POLITECNICO DI MILANO

Facoltà di Ingegneria dei Processi Industriali

Corso di Laurea Specialistica in Ingegneria Elettrica

EXPERIMENTAL CHARACTERIZATION OF MAGNETIC SENSORS FOR CURRENT MEASUREMENT APPLICATIONS

Relatore: Prof. Roberto OTTOBONI

Tesi di Laurea Specilistica di:

Erlind DHAMI

Matr. n. 755998

Anno Accademico 2011 – 2012

EXPERIMENTAL CHARACTERIZATION OF MAGNETIC SENSORS FOR CURRENT MEASUREMENT APPLICATIONS

MASTER THESIS

ERLIND DHAMI

July 2012

Thesis Supervisor:

Prof. Roberto OTTOBONI

POLITECNICO DI MILANO

Facoltà di Ingegneria dei Processi Industriali Corso di Laurea Specialistica in Ingegneria Elettrica

Abstract

CURRENT MEASUREMENT is a fundamental practice in the electricity sector. Today it is common practice to measure large currents in many applications (power measurements, protection, etc.): therefore, the current transducer must operate with current values that reach several thousand hundreds of amperes, exhibit good linearity in a wide range temperature (typically -25 ° C to +100 ° C) and currents, ensure adequate accuracy, and, last but not least, a good noise rejection. According to the principle of operation, can be substantially identified four techniques of measurement of an electric current, which can be classified as follows: Ohm's Law, the law of Faraday, the Faraday's effect and the detection of the magnetic field. It is natural that there are limitations and disadvantages to each of these principles; both from a technical and an economical point of view and thus each solution is a compromise between different requirements.

In this view, an attractive approach to current measurement is represented by the array of magnetic sensors, in which the measure of the current is reduced to the measurement of a magnetic field produced by it. Due to the linearity between the magnetic field and current that produces it, the latter can be reconstructed, by means of specific algorithms, starting from the values collected by a suitable array of magnetic sensors placed in proximity of the conductor in which circulates the current to be measured.

A magnetic field sensor which is very popular and widely used in these arrays is the Hall effect sensor. This sensor is relatively inexpensive, which allows the use of arrays even with a high number of sensors, very sensitive and characterized by good linearity. Currently there are several companies that produce the Hall effect sensors, which, as officially declared, exhibit excellent linearity in a wide range of temperatures and currents. The objective of this thesis is to verify experimentally the real characteristics of products from different manufacturers, in order to get a complete and comparative view of the performance of these sensors, specifically evaluated under the conditions provided for use in arrays for current measurement. The following chapters provide a report of all the tests that were performed to study

i

the performance of these sensors on a temperature range between -20 ⁰ C and +100 ⁰ C, and with variations in current from 50A up to 2500A.

Finally we have also carried out tests on a different transducer, but certainly of great and renewed interest: a Rogowski coil with a non-circular geometry. This type of current transducer has a very good performance in terms of linearity, crosstalk rejection, bandwidth, and is not subject to saturation phenomena. This last feature makes the Rogowski coil the ideal transducer even for measuring short-circuit currents. Several comparative tests between the two new types of Rogowski coils are reported in this thesis.

Keywords: Current measurement; Hall-effect sensors; magnetic sensor array; Rogowski coil; crosstalk rejection

"To all those people that made this work possible"

Erlind Dhami

Acknowledgements

GRADUATING FROM POLITECNICO DI MILANO is a big step for me, and I like to thank all the people that supported me during this beautiful journey.

First and foremost, I would like to thank my supervisor, Prof. Roberto Ottoboni, for his support, continuous help, understanding and willingness throughout the period that led to the realization of this thesis. Moreover, spending his precious time with me is appreciated far more than I have words to express. I am very grateful to work with such a knowledgeable and insightful professor.

I would like also to express my appreciation to all my professors who, with their way of teaching, have increased my passion for engineering.

A special thanks goes to my family, for giving me the opportunity of earning a better education at Politecnico di Milano, which is a dream come true. I am very grateful to them for their moral support and financial sacrifices, so that I may have a brighter future.

Next I want to thank my girlfriend Alma, who has always been present and shared with me every second of this beautiful and important part of my life. She has proven to me that, relying on each other, every difficulty is nothing else that a station by which you have to pass-by, in order to arrive on the destination. She made this journey easier.

Lastly I want to thank all the friends that I made while studying at Politecnico di Milano, especially Federico, Fabio, and Rabah, who have helped me in several occasions.

iυ

Table of Contents

1	Pre	face	1
	1.1.	Introduction of Current Measurement in Electrical Devices	1
	1.2.	Current Sensing Techniques: The State of the Art	2
	1.2.1.	. Current Sensors Based on Ohm's Law	3
	1.2.2.	. Current Sensors Technology that Uses Faraday's Law	6
	1.2.3.	. Current Sensors that Employ Faraday's Effect	12
	1.2.4.	. Magnetic Field – Based Current Sensors	14
	1.3.	Arrays of Magnetic Sensors for Current Measurements	22
	1.4.	Thesis Objective	27
2	Cha	racterization of Hall sensors	28
	2.1.	Overview of the Tests	28
	2.2.	Metrological Characterization of Type 1 Sensors	28
	2.2.1.	. Summary and Conclusions	37
	2.3.	Changes in the Experimental Setup	
	2.4.	Metrological Characterization of Type 2 Sensors	
	2.5.	Metrological Characterization of Type 3 Sensors	47
	2.6.	Metrological Characterization of Type 4 Sensors	53
	2.7.	Metrological Characterization of Type 5 Sensors	60
	2.7.1.	. Temperature Test	68
	2.8	Conclusions	73
3 Rogo		owski Coil	77
	3.1.	Type A Rogowski Coil	79
	3.2.	Type B Rogowski Coil	87
	3.3.	Comparative analysis of the two types of Rogowski coil	96
	3.4.	Conclusions	99
4	Fina	al Conclusions	100
R	eferenc	e	101

1

Preface

1.1. Introduction of Current Measurement in Electrical Devices

NOWADAYS ELECTRICAL DEVICES are spread throughout the entire landscape of human existence. We find them in almost every application that aids the human existence around the globe; they are in different shapes and sizes, and different purposes. These devices are used for measurement, automation control, monitoring, switching operation, etc..

In the electrical engineering landscape electrical devices are used for protection purposes. They protect the electrical equipment from damages caused by various faults, like short circuits, over-loads, etc., and common examples are: current transformers, voltage transformers, circuit breakers, etc..

A lot of intelligence is being introduced in electrical devices, such as micro-electronics, computer science, power electronics, and cutting-edge sensing techniques. A crucial point in proper operation of electrical devices is current measurement, and many different approaches are available in today's market. They are differentiated from one another based on specifications required by different applications, such as the measurement of peak to peak value, RMS value, accuracy, bandwidth, robustness, cost, etc..

Different technologies include: The old school shunt resistor based on the Ohm's Law which is the simplest way to measure a current; AC current

measurements carried out by traditional current transformers, and Rogowski coils; Magnetic-field based transducers such as Hall-Effect transducers in three different configurations, – open-loop, closed-loop, and ETA –; Fluxgate based transducers which are very sensitive magnetic-field based transducers; fiber-optic current sensors based on the Faraday's Effect; and other technologies such the magneto-resistance effect (MR).

Current sensing technologies must fulfill various requirements, for various applications. Generally, the common requirements are:

- High accuracy and linearity
- Wide bandwidth
- DC and AC measurement
- Low temperature drift
- Interference rejection
- IC packaging
- Low power consumption
- Low price

1.2. Current Sensing Techniques: The State of the Art

INFORMATION regarding current flow is required in a wide range of applications. High performance electrical/electronic devices require high performance sensing techniques to meet the demands in terms of cost, isolation, precision, bandwidth, measurement range, or size. To satisfy these demands, different current measurement methods have been developed.

The following paragraphs are a thorough review of current sensing techniques. We can classify these techniques based upon the underlying physical principle in order to have some understanding of the performance and the limitations of each one ^[1].

These principles are as follows:

- i. Ohm's law of resistance
- ii. Faraday's law of induction
- iii. Faraday effect
- iv. Magnetic field sensors

We'll also discuss known sensing techniques, such as open – loop, closed – loop, particularly magnetic field – based sensors and the use of these sensors in combination to meet performance requirements.

1.2.1. Current Sensors Based on Ohm's Law

 $O{\ensuremath{\mathsf{HM}}\xspace{\mathsf{S}}}$ LAW is a simplification of the Lorentz law that states

$$\mathbf{J} = \sigma \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \tag{1-1}$$

where:

J is the current density
E the electric field
v the charge velocity
B the magnetic flux density acting on the charge o the material conductivity

Generally, the moving charge has a velocity that is sufficiently small so that the second term can be neglected. Therefore we can write

$$\mathbf{J} = \sigma \mathbf{E},\tag{1-2}$$

This equation is the Ohm's law and states that the voltage drop across a resistor is proportional to the current going through it. This relationship can be used to sense currents. Sensors based on this simple relationship are well known for their lower costs, and reliability due to this simple principle.

SHUNT RESISTOR

A COMMON AND SIMPLE approach to current sensing is the use of a shunt resistor. The voltage drop across the shunt is proportional to its current flow. Both alternating currents (AC) and direct currents (DC) can be measured with the shunt resistor. Due to its introduction into the current's path, the shunt resistor generates a power loss that can be calculated via the Ohm's law (i^2R). From this relationship, is quite clear that the loss increases with the square of the current, thus restricting the usage of the shunt resistor in high current applications.

Figure 1-1 Equivalent circuit diagram for a shunt resistor

Fig. 1-1 depicts the equivalent circuit of a shunt resistor with nominal resistance R alongside a parasitic inductance L_S and a series resistance R_S , due to the skin effect ^[2]. The parasitic inductance L_S is often a source of confusion since it is frequently assumed to be related to the self-inductance of the shunt resistor. Hence, the connection of the sense wires is crucial to achieve good performance. Significant research has been conducted to reduce L_S and the skin effect in order to increase the measurement bandwidth ^[3-5].

The high – performance coaxial shunt have been widely used for many applications – fast-rise time transient currents and high amplitudes – but, for highly integrated electronic devices are preferred low-cost surface-mounted-devices (SMDs)^[6], because of their small sizes and relatively low prices.

Fast-response for measuring high-impulse or heavy-surge currents is the common requirement for shunt resistors. In 1981 Malewski^[7], designed a circuit to eliminate the skin effect and later in 1999 the flap-strap sandwich shunt (FSSS)^[8] was introduced from a flat-strap sandwich resistor. The

properties of the FSSS in terms of response time, power loss and frequency characteristics, are the same as the shunt resistor but the cost is lower and the construction technique is less sophisticated, compared to Malewski and the coaxial shunt.

TRACE RESISTANCE SENSING

IT IS POSSIBLE to exploit the intrinsic resistance of a conducting element, (usually a copper trace) instead of a shunt resistor. Since no additional resistor is required this approach promises a low-cost and space saving configuration with no additional power losses either. Naturally, the voltage drop of a copper trace is very low due to its very low resistance, making the presence of a high gain amplifier mandatory in order to get a useful signal.

There are several physical effects which may alter the current measurement process: thermal drift of the copper trace, initial conditions of the trace resistance etc. Therefore, this approach is not suitable for applications that require a reasonable accuracy due to the large thermal drift. In order to overcome the problems associated with the temperature drift, a digital controller can be used for thermal drift compensation and calibration of the copper trace ^[9].

Ohm's law provides the simplest way to measure currents. A significant drawback of this kind of current sensor is the unavoidable electrical connection between the current to be measured and the sense circuit. By employing a so-called isolation amplifier, electrical isolation can be added. However, these amplifiers are expensive and can also deteriorate the bandwidth, accuracy and thermal drift of the original current sensing technique. For these reasons, current sensing techniques based on physical principles that provide intrinsic electrical isolation deliver a better performance at lower costs in applications where isolation is required.

1.2.2. Current Sensors Technology that Uses Faraday's Law

FARADAY'S LAW of induction – that states: the total electromotive force induced in a closed circuit is proportional to the time rate of change of the total magnetic flux linking the circuit – has been largely employed in current sensing techniques. Two major sensing devices based on Faraday's law are Current transformers (CTs) and Rogowski coils. These sensors provide an intrinsic electrical isolation between the current we want to measure and the output signal, thus making these current sensing devices mandatory, where safety standards demand electrical isolation.

ROGOWSKI COIL

Figure 1-2 Rogowski coil as a transducer. An integrator is required to get an output voltage v_{out} proportional to the primary current i_c

In figure 1-2 is depicted a basic configuration of a Rogowski coil – also called air-cored coils – which is a classic example of a sensing technique based on the Faraday's law of induction. The coil's working principle can be explained starting from Ampere's law that defines the path integral of the magnetic flux density **B** inside the coil

$$\oint_C \vec{B} \cdot \vec{dl} = \mu_0 i_C \tag{1-3}$$

The current i_c passes through an enclosed curve C. For a simple analysis, let's suppose that the cross section diameter of the coil is much smaller than the radius r. This is valid for most coil designs. If the current i_c passes through the center of the coil, the magnetic flux density B can written as:

$$B = \frac{\mu_0 i_C}{2\pi r} \tag{1-4}$$

Applying the Faraday's law of induction, we can determine the induced voltage into the Rogowski coil due to the current i_c

$$v = -N\frac{d\phi}{dt} = -NA\frac{dB}{dt} = -\frac{NA\mu_0}{2\pi r}\frac{di_c}{dt}$$
(1-5)

where:

 \boldsymbol{A} is the cross sectional area of the coil

N is the number of turns

Voltage \boldsymbol{v} is proportional to the derivative of the current \boldsymbol{i}_{c} that we want to measure. Using an integrator with an integrating constant \boldsymbol{k} , and infinitely high input impedance the exact expression of \boldsymbol{v}_{out} can be found.

$$v_{out} = -\frac{NA\mu_0}{2\pi r} k \int_t \frac{di_c}{dt} dt + v_{out}(0) = -k \frac{NA\mu_0}{2\pi r} i_c + v_{out}(0)$$
(1-6)

Expression (1-6) is theoretically valid even if the conductor isn't in the center of the Rogowski coil, but a quick look at the characteristics of commercial Rogowski coils, shows that the typical measurement error is increased if the coil is not centered on the conductor, as shown in figure 1-3.

Figure 1-3 Accuracy of the Rogoski coil based on the position of the conductor.

This error derives from the fact that in reality the winding density is not perfectly constant along the entire coil, and is even worse in the proximity of the mechanical clip, where the density cannot be even. Also from expression (1-6) can be noticed that the coil can be used to measure DC currents. But, we have to remember that the working principle is based on the detection of the flux change, which is proportional to the current change. From (1-6) we have to know the initial condition at t = 0, which is $v_{out}(0)$ in order to reconstruct a DC current. Since practical integrators are not perfect and may exhibit a small offset voltage, the frequency response of the Rogowski coil must be modified, in order to reduce the gain at low frequency. Therefore, practical Rogowski coils are not suitable for lowfrequency currents measurement ^{[10], [11], [12]}. To extend the use to these currents, it has been proposed to combine the Rogowski coil with an openloop magnetic field sensor in order to measure DC currents ^[13].

Many different designs of Rogowski coils have been proposed. For higher performance, a coil with a current output has been proposed, which uses its self-inductance for passive integration. Reducing the bulk of the coil, by introducing a PCB Rogowski coil, is another example of different Rogowski coil design.

Compared to the current transformer, the Rogowski coil has a low sensitivity. This is because of the absence of a high permeability magnetic core, that the current transformer can take advantage of. However, this can be compensated by adding more windings on the Rogowski coil or using an integrator with a higher gain \mathbf{k} . More windings increase the self-capacitance and self-inductance, and higher integrator gain means an amplifier with a large gain-bandwidth product. As always in engineering, trade-offs must be made depending on specific applications.

Fig. 1-4 displays the operating limits of Rogowski coils ^[14]

Figure 1-4 Operating limits of Rogowski coils. Rigid coils have the advantage of being able to measure at smaller frequencies, whereas flexible coils have improved handling capability, and usually can measure at higher frequencies.

Upper limits:

The direct output from the coil depends on the rate of change of current. For sufficiently high currents and frequencies the output can be large enough to cause a voltage breakdown. Coils with a low mutual inductance are best for high currents and frequencies.

Resonance Limits:

Every coil has a self-resonant frequency caused by its self-inductance and inter-turn capacitance. The resonance also depends on other factors such as cable capacitance. The resonance can be controlled by suitable damping circuitry, but generally it is not feasible to use a coil above its resonant frequency. The vertical broken lines show these limits.

Lower Limits:

At low currents and low frequencies the direct output from the coil is very low and the usefulness of the current transducer is limited by noise effects. Rigid coils which have a large mutual inductance are best for very low current measurements. The low current limit can be extended by using multiple primary turns round the coil or in the case of a flexible coil by wrapping the coil several times round the conductor. Electronic methods of signal recovery such as filters or phase-sensitive detectors are also useful.

One of the key features of Rogowski transducers is the fact that they don't exhibit saturation and are intrinsically linear due to the absence of magnetic material. Being able to measure high currents makes the Rogoskwi transducer an exceptional tool to measure the amplitude of the current pulse, even when it is unknown. The cost is comparable with that of current transformers but with the advantage of less insertion impedance and, in the case of flexible coils, higher user-friendliness. The coil can be used in a wide range of applications, such as: short-circuit testing systems, current measurements in power-distribution systems, slip-ring induction motors, etc..

CURRENT TRANSFORMER (CT)

THE CURRENT TRANSFORMER (CT) is similar to the Rogowski coil, with one primary turn and several secondary turns but it uses a core material with high relative permeability. The secondary winding of a CT is loaded with a sense resistor. The secondary current that passes through the sense resistor generates a magnetic flux that opposes the flux generated by the primary current.

A basic model of the current transformer is shown in fig. 1-5(a). This equivalent circuit neglects stray inductances, core losses, and winding resistance. However, it gives sufficient insights to understand the working principle of the transformer. The secondary current is generally standardized at 1A, 2A, 5A (the third value is the most common).

There are two errors that must be kept in mind when using this approach in current measurement:

- **Ratio error:** is described as the deviation from the nominal ratio K_n , thus preventing a correct identification of the primary current.

 Phase shift error: is the deviation in the phase displacement of primary and secondary current.

The quality of the measurement is certified by the accuracy class of the CT which ranges from 0.1 to 3; these values represent the maximum allowed error in percentage, at the rated current.

An advantage of a CT over the Rogowski coil is that integration of the output is not required since the output voltage is directly proportional to the primary current, thus preventing the deterioration of the accuracy by the offset or saturation of the integration circuit. Furthermore, the position of the current carrying conductor influences less on the accuracy of the CT compared with Rogowski coil. However, must be kept in mind that the magnetizing inductance L_m [fig. 1-5(a)] is not ideal, and exhibits hysteresis and saturation. For this reason, the peak magnetizing current must not saturate the core, and the core losses must not cause overheating of the transformer. Saturation problems are critical especially for CTs used in protection relays.

