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Abstract 

The thesis deals with the proper choice of brushless electrical motor and transmission. 

The choice is based on JM-Mm,rms and JM-Mm,max curves, that are obtained from the 

“reference task” for giving transmission.  

 

The method permits the designer to link the electrical motor with transmission in order 

to guarantee that the motor’s dynamic working range and continuous duty working 

range is suitable for the driven load. Particularly, the thesis takes into account the direct 

and inverse efficiencies of the transmission and its inertia. 

 

In addition, the analytic expressions and figures, with the help of which the choices of 

electrical motors will be achieved, will be analyzed. 

 

Finally, an algorithm is proposed to elaborate the choice of the proper electrical motor. 

The algorithm is based upon analytical considerations and has been developed to 

minimize its calculation time. 

 

Keywords Coupling of the motor and transmission; direct and inverse efficiencies; 

transmission inertia; brushless electrical motor 
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Sommario 

La tesi si occupa della scelta corretta di un motore elettrico brushless e relativa 

trasmissione. La scelta è basata su curve JM-Mm, rms e JM-Mm, max , che vengono 

ottenute dalla "missione di riferimento", per data trasmissione. 

 

Il metodo permette al progettista di collegare il motore elettrico con la trasmissione 

al fine di garantire il campo di lavoro dinamico del motore . E il campo di lavoro 

servizio continuo adeguati alla macchina operatrice. In particolare, la ricerca tiene in 

conto i rendimenti diretto e inverso della trasmissione e la sua inerzia. 

 

Inoltre, saranno analizzati le espressioni analitiche e le figure, con l'aiuto delle quali 

la scelta dei motori elettrici sarà effettuata. 

 

Infine, un algoritmo si propone di elaborare la scelta corretta del motore elettrico. 

L'algoritmo è basato su considerazioni analitiche ed è stato sviluppato per ridurre al 

minimo il tempo di calcolo. 

 

Parole chiave    Accoppiamento motore-trasmissione; Rendimento diretto e 

inverso; Inerzia della trasmissione; motore elettrico brushless 
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Chapter 1:  Introduction 

 

Symbol Description 

𝑀𝑚  Motor torque 

𝑀𝑚,𝑚𝑎𝑥 Maximum torque exerted by the motor 

𝑀𝑚,𝑟𝑚𝑠 Root mean square torque of the motor 

𝐽𝑀  

𝑀𝑀,𝑟𝑎𝑡𝑒𝑑 

Moment of inertia of the motor 

Motor rated torque 

𝑀𝑀,𝑆1 Limit torque of the continuous duty range 

𝑀𝑀,𝑑𝑦𝑛 Limit torque of the dynamic range 

𝜔𝑚 Motor angular speed 

𝛼𝑚 Motor angular acceleration 

𝑀𝐿  Load torque 

𝐽𝐿  Moment of inertia of the load 

𝑀𝐿
∗

 Generalized load torque 

𝑀𝐿,𝑟𝑚𝑠
∗

 Generalized root mean square torque of the load 

𝑀𝐿,𝑚𝑎𝑥  Load maximum torque 

𝜔𝐿  Load angular speed 

𝛼𝐿  Load angular acceleration 

𝛼𝐿.𝑟𝑚𝑠  Root mean square acceleration of the load 

𝑇 Cycle time 

𝜏 Transmission ratio 

𝜂𝑑 Direct transmission efficiency 

𝜂𝑖  Inverse transmission efficiency 

𝐽1   𝐽2 Moment of inertia of the transmission 

𝐽𝑇
 Generalized moment of inertia of the transmission 

𝜔𝑚,𝑚𝑎𝑥 Maximum speed achievable by the motor 

𝜔𝐿,𝑚𝑎𝑥 Maximum speed achieved by the load 

𝑃𝑀  Power on motor side 

𝑃𝐿 Power on load side 

Table 1.1 Nomenclature 

 

In servo-actuated machines, the choice of the electrical motor and transmission is 

usually related to a dynamic load. The difficulty of matching them depends on 

several constraints due to the continuous duty working range and the dynamic 

working range of the motor, the transmission ratio 𝜏, mechanical efficiency 𝜂 and 

moment of inertia 𝐽𝑇.  

 

In previous researches, the transmission is approximated to an ideal system in which 

power losses are neglected or the direct and inverse efficiencies are taken into 

account individually. In this paper a methodology for choosing the motor and 
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transmission which considers both direct and inverse efficiencies and the 

transmission inertia at the same time, is introduced. 

 

Direct Power Flow 

𝑃𝑀         𝑃𝐿  

Inverse Power Flow 

 

Fig. 1.1 Scheme of the actuation part of the machine 

 

 

Fig. 1.2 Sign conventions regarding the load 

 

In this paper it is assumed that the transmission has two inertias: 𝐽1 on motor side 

and 𝐽2 on load side. In Fig. 1.1, if 𝑀𝐿 + 𝐽2𝛼𝐿 and 𝜔𝑚 have the same sign, the load 

introduces motive power to the motor; if they have opposite signs, the load 

introduces resistant power to the motor.  

 

And the corresponding power flows are shown in Fig. 1.3 and Fig. 1.4. 

 

  

𝑀𝐿 + 𝐽2𝛼𝐿 

Motor 

Transmission 

𝐽1 

𝐽2 

𝑀𝐿 + 𝐽2𝛼𝐿 

𝑀𝐿 + 𝐽2𝛼𝐿 𝑀𝐿 + 𝐽2𝛼𝐿 

𝑀𝐿 + 𝐽2𝛼𝐿 
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Fig. 1.3 Direct power flow 

 

 

 

 

 

 

Fig. 1.4 Inverse power flow 

 

In Fig. 1.3 and Fig. 1.4 the power flow loss due to the direct and inverse efficiency is 

shown. In order to choose a brushless motor, apart from transmission ratio, we 

should take into account both direct and inverse efficiencies. In the second and 

fourth quadrant, the efficiency is direct, while in the first and third quadrant, the 

efficiency is inverse. That is, when 𝑀𝐿 and 𝜔𝐿 have the same sign, the efficiency is 

direct; but when they have opposite signs, the efficiency is inverse. 

 

In this paper, we will apply a new mathematic method to find out the right motor for 

a specific load. 

 

In chapter 2, some basic knowledge, which will be very useful, are introduced, such 

as brushless motor, harmonic drive transmission, conic section. 

 

In chapter 3, a method which takes into account both direct and inverse efficiencies 

and the inertia of transmission is proposed. 

 

In chapter 4, such a method is applied to continuous duty operating range. 

𝑀𝑚𝜔𝑚 𝑀𝐿𝜔𝐿 

(1 − 𝜂𝑑) 𝑀𝑚 − (𝐽𝑀 + 𝐽1)𝛼𝑚 𝜔𝑚 

J1α𝑀ωm 

𝐽𝑀𝛼𝑚𝜔𝑚 

 
𝐽1𝛼𝑚𝜔𝑚 

 

𝐽2𝛼𝐿𝜔𝐿 

 

𝑀𝐿𝜔𝐿 

 

𝑀𝑚𝜔𝑚 

𝐽𝑀𝛼𝑚𝜔𝑚 

 
𝐽2𝛼𝐿𝜔𝐿 

 

(1 − 𝜂𝑖)(𝑀𝐿 + 𝐽2𝛼𝐿)𝜔𝐿 

 

𝐽1𝛼𝑚𝜔𝑚 
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In chapter 5, this method is applied to dynamic operating range. 

 

In chapter 6, a simple example which applies this method to choose the appropriate 

transmission and motor is presented. 

 

In chapter 7, a conclusion will be given. 
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Chapter 2:  Drive system 

characterization 

2.1 AC Brushless Motor 

2.1.1 Construction of a AC brushless motor 

The brushless motor here is assembled with permanent magnets, and it is an electric 

motor driven by an alternating current. The brushless motors are based on magnetic 

rotating field.  

 

A brushless motor having permanent magnets that can be used as a prime mover for 

automobiles, in place of internal combustion engines, since the motor can yield high 

torque during low speed rotation, as in the case of conventional types of brushless 

motors and can be used at high torque and with excellent motor efficiency at 

rotations three times as high as that of conventional types. 

 

The brushless motor having permanent magnets according to the invention 

comprises a stator having a plurality of stator magnetic poles and a winding for 

generating a rotating field in the stator magnetic poles, a rotor having a rotating shaft 

and field permanent magnets rotating with respect to the stator magnetic poles ,a 

control circuit for detecting the position of magnetic poles of the field permanent 

magnet with respect to the stator and feeding current to the winding in accordance 

with the position; where in the field permanent magnets comprise a first field 

permanent magnet having magnetic poles of different polarities alternately arranged 

in the direction of rotation, and a second field permanent magnet that is adapted to 

be rotatable with respect to the first field permanent magnet and has magnetic poles 

of different polarities alternately arranged in the direction of rotation; the first and 

second field permanent magnets facing the stator magnetic poles, and a mechanism 

for changing the phase of the synthesized magnetic poles of the first and second field 

permanent magnets in accordance with the rotation of the rotor is provided.(see Fig. 

2.1 and Fig. 2.2) 
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Fig. 2.1 An overall construction of a AC brushless motor 

 

Fig. 2.1 shows the section structure of a brushless motor. We can see that the 

windings are in the stator. The permanent magnets are in the rotor. A position 

transducer allows us to know the position Ɵ𝑚 of the rotor, i.e. of the magnetic field.  

 

Fig. 2.2 Section of AC brushless motor 
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2.1.2 Alternating Current (AC) Motor 

There is no brush or sliding contact in the AC brushless motors. Heat is generated in 

the stator winding and the thermal resistance, to transmit heat to the environment, 

is very small. So they have advantages compared to the DC motors:  

 

 Higher current limit due to the commutator contact.  

 

 Higher maximum speed than DC machine 

 

 Light rotor and consequently low inertia. The brushless motor has great 

response quickness. 

 

 High power and torque density. 

 

 Less maintenance problem and sparkling problems due to no commutator. 

 

The AC motors are based on magnetic rotating field. 

 

2.1.3 The basic electro-magnet 

The magnetic permeability of an iron cylinder (diameter 𝐷, length 𝑙) is much larger 

than that of the air; an N turn winding is placed on diametrical plane; a constant 

current 𝐼𝑒 flows into the winding. This device acts like a permanent magnet with 

cylindrical shape. The north pole is the surface from which the magnetic field lines 

come out, and the south pole is the surface in which the magnetic field lines enter 

(shown in Fig. 2.3).  

 

Fig. 2.3 A ferromagnetic cylinder surrounded 

 

An N turn winding is placed on the diametrical plane of a hollow cylinder (stator); a 

constant current flows into the winding; this device acts as a permanent magnet (see 

Fig. 2.4 ). 
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Fig. 2.4 A hollow cylinder (stator) 

2.1.4 Electro-magnetic joint: the alignment law 

 

 

Fig. 2.5 Electro-magnetic joint 

 

In Fig. 2.5, if the two basic permanent-magnets or electromagnets are put one inside 

the other, an aligning torque arises.  

 

The torque depends on the value of the angle as a sine function: 𝑇 = −𝐾 𝑠𝑖𝑛 𝜀. And 

the torque acts so as to align the opposite magnetic polarities. 

 

From joint to motor, if the magnetic polarities of the external magnet could rotate 

around the cylinder axis, this would make the alignment torque drag the inner 

permanent magnet thus providing a rotation. The rotation of the polarities of the 

external magnets can be achieved by using an external three-phase winding and 

placing a permanent magnet on the rotor. And the magnetic field produced by 

magnets or electro-magnets of cylindrical shape can be represented by vector 

oriented in the direction of the field line. As shown in Fig. 2.6, the vectors are called 

space phasors, and 𝑀𝑒, 𝑀𝑖  are the magneto motive force space phasors of external 

and internal magnets. 
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Fig. 2.6 Electro-magnetic joint in motor  

 

2.1.5 The three-phase windings 

Three windings a, b and c are displaced by 120° one from each other; three ideal 

current generators feed the windings with balanced AC three-phase currents 𝑖𝑎, 𝑖𝑏 

and 𝑖𝑐; the resulting magnetic field is the sum of the field produced by the single 

windings. Then a rotating magnetic field is obtained (shown in Fig. 2.7). 

 

Fig. 2.7 Views of the three-phase windings 

 

2.1.6 The voltage vector model 

The rotating magnetic motive force vector (space phasor) is: 
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𝑓 =
3

2
𝑁𝐼𝑀 ∙ 𝑒𝑗𝜔𝑡       (2.1) 

Also the balanced three-phase current system can be represented by a rotating 

current space phasor 𝐼 , and the three-phase flux linkage can represented by a 

rotating space phasor 𝛹 too (see Fig. 2.8 ). 

 
Fig. 2.8 Representation of space phasors 

 

Then we know that the voltage can be represented by a space phasor, after project 

the rotating space phasor on each phase axes we can obtain the instantaneous value 

of phase variable(shown in Fig. 2.9), and the expressions are: 

 

{
 
 

 
 𝑣𝑎 = 𝑅𝑎𝑖𝑎 +

𝑑𝛹𝑎

𝑑𝑡

𝑣𝑏 = 𝑅𝑏𝑖𝑏 +
𝑑𝛹𝑏

𝑑𝑡

𝑣𝑐 = 𝑅𝑐𝑖𝑐 +
𝑑𝛹𝑐

𝑑𝑡

                  𝑣𝑠 = 𝑅𝑠𝑖𝑠 +
𝑑𝛹𝑠

𝑑𝑡
            (2.2) 

 

 



Chapter 2: Brushless Motor 

Politecnico Di Milano – M.sc. Mechanical Engineering  20 

 
Fig. 2.9 The voltage space phasor 

 

The flux and current are related by a constant: the synchronous (self) inductance 𝐿𝑠 , 

and we have: 

𝛹 = 𝐿𝑠𝑖𝑠        (2.3) 

2.1.7 AC Permanent Magnet Synchronous Motor (AC brushless motor) 

 

 
Fig. 2.10 Two fields of AC brushless motor 
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As shown in Fig. 2.10, the stator rotating field (produced by the three-phase stator 

windings) produces an aligning torque that interacts with the rotor permanent 

magnet field, and the two fields run synchronously, i.e. the rotor’s angular speed is 

equal to the stator’s rotating field. 

 

As we mentioned in 2.1.6, the voltages depend on the total flux 𝛹𝑠 produced by the 

stator (rotating field) and by the rotor’s permanent magnet. Then we project the 

space phasors on a fixed axes reference frame α-β or on a synchronous rotating 

frame d-q, that is: 

{
 

 
𝑣𝑠

𝑠 = 𝑣𝑠𝑒
𝑖𝜔𝑡

𝑖𝑠
𝑠 = 𝑖𝑠𝑒

𝑖𝜔𝑡

𝛹𝑠
𝑠 = 𝛹𝑠𝑒

𝑖𝜔𝑡

        (2.4) 

 

A rotating reference frame d-q is chosen having axes that are synchronous with the 

rotor’s permanent magnet flux space phasor 𝛹𝑠,  

𝛹𝑠
𝑠 = 𝛹𝑠 ∙ 𝑒𝑗𝜔        (2.5) 

Where 𝛹𝑠 = 𝛹𝑚 + 𝐿𝑠𝑖𝑠, and it’s the total flux referred to a fixed reference frame α-β; 

𝛹𝑠
𝑠 is the total flux referred to a rotating reference frame d-q(shown in Fig. 2.11). 

