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Abstract

A computational study of non-classical aileron buzz is presented, which focuses
on the modelling of the aerodynamics. To this end, a high-fidelity CFD model is
employed and a reduced-order aerodynamic model is developed. The aeroelas-
tic model is based on a two-dimensional wing section, in which a rigid aileron
is integrated without gap. As far as the CFD-based calculations are concerned,
the flow model of the Euler equations is chosen and it is coupled to the dynam-
ics equation of the rigid rotation of the aileron, which are both implemented in
the solver AeroFoam. The CFD-based direct simulations point out that the nu-
merical solver is a reliable means for the analysis of aileron buzz, however care
must be taken with respect to the grid details that might influence the solution.
For instance, mesh refinement and size are crucial to obtain reliable results and
the choice between a smoothed and non-smoothed grid has an influence on the
system response, both quantitatively and qualitatively. As a matter of fact, grid
details affect the simulation of shock dynamics, which is the driving mechanism
for non-classical aileron buzz. On the other hand, a linear low-order model for
the aerodynamics is developed, leveraging the idea of a parallel of second-order
sub-systems. For the calculation of the model parameters a global optimization
strategy is chosen after a brief comparison with other methods; such a method is
based on a genetic algorithm. From the reduced-order model of the aerodynamic
a low-order aeroelastic system is determined, which proves to be effective for a
limited range of conditions. In fact, the linearity assumption is restrictive yet nec-
essary, because it represents the first step in the development of a higher-fidelity
model. Therefore, the work provides further insight in the numerical simulation
of shock-dominated instability aeroelastic phenomena and blazes a trail for the
development of a low-order model for the analysis of non-classical aileron buzz.

Keywords: aileron buzz, non-classical, CFD aeroelastic simulation, aerody-
namic reduced-order model, AeroFoam
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Sommario

Nel presente lavoro è presentato uno studio numerico del buzz di alettone di tipo
non classico, con particolare attenzione alla modellazione dell’aerodinamica. A
questo scopo viene impiegato un accurato codice CFD e allo stesso tempo viene
sviluppato un modello ridotto dell’aerodinamica. Il modello aeroelastico è basato
su una sezione bidimensionale di ala, all’interno della quale è integrato un alettone
rigido senza fessura. Per quanto riguarda le simulazioni CFD, vengono scelte le
equazioni di Eulero come modello fluido, le quali sono accoppiate all’equazione
dinamica della rotazione rigida dell’alettone e implementate nel solutore prescelto
AeroFoam. Tali simulazioni CFD mostrano che il solutore numerico è un mezzo
affidabile per l’analisi del buzz di alettone, ciononostante occorre prestare atten-
zione ai dettagli della griglia di calcolo che possono influenzare la soluzione.
Il raffinamento del dominio di calcolo e la sua dimensione, ad esempio, sono
fondamentali per ottenere risultati affidabili e la scelta tra una griglia regolar-
izzata e non regolarizzata a cavallo della cerniera dell’alettone ha un’influenza
sulla risposta del sistema, sia qualitativamente che quantitativamente. Di fatto i
parametri della griglia di calcolo alterano la simulazione della dinamica dell’onda
d’urto, che è il meccanismo chiave del buzz di alettone non classico. In oppo-
sizione, viene sviluppato un modello lineare di ordine ridotto dell’aerodinamica,
sfruttando l’idea di un parallelo tra sotto-sistemi del second’ordine. Per il calcolo
dei parametri del modello viene scelta una strategia di ottimizzazione globale a
seguito di un confronto con altri metodi tradizionali; tale metodo è basato su un
algoritmo genetico. A partire dal modello ridotto dell’aerodinamica, viene ot-
tenuto il sistema aeroelastico di ordine ridotto, il quale risulta essere efficace per
un intervallo limitato di condizioni. Infatti, l’ipotesi di linearità è restrittiva seppur
necessaria, perchè rappresenta il primo passo nello sviluppo di modelli più accu-
rati. Pertanto, il lavoro fornisce interessanti spunti nel campo della simulazione
numerica di fenomeni di instabilità aeroelastica dominati da onde d’urto e pone le
basi per lo sviluppo di modelli di ordine ridotto per l’analisi del buzz di alettone
di tipo non classico.

Parole chiave: buzz di alettone, tipo non classico, simulationi aeroelastiche con
CFD, modello ridotto aerodinamico, AeroFoam
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Descrizione dell’attività

Si propone di seguito una breve descrizione del lavoro svolto.

Introduzione

Uno dei regimi di volo più critici per le analisi aeroelastiche è il campo transon-
ico, nel quale si trovano spesso a volare aerei sia civili che militari. Limitazioni
dell’inviluppo di volo derivano da instabilità dinamiche che nascono dalla mutua
interazione tra forze elastiche, inerziali e aerodinamiche, come il flutter, il buffet-
ing e i fenomeni di ciclo limite, che sono potenzialmente pericolosi per l’integrità
e la sicurezza degli aeromobili. Tra questi fenomeni si trova il buzz di alettone,
un’instabilità dinamica ad un grado di libertà che comporta oscillazioni autoecci-
tate della rotazione dell’alettone attorno al suo asse di cerniera. Il moto armonico
della superficie di controllo è causato principalmente dalla dinamica delle intense
onde d’urto e dagli effetti di interazione tra l’urto e lo strato limite. Prove sper-
imentali e in volo condotte negli anni 40 e 50 hanno permesso di ipotizzare che
il fenomeno potesse essere associato ai differenti regimi di moto, dipendendo dal
numero di Mach, dalla sezione dell’ala e dall’angolo di incidenza. A differenza di
altre instabilità ad un grado di libertà, il buzz di alettone spesso culmina con oscil-
lazioni divergenti di ampiezza estremamente elevata, raggiunte nel giro di pochi
cicli e che possono portate a danni permanenti. Un esempio della pericolosità del
buzz è un incidente avvenuto nel 2001 a bordo di un Learjet 25D, un business jet
ad alte prestazioni, il quale ha incontrato un buzz di equilibratore che ha compro-
messo la sicurezza del volo. Oltre a problemi di sicurezza di volo, l’instabilità di
buzz rappresenta un potenziale pericolo per i componenti della catena dei comandi
di volo. Esso infatti è oggetto di investigazione durante la fase di certificazione
dei velivoli e qualora causasse problemi di fatica ai componenti dell’attuazione
dei comandi di volo, si vedrebbe necessaria una sua soppressione con sistemi di
controllo attivo. Di conseguenza, sviluppare e migliorare gli strumenti di analisi
per lo studio del buzz è di interesse durante la fase preliminare del progetto di un
velivolo, in modo da stimare gli effetti di tale instabilità e definire strategie per
evitarla. Inoltre, il fenomeno ha anche interesse teorico, dal momento che una

5



teoria comprensiva del problema non è mai stata raggiunta.

Oltre agli studi in galliera del vento, un’opzione percorribile è quella di analiz-
zare il fenomeno tramite la modellazione numerica. A tal proposito, è possibile ri-
correre agli strumenti della Fluidodinamica Computazione (CFD). Di fatto, le non
linearità legate all’aerodinamica del buzz di alettone richiedono tecniche di analisi
raffinate e di maggior qualità. In generale, infatti, gli strumenti lineari utilizzati
in ambito industriale, basati su modelli di flusso a potenziale, non sono in grado
di fornire stime accurate in regime transonico. Invece, i codici CFD sono sicu-
ramente più accurati nell’affrontare problemi caratterizzati da forti nonlinearità e
sono stati ampiamente sviluppati per calcoli aeroservoelastici. In tal senso i mod-
elli di calcolo CFD vengono accoppiati con opportuni modelli strutturali del veliv-
olo. Questa branca della meccanica delle strutture è spesso definita Aeroelasticità
Computazionale e rappresenta un campo di ricerca altamente interdisciplinare. In
questo contesto la modellazione numerica deve affrontare diverse difficoltà per-
chè, oltre al costo computazionale delle singole soluzioni aerodinamiche e strut-
turali, l’accoppiamento della soluzione aeroelastica richiede tecniche in grado di
trattare contorni e griglie mobili e poter applicare l’interfaccia aeroelastica. Oltre
a questo, le non linearità del problema comportano che la soluzione sia forte-
mente affetta da qualsiasi parametro del solutore numerico, come la dimensione
del domino di calcolo e il suo raffinamento, oltre alla descrizione geometrica.
Tuttavia, quando vengono eseguite queste simulazioni accoppiate, la soluzione
CFD non stazionaria richiede generalmente un tempo di calcolo maggiore ad ogni
passo temporale, mentre il solutore strutturale è più veloce. Perciò, se si riuscisse
a sviluppare un accurato ed efficiente sostituto del solutore CFD, la predizione
dell’instabilità aeroelastica sarebbe molto più efficiente dal punto di vista com-
putazionale. I modelli in grado di sostituire un sistema dinamico sono definiti in
inglese Reduced-Order Models (ROM), ovvero modelli di ordine ridotto, e rap-
presentano un’interessante alternativa alle simulazione CFD, non solo per quelle
applicazioni numeriche dove vengono provate numerose condizioni (ad esempio,
ottimizzazioni multi-obiettivo), ma anche per l’analisi delle caratteristiche essen-
ziali di un sistema dinamico complesso. Ad oggi esistono una grande varietà
di metodi in grado di sviluppare modelli efficienti che si sostituiscano agli algo-
ritmi CFD. Una possibilità è quella di definire un modello matematico di ordine
ridotto per le relazioni ingresso/uscita della soluzione CFD instazionaria, utiliz-
zando la teoria dei sistemi. Concettualmente, si potrebbe pensare al solutore in-
stazionario CFD come ad un sistema dinamico che traduce il moto della strut-
tura in carichi aerodinamici. Un’efficiente tecnica per ottenere i modelli ridotti è
l’identificazione dei sistemi, un processo che costruisce un modello matematico
del sistema dinamico basato su un insieme di dati misurati dallo stesso. Questa
metodologia è usata per identificare i parametri del modello che meglio approssi-
mano l’insieme di dati registrati dal sistema dinamico. Il risultato è un modello
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algebrico che rappresenta una trasformazione matematica tra gli ingressi e le us-
cite del sistema dinamico.

Il presente lavoro presenta e discute la modellazione numerica del buzz di alet-
tone. L’attenzione è posta sulla rappresentazione del sotto-sistema aerodinamico,
la quale è svolta in due differenti modi: da un lato è presentato un metodo per
l’analisi del buzz di alettone basato su un codice CFD, dall’altro viene sviluppato
un modello ridotto, del quale è studiata l’applicabilità.

Aileron buzz
Il fenomeno di buzz di alettone è un’instabilità dinamica che comporta oscillazioni
armoniche della superficie di controllo. Varie tipologie di buzz sono state osser-
vate durante le campagne di prove sperimentali e di prove in volo effettuate nei
primi decenni dalla scoperta del fenomeno. In particolare, il buzz è solitamente
classificato in tre tipologie. Il primo tipo di buzz o buzz di tipo A è principlamente
causato dall’interazione dello strato limite con le onde d’urto che si muovono pe-
riodicamente rimanendo sempre davanti all’asse di cerniera della superficie di
controllo e causando la separazione dello strato limite. Il secondo tipo di buzz o
buzz non classico ha invece una dipendenza più immediata dal movimento delle
onde d’urto che sono posizionate sulla superficie di controllo o che si muovono a
cavallo dell’asse di cerniera. La viscosità in questo caso ha effetti secondari. In-
fine, il terzo tipo di buzz o buzz di tipo C riguarda l’oscillazione armonica che si
instaura quando le onde d’urto si trovano al bordo d’uscita della superficie di con-
trollo. Si evince quindi da questa breve descrizione che l’analisi della posizione e
della dinamica delle onde d’urto sia cruciale nella modellazione del buzz.

Modello CFD
Il modello aeroelastico basato sul codice CFD è fondato sull’implementazione
numerica delle equazioni di Eulero bidimensionali ed un modello rigido per la
superficie mobile. Le ragioni che muovono questa scelta sono legate alla natura
del fenomeno. Per quanto riguarda il modello fluido, il buzz non classico è in-
fatti un fenomeno dominato dalla dinamica delle onde d’urto, piuttosto che dagli
effetti viscosi dell’interazione urto-strato limite e pertanto il modello inviscido
delle equazioni di Eulero è appropriato per la simulazione. Inoltre, essendo il
buzz associato ad un solo grado di libertà che non interagisce significativamente
con i gradi di libertà flessibili della struttura alare, la scelta di una superficie di
controllo rigida è opportuna per la corretta rappresentazione del fenomeno. In-
oltre, quest’ultima è libera di ruotare attorno al suo asse di cerniera senza ef-
fetti di cedevolezza o di dissipazione. L’accoppiamento debole tra l’aerodinamica

7



e la struttura è ottenuto mediante due differenti approcci, i quali portano a di-
verse descrizioni del dettaglio geometrico della cerniera dell’alettone. Il solutore
AeroFoam è usato per la simulazione diretta del problema aeroelastico e diverse
griglie di calcolo con raffinamenti opportuni sono utilizzati. In particolare, i risul-
tati delle simulazioni numeriche dirette mostrano una sensibilità della risposta
del sistema aeroelastico rispetto al raffinamento della griglia di calcolo e alla sua
dimensione, ma anche rispetto al dettaglio geometrico dell’integrazione della su-
perficie di controllo all’interno dell’ala. Il motivo di ciò è legato al ruolo pre-
dominante che riveste nel fenomeno aeroelastico la dinamica delle onde d’urto, la
quale richiede una accurata rappresentazione affinchè sia correttamente catturata.
Inoltre, l’impostazione numerica nel suo complesso risulta un affidabile strumento
per la predizione della stabilità del buzz di alettone.