Current transformers are very popular in power conversion applications because of their low cost, and the ability to provide an output signal that is directly compatible with an analog-to-digital converter. They are also intensively employed in power distribution networks at 50/60 Hz line frequency.

Figure 1-5 (a) current transformer model, (b) insertion scheme.

1.2.3. Current Sensors that Employ Faraday's Effect

THE FARADAY'S EFFECT is used in optical fiber current sensing. It is a magnetically induced circular birefringence. If the intrinsic circular birefringence of a medium is negligible small, a beam of light traveling through the medium will have its linear polarization rotated by an angle $\boldsymbol{\theta}$ equal to the integral of applied magnetic field \boldsymbol{H} along the path \boldsymbol{s}

$$\theta = V \int \vec{H} \cdot d\vec{s} \tag{1-6}$$

where:

 \boldsymbol{V} – is the Verdet constant

Extensive research has been done in optical current transformers. They provide an attractive alternative in applications such as: power distribution systems measurements, where electrical isolation is a key requirement. In such applications the cost of traditional current transformers increases, since the construction process has to take into account the challenges that arise, in terms of isolation material design, with increased levels of voltage. To this is added the need to avoid saturation of the core. Optical current sensors can measure DC currents beyond 100kA.

A direct way to use the Faraday's effect for current measurement is shown in figure 1-6.

Linear polarized light is feed into a fiber-optic coil that revolves N times around the current i_c to be measured. The rotation θ of the linear polarized light can be calculated using Ampere's law

$$\theta = VNi_C \tag{1-7}$$

An advantage of using fiber-optic coils is that only the magnetic fields internal to the coil – resulting from the flow of current i_c – are detected since external dispersion magnetic fields will commonly cancel out. Moreover, the position of the current conductor inside the sensor has no significant influence on the measurement accuracy ^[1].

Another advanced technique based on the Faraday's effect is by means of two counter propagating light beams using a Sagnac interferometer ^[1]. This technique delivers a better scale factor stability, excellent zero point stability, and provides significantly increased measurement range over the previous method.

A commercially available fiber-optic sensor can measure up to 500kA ^[1]. In order to avoid stress on the fiber-optic cable, the cable is packaged so as to protect the cable from any stress due to mounting and transportation of the current sensor. This current sensor introduces a significant reduction in power loss and is less bulky compared to alternative technologies used in power distribution systems. However, for smaller currents other technologies are more feasible mainly due to their lower costs, and because the fiber-optic principle will require many turns in order to provide the desired sensitivity. Special and expensive materials are required in order to avoid bend stress, which otherwise will deteriorate performance of these sensors. As mentioned above, fiber-optic sensors do not have the need for magnetic centering of the conductor carrying the current to measure, and are especially useful in HV systems due to their intrinsic electrical isolation, and in environments with high electromagnetic – interference. They are usually employed in power metering, fault detection and electro winning applications.

1.2.4. Magnetic Field – Based Current Sensors

MAGNETIC FIELD SENSORS are solid state devices that are becoming more and more popular because they can be used in many different types of application such as sensing position, velocity or directional movement ^[15]. They are widely used due to their non-contact wear free operation, low maintenance, robust design and as sealed Hall Effect devices are immune to vibration, dust and water. The wide ranges of applications – from automobiles to aircrafts – make the magnetic field sensors very popular devices.

HALL- EFFECT SENSORS

HALL-EFFECT SENSORS are devices based on the Hall-effect, which was discovered by Edwin Hall in 1879 based on the physical principle of the Lorentz force. They are activated by an external magnetic field. Figure 1-7(a) shows a block diagram of a sensing device based on the Hall Effect sensor. In this generalized device, the Hall sensor senses the magnetic field produced by the magnetic system. This system responds to the quantity to be sensed (current, temperature, position, velocity, etc.) through the input interface. The output interface then converts the electrical signal from the Hall sensor – the Hall voltage – to a signal that is significant to the application context.

Figure 1-7 (a) General sensor based on Hall Effect ^[16], (b) Basic principle of the Hall Effect

The basic principle of the Hall Effect it is shown in figure 1-7(b). The magnetic field has two important characteristics; flux density B and **polarity**. The output signal from a Hall Effect sensor is the function of magnetic field density around the device. When the magnetic flux density around the sensor exceeds a certain preset threshold, the sensor detects it and generates an output voltage called the **Hall Voltage**, V.

Hall Effect Sensors consist basically of a thin piece of rectangular ptype semiconductor material such as gallium arsenide (GaAs), indium antimonide (InSb) or indium arsenide (InAs) passing a continuous current through itself. When the device is placed within a magnetic field, the magnetic flux lines exert a force on the semiconductor material which deflects the charge carriers, electrons and holes, to either side of the semiconductor slab. This movement of charge carriers is a result of the magnetic force they experience passing through the semiconductor material. As these electrons and holes move side wards a potential difference (**the Hall Voltage**, **V**) is produced between the two sides of the semiconductor material by the build-up of these charge carriers. Then the movement of electrons through the semiconductor material is affected by the presence of an external magnetic field which is at right angles to it and this effect is greater in a flat rectangular shaped material.

Generally, Hall Effect sensors and switches are designed to be in the "**OFF**", (open circuit condition) when there is no magnetic field present. They only turn "**ON**", (closed circuit condition) when subjected to a magnetic field of sufficient strength and polarity. At zero magnetic field, an offset voltage is present, also known as misalignment voltage. Therefore, to use the Hall-effect device as a current transducer, additional circuitry is required in order to compensate this offset voltage.

SENSING CONFIGURATIONS

THERE ARE THREE DIFFERENT sensing configurations; open – loop, closed – loop, and a third one that combines magnetic field sensors with a current transformer or a Rogowski coil ^[1]. The followings will provide a quick review of each one these sensing configurations.

Figure 1-8 (a) Open – loop current sensor, (b) Closed – loop current sensor

Figure 1-8(a) is a schematic of an open – loop configuration that uses a magnetic core to concentrate the field from the primary current i_{c} onto the sensing device. This configuration reduces the influence of external magnetic fields. It is possible to measure DC, AC, and impulse currents with galvanic insulation between the primary and the secondary circuit. When the primary current i_{c} , flows through the sensor, it creates a primary magnetic flux. The Hall sensor placed in the air gap of the magnetic circuit, will provide a voltage V (Hall voltage), that is proportional to this flux, which itself is proportional to the primary current i_{c} to be measured. The amplifier then amplifies the Hall voltage V to be further processed.

The closed – loop configuration, just like the open – loop configuration; provides galvanic insulation between the primary and the secondary circuit. Same considerations can be made regarding the waveforms that can be measured. Figure 1-8(b) shows a schematic of this configuration. The primary current i_c flowing through the sensing device creates a primary

magnetic flux. The Hall sensor placed in the air gap of this circuit provides a voltage that is proportional to this flux. This voltage is then processed by the electronic circuit and is converted to a secondary current i_S , which is then fed to the secondary winding. Current i_S multiplied by the number of turns of the secondary winding cancels out the primary magnetic flux. The formula $N_P \cdot I_P = N_S \cdot I_S$ is true at any given time. Therefore, the secondary current i_S is proportional to the primary current at any moment. This secondary current can be passed through a measuring resistance R_S . The voltage drop V on this resistance is proportional to the primary current i_C .

Some key features of these configurations can be summed up as follows; the open – loop have a good accuracy that ranges from direct to several tens of kHz. It provides high reliability, low power consumption, reduced weight and volume and cost effectiveness. The closed – loop on the other hand, features a high accuracy under frequencies that span from direct to more than 100 kHz, while delivering high dynamic performance, high overload capabilities and high reliability. Both these configurations measure instantaneous values.

The third configuration, as mention above, is a combination of a magnetic sensor and a current transformer or a Rogowski coil. This combination is very interesting, since it takes advantage of DC measurements offered by the magnetic sensor, and the accuracy and bandwidth offered by the CT/Rogowski coil. An example of this configuration is the Eta current sensing principle developed by LEM.

This transducer is the combination of an open – loop Hall-effect sensor with a magnetic core that uses the CT principle, as shown in figure 1-9. Since no compensation current is required, the power consumption has been greatly reduced, and the sensor can work with a unipolar supply ^[17]. Eta technology is almost the same as the closed – loop technology in terms of both performance and cost. The current transformer covers the high – frequency range, while the open – loop Hall-effect works on the low – frequency range.

Figure 1-9 A schematic of the Eta technology

The combination of magnetic field sensor and CT has been pushed further to build the so-called current probes, which are sensors that achieve a measurement bandwidth up to 100 MHz and accuracy around 2%. Other designs use a Rogowski coil to measure the high – frequency part of the current. Despite of all these advantages, active current probes are used mainly in measurement equipment, and are not mass-produced due to their complex design, large volume, and expensiveness.

THE FLUXGATE PRINCIPLE

THE FLUXGATE TECHNOLOGY is known for decades, and is one of the most accurate field sensors available today. The basic fluxgate principle exploits the nonlinear relation that exists between the magnetic field, H, and the magnetic flux density, B, within a magnetic material. These sensors are able to measure DC or low-frequency AC magnetic fields. Fluxgate sensors can sense the direction of magnetic fields in the range of up to 1mT that can go even down to 10 pT ^[18].

Fig. 1-10 shows the mechanics of the fluxgate principle. The core is magnetically saturated (in both directions) by means of an excitation coil that is driven by an excitation current I_{exc} that can be a sine or a square waveform. In saturation the core permeability drops down and the DC flux associated with the measured DC magnetic field B_0 decreases (flux collapse). During the next half cycle of the excitation waveform the core recovers from

saturation, and the DC flux associated with magnetic field B_0 increases (flux recovery); the cycle than repeats. This process of "gating" flux in and out the sense coil gives the name to the device. Due to this flux change, a voltage V_{ind} is induced into the sensing (pick-up) coil placed around the core.

From fig. 1-10(b) can be seen that the sense voltage has a frequency that is twice compared to the excitation current I_{exc} . For this reason, often the voltage V_{ind} is extracted using a 2nd harmonic demodulation scheme. There are some fluxgates the work in short – circuited mode, providing a current – output.

Figure 1-10 (a) the fluxgate principle, (b) ideal flux waveforms ^[19]

The main problem of using this basic single-core design is that the sense coil will pick up the excitation current I_{exc} as well as the induced voltage V_{ind} , because the sensor acts as a transformer. Thus, the single-core design is used mainly for simple devices and special applications. In order to overcome this flaw, double cores (either double-rod or ring-core) are normally used. Some popular configurations of fluxgate-based magnetic sensors are shown in fig. 1-11.

Figure 1-11^[1] Different types of fluxgate configurations. (a) Closed – loop configuration, (b) low – frequency version, (c) Additional CT to extend the bandwidth, (d) three core configuration for enhanced performance.

In the closed - loop configuration or "The standard fluxgate configuration" [fig. 1-11(a)], the magnetic field is concentrated by the magnetic core. The secondary winding is used to compensate this concentrated magnetic field. High accuracy is achieved, due to high sensitivity and temperature stability offered by the fluxgate. A low frequency version consisting of a single closed annular magnetic core, with no pick-up coil is depicted in [fig. 1-11(b)]. Because of the absence of the pick-up coil, the current on the excitation coil is processed in order to determine the primary current i_c . This is a low-cost configuration, with a very low thermal drift, but with a limited bandwidth. This configuration can be extended using a current transformer in order to increase the bandwidth [fig. 1-11(c)]. The current transformer provides the measurements of highfrequency signals, while the fluxgate measures low-frequency signals. Finally, the most advanced and most costly configuration is depicted in figure [fig. 1-11(d)], where a third core is used for enhanced performance and bandwidth.

Many different fluxgate-based sensors have been proposed, and there are efforts in integrating open-loop fluxgate sensors with PCB technology which is certainly a promising development towards low-cost applications. Standalone fluxgate sensors are commercially successful but so far only in high precision applications because of the high cost and size requirements. Due to the very high accuracy, fluxgates are often employed in calibration systems, diagnosis systems, laboratory equipment, and medical systems.

MAGNETO RESISTANCE EFFECT (MR)

IT IS POSSIBLE TO BUILD structures in which the electrical resistance varies as a function of applied magnetic field. These structures can be used as magnetic sensors. Normally these resistors are assembled in a bridge configuration to compensate for thermal drift ^[1]. Popular magneto resistance-based sensors are: Anisotropic Magneto Resistance (AMR), Giant Magneto Resistance (GMR), Giant Magneto Impendence (GMI) and Tunnel Magneto Resistance (TMR).

All these MR-based sensors have higher sensitivity compared to Halleffect sensors. Despite of this, these sensors (GMR, CMR, and TMR) are still more expensive than Hall-effect devices, have serious drawbacks related with nonlinear behavior, distinct thermal drift, and a very strong external field can permanently alter the sensor behavior (GMR). GMI and TMR sensors are even more sensitive than GMR based sensors, but still in the test phase and no commercial version are available today ^[1].

1.3. Arrays of Magnetic Sensors for Current Measurements

CURRENT TRANSDUCERS based on sensor array are widely known for their low cost, small size, and interface with a PC. They are primarily Hall-effect sensors arranged in different configurations based on specific requirements of the application.

The simplest way to measure the current is to place a single magnetic sensor near the current that we want to measure, but crosstalk fields may limit the accuracy of the sensor. A single sensor cannot distinguish the field generated by the current under measurement from external magnetic fields. Ampere's Law states that the current flowing in a conductor is proportional to the sum of the sensors' outputs located around the conductor, so fitting as many sensors as possible in the area around the conductor is the next step. The third way to sense a current is to use a sensor array. Once the array has been located, the next step is to process the data from such array. Finally specific algorithms are employed to reconstruct the original current, based on the linear relationship between the current and magnetic field.

A circular array of magnetic sensors is an example of a modern current transducer. This approach has been employed for current sensing in a three-phase bus-bar system, with four sensors per phase, $\theta_0 = \pi$. The transducer was tested in a 50-500 Hz frequency range and the effects of a bar placed in the proximity of the array have been experimentally investigated. A high current testing showed that the transducer belongs to the 1% accuracy class.

When dealing with DC currents, two algorithms have been proposed to improve the accuracy and to reduce the crosstalk effect of external magnetic fields. Paper [20] presents and algorithm based on spatial harmonic analysis of the magnetic field. The DFT and the numerical solution of the proposed systems can be performed by a DSP. The new method can thus be applied in the realization of an intelligent current sensor made of low-cost magnetic sensors. The current under measurement I_1 and the crosstalk current I_2 are both considered filamentary. Because of the linearity of the field equations,

taking into account only one crosstalk current is sufficient to generalize the problem. An environmental homogenous magnetic field H_0 , e.g. the earth magnetic field, may also be present.

Let us now consider a circular array of radius d < D centered on current I_1 and made of N magnetic sensors, that are of the same type and have the same sensitivity S. The sensors are tangentially directed and distributed equally on the circumference, in positions $\theta_n = 2\pi n/N$, where n=1,...,N-1 as shown in [Fig.1-12].

Figure 1-12 Circular array made of sensors and their sensitivity vectors

The sensor output can be expressed as a complex Fourier series

$$V(\theta) = \sum_{m=-\infty}^{+\infty} c_m e^{im\theta}$$
(1-8)

where:

c_m is the Fourier coefficient

Taking into account the aliasing phenomenon, the relation between the DFT transformation of $V(\theta)$ and the Fourier coefficients is as follows

$$\tilde{v}_m = DFT\{v_n\} = e^{-jm\phi} \left(c_m + c_{N+m} e^{-jm\phi} + c_{-N+m} e^{-jm\phi} \right), \qquad m = 0, \dots, N-1$$
(1-9)

The quantities \tilde{v}_m , c_m , c_{N+m} and c_{-N+m} are all known, so I_1 , I_2 and their distance can be calculated by solving a nonlinear formulation.

The algorithm described above can be used only in the case of a circular bus-bar. In [21] is presented a generalized version of this algorithm that can be applied both in circular and rectangular bus-bars.

Due to the symmetrical magnetic field generated by the conductor H^{bar} and v^{bar} can be expanded in a spatial Fourier series of only cosinusoidal terms

$$v^{bar} = S \sum_{\substack{m \ge 0 \\ m = even}} I^{bar} b_m(r) cosm\theta$$
(1-10)

where:

coefficients \boldsymbol{b}_m depend on \boldsymbol{r} and on the dimensions of the bus-bar \boldsymbol{I}^{bar} is the current under measurement flowing in the bar

Let us now consider again a circular array centered on the bar and made of N magnetic sensors, that are tangentially directed and distributed equally on the circumference, in positions $\theta_n = 2\pi n/N$, where n=1,...,N-1. The sensor output is given by

$$V_n = V(r = d, \theta = \theta_n) = V^{bar}(d, \theta_n) + V^{crosstalk}(d, \theta_n) = V_n^{bar} + V_n^{crosstalk}$$
(1-11)

The DFT transform \tilde{V}_m^{bar} of V_n^{bar} taking into account aliasing is given by

$$\tilde{V}_m^{bar} = S(b_m + b_{N+m} + b_{N-m} + b_{2N+m} + b_{2N-m}) \cdot I^{bar}$$
(1-12)

The DFT of the magnetic sensor signals due to crosstalk current is the same as (1-9). For the linearity of the DFT operator, the DFT \tilde{V}_m of the sensor outputs $V_n = V_n^{bar} + V_n^{crosstalk}$ is given by the sum of \tilde{V}_m^{bar} and $\tilde{V}_m^{crosstalk}$. Thus, in order to calculate I^{bar} the nonlinear system of the two complex equations (12a) and (12b) in [20] must be inverted.

For the AC current measurement, let us consider a circular array of magnetic sensors and a current to be measured flowing in bus-bar placed at the center of the array [Fig.1-13].

Figure 1-13 A circular array of *N*=8 magnetic sensors and a bus-bar current under measurement. Arrows indicate the sensitivity direction of the sensors

The sum of magnetic sensors signals is proportional to a discretization of the Ampère's circulation and so realizes the measurement of the encircled current i(t), being:

$$i(t) = \oint \vec{H} \cdot dl \tag{1-13}$$

$$\oint \vec{H} \cdot dl \simeq d \frac{2\pi}{N} \sum_{n=1}^{N} \frac{v_n(t)}{S}$$
(1-14)

where:

Ν	is	the	num	ber	of	sensors	

S is the sensitivity of the sensors (equal for all)

d is the radius of the array

 $v_n(t)$ is the output voltage of the n^{th} sensor

In the case of an AC current, in many applications the crosstalk field is generated by a density current distribution that is symmetric with respect to the axis $\theta=0$; the corresponding magnetic scalar potential of the crosstalk field can be expressed in M cylindrical harmonics ^[22]. Then the sum of the output signals of the crosstalk field can be defined as ^[23]

$$\frac{1}{N}\sum_{n=1}^{N} \nu_n^{crosstalk} \begin{cases} \cong -SNd^N b_n cosN\theta_0 & if N \le M \\ = 0 & otherwise \end{cases}$$
(1-15)

where:

 $\boldsymbol{v_n}$ is the output voltage of the n^{th} sensor of the crosstalk field $\boldsymbol{b_n}$ is the coefficient of cylindrical harmonics

Eq. (1-15) says that rotating the array at values of θ_0 that are multiple of $\pi/2N$ the contribution of the external field to measurement error becomes zero. This property can be usefully applied in many poly-phase systems. An example is shown in [Fig.1-14]. It is an application on a typical low-voltage protection circuit-breakers designed for rated current $I_n=3200 \text{ A}$. Thanks to property (1-15) four sensors per-phase are enough for cross-talk error rejection rotating the arrays at $\theta_0=\pi/8$.

