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Abstract 
 
Computer Aided Engineering software have reached a level of precision 
that allows the  simulation of a great variety of phenomena, as an 
alternative to the experimental tests, thus reducing the costs, in terms of 
time and money, for the development of engineering projects. However, 
when the hypothesis of continuum of the Finite Element Method is not 
satisfied, these software cannot be used.  
Molecular Dynamics and Discrete Element Method overcome this limit 
modeling the real molecules or concentrated masses and the interaction 
among them, but the computational power required often limits the 
application of these methods to space and time scales not compatible 
with the engineering field. 
The argument of this Thesis is the development of a new molecular 
method for structural analysis based on the removal of the hypothesis of 
continuum and on a simplified model of the interactions among 
concentrated molecules.  
The validation procedure consists of a graphical comparison of the 
results, obtained from an experiment of traction until breaking of a 
specimen and its simulation, computed in MSC Adams/View on a model 
implemented in the command language of the software. 
The results obtained are satisfactory, despite some difficulties in 
reducing numerical instabilities.  
Significant improvements are conceivable with further development. 
 

Key words: hypothesis of continuum, molecular method, breaking, MSC 
Adams/View command language. 
  



 

 
 

Sommario 
 
I software di Computer Aided Engineering hanno raggiunto un livello di 
precisione tale da consentire la simulazione di un grande varietà di 
fenomeni, in alternativa ai test sperimentali, così riducendo i costi, in 
termini di tempo e denaro, per lo sviluppo di progetti in campo 
ingegneristico. Tuttavia, se l’ipotesi del continuo del Metodo agli 
Elementi Finiti non è soddisfatta, questi software non possono essere 
usati. 
Il metodo Molecular Dynamics e il Metodo agli Elementi Discreti 
superano questo limite, modellando le reali molecole o delle masse 
concentrate e le interazioni fra di esse, ma il costo computazionale 
richiesto spesso limita l’applicazione di questi metodi a scale spaziali e 
temporali non compatibili con il campo ingegneristico. 
L’argomento di questa Tesi è lo sviluppo di un nuovo metodo molecolare 
per l’analisi strutturale, basato sulla rimozione dell’ipotesi del continuo e 
su un modello semplificato delle interazioni tra masse concentrate. 
La procedura di validazione consiste in un confronto grafico dei risultati, 
ottenuti da un esperimento di trazione fino a rottura di provino e dalla sua 
simulazione, svolta in MSC Adams/View su un modello implementato nel 
command language del software. 
I risultati ottenuti sono soddisfacenti, nonostante alcuni problemi nella 
riduzione di instabilità numeriche. 
Sono ipotizzabili significativi miglioramenti con ulteriori sviluppi. 
 

Parole chiave: ipotesi del continuo, metodo molecolare, rottura, MSC 
Adams/View command language. 



 

 

Introduction 

 
Nowadays the majority of Computer Aided Engineering (CAE) software 
are based on the Finite Element Method (FEM). The accuracy of results 
obtained with those software allow the study and simulation of complex 
problems, reducing the amount of experiments necessary to develop a 
project.  
Nevertheless FEM has an implicit limit, which cannot be overcome: the 
hypothesis of continuum. The analysis of phenomena in presence of 
discontinuities of any kind is not possible with CAE software based on 
FEM, as the functions used in the method must be continue. These 
phenomena include fractures, collisions, extreme thermal gradients etc. 
and normally it is necessary to deal with them using a local method, 
whose solution has to be linked to the one obtained with the FEM. 
 
In recent years an alternative approach, which considers the real 
interactions among the molecules, has led to the development of 
Molecular Dynamics (MD). This method can be applied to all the 
phenomena that cannot be studied with the FEM software, as a 
consequence of the hypothesis of continuum. 
However the simulations of MD are performed within a space and time 
scale considerably small, so that the results obtained have no 
technological relevance.  
Moreover the computing power required is so high, that only super-
processors can solve the simulations, which reduces the possibilities of 
improvements to the technological growth of computers. Until personal 
computers with such computing power will be available, MD cannot be 
used in CAE software. 
 
A third approach, derived from MD, has lately become effective in the 
study of granular and discontinuous materials. This approach, which, 
with respect to MD, considers particles of concentrated mass instead of 
real atoms and molecules, inspires a family of numerical methods named 
Discrete Element Method or Distinct Element Methods (DEM). 
Again, DEM is computationally intensive and the excellent simulations 
obtained with software using this approach have a limited space and 
time scale. 
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In this Thesis is presented an innovative idea, which takes inspiration 
from MD and DEM in order to eliminate the hypothesis of continuum of 
FEM. 
Based on this idea, a possible alternative theory is developed in 
collaboration with Professor Sergey V. Arinchev, Scientific Director of 
Aerospace Systems faculty at Bauman Moscow State Technical 
University (BMSTU) and a new method is implemented in MSC 
Adams/View environment.  
The validation of this method is approached comparing an experiment of 
traction until breaking of a specimen with the simulation of the 
experiment, done with the new method. The experiment was performed 
in the laboratory of BMSTU, with the supervision of Professor Boris V. 
Buketkin of Applied Mechanics faculty. 
The results obtained are satisfactory, especially considering the early 
stage of the method, but it is required a further development in order to 
use the program as a CAE software. This development is conceivable 
because, despite the simplicity of the phenomena studied, the space and 
time scale are already comparable with the ones of real technological 
phenomena and the environment of simulation is supported by personal 
computers.  
 

Structure of the Thesis 

 
In the first chapter is briefly described the state of the art, which is FEM, 
DEM and MD, comparing the fields of applications, their strengths and 
their limits. 
In the second chapter are described the new idea of this Thesis and the 
theory built on it. All the choices taken are discussed in detail, in order to 
allow the reader to have a wider view on the subject, which could indeed 
have been – and should be, as a first step of future improvement - 
developed towards different directions. 
In the third chapter is presented the experiment of traction until breaking, 
starting from the project and manufacturing of the specimen to the 
effective laboratory test. 
The fourth chapter deals with the structure of the program implemented, 
pointing out the possible improvements. 
The fifth chapter discusses the validation of the program, through the 
comparison between the data obtained from the test and the graphs 
produced by the simulation. N configurations are discussed, from the 
simplest to the most complex version studied. 
Finally are presented the conclusions of the work.



 

 

1 State of the art 

 

In this chapter are described the main characteristics of three methods 
currently used to model physical phenomena: Finite Element Method, 
Molecular Dynamics and Discrete Element Method. Applications, 
advantages and disadvantages are discussed.  

 

1.1 Finite Element Method 

 

The Finite Element Method (FEM) is a numerical method used to 
evaluate mathematical models, which describe physical phenomena 
involving complex geometry and boundary conditions [1, 2]. It was firstly 
proposed in the works of Hrenikoff (1941) and Courant (1943), despite 
an inspiring procedure had already been used by ancient 

mathematicians to calculate the value of . 
The basic idea is to divide the given domain into geometrically simple 
subdomains, indeed called Finite Elements, on which are used 
polynomial approximations to develop algebraic equations among the 
quantities of interest. Each Finite Element is independent, so to obtain 
the global solution it is necessary to assemble all elements into the initial 
domain.  
 
The first step consists in the discretization of the domain in n Finite 
Elements; the Mesh is the set of elements and it is “uniform” if all the 
elements are of the same shape. The elements are connected to each 
other at points called Nodes. 
Then each single Finite Element is considered and a function related to 
the quantity of interest is defined on the subdomain. This functions are 
called Element Equations and are linear combinations of nodal values 
(variables desired) and polynomials of a desired degree: 
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where uh is the approximation of u, function of interest, u j are the nodal 
values of the function that have to be found and φj are the polynomial 
functions of interpolation. Of course these functions have to be continue 
on the subdomain and linked with the nearby elements. 
For each Finite Element it is possible to express the problem in matrix 
notation, but in order to calculate the nodal values in the global system of 
reference it is necessary to assemble all these matrixes. 
Finally the boundary conditions have to be imposed directly on the nodes 
involved in the constraints. 
 
Based on the FEM, many Computer Aided Engineering (CAE) software 
have been developed and are currently used in a great variety of 
engineering applications, mainly for Structural Analysis. 
The quality of the results obtained has reached very high levels, thus 
allowing to use CAE software as a tool not only for projecting, but also 
for testing the behavior of structures, saving great amounts of money 
and time with respect to the equivalent physical experiments required.  
 
Other benefits of the FEM are: 
 
1) The possibility of studying problems involving complicated domains, 

loads and nonlinearities, otherwise impossible to face with analytical 
solutions of mathematical models. 

2) The possibility to include parameters, so that to investigate the 
response of the system to their variation, in order to gain a better 
understanding of the process without directly testing all the possible 
configurations. 

3) In presence of enough computational power, the model can include 
many relevant features of the physical process, otherwise excluded 
from the mathematical model for simplicity requirement. 

 
Nevertheless, a great disadvantage limits the application of FEM: the 
hypothesis of continuum. As introduced before, the Element Functions 
have to be continue, thus any phenomena, where discontinuities play a 
dominant role, are excluded from the field of CAE based on FEM. This 
condition can regard both the geometry of the domain and the physical 
phenomena involved: fractures, high gradients, impacts and so on. 
These kind of problems have to be solved with local methods, to be 
coupled with the solutions of FEM simulations conducted on both sides 
of the discontinuity area. 
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1.2 Molecular Dynamics 

 
Molecular Dynamics (MD) is a numerical method that simulates 
movements and interactions between atoms and molecules. It was 
originally developed by Alder and Wainwright in 1959 [3], while Rahman 
produced the first simulation in 1964 [4]. 
Trajectories of particles are determined by numerical solution of 
Newton’s law of motion, where the forces acting on each particle are 
derived from the field of potential energy. 
Being the matter described with real particles, no hypothesis of 
continuum is made, thus there is no limitation a priori. 
 
The definition of the potential energy can be obtained both from a 
classical point of view or with a quantum approach, depending on the 
level of accuracy desired.  
In the first case the atoms of nuclei are considered material points and 
their motion depends on Newtonian dynamics. Moreover the electrons 
are considered separately from their nucleus, because the approximation 
of Born-Hoppenheimer, which states that the dynamic of the electrons 
can be considered instantaneous.  
In the second case it is used the quantum mechanics. 
 
The general procedure consists of 5 steps: 
 
1) initial position to particles 
2) definition of potential of each particle defined 
3) integration of Newton’s law of motion 
4) time step forward 
5) repeat 
 
where can also be used predictor-corrector methods to solve the 
equations of motion. 
The critical point is the definition of the properties of the field, being the 
model a set of a great number of particles. The interactions considered 
include contact models and Van der Waals forces. This is accomplished 
with numerical approximation, but cumulative errors are generated. 
 
The computational power necessary to complete a simulation is 
extremely high and nowadays only super processors can solve parallel 
algorithms. 
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Nevertheless the real time simulated goes from a magnitude of 
nanoseconds to microseconds (10-9 – 10-6) and require a simulation time 
from days to years, with steps in the order of 1 femtosecond (10-15). 
This means that only theoretical and scientific studies can be interested 
in the results of MD simulations, while the engineering field cannot take 
advantage of the power of this method. The typical applications are 
Chemistry, Biophysics, Physics, Material Science and Applied 
Mathematics.  
 
 

1.3 Discrete Element Method 

 
The Discrete Element Method or Distinct Element Method (DEM) is a 
numerical method that simulates movements and interactions between a 
large number of particles (not real atoms or molecules) of micrometer 
scale and above. It was firstly described by Cundall  in 1971 [5] and it is 
now considered a valid method for studying granular and discontinuous 
materials [6, 7, 8, 9 10, 11]. 
 
The basic idea and procedure is similar to the one of MD, so trajectories 
of particles are determined by numerical solution of Newton’s law of 
motion and the interactions considered are: 
 
1) friction when particles touch 
2) contact plasticity during collisions 
3) potentials: cohesion, adhesion, liquid bridging and electrostatic 
4) Coulomb force 
5) Pauli repulsion 
6) van der Waals force 
 
It is usually necessary to limit these interactions to nearby particles, in 
order to reduce the computational power required. 
 
The contact forces and displacements of a stressed assembly of 
particles are found by tracing the movements of the individual particles. 
Movements result from the propagation through the particle system of 
disturbances caused by particle motion and/or body forces.  
The speed of propagation depends on the physical properties of the 
discrete system. The dynamic behavior is represented numerically by a 
timestepping algorithm in which it is assumed that the velocities and 
accelerations are constant within each timestep.  
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The solution scheme is identical to that used by the explicit finite-
difference method for continuum analysis. The DEM is based upon the 
idea that the timestep chosen may be so small that, during a single 
timestep, disturbances cannot propagate further from any particle than 
its immediate neighbors. Then, at all times, the forces acting on any 
particle are determined exclusively by its interaction with the particles 
with which it is in contact. Since the speed at which a disturbance can 
propagate is a function of the physical properties of the discrete system, 
the timestep can be chosen to satisfy the above constraint. 
 
The calculations performed in the DEM alternate between the application 
of Newton’s second law to the particles and a force-displacement law at 
the contacts. Newton’s second law is used to determine the motion of 
each particle arising from the contact and body forces acting upon it, 
while the force-displacement law is used to update the contact forces 
arising from the relative motion at each contact. 
 
DEM is currently used in the following applications: 
 
1) liquids and solutions studies 
2) bulk materials in silos (cereals) 
3) granular matter (sand) 
4) powders 
5) blocky rock masses 
 
The maximum number of particles included in a model and the duration 
of the simulations cannot be increased over a certain limit, due to 
computational power limits. This means that engineering industries can 
use DEM on a Research and Development level, not for projects. 
 
 





 

 

2 Theoretical model 

 
In this chapter are described the idea and the theoretical model used to 
develop the new method presented in this Thesis [12].  
 