Modello ROM

I risultati numerici forniscono informazioni per lo sviluppo di un modello ridotto
del sotto-sistema aerodinamico. Infatti, per il calcolo del modello ridotto la tec-
nica dell’identificazione dei sistemi è utilizzata, la quale prevede una fase speri-
mentale in cui vengono raccolti i dati relativi all’ingresso e all’uscita del sistema
ed una fase di calcolo dei parametri del modello. La fase di raccolta dei dati
nel caso di identificazione numerica è eseguita tramite una simulazione CFD a
rotazione imposta. La rotazione, ingresso del sistema, è scelta opportunamente
in modo da eccitare il sistema nella banda di frequenze di interesse, ma di non
forzarlo eccessivamente. Per il problema in esame è scelto uno scalino raccordato.
In seguito, il modello deve essere definita, il quale è costruito sull’assunzione di
linearità del sistema. Inoltre, la struttura del modello è basata sull’idea di una
“scatola grigia”, ovvero un modello che contenga alcune informazioni sul sistema
reale. In particolare, nel caso in esame sono state inserite diverse caratteristiche
del sistema aerodinamico osservate in fase di simulazione diretta, quali la pro-
prietà di asintotica stabilità del sistema e il carattere oscillatorio della risposta.
L’identificazione dei parametri del modello è invece ottenuta per mezzo di una tec-
nica di ottimizzazione globale, ovvero un metodo genetico appositamente costru-
ito e adeguato al problema. L’identificazione del sotto-sistema aerodinamico si di-
mostra efficace e capace di raggiunge risultati affidabili, mentre il modello ridotto
è capace di predire l’instabilità e rappresentare i risultati del modello aerodinam-
ico basato sul codice CFD, sebbene con un intervallo di applicabilità più limitato.
Le problematiche del modello sono principalmente ascrivibili all’assunzione di
linearità, la quale limita la rappresentazione effettiva dello scambio energetico tra
la struttura e l’aerodinamica.
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Sviluppi futuri
Il primo sviluppo futuro di questo lavoro è l’implementazione di un modello ri-
dotto non lineare: le basi di questo modello sono già state poste nel presente la-
voro e si ritiene che la semplice adozione di un sostituto polinomiale dell’ingresso
sarebbe sufficiente a cogliere il comportamento non lineare, predicendo perciò
con migliore accuratezza il ciclo di buzz. A partire da ciò, si potrebbe ricostruire
con tecniche simili a quelle utilizzate in questo lavoro il legame tra i parametri
del modello e il numero di Mach o l’incidenza di volo. La realizzazione nello
spazio degli stati poi rende più facile l’implementazione di un’eventuale strate-
gia di controllo del fenomeno. Riguardo al modello CFD, possibili lavori futuri
possono focalizzarsi nell’analisi tridimensionale viscosa del buzz. Come già in-
trodotto, considerando gli effetti tridimensionali e la viscosità si avrà una sicura
influenza sul punto di comparsa del buzz, il quale sarà spostato a differenti nu-
meri di Mach ma è probabile che le principali caratteristiche delineate in questo
lavoro rimangano tali. L’inclusione di questi aspetti porta da un lato a simulazioni
numeriche più accurate e dall’altro porta ad arricchire i modelli di ordine ridotto.
Inoltre, si potrebbe anche studiare il buzz di tipo A e le sue differenze anche in
termini di modello ridotto rispetto al buzz non classico. In conclusione, il lavoro
fornisce interessanti spunti nel campo della simulazione numerica di fenomeni di
instabilità aeroelastica dominati da onde d’urto e pone le basi per lo sviluppo di
modelli di ordine ridotto per l’analisi del buzz di alettone di tipo non classico.
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Introduction

One of the most challenging flows for aeroelastic analysis is the transonic speed
range, in which civil and military aircraft often fly. Flight envelope limitations
regarding the stability of wings in such regime are usually caused by dynamic
instabilities arising from the mutual interaction among elastic, inertial and aero-
dynamic forces, such as flutter, buffeting and limit-cycle-oscillations phenomena,
which are potentially dangerous for the integrity and safety of the aircraft. Among
them is aileron buzz, a one-degree-of-freedom flutter involving self-excited oscil-
lations of aileron rotation about its hinge. The sustained, harmonic behaviour
of the control-surface is mainly caused by the strong shock wave dynamics and
shock-boundary layer effects. Experimental and flight tests in the 40s and 50s
suggested that the phenomenon could be associated to different regimes of flow,
depending on the Mach number, wing section and angle of attack. Unlike other
single-degree-of-freedom instabilities, aileron buzz often results in explosive os-
cillations of very large amplitudes within a few cycles, that lead to permanent
damages. An example of the detrimental action of control-surface buzz is an
incident occurred in 2001 on a Learjet 25D, a high-speed business jet aircraft,
which encountered elevator buzz during a flight test [1]. The instability caused
the total loss of the elevators and, although the experienced crew managed to es-
tabilish pitch control by using horizontal stabilizer pitch trim, the jet aircraft was
destroyed on impact with terrain while landing. Beyond flight safety, which is
not greatly compromised in modern airliners thanks to the hydraulically operated
(i.e. very stiff and irreversible) controls, buzz instability still represents a poten-
tial hazard for flight control system components: in fact, fatigue issues might arise
from the high-frequency excitation of the aileron buzz. Hence it is interesting to
develop and improve the analysis tools for the study of buzz at the design stage,
thereby evaluating the effects of the instability and defining ways to avoid them.
In addition, from a theoretical standpoint, the problem is not without interest: a
theoretical treatment is out of reach and the attempted studies based on numerical
and experimental simulations do not provide complete description of the problem.

Beside the experimental testing, a viable option for the analysis is that of the
numerical modelling of the phenomenon. Hence, it is possible to resort on the
Computational Fluid Dynamics (CFD) tools. As a matter of fact, the aerodynamic
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nonlinearities involved in aileron buzz, require finer and higher-quality analysis
techniques. In general, the standard industrial linear tools, based on potential flow
models, are not capable of giving good prediction in transonic regime. Instead,
high-fidelity CFD codes can be very accurate and have been extensively developed
for aeroservoelastic computations. To this end high fidelity Computational Fluid
Dynamics models must be adopted and coupled with proper structural models of
the airplane itself. This branch of continuum mechanics is usually referred to as
Computational Aeroelasticity, a highly interdisciplinary and very active reasearch
field. In such a context the numerical modelling faces several difficulties, because
beyond the computational cost of the aerodynamic and structural solution alone,
the coupling in the aeroelastic solution requires techniques capable of dealing
with moving boundaries, moving grids and aeroelastic interfaces. In addition to
this, the nonlinearity of the problem causes the solution to be greatly affected by
every numerical ingredient, such as mesh size and refinement, as well as by the
geometry description.

Nevertheless, when running these coupled simulations, the unsteady CFD so-
lution usually requires the greatest amount of CPU time at each time step, while
the structural dynamics solver is faster. Thus, if an accurate and efficient sub-
stitute for the CFD solver could be developed, aeroelastic instability predictions
would be much more computationally efficient. Such models are referred to as
Reduced-Order Models and they provide an attractive alternative to CFD not only
for those numerical applications where several conditions are tested (e.g. stability
prediction and multi-objective optimization), but also in the analysis of the essen-
tial features of a complex dynamic system. To date, a variety of methods exists
for developing an efficient surrogate model of a CFD algorithm. A possibility is
to define a mathematical low-order model for the input/output relationship of the
unsteady CFD solution using systems theory. Conceptually, a possible abstrac-
tion of the unsteady CFD solution implemented in an aeroelastic analysis is that
of a dynamic system which maps the motion of the structure into the aerodynamic
loads. An efficient system modeling technique is system identification, which is
a process for obtaining a mathematical model of a dynamic system based on a set
of measured data from the system. This methodology is used to fit the parameters
of a model structure to a set of recorded data from the dynamic system. The result
is an algebraic model that is a mathematical map between the input and the output
of the system.

The current work presents and discusses the numerical modelling of a partic-
ular type of aileron buzz, namely non-classical aileron buzz. The focus is on the
representation of the aerodynamic sub-system in two different ways: on one hand
a CFD-based method for the analysis of the aileron buzz is presented and on the
other a low-order model is developed, based on a reduced-order representation of
the aerodynamics. In particular, in Chapter 1 the phenomenon of interest is pre-
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sented together with a discussion of the main features and difficulties encountered
when dealing with transonic flows. The CFD aerodynamic model is then defined
in Chapter 2, where the governing equations and the numerical implementation
are discussed. Chapter 3 presents the complete aeroelastic model, which is built
on the CFD aerodynamic sub-system and the rigid structural model of the aileron.
Also the numerical integration between the previous two is discussed in detail. In
Chapter 4 a convergence analysis shows how grid refinement affects the aeroe-
lastic response and the effect of the integration of the control-surface in the main
wing on the system response is studied. Finally, Chapter 5 presents the discussion
on the reduced-order model for the aerodynamic sub-system and the resulting
comparison with some benchmark results.
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Chapter 1

Aileron buzz

In the aeroelastic literature, the term aileron buzz is used to denote a single-
degree-of-freedom flutter involving self-excited oscillations of aileron rotation
occurring in transonic and low supersonic flight. The characteristics of such insta-
bilty are strictly tied to the behaviour of the flow in that regime, which typically
involves shock waves dynamics, boundary layer separation and mutual interfer-
ence between the previous two. As a result, a clear understanding of the instability
arising in this regime also requires to analyse the essential features of the aero-
dynamics involved. In particular, the present chapter is divided into two sections:
Section 1.1 presents the aerodynamic phenomena arising in transonic flow over a
non-symmetrical airfoil and in Section 1.2 the general causes, characteristics and
treatments of aileron buzz are discussed.

1.1 Transonic flow
The transonic regime is defined as the range of free stream Mach number, for
which the flow exhibits regions inside the domain with speeds lower, equal to or
higher than the sonic value, i.e. the local speed of sound. As a matter of fact, the
main aspect of transonic flow is the simultaneous occurrence of locally subsonic
and supersonic regions, possibily separated by irreversible phenomena, such as
shock waves. This feature makes it one of the most difficult flow to treat within
the compressible flows, because the governing equations have different natures:
subsonic flows are associated to elliptic equations, while in supersonic flows the
governing equations have hyperbolic features.

Formally, the onset of the transonic regime is usually placed at a particular
Mach number, namely the critical Mach number Mcr, which is defined as the
Mach number for which a point P exists on the upper surface of the airfoil where
the expansion of the flow yields sonic speed, i.e. MP = 1 (Fig. 1.1 (a)). The loca-
tion of point P usually depends on the airfoil geometry and the angle of attack and
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the resulting critical Mach number generally decreases with increasing maximum
thickness of the airfoil or angle of attack. On the other hand, a conventional upper
boundary for the transonic regime doesn’t exist; a typical transonic speed range
for a slender body, such as an airfoil, is 0.8 < M∞ < 1.2.

V∞
P

(a)

V∞

supersonic
bubbleM = 1

(b)

V∞

shock
wave

M > 1

(c)

V∞

M > 1

M > 1

(d)

V∞

M > 1

M > 1

(e)

V∞

M > 1

M < 1

(f)

Figure 1.1: Features of ideal, inviscid flow in transonic and low supersonic regime.

In the transonic regime, different behaviours are detected according to the free
stream Mach number. Here is the evolution of an inviscid and non-conductive
flow over a non-symmetrical airfoil with increasing Mach number:

- At Mach numbers slightly higher than the critical Mach number, close to
point P a region in which the flow is locally supersonic appears, which is
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Aileron buzz

usually referred to as supersonic bubble (see Fig. 1.1 (b) ). The region is sur-
rounded by subsonic flow and it is enclosed by a line with constant pressure
and sonic Mach number, called sonic line. In the rear part of the supersonic
bubble a shock wave might occur. As a matter of fact, the expansion waves
on the upper surface close to the leading edge are mirrored by the sonic line
and after the reflection generate compression waves. In turn, depending on
free stream Mach number, geometry and angle of attack, the compression
waves might come together and merge into a shock wave, as sketched in
Fig. 1.1 (c) .

- With further increase in Mach number the supersonic bubble spreads on
a wider region of the upper surface, thereby yielding a more intense and
rearward shock wave. In addition, another supersonic bubble occurs on the
lower surface (Fig. 1.1 (d)), which rapidly develops and moves aft, until
the associated shock wave reaches the trailing edge of the airfoil. Thus,
depending on the airfoil geometry, there is a restricted range of subsonic
free stream Mach numbers for which the flow is supersonic on the airfoil
(except for a small area close to the leading edge) and both shock waves
occur at the trailing edge (Fig. 1.1 (e)).

- Finally, for supersonic free stream Mach numbers the flow deeply changes:
ahead of the airfoil a detached bow shock wave occurs, after which a small
region of subsonic flow appears close to the airfoil leading edge, as pre-
sented in Fig. 1.1 (f). Everywhere else the flow is supersonic. With increas-
ing Mach number the subsonic region progressively shrinks, but doesn’t
completely disappear, unless the leading edge is sharp.

From this description, it is evident that the transonic speed range is complicated by
the presence of shock waves and simultaneous coexistence of subsonic and super-
sonic condition. However, further nonlinearities arise in this regime due to the role
of viscosity. The interaction between shock waves and boundary layer has several
consequences: the shock wave might change layout, yielding a coalescence wave
called lambda waves, the shock might induce boundary layer separation (Fig. 1.2),
causing shock-induced stall, or the interaction might yield unsteady phenomena
such as buffeting. The mechanism of unsteady shock-boundary layer interaction
is due to a mutual interference. Due to the strong adverse gradient caused by
the shock wave, the flow is likely to transit to turbulent state or separate behind
the shock wave. However, the separated flow changes the pressure field, thereby
decreasing the strength of the shock. The consequent forward movement of the
shock might encourage flow reattachement, which in turn, increasing the pressure
jump across the shock, would close the loop. Clearly, the unsteady interaction be-
tween shock waves and boundary layer causes significant variation in time of the
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aerodynamic loads. Such variation not only affects the airplane rigid movements,
thereby influencing stability and control properties, but also it might couple with
the structure flexibility, yielding instability phenomena, such as transonic flutter.

(a) Lambda wave (b) Shock-induced transition and separation

Figure 1.2: Sketch of typical phenomena of boundary layer and shock wave inter-
action (from Ref. [2]).

In conclusion, transonic regime is dominated by nonlinear pheomena, which
involves shock wave dynamics, shock-induced separation and shock-boundary
layer interaction.

1.2 Aileron buzz
According to Lambourne [3], aileron buzz was first encountered in high-speed
subsonic flight in 1945. During flight testing of the P-80 jet fighter aircraft, aileron
oscillations were detected, ranging from a spasmodic low-amplitude buzz to a mo-
tion so violent that resulted in the permanent damage to the control-surface [4].
Since flight tests proved hazardous, Erickson and Stephenson [5] undertook wind-
tunnel tests of a P-80 half-span wing mounted in the Ames 16-Foot Wind Tun-
nel and concluded that aileron buzz was a one-degree-of-freedom flutter, thereby
excluding the interaction between the aileron and the wing flexible degrees-of-
freedom. In addition, the phenomenon appeared to be associated to the motion
of shock waves to the extent that the fore and aft motion of these shock waves
on the wing surface accompanied the control-surface oscillations. Typically an
oscillating control surface gave rise to an oscillating shock, which in turn pro-
duced an oscillating pressure field resulting in an oscillating control surface that
gave rise to an oscillating shock and so forth. In particular, as confirmed by a
later wind-tunnel investigation by Lambourne [2] the downward movement of the
aileron was accompanied by a rearward movement of the upper shock wave and
a forward movement of the lower shock; on the contrary, with aileron moving
upwards, the shock wave on the upper surface moved fore and the lower shock
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wave moved aft. The cycle obtained in the investigation of buzz for a symmetrical
airfoil is presented in Fig. 1.3.

Figure 1.3: Buzz cycle for a symmetrical airfoil during wind-tunnel investigation
by Lambourne [2].

This coupling between shock motion and aileron deflection is one of the most
essential features of aileron buzz. Another important aspect that was evidenced
by 1940s and 1950s wind-tunnel investigations, is the phase difference between
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the motion of the shock wave and the deflection of the control-surface. The phase
lag is identified with the time lag required for the pressure changes resulting from
the flap motion to propagate and modify the aerodynamic load which drives the
aileron.

(a) Phase lag (from Ref. [2]) (b) Buzz boundary (from Ref. [5])

Figure 1.4: Typical features of aileron buzz.

Furthermore, wind-tunnel investigations also suggested that the phenomenon could
be associated to different regimes of flow, depending on the Mach number, wing
section and angle of attack. In particular, for a given wing the region in which
buzz is likely to occurr is described in the plane identified by Mach number and
angle of attack and it is such that with increasing incidence the Mach number
for buzz onset decreases. In Ref. [3], Lambourne proposed a classification into
three types, namely Type A, Type B and Type C, sketched in Fig. 1.5 from top to
bottom.