Figure 1-14 Properly rotated four sensor arrays in a three-phase bus-bar system.

At last we review an AC current transducer for protective applications that consists of a magnetic sensor array. This new transducer proposed in [24-26] is designed for low-voltage power circuit breakers. The principle of measuring *P* periodic currents flowing in parallel conductors by processing *N* magnetic field data can be applied to a generic multi-conductor system. Once the p^{th} current and the n^{th} sensor voltage signal have been expanded in Fourier series, we can indicate with $\tilde{V}_{k,n}$ the phasor of the k^{th} harmonic of the n^{th} sensor voltage and similarly with $\tilde{I}_{k,p}$ the phasor k^{th} harmonic of the p^{th} current. Thanks to the linearity of the electromagnetic problem, it is possible to write the linear system

$$\begin{bmatrix} \tilde{V}_{k,1} \\ \vdots \\ \tilde{V}_{k,N} \end{bmatrix} = \begin{bmatrix} \tilde{c}_{k,11} & \cdots & \tilde{c}_{k,1P} \\ \vdots & \ddots & \vdots \\ \tilde{c}_{k,N1} & \cdots & \tilde{c}_{k,NP} \end{bmatrix} \cdot \begin{bmatrix} \tilde{I}_{k,1} \\ \vdots \\ \tilde{I}_{k,P} \end{bmatrix}$$
(1-16)

 $\tilde{V}_{k,n} = V_{k,n}e^{j\phi_{k,n}}$, $\tilde{I}_{k,p}=I_{k,p}e^{j\phi_{k,p}}$, $\tilde{V}_{k,n}$, $\tilde{I}_{k,p}$ are all phasors. The trans-impedances $\tilde{c}_{k,np}$ are given by

$$\tilde{c}_{k,np} = \frac{\tilde{V}_{k,n}}{\tilde{I}_{k,p}} | \tilde{I}_{k,q \neq p} = 0$$
(1-17)

The trans-impedances can be estimated through numerical simulations on the FEM or the direct calibration. A Monte Carlo simulation shows that the procedure based on direct calibration guarantees a lower uncertainty than the one based on numerical analysis.

Accuracy specifications for protection current transformers are fulfilled not only at the nominal frequency, but also in the whole bandwidth. Preliminary experimental results are promising. The measurement model has been verified, and the experimental results are in accordance with numerical simulations.

1.4. Thesis Objective

IN THE PREVIOUS part, we briefly introduce the existing current sensing techniques and the recent development in the field of magnetic sensor arrays. But, let's go back to magnetic sensors. It is very clear that prior to any signal processing done by the algorithms aforementioned is sensing the magnetic field generated by the current under measurement. Therefore, it is of paramount importance an investigation of their performance. The most popular magnetic field sensors used in sensor arrays, are the Hall sensors, primarily due to their cost-effectiveness, and wide operating temperature range.

2

Characterization of Hall sensors

2.1. Overview of the Tests

THIS CHAPTER discloses the experimental tests performed on Hall-effect sensors that were done entirely at Dipartimento di Elettrotecnica of Politecnico di Milano. The main purpose of this investigation was to verify the performance of each design both for linearity and temperature drift. The tests were designed to give a complete and very clear view of the real behavior of these magnetic sensors that can be used later in magnetic sensor arrays.

2.2. Metrological Characterization of Type 1 Sensors

THE MEASURING SYSTEM was made up of a DC current generator, magnetic sensors, a voltage generator, five digital multimeters, and a climatic chamber that was able to simulate a temperature from – 40 °C up to 180 °C. We dedicated a great deal of attention to ChenYang CYSJ362A ^[27] sensors, because of their low cost. They have a nominal hall voltage of 156~204 mV on B=100mT, an offset voltage of ±8 mV and a thermal drift of –0.06 %/°C. CYSJ362A series Hall-effect element is a ion-implanted magnetic field sensor made of monocrystal gallium arsenide (GaAs) semiconductor material group III-V using ion-implanted technology.

A simple board was designed to drive the sensors with 1 mA, 1.5 mA, 2 mA, and 3 mA. The sensors were placed on the board with their magnetic sensitivity vectors alternated. The system was then placed in the temperature chamber alongside a copper bar connected to a current generator able to generate up to 500A DC. The sensors were touching the bar perpendicularly in order to have a signal high enough to be measured

with good accuracy, when the current was passing through the bar [Fig.2-1]. The first batch made up of four sensors was tested from ambient temperature (23 - 27 °C) up to 100 °C. This was done for 1 mA, 1.5 mA, 2 mA, and 3 mA. We took two measures for each temperature step:

- a) The offset voltage (no current flowing on the bar)
- b) The gain voltage (200A flowing on the bar)

Figure 2-1 Sensors' position for the case of CYSJ362A

We used different currents in order to determine which one led to the lowest relative error referred to the hall voltage measured at room temperature.

Then, we repeated exactly the same procedure with another batch of four sensors to verify the repeatability of the measurements. A side by side analyzes of the two batches is carried out at the end.

Note1. We couldn't simulate the -20 °C point because the temperature chamber was unable to go under 20 °C when we did the tests.
Note2. 200A was the max current supported by the conductors connecting the generator to the bar, because at 100 $^{\circ}$ C was impossible to go up to 500A due to insulation issues.

Note3. We were unable to start from a fixed temperature every time due to stabilization problems of the temperature chamber around room temperature $(23 - 27 \ ^{\circ}C)$, that as a matter of fact when these tests were done was always relatively high.

Note4. We are going to refer to a group of sensors as the <u>first batch</u>, and the other group as the <u>second batch</u>.

Below we report the measurements for 1 mA, 1.5 mA, and 2 mA for both batches.

				7	Га b. 2-1 (fir	st batch 1mA	()				
Tsens [ºC]	Isbarra [A]	Vs1 [mV]	Vs2 [mV]	Vs3 [mV]	Vs4 [mV]	Err_rel_ % Vs1- Vs2	Err_rel_ %Vs3- Vs4	Err_rel_ % Vs1	Err_rel_ %Vs2	Err_rel_ % Vs3	Err_rel_ %Vs4
27,5	0	-0,452	-0,356	-0,419	-0,165						
27,5	200	2,358	-3,173	2,342	-2,986						
40	0	-0,492	-0,369	-0,429	-0,169						
40	200	2,312	-3,172	2,322	-2,986	-0,8497559	-0,3753754	-1,9508058	-0,0315159	-0,853971	0
60	0	-0,516	-0,373	-0,457	-0,175						
60	200	2,269	-3,161	2,279	-2,961	-1,8260712	-1,6516517	-3,7743851	-0,378191	-2,6900085	-0,8372405
80	0	-0,536	-0,376	-0,485	-0,171						
80	200	2,228	-3,143	2,218	-2,927	-2,8927861	-3,4346847	-5,5131467	-0,9454775	-5,29462	-1,9758875
100	0	-0,559	-0,357	-0,514	-0,155						
100	200	2,188	-3,099	2,156	-2,855	-4,4114988	-5,9496997	-7,2094996	-2,3321777	-7,94193	-4,38714

i. First batch + *second batch* 1*mA*

Table 2-1 shows the offset voltage (*in black*), and the gain voltage (*in red*). Also the relative error in percentage referred to the hall voltage measured at room temperature is shown. It is interesting to see the relative error in percentage of the difference V_{s1} - V_{s2} and V_{s3} - V_{s4} referred to the same differences taken at room temperature. We recall that sensors 1-2 and 3-4 have been installed on the board with their sensitivity vectors alternated.

The same information is reported on [Table 2-2] for the second batch.

				Ta	ab. 2-2 (seco	nd batch 1m	A)				
Tsens [ºC]	Isbarra [A]	Vs1 [mV]	Vs2 [mV]	Vs3 [mV]	Vs4 [mV]	Err_rel_ % Vs1- Vs2	Err_rel_ %Vs3- Vs4	Err_rel_ % Vs1	Err_rel_ %Vs2	Err_rel_ % Vs3	Err_rel_ %Vs4
26.5	0	-0.296	-0.545	0.087	0.106						
26.5	200	2.479	-3.295	2.794	-2.695						
40	0	-0.303	-0.573	0.069	0.098						
40	200	2.454	-3.307	2.762	-2.693	-0.2251472	-0.6194207	-1.0084712	0.3641882	-1.1453114	-0.0742115
60	0	-0.317	-0.622	0.038	0.073						
60	200	2.409	-3.334	2.694	-2.694	-0.5368895	-1.8400437	-2.8237192	1.1836115	-3.5790981	-0.0371058
80	0	-0.335	-0.675	0.003	0.059						
80	200	2.369	-3.373	2.635	-2.691	-0.5542085	-2.9695755	-4.4372731	2.3672231	-5.6907659	-0.148423
100	0	-0.355	-0.706	-0.016	0.053						
100	200	2.323	-3.378	2.593	-2.676	-1.2642882	-4.008016	-6.29286	2.5189681	-7.1939871	-0.7050093

Figure 2-2 Relative error in % of the gain voltage referred to room temperature

Figure 2-3 Relative error in % of the voltage differences and the combined voltage differences

On [Fig. 2-2] is plotted the relative error in percentage for the eight sensors tested on 1mA. It shows only the case of the gain voltage. It can be easily noted that in both batches, sensors #1 and #3 have the maximum error of up to 5.3% and 7.1% respectively.

From [Fig. 2-3] can be noted that the second batch has a lower relative error with respect to the first batch, particularly V_{s1} - $V_{s2}(2^{nd})$. On the other hand all the combined differences have a relative error that is below 0.5% in all cases. This is very interesting because the tests for the two batches were done in different days.

ii. First batch + second batch 1.5mA

We repeated the same tests for both batches, but now the sensors are fed 1.5mA. Again we report the results on the tables below.

				Ta	ab. 2-3 (first	batch 1.5 m	A)				
Tsens [ºC]	Isbarra [A]	Vs1 [mV]	Vs2 [mV]	Vs3 [mV]	Vs4 [mV]	Err_rel_ % Vs1- Vs2	Err_rel_ %Vs3- Vs4	Err_rel_ % Vs1	Err_rel_ %Vs2	Err_rel_ % Vs3	Err_rel_ %Vs4
27.1	0	-0.701	-0.453	-0.649	-0.129						
27.1	200	3.337	-4.687	3.389	-4.386						
40	0	-0.735	-0.463	-0.678	-0.157						
40	200	3.272	-4.677	3.325	-4.375	-0.8497559	-0.3753754	-1.9478574	-0.2133561	-1.8884627	-0.250798
60	0	-0.781	-0.489	-0.709	-0.179						
60	200	3.188	-4.671	3.254	-4.363	-1.8260712	-1.6516517	-4.4650884	-0.3413697	-3.983476	-0.5243958
80	0	-0.824	-0.508	-0.754	-0.188						
80	200	3.105	-4.662	3.198	-4.346	-2.8927861	-3.4346847	-6.9523524	-0.5333902	-5.6358808	-0.9119927
100	0	-0.866	-0.527	-0.791	-0.199						
100	200	3.092	-4.645	3.156	-4.325	-4.4114988	-5.9496997	-7.3419239	-0.8960956	-6.8751844	-1.3907889

				Tat	o. 2-4 (secon	d batch 1.5 i	nA)				
Tsens [ºC]	Isbarra [A]	Vs1 [mV]	Vs2 [mV]	Vs3 [mV]	Vs4 [mV]	Err_rel_ % Vs1- Vs2	Err_rel_ %Vs3- Vs4	Err_rel_ % Vs1	Err_rel_ %Vs2	Err_rel_ % Vs3	Err_rel_ %Vs4
24	0	-0.456	-0.814	0.128	0.066						
24	200	3.695	-5.002	4.284	-4.082						
40	0	-0.477	-0.878	0.082	0.035						
40	200	3.645	-5.035	4.209	-4.081	-0.1954697	-0.9084389	-1.35318	0.6597361	-1.7507003	-0.0244978
60	0	-0.505	-0.894	-0.032	-0.006						
60	200	3.591	-5.069	4.112	-4.078	-0.4254341	-2.1037533	-2.8146143	1.3394642	-4.0149393	-0.0979912
80	0	-0.537	-1.011	-0.025	-0.012						
80	200	3.546	-5.106	3.995	-4.027	-0.5174198	-4.1118814	-4.0324763	2.0791683	-6.7460317	-1.3473787
100	0	-0.581	-1.068	-0.036	-0.01						
100	200	3.454	-5.122	3.953	-3.983	-1.3912844	-5.1398518	-6.5223275	2.3990404	-7.7264239	-2.4252817

Figure 2-4 Relative error in % of the gain voltage referred to room temperature

Figure 2-5 Relative error in % of the voltage differences and the combined voltage differences

Same as before, on [Fig. 2-4] we see the relative error in percentage for the eight sensors tested on 1.5 mA, and only the case of the gain voltage is shown again. It can be noted that, sensor #1 and #3 of both batches have the maximum error of up to 5.4% and 5.9% respectively.

From [Fig. 2-5] we see the same trend as the first case of 1 mA, with $V_{s1}-V_{s2}(2^{nd})$ being the lowest error. Again the combined differences have a relative error that is below 0.5% in all case.

iii. First batch + second batch 2mA

At last we repeated the tests for the case of 2mA while using again the same sensors.

				I	ab. 2-5 (firs	t batch 2 mA	()				
Tsens [ºC]	Isbarra [A]	Vs1 [mV]	Vs2 [mV]	Vs3 [mV]	Vs4 [mV]	Err_rel_ % Vs1- Vs2	Err_rel_ %Vs3- Vs4	Err_rel_ % Vs1	Err_rel_ %Vs2	Err_rel_ % Vs3	Err_rel_ %Vs4
24.5	0	-0.916	-0.625	-0.782	-0.252						
24.5	200	4.674	-6.112	4.735	-5.898						
40	0	-0.967	-0.648	-0.836	-0.256						
40	200	4.421	-6.221	4.558	-5.885	-1.335064	-1.7868899	-5.4129226	1.783377	-3.7381204	-0.2204137
60	0	-1.033	-0.678	-0.901	-0.271						
60	200	4.322	-6.211	4.461	-5.861	-2.3456332	-2.9248566	-7.5310227	1.6197644	-5.7866948	-0.6273313
80	0	-1.085	-0.706	-0.973	-0.291						
80	200	4.241	-6.204	4.366	-5.837	-3.1615057	-4.0440139	-9.2640137	1.5052356	-7.7930306	-1.0342489
100	0	-1.135	-0.732	-1.033	-0.295						
100	200	4.131	-6.194	4.289	-5.802	-4.274059	-5.0973385	-11.617458	1.341623	-9.4192186	-1.6276704

				Та	b. 2-6 (seco	nd batch 2 m	ıA)				
Tsens [ºC]	Isbarra [A]	Vs1 [mV]	Vs2 [mV]	Vs3 [mV]	Vs4 [mV]	Err_rel_ % Vs1- Vs2	Err_rel_ %Vs3- Vs4	Err_rel_ % Vs1	Err_rel_ %Vs2	Err_rel_ % Vs3	Err_rel_ %Vs4
24.5	0	-0.642	-1.078	0.165	0.238						
24.5	200	4.843	-6.545	5.769	-5.387						
40	0	-0.667	-1.145	0.106	0.218						
40	200	4.774	-6.587	5.677	-5.388	-0.2370917	-0.8157046	-1.4247367	0.6417112	-1.5947305	0.0185632
60	0	-0.696	-1.223	0.062	0.163						
60	200	4.721	-6.621	5.607	-5.394	-0.403934	-1.3893869	-2.5190997	1.1611917	-2.8081123	0.1299425
80	0	-0.734	-1.331	0.013	0.132						
80	200	4.637	-6.685	5.505	-5.382	-0.5795574	-2.4112585	-4.2535618	2.1390374	-4.576183	-0.092816
100	0	-0.786	-1.392	-0.016	0.109						
100	200	4.582	-6.683	5.409	-5.364	-1.0800843	-3.4331302	-5.3892216	2.1084798	-6.2402496	-0.4269538

Figure 2-6 Relative error in % of the gain voltage referred to room temperature

Just like the other two cases, on [Fig. 2-6] is plotted the relative error in percentage for the eight sensors tested on 2 mA, and only the case of the gain voltage is shown again. The trend is quite obvious; sensors #1 and #3 of both batches have again the maximum error that respectively goes up to 6.2% and 5.7%.

Again [Fig. 2-7] shows that V_{s1} - $V_{s2}(2^{nd})$ has the lowest error, and it is the lowest among the three cases analyzed in this section. At 2 mA the combined differences remained under 0.5%.

2.2.1. Summary and Conclusions

THE SENSORS analyzed in this section were the most economical ones and claimed good performance in a wide range of operating temperature. While half the sensors had a somewhat acceptable performance, the other half had an error that went up to 7%. We also did test these sensors with 3 mA and 5mA. Moreover, even though the latter corresponds to the one on the datasheet, the error went far beyond 10%, making this recommended driving current totally useless for good performance of the sensors. We also drove the sensors with 6 VDC (again the set point used by the manufacturer) and the error went up to 9%.

We can conclude that sensor #2 and sensor #4 from both batches performed the better, while sensor #1 and #3 had a greater relative error referred to the voltage taken at room temperature. In all the cases, the difference V_{s1} - V_{s2} (2nd) produced the smaller error with respect to the other differences. Another observation is that the combined differences had an error that was under 0.5% in all the cases analyzed.

From this section we can conclude that 2 mA is the upper limit driving current, in order to have the best performance of these sensors, but looking at the overall experimental results it is safe to say that they don't meet the specifications required for applications such as magnetic sensor arrays working as current transducers.

37

2.3. Changes in the Experimental Setup

WE CONTINUED the experimental activity with a different experimental setup [Fig.2-8], and four other types of sensors from three different manufacturers. All these tests were done at room temperature and the current flowing through the bar varied from 50 A up to 2500 A. So in this case we were not testing their thermal drift. The arrangement of the sensors changed too. Now they were on a circumference around the copper bar that was now fixed at much better support because we were out of the climatic chamber, and more room was available to mount the bar. Of course another PCB was designed to mount the sensors in such configuration. Two types of sensors have been fed with a constant 5 VDC, and the other two types with a 1mA current according to their datasheets.