2.1 The removal of the hypothesis of continuum 

 
The FEM is founded on the hypothesis of continuum, a model of reality 
which allows to obtain great results, but, indeed, very  far from the reality. 
The matter is composed, at a microscopic level, by molecules and the 
appearance (semblance) of continuum at a macroscopic level is actually 
a consequence of the interactions among the molecules, which give to 
the matter the actual shape we see.  
The nature of these forces is very complex to study and to simulate using 
computers, but is common for all the states: solid, liquid and gas. 
In order to simplify the analysis of the reality, different models have been 
created to describe the behavior of solid materials (theory of strains and 
stresses), liquids (fluid dynamics) and gasses (gas dynamics). 
In consequence of that, nowadays there is a great amount of CAE 
software, which are specific for every application.  
 
The idea on which are based Molecular Dynamics and Discrete Element 
Method software is, on the contrary, to underline the real nature of the 
interactions among molecules, so that to obtain a theory valid for any 
state of the matter and, as a consequence, a unique CAE software. 
Nevertheless, being these forces very complex to describe, as explained 
in the previous chapter, the computing power required is extremely high. 
The best results obtained so far consist of simulations of small pieces of 
material (from nanometers to micrometers scale) for a duration of some 
picoseconds. It is obvious that these results, extremely interesting from a 
scientific point of view, cannot be used to study the behavior of 
engineering structures, nor to study the motion of fluids and gasses. 
 
The target of this work is very simple: to remove the hypothesis of 
continuum, thus obtaining a molecular method, but with a model of the 
interactions between the molecules not too much detailed.  
 
What really matters to an engineer is the macroscopic behavior – and 
this is why FEM are so largely used in CAE software – not the real 
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nature of the microscopic forces, which produce on a larger scale this 
behavior. This principle can be transposed to a molecular model, 
representing the real forces between each pair of molecules with a 
simple model built on engineering concepts.  
 
 

2.2 Non-linear spring 

 
Taking as an example a solid material, it is evident that the molecules of 
this material are in equilibrium.  
When an external load is applied, a reaction is generated. If the load is a 
traction, the distance between the molecules, along the direction of 
traction, will increase and the reaction will be an attraction between the 
molecules; if the load is a compression, the distance will instead 
decrease and the reaction will be a repulsion. 
This kind of behavior resemble the one of a spring, as the correlation 
between force and displacement is proportional with opposite sign. 
Nevertheless in the model there cannot be a direct proportion when the 
distance approaches to zero, as in an ideal spring. It is obvious that two 
molecules cannot interpenetrate each other, and that even their contact 
can be obtained only spending an enormous amount of energy. In other 
words, the distance between them cannot reach zero, because the 
repulsion increases and tends to infinite.  
This is valid also considering liquids and gasses, and it is shown in the 
graph of figure 2.1, where is reported the potential energy of the 
hydrogen bond [13]. 
 

 
Figure 2.1: potential energy for the hydrogen bond. 
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The force is proportional to the derivate of the potential energy, with 
opposite sign. In order to reproduce this behavior, the interaction 
between molecules can be modeled using a non-linear spring with an 
elastic function increasing asymptotically near the origin. Moreover, 
when the distance between two molecules reaches a certain value, the 
interaction is interrupted and the link is broken. This can be included in 
the model, using a step function that cancels the force when a certain 
distance between the molecules is reached.  
An example of the non-linear spring is shown in figure 2.2, where the 
points a and b identify the beginning and the end of the breaking, thus 
the step function operates between them, while the point x0 is the 
distance at which the molecules are in equilibrium. 
 

 
Figure 2.2: non-linear spring model with breaking. 

 
 

2.3 Concentrated masses 

 
Having decided to model the complex interaction between molecules 
with a “spring” similitude, considering certain modifications which will be 
discussed hereafter, it is also possible to make another evaluation.  
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A technological model should reproduce the effects of some phenomena, 
the more precisely the better, without spending computational energies 
describing what is actually happening in nature. Thus, the concept of 
molecule assumes, with regards to this Thesis, less relevance.  
A certain number of masses, between which act forces, can be 
considered a good model, if the phenomena is simulated with acceptable 
precision. If the force is a model, built following a “spring” similitude, then 
it is not sure that the number of masses should be equal to the exact 
number of molecules. And, as a direct consequence, if the number is not 
the real one, so the object itself is different: in this Thesis the masses 
considered are not the real molecules, but concentrated masses, that 
assure the consistency of the model with the real specimen, in terms of 
total mass and global behavior. 
 
 

2.4 Force characteristic 

 
In early stages of this work it was chosen which function should have to 
be used between a simple direct proportionality, modified near the origin, 
and a logarithm.  
The first option seemed more easily connectable to the behavior of 
metallic materials in the linear elastic field. On the other hand it was 
necessary to modify the function near the origin, which appeared to be a 
complexity in contrast with the idea of a simple model.  
Therefore the second option was chosen, because of its good 
approximation of the required behavior on all the range of interest, until 
the breaking.  
A step function was attached to simulate the breaking of the interaction 
between the masses.  
The function, named from now on “force characteristic”, is as follows: 
 

                        
      

  
     

                                                             

            

 
where COEFF and AMPL are parameters, which change the amplitude 
and the shape of the logarithm.  
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The constant x0 is the measure of the distance between each mass in 
the initial state of equilibrium and it is named “distance of equilibrium”. Its 
setting will be discussed in the next paragraph.  
The step function requires 5 inputs: a function and the four coordinates 
of the two points, between which the step has to be built; in this case the 
step should reduce from the actual value of the “force characteristic”, 
when the breaking starts, to zero, when the breaking finishes, and it is 
multiplied by the elastic part of the “force characteristic”. This means that 
the first point is {START, 1} and the second is {FINISH, 0}, where START 
is a third parameter and establishes the x coordinate of the beginning of 
the breaking, while FINISH is a second constant which fixes the end of 
the breaking and it is set from the experimental data. These coordinates 
refers to the first input of the step function, which is the Δ from the 
distance of equilibrium x0 of the x component of the distance (scalar 

product  i), as shown in figure 2.3. 
The damper is instead necessary to have stability during the integration 
and introduces forces of lower magnitude with respect to the elastic 
component. 
 

 
Figure 2.3: step function and its inputs. 
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In principle the force described by the function “force characteristic” 
should be present between each pair of masses and such condition was 
implemented in a first version of the program.  
Nevertheless, as explained in the fourth chapter, it is acceptable to 
consider active only pairs of masses at “one step” of distance inside the 
grid, as shown in figure 2.4. This simplification does not affect the result 
and, on the other hand, reduces considerably the amount of time 
required by the CAD part of the program. 
 

 
Figure 2.4: simplification of the model shown in a 2D grid. 

The mass M is coupled in an active interaction with the 5 masses at “one step” 
of distance (blue line), but it is not connected with any other mass actively 

(violet line). 

 

2.5 Distance of equilibrium 

 
The setting of the constant x0 requires a more detailed explanation. 
As shown in figure 2.2, there is a distance between each molecule at 
which the force acting between them is zero. This distance is, in other 
words, the distance of equilibrium and it is indeed x0. 
Anyway, considering the whole structure at the initial state of equilibrium, 
it is evident that the distance between each molecule is not a constant: 
there are molecules adjacent and others on the opposite side of the 
structure. This means that the forces acting between different pairs of 
molecules are different. 
Nevertheless the condition of equilibrium is granted, because the sum of 
all these molecular forces is zero. Some forces will be attractive, some 
others repulsive, but the total effect is the equilibrium. 
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The same concept is reported in the molecular model: the concentrated 
masses, among which act the “force characteristic”, have to be in 
equilibrium. Therefore some of the forces should be positive, some other 
negative, in order to have a sum equal to zero. 
This is a choice which has significant repercussion on the development 
of the method, because the validation does not modify the value of the 
constant after the initial setting.  
Another direction could have been taken, considering the difference 
between the model and the reality: in fact, as already explained, the 
concentrated masses are not molecules, thus their behavior should not 
be locally the same. The concept of distance of equilibrium could have 
been ignored, assuming a value of x0 equal to the initial distance of the 
masses, so that the initial force would have been zero only between the 
nearest masses. In this way the initial status would have not been of 
equilibrium, but the model should have obtained it in the first steps of the 
simulation. A possible future development of this Thesis could start from 
choosing this alternative direction. 
 
Instead in the theoretical model here described the constant x0 has to be 
set to obtain a repulsion between the nearest masses and an attraction 
between the more distant ones.  
An initial study about this problem has been made, in order to estimate 
the behavior of x0 depending on the number of masses.  
A first approximation considers the equilibrium of aligned masses; at the 
beginning of the simulation the step function and the damper are not 
active, while the AMPL parameter is set equal to 1, so the “force 
characteristic”, from (2.1), becomes: 
 

                               
    
  

              
 

  
                       

 
For a n number of aligned masses, the value of x0 is equal to: 
 

                                                  
   

  
   

 

   
   

   

   

                                  

 
where L is the total length of the aligned masses, n is the number of 
masses and NF is the number of forces: 
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The result of this first evaluation, as can be seen in figure 2.5, shows that 
the distance of equilibrium decreases until about 7 mm, after which the 
value remains constant. 
. 

 
Figure 2.5: estimation of the x0 constant. 

The estimation is obtained considering the masses aligned. 

 
A second, more accurate approximation considers the masses disposed 
in 3-dimentional grid, so that the distance between each couple is: 
 

                                                                                      
 
where A and B are the generic couple of masses and x, y, z their 
coordinates. 
The procedure to obtain x0 is more complex, but the result shown in 

figure 2.6 is similar, with an asymptotic value of 11 mm. 
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Figure 2.6: estimation of the x0 constant. 

The estimation is obtained considering a 3D grid of masses. 

 
The model can be optimized, in order to have a precise evaluation, but 
the most important concept is that the distance of equilibrium decreases 
when the number of masses increases and, after a certain number of 
masses, it can be considered constant. 
In the fifth chapter it is explained in detail how the setting of x0 was 
actually done, using both the results here described and the post-
processing tools of the Adams/View platform. 
 
 

2.6 Total load 

 
Until now it has been described the “force characteristic”, which is a 
basic concept of this Thesis. 
Nevertheless it refers to a local effect, the interaction between each 
couple of masses. 
In order to have a CAE software it is necessary to produce a global 
result, which is also required to compare the simulation with the 
experiment. 
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Therefore an expression of the total load, acting on the specimen, has to 
be extrapolated from the single “force characteristic”. 
 
The theory of structures states that the internal forces balance, section 
by section, the external load.  
Applying the same concept to the molecular model, if a generic section is 
considered, thus the total load on this section should be equal to the 
external load. 
Having a great number of forces, acting along different directions, in 
order to obtain a global value it is necessary to sum all the components 
along the direction of traction. This sum of projections of forces is defined 
as “total load”. 
 
 

2.7 Hints of experimental optimization 

 
If constants and parameters of the “force characteristic” are set correctly, 
then the simulation of any phenomena should be possible, as the 
theoretical model has no limiting hypothesis.  
The main objective of this Thesis is the development of a procedure to 
determine these values, for a specific material, to be provided to the 
users of a CAE software, such as is done nowadays to assign a material 
to a mesh in a FEM software. The theory of materials requires few 
parameters to describe the basic properties of a material, in order to 
conduct a structural analysis: the density, the Young modulus and the 
Poisson ratio. 
The new method presented in this Thesis requires, instead, other 
parameters: the amplitude “COEFF” of the “force characteristic”, its 
shape factor “AMPL” and the value of displacement “START” which 
generates the breaking.  
These parameters are supposed to be unique for each material, such as 
are the density, the Young modulus and the Poisson ratio.  
For reasons of time only one material is considered in this Thesis, but 
following the procedure described it is easy to obtain those of any other 
material.  
The approach chosen is experimental, meaning that the determination of 
the values of the parameters is made through a comparative analysis 
between the experimental data and the “total load” obtained with the 
simulation. 
The experiment chosen is very simple, so that its simulation – both at a 
level of design and of integration – is easy. This experiment, the traction 
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of a specimen until breaking, is described in following chapter. 
Afterwards the simulation is run several times, changing every time the 
values of the parameters and calculating the integral of the modulus of 
the difference between the experimental and the simulation data, in order 
to build a grid of values.  
Finally the surface of level is drawn, finding the optimum configuration. 
This process is discussed in detail in the fifth chapter.  
 





 

 

3 Experiment 

 
In this chapter is described the experiment of traction until breaking of a 
specimen made of “Steel 3” [14, 15]. The manufactury of the specimens 
is also described. 
 

3.1 Project  

 
The experiment considered is the traction until breaking of a specimen. 
The target of this experiment is to obtain the force-deformation curve of 
the specimen, which will be compared with the one obtained from the 
simulation, in order to validate the code.  
The material chosen is named “Steel 3” and it is classified in the Russian 
State Standards (GOST) as structural carbon steel of common quality. 
The main characteristics of the material are showed in table 3.1. 
 

Table 3.1: characteristics of the material “Steel 3” 

density ρ [kg/m3] 7800 

tensile strength σ [MPa] 370 - 480 

yield strength σ [MPa] 235 

elongation at break δ [%] 25 

Young modulus E [MPa] 2.13105
 

 
The ideal specimen is in the shape of a parallelepiped, whose measures 
are 0.01x0.01x0.03 m, as shown in figure 3.1.  
The simple shape allows an easier concept of the code, especially in the 
design phase, without any loss of generality.  



Chapter 3 

22 
 

The measures can be considered comparable with the ones of real 
elements used in technological structures and are within the range used 
in the experiments to characterize the materials [14, 15].  
 

 
Figure 3.1: ideal specimen.  

The measures are expressed in meters. 