 

 

Fig. 2.11 The total flux vector projected on two frames 
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The total flux vector (referred to a fixed frame α-β) is: 

𝛹𝑠
𝑠 = 𝛹𝑚

𝑠 + 𝐿𝑠𝑖𝑠
𝑠       (2.6) 

 

The total flux vector (referred to a rotating frame d-q) is: 

𝛹𝑠𝑒
𝑖𝜔𝑡 = 𝛹𝑚𝑒𝑖𝜔𝑡 + 𝐿𝑠𝑖𝑠𝑒

𝑖𝜔𝑡      (2.7) 

    

Taking the total time derivative: 

𝑑𝛹𝑠𝑒
𝑖𝜔𝑡

𝑑𝑡
= 𝑖𝜔𝛹𝑚𝑒𝑖𝜔𝑡 + 𝐿𝑠

𝑑𝑖𝑠
𝑑𝑡

𝑒𝑖𝜔𝑡 + 𝑖𝜔𝐿𝑠𝑖𝑠𝑒
𝑖𝜔𝑡       (2.8) 

 

Thus 

𝑣𝑠𝑒
𝑖𝜔𝑡 = 𝑅𝑠𝑖𝑠𝑒

𝑖𝜔𝑡 +
𝑑𝛹𝑠

𝑑𝑡
𝑒𝑖𝜔𝑡 = (𝑅𝑠𝑖𝑠 + 𝑖𝜔𝛹𝑚 + 𝐿𝑠

𝑑𝑖𝑠
𝑑𝑡

+ 𝑖𝜔𝐿𝑠𝑖𝑠) 𝑒𝑖𝜔𝑡 (2.9) 

 

Simplifying the 𝑒𝑖𝜔𝑡 term we obtain: 

𝑣𝑠 = 𝑅𝑠𝑖𝑠 + 𝑖𝜔𝛹𝑚 + 𝐿𝑠

𝑑𝑖𝑠
𝑑𝑡

+ 𝑖𝜔𝐿𝑠𝑖𝑠     (2.10) 

 

Then it is possible to project the vectors along the reference axes d (real) and q 

(imaginary): 

𝛹𝑚 = 𝛹𝑚        (2.11) 

 

𝑖𝑠 = 𝑖𝑠𝑑 + 𝑖 ∙ 𝑖𝑠𝑞       (2.12) 

 

The following two-axis model is therefore obtained: 

{
𝑣𝑠𝑑 = 𝑅𝑠𝑖𝑠𝑑 + 𝐿𝑠

𝑑𝑖𝑠𝑑
𝑑𝑡

− 𝜔𝐿𝑠𝑖𝑠𝑞

𝑣𝑠𝑞 = 𝑅𝑠𝑖𝑠𝑞 + 𝐿𝑠

𝑑𝑖𝑠𝑞

𝑑𝑡
+ 𝜔(𝐿𝑠𝑖𝑠𝑑 + 𝛹𝑚)

     (2.13) 

 

Because the driving torque 𝑀𝑚 can be obtained from an energy balance, the 

mechanical equation has to be considered to complete the model: 

𝐽𝜔̇ = 𝑀𝑚 − 𝑀𝐿            (2.14) 

 

The power entering the motor is equal to: 

W = 𝑣𝑠 ∗ 𝑖𝑠 = 𝑣𝑠𝑑𝑖𝑠𝑑 + 𝑣𝑠𝑞𝑖𝑠𝑞      (2.15) 

 

Substituting the expressions of 𝑣𝑠𝑑and 𝑣𝑠𝑞  we obtain 

W = 𝑅𝑠𝑖𝑠𝑑
2 + 𝐿𝑠

𝑑𝑖𝑠𝑑
𝑑𝑡

𝑖𝑠𝑑 − 𝜔𝐿𝑠𝑖𝑠𝑞𝑖𝑠𝑑 + 𝑅𝑠𝑖𝑠𝑞
2 + 𝐿𝑠

𝑑𝑖𝑠𝑞

𝑑𝑡
𝑖𝑠𝑞 + 𝜔(𝐿𝑠𝑖𝑠𝑑 + 𝛹𝑚)𝑖𝑠𝑞 

    = 𝑅𝑠𝑖𝑠𝑑
2 + 𝐿𝑠

𝑑𝑖𝑠𝑑

𝑑𝑡
𝑖𝑠𝑑 + 𝑅𝑠𝑖𝑠𝑞

2 + 𝐿𝑠
𝑑𝑖𝑠𝑞

𝑑𝑡
𝑖𝑠𝑞 + 𝜔𝛹𝑚𝑖𝑠𝑞 

    = 𝑅𝑠(𝑖𝑠𝑑
2 + 𝑖𝑠𝑞

2) + 𝐿𝑠 (
𝑑𝑖𝑠𝑑

𝑑𝑡
𝑖𝑠𝑑 +

𝑑𝑖𝑠𝑞

𝑑𝑡
𝑖𝑠𝑞) + 𝜔𝛹𝑚𝑖𝑠𝑞      (2.16) 
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In Eq. (2.16) we can see that the power entering the motor is made up of three parts: 

The power loses in the windings 𝑅𝑠(𝑖𝑠𝑑
2 + 𝑖𝑠𝑞

2); the power of magnetic energy 

variation 𝐿𝑠 (
𝑑𝑖𝑠𝑑

𝑑𝑡
𝑖𝑠𝑑 +

𝑑𝑖𝑠𝑞

𝑑𝑡
𝑖𝑠𝑞) and the mechanical power exiting the motor 

𝜔𝛹𝑚𝑖𝑠𝑞. The mechanical power exiting the motor is therefore equal to: 

𝑊𝑚 = 𝑀𝑚 ∙ 𝜔 = 𝜔𝛹𝑚𝑖𝑠𝑞     (2.17) 

 

Thus, the electro-magnetic torque is: 

𝑀𝑚 = 𝛹𝑚𝑖𝑠𝑞       (2.18) 

 

If windings with N pole pairs are used, the rotor angular speed 𝜔𝑚 is different from 

the current frequency 𝜔𝑒𝑙 by a factor 𝑁. Also the torque varies (increases) by a 

factor 𝑁:   

𝜔𝑚 =
𝜔𝑒𝑙

𝑁
=

𝜔

𝑁
       (2.19) 

 

𝑀𝑚 = 𝑁𝛹𝑚𝑖𝑠𝑞       (2.20) 

 

So the complete model is: 

{
 
 

 
 𝑣𝑠𝑑 = 𝑅𝑠𝑖𝑠𝑑 + 𝐿𝑠

𝑑𝑖𝑠𝑑
𝑑𝑡

− 𝜔𝐿𝑠𝑖𝑠𝑞

𝑣𝑠𝑞 = 𝑅𝑠𝑖𝑠𝑞 + 𝐿𝑠

𝑑𝑖𝑠𝑞

𝑑𝑡
+ 𝜔(𝐿𝑠𝑖𝑠𝑑 + 𝛹𝑚)

𝐽𝜔𝑚̇ = 𝐽
𝜔̇

𝑁
= 𝑁𝛹𝑚𝑖𝑠𝑞 − 𝑀𝐿

   (2.21) 

 

2.1.8 The working range of AC brushless motor 

 

The working range of a brushless motor can reach higher speeds and torques and is 

nearly rectangular.  
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Fig. 2.12 Working range of brushless motor 

 

As shown in the Fig. 2.12 the working range can be approximately subdivided into a 

continuous working zone (delimited by the motor rated torque 𝑀𝑀,𝑆1) and a 

dynamic zone (delimited by the maximum motor torque 𝑀𝑀,𝑑𝑦𝑛). Usually the motor 

rated torque decreases slowly with the motor speed 𝜔𝑚. In this paper, it is 

considered constant and equal to 𝑀𝑀,𝑆1.  

 

The nominal motor torque 𝑀𝑀,𝑟𝑎𝑡𝑒𝑑 is usually specified by the manufacturer in the 

catalogues. The 𝑀𝑀,𝑆1 is defined as the torque that can be supplied by the motor 

for an infinite time without overheating. The trend of maximum torque of the 
dynamic working range 𝑀𝑀,𝑑𝑦𝑛 is very complex. Because of the sparkles in the 

commutator it will go down when the speed is very high near the 𝜔𝑀,𝑚𝑎𝑥. The trend 

of 𝑀𝑀,𝑑𝑦𝑛 also depends on many other factors and it is difficult to express it with an 

equation. So in this paper we assume it is constant and equal to 𝑀𝑀,𝑑𝑦𝑛. 

 

Here we discuss the constraints of the brushless motor. 

 

As the motor torque is proportional to the current, the wasted power is mainly 

attributable to the Joule effect and it is supposed that the machine cycle has a period 

much shorter than the motor thermal constant. The thermal behavior of the motor 

can be analyzed with the root mean square torque 𝑀𝑚,𝑟𝑚𝑠.  

 

𝑀𝑀,𝑑𝑦𝑛 

𝑀 

𝑀𝑀,𝑟𝑎𝑡𝑒𝑑 
𝑀𝑀,𝑆1 

𝜔𝑀,𝑚𝑖𝑛 𝜔𝑀,𝑚𝑎𝑥  
𝜔𝑀 
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The root mean square torque generates the same energetic dissipation which is 

actually present in the cycle.  

𝑀𝑚,𝑟𝑚𝑠(𝜔) = √
1

𝑇
∫ 𝑀𝑚

2(𝑡)𝑑𝑡
𝑇

0

      (2.22) 

 

In the operation the maximum torque 𝑀𝑚,𝑚𝑎𝑥 is: 

𝑀𝑚,𝑚𝑎𝑥 = 𝑚𝑎𝑥 |𝑀𝑚(𝑡)|     Where 0 ≤ 𝑡 ≤ 𝑇     (2.23) 

 

The following set is the condition that must be satisfied by the motor: 

{

𝑀𝑚,𝑚𝑎𝑥 ≤ 𝑀𝑀,𝑑𝑦𝑛

𝑀𝑚,𝑟𝑚𝑠 ≤ 𝑀𝑀,𝑆1

𝜔𝑚,𝑚𝑎𝑥 ≤ 𝜔𝑀,𝑚𝑎𝑥

       (2.24) 

 

Because 𝑀𝑚,𝑟𝑚𝑠 and 𝑀𝑚,𝑚𝑎𝑥  are univocal functions of 𝐽𝑀. Therefore we can plot 

the corresponding 𝑀𝑚,𝑟𝑚𝑠 and 𝑀𝑚,𝑚𝑎𝑥  diagrams. 

 

2.2 Transmission  

The mechanical power is the product of a torque for a speed. Generally speaking, it is 

easier to produce mechanical power with small torques at high speeds; the 

transmission performs the task of changing the distribution of power, adjusting the 

optimal conditions for tis production to the ones for its optimum use. This work done 

by the transmission usually involves reducing speed while increasing the available 

torque. 

 

The transmission depends on the transmission ratio 𝜏 and on the transmission 

efficiency 𝜂 and the inertia 𝐽𝑇. if the transmission is an ideal one, the efficiency 𝜂 

would be 1 and the inertia  𝐽𝑇  equals to 0. 

 

A realistic model of the transmission has to consider the inevitable loss of power. The 

power dissipated affects the resulting performance of the machine and the choosing 

of correct motor. 

 

It is defined that the transmission ratio 𝜏 : 

𝜏 =
𝜔𝑜𝑢𝑡

𝜔𝑖𝑛
         (2.25) 

 

The relationship between the input acceleration and the output is shown below: 

𝛼𝑖𝑛 = 𝜔𝑖𝑛̇ =
𝜔𝑜𝑢𝑡̇

𝜏
=

𝛼𝑜𝑢𝑡

𝜏
      (2.26) 

 

From the definition of the efficiency 𝜂, we can easily obtain: 
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𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝑀𝑜𝑢𝑡

𝑀𝑖𝑛

𝜔𝑜𝑢𝑡

𝜔𝑖𝑛
=

𝑀𝑜𝑢𝑡

𝑀𝑖𝑛
𝜏 ≤ 1 

 

Where the 𝑀𝑜𝑢𝑡 and 𝑀𝑖𝑛 represent output and input torque of the transmission 

and the 𝜔𝑜𝑢𝑡and the 𝜔𝑖𝑛 are the corresponding angular speeds. 

 

In a more realistic model, i.e. at the situation: 𝜂 ≠ 1 as shown in Eq. (2.27) and Eq. 

(2.28), the power flow is sometimes from the motor to the load which is said to work 

with direct power flow, otherwise from the load to the motor which is said to work 

with inverse power flow. The transmission power losses are described by two 

different mechanical efficiency values 𝜂𝑖  and 𝜂𝑑. 

𝜂𝑑 =
𝑃𝑜𝑢𝑡,𝐿

𝑃𝑖𝑛,𝑚
    (Direct power flow)(2.27) 

𝜂𝑖 =
𝑃𝑜𝑢𝑡,𝑚

𝑃𝑖𝑛,𝐿
    (Inverse power flow)(2.28) 

 

In Eq. (2.27), the symbol 𝑃𝑖𝑛,𝑚 represents the power generated by motor flowing 

into the transmission and 𝑃𝑜𝑢𝑡,𝐿 represents the power flowing out from the 

transmission into the load. 

 

Similarly, in Eq. (2.28), the symbol 𝑃𝑖𝑛,𝐿 represents the power generated by the load 

flowing into the transmission and 𝑃𝑜𝑢𝑡,𝑚 represents the power flowing out from the 

transmission into the motor. 
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2.3 Conic sections 

 

Fig. 2.13 Conic sections 

 

The conic sections (shown in Fig. 2.13) are the no degenerate curves generated by 

the intersections of a plane with one or two nappes of a cone. For a plane 

perpendicular to the axis of the cone, a circle is produced. For a plane that is not 

perpendicular to the axis and that intersects only a single nappe, the curve produced 

is either an ellipse or a parabola.  

 

The curve produced by a plane intersecting both nappes is a hyperbola. 

The ellipse and hyperbola are known as central conics. 

 

In the Cartesian coordinate system, the graph of a quadratic equation in two 

variables is always a conic section – though it may be degenerate, and all conic 

sections arise in this way. The equation will be of the form: 

𝑎11𝑥
2 + 2𝑎12𝑥𝑦 + 𝑎22𝑦

2 + 2𝑎13𝑥 + 2𝑎23𝑦 + 𝑎33 = 0   (2.29) 

 

In Eq. (2.29) 𝑎11, 𝑎12, 𝑎22 are not all zero. 

 

The above equation can be written in matrix notation as 

 𝑥 𝑦 ∙ [
𝑎11 𝑎12

𝑎12 𝑎22
] ∙ [

𝑥
𝑦] + 2𝑎13𝑥 + 2𝑎23𝑦 + 𝑎33 = 0 

So we can introduce the discriminant 𝛿: 
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𝛿 = 𝑑𝑒𝑡 ([
𝑎11 𝑎12

𝑎12 𝑎22
]) = −𝑎22

2 + 𝑎11𝑎12    

If the conic is non-degenerate, then we have below conditions: 

1. If 𝛿 > 0, the equation represents an ellipse; 

 If 𝑎11 = 𝑎22 and 𝑎12 = 0, the equation represents a circle, which is a 

special case of an ellipse; 

2. If 𝛿 = 0, the equation represents a parabola; 

3. If 𝛿 < 0, the equation represents a hyperbola; 

 If we also have 𝑎11 + 𝑎22 = 0, the equation represents a rectangular 

hyperbola. 
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Chapter 3:  Method to solve direct and 

inverse efficiencies 

In the following section, we will take into consideration the use of the method which 

can solve both direct and inverse efficiencies and the transmission inertia. 

 

3.1 Mathematical model of a machine 

 

Fig. 3.1 A generic machine considered inertia in transmission 

 

A generic machine is shown in the Fig. 3.1. It is assumed that the moment of inertia 

of transmission has two parts: 𝐽1 and 𝐽2. On the left side a motor is connected to 

the gear in the transmission which has the moment of inertia 𝐽1, while on the right 

side the load is connected to the gear in the transmission whose inertia is 𝐽2  

 

In the transmission from motor point of view, we can get the equation of power 

balance: 

1

2
𝐽2
′𝜔𝐿

2 =
1

2
𝐽2𝜔𝑀

2                  (3.1) 

 

Then, bearing in mind Eq. (2.25), we can obtain ω𝑀 =
ω𝐿

𝜏
, so combining with Eq.   

(3.1), we obtain 

𝐽2
′ = 𝐽2𝜏

2 

 

So the total inertia of transmission is: 

𝐽𝑇 = 𝐽1 + 𝐽2
′ = 𝐽1 + 𝐽2𝜏

2             (3.2) 

 

The inertia of the transmission is known. The acceleration law α𝐿(t) is designed 

according to the task motion we need. 

 

𝐽2
 

𝐽1 𝑀𝐿, 𝜔𝐿,𝑚𝑎𝑥  

𝑀𝑚, 𝐽𝑀, 

𝜔𝑚,𝑚𝑎𝑥 

Motor 
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We know there are direct and inverse power flows. In general, the power flows and 

their relations with the efficiencies are very complex. In this paper we assume that 

the power flow is sometimes direct and sometimes inverse. 

 

 

Fig. 3.2 ML-time curve 

 

As shown in Fig. 3.2, the ML-time curve is divided into 2 curves (shown in Fig. 3.3 and 

Fig. 3.4): 𝑀𝐿𝑑 which means the torque produces a direct power flow; while the 

other one is 𝑀𝐿𝑖 represent the torque for inverse power flow.  

 

We can easily achieve the inequality from the Fig. 1.2: 

 

{

(𝑀𝐿+𝐽2 𝛼𝐿)𝜔𝐿 > 0  𝑑𝑖𝑟𝑒𝑐𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
(𝑀𝐿+𝐽2 𝛼𝐿)𝜔𝐿 = 0                                      
(𝑀𝐿+𝐽2 𝛼𝐿)𝜔𝐿 < 0  𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 

    (3.3) 

 

If (𝑀𝐿+𝐽2𝛼𝐿)𝜔𝐿 > 0, the load torque has the same rotating direction with the 

angular speed. Find the time domain of this zone; let the 𝑀𝐿𝑑 to represent the 

torque of direct efficiency. The system has the direct efficiency. 

 

Similarly, if (𝑀𝐿+𝐽2 𝛼𝐿)𝜔𝐿 < 0, the load torque has the opposite rotating direction 

with respect to the angular speed. So the system has the inverse efficiency. Let the 

𝑀𝐿𝑖 to represent the torque of inverse efficiency. 

 

However, the situation when (𝑀𝐿+𝐽2 𝛼𝐿)𝜔𝐿 = 0   is a little complex. It is assumed 

that the motor works periodically. The time 𝑇 is the cycle time. Here two 

possibilities come: 

 

If the angular speed is not zero, i.e. 𝜔𝐿 ≠ 0, it is obvious that (𝑀𝐿 + 𝐽2 𝛼𝐿) = 0. 

 

If the angular speed is zero, which indicates that 𝜔𝐿 = 0, the power flow state will 

be the same as the previous conditions. If the previous state has direct efficiency, 

then during this time period the system has direct efficiency. Otherwise it will have 

the inverse efficiency. 

 

𝑀𝐿 

𝑡 𝑇 

𝑀𝐿𝑑 

𝑀𝐿𝑖 
𝑀𝐿𝑑 𝑀𝐿𝑑 

𝑀𝐿𝑖 
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If at the initial time of the motion (𝑡 = 0) the situation is (𝑀𝐿+𝐽2𝛼𝐿)𝜔𝐿 = 0 and 

𝜔𝐿 = 0. The system will has the same power flow efficiency as the situation at the 

end of the period. For example, for 𝑡 = 𝑇, the system has direct efficiency, the 

system will have the direct efficiency at 𝑡 = 0 when (𝑀𝐿+𝐽2 𝛼𝐿)𝜔𝐿 = 0.  

 

After the analysis, the ML-time curve will be split into two curves: MLd-time curve and 

MLi-time curve, so we can obtain the direct and inverse components separately, and 

it is very convenient for further research.  

