
Politecnico di Milano

Facoltà di Ingegneria Civile, Ambientale e Territoriale

Polo Territoriale di Como

Master of Science in

Environmental and Land Planning Engineering

Improved dynamic emulation modelling by
time series clustering: the case study of

Marina Reservoir, Singapore

Supervisor:

Prof. Andrea Castelletti

Assistant supervisor:

Dr. Stefano Galelli

Master graduation thesis by:

Stefania Caietti Marin

Student Id. number: 745854

Academic Year: 2011-2012

Politecnico di Milano

Facoltà di Ingegneria Civile, Ambientale e Territoriale

Polo Territoriale di Como

Corso di Laurea Specialistica in

Ingegneria per l’Ambiente e il Territorio

Dynamic Emulation Modelling e Time
Series Clustering: il caso di studio di

Marina Reservoir, Singapore

Relatore:

Prof. Andrea Castelletti

Correlatore:

Dr. Stefano Galelli

Tesi di Laurea di:

Stefania Caietti Marin

Matricola: 745854

Anno Accademico: 2011-2012

”Fanciullino, tu sei savio: non vuoi ripetere il già detto, né trovare l’indicibile.

Sai che nelle cose é il nuovo, per chi sa vederlo; e non t’indurrai a trovarlo,

affatturando e sofisticando. Il nuovo non s’inventa: si scopre.”

— Giovanni Pascoli

I

Acknowledgements

This master thesis was carried out under the supervision of Andrea Castelletti and

the co-supervision of Stefano Galelli. I wish to thank them for the opportunity

they gave me, and for being great advisors. Their ideas and support had a major

influence on this work.

The case study described in this thesis was developed in collaboration with the

Singapore-Delft Water Alliance (SDWA) at the National University of Singapore

(Singapore), as part of the Multi-objective Multiple-Reservoir Management research

program. I want to express gratitude to all SDWA staff, in particular to Vladan

Babovic, who gave me the possibility of visiting SDWA and working there on the

project activities.

I wish to thank Albert Goedbloed for his special advices and for his active help with

the use of Matlab and I am grateful to Abhay, Ali, Samuel, Phil, Jingjie, and Javier

for having been cooperative fellows and dear friends.

The first loving thanks goes to my family for having been close to me throughout my

studies. A special thanks is for Donata because day by day she encourages me not

to turn away from the truth, and to Serena for her unreserved support, especially

during the most difficult moments.

Thanks also to Paola, Monia, Anna, Annina, Renée, and Maria, as with them I

receive only affection and comprehension, even when I show the worst side of me.

I wish to thank Federica, who came into my life only by accident; she is a really

precious person and I cannot forget what we shared in Singapore.

Thanks also to Trisha, Bokyung, Katja, Anna, Manhang, Hoi Yin, Przemyslaw, An-

drew, David, Tae-Kyu, Karol, Baris, Maggie, Yevgeniy, Tommy, Stephanie, Pawel,

and Konstantin as they made my staying in Asia delightful and amusing: with them

I went through lots of new experiences and I saw magnificent and enchanting places

that I will keep in mind for the rest of my life.

III

I also wish to thank Roberto for having been a constant presence during the prepa-

ration of the exams and the redaction of this thesis, and I am particularly grateful

to all the students that passed me by during these years, as they made me reflect

upon how I was in the past and they made me realize what I want to be in the

future.

My final thanks is for Paolo, who is by my side in this special moment. Maybe I

don’t know what love means; but if it has to do with the encouragement helping the

other to reach a goal, if it implies respect and freedom to express one’s own nature

every single day, then I can say I do love you.

IV

Abstract

Dynamic Emulation Modelling (DEMo) is emerging as a viable solution to combine

computationally intensive simulation models and dynamic optimization algorithms.

A dynamic emulator is a low order surrogate of the simulation model identified over

a sample data set generated by the original simulation model itself. When applied

to large 3D models, any DEMo exercise does require a preprocessing of the exoge-

nous drivers and state variables in order to reduce, by spatial aggregation, the high

number of candidate variables to appear in the final emulator. This work describes

a hybrid clustering-variable selection approach to automatically discover compact

and relevant representations of high-dimensional data sets. Time series clustering

(Liao, 2005) is adopted to identify spatial structures by objectively organizing data

into homogenous groups, where the within-group-object similarity is minimized. In

particular, the proposed approach relies on a hierachical agglomerative clustering

method (Magni et al., 2008), which starts by placing each time-series in its own

cluster, and then merges clusters into larger clusters, until a compact, yet informa-

tive, representation of the original variables can be processed with the Recursive

Variable Selection - Iterative Input Selection algorithm (Castelletti et al., 2011), in

order to single out the most relevant clusters. The approach is demonstrated on a

real-world case study concerning the reduction of DELFT3D, a spatially distributed

hydrodynamic model used to simulate salt intrusion dynamics in a tropical lake

(Marina Reservoir, Singapore).

VII

Sommario

Il Dynamic Emulation Modelling (DEMo) sta emergendo come possibile soluzione

per un utilizzo combinato di algoritmi di ottimizzazione dinamica e di modelli di

simulazione onerosi dal punto di vista computazionale. Un dinamic emulator é

un modello semplificato e computazionalmente efficiente, di un modello di simu-

lazione e può essere generato tramite simulazione a partire da un campione di dati

prodotto dal modello originale. Se applicato a grandi modelli 3D, l’implementazione

della procedura DEMo richiede un una preliminare trasformazione dei vettori degli

ingressi esogeni e delle variabili di stato per ridurre, attraverso un’aggregazione

spaziale, l’elevato numero di variabili candidate ad apparire nell’emulation model

finale. Questo lavoro di tesi descrive un approccio combinato di techiche di cluster-

izzazione e di variable selection per scoprire in maniera automatica rappresentazioni

compatte e rilevanti in data-set di grandi dimensioni. La clusterizzazione di serie

temporali é qui adottata per identificare in modo oggettivo strutture spaziali nei

dati e per organizzarli in gruppi omogenei, in cui il grado di similarità tra oggetti

appartenenti ad uno stesso gruppo sia massimizzato. In particolare, l’approccio pro-

posto si basa sull’utilizzo di un metodo di clusterizzazione gerarchico agglomerativo,

che inizialmente pone ogni serie temporale in cluster differenti e successivamente li

unisce in cluster di dimensioni sempre maggiori, fino a che una rappresentazione com-

patta, ma informativa, delle variabili originali puó essere processata con l’algoritmo

di Recursive Variable Selection - Iterative Input Selection, al fine di individuare i

cluster più rilevanti. L’approccio é dimostrato su un caso studio reale riguardante

la riduzione di Delft3D, un modello idrodinamico spazialmente distribuito utiliz-

zato per simulare la dinamica dell’intrusione salina in un lago tropicale (Marina

Reservoir, Singapore).

VIII

Introduction

Advances in scientific computation and data collection techniques have increased the

level of fundamental understanding that can be built into physically-based models,

which are widely adopted to describe the dynamics of large environmental systems.

These models, which are more and more realistic and complex, are often used also to

support planning and management interventions. However, the practical application

of a decision-making scheme in environmental problems can be particularly difficult

as the physically-based models used to describe environmental systems are computa-

tionally intensive and thus ill-suited to support optimization-based decision-making,

which normally requires hundreds or thousands of model evaluations.

A potentially effective approach to overcome these limitations is to perform a top-

down reduction of the physically-based model by a simplified, computationally-

efficient emulation model (Castelletti et al. (2012b) and references therein) con-

structed from and then used in place of the original physically-based model in highly

resource-demanding tasks. The underlying idea is that not all the process details

in the original model are equally important and relevant to the dynamic behaviours

that result into an actual change in the values of the planning/management objec-

tives of the decision-making problem, and thus affect the final decision.

Literature shows a variety of alternate emulation modelling approaches that explored

different knowledge areas and engineering applications, including aeronautics, chem-

ical engineering, robotics, electronics, and micro-engineering. Most of these methods

tend to derive an emulator trying to exploit some peculiar features of the system

under study, or are model-specific, in the sense that the type of emulator depends

upon the type of physically-based model. Moreover, for decision-making problems

(i.e. optimal control) the emulator must be dynamic, that is it must reproduce the

trajectories over any specified horizon of the relevant variables. A shared theoreti-

cal vision is still missing and different techniques were independently developed in

IX

different domain of interest.

Castelletti et al. (2012a) re-organized the techniques adopted in environmental prob-

lems into a general framework to Dynamic Emulation Modelling (DEMo) and dis-

tinguished two categories of dynamic emulators: structure-driven and data-driven.

The former are based on the idea of projecting the high-dimension equations of the

physically-based models onto a lower-dimension space, where the model equations

are solved for the substituted projected states. The latter are generally based on

the identification of the emulator as an I/O relationship over a data set of input-

output samples generated from the original physically-based model. The choice for

one approach or the other depends on the level of complexity and non-linearities

embedded into the original model.

Structure-driven dynamic emulators are well developed for linear, quadratic, and

weakly non-linear models, while theory is still under development for non-linear

models. This category of emulators is also naturally in the state-space form, which

makes it directly and more effectively usable in any management problem. On the

contrary, data-driven emulators can be easily applied to both linear and non-linear

models, as they do not require any analytical assumption about the physically-based

model structure. The resulting emulator, however, is in external form and, generally,

must be converted into state-space form by solving a minimal realization problem,

which can turn out particularly difficult in the non-linear case. Moreover, while lit-

erature shows some operational examples of emulators in external form interpretable

in physical terms (see, for example, GAINS model (Amann, 2009) in the part related

to climate change and air quality emulators), in the water resources sector both the

original external form and the associated minimal realization typically lack of cred-

ibility by stakeholders and domain experts, apart from few particular cases (Young

(1998); See et al. (2008); Babovic (2009)). Data-driven DEMo has been more ex-

tensively explored than its structure-driven twin in environmental modelling, where

systems are typically complex and highly non-linear.

Lately, Castelletti et al. (2012) proposed a new data driven approach that preserves

the internal representation of the original model and allows to get insight on the

physical functioning of the emulator.

The purpose of my thesis is to enhance the status of these techniques, focusing

on data-driven DEMo, and trying to combine the advantages of traditional data-

X

driven methods (i.e. fully automated, independent of domain experts and system

knowledge, and suitable for non-linear processes), while preserving the state-space

representation and the associated physical interpretability of structure-driven emu-

lators.

Indeed, when applied to large 3D models, any DEMo exercise does require a pre-

processing of the exogenous drivers, controls, and state variables in order to reduce,

by spatial aggregation, the high number of variables candidate to appear in the final

emulator. This operation can be performed by adopting different techniques: this

work explores the potential of one of these, i.e. clustering, to automatically discover

compact and relevant representations of high-dimensional data sets. Time series

clustering is adopted to identify spatial structures by objectively organizing data

into homogeneous groups, where the within-group-object similarity is maximized.

In particular, the proposed approach relies on a hierarchical agglomerative cluster-

ing method, which starts by placing each time-series in its own cluster, and then

merges clusters into larger clusters, until a compact, yet informative, representation

of the original variables can be processed with a variable selection algorithm, in

order to single out the most relevant clusters. The approach is demonstrated on a

real-world case study concerning the reduction of Delft3D, a spatially distributed

hydrodynamic model used to simulate hydrodynamic processes in a tropical reser-

voir (Marina Reservoir, Singapore).

The present work is organized as follows. Chapter 1 describes the families of

physically-based models and the corresponding decision-making problems on which

they are employed, it introduces the different emulation modelling strategies and

approaches, and it discusses the methods that have been used in the last years. As

the selection of the most relevant variables appearing in the final emulator is com-

monly difficult, clustering techniques are introduced and described in Chapter 2. In

particular, this chapter provides an overview of the clustering algorithms present in

literature, it introduces the reader to time-series clustering, and it presents a critical

analysis of the time-series clustering algorithms being developed so far, giving partic-

ular emphasis to the hierarchical agglomerative clustering method. Chapter 2 also

presents some different similarity/distance measures and linkage methods, whose

choice is the key point of any clustering study, and it distinguishes two categories of

clustering evaluation criteria. The purpose of Chapter 3 is then to introduce the case

study to which the hybrid approach that couples DEMo procedure to clustering is

XI

applied. Water management issues in Singapore and Marina reservoir water system

are here described in details, with particular emphasis on the management problem

and to the modelling tools that constitute the basis for the emulator identification.

Chapter 4 describes the reduction of a 3D, physically-based model (Delft3D) de-

scribing the hydrodynamic conditions of Marina reservoir (Singapore). The scope

of this application is to reduce the dimensionality of Delft3D, so that the resulting

emulation model can be used to simulate salt intrusion dynamics in Marina Reser-

voir, and subsequently coupled with a real-time control of the system to account for

both water quality and quantity targets. Concluding remarks are finally given in

Chapter 5.

XII

Contents

Acknowledgements III

Abstract VII

Sommario VIII

Introduction IX

1 Complexity reduction strategies for physically-based models 1

1.1 Introduction . 1

1.2 Framing the problem . 2

1.2.1 The system E . 2

1.2.2 The model M . 3

1.2.3 The problem P . 4

1.3 Complexity reduction . 7

1.3.1 Dynamic Emulation modelling (DEMo) 7

1.3.2 Non-dynamic emulation modelling 8

1.4 A general procedure for DEMo . 9

1.4.1 Step 1 - Design of Experiments and simulation runs 10

1.4.2 Step 2 - Variable aggregation 12

1.4.3 Step 3 - Variable selection . 13

1.4.4 Step 4 - Structure identification 16

1.4.5 Step 5 - Evaluation and physical interpretation 16

1.4.6 Step 6 - Model usage . 17

1.5 Purpose of this work . 17

2 Clustering of data time series 19

2.1 Basics of clustering . 20

XIII

2.1.1 Clustering algorithms . 20

2.2 Time series clustering . 22

2.3 Similarity/Distance measures . 28

2.3.1 Euclidean distance, root mean square distance and Mikowski

distance . 30

2.3.2 Dynamic time warping distance 31

2.3.3 Spatial Assembling distance (SpADe) 32

2.4 Linkage methods . 33

2.4.1 Single . 33

2.4.2 Complete . 34

2.4.3 Average . 34

2.4.4 Centroid . 34

2.4.5 Ward’s method . 35

2.5 Clustering results evaluation criteria 36

2.5.1 External validity indices . 37

2.5.2 Internal validity indices . 39

3 The Marina Reservoir case study 41

3.1 Water management issues in Singapore 41

3.2 Marina Reservoir water system . 43

3.3 Motivation . 45

3.4 Description of the models available 46

3.4.1 Rainfall-runoff and 1D flow module 48

3.4.2 3D flow module . 49

3.4.3 Operating rules of barrage . 50

3.5 DEMo problem conceptualization . 51

4 DEMo by hierarchical clustering 53

4.1 DOE and simulation runs . 53

4.2 Variable aggregation by time-series clustering 56

4.2.1 Clustering results . 59

4.3 Variable selection . 68

4.3.1 Salinity in a point close to the barrage salbarrt 69

4.3.2 Dynamics of salC1
t+1 . 71

4.3.3 Dynamics of salC4
t+1 . 71

4.4 Identification of the emulation model 73

XIV

4.5 Choice of a different aggregation method 76

4.5.1 DOE, simulation runs and variable aggregation 76

4.5.2 Variable selection . 78

Concluding remarks 87

A Taxonomy and algorithms of DEMo procedure 91

A.1 Summary of the variables involved in the DEMo general procedure . . 91

A.2 Summary of the variables involved in the RVS-IIS methodology . . . 92

A.3 Recursive Variable Selection algorithm 93

A.4 Iterative Input Selection algorithm 94

B Clustering results 95

B.1 Plots of DBI and DI indexes . 96

B.2 Number of points per layer per cluster 104

C Variable selection results 109

C.1 Aggregation by hierarchical clustering 109

C.1.1 Salinity near the barrage salbarrt 109

C.1.2 Dynamics of salinity in cluster 1 salC1
t+1 110

C.1.3 Dynamics of salinity in cluster 4 salC4
t+1 111

C.2 Aggregation in vertical layers . 112

C.2.1 Salinity near the barrage salbarrt 112

C.2.2 Dynamics of salinity in layer 1 salL1t+1 113

C.2.3 Dynamics of salinity in layer 2 salL2t+1 114

C.2.4 Dynamics of salinity in layer 3 salL3t+1 115

C.2.5 Dynamics of temperature in layer 2 tempL2t+1 116

Bibliography 119

XV

List of Figures

1.1 The DEMo procedure steps (see Castelletti et al., 2012b). Step 2,

which is the one mainly explored in this work, is denoted in bold. . . 11

2.1 The intuition behind the Euclidean distance metric (from Ratanama-

hatana et al. (2010)). 30

2.2 Two time series requiring a warping measure. Note that while the

sequences have an overall similar shape, they are not aligned in the

time axis (from Ratanamahatana et al. (2010)). 31

2.3 Illustration of shifting and scaling in temporal and amplitude dimen-

sions of two time series, handled by pattern-based similarity measures

(from Chen et al. (2007)). 32

3.1 The Marina Reservoir water system. 44

3.2 Flow diagram of simulation model. 47

3.3 Delft3D bathymetry. 50

4.1 Localization of the point used in the elaborations. 56

4.2 Time Clust input screen example. 58

4.3 Average value (over the 10 simulation runs) of the DBI and DI indexes

for the temperature transport TT . 60

4.4 The 6 clusters identified for the salinity concentration. 62

4.5 The 4 clusters identified for the salinity transport. 63

4.6 The 6 clusters identified for the temperature. 64

4.7 The 3 clusters identified for the temperature transport. 64

4.8 The 4 clusters identified for the u-velocity. 65

4.9 The 6 clusters identified for the v-velocity. 66

4.10 The 8 clusters identified for the w-velocity. 67

4.11 Te 10 clusters identified for the water level. 68

XVII

4.12 Graph representation of the variables interactions involved in the em-

ulator output transformation function (a) and state transition equa-

tion (b), for data aggregated with hierarchical clustering. 73

4.13 Trajectory of the average salinity concentration in the point close to

the barrage chosen as output simulated by Delft3D (dotted line) and

predicted by the emulation model (solid line), for data aggregated

with hierarchical clustering. 74

4.14 Scatterplot between the trajectory of the average salinity concentra-

tion in the point close to the barrage simulated by Delft3D (y-axis)

and predicted by the emulation model (x-axis), for data aggregated

with hierarchical clustering. 75

4.15 Graph representation of the variables interactions involved in the em-

ulator output transformation function (a) and state transition equa-

tion (b), for data aggregated in vertical layers. 82

4.16 Trajectory of the average salinity concentration in the point close to

the barrage chosen as output simulated by Delft3D (dotted line) and

predicted by the emulation model (solid line), for data aggregated in

vertical layers. 84

4.17 Scatterplot between the trajectory of the average salinity concentra-

tion in the point close to the barrage simulated by Delft3D (y-axis)

and predicted by the emulation model (x-axis), for data aggregated

in vertical layers. 84

B.1 Average value (over the 10 simulation runs) of the DBI and DI indexes

for salinity (sal). 96

B.2 Average value (over the 10 simulation runs) of the DBI and DI indexes

for the salinity transport (ST). 97

B.3 Average value (over the 10 simulation runs) of the DBI and DI indexes

for temperature (temp). 98

B.4 Average value (over the 10 simulation runs) of the DBI and DI indexes

for the temperature transport (TT). 99

B.5 Average value (over the 10 simulation runs) of the DBI and DI indexes

for u-velocity (UV). 100

B.6 Average value (over the 10 simulation runs) of the DBI and DI indexes

for v-velocity (V V). 101

XVIII

B.7 Average value (over the 10 simulation runs) of the DBI and DI indexes

for w-velocity (WV). 102

B.8 Average value (over the 10 simulation runs) of the DBI and DI indexes

for the water level (h). 103

XIX

List of Tables

4.1 Components of exogenous driver vector Wt. 54

4.2 Components of control vector ut. 54

4.3 Summary of Delft3D state variables Xt notation (computed for each

i cell of the spatial domain). 55

4.4 Selected number of clusters for the different sub-sets composing the

vector Xt. The symbols are explained in Table 4.3. 61

4.5 Number of points per layer per cluster for salinity (sal). 62

4.6 Results obtained using RVS-IIS algorithm to select the most rele-

vant variables to explain salbarrt for data aggregated with hierarchical

clustering. 70

4.7 Selected features and corresponding performance of the MISO models

obtained for the case of salbarrt , for data aggregated with hierarchical

clustering. State variables are denoted in bold. 70

4.8 Selected features and corresponding performance of the MISO models

obtained for the case of salC1
t+1. State variables are denoted in bold. . 71

4.9 Selected features and corresponding performance of the MISO models

obtained for the case of salC4
t+1. State variables are denoted in bold. . 72

4.10 Structure and performances (R2 and RMSE in k-fold cross validation)

of the MISO models composing salbarrt (salinity concentration in the

point close to the barrage) emulation model, for data aggregated with

hierarchical clustering. 73

4.11 Depth of each vertical layer in Delft3D stratification. 77

4.12 Results obtained using RVS-IIS algorithm to select the most relevant

variables to explain salbarrt , for data aggregated in vertical layers. . . 78

4.13 Selected features and corresponding performance of the MISO models

obtained for the case of salbarrt , for data aggregated in vertical layers.