(A) The first type comprises aileron oscillation phenomena encountered at Mach
numbers slightly higher than the critical Mach number, in which shock
waves stand ahead of the hinge line. In this case the flow on the entire
control-surface is subsonic and buzz is driven by shock-boundary layer un-
steady interaction and shock-induced separation ahead of the control sur-
face.

(B) At higher Mach numbers the upper and lower shock waves move aft, as
dicussed in Section 1.1. When one or both shock waves occur between the
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Figure 1.5: Classification of aileron buzz (figure from Ref. [3]).

hinge line and the aileron trailing edge and keep moving fore and aft, the
instability is labelled as Type B buzz. In this condition the flow over the
control-surface is mixed supersonic and subsonic.

(C) With further increase in Mach numbers the flow is supersonic over the en-
tire control surface and the main shock waves occur at the aileron trailing
edge. This kind of buzz is labeled as Type C and doesn’t seem to involve
shock-boundary layer interaction. In general, this particular type of buzz is
associated to the negative damping predicted by potential-flow theories for
an infinitely thin airfoil pitching about its leading edge for Mach numbers
between 1 and 1.4. Although this theory might offer a possible explanation
of Type C buzz, it should be noted that it has serious limitations, due to
inability to treat shock dyamics, non-null angle of attack and aileron thick-
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ness.

With respect to Type B, Lambourne explained that boundary layer separation was
observed, but it didn’t appear to be a driving mechanism. A later work by Bendik-
sen [6] supported the idea that the main drive of aileron buzz in such condition
was the dynamics of shock waves moving on the aileron surfaces. After that,
Type B buzz was labelled nonclassical buzz, in order to emphasize the minor role
of boundary layer separation and shock-boundary layer interaction, which are in-
stead pivotal in Type A mechanism. However, viscosity has an indirect effect
in the non-classical aileron buzz. In particular, considering an airfoil operating
at a small angle of attack at Mach number slightly higher than the critical Mach
number Mcr, the fore and aft movement of the upper shock wave is considerably
slowed down, due to shock-induced boundary layer separation. As a result, with
increasing Mach number (i.e., increasing shock strength) the viscous effects and
the mutual shock-boundary layer interference would inhibit the shock motion,
whereas an inviscid model would predict growing amplitude in the shock wave
motion.

Despite a number of wind tunnel studies already mentioned, a complete the-
ory for control-surface buzz was never developed, especially for Type B buzz.
The phenomenon usually receives minor discussion and it is generally grouped
with "other aeroelastic phenomena", for which there are not theories able to suc-
cessfully predict flutter boundaries. Because a theoretical treatment appears to be
out of reach, it is necessary to resort on experimental studies or direct numerical
simulations for analysis. With regard to the latter, few such numerical simulations
have been attempted in the past, among which the work by Steger and Bailey
[7], Bendiksen [6], Howlett [8] and the numerical investigation of rudder buzz
by Fulgsang et al. [9]. The reason for the limited interest in aileron buzz is that
the phenomenon causes limited practical problems in modern aircraft that use hy-
draulically operated (i.e. very stiff and irreversible) controls. However, fatigue
issues in the components of the flight control system might arise and are criti-
cal. Also, smaller aircraft such as business jet aicraft proved to suffer from this
problem. Furthermore, from a theoretical standpoint, the problem is not without
interest. There are very few single-degree-of-freedom instabilities in the field of
aeroelasticity, which require deviations from potential flow models. Examples are
stall flutter phenomena associated with helicopter rotors and jet engine compres-
sors blades. Because these are essentially single-degree-of-freedom instabilities,
they tend to be soft and not as dangerous and destructive as, for example, cou-
pled bending-torsion flutter on aircraft wings. Aileron buzz is an exception and
often results in explosive instabilities, yielding very large amplitudes within a few
cycles and permanent damages.
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Aerodynamic Model

In the analysis of an aeroelastic system, the aerodynamics plays a key role, be-
cause it provides the load acting on the structure. This is particularly true for a
one-degree-of-freedom flutter in transonic regime, such as aileron buzz, because
in order to develop an appropriate model of the phenomenon a linear and simple
structural model is sufficient, whereas a nonlinear aerodynamic model is strictly
required. As a result it is necessary to resort to more sophisticated mathemat-
ical models and numerical methods within the research field of Computational
Fluid Dynamics (CFD), which is nowadays replacing the standard industrial tools
based on potential flow models. A sustained drive in this way over the last 30
years progressed from transonic small disturbance and full potential through Eu-
ler flow simulations and is now reaching a point where complex configurations of
real vehicles can be modeled and studied using a variety of Navier-Stokes solvers
[10]. Of course, this progress was made possible by the increasing computational
capability of modern computers and the improving efficiency of CFD numerical
schemes. Nevertheless, the counterpart of high-accuracy solvers, such as CFD
codes, is the higher computational costs in terms of work and memory with re-
spect to the linearized tools. For instance, the Navier-Stokes equations, which
provide the complete model of a flow, aren’t usually integrated tout court for
large-scale or design problems in which multiple configurations ought to be exam-
ined. As a matter of fact, the solution would require a severe computational effort
and in some cases even the employment of the less expensive Reynolds-Averaged
Navier-Stokes equations might be troublesome. Therefore, it is necessary to iden-
tify the mathematical model and numerical method capable of providing the best
compromise between accuracy of the results and computational efficiency, de-
pending on the objective of the numerical study.

The current chapter is aimed at defining and presenting the aerodynamic CFD
model, which is the backbone of the aeroelastic model that is presented in the next
chapter. In addition the numerical implementation is discussed in terms of space
and time discretization, aerodynamic mesh and solver.
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2.1 Governing Equations
In the study of aileron buzz, nonlinear flow models are strictly required due to the
presence of unsteady shock waves and possible shock-boundary layer interaction.
As a matter of fact, the presence of shock waves clashes with the assumption of
small perturbation on which the potential models are based. In addition, because
the intention of the work is the study of non-classical aileron buzz, in which shock
dynamics is the main drive (as discussed in Chapter 1), the mathematical model of
the Euler equations is chosen, which is also widely exploited for aeroelastic insta-
bility problems [6, 11]. Viscosity would no doubt contribute to the phenomenon
by affecting the shock position, but will be neglected in the present study.

2.1.1 Euler equations
In general, the model of the Euler equations is exploited, when the boundary
layer theory is assumed and when compressibility effects are very important. The
boundary layer assumption is adopted for high Reynolds number flows surround-
ing and passing over aerodynamic bodies; in this condition, it is reasonable to
assume that viscous diffusion and thermal conduction are restricted to a very thin
region close to the body, namely the boundary layer, whereas the flow outside
such layer can be approximated as inviscid and non-conductive. Disregarding the
very thin boundary layer, an inviscid non-conductive model can be employed in-
side the entire domain, leaving the no-slip condition at the wall, which states that
the fluid will have zero velocity relative to the boundary, and considering the no-
penetration condition, where the fluid velocity normal and relative to the wall is
set to zero and the fluid velocity parallel to the wall is unrestricted. Flow models
that have such features are the potential flow model and the ideal gas model, that
is an inviscid, non-conductive gas, for which the Euler equations hold. In addition,
the Euler equations are capable of modeling and capturing the compressibility ef-
fects, that have a key role in the transonic regime. As a matter of fact, shock waves
occurrence and dynamics are crucial to the aeroelastic instabilities onset and need
an accurate predicition, as already pointed out in Chapter 1. Furthermore, it is
worth recalling that, beyond the ideal gas model assumption, the Euler equations
hold when thermodynamic and chemical local equilibrium exists, the gas is con-
ceived as a continuum and volume forces are neglected. These assumptions are
reasonable and adopted in flows such as the one the present work is focusing on.

The system of the Euler equations in conservative form with Eulerian formu-
lation is the following

∂

∂t
u +∇ · f(u) = 0 ∀ (x, t) ∈ Ω× [t1, t2], (2.1)

where Ω ⊆ Rd and [t0, tf ] ⊆ R+ are respectively the d-dimensional spatial do-
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Figure 2.1: Spatial domain.

main and the time interval in which the equations are integrated (see Fig. 2.1).
Vector u(x, t) = {ρ, m, Et}T stores the conservative variables, i.e. density ρ,
momentum m and total energy per unit volume Et, which represent the solution
of Eqn. (2.1) and depend on position x and time t; vector f(u) includes the inviscid
flux functions, defined as follows:

f =

{
m,

m⊗m

ρ
+ p(u) I,

m

ρ

(
Et + p(u)

)}T

, (2.2)

where p is pressure and I is the identity matrix of size d × d. The governing
equations also have an integral form, that is

d
dt

∫
Ω

u dΩ +

∮
Γ

f(u) · n̂ dΓ = 0, (2.3)

where Γ = ∂Ω ⊆ Rd−1 represents the boundary having normal unit vector n̂(x),
outwards pointed. The problem isn’t complete though, because not only initial
and boundary conditions must be set, but also Eqn. (2.2) requires the definition of
the equation of state for pressure, that is the relationship between pressure p and
the solution variables u. To set initial and boundary conditions, it is necessary to
determine the initial distribution u0(x) and the boundary function g(s, t) depend-
ing on the coordinate s describing the boundary and time. These known functions
are then assigned respectively in the domain and in the inflow boundary Γin as
follows: {

u(x, 0) = u0(x)

u|Γin
(t) = g(s, t) s ∈ Γin.
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The inflow or inlet boundary Γin is defined as the subset of the boundary for
which the inner product between the local unit normal and the advection velocity
a(u) = df/du is negative:

Γin = {x ∈ Γ : n(x, t) · a(u(x, t)) < 0} . (2.4)

The remaining part of the boundary will be referred to as the outflow or outlet
boundary. It is worth noting that the definition of the inlet boundary depends on
the solution u at a given time, thus the inflow boundary varies in general with
time. Then, assuming that the flow is approximated by means of the polytropic
ideal gas thermodynamic model (i.e. a gas with constant pressure and volume
specific heats cp and cv), the resulting equation of state is the following

p = (γ − 1)E, (2.5)

where

γ =
cp
cv

E = Et − 1

2ρ
|m|2.

For air, the specific heats ratio γ is equal to 1.4. With Eqn. (2.5), the definition of
the aerodynamic problem is complete.

However, the simulation of aileron buzz requires to perform unsteady simu-
lations of the flowfield while the computational domain is continuously changing
its shape to account for the control-surface motion. This is a typical feature of
aeroelastic computations: the flow equations are to be solved in a domain whose
shape continuously varies with time due to the motion of the boundaries of the
domain, namely the deformation of the structure itself. Therefore, it is neces-
sary that the model is capable of coping with the boundary motion, both in the
definition of the appropriate mathematical model and in the numerical implemen-
tation. As far as the former is concerned, the appropriate model should resort on
the Arbitrary Lagrangian Eulerian (ALE) formulation, which is aimed at combin-
ing the advantages of the classical kinematical descriptions (i.e. Lagrangian and
Eulerian formulations), while minimizing respective drawbacks as far as possible.
The ALE formulation of the Euler equations turns out to be similar to the Eulerian
formulation Eqn. (2.3), except for an additional flux term that depends on the lo-
cal velocity v of all the moving boundaries. In integral form, the Euler equations
become

d
dt

∫
Ω(t)

u dΩ +

∮
Γ(t)

[f(u)− uv] · n̂ dΓ = 0, (2.6)

where it is worth noting the time dependency of the moving domain Ω(t), bound-
ary Γ(t), normal vector n̂(x, t) and local velocities vector v(x, t) [12]. Regarding
the numerical techniques capable of dealing with moving boundaries, time inte-
gration scheme compliant with the Geometric Conservation Law (GCL) and mesh
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Figure 2.2: Spatial grid and volumes involved in flux function definition.

movement and adaptation strategies are employed. The former is discussed in
the following section, that presents space and time discrtization of the equations,
while the latter is presented in Section 2.2.

2.1.2 Space discretization
Once the set of governing equations are assembled, space discretization is carried
out by subdiving the domain into a number of volumes or cells, as sketched in
Fig. 2.2. Each cell Ωi is associated with vector Ui which stores the conservative
variables averaged on the volume and is defined at the cell-center node xi. In this
way, the volume and surface integrals in Eqn. (2.3) are evaluated respectively on
each cell volume and volume boundary. In particular, the volume integrals in-
volves only the i-th cell, whereas the surface integral become a summation over
the interfaces between the i-th cell and all the adjacent cells, thereby yielding
a coupling between neighbouring volumes. Therefore, a connectivity with the
neighbouring cells is defined which comprises the interface Γij representing the
contact surface between the i-th and j-th volumes and the normal vector n̂ij asso-
ciated to the interface [13]. The resulting set of ordinary differential equations in
time is the following:

d (UiΩi)

dt
+

Nf∑
i=1

|Γij|Fij = 0 ∀i, (2.7)

where Fij is the numerical evaluation of the flux function or numerical flux be-
tween i-th and j-th cells and Nf is the set of interfaces that bounds the i-th cells:
Γi =

{
Γi1,Γi2, ...,ΓiNf

}
.

With regard to the numerical flux, the numerical scheme is defined with the
purpose of obtaining a monotone but sharp solution near discontinuities, such as
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shock waves, and at the same time to achieve high-order accuracy in space at least
in smooth regions. A good and widely employed strategy [14] relies on a high
resolution combination of a monotone first-order-accurate numerical flux vector,
namely FI

ij(Ui,Uj), and a second-order-accurate flux vector FII
ij(Ui∗ ,Ui,Uj,Uj∗).

The former depends on the solution in the cells adjacent to the interface, where
the flux is computed, whereas the latter also involves neighbouring volumes, as
sketched in Fig. 2.2. In this sense, the algorithm uses the first-order-accurate
method as a rule, but close to a discontinuity switches to the second-order-accurate
flux. The swapping between the two flux vectors is obtained by means of a suit-
able flux-limiter operator Φ(Ui∗ ,Ui,Uj,Uj∗), that is:

FII
ij = FI

ij + Φ
(
FII
ij − FI

ij

)
. (2.8)

2.1.3 Time discretization
The solution of Eqn. (2.7) requires time discretization, which is carried out with
the numerical schemes typical for the solution of a Cauchy problem. In fact,
Equation. (2.7) can be rewritten as a Cauchy problem as follows

d (UiΩi)

dt
= f(Γij,Ui∗ ,Ui,Uj,Uj∗) ∀i
= f(t,Ui,Ωi) ∀i, (2.9)

together with suitable initial conditions. In the right-hand-side of the previous
equation function f appears, that is a proper function in which all the space dis-
cretization is condensed. Depending on when such function is evaluated, different
time-marching scheme are defined. Among time integration methods are explicit
methods, which evaluate the right-hand-side of Eqn. (2.9) using information at
previous time intervals. For instance, an explicit Runge-Kutta method, such as
the one employed in the numerical implementation (discussed in the next section),
looks like the following

(UiΩi)
n+1 =

p∑
k=0

ak (UiΩi)
n−k + ∆t

p∑
k=0

bkf
n−k
i ∀i, (2.10)

where apex n + 1 stands for the time to be solved, apexes n − k denote the eval-
uation at previous time intervals and ∆t is the constant time step. Coefficients
ak, bk and upper bounds of summations p, k depends on the particular Runge-
Kutta method considered. Opposite to explicit methods, implicit schemes exist,
which in addition to information at previous time instants involve information
at the time instant to be solved, namely (UiΩi)

n+1, fn+1, etc. As a result, the
methods belonging to the latter class imply higher computational cost, due to the
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manipulation of high-order sparse matrices and possibly nonlinear systems [15].
Furthermore, it is necessary to garantee the stability of the numerical scheme.
For a hyperbolic one-dimensional problem it is possible to prove that an implicit
method is always unconditionally stable, whereas explicit methods require the
time step ∆t to satisfy the Courant Friedrich Lewy condition (CFL) for stability
[16]. The CFL condition for the d-dimensional Euler equations states the follow-
ing

max
i

(
∆t
|Γi|
|Ωi|

max
q
λiq

)
≤ Comax (2.11)

that is the time step ∆t should be bounded, depending on the size |Γi|/|Ωi| of the
smallest cell in the grid, the greatest advection velocity (computed as the maxi-
mum eigenvalue of the advection matrix A = dF/dU, which is numerically eval-
uated on volume Ωi). The bound is set by the maximum Courant number Comax,
depending on the numerical scheme [14].