 
Considering the material characteristics and the dimensions of the 
specimen, in order to perform the experiment it is necessary that the 
machine provides a traction (force) of: 
 

                                                                                         
 
where 500 MPa is the tensile strength of “Steel 3”, increased to be sure 
to perform the experiment until the breaking. 
In consequence of that, it was chosen the machine Zwick/Roell 
“Allround-Line”, shown in figure 3.2. 
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Figure 3.2: test machine Zwick/Roell, model “Allround-Line” 

 
The design consists of a play-free guide and a ball lead screw, so that 
great reliability is ensured both in tensile and compression modes. As far 
as the traction is concerned, this model has a test speed of 5 mm per 
minute, independent of the load applied to the specimen. 
High-accuracy load cells “Xforce” are mounted, based on axis-symmetric 
and rotation-symmetric design, so that the specimen is not sensible to 
the transversal forces.  
The “testXpert®” software allows the remote operation and handling of 
experimental data. 
 
The specimen has to be fixed by the pliers of the machine. In 
consequence of that the design of the ideal specimen has to be modified 
as shown in figure 3.3, with reference to the standards required for an 
experimental specimen [14, 15].  
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Moreover the increased length ensures the border effects, introduced by 
the pliers during the traction, not to influence in the central part of the 
specimen. 
 

 
Figure 3.3: real specimen. 

The large extremities have to be fixed within the pliers of the machine; the ideal 
specimen is in dark grey and it is far from the borders. 

 
The dimensions of the real specimen are reported in table 3.2. 
 

Table 3.2: dimensions of the real specimen 

total length L [m] 0.140 

width of the “ears” W [m] 0.025 

length of the “ears” LE [m] 0.035 

thickness of the specimen H [m] 0.010 

radius of curvature R [m] 0.010 
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3.2 Manufacturing 

 
In order to obtain statistical valid results, it was decided to perform the 
experiment on 5 specimens, thus 7 specimens were manufactured in the 
laboratory of BMSTU, with the assistance of the Academic Master of 
Aerospace Systems faculty A.Y. Gusenko.  
Starting from a plate of “Steel 3”, strips of 0.025 m of width were cut 
using a sawing machine, as shown in figure 3.4. 
 

 

Figure 3.4: cutting of the stripes with a sawing machine 

 
The stripes obtained were divided into pieces of 0.140 m of length, like 
shown in figure 3.5. 
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Figure 3.5: stripes of steel. 
These pieces are cut from the initial plate and the numbers written on the side 

is the actual width in millimeters. 

 
The final shape was obtained thanks to a milling machine, like shown in 
figure 3.6 and 3.7. 
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Figure 3.6: the milling process 

 

 

Figure 3.7: final shape of the specimen, before the grinding. 
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Finally the surface of each specimen was grinded, using a surface 
grinder, as shown in figure 3.8. 
 

Figure 3.8: grinding of the specimen 

Moreover a little incision, perpendicular to the x-axis, was made in the 
middle of each specimen, on one face, in order to induce the breaking 
exactly in that point.  
Without this expedient, the breaking would be generated in a random 
position of the specimen, depending on the imperfections of the material, 
due to its low quality and to the manufacturing process.  
On the contrary, being the simulation ideal, the breaking is supposed to 
be obtained in the middle of the model.  
In conclusion, the little incision helps to perform an experiment 
comparable to the simulation. 
 
The specimens obtained are shown in figure 3.9 
. 
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Figure 3.9: specimens at the end of manufacturing process.  
It is possible to note the little incision on the surface, realized to induce the 

breaking in the middle of the specimens. 

 
The quality of the material used, likewise the precision of the machines, 
did not allow to obtain perfect specimens, but the best 5 chosen were at 
a level of accuracy more than adequate to perform the experiment. 
 
 

3.3 Experiment  

 
The specimen has to be fixed manually at the pliers of the machine, but 
the “testXpert®” software automatically conducts the experiment and 
saves the force-displacement graphics.  
In figure number 3.10, 3.11 and 3.12 are shown the configuration of the 
machine at the beginning of the experiment, the computer screen during 
the experiment and the specimen broken at the end of the experiment.  
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Figure 3.10: specimen ready to be tested 

 

 

Figure 3.11: graph force-displacement. 
It is automatically drawn by the “testXpert®” software in real time during the 

experiment and it allows to save the data. 
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Figure 3.12: first specimen at the end of the experiment 

 

3.4 Results  

 
In table 3.3 are listed the values of maximum elongation and time of 
breaking for each specimen. The graphics force-displacement for each 
specimen are reported hereafter 
 

Table 3.3: results of the experiment 

specimen № elongation [mm] time [min] 

1 19.576 03:15 

2 21.548 04:25 

3 20.855 04:16 

4 21.325 04:22 

5 16.592 03:25 
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Figure 3.13: graph force-elongation of the first specimen. 

 

 

Figure 3.14: graph force-elongation of the second specimen. 
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Figure 3.15: graph force-elongation of the third specimen. 

 

 

Figure 3.16: graph force-elongation of the fourth specimen. 



Chapter 3 

34 
 

 

 

Figure 3.17: graph force-elongation of the fifth specimen. 

 
The data obtained were elaborated, in order to have an average force-
displacement correlation for a specimen of steel. The result is shown in 
figure 3.18. 
These data enable the process of validation of the results of the 
simulation. 
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Figure 3.18: average graph of the force-displacement correlation. 

  
 





 

 

4 Code 

 
In this chapter is described the structure of the code implemented in 
Adams/View command language and the possible developments are 
highlighted [12, 16]. 
 

4.1 General structure of the command language  

 
The theoretical model built consists of masses connected by non-linear 
springs and dampers, thus a system of non-linear differential equations 
has to be solved.  
In early stages of the project it was chosen to program using the 
command language of the MSC Software Adams/View, in order to take 
advantage of the solid algorithms of the Solver.  
MSC Adams is a software for Multibody Dynamics simulations; every 
object is named “part”, and every “part” has dependent “markers”, which 
are used as punctual models of the object to carry the information of 
coordinates within the equations. The software has a graphic interface 
with icons (Adams/View), but it can also be controlled importing a script 
file. This script file has to be written in the command language of 
Adams/View, which has a structure comparable with C language.  
The advantages of this procedure, with respect to the usage of the icons, 
is the possibility of automation of commands, together with a deeper and 
more specific control of each command.  
 
In order to explain the use of script files, it is useful to build a sample 
structure of the code in command language, exporting the script file of a 
simple model; every time a model is created using icons, Adams/View  
automatically generates a script file.  
In figure 4.1 is shown a model with 2 masses, one fixed to the ground, 
and a force acting between them, while from figure 4.2 to figure 4.5 are 
shown parts of the correspondent script file exported through the file 
menu.  
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Figure 4.1: model with two masses connected by a force. 
The lock on the yellow mass shows that the mass is fixed. In the file menu the 

command “Export” creates the correspondent script file. 

 
The general syntax of the script lines is: 
 
KEYWORDS – PARAMETERS – VALUES 
 
where the keywords select the menu, the parameters are the names of 
the variables for the selected menu and the values have to be assigned 
to each variable. If the command continues on the following line, it is 
necessary to end the line with a “&” symbol. The comments have to be 
preceded by “!” symbol. 
The structure of the script file includes general options and settings of 
the model, such as the size of the icons, the material assigned to the 
parts and the system of reference.  
This is an interesting detail, as the default type is “313”, but it is 
preferable to change manually into the easier type “123”. The difference 
consists in the order of the axis to apply a rotation: 1 is the x axis, 2 is y 
and 3 is z, so that by using the “123” type, a rotation of 90° around the x 
axis has to be given as 90, 0, 0, while using the “313” type would be 0, 
90, 0, which is less intuitive and could generate mistakes in the 
implementation of the code. 
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Figure 4.2: script file. 
Definition of general options, such as size of icons, material and coordinate 

system orientation type. 

 
A second important remark is that the ground is considered a “part”, like 
any other mass. As already explained, every “part” has dependent 
“markers”. It is very important for the purposes of this Thesis to 
understand that every “marker” is unique for a specific function; this 
means that when a force, a property or a boundary condition has to be 
added to one “part”, a new “marker”, located in the center of mass of the 
“part”, has to be created as well. This means that also the ground has a 
certain number of “markers”, depending on the boundary conditions, 
which require a connection to it. 
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Figure 4.3: script file. Definition of “ground part”. 
All the “markers” relative to it are listed in this section, like .MARKER_4 in this 
example, which is necessary for the boundary condition located in -200.0, 0.0, 

0.0, like the yellow mass fixed in figure 4.1. 

 

 
Figure 4.4: script file. Definition of “part 2” (mass) with all its “markers”. 

.MARKER_1 is for the geometry, .cm is for the center of mass, marker_3 for the 
boundary condition of the lock and marker_5 for the force. 
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Figure 4.5: script file. Definition of joints and forces. 
The joint is between MARKER_3 (defined in the mass section, “part 2”) and 

MARKER_4 (defined in the ground section); the force is between MARKER_5 
and MARKER_6, defined in the sections of the respective masses. The function 
is assigned in the last separate section, with an elastic constant of 1000 and a 

damping constant of 10. 

 
Analyzing the commands relative to the creation of masses, forces and 
joints, as shown in figure 4.5 and 4.6, it is evident that the command 
language requires a great abundance of details to define every “part” and 
every “marker”. Being the target of the code to create a certain number 
of masses, connected with forces, and to assign the boundary conditions 
reproducing the experiment, it is necessary to set a “for” cycle, in order to 
specify all these details for every mass, force and boundary condition. 
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A generalized structure of “for” cycle can be as follows: 
 
for variable_name = number start_value = start end_value = end 
 marker create marker_name = (eval(“MARKER”// RTOI(number))) 
end 
 
where “variable_name”, “start_value”, “end_value” and “marker_name” 
are parameters, “marker” and “create” are keywords and “number”, 
“start” and “end” are numeric values.  
The command “RTOI” transforms a real number to an integer number 
and  “eval” evaluates the string contained.  
Using these commands it is possible to create a great number of objects, 
changing at every cycle the number inside the name, so that to obtain a 
unique definition of each object. In the previous example, the cycle 
creates markers named “MARKER1, MARKER2, MARKER3….”, where 
the numbers are from “start” to “end” values. 
 
 

4.2 Mass cycle  

 
Considering the shape of the specimen, a convenient way of 
representation consists of a uniform grid of masses. These masses do 
not have to be a priori the real molecules of the material, as the model 
wants to recreate the effects of the interaction, without studying its real 
nature, but substituting it with the “force characteristic”. This means that 
the number of masses will be fixed as a parameter, with the only 
requirement of total mass “compliance”. The details of these procedure 
will be largely discussed in the next chapter.  
The creation of a grid of masses, fitting (filling) a parallelepiped shape, 
can be easily accomplished by using three nested “for” cycle, one for 
each coordinate x, y, z. At every cycle, an increment of coordinates is 
assigned, using the following formula in the command “location”: 
 

                                                                  
 
where “d” is the distance between each mass in every direction, as the 
grid is uniform, while “i”, “j”, and “k” are the indexes of the three nested 
cycles. 
The graphic representation of the grid is obtained with the command 
“shape”, where the radius R is set as a “scale factor”, meaning that each 
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coordinate has to be multiplied by the radius, thus obtaining the correct 
measures.  
The setting of the variables “d” and “R” is discussed in the next chapter. 
At the end of the three nested cycles, if the script file is imported in 
Adams/View it is possible to see the grid of masses, which represents 
the central part of the specimen, as shown in figure 4.6. 
 

 

Figure 4.6: sample model 10x4x4. 
The grid of 160 masses is drawn importing the script file. 

 

4.3 Variables  

 
Before proceeding in the description of the code, it is necessary to 
explain how to introduce a variable with the command language, as 
some of them have already been used in the definition of the masses 
explained in the previous chapter. This command has to be implemented 
in the beginning of the code, so that the variables defined can be used in 
the following lines. The command is as follows: 
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variable create & 
 variable_name = name & 
 integer_value = number & 
 
where the type of value can also be “real”. 
Variables can be used to store the values of the indexes of the cycles, 
thus allowing operation with these indexes, otherwise not possible. 
For example, in order to assign an identification number to each mass 
designed, a variable NMi (number of masses “i”) is defined in the 
beginning of the script file as shown before, while inside the three nested 
“for” cycles it is modified with the following command: 
 
variable modify variable_name = NMi integer_value = (eval(formula)) 
 
where the formula is: 
 
                                                                                                  

 
where nx, ny and nz are other variables equal to the number of masses in 
the axial directions x, y and z of the grid and “i”, “j” and “k” the indexes of 
the cycles. As shown the operation is directly made inside the command.  
 
 

4.4 Force cycle  

 
It is now necessary to create the forces acting between them.  
In the theory developed the interaction should be defined between each 
couple of masses. This means that the number of forces is: 
 

                                                         
       

 
                                                       

 
where n is the number of masses.  
In figure 4.7 is shown an example of the network of forces resulting. 
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Figure 4.7: sample model 7x3x3. 
There are 63 masses, so the number of forces is 1953. The scale is reduced for 
the masses, in order to better visualize the white lines representing the direction 

of action of each force. 

 
Nevertheless the model of “force characteristic” involves a “step” 
function, whose target is to simulate the breaking of the interaction 
between a pair of masses, when the distance between them exceeds a 
fixed value. Therefore many of these forces are equal to zero, in 
consequence of the step function, even before the beginning of the 
simulation. A simplifying hypothesis can be made, as anticipated in 
section 2.4, considering as active only the couples of masses at one step 
of distance inside the grid, in horizontal, vertical and oblique directions. 
In figure 4.8 are shown the active couples, with respect to the mass M. 
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Figure 4.8: scheme of the “one-step” simplification. 

The mass M is actively connected with the masses at one step of distance (blue 
link), while the violet connection is supposed to be negligible. 