State variables are denoted in bold. 79

XXI

4.14 Selected features and corresponding performance of the MISO models

obtained for the case of salL1t+1. State variables are denoted in bold. . 80

4.15 Selected features and corresponding performance of the MISO models

obtained for the case of salL2t+1. State variables are denoted in bold. . 81

4.16 Selected features and corresponding performance of the MISO models

obtained for the case of salL3t+1. State variables are denoted in bold. . 81

4.17 Selected features and corresponding performance of the MISO models

obtained for the case of tempL2t+1. State variables are denoted in bold. 81

4.18 Structure and performances (R2 and RMSE in k-fold crossvalidation)

of the MISO models composing salbarrt (salinity concentration in the

point close to the barrage) emulation model, for data aggregated in

vertical layers. 83

B.1 Number of points per layer per cluster for salinity (sal). 104

B.2 Number of points per layer per cluster for salinity transport (ST). . . 104

B.3 Number of points per layer per cluster for temperature (temp). 105

B.4 Number of points per layer per cluster for temperature transport (TT).105

B.5 Number of points per layer per cluster for u-velocity (UV). 106

B.6 Number of points per layer per cluster for v-velocity (V V). 106

B.7 Number of points per layer per cluster for w-velocity (WV). 107

B.8 Number of points per layer per cluster for water level (h). 107

C.1 Results obtained using IIS-RVS algorithm to select the most relevant

variables to explain salbarrt . 109

C.2 Results obtained using IIS-RVS algorithm to select the most relevant

variables to explain salC1
t+1. 110

C.3 Results obtained using IIS-RVS algorithm to select the most relevant

variables to explain salC4
t+1. 111

C.4 Results obtained using IIS-RVS algorithm to select the most relevant

variables to explain salbarrt . 112

C.5 Results obtained using IIS-RVS algorithm to select the most relevant

variables to explain salL1t+1. 113

C.6 Results obtained using IIS-RVS algorithm to select the most relevant

variables to explain salL2t+1. 114

C.7 Results obtained using IIS-RVS algorithm to select the most relevant

variables to explain salL3t+1. 115

XXII

C.8 Results obtained using IIS-RVS algorithm to select the most relevant

variables to explain tempL2t+1. 116

XXIII

Chapter 1

Complexity reduction strategies

for physically-based models1

1.1 Introduction

Advances in scientific knowledge and computational power have considerably en-

hanced the level of fundamental understanding that is built into the kind of physically-

based models which are widely used in the modelling of large environmental systems.

Nonetheless, the resulting increased complexity of the model structures poses strong

limitations in terms of practical implementation and computational requirements,

especially for those typical problems that require hundreds or thousands of model

evaluations, as, for example, sensitivity analysis, scenario analysis and optimal con-

trol.

As a result, increasing attention is now being devoted to emulation modelling as a

way of overcoming these limitations. An emulation model, or emulator, is a low-

order approximation of the physically-based model that can be substituted for it in

order to solve a high resource-demanding problem (for further details see Castelletti

et al. (2012b)). Such a model can be derived by simplifying the physically-based

model structure, or identified on the basis of the response data produced by simulat-

ing this large model with carefully selected input perturbations. Dynamic Emulation

Modelling (DEMo) are a special type of model complexity reduction, in which the

dynamic nature of the original physically-based model is preserved, with consequent

advantages in a wide range of problems, such as optimal control. As the number

1This chapter is mostly taken from Castelletti et al. (2012b).

1

and forms of the problem that benefit from the identification and subsequent use

of an emulator is very large and there are a variety of techniques available for this

purpose, the analysis and classification of all these problems and the description of

a unified design framework for the different strategies of complexity reduction and

emulation is briefly described in the next sections.

In particular, this chapter is organized as follows: first, in Section 1.2, a review of

all the elements required by any emulation modelling exercise is given: the system E
being considered for emulation, the types of phisically-based model M available to

describe it, and the variety of problems P that can take advantage of an emulator

for their solution. In Section 1.3 the emulation modelling exercise is formulated and

the difference between dynamic (DEMo) and non-dynamic emulators is discussed.

In Section 1.4 a general procedure for DEMo is presented. Finally, Section 1.5

highlights the purpose of this work.

1.2 Framing the problem

1.2.1 The system E

Let’s consider a large environmental system E , whose state X (t, s) varies in a time-

space domain T ×S. The system is affected by a time-varying, often distributed in

space, exogenous driver W(t, s).

The output Y(t) is generally, but not necessarily, lumped and is constituted by the

variables that are relevant to the analyst: it usually comprises few variables but it

can sometimes be distributed in space and coincide with the whole state.

Engineering applications are often related to the problem of controlling or manag-

ing the dynamics of X (t, s) and Y(t) through a sequence of decisions, periodically

repeated over the whole system’s life. In this case a control vector ut is applied2

to E at discrete time instants, according to a decision time-step. The system E can

also be affected by a vector v of planning decisions that are normally not changed

over the whole life of the system.

2We assume that system E is controllable. Operationally, the controllability of E must be

verified before entering into the emulation modelling exercise.

2

1.2.2 The model M

The scientific approach to environmental systems modelling normally exploits phys-

ical knowledge about the dynamic behaviour of the system E to build more or less

sophisticated process-based models that reproduce the perceived reality as well as

possible. These models can be separated into two, broad families: physically-based

and conceptual models (Wheater et al., 1993).

Physically-Based models. The system E is described by a large, generally non-

linear, dynamic model, normally defined in T ×S by a set of partial differential

equations (PDE). These equations describe the evolution of the system state

X (t, s) and output Y(t) in response to external forcing W(t, s) (either deter-

ministic or stochastic) and control ut.

Conceptual models.

a) Continuous-time. Although a PDE model could be used, the system E
is normally described by a continuous-time, non-linear model, formulated as

a system of ordinary differential equations, based on a conceptualization and

simplification of the physical laws describing the system dynamics

Ẋ(t) = F(t,X(t),W(t),u(t),v|Θ) (1.1a)

Y(t) = H(t,X(t),W(t),u(t),v|Θ) (1.1b)

where the information content of X (t, s) andW(t, s) is lumped into the vectors

X(t) and W(t), and Y(t) = Y(t), while F(·) is a generally non-linear, time-

variant, vector function that models the dynamics of X(t); H(·) is a generally

non-linear, possibly time-variant, output transformation function; and Θ is

the vector of the model parameters.

b) Discrete-time. The system E is described by a discrete-time, non-linear

model, formulated as a system of finite-difference equations:

Xt+1 = Ft(Xt,Wt,ut,v|Θ) (1.2a)

Yt = Ht(Xt,Wt,ut,v|Θ) (1.2b)

where the information content of X (t, s), W(t, s) and Y(t) is now sampled,

typically at a uniform sampling interval ∆t, and transformed into the sampled

3

data vectors Xt, Wt and Yt.

The spatial aspects are normally defined by the state and exogenous driver

vectors Xt and Wt, which are defined at different spatial locations. In the

presence of ut, the sampling time step is generally assumed equal to the deci-

sion time step, otherwise only the former exists and is related to the frequency

of observations available or, when this is not limiting, based by the problem

at hand.

The function Ft(·) is a generally non-linear, time-variant, vector function that

models the dynamics of Xt; Ht(·) is a generally non-linear, possibly time-

variant, output transformation function, and Θ is a vector of the model pa-

rameters.

When a physically-based (or a conceptual continuous-time) model is adopted, an

explicit scheme is commonly used for its numerical solution. In practice, this requires

the discretization of the time-space domain T × S (or simply the time domain T)

with an appropriate grid. In this way, the original continuous-time model is, de

facto, transformed into a discrete-time model of the form (1.2). When the original

model is physically-based, all the variables, apart from ut and v, which are not

spatially distributed, have a dimensionality equal to their original dimensionality

times the cardinality of the space discretization grid. When the original model is

conceptual, the dimensionality of all the variables is unchanged.

In conclusion, whatever the process-based model adopted, a distinctive feature of the

model M is the large dimensionality of the state, exogenous driver, and parameter

vectors which, on one hand, is required for a detailed description of the processes in

E but, on the other hand, makes it computationally too intensive for those problems

that require hundreds or thousands of model runs.

1.2.3 The problem P

Assume that we have a model M together with a certain defined problem P . For

this model, according to its complexity, a full and proper statistical estimation or

‘calibration’ of its parameters may not be feasible, so that this has been performed as

well as possible. Depending on P , our interest might be either in the trajectory of Yt,

or in a functional J(·) of this trajectory. A review of the literature shows a variety

of problems P , whose names and tasks vary across different scientific disciplines.

These problems are generally known and classified in the following categories.

4

Model diagnostics The selection and use of diagnostic measures are important

elements in the modelling exercise, both within the model building itself (i.e.

as a fundamental preliminary step prior to the practical application of the

model) and in analysing the model-based results used to solve a problem P .

In the first case, diagnostic tools are used to test or validate hypotheses and

parametrizations against available observations; or with respect to some desir-

able or plausible behaviour of model outputs of interest. In the second case,

diagnostic tools can be used to assess the robustness of results (e.g. in control,

planning problems) and make them more transparent to users, stakeholders

and policy-makers. Diagnostic problems arising when evaluating the model

M are summarized below.

- Model structure identification. The large physically-based model structure is usu-

ally specified by the modeller’s choice of a specific model form and order that

best represent the system under analysis. After the model structure is defined,

however, the model should undergo a thorough identification, estimation (cali-

bration) and validation analysis, before using it for practical applications. The

relation between data and parameters Θ must be considered: an increase in

model complexity is indeed reflected on an increase in the number of parameter

Θ to be defined and calibrated. This can easily lead to over-parametrization

and non-uniqueness (i.e. the presence of multiple models or parameter sets

that have equally acceptable fits to observational data). To avoid this prob-

lem, statistical techniques can be used to assess the discrepancy between the

data information content and the number of parameters to be calibrated.

- Sensitivity analysis. Uncertainty analysis aims at quantifying the uncertainty as-

sociated with the model output or a functional J(·) thereof, given some ‘prior’

uncertainty, usually based on expert judgement, or after parameter estima-

tion (calibration) has been completed. Uncertainty quantification should be

always accompanied by a sensitivity analysis (Saltelli et al., 2000, 2004, 2008).

Performing an uncertainty and sensitivity analysis involves the use of Monte

Carlo sampling and performing a large number of model evaluations by varying

model parameters Θ. In the presence of large, complex models, this is sim-

ply not affordable and the use of emulators often represents the only possible

solution to this kind of problem.

- Data assimilation. If some or all of the outputs Yt of the system are being mon-

5

itored on a regular basis, it is often possible to combine these measurements

with the model Xt predictions to produce real-time estimates and forecasts

of the state variables. Data assimilation, also known as state estimation,

is largely adopted in weather forecasting, hydrology and oceanography (see

Kalnay, 2002 and Bennett, 2002).

Optimal planning and management The vector v that maximizes J(·) has to

be determined. Depending on the dimensionality of v, the size of the as-

sociated feasibility domain, and the complexity of the functional and con-

straint shape, the algorithms available to solve optimal planning problems

(basically, simulation-based optimization algorithms) are hardly usable with

large process-based models. The topic has been widely explored in the envi-

ronmental modelling literature; recent examples include air quality planning,

water quality planning, water distribution networks, water supply system, etc.

Instead, in optimal management problems, the purpose is to design the feed-

back control policy3 p that maximizes the functional J(·).

Simulation The model M is the tool for analyzing the behaviour of the system

E under different trajectories of the exogenous driver Wt, the control variable

ut and alternatives of up. Simulation analysis, often referred to as scenario

analysis, what-if analysis or policy simulation, can be seen as an elementary

and necessary step in almost all the above mentioned categories.

Real-world studies and applications often deal with more complicated problems that

can be seen as a combination of the above mentioned problems. In all these cases the

solution of (any) problem P is practically unfeasible due to the large computational

requests. As the core of the difficulty stands in the dimensionality of model M,

the natural solution is to identify a reduced model that accurately emulates the

output Yt, or the functional J(·), of model M, but with a dimensionality such

that problem P can be solved. The reduced model is named emulation model and

it substitutes model M in problem P : this replacement is possible because some

processes described by the process-based model are more significant than others

with respect to Yt or J(·).
3A periodic sequence of control laws, which, given the current state Xt of the system E at each

time instant t, suggests the optimal control to be adopted.

6

1.3 Complexity reduction

As said in the previous section, the emulator m, once identified, can be used in

place of M in solving the problem P . Depending on whether the purpose of the

emulation modelling is to reproduce Yt or J(·), the techniques available in the

literature can be re-framed into two methodological approaches: Dynamic Emulation

modelling (DEMo) and non-dynamic emulation modelling. The emulator neither

modifies nor improves the conceptual features of the model M; it simply makes it

computationally more efficient in solving the problem P . Hence, the consistency of

an emulator is simply inherited from M, which has to provide a meaningful and

reliable representation of the system E for the range of inputs (exogenous drivers,

control and planning variables) and parameters specified by the user.

This said, our purpose is to solve a technical problem: namely we cannot solve

the problem P on M because of computational limitations and so we resort to

m because we need to make it tractable. However, in the environmental context,

where the stakeholder involvement often plays an important role (e.g. Castelletti

and Soncini-Sessa, 2006, 2007; Voinov and Bousquet, 2010, and reference therein),

these technical requirements have to be complemented by the fact that the emulator

must also be credible from the user/analyst’s point of view: : according to Aumann

(2011), credibility will be taken to refer to a concept of adequacy when comparing a

model, or simulation to a source system, with an intended use in mind. This concept

needs to be distinguished from ‘trust’, which is taken to be a psychological state

comprising the intention to accept vulnerability based upon positive expectations of

the intentions or behaviour of another.

1.3.1 Dynamic Emulation modelling (DEMo)

According to Castelletti et al. (2012b), the purpose of any DEMo exercise is to pro-

vide a simplified description of the model M that preserves its dynamical nature.

For this reason, the target of DEMo is to construct an approximation yt of the

modelM’s output Yt (such that yt ∼ Yt) by adopting a considerably smaller num-

ber of variables (states xt and/or exogenous drivers wt) and, possibly, parameters

Θ. The rationale behind this dimensionality reduction is that some of the processes

described by the model M are more significant than others in affecting Yt, so that

any simpler model that describes, as well as possible, only these processes and ig-

nores the others can be considered as operationally equivalent to the modelM with

7

respect to the problem P . Naturally, there is no attempt to reduce the dimensions

of ut and v. Indeed, the controllability of the system E is assumed a priori . The

identified dynamic emulator m is such that it’s less computationally intensive than

the model M, its input-output behaviour approximates as well as possible the be-

haviour of M, and it’s credible to users in the sense discussed previously in this

section; i.e. it reflects in a transparent and interpretable way the conceptual fea-

tures of M.

The emulator m can be either in an input-output or a state-space representation and

one form may be more suitable than the other, depending upon the circumstances

and the nature of the problem P . One advantage of the input-output representa-

tion is that, in general, it requires less parameters than an equivalent state-space

representation. On the other hand, in some problems, such as data assimilation and

optimal management, the state-space representation can be more effective (Sadegh,

2001).

When an input-output representation is adopted, the emulator m is described en-

tirely in the input-output space by a time-variant, generally non-linear transfer-

function

yt = gt(yt−1, . . . ,yt−p,wt, . . . ,wt−r,ut, . . . ,ut−s,v|θ) (1.3)

where θ is a parameter vector and p, r and s are suitable time-lags. On the other

hand, when a state-space representation is considered, the emulator m is described

by the following, more complex, state transition and output transformation func-

tions4

xt+1 = ft(xt,wt,ut,v|θ) (1.4a)

yt = ht(xt,wt,ut,v|θ) (1.4b)

where ft(·) is a time-variant, generally non-linear vector function modelling the dy-

namics of xt, ht(·) is a a time-variant, generally non-linear, output transformation

function, and θ is a vector of parameters.

1.3.2 Non-dynamic emulation modelling

When the problem P concerns the optimal planning of the functional J(·) with re-

spect to the vector v, or the uncertainty and sensitivity analysis of J(·) with respect

4For convenience, it is assumed here that m is in a discrete-time form. However, often the

emulator may well be better identified in continuous-time and then converted in discrete-time if

required (Young and Ratto, 2009, 2011).

8

to the parameter Θ, the emulation modelling effort can be based on the identifica-

tion of a static map between the planning variable v (and/or the parameters Θ)

and the functional J(·).
Such non-dynamic emulation, first introduced as ‘meta-modelling’ by Blanning (1975),

is based on the idea of identifying an emulator m that approximates the varia-

tion of the functional J(·) as well as possible. The terms meta-model (Blanning,

1975) or response surface (Box and Wilson, 1951; Kleijnen, 2008) are often used

in place of emulator. When dealing with optimal planning P (see Section 1.2.3),

non-dynamic emulation modelling is also known as surrogate-based analysis and op-

timization (Queipo et al., 2005).

The general theory of non-dynamic emulation modelling has been developed in the

last two decades, especially in the fields of statistics and computer science (e.g. Sacks

et al., 1989; Barton, 1998; Simpson et al., 2001; Chen et al., 2006, and references

therein). In particular, research efforts have been concentrated on designing the

simulation experiments to be conducted with the modelM (the so-called Design Of

Experiments (DOE)) and the development and testing of several emulator classes,

e.g. polynomial regression models, kriging, radial basis functions, neural networks,

Gaussian processes, adaptive regression splines, smoothing splines, ANOVA models

and polynomial chaos expansion.

Non-dynamic emulation modelling has been used extensively in a wide variety of

mechanical and aerospace engineering studies, but it has not been considered in the

environmental field until more recently, with applications in the planning of agro-

ecosystems, water distribution networks, groundwater resources, and surface water

resources. In any case, non-dynamic emulation modelling can be considered as a

simplified version of DEMo and, therefore, it is easily integrated within this wider

concept and the subsequent discussion.

1.4 A general procedure for DEMo

The identification of a dynamic emulation model is made particularly difficult by

the typically non-linear nature and large dimensionality of the model M.

A number of different approaches, and corresponding techniques, have been devel-

oped as the basis for finding ad-hoc solutions to specific problems. However, all of

these approaches can be re-conducted to the following general categories:

i) In the structure-based approach, the mathematical structure of the model M is

9

‘manipulated’, with the aim of deriving a simpler structure m. This approach

is often adopted when the output Yt ofM is not defined, which is equivalent to

saying that the output coincides with the state vector Xt. Emulators identified

using this approach are usually represented in a state-space form 1.4.

ii) the data-based approach identifies the emulator structure on the basis of a data-

set F of state and output trajectories, obtained via simulation of the model

M on a given horizon H under suitable input scenarios. The emulator struc-

ture can be either a black-box representation of some form; or a low order,

conceptual, mechanistic model.

Whatever approach is adopted, the identification of an emulator can be structured as

a six-step procedure (see Figure 1.1). The first step (Step 1 - Design of experiments

and simulation runs) concerns the generation of the data-set F . This is obviously

required for the data-based approach, but it is also necessary in the structure-based

one for the evaluation of the emulator in Step 6. The variables (exogenous drivers

and states) that will be operated by the emulator are obtained by aggregating, in

some appropriate way, the variables in the modelM and/or selecting, among them,

the most relevant ones. These two, not necessarily mutually exclusive operations, are

the core of the complexity reduction process performed by DEMo and are considered

in two separate steps (Step 2 - Variable aggregation and Step 3 - Variable selection).

Variable selection generally follows the aggregation because it can be more effectively

performed on a reduced number of variables. Once these steps are complete, the

emulator is eventually identified in Step 4 (Structure identification). Finally, in Step

5 - Evaluation and physical interpretation, the emulator is validated and a physical

interpretation is provided. Note that, in any real application, many recursions

through this procedure may be required. The details in each step of the emulation

modelling procedure are described in the next section.

1.4.1 Step 1 - Design of Experiments and simulation runs

The Design Of computer Experiments (DOE), also known as Design and Analysis

of Computer Experiments (DACE), is used to design a sequence of simulation runs

for the modelM with the purpose of constructing the data-set F for the subsequent

DEMo steps. This requires the specification of the input trajectories to the model

M (i.e. the exogenous driver Wt and the control ut), as well as the values of the

10

2. Variable
aggregation

Figure 1.1: The DEMo procedure steps (see Castelletti et al., 2012b). Step 2, which is the one

mainly explored in this work, is denoted in bold.

11

planning vector v, that will drive the simulation runs, the parameters being set to

their nominal value Θ̄.

In principle, the data-set F should be sufficiently informative, reproducing all the

possible system behaviours and features, excited and forced by the spectrum of ex-

ternal forces, controls and planning variables that may occur given the problem P .

This can be ensured by relying on the procedures used in the design of dynamic

experiments, such as those discussed in Goodwin and Payne (1977). In other words

the experiments have to be designed in such a way that all the dynamical modes of

M’s response that are of interest for P are activated.