Figure 2-8 Four Hall sensors forming a circular array

The followings explain in more detail the experimental activity along with the results that we obtained from it. The order in which we lay out the results does not correspond to the order in which we tested the sensors. All the measurements were done using a bar with a diameter of 9 mm, sensor distance 8.89 mm.

2.4. Metrological Characterization of Type 2 Sensors

THIS SECTION shows the measurement results for the Asahi-Kasei's HG-362A GaAs Hall elements ^[28]. They have a nominal hall voltage of 78~102 mV on B=50mT, an offset voltage of ± 8 mV when driven with 6 VDC and a maximum thermal drift of -0.06 %/°C when driven with 1mA under a temperature range 25~125°C. The packaging of these sensors is identical to the CYSJ362A sensors that we tested earlier. The measurement setup, as we anticipated above, was changed with respect to the case of the CYSJ362A sensors. The copper bar was fed using a DC generator that was able to go up to 2500A in the first test, and then with a more precise DC current generator able to go up to 500A. We switched the DC current generator to the more precise one; because we noticed that the first generator was not very stable.

Below we show the results first for the case when the less precise DC current generator is used, and then the case when the more precise DC current generator is used, with their respective graphs. In these tests we used the same sensors for both cases. The sensors are driven with a current equal to 1mA and the max allowed induction is 300mT per sensor.

i. <u>Case #1 – current from 100A to 2500A</u>

Below we show the measurement results for one sensor at a time along with the linearity and error calculations.

Linearity and errors for sensor #1									
I [A]	$Vs_1 [mV]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.				
100	0.7993	96.5983373	-3.401662699	100	0				
200	1.5062	186.1234317	-6.938284173	189.2348637	-5.382568127				
300	2.4354	303.801629	1.267209652	306.5315611	2.177187049				
400	3.2233	403.584939	0.89623474	405.9913845	1.497846131				
500	4.0091	503.1022952	0.620459044	505.1861164	1.037223271				
600	4.7987	603.1009011	0.516816852	604.8605377	0.810089609				
700	5.5867	702.8968756	0.413839368	704.3329844	0.618997777				
800	6.3833	803.7819939	0.472749241	804.8910442	0.611380527				
900	7.1633	902.5648113	0.284979032	903.3536184	0.372624272				

Linearity and errors for sensor #1								
I [A]	Vs ₁ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.			
1000	7.9457	1001.651576	0.165157579	1002.119154	0.211915444			
1100	8.7318	1101.206925	0.109720495	1101.351756	0.122886954			
1200	9.5183	1200.812933	0.067744413	1200.634852	0.052904348			
1300	10.3024	1300.114993	0.008845641	1299.614986	-0.029616455			
1400	11.0844	1399.1511	-0.060635716	1398.330028	-0.119283682			
1500	11.8746	1499.225693	-0.051620491	1498.08019	-0.12798732			
1600	12.664	1599.19897	-0.0500644	1597.729365	-0.141914708			
1700	13.4475	1698.425043	-0.092644518	1696.633758	-0.198014227			
1800	14.2359	1798.271676	-0.096018027	1796.156699	-0.213516747			
1900	15.0188	1897.421762	-0.135696719	1894.985352	-0.263928864			
2000	15.8092	1997.521684	-0.123915804	1994.76076	-0.261961993			
2100	16.6065	2098.495454	-0.07164507	2095.407184	-0.218705535			
2200	17.3986	2198.810671	-0.054060409	2195.39719	-0.209218625			
2300	18.1961	2299.80977	-0.00827089	2296.068861	-0.170919101			
2400	18.9866	2399.922356	-0.003235184	2395.856893	-0.172629473			
2500	19.8116	2504.404182	0.176167266	2500	0			

Linearity and errors for sensor #2									
I [A]	Vs ₂ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.				
100	0.9504	97.18245419	-2.817545814	100	0				
200	1.7782	185.7322054	-7.133897305	188.3398919	-5.830054025				
300	2.8796	303.5489437	1.182981234	305.8774095	1.959136486				
400	3.8105	403.1273001	0.781825016	405.2197692	1.304942306				
500	4.7434	502.9195964	0.583919278	504.7755619	0.955112386				
600	5.6799	603.0969846	0.516164108	604.7155339	0.785922319				
700	6.6144	703.0604329	0.437204707	704.442073	0.634581852				
800	7.5468	802.7992443	0.349905535	803.9445074	0.49306343				
900	8.4775	902.3562066	0.261800738	903.2655239	0.36283599				
1000	9.4048	1001.549471	0.154947107	1002.223704	0.22237044				
1100	10.3416	1101.75895	0.159904575	1102.195691	0.199608302				
1200	11.2696	1201.027094	0.085591145	1201.228573	0.102381111				
1300	12.1926	1299.760387	-0.018431751	1299.727873	-0.020932846				
1400	13.1273	1399.74523	-0.018197891	1399.475755	-0.037446046				
1500	14.0637	1499.911921	-0.005871947	1499.405056	-0.039662954				
1600	14.9943	1599.458186	-0.033863365	1598.715401	-0.080287467				
1700	15.9234	1698.843997	-0.068000203	1697.865671	-0.125548786				
1800	16.8574	1798.75396	-0.069224452	1797.538851	-0.136730474				
1900	17.782	1897.658405	-0.123241825	1896.208897	-0.199531711				
2000	18.7217	1998.178098	-0.091095123	1996.490362	-0.175481892				
2100	19.663	2098.868942	-0.053859918	2096.942573	-0.145591752				

Linearity and errors for sensor #2								
I [A] Vs ₂ [mV] Ieq. Regr. [A] E%punt. Regr. Ieq. EndP [A] E%punt. EndP.								
2200	20.5921	2198.254752	-0.07932945	2196.092843	-0.177598031			
2300	21.5346	2299.07396	-0.040262597	2296.673114	-0.144647212			
2400	22.4823	2400.449412	0.018725513	2397.808311	-0.091320394			
2500	23.4399	2502.883867	0.115354688	2500	0			

Linearity and errors for sensor #3									
I [A]	Vs ₃ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.				
100	0.9913	96.56076353	-3.439236472	100	-1.42109E-14				
200	1.8563	184.8119757	-7.594012139	188.0425794	-5.97871032				
300	3.0123	302.752324	0.917441348	305.7041074	1.901369127				
400	3.9911	402.6139269	0.653481732	405.3296296	1.332407388				
500	4.979	503.403953	0.680790594	505.88138	1.176276002				
600	5.961	603.5920343	0.598672388	605.8326088	0.972101472				
700	6.9409	703.5658642	0.50940917	705.5700927	0.795727524				
800	7.9166	803.1111911	0.388898882	804.8800865	0.610010814				
900	8.8934	902.7687449	0.307638322	904.302042	0.47800467				
1000	9.8662	1002.018201	0.201820064	1003.316864	0.331686423				
1100	10.8433	1101.706362	0.155123804	1102.769355	0.251759521				
1200	11.8207	1201.42513	0.118760866	1202.25238	0.187698354				
1300	12.7859	1299.8992	-0.007753864	1300.493649	0.037973011				
1400	13.7667	1399.964852	-0.002510593	1400.322738	0.023052712				
1500	14.7453	1499.80605	-0.012930021	1499.927903	-0.004806435				
1600	15.7274	1600.004333	0.000270843	1599.889311	-0.006918086				
1700	16.7002	1699.253789	-0.04389475	1698.904133	-0.064462775				
1800	17.6765	1798.860331	-0.063314954	1798.275197	-0.095822407				
1900	18.6516	1898.344443	-0.08713458	1897.524121	-0.130309446				
2000	19.6285	1998.012199	-0.099390037	1996.956254	-0.152187281				
2100	20.6147	2098.628784	-0.065296018	2097.334973	-0.126906039				
2200	21.593	2198.439374	-0.070937534	2196.909604	-0.14047256				
2300	22.5758	2298.709075	-0.056127164	2296.942259	-0.132945254				
2400	23.5637	2399.499101	-0.020870781	2397.49401	-0.104416266				
2500	24.5708	2502.247998	0.089919926	2500	-1.81899E-14				

Linearity and errors for sensor #4									
I [A]	Vs ₄ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.				
100	0.8169	95.27437998	-4.725620023	100	0				
200	1.5452	185.3816653	-7.309167366	189.7861061	-5.106946927				
300	2.4943	302.8069357	0.93564524	306.792825	2.264275001				
400	3.2976	402.1934279	0.548356981	405.8250632	1.456265795				
500	4.1133	503.1140823	0.622816468	506.3859952	1.277199038				
600	4.9157	602.3892241	0.398204011	605.3072798	0.884546631				
700	5.7257	702.6046588	0.372094108	705.1655058	0.737929395				
800	6.5512	804.7377962	0.592224526	806.934599	0.866824878				
900	7.3604	904.8542527	0.539361411	906.6941996	0.743799955				
1000	8.1588	1003.634503	0.363450338	1005.122357	0.512235715				
1100	8.9505	1101.585812	0.14416469	1102.724527	0.247684264				
1200	9.76	1201.739385	0.144948742	1202.521112	0.210092667				
1300	10.5562	1300.247446	0.019034271	1300.67805	0.052157668				
1400	11.3715	1401.118611	0.079900774	1401.189669	0.084976356				
1500	12.166	1499.416343	-0.038910483	1499.137028	-0.057531488				
1600	12.9789	1599.990573	-0.000589159	1599.352771	-0.040451828				
1700	13.7781	1698.869802	-0.066482215	1697.879554	-0.124732134				
1800	14.5771	1797.724287	-0.126428517	1796.38168	-0.201017759				
1900	15.3798	1897.036545	-0.155971303	1895.339949	-0.245265818				
2000	16.1836	1996.484899	-0.175755059	1994.433829	-0.278308574				
2100	17.002	2097.739605	-0.107637872	2095.327621	-0.222494225				
2200	17.8183	2198.734493	-0.057523056	2195.962522	-0.183521712				
2300	18.6283	2298.949927	-0.045655328	2295.820748	-0.181706595				
2400	19.4411	2399.511786	-0.020342255	2396.024163	-0.165659866				
2500	20.2845	2503.859561	0.154382428	2500	0				

Figure 2-9 Error in percentage referred to regression line (HG-362A sensors)

Figure 2-10 Error in percentage referred to end points line (HG-362A sensors)

ii. <u>Case #2 – current from 50A to 500A</u>

Just like for the first case below we show the measurement results for one sensor at a time along with the linearity and error calculations.

Tab. 2-13

Linearity and errors for sensor #1							
I [A]	$Vs_1 [mV]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.		
50.8	-0.4440	50.74472378	-0.108811454	50.8	0		
100.7	-0.8834	100.4895371	-0.208999851	100.5513266	-0.147639933		
150.5	-1.3251	150.4947353	-0.003498143	150.563072	0.041908335		
200.4	-1.7668	200.4999334	0.049866986	200.5748175	0.087234281		
250.6	-2.2096	250.6296634	0.011836965	250.7111111	0.044338033		
300.8	-2.6569	301.2688419	0.155864995	301.3569199	0.185146244		
350.9	-3.0951	350.8778023	-0.00632592	350.9723758	0.020625755		
400.9	-3.5357	400.7584686	-0.035303407	400.8595731	-0.010084042		
450.7	-3.9764	450.650456	-0.010992675	450.7580929	0.012889491		
500.6	-4.4166	500.485838	-0.022805034	500.6	0		

Tab. 2-14

Linearity and errors for sensor #2								
I [A]	Vs ₂ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.			
50.8	-0.3934	50.47659628	-0.636621504	50.8	1.39871E-14			
100.7	-0.7759	100.0299968	-0.665345826	100.4088636	-0.289112569			
150.5	-1.1632	150.2052438	-0.195851279	150.6402699	0.093202584			
200.4	-1.5449	199.6550032	-0.371754888	200.1453764	-0.127057669			
250.6	-1.9356	250.2707249	-0.131394674	250.8177504	0.086891601			
300.8	-2.3640	305.7705335	1.652437993	306.3796776	1.854946022			
350.9	-2.7111	350.7378153	-0.046219627	351.3972896	0.141718319			
400.9	-3.0925	400.1487093	-0.187401024	400.8634872	-0.009107705			
450.7	-3.4760	449.8316611	-0.19266449	450.6020472	-0.021733474			
500.6	-3.8615	499.7737157	-0.165058781	500.6	2.27101E-14			

Linearity and errors for sensor #3									
I [A] Vs ₃ [mV] Ieq. Regr. [A] E%punt. Regr. Ieq. EndP [A] E%punt. E									
50.8	-0.4324	50.52470789	-0.541913602	50.8	1.39871E-14				
100.7	-0.8684	100.8373641	0.136409264	101.0763094	0.373693526				
150.5	-1.2959	150.1691544	-0.219830988	150.3724614	-0.084743287				

Linearity and errors for sensor #3								
I [A]	Vs ₃ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.			
200.4	-1.7331	200.6202858	0.109923056	200.7871459	0.193186575			
250.6	-2.1687	250.8867836	0.114438804	251.0173302	0.166532411			
300.8	-2.6040	301.1186627	0.105938391	301.2129208	0.137274188			
350.9	-3.0371	351.0966705	0.056047455	351.1548235	0.072619975			
400.9	-3.4660	400.5900152	-0.077322237	400.6124132	-0.071735306			
450.7	-3.8977	450.4064686	-0.065127892	450.3928782	-0.068143288			
500.6	-4.3331	500.6498872	0.009965487	500.6	0			

Linearity and errors for sensor #4								
I [A]	Vs ₄ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.			
50.8	0.5155	50.85070999	0.099822822	50.8	-1.39871E-14			
100.7	1.0271	100.6159099	-0.083505539	100.5713161	-0.127789372			
150.5	1.5435	150.8480234	0.231244768	150.8096031	0.205716355			
200.4	2.0501	200.126855	-0.136299876	200.0944912	-0.152449508			
250.6	2.5682	250.5243337	-0.03019405	250.4981637	-0.04063698			
300.8	3.0854	300.8342661	0.011391651	300.8142792	0.004747083			
350.9	3.5982	350.7161944	-0.052381192	350.7023381	-0.056329993			
400.9	4.1144	400.9288531	0.007197087	400.9211679	0.005280106			
450.7	4.6277	450.8594183	0.035371257	450.8578696	0.035027641			
500.6	5.1390	500.5954361	-0.000911688	500.6	0			

Figure 2-11 Error in percentage referred to regression line (HG-362A sensors)

Figure 2-12 Error in percentage referred to end points line (HG-362A sensors)

2.5. Metrological Characterization of Type 3 Sensors

WE CONTINUE the measurements with Hoeben's HE144 Hall elements ^[29]. They have a nominal hall voltage of 90~185 mV on B=0.1T when driven with the advised current of 5mA and a maximum thermal drift of $-0.06 \%/^{\circ}$ C. The operating temperature is -40 to +175°C. These sensors have again the same packaging as the first two sensors that we looked before. The experimental setup is the same as the one used for the HG-362A sensors, expect that this time we used three sensors instead of four. The driving current is equal to 1mA and the maximum allowed induction is 500mT per sensor.

iii. <u>Case #1 – current from 100A to 2500A</u>

Below we report the measurement results for all three sensors together with the linearity and error calculations.

	Linearity and errors for sensor #1							
I [A]	Vs ₁ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.			
100	0.5061	94.47160509	-5.528394907	100	0			
200	1.0221	197.6415829	-1.179208528	202.718081	1.359040502			
300	1.5496	303.1108917	1.036963899	307.7254216	2.575140521			
400	2.0464	402.4419866	0.610496662	406.6214344	1.655358609			
500	2.5401	501.153262	0.230652394	504.9003426	0.980068512			
600	3.0349	600.0844733	0.014078881	603.3982233	0.566370556			
700	3.5516	703.3944104	0.484915773	706.2556506	0.893664368			
800	4.0461	802.2656392	0.283204898	804.6938115	0.586726442			
900	4.5449	901.9966178	0.221846419	903.9879565	0.443106278			
1000	5.041	1001.187753	0.118775345	1002.744623	0.274462314			
1100	5.5371	1100.378889	0.034444467	1101.50129	0.136480889			
1200	6.0387	1200.669705	0.055808734	1201.35282	0.112734974			
1300	6.531	1299.101062	-0.069149109	1299.353035	-0.049766512			
1400	7.0276	1398.392168	-0.11484513	1398.209235	-0.127911785			
1500	7.526	1498.04317	-0.130455331	1497.423754	-0.171749763			
1600	8.0261	1598.034073	-0.122870438	1596.976684	-0.188957226			
1700	8.5301	1698.804749	-0.07030888	1697.305973	-0.158472188			
1800	9.023	1797.356071	-0.14688495	1795.425628	-0.254131773			
1900	9.5239	1897.506927	-0.131214352	1895.137812	-0.255904644			
2000	10.0263	1997.957696	-0.102115178	1995.148595	-0.242570274			
2100	10.5318	2099.028285	-0.046272133	2095.776482	-0.201119905			

Linearity and errors for sensor #1								
I [A] Vs ₁ [mV] Ieq. Regr. [A] E%punt. Regr. Ieq. EndP [A] E%punt								
2200	11.0413	2200.898641	0.040847329	2197.200634	-0.127243923			
2300	11.535	2299.609917	-0.01696015	2295.479542	-0.19654166			
2400	12.0443	2401.440284	0.060011843	2396.86388	-0.130671654			
2500	12.5624	2505.03014	0.201205596	2500	0			

Linearity and errors for sensor #2						
I [A]	$Vs_2 [mV]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
100	0.4333	91.9466676	-8.053332403	100	1.42109E-14	
200	0.8768	195.8197715	-2.090114261	203.4975642	1.748782124	
300	1.3297	301.8944699	0.631489964	309.1887635	3.062921152	
400	1.7529	401.0130664	0.253266606	407.9490097	1.987252414	
500	2.1776	500.4829812	0.096596247	507.059304	1.411860798	
600	2.5998	599.3673656	-0.10543907	605.5861848	0.931030795	
700	3.0446	703.5449453	0.506420758	709.3871241	1.341017723	
800	3.4702	803.2256511	0.403206385	808.7074473	1.088430909	
900	3.8943	902.5550386	0.283893175	907.6777224	0.853080261	
1000	4.3213	1002.563641	0.256364141	1007.324757	0.732475715	
1100	4.7455	1101.91645	0.174222739	1106.318369	0.574397161	
1200	5.1742	1202.323214	0.19360114	1206.362125	0.530177066	
1300	5.5959	1301.090492	0.083883995	1304.772323	0.367101759	
1400	6.0196	1400.326195	0.023299611	1403.649252	0.260660841	
1500	6.4396	1498.695312	-0.086979193	1501.662729	0.110848575	
1600	6.8707	1599.664185	-0.020988444	1602.266562	0.141660103	
1700	7.3024	1700.773585	0.045504999	1703.010414	0.177083172	
1800	7.7228	1799.236387	-0.042422922	1801.117237	0.06206872	
1900	8.147	1898.589196	-0.074252836	1900.110849	0.005834136	
2000	8.5726	1998.269902	-0.086504905	1999.431172	-0.028441411	
2100	9.003	2099.074826	-0.044055897	2099.871649	-0.006111952	
2200	9.4337	2199.950014	-0.002272087	2200.382136	0.017369813	
2300	9.8515	2297.803865	-0.095484139	2297.882209	-0.092077878	
2400	10.2845	2399.217741	-0.032594135	2398.929436	-0.044606828	
2500	10.7176	2500.655038	0.026201517	2500	1.81899E-14	