 

 

Fig. 3.3 MLd-time curve 

 

 
Fig. 3.4 MLi-time curve 

 

In this paper we assume the transmission is already known: 𝐽1, 𝐽2, 𝜏, 𝜂𝑑 and 𝜂𝑖. 

Due to the transmission efficiency, the inertia of transmission will have some changes. 

The following shows the equilibriums from the motor point of view. 

 

When the system has direct transmission efficiency, from the Fig. 1.3 and Eq. (2.27) 

we can have the equation of the power balance: 

𝜂𝑑𝑃𝑖𝑛,𝑚 = 𝑃𝑜𝑢𝑡,𝐿       (3.4) 

 

From the Fig. 1.3, we can easily find out the 𝑃𝑖𝑛,𝑚 in Eq. (3.4) represents the input 

power flow coming from the motor on the left side of the transmission which 

includes three parts: the positive power produced by the motor, the negative power 

loss due to the inertia 𝐽𝑀 of the motor and the negative power loss due to the 

inertia 𝐽1 of the transmission. 

 

t 

T 

MLd 

t 

T 

MLi 
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𝑃𝑖𝑛,𝑚 = 𝑀𝑚𝜔𝑚 − 𝐽𝑀𝛼𝑚𝜔𝑚 − 𝐽1𝛼𝑚𝜔𝑚     (3.5) 

 

And 𝑃𝑜𝑢𝑡,𝐿 in Eq. (3.4) represents the output power flow on the right side of the 

transmission which includes two parts: the positive power loss due to the inertia 𝐽2 

of the transmission and the final output power to the load. 

𝑃𝑜𝑢𝑡,𝐿 = 𝑀𝐿𝜔𝐿 + 𝐽2𝛼𝐿𝜔𝐿       (3.6) 

 

Use these two equations to substitute in Eq. (3.4), we can obtain: 

𝜂𝑑 𝑀𝑚𝜔𝑚 − (𝐽𝑀 + 𝐽1)𝛼𝑚𝜔𝑚 = (𝑀𝐿 + 𝐽2𝛼𝐿)𝜔𝐿    (3.7) 

 

Remembering in mind Eq. (2.26), we achieve the relation between the acceleration 

of motor and the load: 

𝛼𝑚 =
𝛼𝐿

𝜏
        (3.8) 

 

We replace Eq. (3.8) in Eq. (3.7): 

𝜂𝑑 [𝑀𝑚 − (𝐽𝑀 + 𝐽1)
𝛼𝐿

𝜏
]𝜔𝑚 = (𝑀𝐿 + 𝐽2𝛼𝐿)𝜔𝐿    (3.9) 

 

Dividing all the terms in Eq. (3.9) by 𝜏, we obtain 
𝑀𝑚

𝜏
=

𝐽𝑀
𝜏2

𝛼𝐿 +
𝐽1
𝜏2

𝛼𝐿 +
𝐽2
𝜂𝑑

𝛼𝐿 +
𝑀𝐿

𝜂𝑑
     (3.10) 

 

Then, combining the inertia parts of transmission, we obtain  

 
𝑀𝑚

𝜏
=

𝐽𝑀
𝜏2

𝛼𝐿 + (
𝐽1
𝜏2

+
𝐽2
𝜂𝑑

)𝛼𝐿 +
𝑀𝐿

𝜂𝑑
     (3.11) 

 

We indicate by 𝐽𝑇,𝑑: 

𝐽𝑇,𝑑 =
𝐽1
𝜏2

+
𝐽2
𝜂𝑑

        (3.12) 

 

Similarly, when the system has direct transmission efficiency, from the Fig. 1.4 and Eq. 

(2.28) we can have the equation of the power balance: 

𝜂𝑖𝑃𝑖𝑛,𝐿 = 𝑃𝑜𝑢𝑡,𝑚       (3.13) 

 

From the Fig. 1.4, we can easily find out the 𝑃𝑖𝑛,𝐿 in Eq. (3.13) represents the input 

power flow coming from the load on the right side of the transmission which 

includes two parts: the power generated by the load and inertia 𝐽2 of the 

transmission 

𝑃𝑖𝑛,𝐿 = 𝑀𝐿𝜔𝐿 + 𝐽2𝛼𝐿𝜔𝐿       (3.14) 

 

In Eq. (3.13) 𝑃𝑜𝑢𝑡,𝑚 represents the output power flow going to the motor on the left 

side of the transmission, which includes three parts: the power due to the inertia 𝐽1 

of the transmission and to the inertia 𝐽𝑀 of the motor and the final output power to 
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the motor. 

𝑃𝑜𝑢𝑡,𝑚 = 𝑀𝑚𝜔𝑚 − 𝐽1𝛼𝑚𝜔𝑚 − 𝐽𝑀𝛼𝑚𝜔𝑚     (3.15) 

 

Substitute them in Eq. (3.13), we can achieve: 

𝜂𝑖(𝑀𝐿 +𝐽2𝛼𝐿)𝜔𝐿 = [𝑀𝑚 − (𝐽𝑀 + 𝐽1)
𝛼𝐿

𝜏
]𝜔𝑚    (3.16) 

By dividing by 𝜏 and leaving 
𝑀𝑚

𝜏
 to the first member we obtain  

𝑀𝑚

𝜏
=

𝐽𝑀
𝜏2

𝛼𝐿 +
𝐽1
𝜏2

𝛼𝐿 + 𝜂𝑖𝐽2𝛼𝐿 + 𝑀𝐿𝜂𝑖 

𝑀𝑚

𝜏
=

𝐽𝑀
𝜏2

𝛼𝐿 + (
𝐽1
𝜏2

+ 𝜂𝑖𝐽2)𝛼𝐿 + 𝑀𝐿𝜂𝑖            (3.17) 

 

We indicate by 𝐽𝑇,𝑖: 

𝐽𝑇,𝑖 =
𝐽1
𝜏2

+ 𝜂𝑖𝐽2                     (3.18) 

 

It is easy to get: 

𝑀𝑚 =
𝐽𝑚
𝜏

𝛼𝐿 + 𝜏 (𝐽𝑇,𝑑𝛼𝐿 +
𝑀𝐿

𝜂𝑑
)               (3.19) 

𝑀𝑚 =
𝐽𝑚
𝜏

𝛼𝐿 + 𝜏(𝐽𝑇,𝑖𝛼𝐿 + 𝜂𝑖𝑀𝐿)              (3.20) 

 

In order to simplify them, we introduce 𝑀𝐿
∗  

𝑀𝐿
∗ = { 

𝐽𝑇,𝑑𝛼𝐿 +
𝑀𝐿

𝜂𝑑
        𝑖𝑓      (𝑀𝐿 + 𝐽2𝛼𝐿)  > 0 

𝐽𝑇,𝑖𝛼𝐿 + 𝜂𝑖𝑀𝐿     𝑖𝑓      (𝑀𝐿 + 𝐽2𝛼𝐿)  < 0 
          (3.21) 

So we obtain                   

𝑀𝑚 =
𝐽𝑚
𝜏

𝛼𝐿 + 𝜏𝑀𝐿
∗       (3.22) 
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Chapter 4:  Apply the method to 

continuous duty operating 

range 

In this chapter, we will introduce a method to deal with the continuous duty working 

range of the motor. 

4.1 Introduction to the MM,s1 and τth 

𝑀𝑀,𝑆1 depends on the thermal characteristics of the motor. The motor warms up 

because of: 

 Joule effect (copper losses); 

 Parasitic currents and Hysteresis (iron losses); 

 Mechanical losses (bearings, etc.). 

 

The motor can suffer a maximum internal temperature Ɵ𝑀,𝑚𝑎𝑥, above which the 

sheathing “burns”. Let us consider 𝑀𝑚 and 𝜔𝑚constant, which indicates that the 

motor is in mechanical steady state. And then the wasted power 𝑊𝑤 in the motor is 

constant. 

 

However, it is possible that the motor is not at thermal steady state. After a thermal 

transient, the motor tends to reach a steady state temperature Ɵ𝑀,𝑚𝑎𝑥. If  

Ɵ𝑚,𝑚𝑎𝑥 ≤ Ɵ𝑀,𝑚𝑎𝑥 , the motor reaches Ɵ𝑚,𝑚𝑎𝑥. On the contrary, if Ɵ𝑚,𝑚𝑎𝑥 >

Ɵ𝑀,𝑚𝑎𝑥 , the motor burns before to reach Ɵ𝑚,𝑚𝑎𝑥 (shown in Fig. 4.1).  
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Fig. 4.1 Temperature profile versus time 

 

The nominal torque 𝑀𝑀,𝑆1 corresponds to the limit condition: Ɵ𝑚,𝑚𝑎𝑥 = Ɵ𝑀,𝑚𝑎𝑥. 

Therefore, the nominal torque MM,S1 is the maximum torque that the motor can 

exert without burning in mechanical and thermal steady state. So the constraint 

inequality is |𝑀𝑚𝑜| ≤ 𝑀𝑀,𝑆1. 

 

Then we introduce 𝜏𝑡ℎ, which is the thermal time constant of the motor.  

 

If the mechanical behavior of the motor is periodic (with period T), we can make a 

good approximation if the following three conditions are satisfied: 

 

1) 𝑇 ≪ 𝜏𝑡ℎ: in this condition the motor warming up depends on the average wasted 

power 𝑊̅𝑊 in the period, and not on the instantaneous power (which varies 

significantly in the period); 

 

2) The motor torque is proportional to the current: 

𝑀𝑚 = 𝐾𝑇𝑖        (4.1) 

3) The motor wasted power 𝑊𝑤 is only due to the Joule Effect:  

𝑊𝑤 = 𝑅𝑖2        (4.2) 

Then bearing in mind Eq. (2.22), and the average wasted power is  

𝑊̅𝑊 =
𝐸𝑊

𝑇
=

1

𝑇
∫ 𝑊𝑊(𝑡) 𝑑𝑡 =

1

𝑇
∫ 𝑅𝑖2 (𝑡)

𝑇

0

𝑑𝑡 = 𝑅
1

𝑇
∫

𝑀𝑚
2(𝑡)

𝐾𝑇
2 𝑑𝑡

𝑇

0

𝑇

0

=
𝑅

𝐾𝑇
2

1

𝑇
∫ 𝑀𝑚

2(𝑡)  𝑑𝑡 =
𝑅

𝐾𝑇
2 𝑀𝑚,𝑟𝑚𝑠

2
𝑇

0

            (4.3) 
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4.2 The JM versus Mm,rms curve 

By applying Eq.(3.22), now the root mean square of the torque due to both direct 

and inverse efficiencies can be expressed as: 

 

𝑀𝑚,𝑟𝑚𝑠
2 =

1

𝑇
∫ 𝑀𝑚

2 𝑑𝑡 =
𝑇

0

1

𝑇
∫ (

𝐽𝑚
2

𝜏2
+ 𝜏2𝑀𝐿

∗2
+ 2𝐽𝑚𝛼𝐿𝑀𝐿

∗)
𝑇

0

𝑑𝑡 

= {
1

𝑇
∫

𝐽𝑚
2

𝜏2
𝛼𝐿

2 𝑑𝑡 +
1

𝑇
∫ 𝜏2𝑀𝐿

∗2 𝑑𝑡 +
1

𝑇
∫ 2𝐽𝑚𝛼𝐿𝑀𝐿

∗ 𝑑𝑡
𝑇

0

𝑇

0

𝑇

0

} 

=
𝐽𝑚

2

𝜏2
𝛼𝐿,𝑟𝑚𝑠

2 + 𝜏2𝑀𝐿,𝑟𝑚𝑠
∗ 2 + 2𝐽𝑚𝐺𝐿                             (4.4) 

 

Where 

𝐺𝐿 =
1

𝑇
∫ 𝛼𝐿𝑀𝐿

∗ 𝑑𝑡
𝑇

0

        

And 𝛼𝐿,𝑟𝑚𝑠 and 𝑀𝐿,𝑟𝑚𝑠
∗  are the root mean square of the angular acceleration and 

the generalized load. 

𝛼𝐿,𝑟𝑚𝑠 = √
1

𝑇
∫ 𝛼𝐿

2 𝑑𝑡
𝑇

0

 

𝑀𝐿,𝑟𝑚𝑠
∗ = √

1

𝑇
∫ 𝑀𝐿

∗2 𝑑𝑡
𝑇

0

 

 

In the previous studies, the transmission is an unknown factor while the motors are 

known. The old method is from motor point of view to choose the transmission.  

 

However in this case all the parameters of transmission are known, which means the 

transmission ratio 𝜏 and the transmission inertia 𝐽1, 𝐽2 are known. Now we choose 

motor from transmission point of view. 

 

For this situation, it is reasonable to draw the JM -Mm,rms curve and to check if the 

motor satisfies the curve conditions. Each motor has the parameters of Mm,rms and JM. 

It is easy to plot the motor on the curve using the point (𝐽𝑀 , 𝑀𝑚,𝑟𝑎𝑡𝑒𝑑). Each point 

represents a motor. If the point is above the JM -Mm,rms curve, then the motor is 

feasible; if not, then the motor is unaccepted. 

 

Form Eq. (4.4) we have: 

𝑀𝑚,𝑟𝑚𝑠 = √𝐽𝑀
2 (

𝛼𝐿,𝑟𝑚𝑠
2

𝜏2
) + 2𝐽𝑀𝐺𝐿 + 𝜏2𝑀𝐿,𝑟𝑚𝑠

∗ 2          (4.5) 
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After having simplified: 

𝑀𝑚,𝑟𝑚𝑠 = √𝐴𝐽𝑀
2 + 2𝐵𝐽𝑀 + 𝐶      (4.6) 

Where 

𝐴 =
𝛼𝐿,𝑟𝑚𝑠

2

𝜏2
=

1

𝜏2

1

𝑇
∫ 𝛼𝐿

2 𝑑𝑡
𝑇

0

      (4.7) 

 

𝐵 = 𝐺𝐿 =
1

𝑇
∫ 𝛼𝐿𝑀𝐿

∗ 𝑑𝑡
𝑇

0

       (4.8) 

  

𝐶 = 𝜏2𝑀𝐿,𝑟𝑚𝑠
∗ 2 = 𝜏2

1

𝑇
∫ 𝑀𝐿

∗2 𝑑𝑡
𝑇

0

     (4.9) 

Now let us discuss Eq. (4.6). From the formulas (4.7) and (4.9), we can know that: 

𝐴 ≥ 0  𝑎𝑛𝑑  𝐶 ≥ 0 

 

And if 𝐴 = 0 then 𝐵 = 0, because  

𝐴 =
𝛼𝐿,𝑟𝑚𝑠

2

𝜏2
= 0 

 

So        𝛼𝐿,𝑟𝑚𝑠 = √
1

𝑇
∫ 𝛼𝐿

2 𝑑𝑡
𝑇

0
= 0 

Then 𝛼𝐿(𝑡) = 0  ∀𝑡. 

 

Then bearing in mind Eq. (4.8), we can prove that 𝐵 = 0. 

 

In order to have a better analysis of Eq. (4.6), a variable D is induced: 

D = 𝐵2 − 𝐴𝐶 

 

It is possible to show that: 

D = 𝐵2 − 𝐴𝐶 ≤ 0 

 

To sum up, the system must satisfy these conditions: 

{
𝐴 ≥ 0
𝐶 ≥ 0
𝐷 ≤ 0

  

If 𝐴 = 0, 𝐵 = 0. 

 

In fact, Eq. (4.6) is a conic section formula. We can rewrite it into the form: 

 

𝑎11𝐽𝑀
2 + 2𝑎12𝐽𝑀𝑀𝑚,𝑟𝑚𝑠 + 𝑎22𝑀𝑚,𝑟𝑚𝑠

2 + 2𝑎13𝐽𝑀 + 2𝑎23𝑀𝑚,𝑟𝑚𝑠 + 𝑎33 = 0 
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The matrix of the conic section is  𝑀 = [

𝑎11 𝑎12 𝑎13

𝑎12 𝑎22 𝑎23

𝑎13 𝑎23 𝑎33

] 

 

So Eq. (4.6) becomes: 

𝐴𝐽𝑀
2 − 𝑀𝑚,𝑟𝑚𝑠

2 + 2𝐵𝐽𝑀 + 𝐶 = 0           (4.10) 

So  

𝑀 = [
𝐴 0 𝐵
0 −1 0
𝐵 0 𝐶

] 

 

And the discriminant of the conic section is  

𝛿 = 𝑑𝑒𝑡 ([
𝐴 0
0 −1

]) = −𝐴 

 

From the formula it is known that: 

If 𝐴 > 0 then the curve will be a hyperbola. 

If 𝐴 = 0 then it will become a parabola. 

If 𝐶 = 0 then the curve will pass though the origin point. 

If 𝐷 = 0 which means = ±√𝐴𝐶 , the curve will become two straight lines. 

𝑀𝑚,𝑟𝑚𝑠 = √𝐴𝐽𝑚
2 ± 2√𝐴𝐶𝐽𝑚 + 𝐶 

                                 = √(√𝐴𝐽𝑚 ± √𝐶)
2
 

                                 = √𝐴𝐽𝑚 ± √𝐶       (4.11) 

The detail cases are shown below: 
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1. If 𝐴 > 0, 𝐶 > 0, 𝐵 > 0 and 𝐷 < 0 then the JM -Mm,rms curve is as below: 

 
Fig. 4.2 JM -Mm,rms curve 

 

As the figure shown above, Eq. (4.10) is a hyperbola curve. The orange part of the 

curve shows the real JM -Mm,rms curve because both JM and Mm,rms must be greater 

than zero. And the directrix of the curve is always at the line 𝐽𝑀 = −
𝐵

𝐴
, which is on 

the left of the ordinate, so in this case, the minimum 𝑀𝑚,𝑟𝑚𝑠  is useless. And the 

minimum 𝑀𝑚,𝑟𝑚𝑠  of the orange curve is bigger, and it is √𝐶, at the abscissa 𝐽𝑀 = 0. 