However, according to the computational requirements for simulating M (i.e. the

limit on the feasible number of simulation runs), a somewhat less formal experiment

design may need be adopted (e.g. the historical observations available for the ex-

ogenous drivers and a well chosen periodic square wave input for the control, that

allows the system to reach a steady state at each step). The accuracy requirements

in the DOE also depends on the different approaches to the DEMo problem.

1.4.2 Step 2 - Variable aggregation

The purpose of this step is to aggregate the components of the state vector Xt (and

of the exogenous driver vector Wt) into lower dimensionality vectors. As common

practice in environmental modelling, the model M is spatially-distributed: so the

space discretization can lead to a strong increase in the dimensionality of the state

and exogenous driver vectors.

The data generated via simulation in Step 1 (sometimes referred as snapshots) are

used in an aggregation scheme to identify a mapping of the state Xt into a lower di-

mensional state X̃t, so that the majority of the variation in the Xt data is captured.

The same is done with respect to Wt, thus obtaining a reduced exogenous driver

vector W̃t. The most simple and ’natural’ aggregation scheme is based on the expert

knowledge of the system (see Galelli et al., 2010; Castelletti et al., 2010b). This is

particularly the case when M is spatially-distributed.

Alternatively, formal and analytical aggregation techniques can be employed. Such

techniques are commonly referred to as feature extraction techniques (Guyon et al.,

2006). The technique that has been adopted most often, up to now, is Principal

Component Analysis (Jollife, 1986) (also known as proper orthogonal decomposition

(Willcox and Peraire, 2002) or Karhunen Loève Transform (Zhang and Michaelis,

2003)), which performs a linear mapping of the data produced by the modelM to a

12

lower dimensional space in such a way that the variance of the data in the lower di-

mensional representation is maximized, local linear embedding (Lee and Verleysen,

2007) and clustering (Jain et al., 1999a). The literature also presents a variety of

non-linear feature extraction techniques (for a review, see Lee and Verleysen, 2007).

Eventually, the data-set F is transformed into a lower-dimension data-set F̃ of tu-

ples X̃t, W̃t, ut, X̃t+1 and Yt. The step is useful when the dimensionality of the

state vector Xt and of exogenous drivers vector Wt is considerable (thousands of

components), as in spatially distributed models. On the other hand, when they are

not too large (say a few dozens of components), this step can be avoided.

Variable aggregation is the step on which this thesis is focused on. The pre-

processing of the exogenous drivers, controls and, state variables (to reduce the

high number of variables appearing in the final emulator) can in fact be performed

by adopting all the different above-mentioned techniques: the purpose of this work

is to explore the potential of one of these methods, i.e. clustering, to automatically

discover compact and relevant representations of high-dimensional data sets.

1.4.3 Step 3 - Variable selection

Based on the information content of F̃, model M is further simplified by selecting

the components of X̃t and W̃t that will constitute the emulator’s state xt and

exogenous driver wt vectors. Generally, this operation relies on some automated

technique, since X̃t and W̃t are often too large to be handled by a human operator.

Next subsection describes one of these automated techniques, i.e. Recursive Variable

Selection (RVS) algorithm.

Recursive Variable Selection (RVS)

Recursive Variable Selection (RVS) algorithm (Castelletti et al., 2012b) is a selection

algorithm that is able to automatically identify the most relevant variables among

the components of X̃t and W̃t for building an emulator able to accurately reproduce

the output values of the phisically-based model M, but with a reduced dimension-

ality so that the original problem P is practically solvable.

In principle, the goal is a lossless complexity reduction (Givan et al., 2003): this is

achieved through an automatic, data-driven method that recursively defines a se-

quence of variable selection problems, in which the accuracy of the results is tuned

to the desired emulator parsimoniousness.

13

The RVS algorithm Castelletti et al. (2011) propose proceeds iteratively in three

steps over each component of Yt. i) Given the information content of the data-

set F̃ , the most relevant variables in explaining the given component are selected,

with some appropriate Input Selection (IS) algorithm, among the components of

the vectors X̃t, W̃t and ut. This gives the arguments of the output transformation

function (eq. (1.4b)) associated to the considered output. ii) For each state variable

selected in the previous step, a new run of the IS algorithm is performed to select

the variables relevant to describe its dynamics. This gives the arguments of the

corresponding component of the vector state transition function (eq. (1.4a)) associ-

ated to the considered state variable. iii) If the second step leads to the selection of

further variables from the vector X̃t (i.e. state variables not yet included in xt), it

is recursively repeated, until all the selected state variables are given a dynamic de-

scription. Once the RVS algorithm is over, the arguments of eqs. (1.4a) and (1.4b)

are known. A detailed description of the RVS algorithm is reported in Castelletti

et al. (2012a) and the meta-code is available in Appendix A (see Algorithm 1).

Each invocation of the RVS algorithm requires to run an IS algorithm that selects

the most relevant input variables to explain a specified output variable. Algorithms

suitable for this task must account for both significance and redundancy: in other

words, they must be able to select only the most relevant input variables, while

trying to avoid the inclusion of redundant ones, which would unnecessarily add to

the emulator complexity. Literature reports a variety of input variable selection

methods (for an overview see Peng et al. (2005); Bowden et al. (2005); Hejazi and

Cai (2009) and May et al. (2008a,b)); the following subsection presents the one used

in this thesis, the Iterative Input Selection algorithm (Castelletti et al., 2012a).

Iterative Input Selection (IIS)

As previously said, the ideal selection algorithm should account for non-linear de-

pendencies and redundancy between variables, as real-world optimal management

problems are usually characterized by non-linear dynamic models with multiple cou-

pled variables. Moreover, it must be computationally efficient, since the number of

candidate variables is generally large, particularly when the original process-based

model is spatially distributed. To fulfil these requirements, Castelletti et al. devel-

oped the Iterative Input Selection (IIS) algorithm (see Algorithm 2 in Appendix A),

a model-free, forward-selection algorithm, which has been firstly experimented in a

traditional hydrological input selection problem (Castelletti et al., 2010a).

14

Given the output variable to be explained and the set of candidate variables, the

IIS algorithm first exploits an Input Ranking (IR) algorithm that provides the best

performing input according to a global ranking based on a statistical measure of

significance (preferably accounting for non-linear dependencies, as proposed byWe-

henkel (1998)). To account for variable redundancy, only the most significant vari-

able is then added to the set of selected variables. The reason behind this choice

is that, once an input variable is selected, all the inputs that are highly correlated

with it may become useless and the ranking needs to be re-evaluated. So, the algo-

rithm proceeds first as follows: first it estimates, with an appropriate model building

(MB) algorithm5, an underlying model m̂(·) to explain the output; then it repeats

the ranking process using the residuals of model m̂(·) as new output variable.

The algorithm iterates these operations until the best variable returned by the rank-

ing algorithm is not in the already selected ones or the accuracy of m̂(·) does not

significantly improve. The accuracy can be computed with a suitable distance metric

between the output and the model m̂(·) prediction, or more sophisticated metrics

accounting for both accuracy and parsimoniousness (e.g. the Akaike information

criterion, Bayesian information criterion or Young identification criterion). In this

thesis the accuracy of the model is expressed through the parameter R2: in partic-

ular the algorithm stops when the value of R2 increases less than a small constant

ε).

The choice of a suitable model building algorithm (MB) and ranking procedure

(IR) is thus fundamental to let the IIS algorithm be capable of dealing with non-

linearities, redundancy and high-dimension data-sets. Among the many alternative

model classes, in this thesis Extremely randomized trees (or Extra-Trees, a tree-based

method proposed by Geurts and Ernst (2006) that can provide all these desirable

features) are used. As a consequence, also the choice of which ranking algorithm

(Jong et al., 2004) to use has fallen on a method based on Extra-Trees, since their

particular structure can be exploited too to infer the relative importance of the input

variables.

5Depending on whether a parametric or a non-parametric model structure is adopted for the un-

derlying model, the model building (MB) algorithm can be either a traditional parameter estimate

algorithm or the building algorithm of the regressor.

15

1.4.4 Step 4 - Structure identification

The outcome of the variable selection (Step 3) are the variables characterizing the

emulator, as well as the nature of the relationship between these variables and the

output yt. This information can be exploited in this step of the DEMo procedure:in

particular, this step is generally performed in two stages. The first stage is ‘structure

identification’, and the second is ‘parameter estimation’: first the structure of the

function gt(·) (or ft(·) and ht(·)) is identified (e.g. using model structure identifi-

cation criteria. Some insight on candidate model structures might come from the

variable selection process (see Castelletti et al., 2010b)), then the value of θ that

characterizes the best model structure is estimated (optimally in some sense, if this

is possible, but otherwise to yield statistically consistent estimates). In general, the

emulator structure is only obtained tentatively in the first step, which serves as a

‘screening’ step for the variables to be finally included in the emulator. The class of

functional relationships underlying the variable selection process (Step 3) is usually

the first option for the structure identification (e.g. when correlation analysis is

employed, a linear model is the most coherent choice) but, usually, the exploration

of a wider class of models is more effective (Guyon and Elisseeff, 2003).

In any case, whatever approach is used, this step is concluded with a parameter

estimation performed over the data-set F̃ that provides the actual values for the θ

parameters. If the performance measures are satisfactory, one can proceed with the

following step; otherwise, one of the previous step must be re-considered.

1.4.5 Step 5 - Evaluation and physical interpretation

As introduced in Section 1.3, the emulator must be evaluated from two different

points of view (see, e.g., Castelletti et al., 2010f): i) it must reproduce as well

as possible the input-output behaviour of the model M; ii) it must be credible.

With respect to point i), the emulator is validated against that part of the data-

set F̃ that has not been used for the model identification (the validation data-set).

As for point ii), the credibility of the emulator is directly related to its physical

interpretability. This latter property is inherent when the emulator structure is

obtained with the techniques proposed for the structure-based approach in Section

1.4.3; or with the data-based approach, when it can be satisfactorily interpreted in a

physically meaningful manner. Generally, the identification of an emulator in state-

space representation makes it easier to maintain a physically meaningful relationship

16

between the emulator and the original model variables.

1.4.6 Step 6 - Model usage

Once the emulator has been successfully validated against the data, it is ready to

be employed by the user in the resolution of the problem P . However, during the

identification of the emulation model more than one run of the entire procedure

can arise. In fact, if the performance of the model is not considered sufficient for

the future use of the model itself, it’s possible to design different simulation runs in

order to evaluate other reduction approaches.

1.5 Purpose of this work

In this thesis the attention is focused on Step 2 of emulation modelling procedure

(i.e. Variable Aggregation). As said, when applied to large 3D models, any DEMo

technique does require a pre-processing of the exogenous drivers, controls and state

variables to reduce the high number of variables appearing in the final emulator: at

the moment this operation is hard to perform, and it is usually based on the expert

knowledge of the system. Moreover, at the moment emulation modelling techniques

are available only for linear and weakly non-linear models, while theory is still un-

der development for non-linear models, and, apart from particular cases, the final

emulator lacks of credibility by stakeholders and domain experts, as it is often hard

to preserve the physical interpretability of the system.

The purpose of the research here presented is thus to propose a formal procedu-

ral approach to improve Variable Aggregation so that the final emulator embodies

the following important properties: i) be fully automated, independent of domain

experts and system knowledge, and suitable for non-linear processes; ii) have high

potential in terms of complexity reduction, thus allowing for the management of

large-scale environmental systems; iii) provide a physical interpretation of the re-

duced model structure, thus enhancing the credibility of the model to stakeholders

and decision-makers. Among the different existing techniques, this work explores the

potential of clustering as lumping method, to automatically discover compact and

relevant representations of high-dimensional data sets. In particular, agglomerative

hierarchical clustering is the selected technique.

17

Chapter 2

Clustering of data time series

In Chapter 1 Dynamic Emulation Modelling techniques are introduced as effective

solution to overcome the limitations that arise when dealing with complex physically-

based models in high-resources demanding problems. As anticipated, the purpose

of this thesis is to enhance the status of these techniques, focusing on data-driven

DEMo, in such a way that the derived emulator is fully automated, independent of

domain experts and system knowledge, and suitable for non-linear processes. More-

over, the state-space representation and the associated physical interpretability of

the system should be preserved.

Chapter 2 is focused on Step 2 of the DEMo procedure, variable aggregation: cluster

analysis is introduced as aggregation technique to reduce the number of variables

appearing in the final emulation model, while preserving the above-mentioned im-

portant properties. The novel aspect is that the aggregation procedures is here

applied to data time series.

The chapter is organized as follows: Section 2.1 describes the basics of clustering

methods and introduces the reader to time series clustering. Section 2.2 shows the

main time series clustering algorithms. The key points of any clustering algorithm

are the similarity/distance measures between objects when forming the clusters, and

the linkages methods, to determine when two clusters are sufficiently similar to be

linked together: the former are described in Section 2.3, the latter in Section 2.4.

Finally, clustering results evaluation criteria are in Section 2.5.

19

2.1 Basics of clustering

The term cluster analysis (first used by Tryon, 1939) encompasses a number of

different algorithms and methods for grouping objects of similar kind into respective

categories: it is an exploratory data analysis tool that aims at identifying structures

in an unlabelled data set by objectively organizing data into homogeneous groups

where the within-group-object similarity is minimized and the between-group-object

dissimilarity is maximized (see Nayak and Dash, 2012).

Clustering is necessary when no labelled data are available regardless of whether

the data are binary, categorical, numerical, interval, ordinal, relational, textual,

spatial, temporal, spatio-temporal, image, multimedia, or mixtures of the above data

types. Clustering main task is explorative data mining, and a common technique

for statistical data analysis used in many fields, including machine learning, pattern

recognition, image analysis, information retrieval, and bioinformatics. Basic texts for

cluster analysis include those by Anderberg (1973), Hartigan (1975), Everitt (1980),

Aldenderfer and Blachfield (1984), Romesburg (1984), Jain and Dubes (1988) and

Kaufman and Rousseeuw (1990).

Cluster analysis itself is not one specific algorithm, but the general task to be solved.

It can be achieved by various algorithms that differ significantly in their notion

of what constitutes a cluster and how to efficiently identify it. The appropriate

clustering algorithm and parameter settings (including values such as the distance

function to use, a density threshold or the number of expected clusters) depend on

the individual data set and intended use of the results (Jain et al., 1999b). Cluster

analysis as such is not an automatic task, but an iterative process of knowledge

discovery that involves trial and error. Anderberg (Anderberg, 1973) states that

there should be at least the following elements in a cluster analysis study before

the final results can be attained: i) choice of a clustering approach; ii) choice of

a similarity/dissimilarity measure; iii) choice of a linkage method; iv) choice of

an evaluation criteria. These are the most significant steps of a general clustering

process, and a detailed description of each element is given in the following sections.

The reader is referred to Liao (2005) for further details.

2.1.1 Clustering algorithms

To date, most, if not all, clustering programs developed as an independent pro-

gram or as part of a large suite of data analysis or data mining software work only

20

with static data set. Han and Kamber (2001) classify clustering methods for static

data into five major categories: partitioning methods, hierarchical methods, density-

based methods, grid-based methods, and model-based methods. A brief description

of each category of methods follows.

Partitioning methods Given a set of n unlabelled data tuples, a partitioning

method constructs k partitions of the set, where each partition represents a

cluster containing at least one object and k ≤ n. The partition is crisp if each

object belongs to exactly one cluster, or fuzzy if one object is allowed to be in

more than one cluster to a different degree. Two renowned heuristic methods

for crisp partitions are the k-means algorithm (MacQueen, 1967), where each

cluster is represented by the mean value of the objects in the cluster and the

k-medoids algorithm (Kaufman and Rousseeuw, 1990), where each cluster is

represented by the most centrally located object in the cluster. The fuzzy

duals are the fuzzy c-means algorithm (Bezdek, 1987) and the fuzzy c-medoids

algorithm (Krishnapuram et al., 2001).

Hierarchical methods A hierarchical clustering method works by grouping data

objects into a tree of clusters. There are generally two types of hierarchical

clustering methods: agglomerative and divisive. Agglomerative methods start

by placing each object in its own cluster and then merge clusters into larger

and larger clusters, until all objects are in a single cluster or until certain

termination conditions, such as the desired number of clusters, are satisfied.

Divisive methods do just the opposite. A pure hierarchical clustering method

suffers from its inability to perform adjustment once a merge or split decision

has been executed. For improving the clustering quality of hierarchical meth-

ods, there is a trend to integrate hierarchical clustering with other clustering

techniques (e.g., BIRCH (Zhang et al., 1996), CURE (Guha et al., 1998), and

Chameleon (Karypis et al., 1999)).

Density-based methods The general idea of density-based methods such as DB-

SCAN (Ester et al., 1996) is to continue growing a cluster as long as the

density (number of objects or data points) in the neighbourhood exceeds some

threshold. Rather than producing a clustering explicitly, OPTICS (Ankerst

et al., 1999) computes an augmented cluster ordering for automatic and inter-

active cluster analysis. The ordering contains information that is equivalent

21

to density-based clustering obtained from a wide range of parameter settings,

thus overcoming the difficulty of selecting parameter values.

Grid-based methods Grid-based methods quantize the object space into a finite

number of cells that form a grid structure on which all of the operations for

clustering are performed. A typical example of the grid-based approach is

STING (Wang et al., 1997), which uses several levels of rectangular cells cor-

responding to different levels of resolution. Statistical information regarding

the attributes in each cell are pre-computed and stored. A query process usu-

ally starts at a relatively high level of the hierarchical structure. For each cell

in the current layer, the confidence interval is computed reflecting the cell’s

relevance to the given query. Irrelevant cells are removed from further consid-

eration. The query process continues to the next lower level for the relevant

cells until the bottom layer is reached.

Model-based methods Model-based methods assume a model for each of the clus-

ters and attempt to best fit the data to the assumed model. There are two

major approaches of model-based methods: statistical approach, e.g. Auto-

Class (Cheeseman and Stutz, 1996), which uses Bayesian statistical analysis

to estimate the number of clusters, and neural network approach, e.g. ART

(Carpenter and Grossberg, 1987) and self-organizing maps (Kohonen, 1990).

2.2 Time series clustering

Unlike static data, the time series of a variable comprise values changing with time.

Time series data are of interest because of their pervasiveness in various areas ranging

from science, engineering, business, finance, economic, health care, to government.

Formally, a time series data is defined as a sequence of pairs

T = [(p1, t1), (p2, t2), . . . , (pi, ti), . . . , (pn, tn)] (2.1)

where t1 < t2 < . . . < ti < . . . < tn, each pi is a data point in a d-dimensional

data space, and each ti is the time stamp at which pi occurs. If the sampling rates

of two time series are the same, one can omit the time stamps and consider them

as sequences of d-dimensional data points. In reality, however, sampling rates of

time series may be different. Furthermore, some data points of time series may be

affected by noise or even completely missing, which poses additional challenges to

22

the processing of such data.

Given a set of unlabelled time series, it is often desirable to determine groups of

similar time series. These unlabelled time series could be monitoring data collected

during different periods from a particular process or from more than one process.

Works devoting to the cluster analysis of time series are relatively scant compared

with those focusing on static data. However, there seems to be a trend of in-

creased activity (Košmelj and Batagelj (1990); Shaw and King (1992); Van Wijk

and Van Selow (1999); Beran and Mazzola (1999); Xiong and Yeung (2002)).

Just like static data clustering, time series clustering requires a clustering algorithm

or procedure to form clusters given a set of unlabelled data objects, and the choice

of the clustering algorithm depends both on the type of data available and on the

particular purpose and application. As far as time series data are concerned, dis-

tinctions can be made as to whether the data are discrete-valued or real-valued,

uniformly or non-uniformly sampled, univariate or multivariate, and whether data

series are of equal or unequal length. Non-uniformly sampled data must be con-

verted into uniformed data before clustering operations can be performed. This can

be achieved by a wide range of methods, from simple down sampling based on the

roughest sampling interval to a sophisticated modelling and estimation approach.

Various algorithms have been developed to cluster different types of time series data.

Putting their differences aside, it is far to say that in spirit they all try to modify

the existing algorithms for clustering static data in such a way that time series data

can be handled or to convert time series data into the form of static data so that

the existing algorithms for clustering static data can be directly used. The former

approach usually works directly with raw time series data, thus called raw-data-

based approach, and the major modification lies in replacing the distance/similarity

measure for static data with an appropriate one for time series. The latter approach

first converts a raw time series data either into a feature vector of lower dimension

or a number of model parameters, and then applies a conventional clustering al-

gorithm to the extracted feature vectors or model parameters, thus called feature-

and model-based approach, respectively. Generally speaking, three of the five major

categories of clustering methods for static data, specifically partitioning methods,

hierarchical methods, and model-based methods, have been utilized directly or modi-

fied for time series clustering. A brief review of the some general-purpose algorithms

commonly employed in most clustering studies on time series is presented below.

23

Relocation clustering belongs to partitioning methods, which seek to divide a data set

into some number of disjoint clusters such that related compounds will all be in the

same cluster, with compounds unrelated to that cluster being distributed among the

other clusters in the set. Relocation involves the movement of compounds between

clusters in such a way as to increase the homogeneity of the individual clusters, the

degree of inter-cluster similarity as measured by some similarity or distance function.

