell_ranger"
)

Configuration file for LionHell_robot.so plugin
Filename: LionHell_robot.conf
driver
(
 name "LionHell_ranger"
 provides ["ranger:0"]
 plugin "libplayerLionHell_ranger"
)

driver
(
 name "LionHell_pos"
 provides ["position3d:0"]
 plugin "libplayerLionHell_pos"
)

driver
(

name "LionHell_robot"
plugin "libplayerLionHell_robot"
provides ["position3d:1" "ranger:1"]
#provides ["position3d:1"]
requires ["position3d:0" "ranger:0"]
#requires ["position3d:0"]

)

Text 6: Ranger Plugin -
Configuration File
Example

C++ Code

Text 7: Robot Plugin -
Configuration File
Example

C++ Code

	Preface
	Abstract
	Estratto in italiano
	Introduction
	Chapter 1 State of the Art
	1.1 Three Legs wheg
	1.2 Single Leg wheg
	1.3 Curved Leg wheg
	1.4 Star wheg

	Chapter 2 Simulations and Model Design
	2.1 First simulation
	2.2 Longer body, better results
	2.3 Obstacles big like robot
	2.4 New model

	Chapter 3 Real Robot Implementation
	Chapter 4 Hardware
	4.1 Servomotors
	4.2 Control Board
	4.3 Sensors
	4.3.1 Infrared Rangefinders
	4.3.2 3-axis Accelerometer

	4.4 Power

	Chapter 5 Firmware
	5.1 Read and Communicate Sensors Data
	5.1.1 Reading Sensors
	5.1.2 Communicating sensor data

	5.2 Set Speed According to Body Inclination
	5.3 Main Behaviors
	5.3.1 Jump Down Behavior
	5.3.2 Terrain Check Behavior
	5.3.3 Approaching Obstacle Behavior
	5.3.4 Adapt to Floor Behavior

	5.4 Walking Actions
	5.4.1 Go Backward
	5.4.2 Turn Left
	5.4.3 Turn Right
	5.4.4 Restart Walking
	5.4.5 Stop Walking

	5.5 Tail Control Section
	5.5.1 Tail Behaviors Manager
	5.5.2 Tail Behavior 1: Avoiding Falling Backward
	5.5.3 Tail Behavior 2: Climbing

	5.6 Flow Chart

	Chapter 6 Software
	6.1 Player framework
	6.2 Serial Connection
	6.3 Three Plugins
	6.3.1 Position plugin
	6.3.2 Ranger Plugin
	6.3.3 Robot Plugin

	Chapter 7 Experiments
	7.1 Walking upstairs indoor
	7.2 Overcoming a big obstacle indoor
	7.3 Climbing over a big obstacle outdoor
	7.4 Overcoming a small obstacle outdoor
	7.5 Walking up stairs outdoor
	7.6 Walking down obstacle outdoor
	7.7 Walking uphill outdoor
	7.8 Walking on rough terrain
	7.9 Walking on natural terrain
	7.10 Walking on wild terrain

	Chapter 8 Conclusions and Future Work
	Bibliography
	Web Resources
	Appendix A : Wheg Mechanical Drawing
	Appendix B : Firmware
	Appendix C : Software