And the orange part is ascending. 

  

−
𝐵

𝐴
 

 𝐽𝑀 

 𝑀𝑚,𝑟𝑚𝑠 
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2. If 𝐴 > 0, 𝐶 > 0, 𝐵 = 0 and 𝐷 < 0 then the JM -Mm,rms curve is like below: 

 

Fig. 4.3 JM -Mm,rms curve 

 

As the figure shows above, Eq. (4.10) is also a hyperbola curve. The directrix of the 

curve is at the abscissa 𝐽𝑀 = 0 because 

−
𝐵

𝐴
= 0 

 

The minimum 𝑀𝑚,𝑟𝑚𝑠  is at where 𝐽𝑀 = −
𝐵

𝐴
= 0, so in this case, the orange part 

that we need contains the real minimum 𝑀𝑚,𝑟𝑚𝑠. And the orange part is ascending. 

 

 

  

−
𝐵

𝐴
  𝐽𝑀 

 𝑀𝑚,𝑟𝑚𝑠 
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3. If 𝐴 > 0, 𝐶 > 0, 𝐵 < 0 and 𝐷 < 0 then the JM -Mm,rms curve is like below: 

 

Fig. 4.4 JM -Mm,rms curve 

 

As Fig. 4.4 shows above, Eq. (4.10) is a hyperbola curve. The directrix of the curve lies 

on right side of 𝐽𝑀 = 0 because 𝐽𝑀 = −
𝐵

𝐴
> 0, so the directrix is on the right of the 

ordinate axis, and minimum 𝑀𝑚,𝑟𝑚𝑠is at the abscissa 𝐽𝑀 = −
𝐵

𝐴
, and is useful, 

because it’s also the minimum point of the orange part that we need. And we can 

also see that the orange curve descends before 𝐽𝑀 = −
𝐵

𝐴
, and then ascends after 

𝐽𝑀 = −
𝐵

𝐴
. 

 

4. If 𝐴 > 0, 𝐷 = 0, 𝐵 > 0 . 

Because we have D = 𝐵2 − 𝐴𝐶 = 0, Eq. (4.10) becomes two straight lines. 

 

𝐵2 = 𝐴𝐶 

And then: 

𝐶 =
𝐵2

𝐴
> 0 

 

Then, the JM -Mm,rms curve is as below: 

−
𝐵

𝐴
 

 𝐽𝑀 

𝑀𝑚,𝑟𝑚𝑠  
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Fig. 4.5 JM -Mm,rms curve 

 

The directrix of the curve lies on left side of the ordinate axis, because 𝐽𝑀 = −
𝐵

𝐴
< 0. 

And the orange JM -Mm,rms curve becomes a straight line, and its minimum point is 

not at the abscissa  𝐽𝑀 = −
𝐵

𝐴
, but at the abscissa 𝐽𝑀 = 0. So the orange part is 

ascending. 

 

5. If 𝐴 > 0, 𝐷 = 0, 𝐵 = 0  

Because we have D = 𝐵2 − 𝐴𝐶 = 0, Eq. (4.10) becomes two straight lines. 

 

From 𝐵2 = 𝐴𝐶 = 0 then  

𝐶 = 0 

 

Then, the JM -Mm,rms curve is shown in Fig. 4.6: 

−
𝐵

𝐴
 

 𝐽𝑀 

𝑀𝑚,𝑟𝑚𝑠  
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Fig. 4.6 JM -Mm,rms curve 

 

As the figure shows, Eq. (4.10) becomes two straight lines which pass through the 

origin point (0, 0), which is also the minimum point. The directrix of the curve is at 

𝐽𝑀 = 0 because B = 0. The orange real JM -Mm,rms curve becomes a line which start 

from the origin point. And the orange part is ascending. 

 

 

6. If 𝐴 > 0, 𝐷 = 0, 𝐵 < 0  

As before because D = 𝐵2 − 𝐴𝐶 = 0, Eq. (4.10) becomes two straight lines 

𝐵2 = 𝐴𝐶 > 0 

 

And then: 

𝐶 =
𝐵2

𝐴
> 0 

 

The JM -Mm,rms curve is as below in Fig. 4.7: 

−
𝐵

𝐴
 

𝑀𝑚,𝑟𝑚𝑠  

 𝐽𝑀 
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Fig. 4.7 JM -Mm,rms curve 

 

As the figure shows, Eq. (4.10) also consists of two straight lines due to  

D = 𝐵2 − 𝐴𝐶 = 0. The directrix of the curve lies on the right side of ordinate, 

because 𝐽𝑀 = −
𝐵

𝐴
> 0. The orange real JM -Mm,rms curve becomes a polyline, which 

descends before 𝐽𝑀 = −
𝐵

𝐴
, and then ascends after 𝐽𝑀 = −

𝐵

𝐴
. 

 

 

 

  

−
𝐵

𝐴
 

 𝐽𝑀 

𝑀𝑚,𝑟𝑚𝑠  
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7. If 𝐴 = 0, 𝐷 = 0, 𝐵 = 0 and 𝐶 > 0 then the JM -Mm,rms curve is as below in 

Fig. 4.8: 

 

Fig. 4.8 JM -Mm,rms curve 

 

As the figure shows, Eq. (4.10) becomes two parallel straight lines. In fact the formula 

becomes: 

𝑀𝑚,𝑟𝑚𝑠
2 = 𝐶 

When 𝐶 > 0  

𝑀𝑚,𝑟𝑚𝑠 = ±√𝐶 

So the curves are two parallel lines. But we only care about the line which is in the 

first quadrant, which is the orange part shown in Fig. 4.7. 

 

  

𝑀𝑚,𝑟𝑚𝑠  

 𝐽𝑀 
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We use these JM -Mm,rms curves to choose the motor.   

 

 

Fig. 4.9 JM -Mm,rms curve 

 

As shown in Fig. 4.9, a point 𝑅 ≡ (𝐽𝑀, 𝑀𝑚,𝑟𝑎𝑡𝑒𝑑) represents a motor, where 

𝑀𝑚,𝑟𝑎𝑡𝑒𝑑 is the rated torque of a motor. If the point is above the curve 𝑠 shown in 

the figure, the motor satisfies the condition: 

𝑀𝑚,𝑟𝑚𝑠 ≤ 𝑀𝑚,𝑟𝑎𝑡𝑒𝑑 

 

 

𝑀𝑚,𝑟𝑎𝑡𝑒𝑑 

𝐽𝑀 

𝑀𝑚,𝑟𝑚𝑠 

𝐽𝑀 

0 

s 
𝑅 
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Chapter 5:  Apply the method to 

dynamic operating range 

5.1 Dependence of Mm on JM in a given instant [1] 

𝑀𝑀,𝑑𝑦𝑛 depends on the electronic converter driving the motor. The converter 

transistors can suffer a maximum peak current without burning for a small time 

range. Because of the proportionality between 𝑀𝑚 and 𝑖, the torque 𝑀𝑀,𝑑𝑦𝑛  

corresponds to this current.  

 

From previous analysis, we know that in order to let the motor become feasible it 

must satisfy three conditions, i.e. it does not only satisfy 𝑀𝑚,𝑟𝑚𝑠 ≤ 𝑀𝑀,𝑆1 and 

𝜔𝑚,𝑚𝑎𝑥 ≤ 𝜔𝑀,𝑚𝑎𝑥, but also 

𝑀𝑚,𝑚𝑎𝑥 ≤ 𝑀𝑀,𝑑𝑦𝑛 

 

So it is necessary to check if the maximum torque of the motor during the cycle is 

smaller than the maximum torque the motor can provide. 

 

In order to obtain the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve we need to adopt a different approach, 

which, apart from achieving the same results, allows us to focus attention on the 

most exacting condition for the system. We know according to the machine design 

and the definition of the reference task, during the system working there are lots of 

pairs of angular accelerations and the generalized torques of the load like (α𝐿 , 𝑀𝐿
∗). 

Therefore we wish to identify them in the reference task, which are directly 

responsible for the limitations in the motor maximum torque, i.e. 𝑀𝑚,𝑚𝑎𝑥. 

 

For a given instant 𝑡, we consider about the pair (α𝐿 ,𝑀𝐿
∗). In the same instant 𝑡, we 

take into account Eq. (3.22) written in the form where 𝑀𝑚 is a function of 𝐽𝑀, and 

expressed in Eq.(5.4) 

𝑀𝑚 =
𝐽𝑀
𝜏

α𝐿 + 𝑀𝐿
∗𝜏 =

α𝐿

𝜏
𝐽𝑀 + 𝑀𝐿

∗𝜏    (5.1) 

 

In fact the pair (α𝐿 , 𝑀𝐿
∗)  is time consumed, which means α𝐿(t) and 𝑀𝐿

∗(𝑡) are 

functions of time. Considering the plane (α𝐿 , 𝑀𝐿
∗), it is advisable to use a diagram 

that presents α𝐿 in abscissa and 𝑀𝐿
∗ in ordinate. Once α𝐿(t) and 𝑀𝐿

∗(𝑡) are 

known, because the transmission ratio 𝜏 is given, 𝑀𝑚 is a linear function of 𝐽𝑀. In 

fact, the inertia of the motor is always positive. So 𝐽𝑀 satisfies the condition: 

𝐽𝑀 > 0 
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During a time period, it is possible to use the discrete points to show the angular 

accelerations and the generalized torques of the load. As Fig. 5.1 shown below, the 

discrete points represent the pairs of (α𝐿 , 𝑀𝐿
∗). 

 

Fig. 5.1 The discrete points of αL –ML
* 

 

Since the transmission ratio 𝜏 and the pair (α𝐿 , 𝑀𝐿
∗) are known, Eq. (5.1) will 

become several straight lines that use 𝐽𝑀 as the abscissa and 𝑀𝑚 as ordinate. Each 

pair of angular acceleration and generalized torque forms a linear function. The slope 

of the line is 
α𝐿

𝜏
 and the point of intersection between the graph of the function and 

the 𝑀𝑚-axis is 𝑀𝐿
∗𝜏 .  

 

We now consider the J𝑀 versus 𝑀𝑚 curves. There are four cases. 

 

1. α𝐿 ≥ 0 and 𝑀𝐿
∗ ≥ 0 

 

In this case, in the plane 𝛼𝐿-𝑀𝐿
∗ the corresponding point 𝑆 lies in the first quadrant. 

From Eq. (5.1) we can know that both the slope 
𝛼𝐿

𝜏
 and the 𝑀𝑚-intercept are 

positive. In the 𝐽𝑀-𝑀𝑚 plane we obtain a corresponding curve  

𝑠 lying in the first quadrant because 𝐽𝑀 is positive (shown in Fig. 5.2). 

 

In fact, because of 𝐽𝑀 > 0, the curve 𝑠 has a minimum point (0,𝑀𝐿
∗𝜏). 

 

𝑀𝐿
∗

 

𝛼𝐿  
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Fig. 5.2 Curve s in plane JM-Mm when αL>0 and ML
*>0  

 

If α𝐿 = 0 then the curve 𝑠 will become a horizontal line which parallels to the 

abscissa JM, passing the point (0,𝑀𝐿
∗𝜏). 

 

If 𝑀𝐿
∗ = 0 then the curve 𝑠 remains a linear function with the slope 

𝛼𝐿

𝜏
, passing 

through the origin point (0, 0). 

 

If α𝐿 = 0 and 𝑀𝐿
∗ = 0 then the curve 𝑠 will overlap the abscissa 𝐽𝑀. 

 

2. α𝐿 ≤ 0 and 𝑀𝐿
∗ ≤ 0 

 

In this case, in the plane 𝛼𝐿-𝑀𝐿
∗ the corresponding point 𝑆 lies in the third 

quadrant. From Eq. (5.1) we can know that both the slope 
α𝐿

𝜏
 and the 𝑀𝑚-intercept 

are negative. In the plane 𝐽𝑀-𝑀𝑚 we obtain a corresponding curve 𝑠 lying in the 

fourth quadrant due to JM is always positive (shown in Fig. 5.3). 

𝐽𝑀  

𝑀𝑚  

𝑀𝐿
∗𝜏 

𝛼𝐿
𝜏

 

𝑠 

0 
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Fig. 5.3 Curve s in plane JM-Mm when αL<0 and ML
*<0 

 

Obviously this curve is symmetric of the curve corresponding to the coordinates  

(|𝛼𝐿|, |𝑀𝐿
∗|) which respect to the abscissa axis. 

 

3. α𝐿 < 0 and 𝑀𝐿
∗ > 0 

 

In this case, in the plane 𝛼𝐿-𝑀𝐿
∗ the corresponding point 𝑆 lies in the second 

quadrant. From Eq. (5.1) we can know that the slope 
𝛼𝐿

𝜏
 is negative, and the 

𝑀𝑚-intercept is positive. In the plane 𝐽𝑀-𝑀𝑚 we obtain a corresponding curve 𝑠 

lying in the first quadrant and in the fourth quadrant (shown in Fig. 5.4). 

  

𝑀𝑚  

𝐽𝑀  

𝑀𝐿
∗𝜏 

0 

𝛼𝐿
𝜏

 

𝑠 
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Fig. 5.4 Curve s in plane JM-Mm when αL<0 and ML
*>0  

 

The curve 𝑠 is monotonically descending and it is easy to solve the intersection 

point between the curve and the abscissa 𝐽𝑀. According to Eq. (5.1): 

𝑀𝑚 =
α𝐿

𝜏
𝐽𝑀 + 𝑀𝐿

∗𝜏 = 0 

So we can get: 

𝐽𝑀 = −
𝑀𝐿

∗𝜏2

α𝐿
       (5.2) 

The formula indicates the curve 𝑠 passing through the point (−
𝑀𝐿

∗𝜏2

α𝐿
, 0). In this 

case, the inertial torque of the motor is used for balancing the load, while the motor 

does not exert any torque Mm.  

 

Furthermore, both α𝐿 and 𝑀𝐿
∗ vary over time, so that the point 𝑆 changes in the 

second quadrant of the plane 𝛼𝐿-𝑀𝐿
∗. The corresponding curve 𝑠 and its 

intersection with the abscissa axis in the plane 𝐽𝑀-𝑀𝑚 also vary. 

 

4. α𝐿 > 0 and 𝑀𝐿
∗ < 0 

 

In this case, in the plane 𝛼𝐿-𝑀𝐿
∗ the corresponding point 𝑆 lies in the fourth 

quadrant. From Eq. (5.1) we can know that the slope 
α𝐿

𝜏
 is positive, and the 

𝑀𝑚-intercept is negative. In the plane 𝐽𝑀-𝑀𝑚 we obtain a corresponding curve 𝑠 

lying in the first quadrant and in the fourth quadrant (shown in Fig. 5.5). 

 

Obviously, this curve is symmetric of the curve corresponding to the coordinates 

(−|α𝐿|, |𝑀𝐿
∗|) with respect to the abscissa axis. 

𝑀𝑚  

𝐽𝑀  

𝑀𝐿
∗𝜏 

0 

𝑀𝐿
∗𝜏2

α𝐿
 

𝑠 
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Fig. 5.5 Curve s in plane JM-Mm when αL>0 and ML
*<0  

 

Obviously, both α𝐿 and 𝑀𝐿
∗ vary over time, so that the point S changes in the 

second quadrant of the plane 𝛼𝐿-𝑀𝐿
∗. The corresponding curve 𝑠 and its 

intersection with the abscissa axis in the plane 𝐽𝑀-𝑀𝑚 also vary. 

 

5. |𝑀𝑚| versus 𝐽𝑀 

In Fig. 5.6 there are some curves representing the absolute value |𝑀𝑚| versus 𝐽𝑀 

with different values of α𝐿 and 𝑀𝐿
∗. From Eq. (5.1) we obtain 

|𝑀𝑚| = |
𝛼𝐿

𝜏
𝐽𝑀 + 𝑀𝐿

∗𝜏|      (5.3) 

 

 

 

 

Fig. 5.6 Curve s in plane JM-Mm when αL>0 and ML
*<0  

𝑀𝑚  

𝐽𝑀  

𝑀𝐿
∗𝜏 

0 

𝑀𝐿
∗𝜏2

α𝐿
 

𝑠 

𝑀𝑚  

𝐽𝑀  

0 
𝑀𝐿

∗𝜏2

α𝐿
 

𝛼𝐿𝑀𝐿
∗ < 0 

𝛼𝐿𝑀𝐿
∗ > 0 
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If 𝛼𝐿 > 0 and 𝑀𝐿
∗ > 0, the curve in Fig. 5.6 remains unaffected with respect to that 

in Fig. 5.2. 

 

If 𝛼𝐿 < 0 and 𝑀𝐿
∗ < 0, the curve in Fig. 5.6 is symmetric of that in Fig. 5.3 with 

respect to the abscissa axis. 

 

If α𝐿 < 0 and 𝑀𝐿
∗ > 0, as the Fig. 5.6 shows, the curve does not lie in the first and 

in the fourth quadrant, but rather only in the first one. |𝑀𝑚| has a minimum value, 

which is an edge point, on the abscissa 𝐽𝑀 = −
𝑀𝐿

∗𝜏2

α𝐿
 with an ordinate equal to 0. On 

the left of the minimum point the curve descends monotonically. This branch is equal 

to the corresponding branch in Fig. 5.4, while on the right of the minimum point the 

curve ascends monotonically when 𝐽𝑀 increases. This branch is symmetric of the 

corresponding branch in Fig. 5.4 with respect to the abscissa axis. 