The relocation clustering procedure has the following four steps:

Step 1 The initial set of clusters is obtained by randomly assigning integers in

the range 1 to c, where c is the desired number of clusters, to each of the

compounds in a data set. Denote by C the initial clustering, having the

prescribed c number of clusters.

Step 2 For each time point compute the dissimilarity matrix and store all resul-

tant matrices computed for all time points for the calculation of trajectory

similarity.

Step 3 Each of the structures is matched against the mean vector of each of the

clusters and assigned to that cluster which results in the smallest (or largest)

value for the chosen dissimilarity (or similarity) measure, and then the mean

vectors of the new clusters are computed.

The relocation is repeated for some fixed number of iterations, or until no

further relocation of compounds takes place: this will correspond to a local,

but not necessarily global, minimum in the clustering criterion.

Step 4 Find a clustering C̃, such that C̃ is better than C in terms of one similarity

measure (see Section 2.3). If no such clustering exists, then stop; else replace

C by C̃ and repeat step 3.

This procedure works only with time series with equal length because the distance

between two time series at some cross sections (time points where one series does

not have value) is ill defined.

To partitioning methods belongs also the k-means method (interchangeably called

c-means in this study), which was first developed more than three decades ago. The

main idea behind it is the minimization of an objective function, which is normally

chosen to be the total distance between all patterns (i.e. the time series) from their

24

respective cluster centers. Its solution relies on an iterative scheme, which starts

with arbitrarily chosen initial cluster memberships or centers. The distribution of

objects among clusters and the updating of cluster centers are the two main steps

of the c-means algorithm.

The algorithm alternates between these two steps until the value of the objective

function cannot be reduced anymore. Given n time series {xk|k = 1, · · · , n}, c-
means determine c cluster centers {vi|i = 1, · · · , c}), by minimizing the objective

function given as

min J1(U, V) =
c∑

i=1

n∑
k=1

µik ‖ xk − vi ‖2 (2.2)

s.t. (1) µikε{0, 1}∀i, k is the membership matrix; (2)
∑c

i=1 µik = 1, ∀k ‖·‖ in the

above equation is normally the Euclidean distance measure (other distance measures

could also be used); (3) U and V are respectively the membership matrix and the

vector of the cluster centers at a fixed iteration.

The iterative solution procedure generally has the following steps:

(1) Choose c (2 ≤ c ≤ n) and ε (a small number for stopping the iterative proce-

dure). Set the counter l = 0 and the initial cluster centers, V (0), arbitrarily.

(2) Distribute xk,∀k to determine U (l) such that J1 is minimized. This is achieved

normally by reassigning xk to a new cluster that is closest to it.

(3) Revise the cluster centers V (l).

(4) Stop if the change in V is smaller than ε; otherwise, increment l and repeat

Step 2 and Step 3.

Dunn (1973) first extended the c-means algorithm to allow for fuzzy partition, rather

than hard partition, by using the objective function given in the equation below:

min J2(U, V) =
c∑

i=1

n∑
k=1

(µik)2 ‖ xk − vi ‖2 (2.3)

Note that U = [µik] in this and the following equations denotes the matrix of a fuzzy

c-partition. The fuzzy c-partition constraints are (1) µikε[0, 1]∀i, k, (2)
∑c

i=1 µik =

1, ∀k, and (3) 0 <
∑n

k=1 µik < n,∀i.
In other words, each xk could belong to more than one cluster with each membership

taking a fractional value between 0 and 1. Bezdek (1987) generalized J2(U, V) to an

25

infinite number of objective functions, i.e., Jm(U, V), where 1 ≤ m ≤ ∞.

The new objective function subject to the same fuzzy c-partition constraints is

min Jm(U, V) =
c∑

i=1

n∑
k=1

(µik)m ‖ xk − vi ‖2 (2.4)

By differentiating the objective function with respect to vi (for fixed U) and to µik

(for fixed V) subject to the 3 conditions as in (2.3), one obtains the following two

equations:

vi =

∑n
k=1(µik)mxk∑n
k=1(µik)m

, i = 1, . . . , c (2.5)

µik =
(1/ ‖ xk − vi ‖2)1/(m−1)∑c
j=1(1/ ‖ xk − vj ‖2)1/(m−1)

, i = 1, . . . , c; k = 1, . . . , n; (2.6)

To solve the fuzzy c-means model, an iterative alternative optimization procedure is

required. To run the procedure the number c of clusters, and the weighting coefficient

m must be specified. The fuzzy c-means algorithm has the following steps:

(1) Choose c (2 ≤ c ≤ n), m (1 ≤ m ≤ ∞) and ε (a small number for stopping

the iterative procedure). Set the counter l = 0 and initialize the membership

matrix U (l).

(2) Calculate the cluster center v
(l)
i , by using Equation (2.5).

(3) Update the membership matrix U (l+1) by using Equation (2.6). if xk 6= v
(l)
i .

Otherwise, set µik = 1(0) if j = (6=)i.

(4) Compute ∆ = ‖U (l+1)−U (l)‖. If ∆ > ε, increment l and go to step 2. If ∆ ≤ ε,

stop.

This group of algorithms works better with time series of equal length because the

concept of cluster centers becomes unclear when the same cluster contains time se-

ries of unequal length.

The most widely used hierarchical method is agglomerative hierarchical clustering,

which works by grouping time series data into a tree of clusters. It starts by placing

each object in its own cluster and then it calculates the proximity matrix1. After-

wards, it merges these atomic clusters into larger and larger clusters according to

1i.e. the square matrix in which the entry in cell (j, k) is some measure of the similarity (or

distance) between the items to which row j and column k correspond.

26

the distances between the clusters themselves, until all the objects are in a single

cluster or until certain termination conditions are satisfied. At each clustering step,

all possible mergers of two clusters are tried. The closest clusters are merged to-

gether, according to the selected linkage method (see Section 2.4). This approach is

expressed more formally as follows.

Algorithm Basic agglomerative hierarchical clustering algorithm

1. Compute the proximity matrix.

2. Repeat

3. Merge the closest two clusters.

4. Update the proximity matrix to reflect the proximity

between the new cluster and the original clusters.

5. until: only one cluster remains.

A part from its intrinsic simplicity, the hierarchical agglomerative cluster algorithm

provides a number of advantages:

i) the algorithm works directly on raw time series data, and does not require any

conversion of the data into lower-dimension vectors, thus preserving the initial

data integrity;

ii) time series are grouped into a tree of clusters that shows the relative distance

between clusters;

iii) unlike other algorithms (e.g. k-means, Hartigan and Wong (1979)), the num-

ber of clusters has not to be specified a-priori and this leaves a certain degree

of freedom for the final choice.

Self-organizing maps (SOM) belong to the category of model-based methods, and

they were developed by Kohonen (1990) as a class of neural networks with neurons

arranged in a low dimensional structure and trained by an iterative, unsupervised,

or self-organizing procedure.

This particular type of neural network is trained to produce a low-dimensional (typ-

ically two-dimensional), discretized representation of the input space of the training

samples, called a map. Self-organizing maps are different from other artificial neu-

ral networks in the sense that they use a neighbourhood function to preserve the

27

topological properties of the input space. The training process is initialized by as-

signing small random values to the weight vectors w of the neurons in the network.

Each training-iteration consists of three steps: i) the presentation of a randomly

chosen input vector x(t) from the input space; ii) the evaluation of the network;

iii) the update of the weight vector w(t). After the presentation of a pattern, the

Euclidean distance between the input pattern and the weight vector is computed

for all neurons in the network. The neuron with the smallest distance is marked

as t. Depending upon whether a neuron is within a certain spatial neighbourhood

around t, its weight is updated according to the following updating rule:

w(t+ 1) = w(t) + α(t)[x(t)− w(t)] (2.7)

Since the neighbouring neurons are updated at each step, there is a tendency that

neighbouring neurons in the network represent neighbouring locations in the feature

space. In other words, the topology of the data in the input space is preserved during

the mapping. Like the group of k-means and fuzzy c-means algorithms, SOM does

not work well with time series of unequal length due to the difficulty involved in

defining the dimension of weight vectors.

2.3 Similarity/Distance measures

Almost without exception each of the clustering algorithms/procedures reviewed

in the previous section requires a measure to compute the distance or similarity

between two time series being compared. Depending upon whether the data are

discrete-valued or real-valued and whether time series are of equal or unequal length,

a particular measure might be more appropriate than another.

One possible classification of the different similarity measures present in literature

is according to the method the distance between two time series being compared

is calculated with (see Ding et al. (2008)). There are, in fact, some distance mea-

sures that compare the ith point of one time series to the ith point of another time

series: these are the lock-step measures (e.g., euclidean distance, root mean square

distance, Mikowski distance, Manhattan distance (Yi and Faloutsos, 2000), DISSIM

(Frentzos et al., 2007), and so on). Besides being relatively straightforward and in-

tuitive, lock-step distance measures have several other advantages. The complexity

of evaluating these measures is linear, and they are easy to implement and indexable

28

with any access method and, in addition, are parameter-free. Moreover, they are

surprisingly competitive compared to other more complex approaches, especially if

the size of the training set/database is relatively large. However, since the map-

ping between the points of two time series is fixed, these distance measures are very

sensitive to noise and misalignments in time, and are unable to handle local time

shifting, i.e., similar segments that are out of phase. This negative aspect, however,

do not always invalidate the results, thus making this category of distance measures

really competitive.

Elastic measures, on the contrary, are distance measures that allow comparison of

one-to-many or one-to-none points (e.g., Dynamic time warping distance, Longest

Common SubSequence distance (Vlachos et al., 2002), Edit Sequence on Real Se-

quence distance (Chen and Ozsu, 2005), and so on). This category of distance

measures comes from the need to handle time warping in similarity computation,

in order to allow a time series to be stretched or compressed to provide a better

match with another time series. It has been shown that the cost for computing

this kind of distance measures on large data sets is almost linear (see Keogh and

Ratanamahatana (2005)). The main disadvantage is that some parameters have

to be introduced, such as threshold parameters or a constant reference point, for

computing the distance between the time series.

Finally, a further approach regards pattern-based measures (Chen et al., 2007), which

find out matching segments within the time series, thus allowing comparison of

many-to-many points. The algorithm identifies the different patterns by permitting

shifting and scaling in both the temporal and amplitude dimensions. The problem

of computing similarity value between time series is then transformed to the one of

finding the most similar set of matching patterns. One disadvantage of this approach

is that, as for elastic distance measures, it requires tuning a number of parameters,

such as the temporal scale factor, amplitude scale factor, pattern length, and sliding

step size.

In the following subsections, a brief review of the most common above-mentioned

similarity measures for each category is presented. Particular emphasis is given to

Euclidean distance as it is the selected distance measure implemented in this thesis.

29

Figure 2.1: The intuition behind the Euclidean distance metric (from Ratanamahatana et al.

(2010)).

2.3.1 Euclidean distance, root mean square distance and

Mikowski distance

One of the simplest similarity measures for time series is the Euclidean distance

measure (see Figure 2.1). Let xi and vj each be a n-dimensional vector. The

Euclidean distance is computed as

dE =

√√√√ n∑
k=1

(xik − vjk)2. (2.8)

The root mean square distance (or average geometric distance) is simply

drms = dE/n (2.9)

where n is the number of elements of the vectors xi and vj. Mikowski distance is a

generalisation of Euclidean distance, and it is defined as

dM =

√√√√ P∑
k=1

(xik − vjk)q. (2.10)

In the above equation, q is a positive integer. A normalized version can be defined

if the measured values are normalized via division by the maximum value in the

sequence. It is interesting to notice that Euclidean (and squared Euclidean) dis-

tances are usually computed from raw data, and not from standardized data. Such

a measure is simple to understand and easy to compute, which has ensured that the

Euclidean distance is the most widely used distance measure for similarity search

(Agrawal et al. (1993), Chan and Fu (1999), Faloutsos et al. (1994)). However,

30

Figure 2.2: Two time series requiring a warping measure. Note that while the sequences have an

overall similar shape, they are not aligned in the time axis (from Ratanamahatana et al. (2010)).

one major disadvantage is that it is very brittle; it does not allow for a situation

where two sequences are alike, but one has been ’stretched’ or ’compressed’ along

one direction in the space. This problem can be dealt easily with offset translation

and amplitude scaling, which requires normalizing the sequences before applying the

distance operator.

2.3.2 Dynamic time warping distance

In some time series domains, a very simple distance measure such as the Euclidean

distance will suffice. However, it is often the case that the two sequences have

approximately the same overall component shapes, but these shapes do not line up

in X-axis. Figure 2.2 shows this with a simple example. In order to find the similarity

between such sequences or as a preprocessing step before averaging them, the time

axis of one (or both) sequences must be warped to achieve a better alignment.

Dynamic Time Warping (DTW) is a technique for effectively achieving this warping.

Euclidean distance, which assumes the ith point on one sequence is aligned with ith

point on the other (A), will produce a pessimistic dissimilarity measure. A non

linear alignment (B) allows a more sophisticated distance measure to be calculated.

In Berndt and Clifford (1996), the authors introduce the technique of dynamic time

warping to the Data Mining community. Dynamic time warping is an extensively

used technique in speech recognition, and allows acceleration-deceleration of signals

along the time dimension. The basic idea is described below. Consider two time

series of possibly different lengths, C = {c1, . . . , cm} and Q = {q1, . . . , qn}. When

computing the similarity of the two time series using Dynamic Time Warping, it is

permitted to extend each sequence by repeating elements.

A straightforward algorithm for computing the Dynamic Time Warping distance

between two sequences uses a bottom-up dynamic programming approach: although

this technique is impressive in its ability to discover the optimal of an exponential

31

�
�
�
���
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
��������������

�
�
�
�

�
�
�
�

��
��
��
��

����

���� ����

�
�
�
�

��
�
�
�
��
�
�
�
�
�
�
���
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
������

�
�
�
�����

��

��

��
��
��
��

��
��
��
��

��
��
��
��
�����
�
�
�
��
��
��
��

��
��
��
��

��
��

��
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�����
�
�
�
��
��
��
��

��

dc

b

a

Q
e

hump ascending

D
a’

b’

c’
d’

e’

Figure 2.3: Illustration of shifting and scaling in temporal and amplitude dimensions of two time

series, handled by pattern-based similarity measures (from Chen et al. (2007)).

number alignments, a basic implementation runs for a long time, proportional to the

length of the time series. If a warping window w is specified, then the running time

reduces considerably: anyway the computational requirements of this algorithm are

still high for most large scale application. In Ratanamahatana and Keogh (2004), the

authors introduce a novel framework based on a learned warping window constraint

to further improve the classification accuracy, as well as to speed up the DTW

calculation.

2.3.3 Spatial Assembling distance (SpADe)

As anticipated, Euclidean distance has been shown to be ineffective in measuring dis-

tances of time series in which shifting and scaling usually exist. Consequently, warp-

ing distances (such as the above-mentioned Dynamic Time Warping and Longest

Common Subsequence distance), have been proposed to handle warps in tempo-

ral dimension. However, they are inadequate in handling shifting and scaling in

amplitude dimension. Moreover, they have been designed mainly for full sequence

matching, whereas in on-line monitoring applications, there is typically no knowl-

edge on the positions and lengths of possible matching subsequences.

Pattern-based similarity measures, such as Spatial Assembling Distance (SpADe),

have thus been introduced to handle shifting and scaling in both temporal and am-

plitude dimensions of time series. Figure 2.3 shows cases of warps (shifting and

scaling) existing between query pattern Q and data sequence D. Note that D is

similar to Q at semantic level, as there is a hump followed by an ascending trend

in both of them. The first warp is time shifting, i.e., the lag of ascending trend to

32

the hump in Q (measured as d − c) is different from that (measured as d′ − c′) in

D. The second is amplitude shifting, e.g., the values of data items between d and e

in Q are larger than those of the corresponding items between d′ and e′ in D. The

third is scaling, the extensions of humps in Q and D are different in both temporal

dimension (from c− a and c′− a′) and amplitude dimension (from Q(b)−Q(a) and

D(b′) −D(a′)). The main disadvantage of such an approach is that it is computa-

tional intensive, and incurs redundant computational overhead. As a subsequence

matching problem, pattern detection on streaming time series is naturally expensive.

The reader is referred to Chen et al. (2007) for further details.

2.4 Linkage methods

Once the distance between the time series is performed, the following operation of

each clustering algorithm is the computation of the proximity between two clusters,

in order to build bigger and bigger clusters until only one cluster remains or a

termination condition is satisfied (or, viceversa, to divide one big clusters in smaller

clusters). Some definition of cluster proximity will be described in the following

sections.

2.4.1 Single

For the single linkage method (Hartigan, 1981), the proximity of two clusters is

defined as the minimum of the distance between any two points in the two different

clusters. Using graph terminology, starting with all points as singleton clusters and

adding links between points one at a time, shortest links first, then these single links

combine into clusters. Mathematically:

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y). (2.11)

where x and y are two generic points belonging respectively to cluster Ci and Cj, and

d is the mathematical operator that computes the distance between these points.

The single linkage technique is good at handling non-elliptical shapes, but it is

sensitive to noise and outliers. By imposing no constraints on the shape of clusters,

it sacrifices performance in the recovery of compact clusters in return for the ability

to detect elongated and irregular clusters. Also, single linkage tends to chop off the

tails of distributions before separating the main clusters (Jardine and Sibson, 1971).

33

2.4.2 Complete

For the complete linkage method (first introduced in Sorensen, 1948), the proximity

of two clusters is defined as the maximum (minimum of the similarity) between any

two points in the two different clusters. Using graph terminology, starting with all

points as singleton clusters and adding links between points one at a time, shortest

links first, then a group of points is not a cluster until all the points in it are

completely linked, i.e., form a clique. Mathematically:

d(Ci, Cj) = max
x∈Ci,y∈Cj

d(x, y). (2.12)

where x and y are two generic points belonging respectively to cluster Ci and Cj, and

d is the mathematical operator that computes the distance between these points.

Complete link is less susceptible to noise and outliers, but it can break large clusters

and it favours globular shapes. Unfortunately, it is strongly biased toward producing

compact clusters with roughly equal diameters, and it can be severely distorted by

moderate outliers.

2.4.3 Average

For the average linkage method (first introduced in Sokal and Michener, 1958), the

proximity of two clusters is defined as the average pairwise proximity among all pairs

of points in the different clusters. This is an intermediate approach between the

single and complete link approaches. Thus, for group average, the cluster proximity

d(Ci, Cj) of clusters Ci and Cj, which are of size mi and mj, respectively, is expressed

by the following equation:

d(Ci, Cj) =

∑
x∈Ci,y∈Cj

d(x, y)

mi ·mj

. (2.13)

Average linkage tends to join clusters with small variances, and it is slightly biased

toward producing clusters with the same variance. Because it considers all members

in the cluster rather than lust a single point, however, average linkage tends to be

less influenced by extreme values than other methods.

2.4.4 Centroid

Centroid methods (first introduced in Sokal and Michener, 1958) calculate the prox-

imity between two clusters by calculating the distance between the centroids of

34

clusters. If x̂ and ŷ are the centroids of clusters Ci and Cj, the proximity between

two clusters can be calculated as follows:

d(Ci, Cj) = ‖x̂− ŷ‖2. (2.14)

These techniques have a peculiar characteristic, i.e. the possibility of inversions.

Specifically, two clusters that are merged may be more similar (less distant) than

the pair of clusters that were merged in a previous step, while for other methods

the distance between merged clusters monotonically increases (or is, at worst, non-

increasing) proceeding from singleton clusters to one all-inclusive cluster. Further-

more, as the centroid method compares cluster means, outliers affect it less than

other methods, even if it may not perform as well as Ward’s method or average

linkage method (Milligan, 1980): in fact, the larger of two unequally sized groups

merged using centroid linkage tends to dominate the merged cluster.

2.4.5 Ward’s method

For Ward’s method, the proximity between two clusters is defined as the increase

in the squared error that results when two clusters are merged. Thus, this method

uses the same objective function as k-means clustering. While it may seem that

this feature makes Ward’s method somewhat distinct from other techniques, it can

be shown mathematically that Ward’s method is very similar to the group average

method when the proximity between two points is taken to be the square of the

distance between them. If ni and nj are the numbers of data belonging to clusters

Ci and Cj, Ward’s proximity between the clusters can be expressed as follows:

d(Ci, Cj) =
‖x̂− ŷ‖2(
1

ni

+
1

nj

) . (2.15)

Ward’s method considers the union of every possible pair of clusters and combines

the two clusters whose combination results in the smallest increase in ESS (Total

Error Sum of Squared deviations from the cluster centroid). It joins clusters to

maximize the likelihood at each level of the hierarchy under some assumptions:

multivariate normal mixture, equal spherical covariance matrices and equal sampling

probabilities (Lorr, 1983).