Linearity and errors for sensor #3								
I [A] Vs ₃ [mV] Ieq. Regr. [A] E%punt. Regr. Ieq. EndP					E%punt. EndP.			
100	0.4051	91.58298276	-8.417017244	100	0			
200	0.8171	194.8541484	-2.572925795	203.1428959	1.571447944			

	Linearity and errors for sensor #3							
I [A]	Vs ₃ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.			
300	1.2399	300.8324223	0.277474096	308.9895376	2.99651253			
400	1.6367	400.2935838	0.073395943	408.3271616	2.081790397			
500	2.0317	499.3035605	-0.13928789	507.2141613	1.442832257			
600	2.4293	598.9652486	-0.172458572	606.7520628	1.125343792			
700	2.8452	703.2139811	0.459140154	710.8713113	1.553044471			
800	3.2439	803.1513931	0.393924136	810.6845943	1.335574285			
900	3.6421	902.963476	0.329275112	910.3727039	1.15252265			
1000	4.0409	1002.925954	0.292595383	1010.211022	1.021102152			
1100	4.4388	1102.662839	0.2420763	1109.824027	0.893093367			
1200	4.8395	1203.101568	0.25846397	1210.138004	0.844833641			
1300	5.2346	1302.13661	0.164354633	1309.050038	0.696156775			
1400	5.6315	1401.622838	0.115916967	1408.412697	0.600906911			
1500	6.0252	1500.306959	0.020463913	1506.974246	0.464949705			
1600	6.4268	1600.971279	0.060704962	1607.513534	0.469595898			
1700	6.8294	1701.886258	0.110956368	1708.30317	0.488421766			
1800	7.2212	1800.094129	0.005229383	1806.38906	0.354947769			
1900	7.6169	1899.279566	-0.037917559	1905.451302	0.286910649			
2000	8.0138	1998.765794	-0.061710316	2004.813961	0.24069805			
2100	8.4148	2099.279719	-0.034299072	2105.203042	0.247763891			
2200	8.8155	2199.718448	-0.012797826	2205.517018	0.250773562			
2300	9.2031	2296.873554	-0.135932428	2302.551451	0.110932673			
2400	9.6171	2400.646036	0.026918172	2406.195041	0.25812671			
2500	9.9918	2494.567652	-0.217293917	2500	-1.81899E-14			

Figure 2-13 Error in percentage referred to regression line (HE144 sensors)

Figure 2-14 Error in percentage referred to end points line (HE144 sensors)

iv. <u>Case #2 – current from 50A to 500A</u>

We report below the measurements done with the more precise DC current generator together with the calculations of linearity and error for each sensor.

Tab. 2-20

Linearity and errors for sensor #1								
I [A]	Vs ₁ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.			
50.8	0.2321	50.95968865	0.314347741	50.8	0			
100.7	0.4615	100.5735394	-0.125581526	100.4339987	-0.264152185			
150.5	0.6929	150.6199433	0.079696573	150.5007263	0.000482622			
200.5	0.9234	200.4716983	-0.014115538	200.372726	-0.063478324			
250.6	1.1541	250.3667087	-0.093093108	250.2879985	-0.124501811			
300.8	1.3874	300.8240381	0.007991403	300.7658185	-0.011363543			
350.9	1.6186	350.8271868	-0.020750425	350.7892732	-0.031555095			
400.9	1.8502	400.916846	0.00420205	400.8992737	-0.000181179			
450.8	2.0816	450.96325	0.036213389	450.9660013	0.036823702			
500.6	2.3110	500.5771007	-0.004574369	500.6	-1.13551E-14			

Linearity and errors for sensor #2								
I [A]	Vs ₂ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.			
50.8	0.2321	50.65465759	-0.286107103	50.8	1.39871E-14			
100.7	0.4607	100.4452771	-0.252952283	100.7462185	0.045897207			
150.5	0.6902	150.4319226	-0.045234172	150.8890756	0.258522013			
200.5	0.9195	200.3750067	-0.062340776	200.9882353	0.243508875			
250.6	1.1502	250.6230203	0.009186091	251.3932773	0.316551201			
300.8	1.3819	301.0888407	0.096024162	302.0168067	0.404523512			
350.9	1.6128	351.3804156	0.136909555	352.4655462	0.446151672			
400.9	1.8429	401.4977452	0.14910082	402.7394958	0.458841556			
450.8	2.0727	451.5497327	0.166311608	452.9478992	0.476463877			
500.6	2.2908	499.0533815	-0.308952961	500.6	0			

Linearity and errors for sensor #3						
I [A]	Vs ₃ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
50.8	0.2306	51.33277764	1.048774879	50.8	1.39871E-14	
100.7	0.4587	100.9608558	0.259042478	100.338593	-0.358894719	
150.5	0.6868	150.5889339	0.0590923	149.877186	-0.413829876	
200.5	0.9150	200.2387692	-0.130289673	199.437497	-0.529926692	
250.6	1.1440	250.0626618	-0.214420683	249.1715513	-0.570011433	
300.8	1.3761	300.5610262	-0.079446065	299.5788615	-0.405963606	
350.9	1.6059	350.5589761	-0.097185504	349.4866593	-0.40277593	
400.9	1.8356	400.5351687	-0.091003059	399.3727391	-0.380958063	
450.8	2.0644	450.315547	-0.107465177	449.0633576	-0.385235662	
500.6	2.3017	501.9452837	0.268734255	500.6	0	

HE144 case 2

Figure 2-15 Error in percentage referred to regression line (HE144 sensors)

Figure 2-16 Error in percentage referred to end points line (HE144 sensors)

2.6. Metrological Characterization of Type 4 Sensors

THE NEXT BATCH of sensors that we tested consisted of Honeywell SS495A1^[30] sensors. They have a maximum thermal drift of $\pm 0.04 \%/^{\circ}$ C when external magnetic field is absent, and -0.02 to $+0.06\%/^{\circ}$ C in the test condition specified by the manufacturer. The chip packaging is the same again, but these sensors have only three pins, instead of four of the past ones that we tested. Again we kept the same experimental setup of the last two types. As advised by the manufacturer's datasheet we drove the sensors with a 5 VDC which adds up to a power consumption of roughly 20mA (7mA/sensor, 3 sensors on the board) with a max allowed induction of 60mT per sensor.

v. <u>Case #1 – current from 100A to 2500A</u>

Just like we did so far we report the tests results with the less stable DC generator together with linearity and error calculations.

Tab. 2-22

	Linearity and errors for sensor #1						
I [A]	$Vs_1 [V]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.		
100	0.0654	98.3132894	-1.686710596	100	0		
200	0.1296	196.5108023	-1.744598851	198.1088825	-0.945558739		
300	0.1993	303.1208747	1.040291569	304.6227316	1.540910538		
400	0.2637	401.6242989	0.406074714	403.0372493	0.759312321		
500	0.3293	501.9631905	0.392638108	503.2855778	0.657115568		
600	0.394	600.9254816	0.154246928	602.1585482	0.359758039		
700	0.4593	700.8055064	0.115072338	701.9484241	0.278346296		
800	0.5246	800.6855312	0.085691396	801.7382999	0.217287488		
900	0.5895	899.9537335	-0.005140728	900.9169054	0.101878383		
1000	0.6546	999.527847	-0.047215301	1000.401146	0.040114613		
1100	0.72	1099.560827	-0.03992478	1100.34384	0.03125814		
1200	0.7852	1199.287897	-0.059341951	1199.980898	-0.00159185		
1300	0.8506	1299.320877	-0.05224023	1299.923591	-0.005877599		
1400	0.9158	1399.047946	-0.068003844	1399.560649	-0.03138218		
1500	0.9816	1499.692749	-0.020483392	1500.114613	0.007640879		
1600	1.0466	1599.113907	-0.05538081	1599.446036	-0.034622732		
1700	1.1119	1698.993932	-0.059180481	1699.235912	-0.044946345		
1800	1.1777	1799.638735	-0.020070291	1799.789876	-0.011673565		
1900	1.2427	1899.059893	-0.049479333	1899.121299	-0.046247424		
2000	1.309	2000.469474	0.023473688	2000.439351	0.021967526		
2100	1.3738	2099.58472	-0.019775218	2099.465138	-0.025469596		
2200	1.4397	2200.382479	0.017385408	2200.17192	0.007814535		
2300	1.5053	2300.721371	0.031363942	2300.420248	0.018271666		
2400	1.571	2401.213218	0.050550748	2400.821394	0.034224769		
2500	1.6359	2500.48142	0.01925681	2500	-1.81899E-14		

Linearity and errors for sensor #2							
I [A]	I [A] Vs ₂ [V] Ieq. Regr. [A] E%punt. Regr. Ieq. EndP [A] E%punt. EndP						
100	0.0695	99.59514156	-0.404858442	100	0		
200	0.138	198.1328331	-0.933583471	198.4019	-0.79906626		
300	0.2116	304.0069074	1.33563581	304.13	1.376668462		
400	0.2801	402.5445989	0.636149733	402.5319	0.632968217		

	Linearity and errors for sensor #2						
I [A]	$Vs_2 [V]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.		
500	0.3494	502.2330956	0.446619117	502.083	0.416591848		
600	0.4183	601.3461897	0.224364944	601.0594	0.176572694		
700	0.4873	700.6031344	0.086162056	700.1796	0.025652207		
800	0.5567	800.4354817	0.054435211	799.8743	-0.015711977		
900	0.6256	899.5485758	-0.050158248	898.8508	-0.127690988		
1000	0.6947	998.9493711	-0.105062886	998.1146	-0.188543724		
1100	0.7641	1098.781718	-0.110752869	1097.809	-0.19915441		
1200	0.8333	1198.326364	-0.139469629	1197.217	-0.231938708		
1300	0.9026	1298.014861	-0.152702992	1296.768	-0.248629087		
1400	0.9717	1397.415656	-0.184595966	1396.032	-0.283456891		
1500	1.0416	1497.967257	-0.1355162	1496.445	-0.237026396		
1600	1.1109	1597.655754	-0.146515397	1595.996	-0.250269348		
1700	1.1807	1698.063504	-0.113911557	1696.265	-0.219703611		
1800	1.2507	1798.758955	-0.068946961	1796.822	-0.176572694		
1900	1.3201	1898.591302	-0.074142	1896.516	-0.183345777		
2000	1.3908	2000.293708	0.014685384	1998.079	-0.096067517		
2100	1.4602	2100.126055	0.006002618	2097.773	-0.106029124		
2200	1.5304	2201.109207	0.05041852	2198.617	-0.062847908		
2300	1.6003	2301.660808	0.072209042	2299.03	-0.042158845		
2400	1.6707	2402.931662	0.122152571	2400.162	0.006733704		
2500	1.7402	2502.90786	0.116314386	2500	0		

	Linearity and errors for sensor #3						
I [A]	Vs ₃ [V]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.		
100	0.0778	100.4178254	0.417825444	100	0		
200	0.1534	198.3891096	-0.805445202	197.8651334	-1.067433306		
300	0.2354	304.6542591	1.551419691	304.0151458	1.338381931		
400	0.3113	403.0143182	0.753579541	402.2686329	0.567158222		
500	0.3876	501.8927438	0.378548767	501.0399249	0.207984984		
600	0.4637	600.5119862	0.085331036	599.5523145	-0.074614253		
700	0.5406	700.1679618	0.023994537	699.1003139	-0.128526583		
800	0.6177	800.0831206	0.010390075	798.9072158	-0.136598022		
900	0.6941	899.0911379	-0.100984676	897.8079591	-0.243560101		
1000	0.7709	998.6175218	-0.138247818	997.2265073	-0.27734927		
1100	0.8479	1098.403089	-0.145173726	1096.903958	-0.281458366		
1200	0.9248	1198.059065	-0.16174462	1196.451957	-0.295670216		
1300	1.0021	1298.233407	-0.135891793	1296.517762	-0.267864478		
1400	1.0788	1397.630199	-0.169271504	1395.806859	-0.299510089		
1500	1.1565	1498.322908	-0.111806156	1496.390468	-0.240635462		

Linearity and errors for sensor #3						
I [A]	Vs ₃ [V]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
1600	1.2333	1597.849292	-0.134419278	1595.809016	-0.261936483	
1700	1.3107	1698.153225	-0.108633804	1696.004272	-0.23504283	
1800	1.3883	1798.716342	-0.071314311	1796.45843	-0.19675389	
1900	1.4653	1898.50191	-0.078846864	1896.135881	-0.203374703	
2000	1.5434	1999.712985	-0.014350756	1997.237295	-0.138135255	
2100	1.6204	2099.498552	-0.023878473	2096.914746	-0.146916877	
2200	1.6993	2201.746361	0.079380024	2199.05177	-0.043101377	
2300	1.7768	2302.179886	0.09477765	2299.376477	-0.027109715	
2400	1.8547	2403.131778	0.130490748	2400.218988	0.009124514	
2500	1.93178	2503.021018	0.120840739	2500	0	

SS495A1 case 1

Figure 2-17 Error in percentage referred to regression line (SS495A1 sensors)

Figure 2-18 Error in percentage referred to end points line (SS495A1 sensors)

vi. <u>Case #2 – current from 50A to 500A</u>

Again we report the tests results for the Honeywell sensors when the more stable DC current generator is used.

Tab.	2-25

	Linearity and errors for sensor #1						
I [A]	$Vs_1 [V]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.		
50.8	-0.0303	50.58487439	-0.423475601	50.8	0		
100.4	-0.0608	100.6446971	0.243722256	100.8342643	0.432534119		
150.6	-0.0913	150.5896662	-0.006861782	150.7537334	0.102080618		
200.5	-0.1217	200.4690045	-0.015459123	200.6076054	0.053668512		
250.6	-0.1522	250.5780502	-0.008758883	250.6910675	0.036339793		
300.8	-0.1829	300.9003958	0.033376271	300.9877206	0.062407107		
350.9	-0.2134	350.9274032	0.00780941	350.9891862	0.025416424		
400.9	-0.2438	400.8723722	-0.006891437	400.9086554	0.002158989		
450.8	-0.2742	450.7188952	-0.017991309	450.7297287	-0.015588122		
500.6	-0.3046	500.6146412	0.002924722	500.6	0		

	Linearity and errors for sensor #2						
I [A]	$Vs_2 [V]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.		
50.8	-0.0337	50.61911913	-0.356064712	50.8	0		
100.4	-0.0675	100.5432665	0.142695709	100.7121	0.310884144		
150.6	-0.1014	150.5560628	-0.029174747	150.7129	0.074955506		
200.5	-0.1352	200.5393095	0.019605742	200.6841	0.091818334		
250.6	-0.1691	250.6555297	0.022158681	250.7882	0.075119703		
300.8	-0.2031	300.8456239	0.015167534	300.9663	0.055272789		
350.9	-0.2370	350.9175196	0.004992761	351.0261	0.035936435		
400.9	-0.2709	400.9450908	0.011247385	401.0416	0.035327397		
450.8	-0.3046	450.7510395	-0.010860803	450.8356	0.007893753		
500.6	-0.3383	500.5274386	-0.014494891	500.6	-1.13551E-14		

Linearity and errors for sensor #3						
I [A]	Vs ₃ [V]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
50.8	-0.0380	5.060.143.387	-0.390878201	50.8	-1,40E-09	
100.4	-0.0760	1.005.971.659	0.196380362	1.007.879.985	0.38645267	
150.6	-0.1140	1.504.746.115	-0.083259322	1.506.577.288	0.038332554	
200.5	-0.1521	2.005.360.582	0.017984117	2.007.114.318	0.105452283	
250.6	-0.1902	2.506.369.337	0.014738093	2.508.045.575	0.081627111	
300.8	-0.2284	3.008.823.815	0.027387457	3.010.422.332	0.080529652	
350.9	-0.2666	3.510.095.428	0.031217683	3.511.616.407	0.074562757	
400.9	-0.3046	4.009.395.602	0.009867841	4.010.839.347	0.045880438	
450.8	-0.3425	4.507.512.911	-0.010804998	4.508.879.605	0.01951209	
500.6	-0.3803	5.004.710.214	-0.025764802	500.6	-1,14E-09	

Figure 2-19 Error in percentage referred to regression line (SS495A1 sensors)

Figure 2-20 Error in percentage referred to end points line (SS495A1 sensors)

2.7. Metrological Characterization of Type 5 Sensors

THE LAST sensors that we tested were again from Asahi-Kasei but this time we used hybrid ones. The EQ-732L ^[28] sensor is composed of an InAs Quantum Well Hall element and a signal processing IC chip right on the package. According to their datasheet these sensors are extremely linear, actually perfectly constant. As advised by the manufacturer's datasheet we drove the sensors with a 5 VDC which adds up to a power consumption of roughly 40mA (10mA/sensor, 4 sensors on the board) with a max allowed induction of 60mT per sensor. We did two tests with these sensors: first the linearity test from 50A to 2500A and we used a LEM APR transducer to sense the current passing through the cables that connected the generator to the bar, and secondly we did a temperature test to investigate the thermal drift using the temperature chamber and the more precise DC current generator.

vii. Current from 100A to 1700A, measurement time greater than 1 second

Below are shown the results of the tests with measurement time greater than 1 second. Every time that we wanted to read the hall voltage for the desired current value, a switch triggered the multimeters that processed a number of values during the measuring time that was set greater than 1 second.