 

If α𝐿 > 0 and 𝑀𝐿
∗ < 0, as the Fig. 5.6 shows, the curve no longer lies in the first 

and in the fourth quadrant, but rather only in the first one. |𝑀𝑚| has a minimum 

value, which is an edge point, on the abscissa 𝐽𝑀 = −
𝑀𝐿

∗𝜏2

α𝐿
 with an ordinate equal to 

0. On the left of the minimum point the curve descends monotonically when 𝐽𝑀 

increases. This branch is symmetric of the corresponding branch in Fig. 5.5 with 

respect to the abscissa axis, while on the right of the minimum point the curve 

ascends monotonically when 𝐽𝑀 increases. This branch is equal to the 

corresponding branch in Fig. 5.5. 

 

In any case, the curve |𝑀𝑚| versus 𝐽𝑀  is continuous. 

 

5.2 The Mm,max versus JM curve[1] 

We wish to find the maximum torque among the linear lines of 𝐽𝑀-𝑀𝑚. The curve 

𝑀𝑚,𝑚𝑎𝑥 versus JM depends on 𝛼𝐿 and 𝑀𝐿
∗, both of which assume different values 

over time. For each value of 𝐽𝑀, our aim is to obtain the maximum value assumed 

over time by 𝑀𝑚. In presence of many pairs (α𝐿 , 𝑀𝐿
∗), we now consider, for each 

value of 𝐽𝑀, ,the curve having the maximum value of 𝑀𝑚. Therefore we obtain a 

new curve, which is the curve JM-Mm,max. The calculation of Mm,max can be expressed: 

𝑀𝑚,𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝐽𝑀

 |𝑀𝑚| = 𝑚𝑎𝑥
𝑡

[|
𝛼𝐿(𝑡)

𝜏
𝐽𝑀 + 𝑀𝐿

∗(𝑡)𝜏|]   (5.4) 

 

We can now start by considering only two curves s and t, corresponding to two 

generic points 𝑆 ≡ (𝛼𝐿,𝑆, 𝑀𝐿,𝑆
∗ ) and 𝑇 ≡ (𝛼𝐿,𝑇 ,𝑀𝐿,𝑇

∗ ). These curves are shown in Fig. 

5.7: 
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Fig. 5.7 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

and (αL,T, ML,T
*) 

 

We intend to show the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve is continuous, and has only one the 

minimum value of 𝑀𝑚,𝑚𝑎𝑥. 

 

It is possible to think that in some abscissas ranges the curve 𝑠 lies above the curve 

𝑡  and the 𝐽𝑀 - 𝑀𝑚,𝑚𝑎𝑥  curve 𝑙  coincides with the corresponding continuous 

branches of 𝑠. On the contrary, in other abscissas ranges the curve 𝑡 lies above the 

curve 𝑠 and the curve 𝑙 coincides with the corresponding continuous branches of 

𝑡. The transition from a branch of s to a branch t happens with continuity in the 

intersection points between s and t, just as Fig. 5.7 shows. Because of the reasons 

mentioned above, the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve is continuous. 

 

Now let us discuss the minimum value of the curve 𝑙. 

 

There are three main cases of the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 

5.2.1 The two pairs of value (αL,S, ML,S*) and (αL,T, ML,T*) in the first or 

third quadrant: 

 

According to discussion before, if 𝛼𝐿 and 𝑀𝐿
∗ have the same sign, the curve 𝑠 and 

t would ascend monotonically. Here we have two different situations: 

 

𝑅𝑡  𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 

𝑡 

𝑙 

𝑅 
𝑅𝑠  
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5.2.1.1 |αL,S |< |αL,T |and | ML,S*|<| ML,T*| 

 

Fig. 5.8 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

and (αL,T, ML,T
*) 

 

 

As Fig. 5.8 shows above, the curve 𝑠 and t have no intersection points. And the 

minimum point of one curve (for example, curve 𝑡 in Fig. 5.8) lies above the other 

curve (curve 𝑠 in Fig. 5.8), then the minimum point 𝑅𝑡 of the curve 𝑡 is a 

minimum point of the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙. In fact, since the curve 𝑡 is above curve 

𝑠, the curve 𝑙 is overlapping the whole curve 𝑡. Because of this reason, the 

minimum point of curve 𝑙 coincides with the curve 𝑡, which means 𝑅𝑡 ≡ 𝑅. 

 

We can also consider the plane αL versus 𝑀𝐿
∗ to analyze the relative position of the 

two points 𝑆𝑠 ≡ (|𝛼𝐿,𝑆|, |𝑀𝐿,𝑆
∗ |) and 𝑆𝑡 ≡ (|𝛼𝐿,𝑇|, |𝑀𝐿,𝑇

∗ |). It is obvious that 𝑆𝑠 lies 

on the left side of 𝑆𝑡 which means that the curve 𝑠 does not give contribution to 

the curve 𝑙.  

 

Therefore in this situation, the point 𝑅𝑡 is the only minimum point of the curve 𝑙.  

 

5.2.1.2  |𝜶𝑳,𝑺| < |𝜶𝑳,𝑻| and |𝑴𝑳,𝑺
∗ | > |𝑴𝑳,𝑻

∗ | 

In this case, as Fig. 5.9 shows, the curve 𝑠 and 𝑡 have one intersection point. 

Because both slopes are greater than zero, the two curves are monotonically 

ascending.  

𝑅𝑡 ≡ 𝑅 

𝑅𝑠  𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 

𝑡 
𝑙 

0 
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Fig. 5.9 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

 and (αL,T, ML,T
*) 

 

 

On the left side of the intersection point, the curve 𝑠 lies above the curve 𝑡 and 

this branch of 𝑠 coincides with the curve 𝑙; while on the right side of the 

intersection point, the curve 𝑡 lies above the curve 𝑠 because the slope of t is 

greater and that branch of t makes up an ascending branch of curve 𝑙.  

 

The curve 𝑙 is monotonically ascending. Therefore the minimum point R of the 

curve 𝑙 coincides with the minimum point Rs of curve 𝑠, which is at abscissa 0. 

 

In both situations, the curve 𝑙 is monotonically ascending. And the curve 𝑙 only has 

one minimum point which is at the axis of ordinate. The minimum value of the 

maximum torque of the motor is: 

𝑚𝑖𝑛(𝑀𝑚,𝑚𝑎𝑥) = 𝑚𝑎𝑥 (|𝑀𝐿,𝑆
∗ 𝜏|, |𝑀𝐿,𝑇

∗ 𝜏|) if 𝛼𝐿,𝑆𝑀𝐿,𝑆
∗ > 0 and 𝛼𝐿,𝑇𝑀𝐿,𝑇

∗ > 0 

 

5.2.2 The point (αL,S, ML,S*) in the first or third quadrant; the point (αL,T, 

ML,T*) in the second or fourth quadrant. 

 

According to (𝛼𝐿,𝑆, 𝑀𝐿,𝑆
∗ ) in the first or third quadrant, which means αL,S and ML,S

∗  

have the same sign, we can know that the curve 𝑠 is monotonically ascending.  

 

Since 𝛼𝐿,𝑇 and 𝑀𝐿,𝑇
∗  have the different sign, no matter 𝛼𝐿,𝑇 is greater than zero or 

not, the curve 𝑡 descends from the abscissa 0 to the 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
. In fact, if the 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 

𝑡 

𝑙 

0 

𝑅𝑠 ≡ 𝑅 

𝑅𝑡  
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point of (𝛼𝐿,𝑇 , 𝑀𝐿,𝑇
∗ ) is in the second quadrant, from abscissa 0 to abscissa 

𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 the curve remains unaffected with respect to Fig. 5.4, this means it 

monotonically descends. On the contrary, if the point of (𝛼𝐿,𝑇 ,𝑀𝐿,𝑇
∗ ) is in the fourth 

quadrant, from abscissa 0 to abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 the branch of the curve is 

symmetric of the corresponding original branch in Fig. 5.5 with respect to the 

abscissa axis, which means that it also monotonically descends. 

 

The curve 𝑡 should have an edge point on the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 with an 

ordinate equal to 0. The curve 𝑡, no matter the point (𝛼𝐿,𝑇 ,𝑀𝐿,𝑇
∗ ) is in the second 

or the fourth quadrant, becomes monotonically ascending from abscissa 𝐽𝑀 =

−
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 to +∞. In fact if α𝐿,𝑇 < 0 and 𝑀𝐿,𝑇

∗ > 0, the branch of the curve 𝑡 from 

abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 to abscissa +∞ is symmetric of the corresponding branch in 

Fig. 5.4 with respect to the abscissa axis which is monotonically ascending; while if 

α𝐿,𝑇 > 0 and 𝑀𝐿,𝑇
∗ < 0, the branch of the curve 𝑡 from abscissa 𝐽𝑀 = −

𝑀𝐿,𝑇
∗ 𝜏2

α𝐿,𝑇
 to 

abscissa +∞ remains unaffected, which means that it monotonically ascends. 

 

And now we have four different situations: 
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5.2.2.1 |𝛂𝐋,𝐒| ≥ |𝛂𝐋,𝐓| and |𝐌𝐋,𝐒
∗ | ≥ |𝐌𝐋,𝐓

∗ | 

 

Fig. 5.10 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

and (αL,T, ML,T
*) 

 

 

As the Fig. 5.10 shows above, if |𝑀𝐿,𝑆
∗ | > |𝑀𝐿,𝑇

∗ |, the intersection between the curve 

𝑠 and the ordinate is higher than that of the curve 𝑡, the curve 𝑠 and t have no 

intersection points before the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
. After the minimum point 𝑅𝑡 

of curve 𝑡, because the slope of curve 𝑡 is not greater than that of curve 𝑠, these 

two curves have no intersection points. 

 

Especially when |𝑀𝐿,𝑆
∗ | = |𝑀𝐿,𝑇

∗ |, which means that the two curves have the same 

Mm,max-intercept, the curve 𝑠 and t have one intersection points at the ordinate. 

 

We can easily find that every point of curve 𝑠 lies above the curve 𝑡 (except the 

point at the ordinate when |𝑀𝐿,𝑆
∗ | = |𝑀𝐿,𝑇

∗ |). And the minimum point 𝑅𝑠 of curve 𝑠 

is a minimum point of the JM-Mm,max curve 𝑙. In fact, since the curve 𝑠 is above t, 

the curve 𝑙 is overlapping the whole curve 𝑠. Because of this reason, the minimum 

point of curve 𝑙 coincides with the curve 𝑠, which means 𝑅𝑠 ≡ 𝑅. 

 

We can also consider the plane of αL versus ML
∗  to analyze the relative position of 

the two points 𝑆𝑠 ≡ (|𝛼𝐿,𝑆|, |𝑀𝐿,𝑆
∗ |) and 𝑆𝑡 ≡ (|𝛼𝐿,𝑇|, |𝑀𝐿,𝑇

∗ |). It is obvious that 𝑆𝑠 

lies on the upper right side of 𝑆𝑡 which means that the curve 𝑡 does not have 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 

𝑡 

𝑙 

0 

𝑅𝑠 ≡ 𝑅 

𝑅𝑡  



Chapter 5: Apply the method to dynamic operating range 

Politecnico Di Milano – M.sc. Mechanical Engineering  59 

contribution to the curve 𝑙.  

 

Therefore in this situation, the point 𝑅𝑠 is the only minimum point of the curve 𝑙.  

 

5.2.2.2  |𝜶𝑳,𝑺| < |𝜶𝑳,𝑻| and |𝑴𝑳,𝑺
∗ | ≥ |𝑴𝑳,𝑻

∗ | 

 

Fig. 5.11 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

and (αL,T, ML,T
*) 

 

 

In this case, as the Fig. 5.11 shows curve 𝑠 is monotonically ascending and the 

curve 𝑡 descends before the abscissa 𝐽𝑀 =
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
. If |𝑀𝐿,𝑆

∗ | > |𝑀𝐿,𝑇
∗ |, which means 

that the intersection between the curve 𝑠 and the ordinate is higher than that of 

the curve 𝑡, the curve 𝑠 and t have no intersection points before the abscissa 

𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
. After that abscissa of curve 𝑡, because |𝛼𝐿,𝑆| < |𝛼𝐿,𝑇|, which means 

that the slope of curve 𝑡 is greater than that of curve 𝑠, these two curves have one 

intersection point. 

 

Especially when |𝑀𝐿,𝑆
∗ | = |𝑀𝐿,𝑇

∗ |, which means that the two curves have the same 

𝑀𝑚,𝑚𝑎𝑥-intercept, the curve 𝑠 and 𝑡 have one intersection point at the ordinate 

axis. In this case, the two curves have two intersection points. 

 

From the left side of the intersection point, the curve 𝑠 lies above the curve 𝑡 and 

this branch of s coincides with the curve 𝑙 (except the point at the ordinate when 

|𝑀𝐿,𝑆
∗ | = |𝑀𝐿,𝑇

∗ |); while to the right side of the intersection point, the curve 𝑡 lies 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 

𝑡 

𝑙 

0 

𝑅𝑠  

𝑅𝑡  



Chapter 5: Apply the method to dynamic operating range 

Politecnico Di Milano – M.sc. Mechanical Engineering  60 

above the curve 𝑠 because the slope of t is greater and that branch of t makes up an 

ascending branch of curve 𝑙.  

 

These two branches contribute the curve 𝑙. The curve 𝑙 is monotonically ascending. 

Therefore the minimum point R of the curve 𝑙 coincides with the minimum point 

𝑅𝑠 of curve 𝑠, which is at position of the abscissa 0. 

 

Therefore the only minimum point of curve 𝑙 is 𝑅𝑠. 

 

5.2.2.3  |𝜶𝑳,𝑺| ≥ |𝜶𝑳,𝑻| and |𝑴𝑳,𝑺
∗ | < |𝑴𝑳,𝑻

∗ | 

 

In this case, as the Fig. 5.12 shows curve 𝑠 is monotonically ascending and the 

curve 𝑡 descends before the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
. The condition of |𝑀𝐿,𝑆

∗ | <

|𝑀𝐿,𝑇
∗ | means the intersection between the curve 𝑠 and the ordinate is lower than 

that of the curve 𝑡. Because of that reason the curve 𝑠 and t have one intersection 

point before the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
. Due to |𝛼𝐿,𝑆| ≥ |𝛼𝐿,𝑇|, which means the 

slope of curve 𝑡 is not greater than that of curve 𝑠, these two curves have no 

intersection points after that edge point of curve 𝑡. 

 

 

Fig. 5.12 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

and (αL,T, ML,T
*) 

 

It is shown in Fig. 5.12, to the left side of the intersection point, the curve 𝑡 lies 

above the curve 𝑠 and this branch of t coincides with the curve 𝑙; while to the right 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 
𝑡 

𝑙 

0 

𝑅𝑠  

𝑅𝑡  

R 
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side of the intersection point, the curve 𝑡 lies below the curve 𝑠 and the branch of 

s makes up an ascending branch of curve 𝑙.  

 

These two branches contribute the curve 𝑙. The curve 𝑙 descends before the 

intersection point and after that it ascends. Therefore the minimum point 𝑅 of the 

curve 𝑙 is the intersection point and it is the exclusive minimum point. 

 

5.2.2.4  |𝜶𝑳,𝑺| < |𝜶𝑳,𝑻| and |𝑴𝑳,𝑺
∗ | < |𝑴𝑳,𝑻

∗ | 

In this case, as the Fig. 5.7 shows, the curve 𝑠 is monotonically ascending; the curve 

𝑡 descends before the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 and it ascends after the minimum 

point 𝑅𝑡. The condition of |𝑀𝐿,𝑆
∗ | < |𝑀𝐿,𝑇

∗ | means the intersection between the 

curve 𝑠 and the ordinate is lower than that of the curve 𝑡. Therefore the curve 𝑠 

and 𝑡 have one intersection point before the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
. Due to 

|𝛼𝐿,𝑆| < |𝛼𝐿,𝑇|, which means the slope of curve 𝑡 is greater than that of curve 𝑠, to 

the right side of the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
, which means from the abscissa 

𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 to the positive infinite the two curves must have one intersection 

point. In total, there are two intersections of these two curves. 

 

It can be seen in Fig. 5.7 that to the left side of the intersection point, the curve 𝑡 

lies above the curve 𝑠 and this branch of t coincides with the curve 𝑙. Because from 

the abscissa 0 to abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 the curve 𝑡 descends and the curve 𝑠 

ascends, there must be only one intersection point. And from the right side of 

abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 to the other intersection point, the curve 𝑠 lies above the t, 

so this branch of s makes up curve 𝑙. After that, every point of curve 𝑡 is above the 

point of s, so this branch of t coincides with curve 𝑙. 

 

These three branches contribute the curve 𝑙. The curve 𝑙 descends before the first 

intersection point and after that it ascends. Therefore the minimum point 𝑅 of the 

curve 𝑙 is the first intersection point and it is the only one minimum point. 

 

To sum up, in the case 5.2.2, there is only one minimum point of 𝑀𝑚,𝑚𝑎𝑥. 
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5.2.3 The (αL,S, ML,S*) and (αL,T, ML,T*) in the second or fourth quadrant: 

In this case, both 𝛼𝐿,𝑆𝑀𝐿,𝑆
∗  and 𝛼𝐿,𝑇𝑀𝐿,𝑇

∗  are smaller than zero, i.e. they have 

different sign to each other. No matter αL,T or αL,S is greater than zero or not, the 

curve 𝑡 and s descends from the abscissa 0 to the minimum points of themselves. 

The curve 𝑡 has an edge point on the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 with an ordinate 

equal to 0; while the curve 𝑠 has an edge point on the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑆

∗ 𝜏2

α𝐿,𝑆
 with 

an ordinate equal to 0. And both of them monotonically ascend from the edge points 

to the abscissa positive infinite.  