35

2.5 Clustering results evaluation criteria

The last step of any clustering exercise is the evaluation of the resulting partition

of the original data set. Because of its very nature, cluster evaluation is not a

well-developed or commonly used part of cluster analysis. Nonetheless, cluster eval-

uation, or cluster validation as it is more traditionally called, is important, and this

section will review some of the most common and easily applied approaches. A key

motivation is that almost every clustering algorithm will find clusters in a data set,

even if that data has no natural cluster structure. Being able to distinguish whether

there is no-random structure in the data is just one important aspect of cluster

validation. The following is a list of several important issues for cluster validation:

1. Determining the clustering tendency of a data set, i.e. distinguishing whether

non-random structure actually exists in the data;

2. Determining the correct number of clusters;

3. Evaluating how well the results of a cluster analysis fit the data;

4. Comparing the results of a cluster analysis to externally known results, such

as externally provided class labels;

5. Comparing different sets of clusters to determine which is better.

Item 1, 2, and 3 do not make use of any external information (they are unsupervised

techniques), while item 4 requires external information. Item 5 can be performed in

either a supervised or an unsupervised manner.

The evaluation measures, or indices, that are applied to judge various aspects of

cluster validity are traditionally classified into the following two types. The first is

based on external criteria: this implies that the results of a clustering algorithm

are evaluated based on a pre-specified structure, which is imposed on a dataset,

i.e. external information that is not contained in the dataset. The second approach

is based on internal criteria: the results of a clustering algorithm are in this case

evaluated using information that involves the vectors of the datasets themselves.

This class of measures is often divided into two groups: measures of cluster cohe-

sion (compactness, tightness), which determine how closely related the objects in

a cluster are, and measures of cluster separation (isolation), which determine how

distinct or well-separated a cluster is from other clusters. Sometimes also a third

36

approach of clustering validity is introduced: this particular approach is based on

relative criteria, which consists of evaluating the results (clustering structure) by

comparing them with other clustering schemes. Thus, relative measures are not

actually a separate type of cluster evaluation measure, but are instead a specific use

of such measures.

Considering only the first two types of cluster validation to determine the correct

number of groups from a data-set, one option is to use external validation indices

for which a priori knowledge of dataset information is required, but they can hardly

be adopted for real problems (usually, real problems do not have prior information

of the dataset in question). The other option is to use internal validity indices which

do not require a priori information from data-set. For further details, the reader is

referred to Rendon et al. (2011) and references therein.

In recent times, many indices have been proposed in the literature to measure the

fitness of the partitions produced by clustering algorithm: next sections provide an

overview of some of these indices, with particular emphasis on Davies-Bouldin and

Dunn indices, because they are the most widely used in lots of clustering studies,

and the ones used in this thesis.

2.5.1 External validity indices

In the case of external evaluation, clustering results are judged based on data that

was not used for clustering, such as known class labels and external benchmarks.

Such benchmarks consist of a set of pre-classified items, and these sets are often cre-

ated by human (experts). These types of evaluation methods measure how close the

clustering is to the predetermined benchmark classes. However, it has recently been

discussed whether this is adequate for real data, or only on synthetic data sets with

a factual ground truth, since classes can contain internal structure, the attributes

present may not allow separation of clusters or the classes may contain anomalies.

Additionally, from a knowledge discovery point of view, the reproduction of known

knowledge may not necessarily be the intended result.

The two most used external validity indices are below described in details.

The Rand Index (Rand, 1971) computes how similar the clusters returned by one

clustering algorithm are to a benchmark classification. This index can be view as

a measure of the percentage of correct decisions made by the algorithm. It can be

computed in the following way.

37

Given a set S of n elements and two partition of S to compare, X = {X1, . . . , Xr},
a partition of S into r subsets, and Y = {Y1, . . . , Ys}, a partition of S into s subsets.

X is the benchmark classification to which the partition Y has be compared. The

Rand index is defined as follows:

R =
a+ b

a+ b+ c+ d
(2.16)

where a is the number of pairs of elements in S that are in the same set in X and in

the same set in Y , b is the number of pairs of elements in S that are in different sets

in X and in different sets in Y , c is the number of pairs of elements in S that are in

the same set in X and in different sets in Y , d is the number of pairs of elements in

S that are in different sets in X and in the same set in Y .

Intuitively, a + b can be considered as the number of agreements between X and

Y , and c + d as the number of disagreements between X and Y . The Rand index

has a value between 0 and 1, with 0 indicating that the two data clusters do not

agree on any pair of points and 1 indicating that the data clusters are exactly the

same. It is very easy to implement, so it is often used to have a first impression

of how good a partition is, compared to other partitions of the same pairs of elements.

Also Jaccard index (Jaccard, 1908) is a statistic index that can compute how similar

the clusters returned by one clustering algorithm are to a benchmark classification.

The mathematical definition is similar to the one of Rand Index.

Given a set S of n elements and two partition of S to compare, X = {X1, . . . , Xr},
a partition of S into r subsets, and Y = {Y1, . . . , Ys}, a partition of S into s subsets,

X is the benchmark classification to which the partition Y has be compared. The

Jaccard index is defined as follows:

R =
a

a+ c+ d
(2.17)

where a is the number of pairs of elements in S that are in the same set in X and

in the same set in Y , c is the number of pairs of elements in S that are in the same

set in X and in different sets in Y , d is the number of pairs of elements in S that

are in different sets in X and in the same set in Y . The Jaccard index has a value

between 0 and 1, with 0 indicating that the two data clusters do not agree on any

pair of points and 1 indicating that the data clusters are exactly the same. In its

computation this index does not consider the elements that are in different sets in

X and in different sets in Y .

38

2.5.2 Internal validity indices

When a clustering result is evaluated based on the data that was clustered itself,

this is called internal evaluation. These methods usually assign the best score to

the algorithm that produces clusters with high similarity within a cluster and low

similarity between clusters. One drawback of using internal criteria in cluster evalu-

ation is that high scores on an internal measure do not necessarily result in effective

information retrieval applications. Among the different internal validity indices and

criteria available in literature, the most commonly adopted are the Davies-Bouldin

index (DBI) and Dunn index (DI) (Davies and Bouldin (1979); Dunn (1973)), which

favor cluster configurations with small within-cluster variance and large between-

clusters variance, thus resulting in compact and well separated clusters.

The Dunn index aims at identifying sets of clusters that are compact, with a small

variance between members of the cluster, and well separated, where the means

of different clusters are sufficiently far apart, as compared to the within cluster

variance. For a given assignment of clusters, a higher Dunn index indicates better

clustering. One of the drawbacks of using this, is the computational cost as the

number of clusters and dimensionality of the data increase. DI is defined as follows:

DI = min
i 6=j,j⊂{1,...,k}

{
min

1≤j≤k∧i 6=j

{
inter(Ci, Cj)

max1≤z≤k intra(Cz)
(2.18)

where inter(Ci, Cj) is the inter-cluster distance between cluster i and cluster j,

max1≤z≤k intra(Cz) is the maximum value of intra-cluster distances and k is the

number of clusters.

This formulation has a peculiar problem: if one of the clusters is badly formed, where

the others are tightly packed, since the formula contains a ’max’ term instead of an

average term, the Dunn index for that set of clusters will be uncharacteristically

low. This is thus some sort of a worst case indicator, and has to be used keeping

that in mind.

The Davies-Bouldin index is really similar to Dunn index. It uses an internal evalu-

ation scheme, where the validation of how well the clustering has been done is made

using quantities and features inherent to the dataset. This has a drawback that a

good value reported by this method does not imply the best information retrieval.

In order to get a good clustering results, data should be divided in compact groups

39

that show low degree of similarity (this condition can be mathematically expressed

by a high value of S(Ci, Cj), i.e. the distance between centroids of cluster i and the

centroid of cluster j). DBI is defined as follows:

DBI =
1

n

n∑
i=1

max
i 6=j

{
Sn(Ci) + Sn(Cj)

S(Ci, Cj)

}
(2.19)

where Sn(Cx) is the average distance of each element of a cluster with respect to

the centroid of cluster Cx (and 1 ≤ x ≤ k) to which they belong, S(Ci, Cj) is the

distance between centroids of cluster i and the centroid of cluster j and k is the

number of clusters. Hence the ratio is small if the clusters are compact and far from

each other. The index is symmetric and non-negative. Due to the way it is defined,

as a function of the ratio of the within cluster scatter, to the between cluster sepa-

ration, a lower value will mean that the clustering is better.

Davies-Bouldin index and Dunn index are the indices used in this work to evaluate

the performance of obtained clustering. This choice is mainly due to the fact that

the optimal configuration (i.e. the optimal number of clusters) for the system under

consideration is not known, so that only internal validity measures can be used. As

already stressed, these indices have the main drawback that good values reported

by these methods do not imply the best information retrieval: to overcome this

limitation the most reasonable solution is a multi-assessment, employing more than

one internal validity measure. Both Davies-Bouldin index and Dunn index are thus

employed in this work, and the choice of the optimal number of clusters is made

according to the values of both indices: in particular the optimal number of clusters

is the one that maximizes the Dunn index and minimizes the Davies-Bouldin index.

40

Chapter 3

The Marina Reservoir case study

The purpose of this chapter is to introduce the case study to which the hybrid

approach that couples DEMo procedure to clustering techniques is applied. In par-

ticular in Section 3.1 and 3.2 the reader is introduced to water management issues in

Singapore and to a general description of Marina Reservoir water system. Then, Sec-

tion 3.3 describes the management problem of the reservoir, while Sections 3.4 and

3.5 give an overview of Marina Reservoir developed modelling tools that constitutes

the basis for the identification of an emulator.

3.1 Water management issues in Singapore

Lying almost on the equator, the Republic of Singapore, the second-smallest country

in Asia, consists of Singapore Island and 63 smaller adjacent islets. It’s situated in

the Indian Ocean off the southern tip of the Malay Peninsula, and has an area of

693 km2. Singapore’s position at the eastern end of the Strait of Malacca, which

separates western Malaysia and the Indonesian island of Sumatra, has given it eco-

nomic and strategic importance out of proportion to its small size. The climate is

tropical, with heavy rainfall and high humidity. The range of temperature is slight:

the average annual maximum is 31 ℃, and the average minimum 24 ℃. The annual

rainfall of 2500 mm is distributed fairly evenly throughout the year, mainly from

December to February. Singapore is facing a serious shortage of water resources. Its

current water demand is about 1.4 million cubic meters daily. Water resource man-

agement becomes, therefore, a strategically important issue for national economic

development and public and social life.

From the 1980s to 1990s Singapore made tremendous efforts in a legal and manage-

41

ment system for the environment (including water), in conducting pollution control,

river cleaning and setting up industrial estates according to land planning, and in

building up a world class urban sanitation system including water and sewerage

networks and treatment plants covering the whole island. From the later 1990s un-

til the present the government has set sustainable water supply as the main target

of water strategy, and for this a series of initiatives and actions have been taken,

and the country has achieved remarkable progress in water resource management.

To achieve this, several ambitious programs are being undertaken. Among this,

the 4 national taps strategy (see Board, 2005 and Bank, 2006) is by far the most

important. The taps are organized as follows:

TAP 1. Catchment Management Watershed conservation is vitally important

to ensure water quality in the reservoirs, especially considering that most of the

catchments are located in urban areas. Because of close coordination between

land use planning and water catchment activities, water catchment accounted

for about 50% of the land area of Singapore. After the creation of Marina

barrage, the increase in the supply of water was about 10 % of current water

needs, and the effective catchment area in Singapore increased to two thirds

of the total land area.

TAP 2. Imported water Singapore imports its entitlement of water from the

neighbouring Johor state of Malaysia, under long-term agreements signed in

1961 and 1962, when Singapore was still a self-governing British colony. Under

these agreements, Singapore can transfer water from Johor for a price of less

than 1 cent per 1,000 gallons until the years 2011 and 2061 respectively. The

water from Johor is imported through three large pipelines across the 2-km

course way that separates the two countries. Singapore would like to ensure

its long-term water security by having a treaty which will provide it with

the stipulated quantity of water well beyond the year 2061. In contrast, the

main Malaysian demand has been for a much higher price of water, which

has varied from 15 to 20 times the present price. That’s why the target of

Singapore government is increasing the portions of the first, third and fourth

Taps.

TAP 3. NEWater program The PUB started to test the production of NEWater

(treated waste-water) in 1998. The treated waste-water becomes a new water

resource, which closes the water loop. The NEWater application in Singapore

42

is the largest in non-potable waste-water reuse in the world, and marks a

milestone in the development of water reuse. The target was to supply 250,000

m3/day of NEWater for direct non-potable use, or 15% of the Singapore water

supply, by the year 2011. To launch such a potentially controversial product

due to the nature of its source, and make it acceptable by Singaporeans in such

a short span of time requires a careful plan, and a well-timed and properly

coordinated public communications strategy.

TAP 4. Desalinated water The first desalination plant using reverse osmosis

(RO) technology and with a capacity 136,380 m3/day was commissioned in

September 2005. This seawater plant is one of the first and largest of such

facilities in the region.

3.2 Marina Reservoir water system

Among these taps, the maximization of water yields from local catchments is poten-

tially one of the most important sources, and with the inclusion of Marina Reservoir

the Singapore’s effective catchment area is now increased to about 50% of the total

available area. Marina Reservoir, which was created in late 2008 with the construc-

tion of a 350 m wide barrage across Marina Channel, represents one of the largest

fresh water bodies in Singapore. Besides this strategic water supply role, the reser-

voir has two further functions: floods control and lifestyle attraction. Indeed, the

Marina Bay area coincides with most of Singapore’s Central Region and it has been

the site around which an ambitious urban development project took place.

The reservoir has a surface area of 2.45 km2 and an active storage of about 3.2 hm3.

Five main tributaries (Singapore, Geylang and Kallang river and Bukit Timah and

Stamford Canal) discharge water into the reservoir draining a catchment of approx-

imately 100 km2, about 1/7 of Singapore total surface area, that produces a mean

annual inflow of about 150 hm3 with a typical tropical pattern.

The catchment mainly consists of urbanized land and it is characterized by the

presence of three further reservoirs, only managed for drinking water supply and

whose discharge to Marina Reservoir is rare and negligible. The weather conditions

are mainly driven by the monsoon seasons, but with no distinct wet or dry peri-

ods, as rainfall events can occur during every month of the year (Selvalingam et al.,

1987). The North-East monsoon occurring from November to February/March is

the wettest season with strong rainfalls coming from the South China Sea, while

43

Marina
Reservoir

MALAYSIA

INDONESIA

SINGAPORE

Singapore
Strait

(a) Marina Reservoir and its catchment

(b) Overview of the Barrage and the visitor center where pumps

are located

Figure 3.1: The Marina Reservoir water system.

44

the South-West monsoon from June to September is less intense. During the inter-

monsoon seasons Sumatra squall lines, coming from the westward Indonesian Suma-

tra Island, usually shower Singapore on early mornings. Moreover, added to this

large scale pattern, convection enhanced by the warm water pool surrounding the

island, the high relative humidity of the atmosphere and the hot spots of heat espe-

cially spread in the urban areas, bring heavy rainfall events associated with strong

and relatively-fast thunderstorms of about 2-3 hours.

The drainage system consists of concrete lined canals, thus making the concentra-

tion time of the catchment extremely short (about two hours). Rainfall tends to

come in high intensity events and discharges occur in high peaks over short periods,

typically a few hours. Base flow is low and the upstream canals are mostly dry. In

the downstream parts of the drainage system the bottom level of the canals is often

lower than the reservoir level, with stagnant water being present during draught

periods (Liew et al., 2001). Its peculiar location makes water quality control a rel-

evant issue: the inflow is characterized by short bursts of high flow with sediment

and nutrient rich water followed by dry periods with almost no flow, and because

of its location in the tropics temperature and light intensity are high (as shown in

Antenucci et al., 2012 and Smits and J.V., 2007b). This typically leads to eutrophic

in-reservoir water conditions.

However, satisfying this operational target is not straightforward, mainly because

of the extremely short concentration time of the catchment that causes high peaks

of discharge over a period of few hours (Janssen and Ogink, 2007). Moreover, the

relatively recent formation of the impoundments from a former estuary and the

presence of salinity intrusion make salinity control another important objective.

3.3 Motivation

The efficient management of Marina Reservoir calls for the adoption of novel tools,

capable of accounting for the aforementioned water quantity and quality targets in a

fast-varying hydro-meteorological system. In particular, this management problem

requires a research activity in both a modelling and control domain: in fact the

physically-based models traditionally adopted to describe the ecological conditions

of water reservoirs cannot be employed for optimal decision-making purposes, since

their computational requirements does not allow for their integration with optimiza-

tion framework.

45

This problem can be addressed by resorting to emulation techniques (see Chapter 1),

which allow identifying a simple and computationally efficient copy of the original

model to be used for optimization purposes.

As far as the control domain is concerned, one possible solution is adopting a real-

time control approach that can exploit the availability of hydrological information

(e.g. precipitation and runoff forecasts) thus enhancing the efficiency of the man-

agement system. The proposed management system to be developed is thus a com-

bination of emulators with real-time control techniques.

In the context of Marina Reservoir it must be understood that an operational

management system is already in place (Twigt and Burger, 2010): the barrage

is equipped with 9 surface gates, 7 pumps (to discharge water when the sea level is

higher than the reservoir one, with an installed capacity of 280 m3/s) and 2 bottom

pipes, which can release water at deeper levels, thus allowing for the mechanical

control of the temperature profile and the salinity concentration. This tools are not

sufficient because also water quality objectives have to be taken into account in the

real-time control of the water system.

Actually, there is a model available for the water system but this is computationally

too intensive to be used for real time control. An effective approach to overcome

this limitation is to perform a top-down reduction of the physically-based mode

describing the hydro-dynamics of Marina Reservoir by identifying a simplified, com-

putationally efficient emulator, constructed from, and then used in place of the

original process-based model in highly resource-demanding tasks, like the optimal

management of the reservoir.

Next section gives an overview of Marina Reservoir developed modelling tools that

constitute the basis for the identification of the above-mentioned emulator.

3.4 Description of the models available

For Marina Reservoir, an extensive modelling framework is available for simulation

and forecasting (Twigt and Burger, 2010). These models are also integrated into

the operational management system. Different components of the water system are

modelled by different modules that can either run independently or coupled from

each other. The modules are:

- rainfall-runoff and 1D flow module that calculates the runoff from the different

sub-catchments and the water flow through the drainage system;

46

1D FLOW

RR RTC

Delft3D
FLOW

Figure 3.2: Flow diagram of simulation model.

- 3D flow that calculates the hydrodynamics of Marina reservoir;

- real-time control module that applies the control of structures in the model

depending on the simulation results.

All the different modules are integrated in a 1D-3D coupled model, whose architec-

ture is shown in Figure 3.2, where RR and RTC stand for rainfall-runoff module

and real-time control module. Its operation is as follows: the rainfall runoff module

runs independently first. This provides boundary conditions for the 1D and 3D flow

modules. These two modules run together with the RTC module. The 1D flow and

3D flow coordinates discharge and water level at their combined boundary. The

RTC module sets the states of controllable structures (gates and pumps of the ma-

rina barrage) depending on the state in the system. Currently there is a fixed set

of operating rules that is implemented by this module. There is also an emission

module that calculate the loads of constituents at the rainfall runoff boundary after

which the 1D and 3D water quality modules calculates the transport of and the

processes associated with the constituents. As these modules are not used in this

work, the reader is referred to Smits and J.V. (2007a) and Smits and J.V. (2007b)

for further details.

47

All the models are built using the commercial software packages Sobek (Deltares,

2010) and Delft3D (Deltares, 2010) that are developed by Deltares. In the follow-

ing paragraph a short overview of the modelling concepts is given for each module.

For a more detailed description the reader is referred to the available documentation

about the model development and the user guides of the Sobek and Delft3D software

packages.

3.4.1 Rainfall-runoff and 1D flow module

The hydrology is described in the rainfall-runoff module Sobek RR and the hy-

draulics is described in a combined application of the Channel Flow and Sewer Flow

modules Sobek CF/SF (see Zijl and Twigt, 2007 for further details). The input

for the model consisted of a MIKE11 model of the catchment as provided by PUB

(Public Utilities Board).

Since it is not possible to include all small drains in the schematization of the model,

the catchment has been divided into 196 sub-catchments for which a general schema-

tization is applied. In each of these sub-catchments the rainfall-runoff process and

the drainage to the main channels is described using the following two network el-

ements: manholes and pipes. The manhole stores the total runoff (or acts as a

collection point for the runoff) and the pipe conveys the stored runoff to the main

channel.

The Sobek schematization has been extended with artificial manholes used in the

rainfall-runoff module, and pipes connecting the manholes to the channel flow sys-

tem. Various adjustments to the schematization have been made. Rainfall stations

of PUB and NEA are assigned to rainfall-runoff manhole nodes to get the rainfall

data. The assignment is based on Thiessen polygons. For this hourly rainfall data

is used. Evaporation is set to a constant value of 3.23 mm/day (Singapore mean

daily evaporation).

The calculation was not done at every cross-section, but with a 1D discretization of

the Saint-Venant equations. Sobek uses a staggered grid discretization (with a res-

olution of 100 m) in which the water level is calculated in nodes and the discharge

between nodes. This choice makes the model much faster (reduces computation

times by a factor of four). The rainfall-runoff module and channel flow module are

run sequentially. The results of the Sobek model are used as input to the Delft3D

model.