  
In this way the number of “force characteristic” is significantly reduced 
and the benefits, in terms of time, are evident not only during the 
integration of the simulation, but also while the script file is imported. 
The code has been developed for both configurations, but the analysis 
has been done only with this simplified version. Being this version more 
complex to implement – in spite of a strongly reduced amount of forces 
created – it is the one described hereafter in this chapter, while the 
complete version can be obtained removing part of the controls, as it will 
be explained.  
 
The definition of the forces, as already seen before, requires the 
following command: 
 
force create direct single_component_force &   
 single_component_force_name = name & 
 adams_id = number & 
 type of freedom = translational & 
 i_marker_name = name & 
 j_marker_name = name & 
 action_only = off & 
 function = “” 
 
where the type of force created is “single component”, because the “multi 
point” allows a maximum of 351 markers coupled and this limit has to be 
avoided. The type of freedom can be “translational” or “rotational”, the 
last one necessary to assign torques.  
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Finally the mode is set as “action-reaction” (off to the “action only”), 
because the theoretical model of the “force characteristic” requires this 
kind of interaction. The function has to be assigned in another section of 
the code. 
As shown, it is necessary to have two markers, one for each mass, 
between which the force acts.  
The unique identification of a mass – and its coordinates – inside the grid 
can be accomplished with three nested “for” cycles, therefore the total 
number of nested cycles is six, three for each marker.  
Nevertheless it is necessary to introduce a control, in order to avoid a 
redundancy in the definition of the forces; in fact the i-th mass can be 
considered both as the acting and the reacting body, but the force is only 
one (mode “action-reaction”).  
 
The “if” control is imposed with the following command: 
 
if condition=(Boolean operation) 
 command 
end 
 
where the command is the whole part of the code where the forces are 
assigned. The Boolean operation is, in the particular case of the six 
nested “for” cycles, that the number identifying the “j” mass should be 
higher than the one of the “i” mass. 
Moreover, another control can be imposed to reduce the number of 
“force characteristic” defined, as introduced before. The idea is that the 
force can be defined only for the nearest masses inside the grid, without 
any loss of precision in the model.  
The ways this control can be obtained are several, the one here 
described uses the indexes of the “for” cycles in pairs, coupled as 
follows: being the indexes, from the first outer “for” cycle to the sixth 
inner one, l, m, n, i, j, k, the pairs are i-l, j-m, k-n. In this way it is possible 
to compare the same coordinate of the two masses between which the 
force has to be defined. The nearest couples are the ones placed in the 
grid at one step of distance in horizontal, vertical and diagonal, so each 
coordinate should be equal or one step maximum higher or lower. This 
means that the condition are: 
 

 n==k || eval(abs(k-n)==1) 
 m==j || eval(abs(m-j)==1) 
 l==i || eval(abs(l-i)==1) 
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and have to be satisfied in the order reported. The symbol || is the logical 
operator “or”. 
Removing this 3 nested “if” controls, the general version is obtained. 
In this way the couple of markers “i” and “j” are identified and it is 
possible to define the force between these markers. The complete 
function of the “force characteristic” is assigned inside the command: 
 
force modify direct single_component_force & 
 single_component_force_name = name & 
 function = equation 
 
and the equation is as follows: 
 

                                                

                                     

                                              

                                              

                                                                 

                                                   

                                                         

                                              

                                                                 

                                                                 

                                                    

                                                            

                                               

                                                            

 

where DM is the command that gives the distance between two markers, 
DX the projection of the distance in the x direction, VR the relative 
velocity.  
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The variables included in the function are: 
 
 COEFF: coefficient of the logarithm 
 AMPL: amplitude of the argument of the logarithm 
 x0: distance of equilibrium 
 NMi: number of masses “i” 
 NMj: number of masses “j” 
 counter_marker_TOT: counter for the total number of markers 
 START: delta of the beginning of the step function 
 FINISH: delta of the end of the step function 
 DAMP: damping coefficient 
 
It is important to note that AMPL multiplies the argument of the logarithm, 
except the unit added to have a zero force when the distance is equal to 
x0. In consequence of that it is necessary to pay particular attention to 
the values assigned to AMPL, because when the delta between the 
distance and x0 is negative, a value too big can produce an argument 
negative, thus the logarithm would not be defined. 
A second important remark is that all the function has to be defined as a 
string, this is why all the numeric parts have to be evaluated with the 
command “eval” and linked by the symbol “//”. 
Moreover the string structure regards also the command language 
functions “DM”, “DX” and “VM”. In fact all these functions measure the 
distance between two points – or, in the “VM” case, the variation of the 
distance – thus they all have two “markers” as arguments, separated by 
a comma. In order to compose the name of each single “marker”, which 
is a string, it is necessary to link three different strings: 
 
1) the name of the model, which is “.BAR_MODEL” 
2) the name of the “part”, which is “.PART_” plus the number of the 

correspondent “part”, obtained by the evaluation of the operations 
with the variables NMi and NMj 

3) the name of the “marker”, which is “.MARKER_” plus the number of 
the correspondent “marker”, obtained by the evaluation of the 
operations with the variable counter_marker_TOT 

 
In particular, this variable is incremented every time a new “marker” is 
created, so that the next one will have the updated number and each 
“marker” will be defined uniquely. 
Finally it is interesting to notice that the step function multiplies only the 
elastic part of the “force characteristic”, while the damping part is 
separated. 
 



Chapter 4 

50 
 

4.5 Boundary conditions  

 
The model has to be completed with the boundary conditions.  
In order to simulate the behavior of the specimen during the experiment, 
the masses on one of the two extreme sections are linked to the ground, 
while the constraint on the masses on the opposite section allows the 
translation only along the axial direction.  
The first constraint is a fixed joint and its syntax is as follows: 
 
constraint create joint fixed & 
 joint_name = name & 
 adams_id = number & 
 i_marker_name = name & 
 j_marker_name = name 
 
while the second is a translational joint and the command is: 
 
constraint create joint translational & 
 joint_name = name & 
 adams_id = number & 
 i_marker_name = name & 
 j_marker_name = name 
 
Finally a motion has to be imposed, so that the side not fixed is pulled at 
a constant velocity of 5 millimeters per minute, like in the experiment; the 
command is named motion generator: 
 
constraint create motion_generator & 
 motion_name = name & 
 adams_id = number & 
 i_marker_name = name & 
 j_marker_name = name & 
 axis = z & 
 function = “VELOCITY * time” 
 
where the axis is z because of the system of reference adopted and 
“VELOCITY” is a variable, whose value is set equal to 0.083 mm/s, equal 
to 5 mm/min. 
All these boundary conditions require specific “markers” on both “parts” 
interested, ground included. 
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4.6 Measures  

 
At this point the script file, if imported, builds a complete model, which 
can be solved to simulate the experiment. An example is reported in 
figure 4.9. 
 

 

Figure 4.9: sample model 10x4x4 complete. 
The blue arrows represent the motion; it is possible to notice a small part of the 
locks on the first set of the red masses, while the forces and the translational 

joint are hidden inside the masses. 

 
Nevertheless, in order to compare the results obtained, it is useful to add 
some other tools.  
The method chosen for the validation of the code is a graphic analysis, 
so the most important tools are the measures, which allow to store the 
values of interesting functions and to plot their graphs.  
 
The structure of the command differs, depending on the function to be 
measured; to measure the distance between each mass the command is 
as follows: 
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measure create function & 
 measure_name = name & 
 function = “ “ & 
 unit = “length”  
 
where the measure created is relative to a function, which has to be 
specified, like the function of the “force characteristic”, for each couple of 
masses. 
This command is also used to define the measure “total delta”, which is 
the total length of the specimen, necessary to built the graph force-
elongation. It is interesting to note that the selection of the “markers” for 
the “total delta” is obtained with a “if” control, based on the index along 
the x axis, in the three nested cycles used to design the grid of masses.  
 
Instead to measure the forces the command is the following: 
 
measure create object & 
 measure_name = name & 
 from_first = yes & 
 object = name of the force to be measured & 
 characteristic = element_force & 
 component = x_component  
 
because the measure created is relative to an existing object, precisely 
the force.  
 
A different approach has to be taken to create the “total load” graph, as 
introduced in the second chapter, but as it regards the pre-processing 
phase it will be discussed in the next chapter. 
 
 

4.7 Sensors  
 
Finally another tool is very useful and needs to be presented: sensors. 
For the purpose of this Thesis it was necessary to set a sensor to stop 
the simulation soon after the breaking of the specimen.  
From the elaboration of the data obtained during the experiment it was 
highlighted how this phenomenon happened at an elongation of 13,5 mm 
in average (equal to 22.5% of 60 mm, the portion of specimen without 
the “ears” fixed in the pliers of the machine. This value is relatively in 
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accordance with the 25% expected from literature, like shown in Section 
3.1, Table 3.1).  
It was chosen, as hypothesis, to use this value of elongation at breaking, 
despite the model reproduces only the central part of the specimen, in 
order to avoid the border effects disturb. This hypothesis can be 
considered valid, because modeling the behavior of specimens strongly 
depends on shape, material and dimensions and it would have been an 
additional complexity, not necessary for the purpose of this Thesis, to 
scale the value of the elongation at breaking, such as other data 
obtained from the experiment, for the actual length of the model of the 
specimen. The development of a procedure of optimization does not 
depend on the target result chosen, therefore the sensor is structured to 
stop the simulation when the “total delta” exceeds 13,5 mm. 
The command for the sensor is as follows: 
 
executive_control create sensor & 
 sensor_name = .BAR_MODEL.SENSOR_1 &  
 adams_id = 1 & 
 compare = ge & 
 value = 13.5 & 
 error = 0.001 & 
 function = “ “ & 

evaluate = “ “ 
 
where the command “compare” is set to “Greater or Equal”, the function 
is the distance, measured with the command DM, between the two 
“markers” used also in the definition of the “total delta” measure. This 
function has to be given to the sensor and after evaluated in two different 
lines. 
The simulation is stopped, when the value set in the sensor is reached, 
and a message appears on the screen reporting the intervention of the 
sensor.  
 
 

4.8 Scheme of the code  

 
The structure of the entire code can be described by the following 
scheme: 
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5 Optimization 

 
In this chapter is presented the validation of the code. The method 
chosen consists of a comparison of the force-displacement graphs, 
obtained from the experiment and from the simulation. The comparison 
has the target of minimize the integral of the module of the difference 
between the two curves, through choosing the optimal combination of the 
parameters of the “force characteristic”. Five configurations are 
discussed [12]. 
 
 

5.1 Total load 

 
The function “force characteristic”, as described in the previous chapters, 
has many parameters, which influence its shape in different areas.  
All the masses interact in couples, depending on the “force 
characteristic”, but what really matters for the engineering field is the 
global behavior of the model. 
In order to have a measure of this behavior, it is necessary to produce an 
equivalent of the internal forces of the classical structural theory. 
This can be easily obtained by summing all the components of the “force 
characteristics”, acting between the couples of masses across one 
section, in the direction of traction.  
The sum is named “total load”. 
 
Nevertheless, the automation of this process is not easy and it was 
chosen to avoid its implementation in the code, being easier to create the 
function “total load” in the pre-processing phase, after having imported 
the script file with the code. 
Adams/View allows the definition of measures through the definition of a 
function. This tool has been already used in the code for the measures of 
the distances between each mass (delta). Using instead the icons, as 
showed in figure 5.1, it is possible to have access to the window of the 
function builder, where all the components of the “force characteristics” 
have to be summed.  
It is important to note that this procedure is possible only thanks to the 
definition, inside the code, of the measures of the forces, so that they are 
now existing objects and can be recalled through their unique name, 
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which is in general “.BAR_MODEL.SFORCE_force_” plus the number of 
the actual force measured. 
 

 

Figure 5.1: definition of “total load”. 
From the menu build-measure-function-new it is possible to have access to the 
window “function builder” and in the grey area have to be written all the short 

names of the forces that have to be summed. 

 
When the model has a reduced number of masses, the number of forces 
is limited, thus it is not difficult to identify their names also directly from 
the model drawn. 
However, as already seen, the number of forces increases quadratically 
with the number of masses, so this quickly becomes a difficult problem to 
handle. 
For the purpose of this Thesis the dimensions of the models, in terms of 
number of masses, remained manageable, but it is evident that further 
development of this work firstly require an automatic procedure to define 
the total load.  
One possible path is the use of the C language, which can substitute the 
command language also in the implementation of a code to be imported 
in Adams/View and is more powerful in the handling of cycles with 
strings. Moreover a code in C language can be imported faster than a 
code in command language, thus reducing the waiting time between 
simulations of different models.  
On the contrary, even if the command language does not allow the 
definition of the “total load” inside the cycle, its use helps in the 
understanding of the software, thus remaining preferable for the purpose 
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of this Thesis; again, the dimensions of the models require a maximum 
importation time of some minutes, which is acceptable. 
 
Coming back to the procedure adopted, it was chosen to insert manually 
the names of the forces on the section. In order to simplify the work, in 
the code was implemented a “if” control to find the names of the first and 
last forces on the chosen section: being the forces defined in the “for” 
cycles, the names of those acting across a section are included between 
the first and the last.  
Finally the strip chart of the measure “TOTAL_LOAD” is created and, 
during the simulation, it displays the force-displacement graph. This 
graph can be compared with the one obtained from the experiment. 
 
 

5.2 Compliance model – reality 

 
In the following paragraphs all the model studied will be discussed in 
detail. However, before proceeding, it is necessary to explain how the 
compliance between the models and the specimen is obtained. 
 
The first important point is that the global geometry is respected, so the 
dimensions of the models have to be the same as the ones of the central 
part of the specimen. This can be easily obtained, considering that it was 
chosen to use a uniform grid, so the distance between each mass is: 
 

                                                            
  

    
                                                            

 
where Lx is equal to 0.03 m, the length of the ideal specimen (central part 
of the real specimen) and nx is the number of masses along the x-axis. 
 