In addition, the integration between time instants tn and tn+1 in the case of
moving boundary (thereby, moving grid) raises the question of when to evalu-
ate the metric quantities (e.g. cell volumes Ωi, interfaces Γij) and the numer-
ical fluxes. A useful guideline for evaluating these quantities as well as time-
integrating fluxes on moving grids is provided by the enforcement of the Geomet-
ric Conservation Law (GCL) or its Discrete counterpart (DCGL). The GCL law
states that the computation of the metric quantities depending on the grid points
positions and velocities must be performed in such a way that, independently of
the mesh motion, the resulting numerical scheme preserves the state of a constant
and uniform flow. Thus the CGL can be interpreted as a relationship between the
rate of change of the volume Ω and the velocity v of its moving boundary, that is

d
dt

∫
Ω(t)

dΩ =

∮
Γ(t)

v · n̂ dΓ, (2.12)

which, after space and time discretization, results in a condition on the numerical
form of the mesh velocity vnij associated to the interface Γnij . For instance, in the
case of the explicit Euler scheme, the following set of equations is obtained

d
dt

∫
Ω(t)

dΩ =

Nf∑
i=1

|Γij|vnij ∀i, (2.13)

that yield the definition of the GCL-compliant interface velocity

vnij =
Ωn+1
i − Ωn

i

∆t|Γij|
∀i, j. (2.14)

The previous result is valid for the explicit Euler scheme, but a similar procedure
is possible for arbitrary time integration schemes.
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2.2 Numerical Implementation

First of all, for the numerical CFD and CFD-based aeroelastic computations the
solver AeroFoam is used, whose development started back in 2008 and continues
today with the challenging target of filling the empty space left in OpenFOAM for
a density-based RANS solver, almost mandatory when dealing with highly com-
pressible flows [17]. In this sense it provides all the space and time discretization
operators typical of explicit density-based algorithms, as well as offering a va-
riety of speed-up techniques, several flow models and interfaces for aeroelastic
applications.

In the following, some of the most important numerical ingredients employed
in the calculations are discussed and presented from the pre-processing to the
post-processing stage.

Mesh. To start with, the domain is set, using a coordinate system such that the
plane to which the wing section belongs is the xz-plane and that positive deflec-
tion and hinge moment, corresponding to rotation and moment about the y-axis,
are oriented downwards (see Fig. 2.1 at the beginning of the chapter). Then, the

Figure 2.3: Aerodynamic C-mesh.
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(a) Uniform grid

(b) Refined grid

Figure 2.4: Uniform and hinge-refined grids.

aerodynamic grid is built with a routine written in Matlab environment. It is a C-
mesh built around the wing section with hexaedral elements, which extends ±10
chords both chordwise and in the airfoil thickness direction Fig. 2.3. The exten-
sion of the mesh has been selected after a brief convergence analysis, which is
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presented in Section 4.2. Because the problem is two-dimensional, the discretiza-
tion is carried out only in the wing section plane, whereas spanwise the elements
are not partitioned. In addition, the mesh is smoothly refined not only in radial
sense from the far-field boundary to the body, but also from the trailing edge to
the leading edge, in order to describe in detail the nose geometry. This type of
mesh will be referred to as Uniform, so that it is distinct from a further refined grid
(called Refined), that is smoothly refined at the aileron hinge line in addition to
the radial and leading-edge refinements (see Fig. 2.4). This second type of mesh
has been generated to accurately capture the shock waves moving about the hinge
line and it provides better convergence property as discussed later in Section 4.2.
Actually, other grids are employed in the analysis, however, because they arise
from the choice of the aeroelastic interface, i.e. the integration between the aero-
dynamic and structural sub-systems, they are discussed in the next chapter (see
Section 3.3).

Boundary conditions and initial conditions. After the generation of the grid,
a routine converts the mesh into OpenFOAM native format; this operation is neces-
sary, because the CFD solver chosen for the analysis is developed in OpenFOAM
environment. The conversion also produces the partition of all the boundary into
patches, namely parts of the boundary with different characteristics. On each
patch a boundary condition must be set by the user; the boundary condition is a
no-penetration condition for the patch to whom the wing belong, an empty con-
dition for the patches perpendicular to the y-axis, and the automatic condition for
the inlet and outlet boundary. The automatic condition ensures that at each time
the inlet boundary is computed according to the condition expressed in Eqn. (2.4)
and that the inflow boundary condition is applied only on the cells belonging to
the inlet patch. In addition, the wing patch is automatically detected by the solver
as a moving boundary and this information is crucial to the solver that considers
and applies displacement only to moving boundaries. Regarding initial condi-
tions, those are assigned by the user inside an appropriate folder contained in the
case folder, i.e. the folder where all the data about the calculation are stored. The
initial conditions are set in terms of field of pressure, temperature, velocity and
possibly density, momentum and total energy, if the Euler equations are solved
starting from a previous computation.

Space discretization. In order to apply the space discretization presented in
Section 2.1.2, the first order accurate Approximate Riemann Solver by Roe FROE

and the second order accurate Lax-Wendroff FLW numerical fluxes are imple-
mented in the solver, thus: FI = FROE and FII = FLW. The switch between them
is automatically controlled exploiting the flux limiting strategy by van Leer [14],
which, based on Eqn. (2.8), requires the numerical solution on the extended neigh-
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bouring cells Ui∗ and Uj∗ to be readily available (for details about the notation of
the cells, please refer to Fig. 2.2). This operation is performed efficiently with a
suitable connectivity data structure built in the pre-processing stage. In addition, a
GCL compliant ALE contribution to the numerical fluxes is automatically added
in order to cope with moving boundaries.

Time discretization. With regard to time discretization schemes, the multi-
stage explicit Runge-Kutta methods are implemented as the best compromise be-
tween computational requirements, stability condition and accuracy. Moreover,
several acceleration options are available. In particular, for the present analysis
a five-stage explicit Runge-Kutta time integration strategy was chosen together
with a Multi-Grid method to accelerate convergence. In addition, a Local Time-
Stepping technique was employed to speed-up convergence to the initial steady
conditions, from which accurate unsteady solutions are obtained using an implicit
Dual Time Stepping technique with explicit sub-iterations [18].

Mesh deformation tools. In addition, when dealing with problems in which the
boundary and the grid vary with time, it is necessary to resort on mesh move-
ment and adaptation techniques. A dedicated mesh deformation tool available in
AeroFoam, which is based on a modified version of the Inverse Distance Weight-
ing interpolation kernel[19] and it is particularly suited for aeroelastic static and
dynamic simulation of free flying aircraft.

Post-process. The post-processing stage is carried out with the software Par-
aview and also with post-processing routines written on purpose in Octave and
Python languages.

Finally, parallel computations have also been performed, because the solver has
proved a satisfactory parallel efficiency with a linear speedup factor, benchmarked
up to 128 processors [20].
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Aeroelastic Model

The preceding chapter was concerned with the aerodynamic CFD model, whose
numerical solution provides the pressure field around the wing section and thereby
the time-varying aerodynamic moment acting on the aileron. In this chapter, the
attention is drawn on the entire dynamic aeroelastic system, which comprises, in
addition to the aerodynamic model, the structural model. In general, aeroelastic
problems are subdivided into problems where the interaction with the aerodynam-
ics involves both inertial and elastic forces and phenomena where the interaction
between the aerodynamics and the structure involves only the airplane flexibility.
The former problem are usually referred to as static aeroelastic phenomena, while
the latter are labelled as dynamic aeroelastic problems [21]. In this sense aileron
buzz is numbered among the dynamic phenomena, because the inertial term has a
significant contribution to the equations of motion. Elastic and dissipative contri-
bution of the structure may be disregarded for control-surface buzz, because their
effect would not be essential; as a matter of fact, the dynamic model of the aero-
dynamics already provides damping and stiffness to the overall aeroelastic system
and, indeed, it is the value of such aerodynamic elastic and dissipative contri-
butions that tunes the energy exchange between the aerodynamic and structural
sub-systems, yielding stability or instability.

In the first section of this chapter the complete aeroelastic model for aileron
buzz is presented and outlined with a comparison based on control theory. The
subsequent sections are devoted to the definition of the structural part of the
dynamic model and the discussion of the coupling between aerodynamics and
structural dynamics. Finally, the numerical technique for the direct simulation of
aileron buzz is presented.
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Figure 3.1: Dynamic model.

3.1 Aeroelastic system

As already mentioned in the previous chapter, for the analysis of aileron buzz a
two-dimensional wing section is used. This choice is supported by the extensive
use of two-dimensional models both in numerical simulations and in wind-tunnel
tests [2, 22] and by the argument that two-dimensional models are reasonable for
conservative estimates [6]. Another reason driving this choice is the evidence that
the phenomenon is dominated by one degree of freedom, which belongs to the
two-dimensional plane of the wing section. The last reasoning also results in the
penchant for structural models of the aileron that are rigid, rather than flexible
ones. Accordingly, in the current work the dynamic model is represented by a
fixed wing section with unit span and non-symmetrical airfoil, in which the aileron
is integrated into the wing. The aileron is hinged at three-quarter-chord location
and its degree-of-freedom, namely rotation about the hinge β, is modeled as rigid.
The layout of the problem is sketched in Fig 3.1.

Besides, the main feature of the aeroelastic problem is highlighted by the anal-
ogy with control teory presented in the block diagram sketched in Fig. 3.2. The
system comprises the structural block I, which stands for the dynamic motion of
the freely hinged rigid control-surface, and the aerodynamic block A. Letter I is
chosen to denote the structural sub-system, because the dynamics of the aileron
involves only the structural inertial term, while elastic and dissipative contribu-
tions are disregarded. The inertial force depending on the aileron deflection β
needs to balance the aerodynamic moment MH acting on the control-surface; the
balance is provided by the motion of the aileron itself. In turn, the aileron rotation
influences the aerodynamics involved in the problem to the extent that the bound-
ary conditions of the aerodynamic equations are changed. As a result, a different
pressure field is obtained, thereby modifying the aerodynamic moment acting on
the aileron itself, which changes the deflection and so on. Therefore, the aeroelas-
tic problem resembles a closed-loop system, in which the structural sub-system
acts like the main system and the aerodynamic sub-system provides the feedback.
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Figure 3.2: Block diagram of the aeroelastic system for buzz analysis.

Hence the CFD computation is conceptually comparable to a dynamic system that
translates the structural displacement into the aerodynamic load. However, its so-
lution is time- and work-consuming and the faster structural solver is basically
left waiting for the CFD solution at each time step. As a result, the direct aeroe-
lastic simulation with the CFD aerodynamic model is very expensive, especially
when the solution for different configurations is demanded. A very attractive pos-
sibility is to resort on a Reduced-Order Model (ROM), namely a surrogate model
of the aerodynamic sub-system, which is based on fewer degrees of freedom and
necessitates less computational effort in order to be solved. In addition, the ROM
should be capable of accurately representing the actual dynamic system, mapping
the structural displacement into the aerodynamic loads as the CFD solver would
do. A methodology for the construction of a suitable ROM is system identifica-
tion, which in this case is carried out starting from the CFD solutions, thereby
yielding the so-called CFD-based ROM.

In conclusion, the modelling of the aerodynamics is carried out in two ways:
by means of a CFD solution and with a surrogate low-order model. A more com-
plete discussion on the CFD-based ROM is given in Chapter 5, where the methods
for system identification and the definition of the ROM for buzz is presented. In-
stead, the following sections focus on the definition of the structural sub-system
and the discussion of the CFD-based aeroelastic model for the aeroelastic direct
simulation.

3.2 Structural model

The structural model is represented by a rigid aileron integrated into the two-
dimensional airfoil. The aileron motion is described with a single degree of free-
dom, namely the aileron deflection angle about its hinge β(t), whose dynamics is
governed by the following equation

IH β̈(t) = MH(t), (3.1)
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where IH is the aileron moment of inertia and MH(t) is the aerodynamic moment
acting on the aileron, both evaluated with respect to the hinge line. Equation (3.1)
states the balance between inertial and aerodynamic forces, whereas structural
elastic and dissipative contributions are not modeled in the present work.

Because a non-symmetrical airfoil is chosen for the analysis, the initial con-
dition for Eqn. (3.1) is a perturbation provided by the initial steady unbalanced
aerodynamic moment acting on the aileron.

3.3 Numerical models and aeroelastic interface

The structural model can be easily defined in the solver, which is also responsible
of performing the feedback connection between the structural and aerodynamic
problems. In particular, two structural models have been employed and thereby
two ways to interface aerodynamics and structure dynamics.

The first model exploits the fact that the problem is governed by one rigid de-
gree of freedom: at each time interval, after the calculation of the updated control-
surface deflection βn+1, the boundary cells belonging to the aileron are displaced
according to a rigid linearized rotationR, that is

u n+1
a = Ru n

a

where vectors u n+1
a and u n

a represent the boundary volumes displacements re-
spectively at the updated and current time. The rotation operator Ri, which de-
pends on the value of the control-surface deflection βn+1 and the position of the
i-th aerodynamic cell x n

ai
=
{
x n
ai
, y n
ai
, z n
ai

}T , acts on each aerodynamic cell as
follows

Ri(β
n+1, x n

ai
) =

 0 0 0
0 0 0

βn+1 0 0


x n
ai

y n
ai

z n
ai

−

xH
yH
zH




and in a compact form the operatorR reads

R(βn+1, x n
a ) =

[
ŷ×

(
x n
ai
− xH

) ]T
βn+1,

where xH = {xH , yH , zH}T is the position of the hinge (i.e. the center of rotation)
and ŷ is the unit vector denoting the y-axis. The linearized rotation needs to be
applied only to the cells belonging to the aileron boundary. In order to do so, a
slight modification in AeroFoam is introduced: in the pre-processing stage a box
B is defined in such a way that all the nodes of a moving boundary falling inside
the box are actually moved during the computations, whereas the remaining nodes
are held still:
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x n+1
a =

{
x n
a + u n+1

a if x n
a ∈ B

x n
a if x n

a /∈ B
For the current work the box is the set: B = (xH , c) × (0, 1) × (−1, 1). A con-
sequence of this approach is that an edge is produced between the airfoil and the
aileron when the control-surface is deflected, because the rigid rotation is applied
only to the cells of the boundary behind the hinge line.

The second approach requires the definition of a modal basisN , depending on
the structural nodes position xs, that associates the generalized displacement q(t),
i.e. the aileron deflection angle, to the linearized displacement of the structural
nodes us. After the computation of the updated generalized displacement qn+1,
the modal basis updates the structural nodes u n+1

s as follows

u n+1
s = N qn+1.