48

3.4.2 3D flow module

The 3D hydrodynamic models (see Zijl and Twigt, 2007 for further details) used to

calculate the flow condition in Marina Reservoir have been developed as applications

of Delft3D. At the core of Delft3D is the FLOW module (Deltares, 2010) for the

simulation of water flow in three dimensions. The three-dimensional hydrodynamic

model equations that form the basis of FLOW are written in a generalised orthogonal

coordinate system. Depending on the size and complexity of the problem and model

domain, a choice between a rectangular model grid, a curvilinear or a curvilinear

spherical model grid in the horizontal can be made. The non-linear equations are

discretized using a finite difference discretization and are solved by an efficient, stable

and accurate ADI-type solution technique. For complex geometries such as Marina

Bay, a curvilinear grid allows for maximal boundary fitting, that is to say best grid

representation of the curved contours of shores.

The horizontal model grid of the 3D Marina Reservoir model covers the Marina

Bay basin, Kallang basin and Marina Channel. Furthermore it extends up to 2

km upstream into Kallang River, Rochor Channel, Geylang River, Singapore River

and Stamford Canal. This is done because stratification can be expected in those

areas. The areas of the Marina Bay basin, Kallang basin and Marina Channel have

a grid size of 25 m by 25 m. Further upstream larger grid cells have been used, with

grid sizes (in the direction along the river) of more than 100 m. By varying the

grid sizes, computational time is saved, while correctly representing relevant local

spatial scales. Figure 3.3 shows Delft3D bathymetry. By shutting off Marina Bay

from the tide coming from Singapore Straits, Marina Reservoir can be characterised

as weekly-dynamic system presumably with temporary stratified areas. Therefore,

the z-layer approach for the vertical schematization is used. This implies that strictly

horizontal computational layers are defined, with a user-defined thickness.

In the 3D Marina Reservoir model a maximum of 12 computational layers (in the

deepest parts) is used. The layer thickness varies over the vertical. The thinnest

layer can be found at the water surface, gradually increasing towards the bottom.

The vertical schematization has been decided after a number of sensitivity tests.

With Delft3D it is possible to make an on-line coupling with a Sobek model. This

can be useful when a model is required that covers extensive river branches as well as

basins or estuaries where 3D effects (e.g. stratification) play a significant role. There

are 33 boundaries at which the 3D model connects with the 1D network: 30 inflow

points (29 surface flow and one groundwater flow), weirs, pumps and pipes. Both

49

Figure 3.3: Delft3D bathymetry.

systems simulate time dependent processes for which a time stepping procedure is

applied. In the coupled 1D-3D hydrodynamic model quantities are exchanged at

each time step. As an explicit coupling is applied, every time step Sobek sends

discharge values to Delft3D and Delft3D sends water level data to Sobek.

Consequently, there is a time step restriction. The exchange of data is done every

time step of the 1D model, that corresponds with each half time step of the 3D

model because of the specific alternate direction implicit method that is used to

solve the 3D equations.

3.4.3 Operating rules of barrage

The barrage consists of 9 gates, 2 bottom pipes and seven pumps. The maximum

allowed reservoir water level is 1.1 m. However, the goal of the operation rules for

the weirs (gates), pipes and pumps at the barrier is to keep the water level in Marina

Reservoir between -0.2 (-0.3) and +0.3 m (i.e. levels between 99.8 m and 100.3 m

in Singapore Datum) as often as possible.

The pipes and weirs are used to discharge water during low tide periods, when the

sea water level is at least 20 cm below the reservoir water level.

All weirs are opened when the water level is greater than 1.0 m and outside water

level is at least 20 cm lower. All pumps are switched on during high tide periods

when the reservoir water level greater than 0.7 m. However, gates, pipes and pumps

50

are operated according to fixed operating rules, that are briefly described in (Smits

and J.V., 2007a).

3.5 DEMo problem conceptualization

As anticipated, the efficient management of Marina Reservoir should be capable of

accounting for water quantity and quality targets: this calls for the adoption of novel

tools in a fast-varying hydro-meteorological system. Delft3D cannot be employed

for optimal decision-making purposes, since its computational requirements does not

allow for its integration with optimization framework.

This problem can be solved by means of the emulation techniques, which allow iden-

tifying a simple and computationally efficient surrogate of Delft3D to be used for

the optimization purposes introduced in Section 3.3. Before applying any DEMo

technique to Delft3D, a pre-processing of the exogenous drivers, controls, and state

variables to reduce the high number of variables appearing in the final emulator is

required.

This operation can be either performed in different ways: with the purpose of pre-

serving the physical interpretation of the aggregated state variables, while develop-

ing an automatic and system-independent tool, Chapter 4 of this thesis explores the

potential of cluster techniques to discover compact and relevant representations of

high-dimensional data sets produced via simulation of Delft3D.

The identified clusters are then processed with a Recursive Variable Selection algo-

rithm, in order to single out the most relevant clusters of some specific state variable

that are relevant to the emulator’s output, which, in this case, is the salinity con-

centration in a point close to the barrage. The rationale behind this choice is that

in this point the salinity concentration trajectories assume the highest values with

respect to all the other areas within the reservoir. These high values are in fact

not consistent with the high daily demand of fresh water, coupled with the serious

shortage of water that Singapore is nowadays facing. The presence of the desali-

nation plant from 2005 is not sufficient to ensure the necessary water supply, and

an optimal management of the reservoir should take into account a reduction of the

salinity concentration of the water sent to the plant itself. Moreover a lower level

of salinity would guarantee better in-reservoir water quality conditions for aquatic

animals and plants.

51

Chapter 4

DEMo by hierarchical clustering

The scope of this emulation modelling exercise is to reduce the dimensionality of

Delft3D so that the emulation model can be used to design, via the resolution of

a management problem, the optimal control policy for the gates, pipes and pumps

being employed to reduce the water quantity and quality problems affecting the

reservoir. In particular, this work concerns the management of salinity concentration

in the reservoir itself. The chapter is organized as follows: Section 4.1 describes the

Design of computer experiments and simulation runs phases, while Section 4.2 is

mainly concerned with variable aggregation, which is the core of this work. In

Section 4.3 variable selection is performed and in Section 4.4 the emulation model

is identified. Section 4.5 finally shows a comparison of hierarchical clustering results

with the results of another simpler aggregation method applied to the same data-

set, in order to stress the potential of a completely automatic aggregation procedure

with respect to an expert-skills based one.

4.1 DOE and simulation runs

The final scope of DOE is to explore, via simulation of the physically-based model,

the largest possible area within the LYt×LWt×Lut and LXt×LWt×Lut spaces (where,

in particular, LWt is the space of drivers, Lut is the space of controls, LYt is the

space of the output to be explained, and LXt is the space of the states). To this pur-

pose, for each simulation run, it is necessary to specify a trajectory over the whole

simulation horizon H for all the physically-based model input variables, namely the

exogenous driver Wt and the control ut.

To calculate the flow conditions in Marina Reservoir the 3D model Delft3D was

53

Variable Description Units

It surface inflow m3/s

GIt groundwater inflow m3/s

CCt fraction of cloud coverage %

RHt relative humidity %

ATt air temperature °C
WSt wind speed m/s

WDt wind direction deg

Table 4.1: Components of exogenous driver vector Wt.

Variable Description Units

u1t release from gates m3/s

u2t release from pipes m3/s

u3t release from pumps m3/s

Table 4.2: Components of control vector ut.

adopted. The Delft3D exogenous driver Wt includes 7 components accounting for

the main hydro-meteorological processes (i.e. surface inflow, groundwater inflow,

fraction of cloud coverage, relative humidity, air temperature, wind speed, and wind

direction), while the control vector ut has three components, i.e. the release from

gates, pipes and pumps (see Tables 4.1 and 4.2).

The model has 7 state variables (salinity concentration, temperature, salinity and

temperature transport1, u-direction velocity, v-direction velocity, and w-direction

velocity) for each computational cell, hence considering a total of 111 observation

points and 12 computational layers, the state vector Xt (see Table 4.3) has a total

of nearly 104 variables. Also water level in each observation point is examined. The

real-to-run time ratio associated to this set-up is of about 1:100. With the purpose

of generating the data-set of samples F , a set of trajectories for the model inputs

Wt and ut is designed.

1Dimensionless coefficients. Notice that the transport of matter (salinity in this case) and heat

is modelled by an advection-diffusion equation in the three coordinate directions.

54

Variable Description Units

salit salinity ppt

tempit temperature °C
ST i

t salinity transport %

TT i
t temperature transport %

UV i
t u-velocity m/s

V V i
t v-velocity m/s

WV i
t w-velocity m/s

Table 4.3: Summary of Delft3D state variables Xt notation (computed for each i cell of the spatial

domain).

As for the exogenous driver Wt, the time-series of observational data over the period

April 2009 - April 2010 is available, while, concerning ut, 10 different management

scenarios are generated, for a total of 10 simulation scenarios.

- Scenario 1 In this simulation pipes are always used when it’s possible;

- Scenario 2 In this simulation pipes are not used;

- Scenario 3 In this simulation pumps are not used;

- Scenario 4 In this simulation only gates are used;

- Scenario 5-10 The difference among the simulations stands in the way in

which the controls are managed or simply in the decision of employing all or

only some control devices.

The target of the emulation modelling exercise is to reduce as much as possible the

number of state variables involved in the physically-based model concerning salinity

concentration in the reservoir. Thus, the output Yt is the salinity concentration

[ppt] in the deepest point of the reservoir, located few hundred meters from the

barrage, where the effect of salinity is stronger (see Figure 4.1 for its localization in

the bathymetry); the output is therefore characterized by a dimensionality equal to

1, with an hourly time-step.

All the simulations are run with 30 sec simulation time-step, and an average vertical

resolution of about 0.5 m. The data are sampled with an hourly time-step, and

finally stored in a data-set F of ∼ 8 · 104 tuples.

55

Figure 4.1: Localization of the point used in the elaborations.

4.2 Variable aggregation by time-series clustering

The spatially-distributed nature of Delft3D model leads to a large dimensionality

of the state and exogenous driver vectors. By processing the data in F with a

suitable aggregation scheme, Xt and Wt are transformed in two lower-dimension

vectors X̃t and W̃t, so that the majority of the variation in the original vectors is

captured. The aggregation scheme can be done in different ways: with the purpose

of preserving the physical interpretation of the aggregated state variables, while

developing an automatic and system-independent tool, this section explores the po-

tential of clustering techniques to discover compact and relevant representations

of high-dimensional data sets. The rationale behind this choice is that clustering,

by organizing data into homogeneous groups with minimized within-group-object

similarity and maximized between-group-object dissimilarity (Liao, 2005), can be

effective in providing a compact, yet informative, representation of the data pro-

duced with the Delft3D, thus enhancing the final emulator accuracy and reducing

the computational and analytical effort of the DEMo process. Unlike static prob-

lems, the data here considered are a set of time-series with a spatial distribution.

This implies the adoption of time-series clustering techniques that aims at deter-

mining groups of similar time-series.

56

The hierarchical agglomerative cluster algorithm (Magni et al., 2008) is the selected

method: it works by organizing the data (the time-series) into a tree of clusters.

In the present configuration, the distance between each cluster is measured as Eu-

clidean distance, while clusters are merged according to the Ward’s minimum vari-

ance method (at each clustering step, the merge that minimizes the increase in the

sum-of-squares variance is chosen). The Ward’s method minimizes the total within-

cluster variance, and thus goes in the desired direction of creating compact and

informative clusters, which can then be processed with the RVS-IIS algorithm.

Eventually, the choice of the optimal number p of clusters for each state variable is

chosen according to the Davies-Bouldin (DBI) and Dunn (DI) index (Davies and

Bouldin, 1979; Dunn, 1973), which favour cluster configurations with small within-

cluster variance and large between-clusters variance, thus resulting in compact and

well separated clusters.

Next sections examine in detail the selected clustering algorithm and show the pri-

mary positive aspects of the chosen distance measure, linkage method, and clustering

evaluation criteria.

Hierarchical clustering

In this work, hierarchical clustering method is adopted. Hierarchical clustering tech-

niques (Magni et al., 2008) are the second important category of clustering methods.

As with K-means, these approaches are relatively old compared to many clustering

algorithms, but they still enjoy widespread use: in particular, agglomerative hier-

archical clustering techniques are by far the most common. Hierarchical clustering

algorithm applied on time-series data works by organizing the time-series into a tree

of clusters. At the first iteration the algorithm places each time-series in its own

cluster and then starts to merge these small clusters, until a single cluster is obtained

or an a-priori defined stopping condition is satisfied (e.g. the minimum number of

clusters). In order to perform hierarchical clustering, TimeClust software package

is used (see Figure 4.2).

Euclidean distance

Agglomerative clustering methods uses the dissimilarities (similarities) or distances

between objects when forming the clusters. Similarities are a set of rules that serve as

57

Figure 4.2: Time Clust input screen example.

criteria for grouping or separating items. These distances (similarities) can be based

on a single dimension or multiple dimensions, with each dimension representing a

rule or condition for grouping objects. In the present configuration, the distance

between each cluster is measured as Euclidean distance, that is computed as shown

in equation 2.8. One reason is that the centroid or the ward algorithms should

be used only with the euclidean distance; moreover, this distance measure is not

affected by the presence of outliers.

Ward linkage method

At the first step, when each object represents its own cluster, the distances be-

tween the objects are defined by the chosen distance measure. However a linkage

or amalgamation rule to determine when two clusters are sufficiently similar to be

linked together is needed. There are numerous linkage rules such as these that have

been proposed in Section 2.4: in this thesis, clusters are merged according to the

Ward’s method (at each clustering step, the merge that minimizes the increase in

the sum-of-squares variance is chosen). The Ward’s method considers the union

of every possible pair of clusters and combines the two clusters whose combination

results in the smallest increase in ESS (Total Error Sum of Squared deviations from

the cluster centroid), and thus goes in the desired direction of creating compact and

58

informative clusters.

Dunn index and Davies-Bouldin index

Dunn index and Davies-Bouldin index are the indexes chosen to decide how many

clusters actually exists in the data: the simplest way to do it is to plot them against

the number of clusters they are calculated over. The number p for which DB (DI)

value is the lowest (highest) is a good measure of the number of clusters the data

could be ideally classified into. This approach allows indeed to analyse a-posteriori

the clustering results and to choose the number of clusters p (for each sub-set) that

best satisfies the DBI and DI indexes.

4.2.1 Clustering results

The algorithm of hierarchical clustering is thus applied to time series data: notice

that the clustering algorithm is not directly applied to the complete set of state vari-

ables in F , but to 7 sub-sets, each containing the temporal and spatial realizations

for temperature and salinity concentration temp and sal, temperature and salinity

transport TT and ST , and the horizontal and vertical velocities UV , V V and WV .

The rationale behind the choice of keeping the state variable separated one from the

other is due to the purpose of preserving a sort of physical interpretability of the

aggregated time-series, as the knowledge of the system behaviour was not sufficient

to intuitively understand the reasons why many state variables could result in the

same cluster (e.g., how to legitimate the simultaneous presence in the same cluster

of temperature and horizontal velocities?).

Because of the computational requirements of the algorithm, this clustering exercise

is solved for each of the 10 simulation run of the original model Delft3D: also in this

case the idea is to keep each simulation separated from the others to preserve their

own distinctive traits in the clustering results. This gives a total of 70 clustering

problems (one for each state variable for each simulation).

These problems are solved without specifying a-priori the desired minimum number

of clusters (i.e. no stopping condition), which means that the algorithm is run until

a full tree of clusters is obtained.

59

0 2 4 6 8 10 12
0.2

0.3

0.4

0.5

0.6
Temperature transport

cluster

D
B

I

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

cluster

D
I

Figure 4.3: Average value (over the 10 simulation runs) of the DBI and DI indexes for the tem-

perature transport TT .

Figure 4.3 reports the average value (over the 10 simulation runs) of the DBI and DI

indexes as a function of p for the temperature transport TT . Results show that the

best number p∗ of clusters that minimizes the DBI and maximizes the DI index is 3,

while the introduction of a larger number of clusters does not improve the clustering

results any further. The plots of the DBI and DI indexes as a function of p for the

other state variables are reported in Appendix A.

This analysis is performed for a maximum value of p equal to 11 corresponding to

the number of layers (a part from the surface layer) in the original model. This

value provides an empirical upper bound to p, since the data could be for example

aggregated by considering the spatial average of each sub-set in the original model

vertical layers (see Section 4.5.1).

The final results obtained for the remaining sub-sets are reported in Table 4.4, where

60

Table 4.4: Selected number of clusters for the different sub-sets composing the vector Xt. The

symbols are explained in Table 4.3.

State Variable sal temp ST TT UV V V WV h

Number of clusters 6 6 4 3 4 6 8 10

the results obtained for the water level h are also shown. The time series algorithm

found a total of 8 different clusterings, each one identifying a set of homogeneous

areas of a particular variable. These areas can vary from sub-set to sub-set, so, for

example, the salinity concentration sal can be grouped into 6 different areas, while

the vertical velocity WV into 8.

In the following sections a more detailed description of clustering results for each

state variable is given.

Salinity

The number of homogeneous areas identified for salinity is 6. As Figure 4.4 shows,

Cluster 1 and Cluster 2 contain the points closer to the barrage. Points in the

middle of Marina channel and in correspondence of the upper part of the reservoir

(i.e. near Kallang River and Geylang River) are in Cluster 4, Cluster 5 and Cluster

6. Table B.1 shows the number of points per layer belonging to each cluster. Cluster

1, Cluster 4, and Cluster 5 contain points in the deepest layers (i.e. from Layer 1

to Layer 5), while points in Layers 6 and 7 are in Cluster 3. Cluster 6 is the biggest

and contains all the points belonging to the upper layers. The number of points per

cluster is not homogeneous: Cluster 2 and Cluster 4, for example, are made up of

only 2 and 4 points, while Cluster 6 contain more than 300 points.

Salinity transport

The number of homogeneous areas identified for salinity transport is 4. As Figure

4.5 shows, Cluster 4 contain points belonging to all the areas of the reservoir, except

the upper part. Points in correspondence of the upper part of the reservoir (i.e. near

Kallang River and Geylang River) are in fact in Cluster 1, Cluster 2 and Cluster

3. Considering how clusters are composed from the point of view of the depth (see

Table B.2) it is possible to notice that Cluster 1 and Cluster 2 mainly contain points

of Layers 7-11, while Cluster 3 contains points belonging only to Layer 10 and 11.

61

Figure 4.4: The 6 clusters identified for the salinity concentration.

Salinity

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Layer 1 8 0 0 0 0 0

Layer 2 14 0 0 4 4 0

Layer 3 0 0 0 0 48 0

Layer 4 0 0 0 0 59 0

Layer 5 0 0 5 0 66 0

Layer 6 0 0 79 0 0 1

Layer 7 0 0 81 0 0 4

Layer 8 0 2 0 0 0 96

Layer 9 0 0 0 0 0 108

Layer 10 0 0 0 0 0 111

Layer 11 0 0 0 0 0 111

Table 4.5: Number of points per layer per cluster for salinity (sal).

Cluster 4 is the biggest and contains all the points belonging to all the layers. The

number of points per cluster is not homogeneous: Cluster 3 is made up of only 2

points, while Cluster 4 contain more than 500 points.

62

Figure 4.5: The 4 clusters identified for the salinity transport.

Temperature

The number of homogeneous areas identified for temperature is 6. As Figure 4.6

shows, Cluster 1 contains points belonging to the area near the inlet of Bukit Timah

canal, while Cluster 2 is made up of points located near the inlet of Stamford Canal.

Cluster 6 contains points belonging to Marina Channel and the ones next to the

barrage, and Cluster 5 the points near Geylang River and the ones near the inlet of

Stanford Canal. Table B.3 shows that Cluster 1, Cluster 2, and Cluster 3 contain

points in the middle layers (i.e. from Layer 5 to Layer 7), while points in Layers 2,

3, and 4 are in Cluster 5. Cluster 6 is the biggest and contains points belonging to

all the layers, including the ones in Layer 1. Cluster 2 and Cluster 6 are the biggest

compared to all the others that contain less than 100 points.

Temperature transport

The number of homogeneous areas identified for temperature transport is 3. As

Figure 4.7 shows, Cluster 1 and Cluster 2 contain points belonging to the upper

part of the reservoir (i.e. Kallang River). All the other points are in Cluster 3.

Considering how clusters are composed from the point of view of the depth (see

Table B.4), Cluster 1 and Cluster 2 mainly contain points of the middle and upper

63

Figure 4.6: The 6 clusters identified for the temperature.

Layers (i.e. from 6 to 11), while Cluster 3 contains points belonging only to all the

layers. Cluster 1 and Cluster 2 are really small and contain respectively 1 and 5

points.

Figure 4.7: The 3 clusters identified for the temperature transport.

64

U-velocity

The number of homogeneous areas identified for u-velocity is 4. As Figure 4.8 shows,

Cluster 1 contains points belonging to the area near Singapore river and its inlet,

while Cluster 2 is made up of points located near the barrage and some in the

area of Kallang river. Cluster 3 and Cluster 4 contain points belonging to Marina

Channel, near Geylang River and near the inlet of Stanford Canal. Table B.5 shows

the number of points per layer belonging to each cluster. Cluster 1 contains points

of the middle and upper layers (i.e. from Layer 5 to Layer 11), while points in

Cluster 2 are part in Layer 2 and part in Layer 8. Cluster 3 is one of the biggest

and contains points belonging to all the layers, except Layers 9 and 10. Cluster 4,

instead, doesn’t contain points belonging to Layer 1.