The second characteristic, which has to be respected, is the total mass. 
The ideal specimen has a volume of: 
 

                                                                                                        

 
which corresponds to a mass of: 
 
                                                                                                                
 
where ρ is the density of the “Steel 3”, equal to 7800 kg/m3. 
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The total volume of the model – and, considering the same material, the 
total mass – is the same if each mass gives a contribute equal to 1/NM 
of the total, where NM is the number of masses: 
 
                                                                                                                      

 
In conclusion the radius of each sphere, representing the single mass, 
has to be: 
 

                                                         
   

     

 

                                                          

 
 

5.3 Optimization procedure with discrepancy 

 
As already explained in the previous chapters, the function of the “force 
characteristic” has many parameters to be set, in order to describe 
correctly the behavior of the specimen during the experiment. These 
parameters are recalled hereafter: 
 
 COEFF – variable which controls the scale of the function 
 AMPL – variable which changes the shape of the function 
 x0 – constant representing the distance of equilibrium 
 START – variable which controls the beginning of the breaking 
 FINISH – constant linked to the experiment, end of breaking 
 DAMP – coefficient of damping 
 
The target of this Thesis is to formulate a procedure to determine the 
best combination of values for these parameters, in terms of minimum of 
the integral of the module of the difference between the experimental 
and the simulation curves force–displacement; this function is called 
discrepancy: 
 

                                                              
    

 

                                                 

 
where fEXP is the experimental graph, fSIM is the simulation graph and the 
extreme of integration is 13.5 mm, which is the value of elongation 
obtained from the experiment and imposed to the simulation through the 
FINISH parameter, as explained in the following part of this paragraph. 
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This procedure can be achieved by fixing all the parameters, with the 
exception of two, so that to create a surface of level for the discrepancy. 
The choice of these two parameters was taken considering the results 
obtained during the attempts of optimization, but other combinations are 
possible in principle. 
 
The constant “FINISH” is fixed in order to end the breaking of the link 
between each couple of masses for a value of total elongation of 13.5 
mm: 
 

                                                     
    

    
                                                       

 
This means that the condition desired is that when the sum of all the 
delta between each couple of masses along the direction of traction (on 
a single line of masses) equals the total elongation expected in the 
specimen, the breaking phenomena should be finished. In other words, 
any couple of masses can reach at any time a separation equal to 
“FINISH”, the medium value which multiplied by nx – 1 gives 13.5, but 
this does not mean that all the other couples on the same line of masses 
are in the same condition: the breaking will start locally, but the traction 
will continue until the total elongation equals the “total delta”, which is the 
measure implemented describing the sum of all delta along one line. 
It is important to stress on the detail that this condition is imposed to 
every “force characteristic”, so it is something local, which is supposed to 
have a global consequence on the model and to reproduce correctly the 
breaking, as it happens in the experiment. There is no specification on 
which link should break first, but for reasons of symmetry it is supposed 
to happen in the central area of the model. 
It is not an obvious result, because each “force characteristic” has the 
same function, with no difference between vertical, horizontal and  
diagonal, so the assumption of equation (5.7) is strong and it is based on 
the principle of having a method as general as possible, with no limitation 
imposed.  
The method should reproduce the experiment “alone”, even if no “force 
characteristic” is told a priori between which masses is acting. 
The expected behavior is that the breaking develops starting from the 
first link which reaches the limit delta, because when this first link breaks, 
the load has to be divided among less links. This means that each single 
couple will be subjected to a higher portion of load and the delta will 
increase consequently, driving new couples to reach a separation equal 
to the limit delta “FINISH”. 
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One last remark about the constant “FINISH” is that it determines the 
end of the breaking, not the beginning of it, but, being the breaking 
process described by a step function with transient, it is possible to 
consider a link broken only at the end of the process. 
 
The parameter “COEFF” is defined as a variable, but can be indeed fixed 
at the beginning of the simulation, as it controls the scale of the graph, 
without modifying consistently the shape. Its value decreases with the 
increasing of the number of masses, because the total load is obtained 
as a sum of force characteristic, so each addend should be smaller to 
have a constant final result. 
 
About the parameter “x0” it has already been written in section 2.5, where 
it was introduced its meaning and function inside the “force 
characteristic”. Its setting is a critical point of the method, because it 
involves the initial equilibrium of the model and the simulation is very 
sensible to little variations of values of “x0”.  
Therefore it was decided to fix its value in the beginning of the 
simulation, with an experimental procedure described hereafter. 
The initial equilibrium has, as a direct consequence, a static reaction 
equal to zero. This means that, when the external load is applied, the 
reaction should start from zero, increasing its value to balance the load. 
The measure “total load” is the equivalent of the reaction to the traction, 
which starts at the beginning of the simulation. It is enough to verify that 
the “total load” actually starts from zero to prove that the model was in a 
condition of initial equilibrium.  
In conclusion, the value of “x0” has to be changed, until the simulation 
produces a graph of “total load” which starts from zero: that value is the 
correct one to be assigned as a constant to the parameter. 
 
The damping is necessary to stabilize the simulation, that would be 
otherwise affected by the great values of the elastic part of the force 
characteristic. It is quite simple to find the value of “DAMP” which 
ensures a correct evolution of the simulation and the magnitude 
necessary to smooth the oscillation is lower than the elastic component. 
 
In conclusion the parameters “COEFF”, “FINISH”, “DAMP” and “x0” are 
fixed, which leaves “AMPL” and “START” as free variables. 
The formal procedure of optimization consists of building a grid of values 
for the discrepancy function, through running the simulation for each 
combination of these two variables. The limits between which the 
variables change are decided with some iterations with values of attempt 
and the step for the grid is defined to have at least ten nodes per side. 
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When the grid is completed, it is imported in the software Surfer, which 
draws the level lines, so that it is finally possible to determine the optimal 
configuration of the parameters.  
This formal procedure is not always followed, because it is often easier 
to find with iteration the best values. 
 
With those values, the current model simulates the experiment with the 
lower discrepancy. 
The values relative to each configuration are saved and plotted in 
function of the number of masses, in order to analyze the behavior of the 
parameters. 
 
 

5.4 Model 2x1x1 

 
The first configuration considered is the simplest, consisting of two 
aligned masses in a 1D approximation. This choice was taken 
considering the importance of an initial calibration of the procedure of 
optimization. 
The characteristics of this configuration are shown in Table 5.1. 
 

Table 5.1: model 2x1x1 

nx ny nz NM mi [kg] R [m] dist [m] 

2 1 1 2 0.0117 0.0071 0.03 

 
After importing the script file with the correct values of the parameters, 
the model appears like in figure 5.2. 
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Figure 5.2: model 2x1x1. 
The locket inside the red mass is the boundary condition representing the fixed 
part of the specimen, the red arrow shows the force acting between the masses 
and the blue arrow inside the green mass is the motion imposed to reproduce 

the experiment of traction. 

 
In this particular configuration it is not necessary to define the “total load” 
function, being the “force characteristic” between the two masses the 
only interaction, so that the measure is already the “total load”. In order 
to visualize the graph of the measures defined inside the script, it is 
possible to use the View menu, like shown in figure 5.3. 
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Figure 5.3: graphs windows. 
The database navigator box is activated through view – measure. The two 

graphs showed were defined in the script file. 

 
It is now possible to start a simulation.  
The damping is not necessary, being the model already stable, and the 
distance of equilibrium “x0” is of course the effective distance between 
the two masses, while the values of the parameters “COEFF” and 
“FINISH” are fixed at the values reported in Table 5.2. In the same table 
are showed the settings of the integrator, where the solver uses the 
method of Gear for stiff problems. 
 

Table 5.2: settings for model 2x1x1 

COEFF 
x0      

[mm] 
FINISH 
[mm] 

DAMP № steps solver 

10000 30.0 13.5 0 1000 Gstiff 

 
 
The grid of values for the variables “AMPL” and “START” is built 
considering a range of, respectively, [100, 480] and [7, 13.4] millimeters. 
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The values of the variables can be changed without importing every time 
a new script, but simply using the menu Edit-Modify. In this way the time 
between each iteration is considerably reduced. 
 
At the end of each simulation the model appears like in figure 5.4. 
 

 

Figure 5.4: model 2x1x1 at the end of the simulation. 
In the top graph is plotted the “total load”, while in the bottom graph is plotted 
the delta between the 2 masses, which is, in this model, the “total delta”. The 

icon for the post-processing window is circled in red in the tool box. 

 
In order to compare the graph obtained with the one of the experiment, it 
is convenient to access to the post-processing section of Adams/View, 
through the icon in the tool box showed in Figure 5.4.  
In the post-processing section it is possible to upload data, both from an 
external source and from the simulation just realized, to draw graphs. 
Moreover it is possible to perform operations on the graphs, which is the 
feature necessary for the purpose of this Thesis.  
In figure 5.5 are shown the two graphs uploaded with the graphs 
obtained during the evaluation of the discrepancy. 
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Figure 5.5: post-processing for model 2x1x1. 

The graph Last_Run is the “total load” of the simulation, while the graph 
buketkin is the imported curve from the experiment. The two curves are 

subtracted, it is applied the modulus and finally it is calculated the integral, 
whose value for 13.5 mm is the discrepancy. 

 
After completing the iterations, the result obtained from the software 
Surfer is shown in Figure 5.6 and the best combination for the 
parameters is:  
 
 AMPL = 260  
 START = 13.2 [mm] 
 

 
Figure 5.6: surfaces of level for model 2x1x1. 
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5.5 Model 4x1x1 

 
The second configuration considered consists of four aligned masses, 
again in a 1D approximation of the specimen. The characteristics of this 
configuration are shown in Table 5.3. 
 

Table 5.3: model 4x1x1 

nx ny nz NM mi [kg] R [m] dist [m] 

4 1 1 4 0.00585 0.0056 0.01 

 
After importing the script file with the correct values of the parameters, 
the model appears like in figure 5.7. 
 

 

Figure 5.7: model 4x1x1. 
In consequence of the simplifying hypothesis, regarding the definition of the 

“force characteristic” only between masses at “one step” of distance, the forces 
defined are 3, each between a couple of adjacent masses, instead of 6. 
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Also in this configuration it is not necessary to define the “total load” 
function, because in every section there is only one “force characteristic”, 
so that it is already the “total load”. The graphs can be showed using the 
same procedure used for the 2x1x1 model.  
 
The damping is not necessary, being the model already stable, and the 
distance of equilibrium “x0” is the effective distance between two adjacent 
masses, while the values of the parameters “COEFF” and “FINISH” are 
fixed at the values reported in Table 5.4. In the same table are showed 
the settings of the integrator, where the solver uses the method of Gear 
for stiff problems. 
 

Table 5.4: settings for model 4x1x1 

COEFF 
x0      

[mm] 
FINISH 
[mm] 

DAMP № steps solver 

10000 10.0 4.5 0 1000 Gstiff 

 
 
The grid of values for the variables “AMPL” and “START” is built 
considering the same range of model 2x1x1: [100, 480] and [7, 13.4] 
millimeters.  
 
At the end of each simulation the model appears like in figure 5.8. 
 

 

Figure 5.8: model 4x1x1 at the end of the simulation. 
The “total load” is constant for every section; the sum of the “delta” between 

each couple of masses is the “total delta” plotted in the centre-left. 
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In figure 5.9 is shown the post-processing section, where only one of the 
“total load” graphs was imported to be confronted with the graphs 
uploaded from the experiment. Like in the previous model the 
discrepancy function is calculated. 
 

 
Figure 5.9: post-processing for model 4x1x1. 

 
After completing the iterations, the result obtained from the Surf software 
is shown in Figure 5.10 and is the same as in model 2x1x1, because the 
grid was built considering the value of the “START” parameter multiplied 
by 3. 
 

 
Figure 5.10: surfaces of level for model 4x1x1. 
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This result is in accordance with the theory, because the “total load” is 
defined on each section. The only difference is that the breaking starts 
and ends at delta equal to 1/3 of the values for the model 2x1x1, but the 
global behavior remains the same. 
 
The best combination for the parameters is:  
 
 AMPL = 260  
 START = 4.4 [mm] 
 
In order to observe significant changes is necessary to move to a 2D 
model, like described in the next paragraph. 
 
 

5.6 Model 4x2x1 

 
The third configuration considered consists of eight masses, arranged in 
a 2D grid, formed by 2 lines of 4 masses each. The characteristics of this 
configuration are shown in Table 5.5. 
 

Table 5.5: model 4x2x1 

nx ny nz NM mi [kg] R [m] dist [m] 

4 2 1 8 0.00293 0.0045 0.01 

 
After importing the script file with the correct values of the parameters, 
the model appears like in figure 5.11. 
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Figure 5.11: model 4x2x1. 
The white lines show the direction of application of each “force characteristic” 
(16 instead of 28 without the “one step” distance hypothesis). The two lockets 

block one side of the specimen, while on the other side the motion is applied at 
the constant velocity of 5 mm/min. 

 
In this configuration it is necessary to define the “total load” function, 
because in a general section there is more than one “force 
characteristic”. The section chosen is the middle one, so the forces act 
between the red and green masses. In order to find the names of these 
forces, it I possible to view the values of the variables specially defined in 
the script, like shown in figure 5.12: 
 
 FORCE_N_1 = 7 
 FORCE_N_2 = 10 
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Figure 5.12: visualization of the names for the “total load”. 

 
Knowing the names of the first and last force to be recalled in the 
definition of the “total load”, it is possible to create the function, like 
shown in figure 5.13. 
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Figure 5.13: function “total load” for model 4x2x1.  