 

Because the curve 𝑡 and curve 𝑠 can replace each other, there is no difference 

between |𝑀𝐿,𝑆
∗ | is greater than |𝑀𝐿,𝑇

∗ | or not. So here we assume that |𝑀𝐿,𝑆
∗ | >

|𝑀𝐿,𝑇
∗ |, which means the 𝑀𝑚,𝑚𝑎𝑥-intercept point of curve 𝑠 is higher than the point 

of curve 𝑡. And we are interested in the relative position of the edge points of the 

two curves. So we have following three situations. 

 

5.2.3.1  −
𝑴𝑳,𝑻

∗ 𝝉𝟐

𝛂𝑳,𝑻
> −

𝑴𝑳,𝑺
∗ 𝝉𝟐

𝜶𝑳,𝑺
 

In this case, we first discuss the relation between |𝛼𝐿,𝑆| and |𝛼𝐿,𝑇|. Because the 

general load torques 𝑀𝐿
∗ and the load angular accelerations 𝛼𝐿 of both curves 

have different sign, −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 should be smaller than zero. Therefore the relation of 

absolute value of them would be 

|
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
| > |

𝑀𝐿,𝑆
∗ 𝜏2

𝛼𝐿,𝑆
| 

It is assumed that |ML,S
∗ | > |ML,T

∗ | and we can obtain that: 

|α𝐿,𝑇| < |𝛼𝐿,𝑆| 

 

The example curves of s and t is shown in the Fig. 5.13: 
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Fig. 5.13 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

and (αL,T, ML,T
*) 

 

 

Because |α𝐿,𝑇| < |𝛼𝐿,𝑆|, the slope of curve 𝑠 is greater than curve 𝑡. The 

𝑀𝑚,𝑚𝑎𝑥-intercept point of curve 𝑠 is higher than the point of curve 𝑡. And also the 

minimum point 𝑅𝑠 of curve 𝑠 is to the left side of 𝑅𝑡, so there are two 

intersections in the descending branch of curve 𝑡. After the edge point 𝑅𝑡 of curve 

𝑡, because the slope of t is always smaller than s, there are no intersections.  

 

To the left side of the first intersection point, the curve 𝑠 lies above the curve 𝑡 

and this branch of s coincides with the curve 𝑙; while from the first to the second 

intersection point, t is above s whose branch makes up of the curve 𝑙. These two 

branches monotonically descend. To the right side of the second intersection, branch 

of s contribute the curve 𝑙, which is ascending. So the minimum point R of the curve 

𝑙 is the second intersection point and it is the exclusive minimum point. 

 

5.2.3.2  −
𝑴𝑳,𝑻

∗ 𝝉𝟐

𝛂𝑳,𝑻
= −

𝑴𝑳,𝑺
∗ 𝝉𝟐

𝜶𝑳,𝑺
 

 

In this special case, the minimum points of two curves coincide in the same point. So 

we have  

|
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
| = |

𝑀𝐿,𝑆
∗ 𝜏2

𝛼𝐿,𝑆
| 

And because of |𝑀𝐿,𝑆
∗ | > |𝑀𝐿,𝑇

∗ | we can easily achieve the inequality: 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 

𝑡 

𝑙 

0 
𝑅𝑠  𝑅𝑡  

R 
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|α𝐿,𝑇| < |𝛼𝐿,𝑆| 

The inequality shows the slope of the curve 𝑠 is greater than that of curve 𝑡. 

 

 

Fig. 5.14 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

and (αL,T, ML,T
*) 

 

As the Fig. 5.14 shows above, to the left side and to the right side of the minimum 

point there is no intersection point. And we can see curve 𝑠 is above t, except the 

minimum point Rs is overlapping with Rt. The curve 𝑙 is totally coinciding with the 

curve 𝑠. Therefore, the curve has only one minimum point R which is at the abscissa 

𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
= −

𝑀𝐿,𝑆
∗ 𝜏2

α𝐿,𝑆
 with ordinate equal to zero. 

 

5.2.3.3  −
𝑴𝑳,𝑻

∗ 𝝉𝟐

𝛂𝑳,𝑻
< −

𝑴𝑳,𝑺
∗ 𝝉𝟐

𝜶𝑳,𝑺
 

 

In this case, the relation of absolute value of them would be 

|
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
| < |

𝑀𝐿,𝑆
∗ 𝜏2

𝛼𝐿,𝑆
| 

It is assumed that |𝑀𝐿,𝑆
∗ | > |𝑀𝐿,𝑇

∗ | and we cannot tell if |α𝐿,𝑇| is greater than |α𝐿,𝑆| 

or not. So here come two different situations. 

 

If |α𝐿,𝑇| < |α𝐿,𝑆| the example curves of s and t is shown in the following figure: 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 

𝑡 

𝑙 

0 
𝑅𝑠 = 𝑅𝑡 = 𝑅 
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Fig. 5.15 Example of JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) 

and (αL,T, ML,T
*) 

 

 

From Fig. 5.15 we can see that the slope of curve 𝑠 is greater than curve 𝑡. And 

also the minimum point 𝑅𝑠 of curve 𝑠 is to the right side of 𝑅𝑡, so there are two 

intersections in the ascending branch of curve 𝑡.  

 

To the left side of the first intersection point, the curve 𝑠 lies above the curve 𝑡 

and this branch of s coincides with the curve 𝑙 and it monotonically descends. While 

from the first to the second intersection point, the ascending branch of t is above s 

which makes up of the curve 𝑙. To the right side of the second intersection, branch of 

s contribute the curve 𝑙, which is also ascending. So the minimum point R of the 

curve 𝑙 is the first intersection point and it is the exclusive minimum point. 

 

If |α𝐿,𝑇| ≥ |α𝐿,𝑆| , due to the slope of curve 𝑠 is not greater than the slope of t, 

there would be no intersection after the minimum point 𝑅𝑠. To the left side of the 

point 𝑅𝑠, the situation is the same as before. Therefore the minimum point R of the 

curve 𝑙 is the intersection point and it is the exclusive minimum point.  

 

5.2.4 When αL,S is equal to zero: 

This case is a very special situation because the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve may have a flat 

branch which will lead to infinite minimum points. 

 

For example, we assume that |𝑀𝐿,𝑆
∗ | < |𝑀𝐿,𝑇

∗ | and α𝐿,𝑇𝑀𝐿,𝑇
∗ < 0. 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  
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In this case, the point of the pair of value (𝛼𝐿,𝑇 , 𝑀𝐿,𝑇
∗ ) is in the second or the fourth 

quadrant. So the curve 𝑡 will descend from abscissa 0 to the abscissa 𝐽𝑀 = −
𝑀𝐿,𝑇

∗ 𝜏2

α𝐿,𝑇
 

and ascend after the edge point. And the 𝑀𝑚,𝑚𝑎𝑥–intercept of curve 𝑠 is below 

curve 𝑡. So there are two intersection points. 

 

 

Fig. 5.16 JM-Mm,max curve corresponding to two pairs of values (αL,S, ML,S
*) and (αL,T, 

ML,T
*) 

 

Fig. 5.16 shows the curve 𝑙 coincides with curve 𝑠 between the two intersection 

points. Because curve 𝑠 is flat, there are infinite minimum points in curve 𝑙. 

However the minimum value of 𝑀𝑚,𝑚𝑎𝑥 are the same. So even in this special case 

the 𝑀𝑚,𝑚𝑎𝑥  has only one minimum value. 

 

To sum up, the minimum point R of the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve can be either a regular 

point or an edge point. Especially when the angular acceleration of the load is equal 

to zero, the minimum point R would become a flat line which is parallel to the 

abscissa JM. And there is only one minimum value of 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve. 

 

It is simple to extend this demonstration to the case of more than two curves. 

 

It is clear that when considering all the pairs (𝛼𝐿 ,𝑀𝐿
∗), the corresponding 

𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙 presents the following characteristics: 

 When the abscissa 𝐽𝑀 is zero, the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙 coincides with the 

maximum value of 𝑀𝑚,𝑚𝑎𝑥–intercept of the curves.  

 When the abscissa JM approach to +∞, the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙 coincides with 

the line whose slope has the maximum value among the curves. 

 The 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙 has only one minimum value. 

 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

𝑠 

𝑡 
𝑙 

0 
𝑅𝑡  
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5.3 The points (αL, ML *) defines the JM-Mm,max curve[1] 

5.3.1 New points (αL, ML *) for the choice of motor 

For the choice of motor and transmission, the analysis leads us to consider in the 

plane 𝛼𝐿 − 𝑀𝐿
∗ there are new points 𝑆′ ≡ (𝛼𝐿

′, 𝑀𝐿
∗′) that are different from the 

original points 𝑆 ≡ (𝛼𝐿 , 𝑀𝐿
∗). 

 

If the original point 𝑆1 lies in the first quadrant, i.e. 𝛼𝐿 ≥ 0 and 𝑀𝐿
∗ ≥ 0, as we 

discuss before, the 𝑀𝑚,𝑚𝑎𝑥 versus 𝐽𝑀  curve remain the same respect to that in Fig. 

5.2. We must consider a new point 𝑆1,1
′ = 𝑆1 = (𝛼𝐿 ,𝑀𝐿

∗)., that lies also in the first 

quadrant. 

 

If the original point 𝑆3 lies in the third quadrant, i.e. 𝛼𝐿 ≤ 0 and 𝑀𝐿
∗ ≤ 0, as Fig. 

5.6 shows, the 𝑀𝑚,𝑚𝑎𝑥  versus JM curve is symmetric of that in Fig. 5.3 with respect 

to the abscissa axis. We must consider a new point S3,1
′ = (−𝛼𝐿 , −𝑀𝐿

∗), that lies in 

the first quadrant. 

 

If the original point 𝑆2 lies in the second quadrant, i.e. 𝛼𝐿 ≤ 0 and 𝑀𝐿
∗ ≥ 0, as Fig. 

5.6 shows, On the left of the minimum point the curve descends monotonically. This 

branch is equal to the corresponding branch in Fig. 5.4, while on the right of the 

minimum point the curve ascends monotonically when 𝐽𝑀 increases. This branch is 

symmetric of the corresponding branch in Fig. 5.4 with respect to the abscissa axis. 

Therefore together with the point 𝑆2,2
′ ≡ 𝑆2 which lies in the second quadrant 

representing the descending branch of the 𝑀𝑚,𝑚𝑎𝑥 versus JM curve, we must also 

consider another point S2,4
′ = (−𝛼𝐿 , −𝑀𝐿

∗) that lies in the fourth quadrant. It 

represents the ascending branch of the same curve. These two points 𝑆2,2
′ and  

𝑆2,4
′ are symmetric with respect to the origin. 

 

If the original point 𝑆4 lies in the fourth quadrant, i.e. 𝛼𝐿 ≤ 0 and 𝑀𝐿
∗ ≤ 0. As Fig. 

5.6 shows, on the left of the minimum point the curve descends monotonically when 

𝐽𝑀 increases. This branch is symmetric of the corresponding branch in Fig. 5.5 with 

respect to the abscissa axis, while on the right of the minimum point the curve 

ascends monotonically when 𝐽𝑀 increases. This branch is equal to the 

corresponding branch in Fig. 5.5. Therefore together with the point 𝑆4,4
′ ≡ 𝑆4 

which lies in the fourth< quadrant representing the ascending branch of the 𝑀𝑚,𝑚𝑎𝑥 

versus 𝐽𝑀  curve, we must also consider another point 𝑆4,2
′ = (−𝛼𝐿 , −𝑀𝐿

∗) that lies 

in the second quadrant. It represents the ascending branch of the same curve. These 

two points 𝑆4,2
′ and  𝑆4,4

′ are symmetric with respect to the origin. 

 

To sum up,  

 If  𝛼𝐿 and 𝑀𝐿
∗ have the same sign, we will consider one set of points S1,1

′ 

and S3,1
′ lying in the first quadrant; 
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 If  𝛼𝐿 and 𝑀𝐿
∗ have the opposite signs, we will consider two sets of symmetric 

points: 

𝑆2,2
′ and 𝑆4,2

′ in the second quadrant only contribute to the descending 

branch of the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve. 

𝑆2,4
′ and 𝑆4,4

′ in the fourth quadrant only contribute to the ascending branch 

of the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  curve. 

 

5.3.2 General consideration 

We now consider the plane 𝛼𝐿-𝑀𝐿
∗ and the points 𝑆′ which lie in the first, second 

and fourth quadrant. We now identify the points able to contribute to this curve. 

 

In any case, not all these points play a part in the definition of the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve. 

Now let us identify the points able to contribute to this curve. 

 

It is easy to observe that in the plane 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥, corresponding to two generic 

points 𝑆′ and 𝑇′ of the plane 𝛼𝐿-𝑀𝐿
∗, the two curves 𝑠′and 𝑡′ intersect at the 

abscissa: 

𝐽𝑀 = −
𝑀𝐿,S′

∗ − 𝑀𝐿,T′
∗

𝛼𝐿,S′ − 𝛼𝐿,T′
𝜏2       (5.5) 

 

Because 𝐽𝑀 ≥ 0, the intersection exits only if the slope of the segment 𝑆′𝑇′ is 

negative or equal to zero. (see Fig. 5.17) 

 

Fig. 5.17 Two points S’ and T’ whose curve intersect  

 

If the point 𝑉′ ≡ (𝛼𝐿,V′ , 𝑀𝐿,V′
∗ ) as the vertex of the quadrant below and on its left, 

𝛼𝐿  

𝑀𝐿
∗

 

 𝑆′
 

𝑇′
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just as Fig. 5.18 shows below: the point 𝑉′ excludes any other point 𝑆′ belonging 

to this quadrant from contributing the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙. 

 

Fig. 5.18 The point T’ prevents the point S’ from contributing to the 

JM-Mm,max curve 

 

In fact, as we have discussed in the chapter 5.2, if the point 𝑆′ is at the left and 

down to the point 𝑉′, the segment 𝑆′𝑉′ shows a positive slope. Because of Eq. (5.4) 

the corresponding two curves 𝑠′and 𝑣′ in the plane 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  do not intersect 

(see Fig. 5.8 and Fig. 5.10). The curve 𝑣′ lies above the curve 𝑠′ so the curve 𝑠′ is 

excluded from giving its contribution to the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙.  

 

In the plane 𝛼𝐿-𝑀𝐿
∗, the points which are able to contribute to the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 

curve are positioned along a line which is a monotonous descending line, because 

the slope between two near points must be negative.  

 

Therefore, in order to draw the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve, we can find the point having the 

maximum ordinate as the start point and find the point having maximum abscissa as 

the end point. 

 

Now we consider three points: 𝑉1
′, 𝑉2

′ and 𝑆′. 𝑉1
′ and 𝑆′ are located in the 

second quadrant, while 𝑉2
′ is located in the first quadrant. 

 

The segment 𝑉1
′𝑉2

′ have negative slope. And the point 𝑆′ is located in the 

right-angled triangle having 𝑉1
′𝑉2

′ as hypotenuse. The curves corresponding to the 

three points are 𝑣1
′ , 𝑣2

′  and 𝑠′ which are both located in the first quadrant. 

 

𝛼𝐿  

𝑀𝐿
∗

 

 S′
 

𝑉′
 



Chapter 5: Apply the method to dynamic operating range 

Politecnico Di Milano – M.sc. Mechanical Engineering  70 

 

Fig. 5.19 The point V1’ and V2’ prevents the point S’ from contributing to 

the JM-Mm,max curve 

 

From Eq. (5.5) we can know that due to the slope of segment 𝑉1
′𝑉2

′ is smaller than 

the slope of segment 𝑉1
′𝑆′ so the abscissa of intersection of curves 𝑣1

′  and 𝑠′ lies 

to the right side of the abscissa of intersection of curves 𝑣1
′  and 𝑣2

′ . On the other 

hand, the slope of segment 𝑉1
′𝑉2

′ is greater than the slope of segment 𝑆′𝑉2
′ so the 

abscissa of intersection of curves 𝑣2
′  and s′ lies to the left side of the abscissa of 

intersection of curves 𝑣1
′  and 𝑣2

′ .  

 

In Fig. 5.20 it can be seen that the points 𝑉1
′, 𝑉2

′ exclude any other point S′ lying in 

the above-mentioned triangle from contributing the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙. 

 

 
Fig. 5.20 The JM-Mm,max curves corresponding to the points in Fig. 5.19 

 

The rules demonstrated above can identify easily the points taking part in the 

𝛼𝐿  

𝑀𝐿
∗

 

 𝑆′
 

𝑉1
′
 

𝑉2
′
 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

s′
 

𝑣1
′

 

𝑣2
′
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definition of 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 𝑙, as Fig. 5.21 shows, by tracing an open polygon 

according to the following procedure: 

 

1. For the all new points in the first or second quadrant we find the point with 

maximum ordinate 𝑀𝐿,F′
∗  and call it 𝐹1

′; 

 

2. We use the point 𝐹1
′ as a center, make a half line to the right of 𝐹1

′. Let it rotate 

clockwise to touch another point 𝐹2
′. Pay attention that the half line should not 

passing through the vertical; 

 

3. With center in 𝐹2
′, we consider a half line that rotates clockwise, starting from 

the direction of the segment 𝐹1
′𝐹2

′, until it touches another point without 

passing through the vertical. 

 

4. Repeat the procedure until the half line passes through the vertical. 

 

 

 
Fig. 5.21 The points Fi’ that contribute to the JM-Mm,max curve 

 

In this way we obtain an open polygon whose concavity is downwards. And it is 

simple to find the points 𝐹𝑖
′ in the first quadrant of the plane 𝛼𝐿-𝑀𝐿

∗ which make 

contribute to draw the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve. 

 

5.3.3 Global JM-Mm,max curve  

Similarly to the analysis before, among the new points lying in the first, second and 

fourth quadrant of the plane 𝛼𝐿-𝑀𝐿
∗, we can identify the few points playing a role in 

the definition of the global 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  curve, and we name them 𝐾𝑖
′. We can use 

𝛼𝐿  

𝑀𝐿
∗

 

𝐹1
′
 

𝐹2
′
 

𝐹3
′
 

𝐹4
′
 

𝐹5
′
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almost the same procedure to trace the points. 