Figure 4.8: The 4 clusters identified for the u-velocity.

V-velocity

The number of homogeneous areas identified for v-velocity is 6. As Figure 4.9 shows,

Cluster 1, Cluster 2, and Cluster 5 contain points belonging to the area near the

inlet of Bukit Timah canal, Kallang river, and, Geylang river, while Cluster 3 is

made up of points located near the barrage. Cluster 6 contains points belonging to

Marina channel and near the inlet of Stamford canal, while Cluster 4 is made up

65

of points located on Kallang river. Table B.6, instead, shows that Cluster 1 and

Cluster 5 contain points of Layer 10 and 11, while Cluster 2 and Cluster 4 contain

points of the middle and upper layers (i.e. from Layer 4 to Layer 9-10); points of the

lower layers are in Cluster 3. Cluster 6 is the biggest and contains points belonging

to all the layers.

Figure 4.9: The 6 clusters identified for the v-velocity.

W-velocity

The number of homogeneous areas identified for w-velocity is 8. As Figure 4.10

shows, Cluster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 7 and Cluster 8 contain

the points closer to the barrage and in Marina channel. Points near the inlet of

Stamford canal and Singapore river are in Cluster 6. This latter contains also points

of other areas, like the ones near the inlet of Geylang river, Kallang river and Bukit

Timah canal. Some of these points are also in Cluster 5. Looking at Table B.7 it is

possible to notice that Cluster 3 and Cluster 4 contain points in the deepest layers

(i.e. Layer 1 and 2), while Cluster 5, Cluster 7 and Cluster 8 contain points of the

medium and upper layers (i.e. from Layer 5 to Layer 11). Cluster 2 is made up

of points belonging only to Layer 10 and 11. Cluster 6 is the biggest and contains

points of all the layers.

66

Figure 4.10: The 8 clusters identified for the w-velocity.

Water level

The number of homogeneous areas identified for water level is 10. As Figure 4.11

and Table B.4 show, Cluster 1 and Cluster 2 contain points close to Singapore river,

while Cluster 5 is made up of points belonging to Marina channel and the ones closer

to the barrage. Cluster 8 and Cluster 9 contain points near the inlet of Stamford

canal and Cluster 4, Cluster 6, and Cluster 7 the ones near the upper part of the

reservoir (i.e. the inlet of Kallang river, Bukit Timah canal and Geylang river). In

this case there is no difference along the depth, as the water level is calculated as

mean value in each observation point.

As a result of this pre-processing phase, the vectors to be considered in the next

variable selection are X̃t, W̃t, and ut, with dimensionality Mx, nw, and nu respec-

tively equal to 47 (for details see Table 4.4), 7 and 3.

To these vectors, two more variables were eventually added, i.e. the variable t, which

accounts for the system daily periodicity by taking value in the range [1, 365], and

the variable H, which accounts for the system hourly periodicity by taking value in

the range [1, 24]. This gives a total of 59 candidate variables.

67

Figure 4.11: Te 10 clusters identified for the water level.

4.3 Variable selection

The reduction problem requires to select the variables xt, wt and ut constituting the

arguments of the output transformation function ht(·, ·, ·) and the state transition

function ft(·, ·, ·). In particular, the Recursive Variable Selection-Iterative Input

selection algorithm (RVS-IIS, see Section 1.4.3) proposes to first select the features

relevant to the output variable yt, and to then recursively select all the features

relevant to the states xt+1.

In this application, the output is salbarrt , that represents the salinity concentration

in a point close to the barrage (see Section 3.5). As for the underlying model class

and ranking procedure, the IIS algorithm is here combined with Extra-Trees (see

Castelletti et al. (2012a)), whose parameters are set according to ? indications

and subsequent experiences: the number M of trees in an ensemble is 500 (a good

balance between Extra-Trees accuracy and computational requests), the minimum

cardinality nmin for splitting a node is 2 and the number of alternative cut-directions

K (i.e. the number of candidate variables) changes if considering data aggregated

with hierarchical clustering rather than data aggregated according to vertical layers.

The number p of variables singularly evaluated is 5. The IIS algorithm, whose

tolerance ε is posed equal to 0.02, is run only on a part of the whole data-set, in

68

order to overcome problems connected to loss of time due to the computational

requirements of the model structure.

The performance of the emulator being built is evaluated in terms of the coefficient

of determination R2 (in k-fold cross-validation, with k = 10) between the values of

Yt and yt predicted by the emulator. The coefficient of determination is defined as

follows:

R2 = 1− cov(Qi − Q̂i)

cov(Qi)
(4.1)

where Qi are the observed data and Q̂i are the measured data.

In this case the number of alternative cut-directions K (i.e. the number of candidate

variables) is 59. The vectors to be considered in this phase are X̃t, W̃t and ut, with

dimensionality respectively equal to 47, 7 and 3. To these vectors, two more variables

were eventually added, i.e. the variable d, which accounts for the system daily

periodicity, and the variable H, which accounts for the system hourly periodicity.

4.3.1 Salinity in a point close to the barrage salbarrt

The first step of the RVS-IIS algorithm requires to identify which variables, among

X̃t, W̃t and ut, are relevant to describe the the physically-based model output Yt:

these are the arguments of the emulator output transformation function (see eq.

1.4b) that will be identified in the subsequent step.

The results obtained with Step 0 of RVS-IIS, which ranks the importance of all the

candidate features in explaining salbarrt behaviour and then singularly evaluates the

importance of the first ranked three, are reported in Table 4.6 - Step 0. The Table

shows that the output behaviour is almost totally explained by only one variable,

as confirmed by its score (92.60%, 10% more than in the aggregation by vertical

layers), variance reduction and SISO performance: as a matter of fact the average

salinity concentration in Cluster 1 salC1
t provides information about the salinity

concentration at the bottom layer in a homogeneous area very close to the barrage.

The IIS algorithm seems to be robust with respect to information redundancy: only

salinity concentration in Cluster 1 salC1
t is selected while salinity concentration in

Cluster 4 salC4
t is discarded, mainly because Cluster 1 is closer to the barrage than

Cluster 4. The information content of both the two variables is redundant and it

is thus sufficient to employ just one of them in explaining the output salbarrt . In

69

Table 4.6: Results obtained using RVS-IIS algorithm to select the most relevant variables to explain

salbarrt for data aggregated with hierarchical clustering.

Step 0
Output variable salbarrt

Initial variance 71807.4000

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salC1
t 92.6011 66466.7000 0.9894

salC4
t 5.9314 4257.4100 0.9262

GIt 0.2811 201.7440 0.1461

Step 1
Output variable salbarrt - v̂0t
Initial variance 767.59

Candidate Feature Score % Variance reduction Performance SISO (R2)

GIt 37.2627 279.2710 0.3916

VVC3 9.6575 72.3798 0.1898

u2t 4.5759 34.2948 0.0436

WVC1 2.7336 20.4871 0.0757

salC5
t 2.5936 19.4384 0.0731

this case groundwater inflow GIt is ranked in position three, with a score equal to

0.2811% and a reduction of variance of 201.7440. At the end of this step, the salC1
t

term is selected, since it is characterized by the highest SISO model performance

(0.9894). Step 1 of RVS-IIS, whose results are reported in Table 4.6 - Step 1 shows

that the feature with highest score (37.2627%) is the groundwater inflow GIt, with a

variance reduction of 279.2710. The horizontal velocity V V C3 is ranked in position

two; score and variance reduction are definitely low, compared to GIt ones.

Table 4.7: Selected features and corresponding performance of the MISO models obtained for the

case of salbarrt , for data aggregated with hierarchical clustering. State variables are denoted in

bold.

Iteration Feature selected Performance MISO (R2) ∆R2

1 salC1
t 0.9893 -

2 GIt 0.9941 0.0048

70

This means that also in this case only the groundwater inflow GIt is relevant in

explaining the residual r0t+1 and that the selection of this new feature let the MISO

model performance increase, with R2 passing from 0.9893 to 0.9941 (see Table 4.7).

However, the introduction of this new variable into the MISO model lead to an

increase of R2 equal to 0.0048, which is lower than the predefined tolerance (ε is set

to 0.02). At this stage the RVS-IIS is stopped and the only selected feature is the

salinity concentration in Cluster 1 salC1
t .

4.3.2 Dynamics of salC1
t+1

In the set V i
salbarrt

of variables selected at the first call of RVS-IIS algorithm, the

salinity concentration in Cluster 1 salC1
t is a state variable and, as such, its dynamic

behaviour must be described through suitable state transition equations. The set

V i
salC1

t
in the subsequent call of the IIS algorithm is still selected among the compo-

nents of the vectors X̃t, W̃t and ut.

Table 4.8: Selected features and corresponding performance of the MISO models obtained for the

case of salC1
t+1. State variables are denoted in bold.

Iteration Feature selected Performance MISO (R2) ∆R2

1 salC4
t 0.7787 -

2 u2t 0.9511 0.1724

3 GIt 0.9771 0.0260

4 u1t 0.9806 0.0035

A list of the selected variables is reported in Table 4.8. It can be noticed that salC4
t ,

u2t , and GIt, the salinity concentration in Cluster 4, the release from the pipes

and the groundwater inflow, are features relevant to the dynamics of the salinity

concentration in Cluster 1 salC1
t+1. In this case also the release from gates appears

(u1t) in the selected features, but it is not selected as the MISO model performance

increases only of 0.0035.

4.3.3 Dynamics of salC4
t+1

Among the variables selected, the salinity concentration in Cluster 4 salC4
t is again

state variable, thus requiring a dynamic description too. The results of the RVS-IIS

71

Table 4.9: Selected features and corresponding performance of the MISO models obtained for the

case of salC4
t+1. State variables are denoted in bold.

Iteration Feature selected Performance MISO (R2) ∆R2

1 salC4
t 0.8628 -

2 u2t 0.9754 0.1126

3 GIt 0.9850 0.0096

algorithm application to salC4
t+1 is reported in Table 4.9. At this stage the recursive

variable selection is over, since no further state variables are selected. The pro-

cess took three calls of the RVS algorithm, to single out the most suitable subset

V i
salbarrt

of input variables to explain the system output. In particular, the emulator

is characterized by a state vector xt with 2 components (salinity concentration in

Cluster 1 salC1
t+1, and salinity concentration in Cluster 4 salC4

t+1), one component of

the exogenous driver vector (i.e. groundwater inflow GIt), and one component of

the original control vector (i.e. pipe inflow u2t).

The network of the causal relationships between the selected state variables is

sketched in Figure 4.12.

The reduction phase shows that the emulation model output variable salbarrt can

be explained as a function of one exogenous driver (the groundwater inflow GIt),

and one component of the control vector (the pipe inflow u2t): even though, the

control u2t does not appear to be strongly relevant as its score, variance reduction

and Performance SISO have always low values compared to other variables. Also

the significance of exogenous drivers is rather limited. Furthermore, the state vari-

ables involved are two (the salinity concentration in Cluster 1 salC1
t and the salinity

concentration in Cluster 4 salC4
t).

72

ab

Figure 4.12: Graph representation of the variables interactions involved in the emulator output

transformation function (a) and state transition equation (b), for data aggregated with hierarchical

clustering.

4.4 Identification of the emulation model

The outcome of the variable selection (Step 3) are the variables characterizing the

emulator, as well as the nature of the relationship between these variables and

the output yt. This information can be exploited in Step 4 of the DEMo general

procedure (see Figure 1.1), where the structure of the emulator state transition

equation ft(·) and output transformation function ht(·) is selected and the associated

parameters estimated.

This step simply requires to select an appropriate structure (class of functions) for

the emulator, which can then be calibrated and validated. Considering the good

performances provided by Extra-Trees as underlying model in the variable selection

process, they are adopted with the same setting also in this step.

Table 4.10: Structure and performances (R2 and RMSE in k-fold cross validation) of the MISO

models composing salbarrt (salinity concentration in the point close to the barrage) emulation

model, for data aggregated with hierarchical clustering.

Output variable Input variables R2 RMSE

salbarrt salC1
t 0.9838 0.3203 (ppt)

salC1
t salC4

t−6, PIt−6, GIt−6 0.9437 0.5862 (ppt)

salC4
t salC4

t−6, PIt−6 0.9541 0.4501 (ppt)

73

The final structure of the emulator is thus a cascade of models that is calibrated2 and

validated with a k-fold cross-validation (with k = 10) on the data-set generated with

the DOE, to check its accuracy and reliability. As for Extra-Trees parameters, the

number M of trees in the ensemble and the minimum cardinality nmin were chosen

equal to 50 and 15, while K the number of alternative cut-directions evaluated when

splitting a node, was set equal to the number of inputs characterizing each model.

Table 4.10 reports the output and input variables characterizing each component

of the salinity emulation model obtained from the aggregation with hierarchical

clustering and the corresponding performances, in terms of R2 and Root Mean

Squared Error (RMSE).

Notice that the emulation model performances are almost the same (with respect

to the previous phase), as both the adopted model class and the cross-validation

method are unchanged. The small differences in terms of R2 are simply due to the

randomized effects characterizing the Extra-Trees building procedure. A comparison

between the trajectories computed with Delft3D and the emulation model for the

variable salbarrt and the corresponding scatterplot is given in Figures 4.13 and 4.14.

Figure 4.13: Trajectory of the average salinity concentration in the point close to the barrage

chosen as output simulated by Delft3D (dotted line) and predicted by the emulation model (solid

line), for data aggregated with hierarchical clustering.

2As non-parametric model, Extra-Trees (and any other tree-based methods) do not have pa-

rameters to be estimated in the traditional meaning of the term. Calibration is replaced by the

tree construction algorithm that is run for some pre-selected values of few hyper-parameters

74

Figure 4.14: Scatterplot between the trajectory of the average salinity concentration in the point

close to the barrage simulated by Delft3D (y-axis) and predicted by the emulation model (x-axis),

for data aggregated with hierarchical clustering.

Comments

In the previous sections, the procedural, data-driven approach to dynamic emula-

tion modelling combined with hierarchical clustering was applied for the reduction

of Delft3D, a physically-based, hydrodynamic-ecological model describing the dy-

namics of Marina Reservoir (Singapore). The purpose is to achieve a simplified, but

effective, description of salinity concentration dynamics in the deepest layer of an

area very close to the barrage and to solve an optimal control problem concerning

both quantity and quality targets. The reduction part is made by means of hierar-

chical clustering: the clusters obtained turn out to be a compact and informative

representation of the initial larger amount of data available via simulation of the

model itself. The complexity reduction with respect to Delft3D is remarkable, i.e.

from nearly 104 to only 48 variables. The emulation model performances are quite

satisfactory as, despite its simple structure, the emulation model provides good per-

formances.

In particular, the potential of hierarchical clustering performed in this work is that,

despite being an automatic technique, all the selected variables can be given a phys-

ical interpretation: i) the state variables selected provide information about the

salinity concentration in a homogeneous area very close to the barrage; ii) the

groundwater flow represents the main source of the salinity intrusion, while iii) the

75

pipes, located at the bottom of the barrage, have an obvious key role in releasing

water with higher salinity concentrations.

4.5 Choice of a different aggregation method

This section describes the application of DEMo procedure to data grouped with a

different aggregation method: the rationale behind this choice is to show how the

results can vary according to the particular type of aggregation method chosen.

This aggregation method is different from clustering: with the purpose of simply

preserving the physical interpretation of the natural system, in this part of the

work time-series data (referred to each state variable in each simulation) are divided

into groups by assuming that each vertical layer (introduced to take into account the

stratification in Marina Reservoir) can be a sufficiently compact and relevant cluster

well representing a homogeneous area in the high-dimensional data sets produced

via Delft3D simulation runs.

4.5.1 DOE, simulation runs and variable aggregation

The final scope of DOE is to explore, via simulation of the physically-based model,

the largest possible area within the LYt ×LWt ×Lut and LXt ×LWt ×Lut spaces

(where, in particular, LWt is the space of drivers, Lut is the space of controls, LYt is

the space of the output to be explained, and LXt is the space of the states). For each

simulation run, it is thus necessary to specify a trajectory over the whole simulation

horizon H for all the physically-based model input variables, namely the exogenous

driver Wt and the control ut: these vector are unchanged with respect to the case

of data aggregated with hierarchical clustering (see Section 4.1).

As said, in this part of the work time-series data (referred to each state variable in

each simulation) are divided into 12 groups according to the number of vertical layer.

In Table 4.11 the depth of each layer is reported. In such a way 12 groups within the

data are created, in correspondence of the vertical layers. The assumption made is

that data contained in the same layer show a similar behaviour. For the upper layer

(layer 12) data are not always present for each location point at each time step (for

instance, during dry periods), so only the first eleven layers are taken into account

in the subsequent computations. Moreover, the number of points belonging to each

group is not the same because of the bathymetry of the reservoir: for instance, layer

1 contains only 8 points (the points with greater depth), layer 6 contains 80 points,

76

Table 4.11: Depth of each vertical layer in Delft3D stratification.

Layer Depth [m]

Layer 12 0.354 - 1.062

Layer 11 1.062 - 1.753

Layer 10 1.753 - 2.415

Layer 9 2.415 - 3.047

Layer 8 3.047 - 3.653

Layer 7 3.653 - 4.233

Layer 6 4.233 - 4.787

Layer 5 4.787 - 5.318

Layer 4 5.318 - 5.826

Layer 3 5.826 - 6.312

Layer 2 6.312 - 7.050

Layer 1 > 7.050

and layer 11 is made up of 111 points. This difference will affect the next steps

of the procedure, as the average trajectories of each state variable calculated for

layers with a lower number of points are more similar to the trajectories of each

singular point belonging to the layer itself (in this case the cluster well represents

the behaviour of the points that belong to the cluster itself).

Notice that this is only one of the possible aggregations for the time-series data con-

cerning Marina Reservoir. This approach can preserve physical interpretability, but

it requires a number of a-priori assumptions (i.e. the hypothesis that the values of

the state variable measured at the same depth show the same behaviour. In case of

non horizontal homogeneity, vertical stratification cannot be adopted as clustering

criterion) hardly formalizable in a procedural process.

Carry on through DEMo procedure with this approach, the vectors to be considered

in the next phase are X̃t, W̃t, and ut, with dimensionality Mx, nw and nu respec-

tively equal to 77 (7 state variables for each cluster), 7 and 3. To these vectors,

three more variables were eventually added, i.e. the reservoir level ht, the variable

d, which accounts for the system daily periodicity by taking value in the range [1,

365], and the variable H, which accounts for the system hourly periodicity by taking

value in the range [1, 24]. This gives a total of 90 candidate variables for the variable

selection problem.

77

4.5.2 Variable selection

The reduction problem requires to select the variables xt, wt and ut constituting

the arguments of the output transformation function ht(·, ·, ·) and the state transi-

tion function ft(·, ·, ·). The output is the same: salbarrt , that represents the salinity

concentration in a point close to the barrage. The only difference is that in the

case of data aggregated using vertical layers as aggregation principle, the number of

alternative cut-directions K (i.e. the number of candidate variables) is 90 instead

of 59.

Salinity in a point close to the barrage salbarrt

The first step of the RVS-IIS algorithm requires to identify which variables, among

X̃t, W̃t and ut, are relevant to describe the the physically-based model output Yt:

these are the arguments of the emulator output transformation function (see eq.

1.4b) that will be identified in the subsequent step.

The results obtained with Step 0 of RVS-IIS, which rank the importance of all the

candidate variables in explaining salbarrt behaviour and then singularly evaluates

the importance of the first ranked, are reported in Table 4.12 - Step 0. The Table

shows that the output behaviour is almost totally explained by only one variable,

as confirmed by its score (84.17%), variance reduction and SISO performance: as a

matter of fact the average salinity concentration in layer 1 salL1t provides information

about the salinity concentration at the bottom layer.

Table 4.12: Results obtained using RVS-IIS algorithm to select the most relevant variables to

explain salbarrt , for data aggregated in vertical layers.

Step 0
Output variable salbarrt

Initial variance 71807.4

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salL1t 84.1711 60431.1 0.9930

salL2t 14.2826 10254.3 0.9644

GIt 0.2397 172.067 0.1465

The IIS algorithm seems also to be robust with respect to information redundancy:

the selected variables should be characterized by different information contents, and

the selection of redundant arguments is avoided. An example is provided by the

78

Step 1
Output variable salbarrt - v̂0t
Initial variance 497.831

Candidate Feature Score % Variance reduction Performance SISO (R2)

GIt 37.6413 185.398 0.4289

UVL1 4.6626 22.9650 0.1630

UVL2 4.4916 22.1229 0.1673

ht 4.3730 21.5385 0.1285

VVL4 4.2241 20.8050 0.1500

discard of salinity concentration in layer 2 salL2t : as Layer 1 and Layer 2 differ only of

a small depth (0.70 m), they are characterized by very similar salinity concentrations.