The structural nodes are located on the airfoil chord line and are connected by
rigid elements, while the modal basis is defined in such a way that it provides
displacements consistent with those of the rigid model. In particular, the basis
depends on the location of the nodes xs and it has null value for the nodes placed
ahead of the hinge line, while for the NsA nodes belonging to the aileron it is
linearly dependent on the difference between the x-coordinate of the structural
node xsi and that of the hinge line xH :

N (xns ) =



0 0 0
...

...
...

0 0 0
x n
s1
− xH 0 0

...
x n
si
− xH
...

...
...

x n
sNsA
− xH


or in a compact format

N (xns ) = [ [ 0 . . . 0 ] , [ ŷ× (x n
s − xH) ] ]T .

The modal basis has three columns and as many rows as the structural nodes. Once
the structural nodes have been displaced, it is necessary to translate the structural
displacement and velocity fields into a variation of the boundary displacements
(i.e., boundary conditions) of the aerodynamic sub-system. The employment of
the aeroelastic interface operator I provides the conversion. In general, it is nec-
essary to
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ua
us

Figure 3.3: Structural nodes us and aerodynamic nodes ua.

1. translate the structural displacement and velocity fields into a variation of
the boundary conditions on the aerodynamic sub-system

ua = I(x) us; (3.2)

2. convert the pressure field providing the aerodynamic forces into a load con-
dition acting on the structural sub-system

Fs = Î(x) us. (3.3)

The interface operator must meet several requirements. It should be capable of
linking models with non-matching spatial domain and numerical grids, as well
as preserve the momentum and energy exchanged between the two sub-systems.
With regard to the latter feature, the conservation of momentum and energy is nec-
essary to mantain the overall stability properties of the aeroelastic system, namely
to garantee the equivalence of the virtual work δLmade by the aerodynamic forces
Fa on the structural displacements interpolated on the aerodynamic degrees of
freedom ua with the virtual work made by the aerodynamic forces interpolated on
the structural degrees of freedom for the structural displacements:

δL = δ {ua}T {Fa} = δ {us}T {Fs} . (3.4)

The previous equation also provides a condition to define the interface operator
between structural and aerodynamic forces, i.e. Î; in fact, substituting Eqn. (3.2)
into Eqn. (3.4) and comparing the result with Eqn. (3.3) yields

Î = IT . (3.5)

The strategy adopted in the solver AeroFoam to build the aeroelastic interface
operator consists of an interpolation scheme based on a Moving Least Squares
technique [23]. This method ensures the conservation of momentum and energy
transfer between the two sub-systems and it is sufficiently flexible to treat com-
plex configurations. However, in this case the interface operator is employed only
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Figure 3.4: Example of Smooth and Edge grids with aileron deflection β = 20
deg.

in the conversion of the structural displacements into the aerodynamic displace-
ments. The reason for this is that during the analysis it has become evident that,
although the operator I is globally conservative, the interface isn’t partially con-
servative. In other words, the total aerodynamic forces acting on the airfoil com-
puted on the structural nodes matches with the load computed on the aerodynamic
nodes, however the partial load on the aileron is different when it is computed in
the structural set with respect to the one of the aerodynamic set. As a matter of
fact, the coupling between the aerodynamic and structural nodes is carried out
on every moving boundary, which in this case is simply the wing boundary. Be-
cause the wing boundary is a single non-partitioned patch, this implies that the
aerodynamic forces belonging to the aileron aerodynamic nodes partially transfer
also to the structural nodes ahead of the hinge line. As a result, the load acting
on the aileron is different for the structural set and the aerodynamic set. Because
the study of aileron buzz with a rigid degree of freedom doesn’t strictly require
the presence of a modal aeroelastic interface, the interface does not need to be
redefined and the problem is bypassed employing the aeroelastic interface oper-
ator only to translate the structural displacements to the aerodynamic nodes and
it is not involved in the conversion of the aerodynamic forces. For the latter pur-
pose, the aerodynamic load acting on the aileron is computed by summing up
all the contributions of the forces associated to the aerodynamic nodes which lay
inside a box B, which defines the region in which the aileron is present. As al-
ready mentioned for the rigid interface previously discussed, the box is the set:
B = (xH , c)× (0, 1)× (−1, 1). In addition, the employment of the interface oper-
ator for the conversion of the displacement fields has an evident consequence: the
translation softens the difference between the null displacements of the structural
nodes ahead of the hinge line and the displacements of the nodes belonging to the
aileron, yielding a smoothed geometry.

As a result, two different grids have been created: the non-smoothed grid ob-
tained with the rigid approach is labeled as Edge and the smoothed grid resulting
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from the modal approach is referred to as Smooth (Fig. 3.4). The emerging dif-
ference between the two approaches is discussed in the next chapter. Once the
boundary displacement is updated, either with the rigid or modal interface, the
inner cells are moved with the dedicated hierarchical mesh deformation tool avail-
able in AeroFoam, based on a modified version of the Inverse Distance Weighting
interpolation kernel, already mentioned in Section 2.2.

Finally, although the resulting grids are different, it is worth noting that both
structural models are associated to the same numerical solver of the aeroelastic
problem, which is the concern of the next section.

3.3.1 Numerical direct simulation
The numerical direct simulation is based on a pseudo-explicit scheme exploiting
the dual time step technique. Aeroelasticity and fluid-structure coupling com-
putations are usually performed using a very small global time step value. This
is especially true when studying high frequency phenomena. Therefore a very
large number of iterations is required, and this leads to very expensive compu-
tations. Moreover, moving meshes computations are required, which increases
CPU costs. This is the reason why the use of dual time stepping for aeroelastic
computations becomes very interesting. The physical time step used to describe
the unsteady phenomenon is no longer constrained by stability time step values
in the smallest cells. As a matter of fact, in dual time stepping the fluid equation
of motion is integrated by regular time-marching, with the instantaneous flow-
field at each physical time step being computed via an inner iteration loop. The
inner-loop “pseudo-time” process is similar to a steady-state flow computation,
including the use of multigrid for convergence acceleration. In such a procedure,
the inner loop also provides the weak coupling point for the structural solver. The
structural equation of motion are based on a Crank-Nicolson scheme in which the
aerodynamic loads are computed leveraging on the dual time stepping solution.
A finer solution would involve the employment of a predictor-corrector approach,
however when dealing with time steps much lower than the reciprocal of the max-
imum frequency of interest, an explicit solution is sufficiently accurate and does
not induce instability problems.
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Numerical tests and results

The discussion in Chapter 1 highlights the role of shock dynamics in non-classical
aileron buzz, which yields the employment of high-fidelity CFD codes that are ca-
pable of giving accurate prediction of the aerodynamic nonlinearities. However,
further care must be taken on the definition of all minimal details that might influ-
ence the solution in terms of shock position and dynamics. In this sense, the cur-
rent chapter is aimed at discussing some preliminary numerical results, pointing
out the effects of grid details on buzz analysis. The reliability of the methods and
techniques involved in the solver is not assessed in the current work, because an
extensive analysis regarding the topic has already been accomplished in [24, 20]
and proved the capability of the solver to deal with a wide range of aerodynamic
and aeroelastic problems.

In the first section, the data of the dynamic model are summarized and a con-
vergence analysis with respect to grid refinement and size is presented. The anal-
ysis stresses the importance of mesh convergence for reliable buzz computations.
Then, in Section 4.3 the choice of the geometric aerodynamic model is discussed,
which is devoted to the quantification of the uncertainty on buzz responses asso-
ciated to a particular geometric detail, namely the hinge of the aileron.

4.1 Preliminary results
Calculations are performed on the non-symmetrical Naca 651-213 (a = 0.5) airfoil
(Fig. 4.1), with the aileron pitching about three-quarter-chord location. The choice
of this Naca airfoil is motivated by the availability of the data necessary for buzz
simulation, as well as by historical reasoning. As a matter of fact, the Naca 651-
213 was the airfoil shaping the wing mounted on the P-80, the first aircraft to
encountered control-surface buzz according to Lambourne [3]. Exploiting data
from Ref. [8] (airfoil chord c = 1.472 m, aileron moment of inertia IH = 0.5536
kg·m2), the Reynolds number is set to 1·107 and the angle of attack is set to zero
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Figure 4.1: Naca 651-213 (a = 0.5) airfoil.

for the entire analysis. A time step of 0.001 is chosen in order to provide time
accuracy in the frequency range of interest.

The C-mesh extends ±10 chords both chordwise and in the airfoil thickness
direction: this value is chosen after a comparison between two grids extending
respectively ±10 and ±20 chords. The resulting behaviours of the pressure coef-
ficient at Mach number M = 0.8 are presented in Fig. 4.2. The curves pratically
overlap and there is not a sensitive distinction. The comparison drives the deci-
sion of employing the smaller grid, which demands less computational effort with
equal characteristic size of the cells.
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Figure 4.2: Pressure coefficient comparison between two grids extending respec-
tively ±10 chords and ±20 chords.
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4.2 Convergence analysis

To start with a convergence analysis regarding mesh refinement and size is per-
formed at Mach number M = 0.8. A comparison is carried out among the ini-
tial aerodynamic hinge moment coefficients obtained progressively increasing the
number of cells on the airfoil surfaces. The outcome of such analysis is presented
in Fig. 4.3, where the hinge moment coefficients are plotted against the ratioNcells

between the number of cells belonging to the wing section and a reference value,
corresponding to 128 cells. The Refined grid presents good convergence prop-
erty with increasing number of cells on the aileron surfaces, whereas the Uniform
grid yields a non-monotonic behaviour. With further increase in number of cells,
it would probably oscillate around the value at which the Refined grid has con-
verged and it would eventually converge, yet at a higher computational cost. The
poor convergence property of the Uniform grid is likely to be the consequence of
the lower resolution provided across the dominant shock wave, which is the shock
wave occurring on the upper surface right behind the hinge line. Thus, from this
preliminary analysis the Refined grid is selected for the aeroelastic computations.

Secondly, the system response is computed for different mesh sizes using both
Edge grid and Smooth grid. The results are presented in Fig. 4.4, where on the left
side the aileron deflection angle is plotted against time t and on the opposite side
the behaviour of the aerodynamic hinge moment coefficient MH in time is shown.
The features of the behaviours at different mesh size are summarized in Fig. 4.5,
where the resulting motion frequency fat and amplitudeAat after transient interval
are shown against the ratio Ncells. It is clear that the mesh size greatly influences
the system response: a coarse mesh predicts buzz at Mach number M = 0.8,
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whereas finer meshes yield stable responses. Furthermore, the Edge grid appears
to be more sensitive to change in mesh size and it requires a finer mesh to converge
to the stable behaviour. On the other hand, although it looks like the Smooth
grid converges earlier to the stable behaviour, from a quantitative standpoint it
converges only for the grid characterised by Ncells = 3, because for coarser grids
the equilibrium deflection angle is still changing noticeably with mesh size. As a
result, in both cases it is necessary to resort on the hinge-refined mesh with greater
number of cells, containing 49152 hexaedra.
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Figure 4.4: Comparison of system responses obtained with different mesh size at
M = 0.8.
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Figure 4.5: Mesh convergence of aileron motion at M = 0.8.

4.3 Geometry Analysis

Given the role of shock dynamics in non-classical aileron buzz (cf. Chapter 1), a
proper numerical study requires an accurate prediction of the aerodynamic non-
linearities, which is obtained through the employment of CFD codes. However,
other minimal details might influence singificantly the solution in terms of shock
position and dynamics. Among them are mesh refinement and size, as discussed
in the previous section. In the current section, the attention is turned to the in-
tegration of the control-surface in the main wing, which is usually carried out in
two different ways when the gap is not modeled: one can either smooth the edge
between the main body and the deflected control-surface or leave the shape dis-
continuity as it is. Both solutions have been employed in the past computations
of aileron buzz and flutter with oscillating control-surfaces [25, 7, 26] and it is in-
teresting to quantify the relevance of the geometric description of the hinge detail
on the phenomenon.

Once the mesh size and refinement has been chosen based on the mesh con-
vergence analysis, the aeroelastic responses at several Mach numbers are com-
puted. The resulting variation in time of the aileron deflection angle is presented
in Fig. 4.6, whereas Fig. 4.7 shows the shock waves position, which is computed
as an average of the x-coordinate of the cells falling inside the shock front. It is
evident that the Edge and Smooth grids yield dynamic responses that differ from
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Figure 4.6: Comparison of system responses obtained with different Mach num-
ber, from top: M = 0.805, M = 0.81 and M = 0.82.

one another both from a quantitative and qualitative standpoint. As a matter of
fact, at Mach number M = 0.805, the system responses are both stable, however
the equilibrium deflection angle is different, due to the position after transient of
the lower shock wave, that occurs ahead of the hinge line with the Smooth grid
and that slightly moves behind the hinge line in the Edge case (Fig. 4.7). In addi-
tion, at Mach number M = 0.81 the difference is even more striking: the system
response computed with the Smooth grid is stable, whereas the Edge grid yields
aileron buzz. With further increase in Mach number, the responses are qualita-
tively the same, but they still differ in amplitude and frequency content. It is also
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worth noting that the abrupt peak occuring during the transient response of the
Edge solutions (Fig. 4.7) is caused by a steep and quickly-disappearing shock
wave occurring just behind the hinge line because of the sudden deflection of the
aileron.
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Figure 4.7: Shock wave dynamics at M = 0.805, M = 0.81 and M = 0.82 (US
and LS stand for upper and lower surfaces).

In order to provide an understanding of the difference between the grids, it
is convenient to consider separately the effects of a prescribed oscillation of the
control-surface on the flowfield. Such analysis is the focus of the next section.
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4.3.1 Response to a prescribed rotation

Exploiting the buzz amplitude and frequency observed at Mach number M =
0.82, a sinusoidal aileron rotation is prescribed with amplitude 1.6 deg around
-3.5 deg and frequency 10 Hz. Figure 4.8 shows the resulting pressure field at
four different time in the prescribed cycle, while the cycles of the deflection an-
gle, moment and shock position are presented in Fig. 4.9 and Fig. 4.10. First of
all, it is interesting to notice a typical feature of aileron buzz, namely the time lag
between the peak of the deflection angle and the peak of the shock position (cf.
Section 1.2), due to the time needed by the flow to adapt to the aileron displace-
ment. In general, the time lag is longer because viscosity undoubtedly affects the

(a) (b)

(c) (d)

Figure 4.8: Snapshots of pressure field during a prescribed cycle: (a) initial, (b)
maximum upward deflection, (c) half-period, (d) minimum negative deflection.
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phenomenon and delays the effect on the shock wave dynamics of a sudden dis-
placement of the aileron. However, because in the current work an inviscid model
is employed, the effect is reduced yet still present, due to the flow nonlinearities.
In addition, at maximum negative rotation amplitude for the Edge grid the load is
still increasing, whereas the Smooth grid yields a decreasing load. In particular,
the greater quantitative difference between the Edge and Smooth grids occurs at
the point marked in Fig. 4.9, that is t/T = 0.28, where the Edge grid yields a
stronger downward moment.
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Figure 4.9: Cycle for prescribed rotation at M = 0.82: deflection angle (left) and
hinge moment coefficient (right).
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Figure 4.10: Cycle of shock wave position for prescribed rotation at M = 0.82.