The forces from 7 to 10 are summed in the function builder. In the name are 
also included the numbers of the masses between which the force acts, so for 

example force 10 acts between mass 4 and mass 6. 

 
The damping is now necessary, such as a correct setting of the distance 
of equilibrium. In particular it is clear, after the considerations previously 
made, that “x0” should be greater than the distance between each couple 
of masses, so that the horizontal and vertical interactions would be a 
repulsion, while the diagonal ones would be an attraction, thus obtaining 
the equilibrium. After a few iterations the values necessary are found and 
are reported in Table 5.6, together with the values of the parameters 
“COEFF” and “FINISH”. In the same table are showed the settings of the 
integrator, where the solver uses the method of Newton. 
 

Table 5.6: settings for model 4x2x1. 
Note that the value of “x0” is greater than the distance (10 mm) 

COEFF 
x0      

[mm] 
FINISH 
[mm] 

DAMP № steps solver 

7000 10.6 4.5 50 1000 HHT 

 
 
At the end of each simulation the model appears like in figure 5.14. 



Optimization 

73 
 

 

 

Figure 5.14: model 4x2x1 at the end of the simulation. 
The sensor stops the simulation at time 162 s, because the “total delta” reaches 

the value of 13.5 millimeters. 

 
It is important to note that the “total load” starts from zero, thanks to the 
correct setting of the distance of equilibrium “x0”.  
Nevertheless, being the model a 2D approximation integrated in a 3D 
environment, the equilibrium is not stable and at the first step the model 
finds a new condition of equilibrium, where all the masses are disposed 
in the space forming a sort of circle, like shown in figure 5.15. 
This configuration has, of course, no physical meaning and the “total 
load” jumps to a value of about 23000 Newton, proceeding after with a 
normal behavior. 
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Figure 5.15: new equilibrium for model 4x2x1.  

The view is with the x-axis (direction of traction) perpendicular to the sheet, 
which means that the green couple of masses has rotated counterclockwise, 

while the red couple clockwise. 

 
In figure 5.16 is shown the post-processing section, where it is evident 
the incorrect simulation of the behavior of the specimen in the first part, 
where the biggest part of discrepancy with the experiment cumulates. 
The second part of the simulation is instead very near to the 
experimental graph. 
 

 
Figure 5.16: post-processing for model 4x2x1.  

The green line, representing the discrepancy function, grows quickly in the first 
part of the elongation, as a consequence of the non-physical behavior of the 

model in the first step of the simulation. 
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In consequence of the non-physical behavior of the model, the 
optimization of this configuration was made without following the usual 
procedure and the best combination for the parameters was found 
without using the software Surfer, but simply with iterations:  
 
 AMPL = 12.0  
 START = 3.8 [mm] 
 
In order to avoid the loosing of the initial equilibrium it is necessary to 
study a 3D model, like described in the next paragraph. 
 
 

5.7 Model 4x2x2 
 
The fourth configuration considered consists of 16 masses, arranged in a 
3D grid, like shown in figure 5.17. The characteristics of this 
configuration are shown in Table 5.7. 
 

Table 5.7: model 4x2x2 

nx ny nz NM mi [kg] R [m] dist [m] 

4 2 2 16 0.00146 0.0036 0.01 
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Figure 5.17: model 4x2x2. 
The white lines show the direction of application of each “force characteristic”. 
There are 72 forces, instead of the 120 that would be without the hypothesis of 
“one step” distance. The four lockets block one side of the specimen, while on 

the other side the motion is applied at the constant velocity of 5 mm/min. 

 
For the definition of the “total load” it is chosen the central section and 
the names of the first and last force to be summed are found thanks to 
the variables specially defined in the script: 
 
 FORCE_N_1 = 26 
 FORCE_N_2 = 33 
 FORCE_N_3 = 39 
 FORCE_N_4 = 44 
 
These are the 4 horizontal forces acting between the red and green 
masses and in consequence of the structure of the code all the forces 
acting on the central section are between number 44 and number 26 
included, so the “total load” function consists of 19 forces, 3 of which can 
be omitted because have no component along the x direction. The result 
is shown in figure 5.18. 
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Figure 5.18: “total load” for model 4x2x2. 

 
Before starting the simulation it is necessary to set the solver with an 
error of 10-8 instead of the default value of 10-5, like shown in figure 5.19. 
 

 
Figure 5.19: solver settings for model 4x2x2.  

The error has to be 10-8. 
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After a few iterations the values necessary for the variables “COEFF”, 
“x0”, “FINISH” and “DAMP” are found and are reported in Table 5.8. In 
the same table are showed the settings of the integrator. 
 

Table 5.8: settings for model 4x2x2. 

COEFF 
x0      

[mm] 
FINISH 
[mm] 

DAMP № steps solver 

3000 11.6 4.5 500 2000 HHT 

 
At the end of each simulation the model appears like in figure 5.20. 
 

 

Figure 5.20: model 4x2x2 at the end of the simulation. 

 
As expected, the equilibrium is kept not only in the first step. 
Nevertheless another instability is generated after about 250 steps 
(simulation time 25), which consists of a rotation of the 4 central masses 
to reach a new condition of equilibrium. It is interesting that this instability 
appears at the same moment of the beginning of the experimental yield 
point, which means that it is possible that the simulation reproduces this 
physical phenomenon. Of course, being the number of masses not 
comparable with the number of molecules, the visible effect has no 
physical meaning, but it cannot be excluded a priori that with a greater 
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number of masses this instability could be compensated and could 
reproduce somehow the yield phenomenon. 
 
In figure 5.21 is shown the post-processing section, where it is shown a 
good simulation of the behavior of the specimen in all the parts. The 
discrepancy has indeed a value lower than the previous models. 
 

 
Figure 5.21: post-processing for model 4x2x2.  

The curve buketkin is the experimental graph, while the Last_Run is the 
simulation graph. 

 

Again, the optimization of this configuration was made simply with 
iterations:  
 
 AMPL = 6.0  
 START = 3.5 [mm] 
 
 

5.8 Model 7x3x3 

 
The fifth configuration considered consists of 63 masses, arranged in a 
3D grid, like shown in figures 5.22 and 5.23. The characteristics of this 
configuration are shown in Table 5.9. 
 

Table 5.9: model 7x3x3 

nx ny nz NM mi [kg] R [m] dist [m] 

7 3 3 63 0.00037 0.0022 0.005 
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Figure 5.22: model 7x3x3.  

434 forces (1953 without hypothesis of “one step” distance). 

 

 

Figure 5.23: model 7x3x3, render option. 
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This model is not symmetrical, as nx is not even, so for the definition of 
the “total load” it is chosen the section between the red and green 
masses. The names of the first and last force to be summed are found 
thanks to the variables specially defined in the script: 
 
 FORCE_N_1 = 142 
 FORCE_N_2 = 151 
 FORCE_N_3 = 159 
 FORCE_N_4 = 167 
 FORCE_N_5 = 179 
 FORCE_N_6 = 189 
 FORCE_N_7 = 195 
 FORCE_N_8 = 202 
 FORCE_N_9 = 207 
 
These are the 9 horizontal forces acting between the red and green 
masses on the perimeter of the section. The “total load” function consists 
of 65 forces, between number 142 and number 207 included. 
 
As far as this model is concerned the values of the parameters “x0”, 
“COEFF” and “FINISH” are reported in Table 5.10. In the same table are 
showed the settings of the integrator, where the solver uses the method 
of Newton. 
 

Table 5.10: settings for model 7x3x3.  

Note that “x0” is greater than the distance, which is 5 mm for this model. 

COEFF 
x0      

[mm] 
FINISH 
[mm] 

DAMP № steps solver 

1500 6.1 2.25 100 2000 HHT 

 
 
At the end of each simulation the model appears like in figure 5.24. 
 
An important remark about this model is that there is no symmetry and 
the breaking cannot happen in the middle of the specimen, being the 
central section occupied by masses.  
 
Moreover some instabilities occur after the yield phenomenon, which 
cannot be explained physically, unless are connected to a simulation of 
the sliding between planes happening in the plastic field. More detailed 
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models, with a higher number of masses, could verify this hypothesis 
and would probably hide the discontinuities into small oscillations. 
 

 

Figure 5.24: model 7x3x3 at the end of the simulation. 
The graph of “total load” has many discontinuities, due to instabilities in the 

plastic field, probably connected with the sliding. 

 
A very realistic simulation of the breaking is obtained in the iteration 
reported in figure 5.25, where it is possible to see the necking which 
occurs right before the breaking. It is evident that, increasing the number 
of masses, the compliance grows. 
 
In figure 5.26 is shown the post-processing section, where it is evident 
the incorrect simulation of the behavior of the specimen in the second 
part, though the discontinuities could be explained with the sliding.  
The biggest part of discrepancy with the experiment is cumulated in this 
area, because the first part of the simulation is instead almost equal to 
the experimental graph. 
 



Optimization 

83 
 

 
Figure 5.25: breaking of the model 7x3x3. 

 
 

 
Figure 5.26: post-processing for model 7x3x3.  

The green line, representing the discrepancy function, is very low in the first 
part of the elongation, while explodes in the second part as a consequence of 

the discontinuities introduced by the simulation. 

  

The optimization of this configuration was made without following the 
usual procedure and the best combination for the parameters was found 
without using the Surfer software, but simply with iterations:  
 
 AMPL = 5.0  
 START = 2.0 [mm] 
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5.9 Results 

 
For the purpose of this Thesis the development of more complex models 
is not necessary, because the results obtained with the 5 models 
described in the previous paragraphs are already satisfactory.  
It is already possible to see a trend in the values of the parameters 
optimized, which shows that potentially an asymptotic value could be 
reached, allowing the choice of the optimal configuration. 
At the stage of this work a table of values is produced, with the target of 
helping a future improvement of the code and of the method. The 
procedures of optimization, both the formal and the iterative ones, have 
proved to be solid and can be used for more complex models. 
 
A final remark regards the time of integration: for all the models analyzed 
it did not exceed few seconds. Of course the number of masses and 
forces is still reduced, but this proves anyway that the method could be 
used on personal computers with ordinary processing power and does 
not require enormous simulation time, where in the simulation is included 
the design phase, the integration and the post-processing. 
 
It is possible to arrange the results obtained from the process of 
optimization in table 5.15. 
 

Table 5.11: results of the optimization 

config COEFF AMPL x0 START FINISH DAMP 

2x1x1 10000 260 30 13.2 13.5 0 

4x1x1 10000 260 10 4.4 4.5 0 

4x2x1 7000 12.0 10.6 3.8 4.5 50 

4x2x2 3000 6.0 11.6 3.5 4.5 500 

7x3x3 1500 5.0 6.1 2.0 2.25 100 

 
In figure 5.27 and 5.28 are plotted the trends of the optimized 
parameters. 
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Figure 5.27: trend of “AMPL” parameter.  
The graph is zoomed in the area of the values for the configurations with more 

than 4 masses. 

 

 

Figure 5.28: trend of “START” parameter. 
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Conclusions 

 
In this Thesis work has been described the development and validation 
of a new molecular method.  
 
The theoretical model is based on the removal of the hypothesis of 
continuum of the Finite Element Method and on the basic concepts of 
Molecular Dynamics and Discrete Element Method.  
This hypothesis does not allow the study of discontinuous phenomena, 
such as the breaking. The target of this new method is to realize a 
Computer Aided Engineering software capable of dealing also with this 
kind of phenomena. 
As a molecular method, a grid of concentrated masses simulates the 
matter and the interaction between these masses is governed by the 
“force characteristic”, an engineering model of force composed by a non-
linear elastic component, a step function to simulate the breaking and a 
damper to smooth the oscillations. The function of the elastic part is a 
logarithm of the delta from the distance of initial equilibrium. Parameters 
are included in order to modify the shape – and consequently the nature 
of the interaction - of the “force characteristic”. 
 
In order to validate this method and to obtain the optimal values of the 
parameters, it was decided to compare the results of an experiment with 
the results of a simulation.  
The experiment performed is the of traction until breaking of a specimen 
of “Steel 3” and the graph force-displacement was obtained.  
To simulate the experiment performed, a code was implemented in MSC 
Adams/View command language, so that the design of the model and 
the definition of forces and boundary conditions could be automated. 
Finally, the procedure of optimization was applied to five configurations 
of the model, from the simplest 1D with 2 masses to the most complex 
3D with 63 masses. The parameters of the “force characteristic” 
optimized are the amplitude of the argument of the logarithm and the 
input of the step function which controls the beginning of the breaking. 
 
The results obtained can be considered satisfactory, because the 
procedure allows to optimize the values of the parameters for a generic 
configuration of the model. The trend of these values, with respect to the 
number of masses of the configurations studied, shows a probable 
horizontal asymptote for  both parameters. This means that it is possible 
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that using more than a certain number of masses, the values remains 
constant, thus allowing to consider them material properties. 
Moreover the post-processing of the model showed a compliance with 
the real behavior of the specimen during the experiment increasing with 
the complexity of the configuration. Eventually configurations with a 
number of masses sufficiently high could reproduce in great detail 
phenomena such as the yielding, the necking and the breaking. 
At the actual stage of the work this condition has not been reached, but 
further development could possibly produce this result.  
 
Problems of stability have appeared disturbing the optimization 
procedure. A theoretical study of stability could show a better way of 
dealing with this problems. 
Another possible way to improve the model could be the use of C 
language instead of Adams/View command language. This would 
produce a faster importation of the code and, probably, a better quality of 
the results, but for the purpose of this Thesis it was enough the level 
reached in all the phases of the simulation. 
 



 

 

Appendix – Script file 
 
! 

!-------------------------- Default Units for Model ---------------------------! 
! 
! 

defaults units  & 
   length = mm  & 
   angle = deg  & 

   force = newton  & 
   mass = kg  & 
   time = sec 

! 
defaults units  & 
   coordinate_system_type = cartesian  & 

   orientation_type = space123 
! 
!------------------------ Default Attributes for Model ------------------------! 