 

 
Fig. 5.22 The points Ki’ that contribute to the global JM-Mm,max curve 

 

As Fig. 5.22 shows above, the points 𝐾𝑖
′ are positioned along a monotonous 

descending line. This open polygon has vertices belonging to the tree polygons 

already found in the first, second and fourth quadrant. We can find the points 𝐾𝑖
′ 

directly, without finding the points 𝐹𝑖
′ , 𝐺𝑖

′ and 𝐻𝑖
′ before. 

 

Now we wish to find the minimum point R of the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve.  

 

According to Eq. (5.4) the equation of the branch of 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve 

corresponding to the point 𝐾𝑖
′ ≡ (𝛼𝐿,𝐾𝑖

′ , 𝑀
𝐿,𝐾𝑖

′
∗ ) is: 

𝑀𝑚,𝑚𝑎𝑥 =
𝛼𝐿,𝐾𝑖

′

𝜏
𝐽𝑀 + 𝑀

𝐿,𝐾𝑖
′

∗ 𝜏      (5.6) 

 

The intersection with the next branch has abscissa: 

𝐽𝑀 = −
𝑀

𝐿,𝐾𝑖
′

∗ − 𝑀
𝐿,𝐾𝑖+1

′
∗

𝛼𝐿,𝐾𝑖
′ − 𝛼𝐿,𝐾𝑖+1

′
𝜏2      (5.7) 

 

We use this to calculate the ordinate: 

𝑀𝑚,𝑚𝑎𝑥 =
𝛼𝐿,𝐾𝑖

′

𝜏

−𝑀
𝐿,𝐾𝑖

′
∗ + 𝑀

𝐿,𝐾𝑖+1
′

∗

𝛼𝐿,𝐾𝑖
′ − 𝛼𝐿,𝐾𝑖+1

′
𝜏2 + 𝑀

𝐿,𝐾𝑖
′

∗ 𝜏 

= [
𝛼𝐿,𝐾𝑖

′ (𝑀
𝐿,𝐾𝑖+1

′
∗ − 𝑀

𝐿,𝐾𝑖
′

∗ )

𝛼𝐿,𝐾𝑖
′ − 𝛼𝐿,𝐾𝑖+1

′
+ 𝑀

𝐿,𝐾𝑖
′

∗ ] 𝜏 

𝛼𝐿  

𝑀𝐿
∗

 
𝐾1

′
 

𝐾2
′

 

𝐾3
′

 

𝐾4
′

 

𝐾5
′

 

𝐾6
′

 

0 
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=
𝛼𝐿,𝐾𝑖

′ 𝑀
𝐿,𝐾𝑖+1

′
∗ − 𝛼𝐿,𝐾𝑖+1

′ 𝑀
𝐿,𝐾𝑖

′
∗

𝛼𝐿,𝐾𝑖
′ − 𝛼𝐿,𝐾𝑖+1

′
𝜏      (5.8) 

 

The 𝐽𝑀 − 𝑀𝑚,𝑚𝑎𝑥 curve is made up of consecutive branches, corresponding to the 

consecutive points 𝐾𝑖
′. Each branch belongs to a different linear line or a polyline. 

 

From previous analysis we can know that each point 𝐾𝑖
′ in the second quadrant 

brings the descending branch to the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  curve; while each point in the first 

and fourth quadrant contributes the ascending branch to the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  curve. So 

we name the last point of the of the polygon in the second quadrant 𝐾𝑑
′ , and the 

first point of the polygon in the first or in the fourth quadrant 𝐾𝑎
′ . The 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  

curve monotonically descends from start to the branch of 𝑘𝑑
′ ; then it ascends from 

the branch of 𝑘𝑎
′  to the abscissa positive infinite. So the minimum point is the 

intersection of the two branches 𝑘𝑎
′  and 𝑘𝑑

′ . 

 

 
Fig. 5.23 The points Kd’ and Ka’ that determine the minimum point R 

 

And then we can obtain the minimum point 𝑅 which has the abscissa: 

𝐽𝑀|𝑅 = −
𝑀

𝐿,𝐾𝑑
′

∗ − 𝑀𝐿,𝐾𝑎
′

∗

𝛼𝐿,𝐾𝑑
′ − 𝛼𝐿,𝐾𝑎

′
𝜏2     (5.9) 

 

And the ordinate: 

𝑀𝑚,𝑚𝑎𝑥|𝑅 =
𝛼𝐿,𝐾𝑑

′ 𝑀𝐿,𝐾𝑎
′

∗ − 𝛼𝐿,𝐾𝑎
′ 𝑀

𝐿,𝐾𝑑
′

∗

𝛼𝐿,𝐾𝑑
′ − 𝛼𝐿,𝐾𝑎

′
𝜏     (5.10) 

𝛼𝐿  

𝑀𝐿
∗

 
𝐾1

′
 

𝐾2
′ = 𝐾𝑑

′
 

𝐾3
′ = 𝐾𝑎

′
 

𝐾4
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5.4 Choosing admissible motors according to the 

JM-Mm,max curve 

We have plotted the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  curve 𝑙, so it is easy to find motors suitable to 

move the load. As the shows below, in the same diagram we can plot the drive 

system representative points. A motor is represented by a point 𝑀𝑖  whose abscissa 
is 𝐽𝑀 and the ordinate is the 𝑀𝑀,𝑑𝑦𝑛. The points representing the different drive 

systems are reported definitively. 

 

 

 

Fig. 5.24 The JM-Mm,max curve and the drive system representative points 

 

As the analyze before, in order to let the motor drive the load the maximum torque 

of the motor in dynamic working range should be larger than that of the load under 

the same inertia condition. We should check for the motor 𝑖 
𝑀𝑚,𝑚𝑎𝑥(𝐽𝑖,𝑀) ≤ 𝑀𝑀,𝑑𝑦𝑛(𝐽𝑖,𝑀) 

 

It means the representative point of the drive system should under the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  

curve. As Fig. 5.24 shows, the representative point 𝑀1 of motor 1 is above the 

curve 𝑙, it is capable of driving the load under the given transmission parameters. On 

the contrary, the point 𝑀2 of the motor 2 is under the curve 𝑙, so it cannot move 

the load. In this case, we only choose the motor 1. 

 

To sum up, once chosen the transmission, the knowledge of its direct efficiency 𝜂𝑑, 

the inverse efficiency 𝜂𝑖  and the transmission ratio 𝜏 together with the reference 

task allow us to achieve the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve and 𝐽𝑀-𝑀𝑚,𝑟𝑚𝑠 curve. If the 

𝐽𝑀  

𝑀𝑚,𝑚𝑎𝑥  

0 

𝑀1 

𝑀2 

𝑀1,𝑀,𝑑𝑦𝑛  

𝑀2,𝑀,𝑑𝑦𝑛  

𝐽1,𝑀  𝐽2,𝑀  

R 
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representative point of the motor is above the two curves and also satisfies the 

inequality 𝜔𝑀,𝑚𝑎𝑥 ≥ 𝜔𝑚,𝑚𝑎𝑥, the motor is admissible. 

 

 



Chapter 6: A simple case study 

Politecnico Di Milano – M.sc. Mechanical Engineering  76 

Chapter 6:  A simple case study 

In this chapter, we use the above-mentioned method to choose a motor.  

6.1 Data of the catalogs of the motor and transmission  

In the following, we report the specific data related to six electric brushless motors 

equipped with an inverter.  

 

For example in Table 6.1 the commercial characterized code of the motor is 

“1FK7040-5AK71 CT”, while the motor belongs to the series with the following 

nomenclature: “SINAMICS S120 SLM 400V”[2]. The specific data in Table 6.1 are just a 

part of the complete data sheet. The example shows three major parts of the 

technical data: design data, optimal operating point and limit data. In this diagram, 

the angular velocity, torque and some characteristic of the operation of the engine 

are delivered. The values of current and torque from braking have been provided for 

two different temperature rise compared to the environment equal to 297° K, i.e. a 

temperature difference of 60° K in the first case while at 100 ° K in the second case. 

And the optimal operating point at maximum power and high efficiency are also 

defined in the table. It generally does not coincide with the point of maximum torque, 

while it may match the nominal point. For the limit data, however, define the 

parameters causing an irreversible damage of the machine. For example, the 

maximum current is the root mean square value of the current causing a 

demagnetization of the permanent magnet rotor. 
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Technical data Abbreviation Unit -5AK71 

Nominal velocity nN Rpm 6000 

Number of poles 2p  8 

Rated torque(100K) MN Nm 1.1 

Nominal current IN A 1.7 

Braking torque (60 K) M0 (60 K) Nm 1.3 

Braking torque (100 K) M0 (100 K) Nm 1.6 

Braking current (60 K) I0 (60 K) A 1.8 

Braking current  (100 K) I0 (100 K) A 2.3 

Inertia (with brake) JmotFr 10–4 kgm2 2.41 

Inertia(without brake) Jmot 10–4 kgm2 1.7 

Optimal velocity nopt rpm 6000 

Optimal power Popt kW 0.69 

Max. allowed velocity (mecc.) nmax mecc rpm 9000 

Max. allowed velocity (converter) nmax Inv rpm 8000 

Max. allowed moment Mmax Nm 5.1 

Maximum current Imax A 7.7 

Table 6.1 Specific data of the motor 1FK7040-5AK71 CT 

 

In this paper, the designed motion law is periodic. And the smooth deceleration is 

required. Therefore the motor need not brake to stop. The useful data are the 

maximum allowed velocity, inertia (without brake), rated torque (100K) and the 

maximum allowed moment. In Table 6.2 the key specific data of six motors are 

presented: 

 

Commercial 

Code 

Max. 

allowed 

Velocity 

[rad/s] 

Inertia(without 

brake) [kgm2] 

Rated 

torque 

[Nm) 

Max. allowed 

moment [Nm] 

1FK7011-5AK21 CT 837.333 6.40E-06 0.08 0.5 

1FK7015-5AK21 CT 837.333 8.30E-06 0.16 1 

1FK7022-5AK21 CT 1046.67 2.80E-05 0.6 3.4 

1FK7032-5AF21 CT 1046.67 6.10E-05 0.8 4.5 

1FK7034-5AF21 CT 1046.67 9.00E-05 1 6.5 

1FK7040-5AK71 CT 942 1.70E-04 1.1 5.1 

Table 6.2 Specific data of the motors 

 

From the analysis in Chapter 3 we know that in order to use the method to choose 

the motor, all the parameters of transmission should be given first, i.e. the 

transmission ratio 𝜏, the direct and the inverse efficiencies of the transmission 𝜂𝑑 

and 𝜂𝑖  and the inertia of the transmission 𝐽1 and 𝐽2 should be known. 

 

For the sake of simplification, here we present part of the data sheet of one type of 



Chapter 6: A simple case study 

Politecnico Di Milano – M.sc. Mechanical Engineering  78 

harmonic planetary gearbox whose commercial name is 

“HPG-14A-45-BL3-F0-E14.20-SP”[3]. 

 

Size Ratio Limit for 

repeated 

peak 

torque 

TR 

[Nm] 

Limit for 

average 

torque 

TA 

[Nm] 

Rated 

torque  

TN 

[Nm] 

Moment of 

inertia with 

output 

flange 

JT 

[kgm2] 

Maximum 

input 

speed 

 

[rpm] 

14 45 23 15 10 2.06E-4 6000 

Table 6.3 Specific data of the transmission “HPG-14A-45-BL3-F0-E14.20-SP” 

 

Table 6.3 above is just presented the useful part of the data. We can get the 

transmission ratio is 𝜏 = 1/45. 

 

From the data of the transmission we can see there is only one value of inertia in the 

catalog. The moment of inertia is for standard coupling referred to the input shaft. 

Therefore, due to Eq. (3.2), we can easily design the inertia connecting to the motor 

side 𝐽1 and to the load side 𝐽2.  

 

Here we assume that 𝐽1 = 1.57 × 10−4 [kgm2] and 𝐽2 = 0.1 [kgm2]. 

 

For the sake of simplicity, we assume that the curves of direct and inverse efficiencies 

are constant values which remain the same value for all speeds, ambient 

temperatures and the output torques. So we can assume the efficiencies: 

𝜂𝑑 = 0.85 

𝜂𝑖 = 0.80 

 

6.2 Design motion laws 

The motion device is used to realize a periodically rotary motion by means of a motor 

and a transmission. In this case, we use a harmonic drive transmission to reduce the 

speed of the rotation motion. The task movement mission we designed is a linear 

motion whose position law is characterized by the plotted in Fig. 6.1.   
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Fig. 6.1 The position law of the device 

 

We assume that there are three types of movement in the sample motion: rise 

movement, the first dwell and the return movement and the final dwell. Both the 

rise phase and the return phase of the load have a general constant acceleration law. 

 

The time period 𝑡𝑚1 is the motion time for rise phase and 𝑡𝑚2 is for return phase. 

Each constant acceleration law has a time range 𝑡𝑎
+ with constant and positive 

acceleration, an intermediate time range with null acceleration and a third time 

range 𝑡𝑎
− at constant and negative acceleration. 𝑡𝑚1 is the motion time for rise 

phase and 𝑡𝑚2 is for return phase. The detail position law is listed below: 

 

Time period Symbols Value 

Rise phase 𝑡𝑚1 0.9 [s] 

First dwell 𝑡𝑟1 0.1 [s] 

Return phase 𝑡𝑚2 0.85 [s] 

Second dwell 𝑡𝑟2 0.15 [s] 

Total time 𝑇 2 [s] 

Stroke of the slide 𝑥 1 [rad] 

Starting position  𝑥0 0 [rad] 

Table 6.4 Task motion law 

 

We can easily obtain the acceleration law of the load in Fig. 6.2.  
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Fig. 6.2 The acceleration law of the load 

 

And the dotted line represents the root mean square value of the acceleration of the 

load. 

 

We can also calculate the speed law of the load in Fig. 6.3. 

 
Fig. 6.3 The speed law of the load 

 

From the speed law we can check the feasibility of the motors. The motor must 

satisfy their maximum allowed speed is larger than the maximum speed of the 

a𝐿,𝑟𝑚𝑠 
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designed speed law, i.e. 𝜔𝑚,𝑚𝑎𝑥 ≤ 𝜔𝑀,𝑚𝑎𝑥. And this is the first feasibility condition. 

 

For the sake of simplicity, we assume the total moment load is: 

𝑀𝐿 = 𝐽𝐿 ∗ 𝛼𝐿(𝑡) + 𝑀𝐿0       (6.1) 

 

In Eq. (6.1), 𝑀𝐿0 is a constant moment applied on the load side. According to Eq. 

(3.2), substituting the expressions of α𝐿(t) with previous designed value, we can 

obtain the moment of the load (see Fig. 6.4): 

 

𝑀𝐿(𝑡) = (𝐽1 + 𝐽2𝜏
2) ∗ 𝛼𝐿(𝑡) + 𝑀𝐿0     (6.2) 

 

Fig. 6.4 The moment of the load 

 

Remembering Eq. (3.12) and Eq. (3.18), we can calculate the equivalent inertias of the 

transmission “HPG-14A-45-BL3-F0-E14.20-SP” due to the direct efficiency 𝐽𝑇,𝑑 =

𝐽1

𝜏2
+

𝐽2

𝜂𝑑
 and the inverse efficiency 𝐽𝑇,𝑖 =

𝐽1

𝜏2
+ 𝜂𝑖𝐽2 where the efficiencies are 

presented in chapter 6.1. 

 

Substituting the expressions of 𝐽𝑇,𝑑 and 𝐽𝑇,𝑖 in Eq. (3.21), we calculate the 

generalized moment of the load 𝑀𝐿
∗ (Fig. 6.5). And the dotted line in the figure 

shows the root mean square value of the generalized moment of the load.  
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Fig. 6.5 The generalized moment of the load 

 

6.3 Check the motors in the continuous duty operating 

range 

Bearing in mind Eq. (4.5) we can get the curve for the inertia of the motor versus the 

root mean square value of the moment of the motor, i.e. the 𝐽𝑀-𝑀𝑚,𝑟𝑚𝑠 curve.  

 

As the discussion shown in the chapter 4, the blue curves in Fig. 6.6 regard the 

defined intervals of 𝑀𝑚,𝑟𝑚𝑠 and 𝐽𝑀 as from −∞ to +∞. The red curve 

represents the real 𝐽𝑀-𝑀𝑚,𝑟𝑚𝑠 curve with inertia of the motor and 𝑀𝑚,𝑟𝑚𝑠 positive. 

 

 

𝑀𝐿,𝑟𝑚𝑠
∗  
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Fig. 6.6 The JM -Mm,rms curve with defined intervals from -∞ to +∞ 

 

 

Now we take into account the catalogs of the motors. The points representing the 

characteristic of a motor are plotted on the figure of the 𝐽𝑀-𝑀𝑚,𝑟𝑚𝑠 curve. Using 

the moment of inertia of the motor as abscissa and the rated torque of a motor as 

ordinate, we can easily check if the motor satisfies the inequality: 

𝑀𝑚,𝑟𝑚𝑠 ≤ 𝑀𝑀,𝑅𝑎𝑡𝑒𝑑 

 

From Fig. 6.7 we can see that the first two red points which represent the motors 

1FK7011-5AK21 and 1FK7015-5AK21 are below the 𝐽𝑀-𝑀𝑚,𝑟𝑚𝑠 curve. Therefore 

these two motors do not satisfy the required continuous duty working range 

condition. While the other four blue points are beyond the 𝐽𝑀-𝑀𝑚,𝑟𝑚𝑠 curve, those 

motors satisfy the condition. 
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Fig. 6.7 Check the feasibility of the motors in the JM-Mm,rms curve 

 

6.4 Check the motors in the dynamic operating range 

Remembering the algorithm in chapter 5, we should find the pair of value (𝛼𝐿 ,𝑀𝐿
∗)  

to define the 𝐽𝑀-𝑀𝑚,𝑟𝑚𝑠 curve. We have obtained the acceleration law of the load 

𝛼𝐿(𝑡) and the generalized torque of the load  𝑀𝐿
∗(𝑡) in the previous calculations. 