Focusing on the pressure coefficient at that time, presented in Fig. 4.11, in concur-
rence with that upward deflection angle a strong shock wave occurs at the lower
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Figure 4.11: Pressure coefficient at M = 0.82 and t/T = 0.28.

surface of the aileron and its strength and position is different for the two grids.
In particular, the position is more rearward and the shock wave has stronger in-
tensity in the Edge case. The reason for this is that the edge between the main
wing section and the deflected aileron causes an expansion wave, which in turn
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(a) (b)

Figure 4.12: Zoomed snapshots of pressure field: (a) maximum upward deflection,
(b) maximum backward shock wave position.

produces a rapid change to a lower value of pressure and therefore a more intense
shock wave is required for pressure recover. The contribution to the hinge moment
of the discontinuity in the upper surface pressure coefficient for the Edge grid is
not determining when compared to the effect of the expansion, mainly due to the
closeness to the hinge line. The peculiar behavior of the pressure coefficient close
to the trailing edge is related to a limited and imperceptible discontinuity in the
normal vector of the last volumes of the wing boundary. However, the effects do
not influence the current analysis due to its small contribution. Furthermore, the
expansion is also detectable in the isobars shown in Fig. 4.12, which presents the
pressure field at two instants of time, namely the time in which the aileron deflec-
tion is maximum upward and the subsequent time in which the shock position is
most backward. In the figure, it is also interesting to notice that the difference be-
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Peak frequency [Hz] 0 10 20 30

Error [%] 0.16 2.75 61.2 21.25

Table 4.1: Percentual error in peak values of load spectra.
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Figure 4.13: Frequency spectrum of the hinge moment coefficient.

tween the two grids is very difficult to perceive, thereby stressing that the details
whose effect is considered are actually minimal, but still they have an appreciable
influence on the system response. In addition, the analysis of the load spectra
shows peaks in concurrence of multiple values of the basic frequency, namely the
frequency of the prescribed rotation (Fig. 4.13). In particular, as expected from
the variation in time presented in Fig. 4.9, the greater differences correspond to
the higher frequency contributions (Tab.4.1).

Another test with prescribed rotation is performed at Mach number M =
0.805 (Fig. 4.14 and Fig. 4.15). The prescribed sinusoidal rotation is the same
of the same value of the previous case in terms of amplitude and frequency, how-
ever the average value is set to the equilibrium rotation angle observed in the direct
simulation (Fig. 4.6). Because the equilibrium angle is different for the two grids,
it is not possible to eliminate from both grids the contribution of the unbalanced
moment corresponding to the average rotation angle. Also, the multiple peaks
evidenced in the load spectra for a prescribed rotation suggests that the nonlinear
dynamics of buzz could be represented to a first approximation by a linear model,
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whose input is a sequence of even polynomials of the system input. In this condi-
tion a similar trend to the one obtained at Mach number M = 0.82 is dected, that
is the greater difference occurs when the aileron is deflected in the most upward
position.
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hinge moment coefficient (right).
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Figure 4.15: Cycle of shock wave position for prescribed rotation at M = 0.805.

4.3.2 Uncertainty estimate
Finally, an estimate of the range in which the two grids yield a qualitatively dif-
ferent response is computed by an extrapolation of the relationship between the
Mach number and the logarithmic decrement. Because the latter is proportional
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to the system damping ratio, the extrapolated Mach number at which the logarith-
mic decrement becomes zero would represent the Mach number for buzz onset. In
particular, a linear extrapolation is chosen, exploiting the results at Mach numbers
M = 0.8 and M = 0.805, that is where the response is overdamped. Figure 4.16
presents the curves resulting from the analysis and the range of discrepancy be-
tween the grids. The result points out that the Edge grid yields buzz at lower Mach
number, as already observed in Fig. 4.6, and that the range in which the solutions
are qualitatively different is [0.808, 0.8146], thereby producing an uncertainty of
about 1%.

In conclusion, the convergence and geometry analysis points out that mesh re-
finement is crucial to obtain reliable results and that the choice between a smoothed
and non-smoothed grid has an influence on the system response, both quantita-
tively and qualitatively. The study provides further insight into the numerical
simulation of control-surface buzz, as well as flutter phenomena dominated by
shock dynamics.
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Figure 4.16: Extrapolation of logarithmic decrement plotted against Mach num-
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Aerodynamic reduced-order model

The previous chapters describe the analysis of aileron buzz employing a numerical
model based on the CFD computation of the flowfield. A very attractive alterna-
tive to the CFD-based aerodynamic model is a surrogate aerodynamic model, i.e.
a Reduced-Order Model (ROM), that is a low-order characterization of a physical
process such that the essential behaviours of the process are captured with a rel-
atively small number of degrees of freedom. According to Beran and Silva [27]
the objective in defining a ROM is on the one hand to provide accurate descrip-
tions of the dynamic system at a computational cost much lower than the original
numerical model and on the other to build a means for a readily interpretation of
the system dynamics. As a matter of fact, despite the growing efficiency of CFD
calculations, the computational cost of numerical simulations is too high for CFD
to be used in various multi-disciplinary settings, such as multi-objective optimiza-
tion and stability prediction. In addition, the enormous size of computed datasets
might impede the understanding of the essential features of the phenomenon of
interest. As a result, ROMs might be a convenient analysis tool and it is also ex-
pected that they will experience an increase in industrial applications, thanks to
the possibility of treating a wide range of load cases and flight conditions in the
design stage [10].

The development of reduced-order models for the aerodynamics is a consid-
erable activity in the field of aeroelasticity, where the employment of low-order
models of the aerodynamic sub-system lessens the cost of stability predictions.
The most common and well-established approach for the description of the aeroe-
lastic problem is the classical approach, which is based on the representation of
the model in the frequency space. Besides, the modern approach has gained mo-
mentum, which is based on the description of the governing equations in time.
The typical governing equations of the aeroelastic system read

Mq̈ + Cq̇ + Kq = Qa (q∞,M∞) ,

where M, C and K are respectively the structural mass, damping and stiffness
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matrices, q is the generalized structural displacement and Qa is the aerodynamic
load, depending on the freestream Mach number M∞ and dynamic pressure q∞
(the dependence on the Reynolds number is minor and usually disregared). The
load also depends on the structural displacement field because of the boundary
conditions of the aerodynamic problem. It is therefore possible to define a rela-
tionship between the structural displacement and the aerodynamic load, that in the
case of a linear(ized) model yields

Mq̈ + Cq̇ + Kq− q∞
∫ t

0

h(t− τ)q(τ)dτ = 0,

where in the previous equation the linear dependence of the load on the dynamic
pressure q∞ is made explicit and h(t−τ) is the kernel function of the aerodynamic
model, that is the relationship mapping the displacement q(τ) into the load Qa(t).
Viable options in the construction of a mapping for the aerodynamic sub-system
are: Volterra series theory and Volterra kernels identification using impulse or step
inputs to the fluid system, Kahrunen-Loeve modes (proper orthogonal realization
[28]) extracted from the dynamic response of the full-order fluid system when ex-
cited by proper inputs, (balanced) realizations of state-space theory, for instance,
by means of Roger’s method [29] and other identification methods based on input-
output relations for the system based on systems theory [30]. In particular, the last
methods ascribe to the process of defining a suitable mapping between the input
and output of a dynamical system, which is usually called system identification in
systems theory.

The objective of the current chapter is to develop a suitable reduced-order
model of the aerodynamic sub-system for buzz analysis. The model should be ca-
pable of accurately and expediently estimating the unsteady CFD solution around
the wing section of the aeroelastic model and predicting the time-varying load on
the aileron. The definition of the ROM is carried out in the time domain, em-
ploying numerical techniques that belong to system identification. Section 5.1 is
concerned with the general procedure and ingredients of system identification nec-
essary to identify a low-order model of a dynamical system, whereas Section 5.2
presents the definition and development of the CFD-based ROM for the analysis
of aileron buzz, as well as the comparison with CFD results.

5.1 System identification
System identification is a process for obtaining a mathematical model of a dy-
namic system based on a set of measured data from the system, namely input and
output data [31, 32]. This methodology is used to fit the parameters of a given
model structure to a set of recorded data from the dynamic system. The result is a
reduced-order model, that is a mathematical map between the input and the output
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of the system having reduced complexity with respect to the original system. The
order and level of accuracy in the definition of the model structure depends on
the application of such model and it is usually the result of a compromise among
several requirements. System identification is widely employed in many areas,
such as economics, geophysics and engineering, for analysis purposes, prediction
of the behaviour of certain system variables with different inputs or conditions,
implementation and verification of a possible control system. In general, the pro-
cedure of system identification is the following:

1. The first step is the analysis of the real dynamic system; as a matter of fact,
the prior knowledge of the real system provides valuable information and
guides the choice of the model structure that best suits the real system. At
this stage it is also necessary to determine the objective of the model, so that
the model structure possesses the proper level of accuracy with respect to its
application. The knowledge of the real system not only yields the design of
the experiment, the definition of the model structure and the identification
strategy, but it is also involved in the calculation of the model to the ex-
tent that it indicates the reliability and fidelity of the computed model with
respect to the real system.

2. The next stage is the design of the experiment from which the input and out-
put sets are recorded. It is necessary to define which data are to be recorded,
which excitation is to be used, as well as when to sample. In particular, the
excitation is provided by a training signal, that is the input signal that excites
the system and causes the system to produce an output, which is recorded
for the identification. The characteristics of the training signal (e.g. ampli-
tude, frequency) are set, having in mind both the model structure and the
identification strategy. In some cases, the filtering of the recorded data is
needed, in order to avoid potential aliasing or the effect of noises.

3. Parallel to the design of the experiment is the definition of the model struc-
ture that goes along with the choice of identification strategy or method.
The model is defined by a structure based on a set of parameters or vari-
ables which are computed in the identification process in such a way that
the resulting model fits best the real system. Thus, the identification relies
on an optimization procedure that seeks the optimal variables of the given
model structure in order to minimize a suited error. The possible choices
and optimal criteria for the structures and methods are described in detail in
Sections 5.1.1 and 5.1.2.

4. The calculation of the optimal parameters of the model structure is per-
formed using algorithms and techniques suited for the chosen identification
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method and training signal. At this stage many problems might be encoun-
tered arising mainly from numerical difficulties.

5. The validation of the model is required; in order to perform it, it is necessary
to set a priori the indicators of a well-behaving model, based on the real
system knowledge and recorded data. It is quite likely, though, that the
model first obtained will not pass the validation test, because of a number
of reasons mainly related to the fact that the success of the identification is
dependent on the initial choice of the model structure and the amount and
quality of the data used to train the model. In the case of missed validation,
it is necessary to understand the reason of the failure and adjust training
signals, model or method, accordingly.

Calculate model

Validate model

Choice
of model
structure

Choice of
fit criterion

and
identification

method

Data

Experiment
design

Model parameters θ

Prior knowledge

OK

Not OK

Figure 5.1: Flow chart of the identification procedure (from Ref. [31]).
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5.1.1 Model structures
The model structure is the mathematical tool that maps the input of the system
into the output of the system in the same way the real system would do. At
the beginning of the identification process, it is necessary to define the model
structure or model familyM(θ) and the corresponding model parameters θ that
will be later computed. In general, the model structure should fulfill the following
requirements:

(a) the model should be capable of representing the real dynamic system, even
in an off-design condition;

(b) the model should be computationally efficient and easy to implement;

(c) in the case of coupling with other systems, the model should be compatible
and ready for the numerical integration.

The model structures are manifold: depending on the application, one can choose
from a wide variety of potential models that are distinguished, for instance, by
the presence and absence of certain input signals, the accuracy order and level of
detail, the type of representation. Here, a brief classification is proposed, which
is comprehensive of the model types interesting for the system idenfication per-
formed in the current work.

To begin with, a basic distinction is made between models whose behaviour
is influenced by an exogenous variable, i.e. an input, and models that evolve on
their own. To the former category belongs the typical linear time-indipendent sys-
tems of systems theory, while the latter models are represented by time-series,
such as the logistic map. Another possible classification is based on the presence
or absence of state variables; state variables are auxiliary variables describing the
dynamic behaviour of a system. Even if the real system is dynamic and a complete
state-space description would require the presence of state variables, it is also pos-
sibile in the identification process to disregard the state dynamics and reconstruct
the relationship between the input and the output based only on the input and its
derivatives. When the state variables are involved in the model structure the model
is identified with a state-space representation, whereas in the absence of state vari-
ables the model is said to have an external representation. The description of the
dynamic model is possible both using continuous time and discrete time. In the
former case, that is in the continuous-time representation, the model variables ap-
ply to the time-varying vectors of input, output and possible state variables as a
whole, whereas in the latter, namely in the discrete-time representation, the system
variables apply to each discrete values of input and output sets. A bridge between
the two representation is possible, employing the state-space representiation and a
proper transformation from the discrete-time space to the continuous-time space.
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A considerable issue encountered during the choice of the structure is related
to the amount of realism and transparency of the model. As a matter of fact, it is
possible to choose a black box model, that is a model structure that completely
disregards and hides the physics of the real dynamic systems and emulates the
input-output relationship using substitute variables unrelated to the real system.
The black box model is usually employed when it is not possible to obtain a phys-
ical description of the real system or the complete description is too cumbersome
and it is desirable to define a reduced-order yet sufficiently accurate model. An-
other possibility is that of employing a transparent model, namely a model based
on the actual laws that determine the relationship between the variables involved
in the dynamic system. In this case the objective of the identification is the deter-
mination of the system parameters. A great advantage of a transparent structure
is that the model should behave exactly as the actual system and an incongruous
outcome in the identification procedure is immediately recognizable. A halfway
solution is the so-called grey box structure, which is basically a black box model,
with some additional physical information on the real system.

Finally, some applications, such as adaptive prediction or control, require a
model of the system that is available online while the system is operating, whereas
in others the complete set of training data are available. The accessibility of the
signals in time naturally influences the choice of the model structure, as well as of
the identification method.

5.1.2 Methods
In order to calculate the model parameters θ, a suitable identification method is
adopted, which is based on an optimization approach. As a matter of fact, the set
of parameters is sought by means of the minimization of a given cost function.
The cost function is a measure of the error between the identified output data and
the recorded output data; a typical cost function is the mean quadratic error J
defined as follows

J =
1

Nt

Nt∑
k=1

[ε(tk)]
2 , (5.1)

where Nt is the number of samples of the error ε, which is given by the difference
between the ouput y produced by the training signal and the identified output yi
evaluated at time sample tk:

ε(tk) = y(tk)− yi(tk).

Once the cost function is defined, a suitable optimization strategy is chosen. In the
foregoing, the methods whose implementation have been attempted in the current
work are briefly discussed (cf. Ref. [32, 31] for further information).
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The most classical choice for system identification is the least squares method.
The cost function in Eqn. (5.1) depends on the input/output recorded data and the
model parameters θ. Taking the derivative of the cost function with respect to
the parameters and setting it to zero (i.e., the necessary condition for a minimum
point) yields a system of equations, whose solution provides the model variables
θ. Such a technique is widely employed in linear identification, but it presents dif-
ficulties with non-persistent excitations and might give rise to conditioning prob-
lems with increasing model order.