Linearity and errors for sensor #1							
I [A]	Vs_1 [V]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.		
101.6	-0.0968	103.0321604	1.407812332	101.6017978	-1.39868E-14		
151.4	-0.1440	151.6729854	0.200026947	150.2618743	-0.732198145		
201.1	-0.1929	201.9825552	0.462914472	200.5913563	-0.22904578		
250.9	-0.2410	251.5916643	0.264100186	250.2201002	-0.282494389		
307.3	-0.2958	307.9890629	0.222461319	306.6398205	-0.216594541		
357.3	-0.3437	357.3921541	0.015533976	356.0624649	-0.356577083		
407.5	-0.3925	407.6502195	0.036980322	406.340422	-0.284442746		
457.6	-0.4407	457.2902312	-0.05981292	456.0000808	-0.341773615		
507.2	-0.4888	506.8375349	-0.0802396	505.5669949	-0.330718386		
557.4	-0.5370	556.4569448	-0.17234595	555.2060437	-0.396755975		
607.6	-0.5861	607.0137361	-0.10318462	605.782845	-0.305753522		

Linearity and errors for sensor #1						
I [A]	$Vs_1 [V]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
657.2	-0.6339	656.3035174	-0.13802342	655.0921348	-0.322345255	
707.2	-0.6825	706.345264	-0.12749145	705.1536875	-0.295972429	
757.1	-0.7310	756.356108	-0.10358301	755.1843252	-0.258347278	
806.6	-0.7789	805.6973937	-0.11696338	804.5451399	-0.259809335	
856.8	-0.8274	855.6567332	-0.13339545	854.5242528	-0.265571088	
906.5	-0.8758	905.5233646	-0.10989579	904.410621	-0.232644781	
956.4	-0.9242	955.286987	-0.11507073	954.1939394	-0.22935993	
1006.4	-0.9727	1005.328734	-0.10526504	1004.255492	-0.211907951	
1105.8	-1.0690	1104.495447	-0.11404593	1103.461455	-0.207555866	
1206.0	-1.1661	1204.506834	-0.11980593	1203.512426	-0.202264344	
1304.6	-1.2646	1305.929444	0.098733423	1304.975177	0.025589457	
1404.6	-1.3615	1405.81722	0.08726565	1404.902488	0.022141257	
1503.4	-1.4585	1505.728688	0.151659338	1504.853501	0.09344733	
1604.1	-1.5551	1605.205459	0.070894171	1604.369643	0.018788186	
1704.2	-1.6520	1704.998467	0.046726756	1704.202148	-1.33419E-14	

Linearity and errors for sensor #2						
I [A]	$Vs_2 [V]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
101.6	-0.0957	102.1193822	0.509424437	101.6017978	-1.39868E-14	
151.4	-0.1432	151.6569855	0.189456952	151.143835	-0.149546704	
201.1	-0.1909	201.5077217	0.226739794	200.999033	-0.026273854	
250.9	-0.2385	251.1914537	0.104608581	250.687212	-0.0963414	
307.3	-0.2923	307.3643403	0.019170849	306.8651263	-0.143277941	
357.3	-0.3400	357.1242679	-0.059433472	356.6295077	-0.197891197	
407.5	-0.3880	407.1628837	-0.082611422	406.6726022	-0.202926037	
457.6	-0.4360	457.2954393	-0.058674695	456.8096449	-0.164844425	
507.2	-0.4836	506.947858	-0.058490097	506.4665078	-0.1533852	
557.4	-0.5315	556.9969115	-0.07547661	556.5200409	-0.161026576	
607.6	-0.5795	607.1085916	-0.087574164	606.6362063	-0.165315061	
657.2	-0.6272	656.9175767	-0.04458925	656.4496495	-0.115788222	
707.2	-0.6751	706.9248792	-0.045537727	706.4614279	-0.11106665	
757.1	-0.7230	756.8591174	-0.037147586	756.4001355	-0.097768041	
806.6	-0.7703	806.2819054	-0.044500932	805.8273471	-0.100852943	
856.8	-0.8183	856.3205212	-0.055922496	855.8704416	-0.108452822	
906.5	-0.8662	906.3904503	-0.014245827	905.9448521	-0.063400655	
956.4	-0.9138	956.0741823	-0.0327615	955.633031	-0.078888327	
1006.4	-0.9616	1005.904043	-0.048099305	1005.467352	-0.091491232	
1105.8	-1.0569	1105.375884	-0.034422871	1104.948096	-0.073110228	
1206.0	-1.1530	1205.693184	-0.021431321	1205.274375	-0.056159834	
1304.6	-1.2478	1304.653576	0.000938885	1304.243624	-0.03048367	

Linearity and errors for sensor #2						
I [A]	Vs_2 [V]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
1404.6	-1.3434	1404.480301	-0.007916389	1404.079284	-0.0364668	
1503.4	-1.4398	1505.096121	0.109584923	1504.70411	0.0835108	
1604.1	-1.5351	1604.495942	0.026661845	1604.112828	0.002777933	
1704.2	-1.6310	1704.576305	0.02195494	1704.202148	0	

Linearity and errors for sensor #3						
I [A]	Vs ₃ [V]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
101.6	-0.0809	103.8611397	2.223722321	101.6017978	1.39868E-14	
151.4	-0.1206	152.4633035	0.722136379	150.2132984	-0.764288953	
201.1	-0.1617	202.7912052	0.865124104	200.5508684	-0.2491838	
250.9	-0.2020	252.0665292	0.453342946	249.8356585	-0.435701753	
307.3	-0.2478	308.171369	0.28178538	305.9512765	-0.440653052	
357.3	-0.2882	357.5078894	0.047922282	355.2972747	-0.57071414	
407.5	-0.3288	407.2238273	-0.067655924	405.0227634	-0.607794929	
457.6	-0.3694	456.9152866	-0.141756567	454.7237688	-0.620709945	
507.2	-0.4100	506.6434638	-0.118499452	504.4614991	-0.548659762	
557.4	-0.4506	556.3104446	-0.198627883	554.1380213	-0.588357815	
607.6	-0.4915	606.3813215	-0.207261681	604.2185171	-0.563196414	
657.2	-0.5318	655.7056026	-0.229001074	653.5522737	-0.55664777	
707.2	-0.5728	705.8988723	-0.190608264	703.7551859	-0.493711224	
757.1	-0.6134	755.5658531	-0.20795664	753.431708	-0.489825781	
806.6	-0.6538	805.0492448	-0.197314991	802.9246058	-0.460708413	
856.8	-0.6946	854.9977289	-0.210310078	852.8826854	-0.457163997	
906.5	-0.7355	905.0563666	-0.161411285	902.9509396	-0.393665168	
956.4	-0.7760	954.6254332	-0.18424289	952.5295288	-0.403390922	
1006.4	-0.8168	1004.476003	-0.189996823	1002.389675	-0.397305292	
1105.8	-0.8978	1103.663093	-0.189320532	1101.59582	-0.376276092	
1206.0	-0.9799	1204.184265	-0.146554053	1202.136302	-0.316375334	
1304.6	-1.0634	1306.33326	0.129685689	1304.304921	-0.025785318	
1404.6	-1.1451	1406.340382	0.124512183	1404.331255	-0.018527768	
1503.4	-1.2270	1506.58005	0.208286574	1504.590179	0.075932843	
1604.1	-1.3083	1606.036404	0.122696531	1604.06564	-0.000163829	
1704.2	-1.3901	1706.153679	0.114512874	1704.202148	0	

Linearity and errors for sensor #4						
I [A]	Vs ₄ [V]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
101.6	-0.0826	102.5502498	0.933499271	101.6017978	0	
151.4	-0.1238	151.9398009	0.376293791	151.010623	-0.237550838	
201.1	-0.1652	201.5569535	0.251226913	200.6471386	-0.201300553	
250.9	-0.2070	251.5933722	0.264780841	250.703084	-0.090016094	
307.3	-0.2536	307.4755589	0.055362391	306.6070785	-0.227249068	
357.3	-0.2951	357.1645857	-0.048150619	356.3154964	-0.285766692	
407.5	-0.3371	407.5124593	0.003174101	406.6830181	-0.200369977	
457.6	-0.3784	456.9259684	-0.13942209	456.1158107	-0.316480989	
507.2	-0.4200	506.7587436	-0.095772792	505.9680331	-0.251656279	
557.4	-0.4619	556.9628688	-0.081583836	556.1917504	-0.219921482	
607.6	-0.5037	606.9992875	-0.105562439	606.2476957	-0.229252604	
657.2	-0.5448	656.2930063	-0.139622776	655.5606513	-0.251056617	
707.2	-0.5868	706.5809847	-0.094162114	705.8682545	-0.194937418	
757.1	-0.6286	756.7012567	-0.05799718	756.0080858	-0.149548356	
806.6	-0.6698	806.0189335	-0.077101795	805.3450087	-0.160648864	
856.8	-0.7117	856.2470168	-0.064501443	855.5926934	-0.140869749	
906.5	-0.7532	905.9120856	-0.067015198	905.2771439	-0.137056894	
956.4	-0.7948	955.6849656	-0.07345804	955.0694477	-0.137816673	
1006.4	-0.8366	1005.841175	-0.054346213	1005.24523	-0.113562391	
1105.8	-0.9195	1105.111417	-0.058340193	1104.554213	-0.108731445	
1206.0	-1.0031	1205.208213	-0.061646182	1204.690071	-0.104611585	
1304.6	-1.0869	1305.604484	0.07382545	1305.125522	0.03711325	
1404.6	-1.1700	1405.19816	0.043191647	1404.758064	0.011858957	
1503.4	-1.2535	1505.163187	0.114045697	1504.762101	0.087368021	
1604.1	-1.3366	1604.7928	0.045168399	1604.430595	0.022588007	
1704.2	-1.4199	1704.525433	0.018969841	1704.202148	0	

Figure 2-21 Error in percentage referred to regression line (EQ732L sensors)

Figure 2-22 Error in percentage referred to end points line (EQ732L sensors)

viii. <u>Current from 50A to 2500A, measurement time lower than 1 second</u>

We repeated the tests with the same sensors but now with a measurement time lower than 1 second.

Tab. 2-32

Linearity and errors for sensor #1						
I [A]	$Vs_1 [mV]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
52.1	0.0431	49.69913487	-4.672202823	52.13498721	-1.36289E-14	
101.8	0.08452	99.52031625	-2.267598352	102.0378702	0.204726946	
151.6	0.12627	149.7384312	-1.246462869	152.3383378	0.468193569	
201.4	0.16816	200.1249423	-0.621964095	202.8074775	0.710129142	
251.3	0.20988	250.3069724	-0.377944259	253.071801	0.722456209	
306.9	0.25637	306.2264973	-0.234294987	309.0830282	0.696335838	
357.0	0.29844	356.8295176	-0.05742351	359.7690323	0.765890294	
407.8	0.34086	407.8535281	0.015729867	410.8767169	0.757090213	
457.2	0.38218	457.5544266	0.069242724	460.6591197	0.748253296	
507.5	0.4239	507.7364567	0.039709979	510.9234432	0.667644421	
607.3	0.50774	608.5816486	0.202815531	611.9340109	0.754781141	
707.0	0.5912	708.9697654	0.277602547	712.4867539	0.775049959	
806.5	0.67421	808.8166091	0.2843207	812.4973362	0.74069018	
906.8	0.75739	908.8679337	0.228582221	912.7127347	0.652581063	
1006.4	0.84063	1008.991428	0.261221487	1013.000421	0.659586178	
1504.9	1.25656	1509.284136	0.293099118	1514.113558	0.614017944	
2004.1	1.66877	2005.10232	0.051358267	2010.744833	0.332910519	
2504.1	2.07829	2497.684894	-0.257585842	2504.135192	0	

Linearity and errors for sensor #2						
I [A]	$Vs_2 [mV]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
52.1	0.04148	51.36409454	-1.478647481	52.13498721	-1.36289E-14	
101.8	0.08015	100.136574	-1.662411919	101.0326103	-0.78247313	
151.6	0.12002	150.4225516	-0.795280753	151.4476151	-0.119244242	
201.4	0.15954	200.2670922	-0.551375301	201.4200502	0.02116052	
251.3	0.19933	250.4521699	-0.320155713	251.7338961	0.189970704	
306.9	0.2438	306.5398906	-0.132194405	307.9655305	0.332265608	
357.0	0.28328	356.3339813	-0.196215767	357.8873862	0.238869547	
407.8	0.32399	407.6794077	-0.026968752	409.3645581	0.386271625	
457.2	0.36338	457.359986	0.026717683	459.1726102	0.42314686	
507.5	0.40343	507.8729884	0.066610918	509.8152221	0.449290755	
607.3	0.48273	607.8899942	0.08893482	610.0888584	0.450977245	
Linearity and errors for sensor #2						
------------------------------------	-------------	----------------	---------------	---------------	---------------	
I [A]	$Vs_2 [mV]$	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
707.0	0.56201	707.8817752	0.1237158	710.3372049	0.471014965	
806.5	0.64076	807.2050944	0.084510686	809.9153745	0.420555472	
906.8	0.72089	908.2689365	0.162525711	911.238533	0.49000833	
1006.4	0.79969	1007.655318	0.128455224	1010.879927	0.448877386	
1504.9	1.19814	1510.199782	0.353944492	1514.713853	0.653908007	
2004.1	1.59225	2007.270428	0.159543316	2013.059916	0.448429401	
2504.1	1.98061	2497.088894	-0.281386455	2504.135192	0	

Tab. 2-34

	Linearity and errors for sensor #3					
I [A]	Vs ₃ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
52.1	0.05125	48.2593959	-7.433762843	52.13498721	1.36289E-14	
101.8	0.10055	98.34766542	-3.419182128	102.3948899	0.555332625	
151.6	0.15025	148.8423306	-1.837447447	153.0625808	0.945836884	
201.4	0.19999	199.3776354	-0.993061713	203.7710505	1.188620184	
251.3	0.24962	249.8011814	-0.579248843	254.3673785	1.238095428	
306.9	0.30459	305.6501099	-0.422076579	310.4076797	1.127894795	
357.0	0.35463	356.4902115	-0.152458063	361.4219906	1.228859044	
407.8	0.40501	407.6757494	-0.027865865	412.7829216	1.224538546	
457.2	0.45397	457.4185825	0.039533007	462.6962042	1.193772973	
507.5	0.50398	508.2282044	0.136599413	513.679931	1.21075736	
607.3	0.6033	609.1362557	0.294131455	614.9337552	1.248688292	
707.0	0.70214	709.5566322	0.360609744	715.6982335	1.229285796	
806.5	0.80063	809.6214124	0.384107413	816.105897	1.188111844	
906.8	0.90008	910.6615423	0.426378658	917.4922524	1.179659046	
1006.4	0.99865	1010.807602	0.441690583	1017.981474	1.154542193	
1504.9	1.49177	1511.812216	0.461091938	1520.702837	1.051880593	
2004.1	1.98046	2008.315997	0.211715537	2018.907945	0.74023657	
2504.1	2.45642	2491.886236	-0.489149147	2504.135192	0	

Tab. 2-34

Linearity and errors for sensor #4						
I [A]	Vs ₄ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.	
52.1	0.04746	49.86279442	-4.358287816	52.13498721	2.72578E-14	
101.8	0.09287	99.60229404	-2.187093323	101.9764499	0.144410086	
151.6	0.13887	149.9880457	-1.081840401	152.4654894	0.552050991	
201.4	0.18464	200.1218686	-0.62349044	202.7020838	0.657792714	
251.3	0.23067	250.5404805	-0.285008146	253.2240509	0.7830516	
306.9	0.2813	305.9976676	-0.308845558	308.794922	0.602473558	

	Linearity and errors for sensor #4						
I [A]	Vs ₄ [mV]	Ieq. Regr. [A]	E%punt. Regr.	Ieq. EndP [A]	E%punt. EndP.		
357.0	0.32746	356.558674	-0.133282723	359.4595756	0.679216137		
407.8	0.37413	407.6783051	-0.027239129	410.683999	0.709831027		
457.2	0.41969	457.5821061	0.07529636	460.6900998	0.755028785		
507.5	0.46577	508.0554851	0.102568402	511.2669464	0.735325115		
607.3	0.55767	608.7174542	0.225175895	612.1352666	0.787917855		
707.0	0.64889	708.6345904	0.230194967	712.2572272	0.742585408		
806.5	0.74004	808.4750527	0.241971478	812.3023566	0.716514868		
906.8	0.83136	908.5017231	0.188197066	912.5340759	0.63287884		
1006.4	0.92255	1008.385999	0.201061351	1012.623109	0.622093474		
1504.9	1.38078	1510.304759	0.360920317	1515.570774	0.710851033		
2004.1	1.83336	2006.034835	0.097889253	2012.317067	0.411362457		
2504.1	2.28145	2496.846823	-0.291053302	2504.135192	1.81599E-14		

EQ732L Meas time < 1s

Figure 2-23 Error in percentage referred to regression line (EQ732L sensors)

Figure 2-24 Error in percentage referred to end points line (EQ732L sensors)

2.7.1. Temperature Test

THE TEMPERATURE TEST concludes the investigation performed on EQ732L sensors and it also completes the experimental activity on Hall-effect sensors. The sensors and the bar are put inside the climatic chamber, and we started with 20° C, went down to -20° C, up again until we reached 100° C, and to conclude the test back to 20° C to look for hysteresis. In this case we used the 500A DC current generator because as stated earlier it generated a more stable output. Again we measured the output of the generator with the LEM transducer to double check the on-screen value.

The tables below show the measures for both cases; first the generator was off (offset voltage) and second the generator output was 500A (gain voltage). We did the experiment for 8 sensors, mounted 4 at a time on two separated boards.

Temp [°C]	I [A]	$Vs_1[V]$	$Vs_2 [V]$	Vs ₃ [V]	Vs4 [V]	$V_{\text{LEM}} [mV]$	I_{LEM} [A]
20	0	2.50821	2.49225	2.50691	2.48836		0.7
20	500	2.97172	2.98758	2.90845	2.90907	98.0695	501.2
0	0	2.50841	2.49297	2.50645	2.48809		0.7
0	500	2.97102	2.98755	2.90748	2.90752	98.0484	501.1
-20	0	2.50847	2.49405	2.50583	2.48756		0.7
-20	500	2.97128	2.98975	2.90604	2.90545	98.0543	501.1
0	0	2.50845	2.49347	2.50644	2.48836		0.7
0	500	2.97116	2.98889	2.90652	2.90693	98.0073	500.9
20	0	2.50866	2.49286	2.50669	2.48942		0.7
20	500	2.97175	2.98921	2.90782	2.90927	98.0352	501.0
40	0	2.50866	2.49217	2.5069	2.49072		0.7
40	500	2.97323	2.99051	2.90923	2.91239	98.0467	501.1
60	0	2.50955	2.49238	2.50668	2.49137		0.7
60	500	2.97492	2.99177	2.91019	2.91459	98.0502	501.1
80	0	2.50995	2.49289	2.50655	2.49132		0.7
80	500	2.97553	2.99202	2.91043	2.91528	98.0529	501.1
100	0	2.50937	2.49308	2.50717	2.49159		0.7
100	500	2.97346	2.98964	2.90971	2.91484	98.0543	501.1
20	0	2.50967	2.49224	2.5063	2.48925		0.7
20	500	2.97332	2.98953	2.90706	2.91117	98.0595	501.1

Tab. 2-35 (1st batch of sensors)

Note: the black values correspond to the offset voltage, and the red values to the gain voltage.