! 
! 
defaults attributes  & 

   inheritance = bottom_up  & 
   icon_visibility = on  & 
   grid_visibility = off  & 
   size_of_icons = 1.0  & 

   spacing_for_grid = 1000.0 
! 
!------------------------------ Adams/View Model ------------------------------! 

! 
! 
model create  & 

   model_name = BAR_MODEL 
! 
view erase 

! 
! 
!--------------------------- DEFINITION OF VARIABLES---------------------------! 

! 
variable create  & 
   variable_name = nx  & 

   comments = "number of molecules in x direction"  & 
   integer_value = 4  & 
   range = 1, 1000000  & 

   use_range = yes   
! 
variable create  & 

   variable_name = ny  & 
   comments = "number of molecules in y direction"  & 
   integer_value = 2  & 

   range = 1, 1000000  & 
   use_range = yes   
! 

variable create  & 
   variable_name = nz  & 
   comments = "number of molecules in z direction"  & 

   integer_value = 1  & 
   range = 1, 1000000  & 
   use_range = yes   
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! 
variable create  & 

   variable_name = AMPL  & 
   comments = "amplitude of argument of logarithm"  & 
   real_value = 12.0  & 

   range = 1,100000  & 
   use_range = yes 
! 

variable create  & 
   variable_name = DAMP  & 
   comments = "damper coefficient"  & 

   real_value = 50.0  & 
   range = 0,100000  & 
   use_range = yes 

! 
variable create  & 
   variable_name = COEFF  & 

   comments = "coefficient of logarithm"  & 
   real_value = 7000.0  & 
   range = 0,100000  & 

   use_range = yes 
! 
!----------- table for choosing R and dist --------------! 

!  
!    nx | ny | nz | Ntot | dist [mm] |   R [mm]   |   x0[mm] 
!-------------------------------------------------------------- 
!     2 |  1 |  1 |   2  |   30.0    |  7.10124   |    30.0 

!     4 |  1 |  1 |   4  |   10.0    |  5.636258  |    10.0 
!     4 |  2 |  1 |   8  |   10.0    |  4.473501  |    TBD 
!     4 |  2 |  2 |  16  |   10.0    |  3.55062   |    TBD 

!     7 |  3 |  1 |  21  |    5.0    |  3.242932  |    TBD 
!    10 |  4 |  1 |  40  |  3.33333  |  2.616119  |   TBD  
!     7 |  3 |  3 |  63  |    5.0    |  2.248523  |    TBD 

!    10 |  4 |  4 | 160  |  3.33333  |  1.648052  |   TBD 
!    13 |  5 |  5 | 325  |    2.5    |  1.301317  |    TBD 
!-------------------------------------------------------------- 

! 
variable create  & 
   variable_name = R  & 

   comments = "radius of molecules"  & 
   real_value = 4.473501  & 
   range = 0.01,100  & 

   use_range = yes 
! 
variable create  & 

   variable_name = dist  & 
   comments = "distance between molecules"  & 
   real_value = 10.0  & 

   range = 0.01,100  & 
   use_range = yes 
! 

variable create  & 
   variable_name = x0  & 
   comments = "distance of equilibrium"  & 

   real_value = 10.6 & 
   range = 0.01, 100  & 
   use_range = yes   

! 
variable create  & 
   variable_name = START  & 

   comments = "start of step function"  & 
   real_value = 3.8 & 
   range = 0.01, 100  & 

   use_range = yes   
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! 
variable create  & 

   variable_name = FINISH  & 
   comments = "finish of step function = 13,5/(Nx-1)"  & 
   real_value = (eval(13.5/(nx-1))) & 

   range = 0.01, 100  & 
   use_range = yes   
! 

!--- internal variables, not to be modified ------------- 
! 
variable create  & 

   variable_name = VELOCITY  & 
   comments = "velocity of traction"  & 
   real_value = 0.0833333 & 

   range = 0.001, 100000  & 
   use_range = yes   
! 

variable create  & 
   variable_name = NMi  & 
   comments = "counter for the Number of Mass (i)"  & 

   integer_value = 0  & 
   range = 0,1000000  & 
   use_range = yes 

! 
variable create  & 
   variable_name = NMj  & 
   comments = "counter for the Number of Mass (j)"  & 

   integer_value = 0  & 
   range = 0,1000000  & 
   use_range = yes 

! 
variable create  & 
   variable_name = NMtot  & 

   comments = "constant to save the Number of Masses total"  & 
   integer_value = 0  & 
   range = 0,1000000  & 

   use_range = yes 
! 
variable create  & 

   variable_name = NF  & 
   comments = "counter for the ID Number of Force"  & 
   integer_value = 0  & 

   range = 0,100000000  & 
   use_range = yes 
! 

variable create  & 
   variable_name = NJ  & 
   comments = "counter for the Number of Joints"  & 

   integer_value = 0  & 
   range = 0, 100  & 
   use_range = yes 

! 
variable create  & 
   variable_name = Nmotion  & 

   comments = "counter for the Number of Motions"  & 
   integer_value = 0  & 
   range = 0, 100  & 

   use_range = yes   
! 
for variable_name = i start_value = 1 end_value = (eval(ny*nz)) 

! 
   variable create & 
      variable_name = (eval("FORCE_N_" // RTOI(i)))  & 

      comments = "identifies the forces in the middle section (horizontal)"  & 
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      integer_value = 0  & 
      range = 0, 10000  & 

      use_range = yes      
!     
end 

! 
variable create  & 
   variable_name = counter_force  & 

   comments = "counter for the forces in the middle section (horizontal)"  & 
   integer_value = 0  & 
   range = 0, 10000  & 

   use_range = yes   
! 
variable create  & 

   variable_name = counter_marker_i  & 
   comments = "counter for the markers of the (i) forces"  & 
   integer_value = 0  & 

   range = 0, 10000  & 
   use_range = yes   
! 

variable create  & 
   variable_name = counter_marker_j  & 
   comments = "counter for the markers of the (j) forces"  & 

   integer_value = 0  & 
   range = 0, 10000  & 
   use_range = yes   
! 

variable create  & 
   variable_name = counter_marker_TOT  & 
   comments = "counter for the markers"  & 

   integer_value = 0  & 
   range = 0, 10000  & 
   use_range = yes   

! 
variable create  & 
   variable_name = marker_delta_A  & 

   comments = "counter for delta total"  & 
   integer_value = 0  & 
   range = 0, 10000  & 

   use_range = yes 
! 
variable create  & 

   variable_name = marker_delta_B  & 
   comments = "counter for delta total"  & 
   integer_value = 0  & 

   range = 0, 10000  & 
   use_range = yes   
! 

!--------------------------------- Materials ----------------------------------! 
! 
! 

material create  & 
   material_name = .BAR_MODEL.steel  & 
   youngs_modulus = 2.07E+005  & 

   poissons_ratio = 0.29  & 
   density = 7.801E-006 
! 

!-------------------------------- Rigid Parts ---------------------------------! 
! 
! Create parts and their dependent markers and graphics 

! 
!----------------------------------- ground -----------------------------------! 
! 

! 
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!-------------------------------- ****** Ground Part ****** -----------------------------! 
! 

defaults model  & 
   part_name = ground 
! 

defaults coordinate_system  & 
   default_coordinate_system = .BAR_MODEL.ground 
! 

part create rigid_body mass_properties  & 
   part_name = .BAR_MODEL.ground  & 
   material_type = .BAR_MODEL.steel 

! 
part attributes  & 
   part_name = .BAR_MODEL.ground  & 

   name_visibility = off 
! 
!------------------------------------- PART_ii-jj-kk ------------------------------------! 

! 
!----------------------------------------------------------------------------------------! 
!---------------------------------- CYCLE FOR PLACING MASSES ----------------------------! 

!----------------------------------------------------------------------------------------! 
! 
! 

for variable_name = ii start_value = 1 end_value = (eval(nx))  
! 
   for variable_name = jj start_value = 1 end_value = (eval(ny))  
! 

      for variable_name = kk start_value = 1 end_value = (eval(nz))  
! 
         variable modify variable_name = NMi integer_value = (eval((ii-1)*nz*ny+(jj-1)*nz+kk)) 

! 
         part create rigid_body name_and_position  & 
            part_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1))) & 

            adams_id = (eval(NMi+1))  & 
            location = 0.0, 0.0, 0.0  & 
            orientation = 0.0d, 0.0d, 0.0d 

! 
         defaults coordinate_system  & 
            default_coordinate_system = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1))) 

! 
!-------------------------- ****** Markers for current part ****** ----------------------! 
! 

         marker create  & 
            marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // RTOI(NMi)))  & 
            adams_id = (eval(NMi+1))  & 

            location = (eval(0.0+(dist*(ii-1)))), (eval(0.0+(dist*(jj-1)))), (eval(0.0+(dist*(kk-1))))  & 
            orientation = 0.0d, 0.0d, 0.0d 
! 

         variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1))  
! 
         marker create  & 

            marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".cm"))  & 
            location = (eval(0.0+(dist*(ii-1)))), (eval(0.0+(dist*(jj-1)))), (eval(0.0+(dist*(kk-1))))  & 
            orientation = 0.0d, 0.0d, 0.0d 

! 
         part create rigid_body mass_properties  & 
            part_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1))) & 

            material_type = .BAR_MODEL.steel 
! 
!------------------------- ****** Graphics for current part ****** ---------------------! 

! 
         geometry create shape ellipsoid  & 
            ellipsoid_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".ELLIPSOID_" // RTOI(NMi)))  & 

            center_marker = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // RTOI(NMi)))  & 
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            x_scale_factor = (eval(2*R))  & 
            y_scale_factor = (eval(2*R))  & 

            z_scale_factor = (eval(2*R)) 
! 
         if condition = (ii<=(eval(nx/2))) 

! 
            part attributes  & 
               part_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1)))  & 

               color = RED  & 
               name_visibility = off 
! 

         end 
! 
         if condition = (ii>(eval(nx/2))) 

! 
            part attributes  & 
               part_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1)))  & 

               color = GREEN  & 
               name_visibility = off 
! 

         end 
! 
!-------------------------- to find the markers for the total delta --------------------! 

! 
         if condition = ( (ii == 1) && (jj == 1) && (kk == 1) )  
! 
            variable modify variable_name = marker_delta_A integer_value = (eval((NMi))) 

! 
         end 
! 

         if condition = ( (ii == nx) && (jj == 1) && (kk == 1) ) 
! 
            variable modify variable_name = marker_delta_B integer_value = (eval((NMi))) 

! 
         end 
! 

      end 
! 
   end 

! 
end 
! 

!--------------------------------------------------------------------------------------! 
!------------------------------ END CYCLE FOR PLACING MASSES --------------------------! 
!--------------------------------------------------------------------------------------! 

! 
! 
!--------------------------- FUNCTIONS delta_TOT and total_load -----------------------! 

! 
measure create function  & 
   measure_name = .BAR_MODEL.FUNCTION_deltaTOT  & 

   function = ("(DM(.BAR_MODEL.PART_" // (eval(RTOI(marker_delta_A+1))) // ".MARKER_" // 
(eval(RTOI(marker_delta_A))) //","// ".BAR_MODEL.PART_" // (eval(RTOI(marker_delta_B+1))) // 
".MARKER_" // (eval(RTOI(marker_delta_B))) //")-30)")  & 

   units = "length"  & 
   create_measure_display = no 
! 

data_element attributes  & 
   data_element_name = .BAR_MODEL.FUNCTION_deltaTOT  & 
   color = WHITE 

! 
! 
measure create function  & 

   measure_name = .BAR_MODEL.TOTAL_LOAD  & 
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   function = ""  & 
   units = "force"  & 

   create_measure_display = no 
! 
data_element attributes  & 

   data_element_name = .BAR_MODEL.TOTAL_LOAD  & 
   color = WHITE 
! 

! 
!-------------------------------------- Sensors --------------------------------------! 
! 

! 
executive_control create sensor  & 
   sensor_name = .BAR_MODEL.SENSOR_1  & 

   adams_id = 1  & 
   compare = ge  & 
   value = 13.5  & 

   error = 0.001  & 
   codgen = off  & 
   halt = on  & 

   print = off  & 
   restart = off  & 
   return = off  & 

   yydump = off  & 
   function = ("(DM(.BAR_MODEL.PART_" // (eval(RTOI(marker_delta_A+1))) // ".MARKER_" // 
(eval(RTOI(marker_delta_A))) //","// ".BAR_MODEL.PART_" // (eval(RTOI(marker_delta_B+1))) // 
".MARKER_" // (eval(RTOI(marker_delta_B))) //")-30)")  & 

   evaluate = ("(DM(.BAR_MODEL.PART_" // (eval(RTOI(marker_delta_A+1))) // ".MARKER_" // 
(eval(RTOI(marker_delta_A))) //","// ".BAR_MODEL.PART_" // (eval(RTOI(marker_delta_B+1))) // 
".MARKER_" // (eval(RTOI(marker_delta_B))) //")-30)") 

! 
! 
!------------------------------- end of sensors --------------------------------------! 

! 
variable modify variable_name = NMtot integer_value = (eval(NMi)) 
! 

variable modify variable_name = NMi integer_value = 0 
! 
!-------------------------------------------------------------------------------------! 

!------------------------------- CYCLE FOR DEFINING FORCES ---------------------------! 
!------------------------------- AND BOUNDARY CONDITIONS -----------------------------! 
!-------------------------------------------------------------------------------------! 