With the spread of (recurrent) neural networks (i.e. less transparent model
structures having an internal dynamics) genetic algorithms have been employed,
along with a more common approach based on the gradient method, which is
also known as back-propagation method. The former is a global optimization
strategy, which would promise to overcome the difficulty of restraining on a local
minimum. It is based on the evolution concept, which states that only the genes
belonging to the stronger individuals pass from one generation to the next one. In
this case, the genes are the model parameters and the individuals are realizations
of the model based on a set of genes. The optimal individuals are defined through
the fitness function, which is the reciprocal of the cost function: the lower the
cost function, the higher the fitness function and the ranking of the corresponding
individual. In order to test different genes, random individuals are generated and
interchanged on every advancing step of the algorithm until an optimal set of
individuals is reached.

On the other hand, the back-propagation strategy is based on a gradient method,
that produces a descent on the quadratic cost function J(θ) along the direction
opposite to the gradient dJ/dθ. Such methodology might incur into local min-
ima and shows very poor convergence speed. Furthermore, both the gradient
techniques and the genetic algorithms have a substantial computational cost, that
might limit their applicability.

5.1.3 Training signals

The training signal is the input signal used in the experimental stage of the system
identification procedure: a chosen input is prescribed to the real dynamic system
in order to excite it and record the resulting output data. Naturally, the prescribed
excitation should meet several multidisciplinary requirements among which are
the following:

(a) The signal should be capable of exciting the frequency interval of interest
with an amplitude that is sufficiently high to induce a measurable response,
yet not overdriving the system. If the hypothesis of small perturbations is
assumed, the signal should not exceed the linearity boundary; within such
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a framework it is important to precisely define what is “high” or “small”,
performing suitable linearity tests.

(b) The signal should be capable of dealing with the chosen identification method:
as a matter of fact, coupling particular training signals and methods might
give rise to numerical difficulties in the calculation of the model parameters;

(c) The signal should be realizable, that is compatible with the experimental
layout: if an experiment is conducted, the excitation feasibility, intrusivity
should be analysed, whereas in the case of a numerical experiment, the com-
patibility with the numerical methods and computational overhead should
be taken into account.

In the foregoing a discussion is presented of the training signals that are most em-
ployed in the numerical identification of the aerodynamic sub-system for aeroe-
lastic problems.

Harmonic input. A classical choice consists in persistently exciting the system
with a simple harmonic input signal with prescribed frequency ω̄ and maximum
amplitudeA. Assuming that the system is Linear Time Invariant (LTI) and asymp-
totically stable, the frequency response theorem states that the output signal is
also harmonic with equal frequency. As a consequence it is possible to compute
the ratio between the output and input signal and extract the aerodynamic trans-
fer function at frequency ω̄. Clearly such a strategy implies a high computational
overhead, since it is necessary to repeat the numerical simulation for each reduced
frequency inside the range of interest.

Frequency sweep input. Frequency sweeps are generated by smoothly varying
frequency inside the bandwith of interest for a sinusoidal function; linear sweeps
are also called chirps. By design, all frequencies within a specified bandwidth are
excited. Frequency sweeps are common in the flight-test community. One dan-
gerous disadvantage of the frequency sweep is the over-excitation of the structure,
which often causes critical flight attitude.

Pulse input. Choosing an ideal impulse of infinite amplitude and zero width as
input signal for exciting the aerodynamic subsystem, the aerodynamic impulse
responses matrix at every time would be readily available. However, it is not pos-
sible to numerically implement an ideal impulse, but only a so-called real impulse
of finite amplitude and width suitably chosen in order to excite the frequency inter-
val of interest. Because a very small time step should be used in order to approx-
imate the real impulse, a significant computational effort is required. Moreover,
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unless a very wide time window is chosen, it is difficult to accurately identify the
static gain and the low frequency dynamics of the aerodynamic sub-system.

Step input. In order to accurately identify also the static gain and the low fre-
quency dynamics, it is convenient to choose as training signal an ideal step of
prescribed maximum amplitude Â. Such a strategy is promising if only the geo-
metric contribution (i.e. the contribution proportional to the structural displace-
ment) is considered. Instead, when considering also the kinematic contribution
(which involves the velocity field), the same problems stated above for the pulse
input would arise. Moreover the Fourier transform of the output signal quite of-
ten presents spurious Gibbs oscillations, spoiling the accurate identification of the
high frequency dynamics of the aerodynamic sub-system.

Blended step input. Finally, it is possible to choose a blended step input signal
I(t), which is given by:

u(t) =


0 if t < 0
A
2

[
1− cos

(
Ω̄t
)]

if 0 < t < tmax

A if t > tmax

(5.2)

where Ω̄ is the angular frequency, tmax is the half-period time of the cosine and A
is the step amplitude. With non-dimensional variables the previous equation reads

u(η) =


0 if η < 0
A
2

[1− cos (kΩη)] if 0 < η < ηmax

A if η > ηmax

where η = tV∞/L∞ is the adimensional time, kΩ = Ω̄L∞/V∞ is the angular
reduced frequency, ηmax = tmaxV∞/L∞ is the half-period non-dimensional time
of the cosine and L∞, V∞ are respectively the reference length (i.e. the airfoil
chord) and the freestream speed. The value of the angular velocity is set de-
pending on the maximum frequency of interest fmax or its reduced counterpart
kmax = 2πfmaxL∞/V∞ and also dictates the half-period time:

kΩ =
kmax

2
or Ω̄ = πfmax

ηmax =
π

kΩ

or tmax =
π

Ω̄
. (5.3)

As a rule, the amplitude of the signal is chosen depending on the particular appli-
cation and with regard to the possible limitations due to the signal feasibility or
the linearity assumption.
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5.2 Linear model for aileron buzz
With reference to Fig. 3.2, the ROM for the aerodynamic sub-system needs to map
the input of the system, namely the aileron deflection angle β into the aerodynamic
load acting on the aileron, that is the hinge moment MH . The experiment for the
identification is represented by a CFD computation of the aerodynamics with a
suitable prescribed time history of the deflection angle, from which the hinge
moment coefficient is recorded. From these sets of data, the calculation of the
parameters is carried out, finally providing a substitute to the aerodynamic sub-
system which can be easily integrated with the structural system, yielding a low-
order aeroelastic model.

In the current section the reduced-order model for aileron buzz is presented,
starting from the discussion of the model structure and the identification method
and concluding with validation results.

5.2.1 Model and method
To begin with, the main charateristics of the model structure need to be set. With
reference to the basic classification presented in Section 5.1.1, the definition of
the main features of the ROM developed in the current work are discussed.

Model structure. The model is comprehensive of an exogenous variable, i.e.
the input variable ua, which in this case is the aileron deflection β. In addition, the
model structure is described by means of a state-space representation: this choice
is widely employed when dealing with CFD-based ROM, because it is capable of
dealing with both high and low frequencies dynamics, as well as enabling an easy
integration with the structural sub-system. A continuous-time representation of
the model is also chosen, so that the integration with the structural sub-system and
the solution of the aeroelastic system are more manageable thanks to the compact
realization of the system. Such choices lead to the definition of the following
system for the description of the mapping between the input ua and the output ya,
(i.e. the hinge moment coefficient CMH

):{
ẋa = Axa + Bua

ya = Cxa + Dua, (5.4)

where xa are the state-variables and matrices A, B, C and D are time-invariant
matrices that determine the equation of state (the first one in Eqn. (5.4)) and the
ouput equation (the second equation in Eqn. (5.4)). In addition, the system is
assumed to be linear with respect to the input variable. This assumption would
limit the capability of the identified model to represent the actual dynamic system,
because the aerodynamics in the transonic regime presents strong nonlinearities
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that would cause nonlinear dependence of the load with respect to the structural
displacement (cf. Chapter 1). However, it is a convenient strategy in building a
ROM to start from a model with lower complexity and then increasing the level of
complication and transparency of the model until the desired fidelity is reached.
This idea is also supported by the suggestion based on the frequency analysis of
the response to a sinusoidal prescribed motion (cf. Chapter 4) that the dependence
on the structural displacement in the problem of aileron buzz can be approximated
by a linear dependence on an even polynomial of the input ua. In this case a linear
model would be sufficient, but it would be necessary to add other inputs (namely
even powers of the input ua) in order to take into account the system nonlineari-
ties. As a result, the preliminary step is the construction of a linear model, which
actually maps the variation of the input with respect to the initial value into the
variation of the output with respect to the initial hinge moment coefficient. The
choice of taking a variation with respect to the steady-state calculation leads to
the interpretation of the model as a dynamic linearization performed around a
nonlinear steady-state solution.

Furthermore, in order to define the structure of matrices A, B, C and D the idea
of a grey-box model is pursued. As a matter of fact, the state variables xa do not
have a physical meaning and they are simply employed to resemble the dynam-
ics of the system, thereby yielding a model structure with very low transparency
level. However, it is possible to add information about the actual dynamic sys-
tem in order to improve the low-order model and ease the identification process.
The analysis in Chapter 1 and the numerical study presented in Chapter 4 surely
provide a good prior knowledge of the phenomenon which drives the following
observations.

Considering the aerodynamics as a dynamic system, it is reasonable, at least
in the case of interest, to assign to the model the property of asymptotic stability
with respect to perturbations related to a structural displacement. In addition,
because the focus of the work is on a phenomenon dominated by oscillations and
harmonic behaviours, an appropriate choice for the eigenstructure of the system
is based on complex eigenvalues that, containing both a real and an imaginary
part, will contribute to the oscillating behaviour of the system. As a result, the
model should possess complex conjugate eigenvalues with negative real part: the
easiest way to assign the eigenstructure to matrix A is that of building a diagonal
matrix with two-by-two blocks, each of which has the desired couple of complex
eigenvalues.

A further assumption is introduced into the model structure: a diagonal matrix
with two-by-two blocks is, for instance, the state-space representation of a dynam-
ical system based on a parallel of second-order systems. Leveraging on this idea,
the aerodynamic model structure is built as a parallel of internal second-order
sub-systems, which are modelled as mass-spring-damper systems. A partial jus-
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tification of this choice might be supported by the following physical abstraction:
treating the flow as a solid continuum, the flowfield is regarded as if it were the
displacement and velocity field of a solid continuum. The effect of the compress-
ibility of the flow translates somehow in hypothetical damping and flexibility. In
particular, the basic structure of the i-th internal sub-system is the following

˙̃xi =

[
0 1

−ki/mi −di/mi

]
x̃i +

[
0

1/mi

]
ua

ỹi =
[
1 0

]
x̃i, (5.5)

where mi, di and ki are respectively mass, damping and stiffness coefficients,
while the output ỹi of the internal system is the position of the state x̃i. Actually,
because the state variables do not have a physical meaning and neither have the
stiffness and damping coefficients, it is legitimate to redefine the state variables as
xi = mix̃i and the coefficients as ai = ki/mi and bi = di/mi, thereby obtaining
the following representationẋi =

[
0 1
−ai −bi

]
xi +

[
0
1

]
ua

yi =
[
0 1

]
xi, (5.6)

This condensed representation is used to reduce the number of the model param-
eters, alleviating the cost of the identification method procedure. To this end, in
the parameters calculation it is also assumed that coefficients ai an bi are multi-
ple of the basic coefficients a1 and b1; the assumption is driven by the need of
further reducing the number of the optimization parameters and it is considered
a good strategy to span the frequency range of interest without aggravating the
computational cost of the minimization procedure. Finally, the amplitude of the
internal system outputs is then tuned by the output layer of the model structure
which operates a linear combination of the internal outputs by the emplyment of
the amplification factors ci:

ya = c1y1 + . . . cNyN .

The output equations is completed by adding a contribution proportional to the
input and its first and second derivatives, that is

D0ua + D1u̇a + D2üa,

where the coefficients D0, D1 and D2 are to be determined in the identification
process. Such terms not only represent the contribution at low frequency of the
higher frequency dynamics, but also provide an additional mass, damping and
stiffness for the complete aeroelastic system.
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ẍi + biẋi + aixi = ua ci

ẍ1 + b1ẋ1 + a1x1 = ua c1

+

+

ẍN + bN ẋN + aNxN = ua

D0

d
dt

D1

d2

dt2
D2

+

cN

ua ya

Figure 5.2: Block diagram of the aerodynamic model structure.

Thus, the system needs to be enlarged as follows{
ẋa = Aaxa + Baua

ya = Caxa + Daua, (5.7)

and the resulting states, inputs ua and matrices Aa, Ba, Ca and Da are given by

xa =


...
xi
...

 ua =


ua
u̇a
üa



Aa =


. . . [

0 1
−ai −b

]
. . .

 Ba =


...

...
...[

0
1

]
0 0

...
...

...


Ca =

[
. . .

[
ci 0

]
. . .
]

Da =
[
D0 D1 D2

]
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The outline of the system is sketched in Fig. 5.2; the variables ai, bi, ci and D0,
D1, D2 constitute the set of parameters θ that are calculated according to an opti-
mization criterion to determine the best fit of the model structure with respect to
the actual dynamic system.

Method. To begin with, a modified least squares method is employed. The
approach is based on the separate minimization of two quadratic cost functions of
the form

J =
1

Nt

Nt∑
k=1

ε(tk)
T ε(tk),

which are respectively based on the error εx associated to the equation of state

εx(tk) = ẋa(tk)− (Aaxa(tk) + Baua(tk)) ,

and the error of the output equation εy

εy(tk) = ya(tk)− (Caxa(tk) + Daua(tk)) .

In order to minimize the quadratic form, the derivative of the cost function is taken
with respect to the model parameters, that is the coefficients in matrices Aa, Ba,
Ca and Da. The state variables should be provided, but these are unknown, be-
cause the experiment only yields input and output data set. Thus, it is assumed
that to a first approximation the state variables are approximately the output vari-
ables: in particular, because the output is proportional to the state displacement,
the state is reconstructed from the output and its first derivative. This approach
yields two decoupled systems of equations, whose solutions are the parameters θ.
Nevertheless, the approach proves to be effective in a wide range of cases only for
a model structure containing one internal sub-system, but it is ineffective most of
the times for high-order model, unless the frequency content of the output presents
clearly separated peaks. The reason for the limited capability of this approach is
likely to be related to the assumption that the state can be approximated with the
system output. The assumption is acceptable in the case of a limited contribution
of the input in the output equation when the coefficients ci are nearly unit. As a
matter of fact, it is crucial to provide each internal sub-system with the correct
internal output yi, which might differ to a large extent from the total output ya.

Another possibility is the back-propagation strategy. In this case a gradient
method is implemented, which seeks for a minimum along a descent direction in
the quadratic function J , namely the direction opposite to the gradient dJ/dθ. To
this end, the model structure is subdivided into layers (an output layer, which is
represented by the output equation, and an inner layers based on the inner sub-
systems) and the gradient is computed starting from the last, outer layer to the
inner layer. Because the model structure has an inner dynamics, it is necessary
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to write the differential equation governing each inner second-order sub-systems
with an explicit technique and “unfold” each sub-system through time, yielding a
series of feed-forward systems for each internal second-order sub-systems. Thus,
the computational cost of the procedure is severe and the functional cost often
flattens on a local minimum point far from the solution of the problem.