70

Temp [°C]	I [A]	$Vs_1[V]$	$Vs_2 [V]$	Vs ₃ [V]	Vs4 [V]	$V_{\text{LEM}} [mV]$	I_{LEM} [A]
20	0	2.4903	2.4881	2.49608	2.48277		0.7
20	500	2.87936	2.9513	2.9931	2.90914	98.0496	501.1
0	0	2.49074	2.48915	2.49717	2.48105		0.7
0	500	2.87769	2.95066	2.9924	2.90621	98.0525	501.1
-20	0	2.49059	2.49066	2.49855	2.47935		0.7
-20	500	2.87636	2.95082	2.99489	2.90295	98.0441	501.0
0	0	2.4906	2.48943	2.4976	2.48016		0.7
0	500	2.87639	2.95031	2.99441	2.90419	98.0532	501.1
20	0	2.49057	2.48865	2.49695	2.48157		0.7
20	500	2.87725	2.95054	2.99445	2.90666	98.0477	501.1
40	0	2.49081	2.4881	2.49622	2.48348		0.7
40	500	2.87888	2.95019	2.99504	2.91006	98.0448	501.1
60	0	2.49148	2.4872	2.49579	2.48699		0.7
60	500	2.88148	2.95101	2.99563	2.91471	98.0509	501.1
80	0	2.49242	2.48689	2.49625	2.48941		0.7
80	500	2.8838	2.95171	2.99609	2.91677	98.0539	501.1
100	0	2.49257	2.48551	2.49538	2.48989		0.7
100	500	2.8848	2.95044	2.99302	2.91807	98.0583	501.1
20	0	2.49193	2.48797	2.49733	2.4872		0.7
20	500	2.88405	2.9501	2.99292	2.91836	98.0539	501.1

Tab. 2-36 (2nd batch of sensors)

Note: the black values correspond to the offset voltage, and the red values to the gain voltage.

2.8Conclusions

NOW LET'S PUT together the two cases, that are the tests done with the generator able to go up to 2500A and the one that can generate up to 500A, and see if there is any repeatability of the measures. In order to compare the two cases, we discard the values greater the 500A from the measures collected for case#1, and recalculate the error in percentage referred to a new regression and endpoints line.

We show the graphics for case#1, first and immediately after for case#2. In this comparative analysis we show the error of only one sensor per batch, and that is sensor #1.

HG362 vs. HE144 vs. SS495A1

Figure 2-25 Error in percentage referred to regression line (case#1)

Figure 2-26 Error in percentage referred to endpoints line (case#1)

Figure 2-27 Error in percentage referred to regression line (case#2)

Figure 2-28 Error in percentage referred to endpoints line (case#2)

From the graphs shown above we can immediately notice that in both cases the curves have the same trend. At smaller currents the error is greater with respect to higher currents, and for all the sensors the error oscillates before it becomes stable at increasing values of currents. Also is interesting to see that in case#1 the error in absolute value is greater than that in case#2, and since only the generator has changed in the experimental setup, that might be attributed to the fact that the first generator was not very stable. At last it is pretty obvious that the HG362A sensor compared to the other ones has the greater error even though it is well below 0.5% in case#2.

Conclusions EQ732L

From the first tests where we used different measuring times the graphs immediately show that sensor #3 had offset problems. Also it can be easily identified the same trend that at lower currents the error is greater and with higher currents it is lower.

75

The temperature test gives a good picture of the thermal drift of these sensors, especially for the first batch where the curves are almost perfectly constant during all the temperature range in which these sensors were tested. On the other hand the second batch wasn't as good as first one. We find the same offset for sensor #1, while the other three have much greater deviations with respect to the first batch.

Overall EQ372L sensors are quite linear and have a good immunity to temperature variations.

3

Rogowski Coil

IN THIS CHAPTER we show the tests performed on two types of Rogowski coils, from two different manufacturers. The coils have a non-circular geometry. The purpose of these tests is to evaluate the crosstalk rejection of these new Rogowski coils designs. All the measurements were done at Dipartimento di Elettrotecnica of Politecnico di Milano, but this time the measurement setup was located at the Precision Measurements Laboratory which has a temperature of 23°C ±0.5 °C and a relative humidity of 50% ±5%. The equipments used in this case were a current generator able to generate a current signal with a frequency that goes up to 5 kHz, and a FLUKE 8508A which is a very high accuracy digital multimeter. The experimental setup was the same for the two coils, and it consisted of a cylindrical bar with a diameter of six millimeters fixed on a mechanical platform that was able to move the bar with 0.5 millimeter steps on specified paths along the coils. With the aid of a caliber we took the exact measures of the casings of both coils, in order to refer all the measurements to the same center point. As the bar displaced along designated paths with 0.5 millimeter steps we measured the output voltage of the coil at each step, and then calculated the relative error with respect to the voltage measured at the center of each coil. The bar was fed in both cases with 30 Amperes @1kHz and the outputs of the coils were filtered with a low-pass second order filter with a gain of 20dB, and a cut-off frequency of 2kHz.

The tets consisted of two different scenarios:

- i. The bar was displaced along a specified region at the top of the coil
- ii. The bar was displaced along a specified region at the side of the coil

These two regions are enough to have a full view of the influence of an external bar right next to the coils.

The results of the tests for both coils are reported below.

Note. We will be referring to the air core coil as **Type A** and to the one that has a current transformer (CT) as **Type B**, although we removed the CT from the second coil for reasons that we explain later.

3.1. Type A Rogowski Coil

BELOW ARE SHOWN the measurement results for the case of the first Rogowski coil that we tested. The calculation of the coordinates was done with the **XY** axis referred to the center point of the coil, and taking into account that the bar had a diameter of 6 mm. So each point given by its **x**,**y** coordinates identifies the position of the center of the bar against the center point of the coil which correspondents to the origin of the **x**,**y** plan.

i. <u>Case #1 – the bar moves along the region at the top of the coil</u>

Figure 3-1 Type A coil, case#1

We have divided the top region in 5 paths. The arrows show the displacement of the bar along these paths. From the starting point, @ x=0, y=19.5 mm, the bar was displaced along path #1 up to x=14mm while the y coordinate was fixed at 19.5 mm. During this first path the bar was touching the coil. Then we went up 5 mm along path #2 while the x coordinate was kept at 14 mm. Path #3 is the same as path #1 but @ y=24.5

mm and then we turned at the starting point along path #4. At last we repositioned the bar @ **x=0 mm, y=21.5 mm** from the center of the coil, in order to go along path #5.

While at this region, we took a particular measure; after repositioning the bar at the starting point, we modified the setup slightly to place the bar (a) x=0 mm, y=35 mm from the center of the coil. The reading was 5.314mV.

The following tables show the values obtained from the experimental test.

Path	#	1
------	---	---

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
0	19.50	66.628	2.786266884
0.5	19.50	66.915	2.798268724
1	19.50	67.198	2.810103291
1.5	19.50	67.174	2.809099653
2	19.50	66.723	2.790239619
2.5	19.50	65.855	2.753941371
3	19.50	64.458	2.695521265
3.5	19.50	62.519	2.614435663
4	19.50	59.736	2.498055451
4.5	19.50	56.088	2.345502446
5	19.50	52.132	2.180069418
5.5	19.50	47.118	1.970392673
6	19.50	41.996	1.756199557
6.5	19.50	35.804	1.497260904
7	19.50	28.941	1.2102622
7.5	19.50	21.982	0.919248944
8	19.50	13.776	0.57608832
8.5	19.50	6.255	0.261573203
9	19.50	0.946	0.039560072
9.5	19.50	9.176	0.383724334
10	19.50	16.982	0.710157655
10.5	19.50	24.503	1.024672772
11	19.50	31.049	1.298415088
11.5	19.50	34.402	1.438631707
12	19.50	36.649	1.532597332
12.5	19.50	37.935	1.586375612
13	19.50	38.443	1.607619287
13.5	19.50	38.281	1.600844729
14	19.50	37.585	1.571739221

Path #	#3
--------	-----------

Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
14	24.5	9.616	0.402124367
13.5	24.5	8.872	0.371011584
13	24.5	7.943	0.332162422
12.5	24.5	6.822	0.285284155
12	24.5	5.502	0.230084055
11.5	24.5	3.979	0.166394848
11	24.5	2.311	0.096641994
10.5	24.5	0.551	0.02304186
10	24.5	0.831	0.034750972
9.5	24.5	2.963	0.123907498
9	24.5	5.251	0.219587672
8.5	24.5	7.676	0.320996947
8	24.5	10.121	0.423242588
7.5	24.5	12.616	0.527579141
7	24.5	15.088	0.630953874
6.5	24.5	17.552	0.733994062
6	24.5	19.909	0.832559696
5.5	24.5	22.167	0.926985322
5	24.5	24.289	1.015723665
4.5	24.5	26.236	1.097143813
4	24.5	28.047	1.172876678
3.5	24.5	29.619	1.238614979
3	24.5	30.994	1.296115084
2.5	24.5	32.178	1.345627901
2	24.5	33.147	1.386149793
1.5	24.5	33.914	1.418224397
1	24.5	34.464	1.441224439
0.5	24.5	34.802	1.45535901
0	24.5	34.949	1.461506294

Path #	ŧ5
--------	----

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
0	21.5	50.386	2.10705474
0.5	21.5	50.331	2.104754736
1	21.5	50.024	2.091916531
1.5	21.5	49.401	2.065863756
2	21.5	48.458	2.026429139
2.5	21.5	47.171	1.972609041
3	21.5	45.506	1.902981642
3.5	21.5	43.491	1.818717852
4	21.5	41.043	1.716346757
4.5	21.5	38.151	1.595408355
5	21.5	34.958	1.461882658
5.5	21.5	31.367	1.311713294
6	21.5	27.461	1.148371179
6.5	21.5	23.339	0.97599632
7	21.5	18.932	0.791703258
7.5	21.5	14.505	0.60657383
8	21.5	10.029	0.419395308
8.5	21.5	5.631	0.23547861
9	21.5	1.442	0.060301928
9.5	21.5	1.677	0.070129218
10	21.5	5.319	0.222431314
10.5	21.5	8.547	0.35742065
11	21.5	11.464	0.479404508
11.5	21.5	13.899	0.581231966
12	21.5	15.935	0.666373939
12.5	21.5	17.745	0.742064986
13	21.5	18.849	0.788232342
13.5	21.5	19.576	0.818634216
14	21.5	19.974	0.835277882

Path a	#2
--------	----

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
14	19.5	37.595	1.572157404
14	20	33.331	1.393844352
14	20.5	29.449	1.231505875
14	21	25.936	1.084598336
14	21.5	22.761	0.951825367
14	22	19.919	0.832977878
14	22.5	17.378	0.726717685
14	23	15.101	0.631497512
14	23.5	13.058	0.546062811
14	24	11.238	0.469953582
14	24.5	9.613	0.401998913

Path #4

Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
0	24.5	34.951	1.46158993
0	24	37.575	1.571321039
0	23.5	40.401	1.689499435
0	23	43.459	1.817379668
0	22.5	46.751	1.955045373
0	22	50.288	2.102956551
0	21.5	54.098	2.262284113
0	21	58.151	2.431773512
0	20.5	62.458	2.611884749
0	20	66.635	2.786559612
0	19.5	66.864	2.796135993

The relative error is calculated against the voltage measured at the center point of the coil, which is

$V_{cA} = 2391.3 mV$

The figure shows the error plotted for path #1, #3, and #5. From the graph we can identify that at some point along the path the error dropped as low as 0.02%, because the output voltage of the coil was around 1mV. We can conclude that when the bar transited along these coordinates it disturbed the coil the less and the readings that we picked up were almost entirely background noise. The other two paths are not of any particular interest since in both paths it can be easily noted by looking at the values shown by the tables above (path #2 and path #4), the linear behavior of the error as the bar moves away or towards the coil.

82

ii. <u>Case #2 – the bar moves on the region at the side of the coil</u>

Figure 3-2 Type A coil, case#2

The setup is the same as case one, but now we moved on the region at the side of the coil. The starting point had the coordinates x=16, y=0 mm. The bar was displaced then along path #1 from y=0 to y=15 mm while xremained fixed at 16 mm. Along path #2 the bar moved away from the coil up to x=21 mm with y=15mm. We came down to y=0 and x=21 mm along path #3, and returned at the starting point going through path #4. Same as case one we repositioned the bar halfway through path #4, corresponding at x=18.5 mm in order to go along path #5.

Path #1

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
16	0	140.615	5.880274328
16	0.5	140.445	5.873165224
16	1	139.552	5.83582152
16	1.5	137.774	5.761468657
16	2	134.904	5.641450257
16	2.5	131.612	5.503784552
16	3	127.451	5.329778781
16	3.5	122.747	5.133065696
16	4	116.971	4.891523439
16	4.5	110.372	4.615564756
16	5	103.005	4.30748965
16	5.5	94.794	3.964119935
16	6	85.889	3.591728349
16	6.5	76.212	3.187053067
16	7	65.735	2.74892318
16	7.5	54.719	2.288253251
16	8	43.085	1.80173964
16	8.5	31.076	1.299544181
16	9	19.031	0.795843265
16	9.5	6.788	0.283862334
16	10	4.147	0.173420315
16	10.5	15.181	0.634842972
16	11	25.422	1.063103751
16	11.5	34.597	1.446786267
16	12	42.352	1.771086857
16	12.5	48.888	2.04441099
16	13	53.616	2.242127713
16	13.5	56.952	2.381633421
16	14	58.928	2.464266299
16	14.5	59.625	2.493413624
16	15	59.316	2.480491783

Path #3

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
21	15	12.696	0.530924602
21	14.5	11.247	0.470329946
21	14	9.571	0.400242546
21	13.5	7.569	0.316522394
21	13	5.262	0.220047673
21	12.5	2.649	0.110776565
21	12	0.209	0.008740016
21	11.5	2.749	0.114958391
21	11	6.172	0.258102287
21	10.5	9.804	0.4099862
21	10	13.647	0.570693765
21	9.5	17.655	0.738301342
21	9	21.808	0.911972567
21	8.5	25.969	1.085978338
21	8	30.151	1.260862292
21	7.5	34.209	1.430560783
21	7	38.366	1.604399281
21	6.5	42.339	1.770543219
21	6	46.111	1.928281688
21	5.5	49.621	2.075063773
21	5	53.081	2.219754945
21	4.5	56.182	2.349433363
21	4	58.987	2.466733576
21	3.5	61.481	2.571028311
21	3	63.682	2.663070296
21	2.5	65.489	2.738635888
21	2	66.954	2.799899636
21	1.5	68.038	2.845230628
21	1	68.706	2.873165224
21	0.5	68.995	2.8852507
21	0	68.846	2.87901978

Path	#5
------	----

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
18.5	0	98.983	4.139296617
18.5	0.5	98.895	4.13561661
18.5	1	98.264	4.10922929
18.5	1.5	97.095	4.060343746
18.5	2	95.347	3.987245431
18.5	2.5	92.992	3.888763434
18.5	3	90.077	3.766863212
18.5	3.5	86.611	3.621921131
18.5	4	82.547	3.451971731
18.5	4.5	77.984	3.26115502
18.5	5	72.977	3.051771003
18.5	5.5	67.631	2.828210597
18.5	6	61.881	2.587755614
18.5	6.5	55.552	2.32308786
18.5	7	49.018	2.049847363
18.5	7.5	42.293	1.768619579
18.5	8	35.476	1.483544516
18.5	8.5	28.474	1.190733074
18.5	9	21.502	0.89917618
18.5	9.5	14.645	0.612428386
18.5	10	7.961	0.332915151
18.5	10.5	1.705	0.07130013
18.5	11	3.563	0.148998453
18.5	11.5	9.007	0.376657048
18.5	12	13.817	0.577802869
18.5	12.5	18.187	0.760548656
18.5	13	21.752	0.909630745
18.5	13.5	24.797	1.03696734
18.5	14	27.151	1.135407519
18.5	14.5	28.886	1.207962196
18.5	15	30.092	1.258395015

Path	#2
Path	# 2

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
16	15	59.315	2.480449964
16.5	15	52.142	2.180487601
17	15	45.494	1.902479823
17.5	15	39.609	1.656379375
18	15	34.354	1.43662443
18.5	15	29.626	1.238907707
19	15	25.402	1.062267386
19.5	15	21.622	0.904194371
20	15	18.313	0.765817756
20.5	15	15.325	0.640864802
21	15	12.695	0.530882783

Path #4

Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
21	0	68.855	2.879396144
20.5	0	73.806	3.086438339
20	0	79.161	3.31037511
19.5	0	85.008	3.554886463
19	0	91.418	3.822941496
18.5	0	98.367	4.11353657
18	0	106.122	4.43783716
17.5	0	114.271	4.778614143
17	0	123.425	5.161418475
16.5	0	133.486	5.582151968
16	0	140.793	5.887717978

Just like case one the relative error is calculated against the voltage measured at the center point of the coil, and the same value $V_{cA} = 2391.3$ mV was used for this case.

Case 2 - Type A coil

Same as case one path #1, #3, and #5 are the interesting ones, and we can make the same observations that we did in the first case for path #2 and #4. From the graph can be easily identified the same behavior as the one in the first case where the error is almost zero in specific points. Just like in the first case, we can conclude that at these points the influence of the bar is almost inexistent and the voltage readings that we get are background noise.

3.2. Type B Rogowski Coil

THE FOLLOWINGS show the tests performed on the second Rogowski coil that we had, a.k.a. Type B. The measurements for this coil were not done on the same day as the one of the first coil, but just after finishing the tests with the first coil, the Type B coil was repositioned exactly on the same footprint of the Type A coil to ensure that the experimental setup didn't change much. Due to the fact that the casing of the Type B coil was a bit different from that of Type A, some rearrangement of the base where the coil was positioned had to be done, in order to refer the measurements to the same center point. In other words, the two center points of the two coils, which correspond also with the origin of the X, Y plane, must overlap. But, the casing of the second coil is a bit different so the coordinates of the starting point of the region on the top of the Type B coil is slightly different from that of the Type A coil. Sidewise the casing of the coils has the same dimensions, so the paths overlap perfectly.

We anticipated on the note before that we removed the current transformer (CT) from this coil. This was done because in the preliminary tests we noted that the Type B coil overheated just after a couple of measures.

Figure 3-3 Type B coil, case#1

The scenario is identical to the case of the Type A coil. We went through the same paths but as we anticipated, the different casing design of the coil changed a little bit the coordinates. The starting point had the coordinates x=0, y=17.75 mm; along path #1 the bar was displaced up to x=15 mm always in 0.5 mm steps. Again we went up along path #2 to y=22.75 mm along while the x coordinate remained at 15 mm. Then path #3 was done and the bar was located at x=0, y=22.75 mm at the end of it. We returned at the starting point going through path #4, and then we repositioned the bar at the middle of path #4, at coordinates x=0, y=20.25mm in order to go along path #5. At last, just like in the case of the first coil, we did the measurement for the point x=0, y=35 mm from the center of the coil. The reading was 6.995 mV.