! 
for variable_name=lll start_value=1 end_value=(eval(nx)) 
for variable_name=mmm start_value=1 end_value=(eval(ny)) 

for variable_name=nnn start_value=1 end_value=(eval(nz)) 
! 
   variable modify variable_name = NMi integer_value = (eval((lll-1)*nz*ny+(mmm-1)*nz+nnn)) 

! 
   for variable_name=iii start_value=1 end_value=(eval(nx)) 
   for variable_name=jjj start_value=1 end_value=(eval(ny)) 

   for variable_name=kkk start_value=1 end_value=(eval(nz)) 
! 
      variable modify variable_name = NMj integer_value = (eval((iii-1)*nz*ny+(jjj-1)*nz+kkk)) 

! 
!----------- first control to create the force between i and j only one time ---------! 
! 

      if condition = (NMj>NMi) 
! 
!----------- controls to identify masses placed at one "step" of distance ------------! 

! 
      if condition = ((nnn==kkk) || (eval(kkk-nnn)==1) || (eval(nnn-kkk)==1)) 
      if condition = ((mmm==jjj) || (eval(jjj-mmm)==1) || (eval(mmm-jjj)==1)) 

      if condition = ((lll==iii) || (eval(iii-lll)==1) || (eval(lll-iii)==1)) 
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! 
!--------------------------------------- marker i ------------------------------------! 

! 
         variable modify variable_name = counter_marker_i integer_value = (eval(counter_marker_i+1)) 
         variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1))  

! 
         marker create  & 
            marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // 

RTOI(counter_marker_TOT)))  & 
            adams_id = (eval(counter_marker_TOT+1))  & 
            location = (eval(0.0+(dist*(lll-1)))), (eval(0.0+(dist*(mmm-1)))), (eval(0.0+(dist*(nnn-1))))  & 

            orientation = 0.0d, 0.0d, 0.0d 
! 
!--------------------------------------- marker j ------------------------------------! 

! 
         variable modify variable_name = counter_marker_j integer_value = (eval(counter_marker_j+1))  
         variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1)) 

! 
         marker create  & 
            marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMj+1) // ".MARKER_" // 

RTOI(counter_marker_TOT)))  & 
            adams_id = (eval(counter_marker_TOT+1))  & 
            location = (eval(0.0+(dist*(iii-1)))), (eval(0.0+(dist*(jjj-1)))), (eval(0.0+(dist*(kkk-1))))  & 

            orientation = 0.0d, 0.0d, 0.0d 
! 
!---------------- now I have the new markers to create the actual force --------------! 
! 

!--------------------------------------- Forces --------------------------------------! 
! 
         variable modify variable_name = NF integer_value = (eval(NF+1))  

! 
         force create direct single_component_force  & 
            single_component_force_name = (eval(".BAR_MODEL.SFORCE_" // RTOI(NF)))  & 

            adams_id = (eval(NF))  & 
            type_of_freedom = translational  & 
            i_marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // 

RTOI(counter_marker_TOT-1)))  & 
            j_marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMj+1) // ".MARKER_" // 
RTOI(counter_marker_TOT)))  & 

            action_only = off  & 
            function = "" 
! 

!---------------------------- TO HIDE THE NAME OF THE FORCE --------------------------! 
! 
         force attributes & 

            force_name = (eval(".BAR_MODEL.SFORCE_" // RTOI(NF))) & 
            name_visibility = OFF  
! 

!---------------------------------- Analysis settings --------------------------------! 
! 
!-------------------------------------- Measures -------------------------------------! 

! 
         measure create object  & 
            measure_name = (eval(".BAR_MODEL.SFORCE_force_" // RTOI(NF)))  & 

            from_first = yes  & 
            object = (eval(".BAR_MODEL.SFORCE_" // RTOI(NF)))  & 
            characteristic = element_force  & 

            component = x_component  & 
            create_measure_display = no 
! 

         data_element attributes  & 
            data_element_name = (eval(".BAR_MODEL.SFORCE_force_" // RTOI(NF)))  & 
            color = WHITE 

! 
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         measure create function  & 
            measure_name = (eval(".BAR_MODEL.FUNCTION_delta" //  RTOI(NMi) // "_" // RTOI(NMj)))  & 

            function = ""  & 
            units = "length"  & 
            create_measure_display = no 

! 
         data_element attributes  & 
            data_element_name = (eval(".BAR_MODEL.FUNCTION_delta" //  RTOI(NMi) // "_" // RTOI(NMj)))  & 

            color = WHITE 
! 
!------------------------------------------------------------------------------------! 

!-------------------------------- Function definitions ------------------------------! 
!------------------------------------------------------------------------------------! 
! 

         measure modify function  & 
            measure_name = (eval(".BAR_MODEL.FUNCTION_delta" //  RTOI(NMi) // "_" // RTOI(NMj)))  & 
            function = 

("(DX(.BAR_MODEL.PART_"//(eval(RTOI(NMj+1)))//".MARKER_"//(eval(RTOI(counter_marker_TOT))) //","// 
".BAR_MODEL.PART_"//(eval(RTOI(NMi+1)))//".MARKER_"//(eval(RTOI(counter_marker_TOT-1))) //")-x0)") 
! 

! 
! 
         force modify direct single_component_force  & 

            single_component_force_name = (eval(".BAR_MODEL.SFORCE_" // RTOI(NF)))  & 
            function = ("(-COEFF*LOG(AMPL*(DM(.BAR_MODEL.PART_" // (eval(RTOI(NMi+1))) // ".MARKER_" 
// (eval(RTOI(counter_marker_TOT-1))) //","// ".BAR_MODEL.PART_" // (eval(RTOI(NMj+1))) // ".MARKER_" 
// (eval(RTOI(counter_marker_TOT))) // ")-x0)/x0 + 1)*step((DM(.BAR_MODEL.PART_" // 

(eval(RTOI(NMi+1))) // ".MARKER_" // (eval(RTOI(counter_marker_TOT-1))) //","// ".BAR_MODEL.PART_" // 
(eval(RTOI(NMj+1))) // ".MARKER_" // (eval(RTOI(counter_marker_TOT)))// ")-x0)" //","// "START" //","// "1" 
//","// "FINISH" //","// "0)) - (DAMP*VR(.BAR_MODEL.PART_" // (eval(RTOI(NMi+1))) // ".MARKER_" // 

(eval(RTOI(counter_marker_TOT-1))) //","// ".BAR_MODEL.PART_" // (eval(RTOI(NMj+1))) // ".MARKER_" // 
(eval(RTOI(counter_marker_TOT))) // "))") 
! 

! 
! 
      end 

      end 
      end 
      end 

!------------------------------------------- END IF --------------------------------! 
! 
!------------------------------- TO FIND THE MIDDLE FORCES -------------------------! 

! 
      if condition = ((eval(nx/2 - lll)==0) && (eval(nx/2 + 1 - iii)==0)) 
      if condition = ((mmm==jjj) && (nnn==kkk)) 

! 
         variable modify variable_name = counter_force integer_value = (eval(counter_force+1)) 
! 

         variable modify variable_name = (eval("FORCE_N_" // RTOI(counter_force)))  integer_value = 
(eval(NF)) 
! 

      end 
      end 
!-----------------------------------------------------------------------------------!  

! 
   end 
   end 

   end 
!-------------------------------- END INNER CYCLES FOR FORCES ----------------------! 
! 

!------------------------------------------ LOCKS ----------------------------------! 
! 
   if condition = (lll == 1) 

! 
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      variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1)) 
      variable modify variable_name = NJ integer_value = (eval(NJ+1)) 

! 
      marker create  & 
         marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // 

RTOI(counter_marker_TOT)))  & 
         adams_id = (eval(counter_marker_TOT+1))  & 
         location = (eval(0.0+(dist*(lll-1)))), (eval(0.0+(dist*(mmm-1)))), (eval(0.0+(dist*(nnn-1))))  & 

         orientation = 0.0d, 0.0d, 0.0d 
! 
      variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1)) 

! 
      marker create  & 
         marker_name = (eval(".BAR_MODEL.ground.MARKER_" // RTOI(counter_marker_TOT)))  & 

         adams_id = (eval(counter_marker_TOT+1))  & 
         location = (eval(0.0+(dist*(lll-1)))), (eval(0.0+(dist*(mmm-1)))), (eval(0.0+(dist*(nnn-1))))  & 
         orientation = 0.0d, 0.0d, 0.0d 

! 
      constraint create joint fixed  & 
         joint_name = (eval(".BAR_MODEL.JOINT_" // RTOI(NJ)))  & 

         adams_id = (eval(NJ))  & 
         i_marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // 
RTOI(counter_marker_TOT-1)))  & 

         j_marker_name = (eval(".BAR_MODEL.ground.MARKER_" // RTOI(counter_marker_TOT))) 
! 
      constraint attributes  & 
         constraint_name = (eval(".BAR_MODEL.JOINT_" // RTOI(NJ)))  & 

         name_visibility = off 
! 
   end 

! 
!-------------------------------------- END LOCKS ---------------------------------! 
! 

!--------------------------------- MOTIONS and JOINTS -----------------------------! 
! 
   if condition = (lll == nx) 

! 
!------------------ motion at velocity 0.083 mm/s = 5mm/min -----------------------! 
! 

      variable modify variable_name = Nmotion integer_value = (eval(Nmotion+1)) 
      variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1)) 
! 

      marker create  & 
         marker_name = (eval(".BAR_MODEL.ground.MARKER_" // RTOI(counter_marker_TOT)))  & 
         adams_id = (eval(counter_marker_TOT+1))  & 

         location = (eval(0.0+(dist*(lll-1)))), (eval(0.0+(dist*(mmm-1)))), (eval(0.0+(dist*(nnn-1))))  & 
         orientation = 0.0d, 90.0d, 0.0d 
! 

      variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1)) 
! 
      marker create  & 

         marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // 
RTOI(counter_marker_TOT)))  & 
         adams_id = (eval(counter_marker_TOT+1))  & 

         location = (eval(0.0+(dist*(lll-1)))), (eval(0.0+(dist*(mmm-1)))), (eval(0.0+(dist*(nnn-1))))  & 
         orientation = 0.0d, 90.0d, 0.0d  
! 

      constraint create motion_generator  & 
         motion_name = (eval(".BAR_MODEL.MOTION_" // RTOI(Nmotion)))  & 
         adams_id = (eval(Nmotion))  & 

         i_marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // 
RTOI(counter_marker_TOT)))  & 
         j_marker_name = (eval(".BAR_MODEL.ground.MARKER_" // RTOI(counter_marker_TOT-1)))  & 

         axis = z  & 
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         function = "VELOCITY * time" 
! 

      constraint attributes  & 
         constraint_name = (eval(".BAR_MODEL.MOTION_" // RTOI(Nmotion)))  & 
         name_visibility = off 

! 
!------------------------- translational joint ------------------------------------! 
! 

      variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1))  
! 
      marker create  & 

         marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // 
RTOI(counter_marker_TOT)))  & 
         adams_id = (eval(counter_marker_TOT+1))  & 

         location = (eval(0.0+(dist*(lll-1)))), (eval(0.0+(dist*(mmm-1)))), (eval(0.0+(dist*(nnn-1))))  & 
         orientation = 0.0d, 90.0d, 0.0d 
! 

      variable modify variable_name = NJ integer_value = (eval(NJ+1)) 
      variable modify variable_name = counter_marker_TOT integer_value = (eval(counter_marker_TOT+1))  
! 

      marker create  & 
         marker_name = (eval(".BAR_MODEL.ground.MARKER_" // RTOI(counter_marker_TOT)))  & 
         adams_id = (eval(counter_marker_TOT+1))  & 

         location = (eval(0.0+(dist*(lll-1)))), (eval(0.0+(dist*(mmm-1)))), (eval(0.0+(dist*(nnn-1))))  & 
         orientation = 0.0d, 90.0d, 0.0d 
! 
      constraint create joint translational  & 

         joint_name = (eval(".BAR_MODEL.JOINT_" // RTOI(NJ)))  & 
         adams_id = (eval(NJ))  & 
         i_marker_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".MARKER_" // 

RTOI(counter_marker_TOT-1)))  & 
         j_marker_name = (eval(".BAR_MODEL.ground.MARKER_" // RTOI(counter_marker_TOT))) 
! 

      constraint attributes  & 
         constraint_name = (eval(".BAR_MODEL.JOINT_" // RTOI(NJ)))  & 
         name_visibility = off 

! 
   end 
! 

!---------------------------- END MOTIONS and JOINTS -----------------------------! 
! 
end 

end 
end 
! 

!---------------------------------------------------------------------------------! 
!------------------------ END OUTER CYCLES FOR FORCES ----------------------------! 
!---------------------------------------------------------------------------------! 

! 
! 
defaults coordinate_system  & 

   default_coordinate_system = ground 
! 
!---------------- CICLO SCALE FACTOR iiii jjjj kkkk ------------------------------! 

! 
for variable_name = iiii start_value = 1 end_value = (eval(nx))  
   for variable_name = jjjj start_value = 1 end_value = (eval(ny))  

      for variable_name = kkkk start_value = 1 end_value = (eval(nz))  
! 
         variable modify variable_name = NMi integer_value = (eval((iiii-1)*nz*ny+(jjjj-1)*nz+kkkk)) 

! 
         geometry modify shape ellipsoid  & 
            ellipsoid_name = (eval(".BAR_MODEL.PART_" // RTOI(NMi+1) // ".ELLIPSOID_" // RTOI(NMi)))  & 

            x_scale_factor = (2 * (eval(R)))  & 
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            y_scale_factor = (2 * (eval(R)))  & 
            z_scale_factor = (2 * (eval(R))) 

! 
      end 
   end 

end 
! 
material modify  & 

   material_name = .BAR_MODEL.steel  & 
   youngs_modulus = (2.07E+011(Newton/meter**2))  & 
   density = (7801.0(kg/meter**3)) 

! 
model display  & 
   model_name = BAR_MODEL 

! 
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