Therefore, a method based on the genetic algorithm is chosen. Such an ap-
proach permits to train the system from the input to the output and does not rely
on further assumptions on the internal variables of the system. The genetic algo-
rithm is based on an iterative scheme, which creates at each iteration a new set, or
generation, of individuals distinguished by a set of genes that try to evolve to bet-
ter solutions [33]. The genes are the model parameters, therefore each individual
is associated to one realization of the model. The reciprocal of the cost function
J (cf. Eqn. 5.1) is called fitness function and needs to be evaluated at each itera-
tion for each individual. The evaluation of the fitness function implies integrating
the associated system in time and the integration is performed by means of the
energy-preserving Crank-Nicolson scheme. Once the fitness function is evaluated
the ranking of the individuals of the current generation is carried out: the bet-
ter individuals are the ones having the higher value of fitness function and the
corresponding genes or parameters are the stronger. The next generation is then
generated according to the following criteria: a small part is constitued by the
stronger individuals of the previous generation, another small set is the result of
the random crossover of strong individuals, a set comes from a perturbation mu-
tation of randomly chosen previous individuals and a substantial part is produced
by random selection of the genes. The loop is represented in Fig. 5.3. When the
maximum number of iterations is reached or the error is lower than a given toler-
ance the method stops. The error is based on a quantity measuring the dispersion
of the genes in the current generation, leveraging the assumption that the optimum
point in the genetic evolution is reached when all the individuals in a generation
possess (almost) the same genes.

The counterpart of the approach is the conspicuous computational cost that
is needed to evaluate the functional cost for each individual at every iteration.
In order to speed up convergence, several modifications are introduced. First of
all, a least square method is employed only for the output equation of the system
Eqn. (5.7); in this case, the trained internal signal yi and the state variables xa is
readily available from the integration of the equation of state and there is no need
for further assumption. The inclusion of the least square approach reduces the
number of genes, because only coefficients ai and bi) constitute the set of genes
for each individual. In addition, the ranges in which the parameters need to be
sought are appropriately set. In particular, limits are defined for the parameters
that exclude negative values of ai and bi and real values of the corresponding
eigenvalues of matrix A. Furthermore, during the loop the limits of each parame-
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Figure 5.3: Outline of the genetic algorithm.

ter is progressively and slowly restricted around the current optimal genes, so that
the convergence to the optimal state is accelerated yet avoiding excessive bound-
ings to the algorithm. This also provides a certain “freedom” to the method with
respect to the possible values of the model parameters: in fact, if the initial ranges
are such that the optimal genes fall outside the prescribed range, the method is
still capable of reaching the optimal values changing the limit correspondingly.

Furthermore, when cost function flattens with increasing number of iterations,
settling on a value distant from the optimal point, the genes for the next generation
are randomly chosen inside a range centered on the values of the genes of the
optimal individual. In this way new evaluations are computed and a possible better
individual is found. This operation usually produces high peaks in the behaviour
of the cost with respect to the number of iterations, but is indeed very effective.

Finally, an incremental approach is employed to aid the identification process.
In particular, the genetic algorithm is run more than one time and at each time a
small number of internal sub-systems is considered. Such an approach permits
a good convergence and accuracy of the genetic algorithm that attempts to catch
first the most significant contributions to the system ouput and then the minor
contributions. In addition, when the algorithm is run after the identification of the
first small model, the fitness function is based on a modified cost function, which
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contains a contribution that is proportional to the error between the identified and
recorded outputs at the time instant t̄ where they differ the most. Thus the cost
function of the genetic algorithm Jga is the following

Jga = ρ1
1

Nt

Nt∑
k=1

[ε(tk)]
2 + (1− ρ1) (y(t̄)− yi(t̄))2 ,

where the weighting coefficient ρ1 is set equal to 1 in the first loop and then it is
equal to 0.3, as a result of a brief analysis of the accuracy of the identified signal.
This expedient is used to catch the greatest difference in the system responses yet
maintaining the overall behaviour, thereby obtaining a more accurate identifica-
tion.

Training signal. The chosen training signal is the blended step input: this signal
allows to excite all the frequency falling inside a desired bandwith and overcome
the numerical difficulties arising with the other input signals. The angular fre-
quency Ω and the half-period time tmax are set in such a way that the frequency
interval [0, 200] Hz is excited (cf. Eqn. (5.2) and Eqn.(5.3)), because the fre-
quency analysis of the direct simulation shows non-null contributions up to that
value. The amplitude of the step is selected within the bounds dictated by the
linearity assumption and the capability of the numerical solver to cope with the
almost sudden boundary and mesh movement. In particular, starting with a signal
having amplitude A = −1 deg (which is considered not to exceed the linearity
limit), the identification is carried out for signals with amplitude increasing up to
A = −3 deg, which is either the average value or the steady-state value of most
aeroelastic direct calculations. The resulting identification does not show any
substantial difference in terms of identified solution, thus the higher amplitude is
considered not to overstep the linearity bound.

Aeroelastic model. The low-order aeroelastic model is obtained by the integra-
tion of the aerodynamic state-space realization (cf. Eqn. (5.7)) with the structural
sub-system, whose state-space realization readsẋs =

[
0 1
0 0

]
xs +

[
0

1/IH

]
us

ys =
[
1 0

]
xs,

where the input us is the aerodynamic load MH = q∞c
2CMH

= q∞c
2ya and the

output ys is the aileron deflection angle β. The resulting aeroelastic model is the
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following

ẋae =



 0 1
D0

Iae
q∞c

2
D1

Iae
q∞c

2

 [
. . . 0 . . .

][
q∞c

2

Iae
Ca

]


...[
1
0

]
...




...
0
0
...


 Aa




xae

where Iae = IH − D2q∞c
2. The integration in time is started from the initial un-

balanced aerodynamic moment and is performed by means of the Crank-Nicolson
scheme. The rotation angle and moment are then recovered as follows

β =
[
1 0 . . . 0

]
xae

MH = q∞c
2
(
Caxae + D0β + D1β̇ + D2β̈

)
.

5.2.2 Results

The system identification is first employed to represent the stable aeroelastic re-
sponse at Mach number M = 0.8. The recorded output data is presented with a
blue line in Fig. 5.4, whereas the aerodynamic identified response is represented
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Figure 5.4: Comparison of the recorded CFD-based response and the identified
response subsequent to the prescribed input signal (Mach number M = 0.8).
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by the red curve. The overall behaviour of the aerodynamic response is well rep-
resented by the identified model; slight differences are noticeable at the very high
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Figure 5.5: Comparison of system responses between the aeroelastic CFD-based
model and the aeroelastic ROM-based model (Mach number M = 0.8).
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peak and in the subsequent instants when the response slowly oscillates until it
reaches a steady state.

Then, the complete aeroelastic response in terms of aileron deflection and the
hinge moment obtained with the reduced-order model is compared with the results
of the direct numerical simulation in Fig. 5.5. The plot shows good agreement,
especially in the first instants of time; however, after the first peak a discrepancy in
the system damping ratio is evident, while the frequency of the signal is predicted
with good accuracy. The reason for this is probabily twofold: on one side the lin-
ear model structure is not capable of representing a variable damping ratio, which
in the actual system is not constant with time; on the other side the linear model
strictly depends on the initial perturbation which would probably cause the model
to effectively resemble the system response for the inital part of the response, but
would lack in accuracy on the remaining instants of time. Furthermore, the ac-
curacy of the identified model close to the first peak is taken as the indicator of
a good identification. Thus it is possible to operate a brief convergence analy-
sis, that shows an improvement on the system response up to 12 internal systems,
whereas higher-order models produce highly oscillating yet damped responses,
which usually suggest that the order of the system exceeds the necessary value
(Fig. 5.6). Therefore, the identification has been carried out using 12 internal
system, thereby employing 26 states.
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(a) N = 10

0 0.2 0.4 0.6 0.8 1
−60

−40

−20

0

20

40

60

t[s]

M
H

[N
m

]

 

 

identified

CFD

(b) N = 42

Figure 5.6: Comparison of system responses between the aeroelastic CFD-based
model and the aeroelastic ROM-based model obtained varying the model order N
(Mach number M = 0.8).
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Once the low-order model is identified, the behavior of the eigenvalues of
the aeroelastic system for different values of the freestream dynamic pressure q∞
is obtained at constant Mach number. The reason for this analysis is that the
low-order model is typically used to search for instabilities at the same Mach
number by repeatedly changing the dynamic pressure without varying the Mach
number. The buzz point is detected when the real part of an eigenvalue has null
value. In Fig. 5.7 the real part of the eigenvalues of the resulting aeroelastic state
matrix is plotted against dynamic pressure. The dependence of the model with
respect to the dynamic pressure is linear in the model and this proportionality is
also observed in the figure. A bifurcation of the real part of the eigenvalues is
present in concurrence with the coalescence to null value of the corresponding
imaginary parts, which is a typical feature of aeroelastic dynamic phenomena.
For this particular Mach number, no instability points are detected.
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Figure 5.7: Eigenvalues λ of the aeroelastic state matrix plotted against dynamic
pressure (Mach number M = 0.8).

In addition, a comparison between the CFD-based aeroelastic response and the
ROM-based response is provided at three dynamic pressures, namely q∞. The
different dynamic pressure is obtained in the CFD solver by varying the freestream
pressure p∞, because

q∞ =
1

2
γp∞M

2
∞.

The comparison shows good agreement, still pointing out the difference in the
system damping ratio. It is also noticeable that the response is less stable for
lower dynamic pressure, which would resemble higher altitudes.
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Figure 5.8: Comparison of system responses between the aeroelastic CFD-based
model and the aeroelastic ROM-based model (Mach number M = 0.8, dynamic
pressure q∞ = 13440 Pa).
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Figure 5.9: Comparison of system responses between the aeroelastic CFD-based
model and the aeroelastic ROM-based model (Mach number M = 0.8, dynamic
pressure q∞ = 26880 Pa).

The search for an instability point leads to the identification of the reduced-order
model at higher Mach numbers. The genetic algorithm is then run for each training
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signal corresponding to a different Mach number. For Mach number M = 0.835
the reduced-order model finally predicts a point of aeroelastic instability. The
identified aerodynamic response is presented in Fig. 5.10. It is worth notice that
the output signal at Mach numberM = 0.835 differs significantly from the output
at Mach number M = 0.8, although the input signal is the same. This might be
an evidence that the system attitude is changing. The instability point is marked
in Fig. 5.11, whereas the real and imaginary parts of the eigenvalue are plotted in
Fig. 5.12.
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Figure 5.10: Comparison of the recorded CFD-based response and the identified
response subsequent to the prescribed input signal (Mach number M = 0.835).

Once the point of instability is found, the coupled Euler solution can then be
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Figure 5.11: Instability point (Mach number M = 0.835).
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Figure 5.12: Eigenvalues λ of the aeroelastic state matrix plotted against dynamic
pressure (Mach number M = 0.835).
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Figure 5.13: Comparison of the recorded CFD-based response and the identified
aeroelastic response (Mach number M = 0.835, dynamic pressure q∞ = 25870
Pa).

run once to verify the accuracy of the coupled model solution. The comparison
between the identified signal and the CFD aeroelastic computation is presented
in Fig. 5.13. The plot shows that the high-order aeroelastic response is actually
a buzz response, thereby proving that the identification effectively predicts an
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instability onset. However, the amplitude is underestimated, a slight frequency
shift progressively increases after the first two cycles and the highly nonlinear
behaviour of the waves is not correctly represented. It is remarkable, though, that
the frequency of the first cycles is well predicted.

Finally, it is worth noting that the CFD direct computations show buzz on-
set at various Mach number with different characteristic amplitude and frequency
(for instance, the buzz results obtained in Chapter 4 at Mach number M = 0.82
differ from the response at Mach number M = 0.835 in Fig. 5.13). Instead, the
reduced-order model is capable of predicting buzz onset only at Mach number
M = 0.835 and for one precise value of dynamic pressure. This can be ascribed
to the linearity assumption which is not capable of representing the mutual en-
ergy exchange between the aerodynamics and the structural dynamics that drives
buzz. A possible explanation of the mechanism is that damping ratio and fre-
quency have a dependence on the structural motion; because the linear analysis
captures the frequencies better than damping, it is likely that the latter have a
stronger dependence on the structural motion. In other words, the nonlinearity of
the phenomenon seems to manifest itself with terms proportional to the structural
velocity field rather than to the displacement field.
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Conclusion

In the present work the numerical modelling of aileron buzz is discussed. The
focus of the analysis is the aerodynamic model, which is obtained in two differ-
ent ways: on one hand a CFD model is employed and on the other a low-order
model is developed. The CFD-based aeroelastic model is founded on the numer-
ical implementation of the two-dimensional Euler equations, which is an appro-
priate model for the simulation of non-classical aileron buzz, and a rigid model
is chosen for the freely-hinged control-surface. The weak numerical aeroelastic
coupling is obtained by means of two different approaches, which yield different
descriptions of the geometric detail of the aileron hinge. The solver AeroFoam is
used for the direct numerical simulation of the aeroelastic problem. In particular,
the preliminary results show a noticeable sensitivity of the system response with
respect to mesh refinement, size and with respect to the geometric detail of the
integration of the control-surface into the wing. The reason for this is the dom-
inant role of the shock dynamics in the aeroelastic phenomenon, which requires
a finer representation in order to be accurately captured. In addition, the over-
all numerical layout proves to be a reliable means for the stability prediction of
aileron-buzz. The numerical results also provide information for the development
of the reduced-order model of the aerodynamic sub-system, which is a substitute
of the CFD algorithm. The model structure is built on a linearity assumption and
leveraging the idea of a grey box, that is a model containing some pieces of in-
formation about the actual system, such as the property of asymptotic stability
and the oscillating behavior. The identification of the aerodynamic sub-system
parameters is obtained by means of a suited genetic algorithm which exploits the
data recorded in a preliminary CFD computation with a prescribed input signal
properly exciting the dynamic system. The identification strategy proves to be ef-
fective and reaches accurate results, whereas the linear low-order model is capable
of predicting instability and representing the results of the high-order CFD-based
aeroelastic model yet with a limited range of applicability. In particular, the linear
model is strongly dependent on the initial perturbation, thereby yielding a good
agreement with the CFD results in the first istants of time. In addition, the re-
sponse of the low-order model is similar to the CFD-based aeroelastic response
more in terms of motion frequency rather than in damping ratio. This might be
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an evidence that the nonlinearity manifests itself with terms proportional to the
velocity field rather than the displacement field.

In this sense the natural development of the work is the implementation of
a nonlinear low-order model: the basis of such model have already been devel-
oped in the presented analysis and it is believed, based on the response frequency
analysis, that the employment of a polynomial substitute of the input would be
sufficient to resemble the nonlinear behavior, thereby predicting with higher ac-
curacy the buzz cycle and the buzz onset at each Mach number. In addition, the
low-order model could be the basic constituent of a nonlinear model that could
also take into account the variation of freestream Mach number and angle of at-
tack. With such a tool a more comprehensive model of the aileron buzz would be
provided, that could be applied also in the case of pitching arifoils. In addition,
the state-space model would is possibly a profitable tool for the implementation
of active control systems.

With regard to the CFD model, future works would focus on the viscous, three-
dimensional analysis of buzz. As already pointed out, taking into account three-
dimensional effects and viscosity will undoubtly affect the results to the extent
that buzz onset would be shifted with Mach number, but it is likely that the main
features highlighted in the current work would still occurr. Anyway, the inclusion
of these effects in the analysis would provide more accurate CFD results, as well
as enriching the CFD-based reduced-order model. In addition, Type A buzz could
be studied in detail, focusing on the evaluation of the effectiveness of the presented
model structure for this kind of buzz.

In conclusion, the work provides further insight in the numerical simulation
of shock-dominated instability aeroelastic phenomena and blazes a trail for the
development of a low-order model for the analysis of non-classical aileron buzz.
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