Path	#	1
------	---	---

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
0	17.75	73.956	3 9454773
0.5	17.75	74 194	3 9581744
1	17.75	73 852	3 939929
1.5	17.75	72.911	3.8897277
2	17.75	71.399	3.809064
2.5	17.75	69.252	3.6945237
3	17.75	66.416	3.543226
3.5	17.75	63.061	3.3642402
4	17.75	58.967	3.1458294
4.5	17.75	54.179	2.8903945
5	17.75	48.696	2.597882
5.5	17.75	43.035	2.2958735
6	17.75	37.021	1.9750327
6.5	17.75	30.659	1.6356265
7	17.75	24.088	1.2850703
7.5	17.75	17.429	0.9298194
8	17.75	10.623	0.5667262
8.5	17.75	4.591	0.2449252
9	17.75	0.416	0.0221932
9.5	17.75	5.538	0.2954467
10	17.75	9.808	0.5232468
10.5	17.75	13.548	0.722772
11	17.75	16.393	0.8745499
11.5	17.75	18.557	0.9899971
12	17.75	20.129	1.0738617
12.5	17.75	21.167	1.1292379
13	17.75	21.787	1.1623143
13.5	17.75	22.021	1.1747979
14	17.75	21.962	1.1716504
14.5	17.75	21.673	1.1562325
15	17.75	21.188	1.1303582

Path #3			
Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
15	22.75	5.342	0.28499
14.5	22.75	4.763	0.254101
14	22.75	4.091	0.218251
13.5	22.75	3.291	0.175572
13	22.75	2.406	0.128358
12.5	22.75	1.382	0.073728
12	22.75	0.354	0.018886
11.5	22.75	0.513	0.027368
11	22.75	1.838	0.098055
10.5	22.75	3.386	0.18064
10	22.75	5.063	0.270106
9.5	22.75	6.852	0.365547
9	22.75	8.738	0.466163
8.5	22.75	10.726	0.572221
8	22.75	12.753	0.68036
7.5	22.75	14.812	0.790205
7	22.75	16.874	0.900211
6.5	22.75	18.935	1.010163
6	22.75	20.921	1.116114
5.5	22.75	22.885	1.220891
5	22.75	24.687	1.317026
4.5	22.75	26.386	1.407666
4	22.75	27.986	1.493025
3.5	22.75	29.359	1.566273
3	22.75	30.599	1.632426
2.5	22.75	31.602	1.685935
2	22.75	32.429	1.730054
1.5	22.75	33.039	1.762597
1	22.75	33.444	1.784203
0.5	22.75	33.614	1.793273
0	22.75	33.571	1.790979

Path #5			
Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
0	20.25	48.858	2.606525
0.5	20.25	49.004	2.614314
1	20.25	48.783	2.602523
1.5	20.25	48.195	2.571154
2	20.25	47.223	2.519299
2.5	20.25	45.889	2.448131
3	20.25	44.206	2.358345
3.5	20.25	42.179	2.250207
4	20.25	39.754	2.120835
4.5	20.25	37.146	1.981701
5	20.25	34.161	1.822455
5.5	20.25	30.971	1.652271
6	20.25	27.588	1.471792
6.5	20.25	24.149	1.288325
7	20.25	20.577	1.097762
7.5	20.25	17.011	0.90752
8	20.25	13.508	0.720638
8.5	20.25	10.088	0.538185
9	20.25	6.861	0.366027
9.5	20.25	3.844	0.205073
10	20.25	1.153	0.061511
10.5	20.25	0.735	0.039212
11	20.25	2.853	0.152205
11.5	20.25	4.794	0.255755
12	20.25	6.471	0.345221
12.5	20.25	7.871	0.41991
13	20.25	9.051	0.482862
13.5	20.25	9.954	0.531036
14	20.25	10.669	0.56918
14.5	20.25	11.185	0.596708
15	20.25	11.545	0.615914

Path #2			
X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
15	17.75	21.192	1.1305716
15	18.25	18.986	1.0128838
15	18.75	16.918	0.9025581
15	19.25	14.988	0.7995945
15	19.75	13.219	0.7052202
15	20.25	11.595	0.6185815
15	20.75	10.095	0.538558
15	21.25	8.732	0.4658433
15	21.75	7.489	0.3995305
15	22.25	6.362	0.3394062
15	22.75	5.343	0.2850436

Path #4

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
0	22.75	33.573	1.7910854
0	22.25	36.114	1.9266451
0	21.75	38.831	2.0715943
0	21.25	41.861	2.2332418
0	20.75	45.196	2.4111606
0	20.25	48.869	2.6071114
0	19.75	52.935	2.8240284
0	19.25	57.394	3.0619115
0	18.75	62.293	3.3232682
0	18.25	67.679	3.6106058
0	17.75	73.699	3.9317667

The relative error is calculated against the voltage picked up at the center of the coil, which is

$V_{cB} = 1874.45 \ mV$

Case 1 - Type B coil

As we did for the first coil the above figure shows the error plotted for path #1, #3, and #5. From the graph we can identify the same trend as we did for the Type A coil and again the error dropped as low as 0.02%. We can conclude in this case too, that at some point along the bar's path its influence on the coil is almost zero and the readings that we picked up were almost entirely background noise. For path #2 and path #4 we can make the same observations that we did for the Type A Rogowski coil.

Figure 3-4 Type B coil, case#1

We repeated the same test on the same setup as we did for the first coil in case two. The starting point had the coordinates x=16, y=0 same as the ones of the Type A coil. The bar then moved along path #1 from y=0 to y=15mm while x remained fixed at 16 mm. We went through path #2 which displaced the bar away from the coil up to x=21mm while y=15mm remained constant. We came down to y=0 and x=21mm along path #3, and returned at the starting point going through path #4. At last we repositioned the bar halfway through path #4, corresponding at x=18.5mm in order to go through path #5. As mentioned before, in this case the coordinates x, y of every single point that we measured were exactly like the ones for the first coil that we tested.

Path #1			
Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
16	0	27.828	1.484595481
16	0.5	27.369	1.460108298
16	1	26.709	1.42489797
16	1.5	25.665	1.369201632
16	2	24.188	1.290405186
16	2.5	22.117	1.179919443
16	3	19.392	1.034543466
16	3.5	15.612	0.832884313
16	4	11.305	0.603110246
16	4.5	6.366	0.339619622
16	5	1.152	0.061458028
16	5.5	3.502	0.186828136
16	6	9.073	0.484035317
16	6.5	14.523	0.774787271
16	7	19.517	1.041212089
16	7.5	24.099	1.285657126
16	8	27.919	1.489450239
16	8.5	31.113	1.659846888
16	9	33.601	1.792579157
16	9.5	35.225	1.879217904
16	10	36.143	1.92819227
16	10.5	36.436	1.943823522
16	11	36.089	1.925311425
16	11.5	35.292	1.882792286
16	12	34.057	1.816906293
16	12.5	32.785	1.749046387
16	13	31.067	1.657392835
16	13.5	29.145	1.554856091
16	14	27.154	1.448638267
16	14.5	25.071	1.337512337
16	15	23.043	1.229320601

Path #3			
Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
21	15	13.239	0.706287178
21	14.5	13.665	0.729013844
21	14	14.045	0.749286457
21	13.5	14.341	0.765077756
21	13	14.553	0.77638774
21	12.5	14.649	0.781509243
21	12	14.662	0.782202779
21	11.5	14.542	0.775800902
21	11	14.303	0.763050495
21	10.5	13.925	0.742884579
21	10	13.402	0.714983062
21	9.5	12.717	0.678439009
21	9	11.905	0.635119635
21	8.5	10.966	0.585024941
21	8	9.884	0.527301342
21	7.5	8.691	0.463656006
21	7	7.415	0.395582704
21	6.5	6.043	0.3223879
21	6	4.621	0.246525648
21	5.5	3.175	0.169383019
21	5	1.758	0.093787511
21	4.5	0.422	0.022513271
21	4	0.375	0.020005868
21	3.5	1.588	0.084718184
21	3	2.843	0.151671157
21	2.5	4.025	0.214729654
21	2	5.103	0.272239857
21	1.5	6.091	0.324948652
21	1	6.958	0.371202219
21	0.5	7.726	0.412174238
21	0	8.355	0.445730748

Path #5			
Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
18.5	0	16.434	0.876737176
18.5	0.5	15.512	0.827549414
18.5	1	14.494	0.77324015
18.5	1.5	13.248	0.706767318
18.5	2	11.763	0.62754408
18.5	2.5	10.032	0.535196991
18.5	3	8.098	0.432020059
18.5	3.5	5.899	0.314705647
18.5	4	3.511	0.187308277
18.5	4.5	0.989	0.052762144
18.5	5	0.901	0.048067433
18.5	5.5	3.605	0.192323081
18.5	6	5.883	0.313852063
18.5	6.5	8.549	0.45608045
18.5	7	11.089	0.591586865
18.5	7.5	13.471	0.718664141
18.5	8	15.616	0.833097709
18.5	8.5	17.522	0.934780869
18.5	9	19.126	1.020352637
18.5	9.5	20.409	1.088799381
18.5	10	21.394	1.141348129
18.5	10.5	22.043	1.175971618
18.5	11	22.444	1.19736456
18.5	11.5	22.508	1.200778895
18.5	12	22.387	1.194323668
18.5	12.5	21.994	1.173357518
18.5	13	21.461	1.144922511
18.5	13.5	20.767	1.107898317
18.5	14	19.931	1.063298568
18.5	14.5	19.021	1.014750994
18.5	15	18.025	0.961615407

Path #2			
Х	Y	Vrogowski	Relative error
[mm]	[mm]	[mV]	[%]
16	15	23.048	1.229587346
16.5	15	22.008	1.174104404
17	15	20.922	1.116167409
17.5	15	19.831	1.057963669
18	15	18.776	1.001680493
18.5	15	17.735	0.946144202
19	15	16.812	0.896903092
19.5	15	15.802	0.896903092
20	15	14.903	0.843020619
20.5	15	14.049	0.795059884
21	15	13.235	0.749499853

X [mm]	Y [mm]	Vrogowski [mV]	Relative error [%]
21	0	8.359	0.445944144
20.5	0	9.667	0.515724613
20	0	11.089	0.591586865
19.5	0	12.663	0.675558164
19	0	14.342	0.765131105
18.5	0	16.214	0.8650004
18	0	18.219	0.97196511
17.5	0	20.407	1.088692683
17	0	22.763	1.214382886
16.5	0	25.316	1.350582838
16	0	28.039	1.495852117

Just like case one the relative error is calculated against the voltage measured at the center point of the coil, and the same value $1874.45 \ mV$ was used again.

Again the figure shows path #1, #3, and #5, and we can make the same observations that we have done before for path #2 and #4. By now the form of the curve is quite familiar. We see the same trend that we saw in all the other cases that we analyzed, but in this case the points in which the error is almost zero are different from the ones that we saw in the previous cases. Just like before, we can conclude that at these points the influence of the bar is almost inexistent and the voltage readings that we get are background noise.

3.3. Comparative analysis of the two types of Rogowski coil.

IN THIS SECTION we make a side by side analysis of the two Rogowski coils that were tested for crosstalk rejection. As we saw in the previous paragraphs, the two coils have a slightly different casing so the region on the top of the coils is slightly displaced with respect to the same center point of the x, y plane. The regions on the side of the coils are completely overlapped.

The graph shows the relative error for both coils for the first case. As we know the **Y** coordinate of the Type B coil is greater than that of the Type A coil, because of the different dimensions of the coils' casings. Looking at the graph and comparing the respective paths with each other, it can be easily seen that the Type A performs better. But, we have to keep in mind that the voltage measured at the center of the Type A coil was 2392.3 mV which is greater from 1874.45 mV for the Type B coil, so when we compute the ratios against the center voltage we divide for a number that's smaller so we end up with a greater error. If we were two compare two paths that have

The center of the bar in the case of the Type B coil is 0.75 mm away from the center of the bar in the case of the Type A coil, so roughly one step (0.5 mm) above if we take into account errors during the repositioning of the Type B coil. With these observations in mind, from the graph we see clearly that the relative error is lower for the Type B coil and it is also interesting to notice that after the bar moves away from the points where its influence on the coil is almost inexistent the error stays much lower with respect to the Type A coil. At last, let's compare the error for case #2 that is the bar was displaced on the region on the side of the coils.

The above graph gives a clear answer: the Type B coil has better crosstalk rejection along the region on the side. It can be easily noticed that the relative error of the Type B coil never passes 2%. On the other hand for the Type A coil the error reaches a max value 5.88% at the most sensible point against 1.4% at the most sensible point of the Type B coil.

3.4. Conclusions

THIS CHAPTER was dedicated entirely in investigating two novel Rogowski coil designs from two well-known manufacturers. These coils can be used as current transducers in circuit breakers so it is very important to distinguish the short-circuit current from that of a bar that might be in the proximity of the coil. From this becomes clear the importance of the tests for crosstalk rejection that were performed with both these coils.

We can conclude that the Type A coil has a better sensitivity at the center because the measured voltage is up to 517 mV greater than the Type B coil. On the other hand the Type B coil has better crosstalk rejection especially sidewise where the error is considerably lower. On the other hand, if we look at the top region the overall performance of Type A coil is better. But when we compare the two paths that are almost overlapped, the Type B coil has a slightly lower relative error and after the "dead points" (where we get a reading of almost zero mV), the error rises very slowly for the Type B coil as opposed to the Type A coil. These "dead points" can be exploited in the case when cables or bars are placed in the immediate proximity outside the coils. By doing so, their influence on the coils will be very low.

4

Final Conclusions

THE THESIS is presented as an experimental characterization of two kinds of magnetic sensors used in many applications today.

The Hall sensor is used widely in many fields for different purposes. The application of our interest in this case is the use of Hall sensors in magnetic sensor arrays for current measurements, so this work takes into account the problems related to this specific field of application and tries to give a complete view of the real performance of different sensors that are available on the market today. These tests were done on behalf of a well-known company, which will use later these types of sensors in arrays that can be used in circuit breakers instead of traditional current measurement techniques. From the pool of data that we collected, which for the record is wider but in this paper we expose only the most significant ones, if we were to rank the sensors from the most performing to the least performing one, the EQ732L will be the first followed by HE144. SS495A1 will be the third, HG362 fourth, and the least performing one CYSJ362A.

Last but not least, the two novel Rogowski coils tested for crosstalk rejection proved to have the same trend of the error referred to the voltage measured at their central points. For both coils we identified "dead points" so a possibility to reduce crosstalk problems due to external cables or bars that might be in the proximity of the coils, is to place these within those intervals where the error was below 0.5%. Overall, the Type B coil performed better than the Type A coil, in both quadrants in which the external conductor was placed.

Reference

[1] S. Ziegler, R. C. Woodward, H. H. Iu, et al. Current sensing techniques: a riview[J], IEEE Sensors Journal., 2009, 9(4): p. 354-376.

[2] F. W. Grover, Inductance Calculations: Working Formulas and Tables. New York: D. Van Nostrand, 1946.

[3] C. M. Johnson and P. R. Palmer, "Current measurement using compensated coaxial shunts," Proc. IEE Sci., Measure. Technol., vol. 141, pp. 471–480, 1994.

[4] J. A. Ferreira, W. A. Cronje, and W. A. Relihan, "Integration of high frequency current shunts in power electronic circuits," IEEE Trans. Power Electron., vol. 10, pp. 32–37, 1995.

[5] R. Malewski, "New device for current measurement in exploding wire circuits," Rev. Scient. Instruments, vol. 39, pp. 90–94, 1968.

[6] F. Costa, P. Poulichet, F. Mazaleyrat, and E. Labouré, "The current sensors in power electronics, a review," EPE Journal, vol. 11, pp. 7–18, 2001.

[7] R. Malewski, C. T. Nguyen, K. Feser, and N. Hylten-Cavallius, "Elimination of the skin effect error in heavy-current shunts," IEEE Trans. Power Apparatus and Systems, vol. PAS-100, pp. 1333–1340, 1981.

[8] F. Castelli, "The flat strap sandwich shunt," IEEE Trans. Instrument. Measure., vol. 48, pp. 894–898, 1999.

[9] S. Ziegler, H. H. C. Iu, R. C. Woodward, and L. J. Borle, "Theoretical and practical analysis of a current sensing principle that exploits the resistance of the copper trace," in Proc. 39th IEEE Power Electronics Specialists Conf., PESC'08, Rhodes, Greece, 2008, pp. 4790–4796.

[10] W. F. Ray and C. R. Hewson, "High performance Rogowski current transducers," in Proc. IEEE Ind. Appl. Conf., Rome, Italy, 2000, pp. 3083–3090.

[11] D. A. Ward and J. L. T. Exon, "Using Rogowski coils for transient current measurements," Eng. Sci. Education J., vol. 2, pp. 105–113, 1993.

[12] A. Radun, "An alternative low-cost current-sensing scheme for highcurrent power electronics circuits," IEEE Trans. Ind. Electron., vol. 42, pp. 78–84, 1995.

[13] L. Dalessandro, N. Karrer, M. Ciappaz, A. Castellazzi, and W. Fichtner, "Online and offline isolated current monitoring of parallel switched high-voltage multi-chip IGBT modules," in Proc. 39th IEEE Power Electron. Specialists Conf., PESC'08, Rhodes, Greece, 2008, pp. 2600–2606.

[14] http://homepage.ntlworld.com/rocoil/

[15] http://www.electronics-tutorials.ws/electromagnetism/hall-effect.html

[16] HALL EFFECT SENSING AND APPLICATION.pdf available online at: http://sensing.honeywell.com

[17] K.-w. Ma and Y.-s. Lee, Isolated Current and Voltage Transducers Appl. Rep., LEM, 2004.

[18] P. Ripka, "Advances in fluxgate sensors," Sens. Actuators A: Physical, vol. 106, pp. 8–14, 2003.

[19] http://www.invasens.co.uk/FluxgateExplained.PDF

[20] R. Bazzocchi and L. Di Rienzo, "Interference rejection algorithm for current measurement using magnetic sensor arrays," Sensors & Actuators: A. Physical, Elsevier, vol. 85, No. 1-3, August 2000, pp. 38-41
Reference

[21] L. Di Rienzo, R. Bazzocchi, and A. Manara, "Circular arrays of magnetic sensors for current measurement," IEEE Transactions on Instrumentation and Measurement, vol. 50, No. 5, October 2001, pp. 1093-1096

[22] K. J. Binnis, P. J. Lawrenson, C.W.Trowbridge, The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley & Sons, 1992.

[23] L. Di Rienzo, A. Manara, and R. Ottoboni, "Low-cost current transducer based on circular array of magnetic sensors," in Proc. of 11th IMEKO TC-4 Symposium, Lisbon, Portugal, 13-14 September 2001, pp. 135-139

[24] G. D'Antona, L. Di Rienzo, R. Ottoboni, and A. Manara, "Processing magnetic sensor array data for AC current measurement in multiconductor systems", IEEE Trans. Instrum. Meas., vol. 50, No. 5, pp. 1289-1295, Oct. 2001.

[25] A. Manara, E. De Bortoli, L. Di Rienzo, and A. Piazzesi, "An improved current sensing device for low-voltage power circuit breakers," European Patent 1 166 132 B1, 26 July 2006.

[26] G. D'Antona, L. Di Rienzo, R. Ottoboni. Metrological validation of a novel three phase current sensor[C]. Hungary: Proc. of IEEE Instrumentation and Measurement Technology Conference, 2011: 106-110.

[27] http://www.chenyang.de/

[28] http://www.asahi-kasei.co.jp/ake/en/product/hall_ic/index.html

[29] http://www.hoeben.com/products.html

[30 http://sensing.honeywell.com/