Let the time vary from zero to the cycle time 𝑇, check every pair (𝛼𝐿(𝑡),𝑀𝐿
∗(𝑡)) at 

each time instant. If the pair of value does not appear before, we record this pair of 

value into the set of points 𝑆. We should also count the number of the points.  

 

In this case, according the motion law we designed in chapter 6.2, there are 11 

points representing the pairs of value (α𝐿,𝑖, 𝑀𝐿,𝑖
∗ ). As shown in Fig. 6.8 these points 

are located not only in the first and third quadrant but also on the ordinate axis.  
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Fig. 6.8 The discrete points of αL –ML
* 

 

In order to calculate the 𝑀𝑚,𝑚𝑎𝑥 versus 𝐽𝑀 curve, we should find the new points 

𝑆’ that contribute to that curve directly. As the discussion shows in the chapter 5.3, 

the relationships between the points 𝑆 are: 

 

If the point 𝑆𝑖 is in the first quadrant, we consider a point 𝑆𝑖,1’ in the first quadrant 

at the exactly same position with 𝑆𝑖. 

 

If the point 𝑆𝑖 is in the third quadrant, we consider a point 𝑆𝑖,1’ located in the first 

quadrant which is symmetric with 𝑆𝑖. 

 

If the point 𝑆𝑖 is in the second or fourth quadrant, we consider two points 𝑆𝑖,2’  

and 𝑆𝑖,4’. 𝑆𝑖,2’ is located in the second quadrant while 𝑆𝑖,4’ is in the fourth 

quadrant. They are at the exactly same position with 𝑆𝑖 or symmetric with 𝑆𝑖. 

 

After using the method in chapter 5, we can find few points 𝐾𝑖′ among the points 

𝑆𝑖′ and connect the points 𝐾𝑖′ to achieve a monotonically descending polygon. 

Each segment of the polygon represent a branch of the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥  curve. In this 

case, as Fig. 6.9 shows, there are 4 𝐾𝑖′ points.  
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Fig. 6.9 The points Ki’ contributing to the JM-Mm,max curve 

 

After that we can plot the drive system representative points on the same diagram of 

the 𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve. Taking into account the catalogs of the motors, we use the 

moment of inertia of the motor as abscissa and the maximum allowed torque as 

ordinate. In this way we can easily check if the motor is satisfied the inequality: 

𝑀𝑚,𝑚𝑎𝑥 ≤ 𝑀𝑀,𝑚𝑎𝑥 

 

From Fig. 6.10 we can see that there are four blue lines. And we can easily obtain the 

red line with the maximum value among those four lines.  

 

There is only one red point which represents the motor 1FK7011-5AK21 is below the 

𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve. Therefore this motor does not satisfy the required dynamic duty 

working range condition. The other five blue points which are beyond the 

𝐽𝑀-𝑀𝑚,𝑚𝑎𝑥 curve represent their motors satisfy the condition. 

 

 

𝐾1
′
 

𝐾2
′

 

𝐾3
′

 

𝐾4
′
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Fig. 6.10 The JM-Mm,rms curve and the drive system representative points 

 

To sum up, after checking the three conditions of the feasibility of the motor, we can 

draw the conclusions that the first and second motors 1FK7011-5AK21 CT and 

1FK7015-5AK21 CT is not suitable for the desired motion law with the transmission 

HPG-14A-45-BL3-F0-E14.20-SP. The other motors listed in chapter 6.1 have the 

feasibility. 
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Chapter 7:  Conclusion 

 

In this paper, we study how to choose a brushless permanent synchronous motor 

and related transmission in mechatronic applications, when the motor is working 

under specific load. 

 

Moreover, comparing with previous studies, this paper is more comprehensive and 

closer to real case, because we take in account both direct and inverse efficiencies of 

the transmission and the inertia of the transmission. Therefore there is no necessity 

of further verifications by simulating the system with the motor and the transmission 

chosen. 

 

Once the “reference task” for given transmission has been defined, we can obtain 

the acceleration, the speed and the torque of the load. From the reference task, we 

can achieve the JM-Mm,rms and JM-Mm,max curves which help us to choose all the 

adequate electrical motors for given transmission. The first curve chooses the motors 

with reference to the continuous duty operating range, while the latter one selects 

the motors with reference to the dynamic operating range. The points representing 

the characteristic of a motor are plotted on both figures. We discard the motors 

whose representative points are below the curves. The motors must also satisfy that 

their maximum allowed speed is greater than the maximum speed of the designed 

speed law.  

 

If a motor satisfies the three conditions mentioned above, it will be chosen. 

 

The method is implemented with an algorithm solving, which does a feasibility check. 

After importing the characteristic parameters of a particular motor connected to the 

transmission and the “reference task”, the user can achieve the proper motors that 

can be used. 

 

This method is not sufficient only if the dynamic range of the motor is not 

rectangular. 
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Appendix: Algorithm solution scripts  

clear all 

close all 

clc 

  

%% input data  

  

% the data of design motion law 

T= 2;           %s 

t=0:0.0001:T;   %s 

h=1;            %rad 

tm1=0.9;        %s 

tr1=0.1;        %s 

tm2=0.85;       %s 

tr2=T-tm1-tm2-tr1;  %s 

tap1=0.3;       %tap1/tm 

tan1=0.25;      %tan1/tm 

tap2=0.4;       %tap2/tm 

tan2=0.25;      %tan2/tm 

  

% the specific data of the load 

JL=3;  % kg*M^2 

ML01=1;  %N*M the constant resistant moment for the direct power flow 

ML02=15; %N*M the constant resistant moment for the inverse power flow 

  

% the parameters of the transmission 

etad=0.85; 

etai=0.8; 

  

tau=1/45; 

  

J1=1.57e-4;       % kg*M^2 

J2=0.1;       % kg*M^2 

JM=0:1e-7:3e-4;     % kg*M^2 

  

%% calculate the designed motion law 

  

x=zeros(1,length(t)); 

wL=zeros(1,length(t)); 

aL=zeros(1,length(t)); 

  

% use the function Required_Motion_Law() to solve the designed motion law 
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for ii=1:length(t) 

     

   OUT=Required_Motion_Law (t(ii),  h,T, tm1, 

tap1,tan1,tr1,tm2,tap2,tan2,tr2); 

   x(ii)=OUT(1); 

   wL(ii)=OUT(2); 

   aL(ii)=OUT(3); 

end 

  

figure(1) 

plot(t,x) 

ylabel('x [rad]') 

xlabel('t [s]') 

grid on  

  

figure(2) 

plot(t,wL) 

ylabel('¦Ø_L [rad/s]') 

xlabel('t [s]') 

  

figure(3) 

plot(t,aL) 

ylabel('a_L [rad/s^2]') 

xlabel('t [s]') 

hold on 

aLrms=rms(aL,T); 

plot(t,aLrms,'k-.') 

  

ML=zeros(1,length(aL)); 

for ii=1:length(ML) 

    if t(ii)<=tm1+tr1; 

    ML(ii)=JL*aL(ii)+ML01; 

    else 

        ML(ii)=JL*aL(ii)+ML02; 

    end 

end 

  

figure(4) 

plot(t,ML) 

xlabel('t [s]') 

ylabel('M_L [Nm]') 
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%% assume etai, etad, tau, J1, J2 to find motor 

% there is not exist the KP curve, we draw only Mm,rms-JM Mm,max-JM curve 

  

disp('For transmission::') 

disp(['    J1=',num2str(J1),'  [kg*M^2]']) 

disp(['    J2=',num2str(J2),'  [kg*M^2]']) 

  

disp('at the conditions::') 

disp(['    etai=',num2str(etai)]) 

disp(['    etad=',num2str(etad)]) 

disp(['    tau=',num2str(tau),]) 

  

dt=T/length(t); 

wLmax=max(abs(wL)); 

MLstar=zeros(1,length(t)); 

  

JTd=J1/tau^2+J2/etad; 

JTi=J1/tau^2+J2*etai; 

previous=0; 

initial=0; 

for ii=1:length(t) 

        if (ML(ii)+J2*aL(ii))*wL(ii)>0 

            %direct 

            MLstar(ii)=JTd*aL(ii)+ML(ii)/etad; 

            previous=1; 

        elseif (ML(ii)+J2*aL(ii))*wL(ii)<0 

            MLstar(ii)=JTi*aL(ii)+ML(ii)*etai; 

            previous=-1; 

        elseif (ML(ii)+J2*aL(ii))*wL(ii)==0 && wL(ii)~=0  

               MLstar(ii)=0; 

        elseif (ML(ii)+J2*aL(ii))*wL(ii)==0 && wL(ii)==0 

            if previous==1 

            %means direct 

            MLstar(ii)=JTd*aL(ii)+ML(ii)/etad; 

            elseif previous==-1 

             %means inverse 

            MLstar(ii)=JTi*aL(ii)+ML(ii)*etai; 

            

            else 

            initial=1;% means we should deal with the initial condition 

             

            end 

        end 
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end 

%  the initial condition coincide with the direction of final power flow 

  

if initial==1 

            zz=1; 

            while (ML(zz)+J2*aL(zz))*wL(zz)==0 

                if previous==1 

                %means direct 

                MLstar(zz)=JTd*aL(zz)+ML(zz)/etad; 

             

             

                elseif previous==-1 

                 %means inverse 

                MLstar(zz)=JTi*aL(zz)+ML(zz)*etai; 

                end 

                zz=zz+1; 

            end 

end 

     

figure(5) 

plot(t,MLstar) 

xlabel('t [s]') 

ylabel('M_L* [Nm]') 

hold on 

MLstarrms=rms(MLstar,T); 

plot(t,MLstarrms,'k-.') 

A=aLrms^2/tau^2; 

  

sumB=0; 

for ii=1:length(t) 

    sumB=sumB+MLstar(ii)*aL(ii)*dt; 

     

end 

B=sumB/T; 

C=tau^2*MLstarrms^2; 

D=B^2-A*C; 

Mm_rms=zeros(1,length(JM)); 

  

  

xx=-5e-3:1e-5:5e-3; 

yy1=length(xx); 

yy2=length(xx); 

for ii=1:length(xx) 

    yy1(ii)=sqrt(A*xx(ii)^2+2*B*xx(ii)+C); 
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    yy2(ii)=-sqrt(A*xx(ii)^2+2*B*xx(ii)+C); 

end 

  

figure(6) 

plot(xx,yy1) 

xlabel('J_M') 

ylabel('M_m_,_r_m_s') 

hold on 

plot(xx,yy2) 

p=find(xx==0); 

  

plot(xx(p:length(xx)),yy1(p:length(yy1)),'r-','LineWidth',3) 

grid on 

% 

  

for ii=1:length(JM) 

    Mm_rms(ii)=sqrt(A*JM(ii)^2+2*B*JM(ii)+C); 

end 

  

  

figure(7) 

plot(JM,Mm_rms) 

xlabel('J_M') 

ylabel('M_m_,_r_m_s') 

  

%% draw the Mm,max JM curve 

z=zeros(length(t),2); 

count=1; 

z(1,1)=aL(1); 

z(1,2)=MLstar(1); 

for ii=1:length(t) 

    verified=1; 

        for jj=1:count 

            if aL(ii)==z(jj,1) && MLstar(ii)==z(jj,2) 

                verified=0; 

            end 

        end 

        if verified==1  

            count=count+1; 

  

            z(count,1)=aL(ii); 

            z(count,2)=MLstar(ii); 

             

        end 
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end 

     

figure(8) 

plot(z(1:count,1),z(1:count,2),'.') 

xlabel('a_L') 

ylabel('M_L*') 

grid on 

% move the points of third quadrant to the first quadrant 

count2=0;   %count for the points in second and fourth quadrant 

for ii=1:count 

     

   if z(ii,1)<0 && z(ii,2)<0 

       z(ii,1)=-z(ii,1); 

       z(ii,2)=-z(ii,2); 

    

   elseif z(ii,1)<=0 && z(ii,2)>0        % in second quadrant 

       count2=count2+1; 

       z(count+count2,1)=-z(ii,1); 

       z(count+count2,2)=-z(ii,2); 

   elseif z(ii,1)>0 && z(ii,2)<=0        % in fourth quadrant 

       count2=count2+1; 

       z(count+count2,1)=-z(ii,1); 

       z(count+count2,2)=-z(ii,2); 

   end 

end 

count=count+count2; 

  

figure(9) 

plot(z(1:count,1),z(1:count,2),'.') 

xlabel('a_L') 

ylabel('M_L*') 

grid on 

hold on 

  

temK=zeros(count,2); 

temK(1,2)=max(z(:,2)); 

p1=find(z(:,2)==temK(1,2)); 

  

temK(1,1)=z(p1,1); %find the temK(1) 

  

jj=1; 

while(temK(jj,1)~=max(z(:,1))) 

    maxsl=0; 

for ii=1:count 
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    if z(ii,1)>temK(jj,1) 

        % calc the slope 

        if maxsl==0 

            maxsl=(z(ii,2)-temK(jj,2))/(z(ii,1)-temK(jj,1)); 

            temK(jj+1,1)=z(ii,1); 

            temK(jj+1,2)=z(ii,2); 

        else 

            sl=(z(ii,2)-temK(jj,2))/(z(ii,1)-temK(jj,1)); 

            if sl>maxsl 

            maxsl=sl; 

            temK(jj+1,1)=z(ii,1); 

            temK(jj+1,2)=z(ii,2); 

            end 

        end 

         

    end 

end 

    jj=jj+1; 

     

end 

K=temK(1:jj,1:2); 

for ii=1:length(K(:,1))+1 

    if ii==1 

        plot([0 K(1,1)],[K(1,2) K(1,2)],'b-.') 

    elseif ii==length(K(:,1))+1         % draw the vertical line 

        plot([K(ii-1,1) K(ii-1,1)],[K(ii-1,2) K(ii-1,2)-50],'b-.') 

    else 

        plot([K(ii-1,1) K(ii,1)],[K(ii-1,2) K(ii,2)],'b-.') 

    end 

     

end 

hold off 

  

% calc the Mm,max JM line 

  

figure(10) 

xlabel('J_M') 

ylabel('M_m_,_m_a_x') 

  

hold on 

Mmtemp=zeros(length(K),length(JM)); 

Mmmax=zeros(1,length(JM)); 
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for ii=1:length(K(:,1)) 

    for jj=1:length(JM) 

    Mmtemp(ii,jj)=K(ii,1)/tau*JM(jj)+K(ii,2)*tau; 

     

    end 

    plot(JM,Mmtemp(ii,:)) 

     

end 

for ii=1:length(JM) 

    Mmmax(ii)=max(Mmtemp(:,ii)); 

end 

plot(JM,Mmmax,'r-.','LineWidth',3) 

  

%% Take into account the specific data of motors 

  

% use the Motor matrix to storage the data in order to easily access 

% to all the data. 

  

%       JM     Mm,rms,rated M_Mmax    wM,max 

Motor=[6.4e-6       0.08    0.5         837;            %motor1 1FK7011 CT 

        8.3e-6      0.16    1           837;            %motor2 1FK7015 CT 

        2.8e-5      0.6     3.4         1047;           %motor3 1FK7022 CT 

        6.1e-5      0.8          4.5         1047 ;     %motor4  1FK7032 CT 

        9e-5        1          6.5          1047;       %motor5  1FK7034 CT       

        1.7e-4      1.1         5.1          942];       %motor6  1FK7040 CT 

         

% use a vector fM to store the results of feasibility of the motors 

  

fM=zeros(1,length(Motor));  

  

% the motor must satisfy 3 conditions 

% 1. wm,max<=wMmax 

wmmax=max(wL)/tau; 

disp(['wm,max=',num2str(wmmax)]) 

for ii=1:length(Motor(:,1)) 

    if wmmax<=Motor(ii,4) 

        fM(ii)=1; 

    else 

        fM(ii)=0; 

    end 

end 

  

% 2. the Mm,rms,rated of the motor must be above the JM-Mm,rms curve 
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% polt on the JM-Mm_rms curve directly 

  

figure(7) 

hold on 

for ii=1:length(Motor) 

    for jj=1:length(Motor) 

    if JM(ii)-Motor(ii,1)<1e-8 

        p=jj; 

    end 

     

    end 

    if Mm_rms(p)<=Motor(ii,2) 

        plot(Motor(ii,1),Motor(ii,2),'b.') 

    else 

        fM(ii)=0; % delete the unfeasible points 

        plot(Motor(ii,1),Motor(ii,2),'r.') 

    end 

     

end 

hold off 

  

% 3.the M_Mmax must be above the JM-Mm,max curve 

  

% polt on the JM-Mm_max curve directly 

figure(10) 

hold on 

for ii=1:length(Motor) 

    for jj=1:length(Motor) 

    if JM(ii)-Motor(ii,1)<1e-8 

        p=jj;   %to find the position of JM 

    end 

    end 

     

    if Mmmax(p)<=Motor(ii,3)  

        plot(Motor(ii,1),Motor(ii,3),'b.') 

    else 

        fM(ii)=0; 

        plot(Motor(ii,1),Motor(ii,3),'r.') 

    end 

     

end 

  

for ii=1:length(Motor) 

    if fM(ii)==1 
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        disp(['Motor ',num2str(ii),' is feasible']) 

    else 

        disp(['Motor ',num2str(ii),' is unfeasible']) 

    end 

     

end 
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