The information content of the two variables is redundant and it is thus sufficient

to employ just one of them in explaining salbarrt . Groundwater inflow GIt is ranked

in position three, but with low score (0.2397%) and variance reduction (172.067):

probably this is not because its dynamic is not relevant with respect to salinity

concentration (as groundwater inflow is the main source of salinity intrusion in the

reservoir), but only because the increase in the model performance is really small.

At the end of this step, the salL1t term is selected, since it is characterized by

the highest SISO model performance (0.9930). Step 1 of RVS-IIS, whose results

are reported in Table 4.12 - Step 1 shows that the hypothesis was the right one,

as salinity concentration in Layer 2 salL2t is not part of the candidate variables,

and the groundwater inflow GIt is ranked in the first position with high score and

variance reduction with respect to the other variables. This means that also GIt is

relevant in explaining the residual r0t+1. The remaining part of Step 1 shows that

Table 4.13: Selected features and corresponding performance of the MISO models obtained for the

case of salbarrt , for data aggregated in vertical layers. State variables are denoted in bold.

Iteration Feature selected Performance MISO (R2) ∆R2

1 salL1t 0.9930 -

2 GIt 0.9964 0.0034

also some components of horizontal velocities in the lower layers seems to affect

the behaviour of salbarrt , but not enough to be chosen by the algorithm: the best

feature is definitely GIt and the selection of this new feature let the MISO model

79

performance increase, with R2 passing from 0.9930 to 0.9964 (see Table 4.13).

However, the introduction of this new variable into the MISO model lead to an

increase of R2 equal to 0.0034, which is lower than the predefined tolerance (ε is set

to 0.02). At this stage the RVS-IIS is stopped and the only selected feature is salL1t .

Dynamics of salL1t+1

In the set V i
salbarrt

of variables selected at the first call of RVS-IIS algorithm, salinity

concentration in Layer 1 salL1t is a state variable and, as such, its dynamic behaviour

must be described through suitable state transition equations. The set V i
salL1

t
is

selected in the subsequent call of the IIS algorithm among the components of the

vectors X̃t, W̃t and ut.

Table 4.14: Selected features and corresponding performance of the MISO models obtained for the

case of salL1
t+1. State variables are denoted in bold.

Iteration Feature selected Performance MISO (R2) ∆R2

1 salL2t 0.7615 -

2 u2t 0.9327 0.1712

3 GIt 0.9652 0.0325

4 UVL2 0.9805 0.0153

A list of the selected variables is reported in Table 4.14. It can be noticed that

salL2t , u2t , and GIt, the salinity concentration in Layer 2, the release from the pipes

and the groundwater inflow, are features relevant to the dynamics of the salinity

concentration in Layer 1 salL1t+1. In particular pipes are relevant because they are

located at the bottom of the barrage and have an obvious key role in releasing water

with higher salinity concentrations, while the groundwater inflow is the only source

of salinity intrusion in the reservoir.

Dynamics of salL2t+1

Among these features, salinity concentration in Layer 2 salL2t is again state variable,

thus requiring a dynamic description too. The results of the RVS-IIS algorithm

application to salL2t+1 is reported in Table 4.15.

80

Table 4.15: Selected features and corresponding performance of the MISO models obtained for the

case of salL2
t+1. State variables are denoted in bold.

Iteration Feature selected Performance MISO (R2) ∆R2

1 salL3t 0.8276 -

2 u2t 0.9387 0.1111

3 tempL2
t 0.9639 0.0252

4 GIt 0.9723 0.0084

Dynamics of salL3t+1 and tempL2
t+1

Also at this iteration two among the selected variables are state variables (salinity

concentration in Layer 3 salL3t and temperature in Layer 2 tempL2t), and require to

be given a dynamic description. Table 4.16 - 4.17 show the results. salL3t+1 reveals to

be strongly dependent on its auto-regressive term while tempL2t+1 seems to be linked

to daily periodicity dt. The effect of the release from the pipes is rather negligible.

Table 4.16: Selected features and corresponding performance of the MISO models obtained for the

case of salL3
t+1. State variables are denoted in bold.

Iteration Feature selected Performance MISO (R2) ∆R2

1 salL3t 0.9818 -

2 u2t 0.9953 0.0135

Table 4.17: Selected features and corresponding performance of the MISO models obtained for the

case of tempL2
t+1. State variables are denoted in bold.

Iteration Feature selected Performance MISO (R2) ∆R2

1 dt 0.9404 -

2 u2t 0.9724 0.0320

3 tempL2
t 0.9804 0.0080

At this stage the recursive variable selection is over, since no further state variables

are selected. The process took five calls of the RVS algorithm, to single out the most

suitable subset V i
salbarrt

of input variables to explain the system output. In particu-

lar, the emulator is characterized by a state vector xt with 4 components (salinity

81

concentration in Layer 1 salL1t , salinity concentration in Layer 2 salL2t , salinity con-

centration in Layer 3 salL3t , and temperature in Layer 2 tempL2t) one exogenous

driver (i.e. groundwater inflow GIt), only one component of the original control

vector (i.e. pipe inflow u2t) and the variable that accounts for daily periodicity of

the system (i.e. d).

The network of the causal relationships between the selected state variables is

sketched in Figure 4.15.

ab

Figure 4.15: Graph representation of the variables interactions involved in the emulator output

transformation function (a) and state transition equation (b), for data aggregated in vertical layers.

Identification of the emulation model

The outcome of the variable selection (Step 3) are the variables characterizing the

emulator, as well as the nature of the relationship between these variables and

the output yt. This step simply requires to select an appropriate structure (class of

functions) for the emulator, which can then be calibrated and validated. Considering

the good performances provided by Extra-Trees as underlying model in the variable

selection process, they are adopted with the same setting also in this step.

The final structure of the emulator is thus a cascade of models that is calibrated and

validated with a k-fold cross-validation (with k = 10) on the data-set generated with

the DOE, to check its accuracy and reliability. As for Extra-Trees parameters, the

number M of trees in the ensemble and the minimum cardinality nmin were chosen

equal to 50 and 15, while K the number of alternative cut-directions evaluated when

splitting a node, was set equal to the number of inputs characterizing each model.

Table 4.18 reports the output and input variables characterizing each component of

the salinity emulation model obtained from the aggregation in vertical layers and the

82

corresponding performances, in terms of R2 and Root Mean Squared Error (RMSE).

Table 4.18: Structure and performances (R2 and RMSE in k-fold crossvalidation) of the MISO

models composing salbarrt (salinity concentration in the point close to the barrage) emulation

model, for data aggregated in vertical layers.

Output variable Input variables R2 RMSE

salbarrt salL1t 0.9888 0.2563 (ppt)

salL1t salL2t−6, PIt−6, GIt−6 0.9210 0.6938 (ppt)

salL2t salL3t−6, PIt−6, tempL2
t−6 0.8333 0.8540 (ppt)

tempL2t dt−6, PIt−6 0.1743 0.2493 °C
salL3t salL3t−6 0.9273 0.3762 (ppt)

Also in this case the emulation model performances are almost the same to the

ones obtained in the previous phase, as both the adopted model class and the cross-

validation method are unchanged. The small differences in terms of R2 are simply

due to the randomized effects characterizing the Extra-Trees building procedure.

A comparison between the trajectories computed with Delft3D and the emulation

model for the variable salbarrt and the corresponding scatterplot is given in Figures

4.16 and 4.17.

Comments

The procedural, data-driven approach to dynamic emulation modelling was applied

for the reduction of the same 3D model, i.e. Delft3D, to achieve a simplified, but

effective, description of salinity concentration dynamics in the deepest layer of an

area very close to the barrage and to solve an optimal control problem concerning

both quantity and quality targets. The difference stands in the aggregation method:

in this case data are aggregated in 11 vertical layers. The clusters obtained are more

than in the case of data aggregated with hierarchical clustering: 11 clusters for each

state variables (except water level, for which only one cluster is identified) gives a

total of 78 state variables (instead of only 47 in case of data aggregated through

hierarchical clustering). The complexity reduction with respect to Delft3D is from

nearly 104 to 90 variables. The emulation model performances are still quite satis-

factory, even if the number of the selected state variables (and thus the complexity

83

Figure 4.16: Trajectory of the average salinity concentration in the point close to the barrage

chosen as output simulated by Delft3D (dotted line) and predicted by the emulation model (solid

line), for data aggregated in vertical layers.

Figure 4.17: Scatterplot between the trajectory of the average salinity concentration in the point

close to the barrage simulated by Delft3D (y-axis) and predicted by the emulation model (x-axis),

for data aggregated in vertical layers.

of the resulting emulation model) increases from 2 to 4, exogenous drivers and con-

trols being equal. This is due to the fact that aggregation in vertical layers seems to

be less efficient in organizing data into homogeneous groups than a fully automatic

and system-independent tool (i.e. hierarchical clustering): the introduction of more

84

variables, in fact, does not increase so much the emulator performances.

85

Concluding remarks

This work describes a hybrid clustering-variable selection approach to automatically

discover compact and relevant representations of high-dimension data sets generated

by computationally-intensive physically-based models. The approach, which relies

on a time-series hierarchical agglomerative clustering method, is demonstrated on

the emulation of a large, 3D model (Delft3D) used to simulate the salt intrusion

dynamics in Marina Reservoir (Singapore).

As said, advances in scientific computation and data collection techniques have in

fact increased the level of fundamental understanding that can be built into the

kind of physically-based models which are widely used in the modelling of large

environmental systems. These models are definitely useful to enhance the scientific

knowledge of natural processes, but their structure becomes progressively more com-

plicated as the complexity of the systems being studied. As the resulting increased

complexity of the model structures poses strong limitations in terms of practical

implementation and computational requirements, the application of model emula-

tion techniques seems to be one viable solution for systems that must handle with

problems that require hundreds or thousands of model evaluations. As such, the

DEMo approach here proposed is particularly well-suited for optimal management

problems, as it combines two desirable features: it is fully data-driven and preserves

the state-space representation of the identified emulator. This is very effective as the

emulator identified is not only compact but also physically-meaningful. The origi-

nal data-set F was made of about ∼ 8 · 104 tuples: the application of hierarchical

procedure on the original data-set strongly enhanced the dimensionality reduction

process, as after clustering the number of variables decreased to less than 100. Fi-

nally, after variable selection less than 10 variables remained.

The comparison of the results obtained from data aggregated with hierarchical clus-

tering and the ones aggregated in vertical layers shows that the latter aggregation

technique is less efficient in automatically discovering homogeneous areas in large

87

data-sets; this is evident looking at the complexity of the final emulators with re-

spect to the improvement of the respective emulators performances: the increase

in the number of variables selected does not necessary correspond to the increase

of the emulation model performance. The importance of the selected variables is

demonstrated by the performance of the identified emulator, which can also be given

a physically meaningful interpretation.

Since the clustering algorithm is embedded in a computationally expensive emulation

modelling procedure, an unsupervised clustering approach has been here considered,

while a supervised approach, which aims at determining the clustering solution that

maximizes the emulator performance, is part of the on-going research activities.

The main advantage of this second approach would rely in a further increase of the

emulator accuracy and reliability.

Future research include the choice of further distance measures, linkage and indexes,

and the comparison of different unsupervised clustering methods: a different choice

of the clustering algorithm, as well of a different choice of the distance measure

and linkage method, may well not give identical classifications when applied to the

same data set. Cluster analysis as such is, indeed, not an automatic task, but an

iterative process of knowledge discovery or interactive multi-objective optimization

that involves trial and failure.

Finally, further improvement will focus on the identification of time-varying clusters

and not only space-varying clusters, in order to find compact and relevant represen-

tation of the system at each time step.

88

Appendix A

Taxonomy and algorithms of

DEMo procedure

A.1 Summary of the variables involved in the DEMo

general procedure

- M, original process-based model.

- Xt, Yt, Wt, physically-based model state, output and exogenous driver vector.

- ut, control vector.

- Nx, Ny, Nw, Nu, dimensionality of the vectors.

- xt, yt, wt, ut emulator state, output, exogenous driver vector, and control

vector.

- ft(·), ht(·), emulator state transition and output transformation function.

- X̃t, W̃t, physically-based model state and exogenous driver vector (after spa-

tial aggregation).

- F , data-set of tuples {Xt,Wt,ut,Yt,Xt+1} (with t = 1, . . . , H) for the DEMo

process.

- F̃ , data-set of tuples {X̃t,W̃t,ut,Yt, X̃t+1} (with t = 1, . . . , H) for the DEMo

process (after spatial aggregation).

- H, simulation horizon.

91

A.2 Summary of the variables involved in the RVS-

IIS methodology

- vi
t = {X̃t,W̃t,ut}, vo

t = {X̃t+1,Yt} input and output data employed in the

variable selection process.

- vo
t , i-th component of the vector Yt.

- vi = {X̃,W̃,u}, vo = {X̃,Y}, set of the candidate input and output variables

for the variable selection process.

- votar, subset of the output variables that need to be explained (votar ⊆ vo).

- visel, set of the input variables selected during the i-th iteration of the variable

selection process.

- vivo , set of the input variables that will appear in the output transformation

function for explaining vo.

- vnew
X̃

= vivo ∩ X̃, set of the output variables to be explained.

- viY, set of the input variables to explain the output Y.

- v∗, most significant variable added to the set vivo .

- m̂(·), underlying model to explain vo.

- v̂o, residuals of m̂(·).

- D(vo, m̂(vivo)), distance metric between the output vo and the model m̂(·)
predictions.

92

A.3 Recursive Variable Selection algorithm

Algorithm 1 RVS(F̃ , Vo
tar, V i

sel): Recursive Variable Selection

Require: The dataset F̃ , the set Vo
tar of variables to be explained and the set V i

sel

of previously selected variables

Ensure: V i
Vo
tar

: the set of input variables to explain Vo
tar

Initialize: V i
Vo
tar
← ∅

//For each variable that has to be explained

for all vo ∈ Votar do

//Select, with a suitable IS algorithm, the most relevant variables to explain vo

V ivo ← IS(F̃ , vo)
//Consider the new state variables, i.e. not yet in V isel
Vnew
X̃
←
(
V ivo \ V isel

)
∩ X̃

//Add variables obtained by recursively execute RVS

V ivo ← V ivo ∪ RVS(F̃ ,Vnew
X̃

,V isel ∪ V ivo)

//Add the selected input variables V ivo to the set of input variables to be returned

V iVo
tar
← V iVo

tar
∪ V ivo

end for

return V iVo
tar

93

A.4 Iterative Input Selection algorithm

Algorithm 2 IIS(F̃ , vo): Iterative Input Selection

Require: The dataset F̃ and the variable vo to be explained

Ensure: V i
vo : the set of variables selected to explain vo

Initialize: V i
vo ← ∅, v̂o ← vo, Dold ← 0

repeat

//With an Input Ranking (IR) algorithm, select the most relevant input variable v∗

to explain v̂o

v∗ ← IR(F̃ , v̂o)
//If such variable has been previously selected, then the algorithm stops and returns

the set V ivo of the input variables selected up to that point

if v∗ ∈ V ivo then

return V ivo
end if

//Add v∗ to the set V ivo of selected variables

V ivo ← V ivo ∪ v∗

//By using F̃ estimate a model m̂(·) that explains the variable vo using V ivo as argu-

ment

m̂(·)← MB(F̃ , vo,V ivo)

//Compute the residuals

v̂o ← vo − m̂(V ivo)

//Compute the variation of the coefficient of determination

∆D ← D(vo, m̂(V ivo))−Dold

//Backup D for the next iteration

Dold ← D(vo, m̂(V ivo))

//Stop iterating when the improvement is too low

until ∆D < ε

return V i
vo

94

Appendix B

Clustering results

95

B.1 Plots of DBI and DI indexes

0 2 4 6 8 10 12
0.4

0.45

0.5

0.55

0.6

0.65
Salinity

cluster

D
B

I

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

cluster

D
I

Figure B.1: Average value (over the 10 simulation runs) of the DBI and DI indexes for salinity

(sal).

96

0 2 4 6 8 10 12
0.55

0.6

0.65

0.7

0.75
Salinity transport

cluster

D
B

I

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

cluster

D
I

Figure B.2: Average value (over the 10 simulation runs) of the DBI and DI indexes for the salinity

transport (ST).

97

0 2 4 6 8 10 12
0.9

1

1.1

1.2

1.3

1.4
Temperature

cluster

D
B

I

0 2 4 6 8 10 12
0.02

0.025

0.03

0.035

0.04

0.045

cluster

D
I

Figure B.3: Average value (over the 10 simulation runs) of the DBI and DI indexes for temperature

(temp).

98

0 2 4 6 8 10 12
0.2

0.3

0.4

0.5

0.6
Temperature transport

cluster

D
B

I

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

cluster

D
I

Figure B.4: Average value (over the 10 simulation runs) of the DBI and DI indexes for the tem-

perature transport (TT).

99

0 2 4 6 8 10 12
0.9

1

1.1

1.2

1.3

1.4

1.5
U-velocity

cluster

D
B

I

0 2 4 6 8 10 12
0.045

0.05

0.055

0.06

0.065

0.07

cluster

D
I

Figure B.5: Average value (over the 10 simulation runs) of the DBI and DI indexes for u-velocity

(UV).

100

0 2 4 6 8 10 12
0.4

0.6

0.8

1

1.2
V-velocity

cluster

D
B

I

0 2 4 6 8 10 12
0.04

0.06

0.08

0.1

0.12

0.14

cluster

D
I

Figure B.6: Average value (over the 10 simulation runs) of the DBI and DI indexes for v-velocity

(V V).

101

0 2 4 6 8 10 12
0.65

0.7

0.75

0.8

0.85

0.9
W-velocity

cluster

D
B

I

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

cluster

D
I

Figure B.7: Average value (over the 10 simulation runs) of the DBI and DI indexes for w-velocity

(WV).

102

0 2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75
Water level

cluster

D
B

I

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

cluster

D
I

Figure B.8: Average value (over the 10 simulation runs) of the DBI and DI indexes for the water

level (h).

103

B.2 Number of points per layer per cluster

Salinity

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Layer 1 8 0 0 0 0 0

Layer 2 14 0 0 4 4 0

Layer 3 0 0 0 0 48 0

Layer 4 0 0 0 0 59 0

Layer 5 0 0 5 0 66 0

Layer 6 0 0 79 0 0 1

Layer 7 0 0 81 0 0 4

Layer 8 0 2 0 0 0 96

Layer 9 0 0 0 0 0 108

Layer 10 0 0 0 0 0 111

Layer 11 0 0 0 0 0 111

Table B.1: Number of points per layer per cluster for salinity (sal).

Salinity transport

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Layer 1 0 0 0 8

Layer 2 0 0 0 22

Layer 3 0 0 0 48

Layer 4 0 0 0 59

Layer 5 0 0 0 71

Layer 6 0 4 0 76

Layer 7 1 5 0 79

Layer 8 4 5 0 89

Layer 9 4 7 0 97

Layer 10 3 8 1 99

Layer 11 2 8 1 100

Table B.2: Number of points per layer per cluster for salinity transport (ST).

104

Temperature

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Layer 1 0 0 0 0 0 8

Layer 2 0 0 0 0 1 21

Layer 3 0 0 0 0 12 36

Layer 4 0 0 0 0 16 43

Layer 5 0 0 6 0 0 65

Layer 6 0 3 35 12 0 30

Layer 7 0 9 13 8 0 55

Layer 8 2 0 0 7 0 89

Layer 9 0 0 0 80 0 28

Layer 10 0 0 0 88 0 23

Layer 11 0 0 0 87 0 24

Table B.3: Number of points per layer per cluster for temperature (temp).

Temperature transport

Cluster 1 Cluster 2 Cluster 3

Layer 1 0 0 8

Layer 2 0 0 22

Layer 3 0 0 48

Layer 4 0 0 59

Layer 5 0 0 71

Layer 6 0 1 79

Layer 7 0 1 84

Layer 8 1 2 95

Layer 9 0 0 108

Layer 10 0 1 110

Layer 11 0 0 111

Table B.4: Number of points per layer per cluster for temperature transport (TT).

105

U-velocity

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Layer 1 0 0 8 0

Layer 2 0 5 12 5

Layer 3 0 0 30 18

Layer 4 0 0 41 18

Layer 5 6 0 48 17

Layer 6 6 0 70 4

Layer 7 6 0 68 11

Layer 8 7 3 44 44

Layer 9 7 0 0 101

Layer 10 7 0 0 104

Layer 11 3 0 4 104

Table B.5: Number of points per layer per cluster for u-velocity (UV).

V-velocity

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Layer 1 0 0 5 0 0 3

Layer 2 0 0 5 0 0 17

Layer 3 0 0 6 0 0 42

Layer 4 0 5 6 0 0 48

Layer 5 0 5 5 0 0 61

Layer 6 0 8 1 1 0 70

Layer 7 0 8 0 3 0 74

Layer 8 0 9 0 6 0 83

Layer 9 0 4 0 8 0 96

Layer 10 2 0 0 4 7 98

Layer 11 0 0 0 0 20 91

Table B.6: Number of points per layer per cluster for v-velocity (V V).

106

W-velocity

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Layer 1 0 0 1 7 0 0 0 0

Layer 2 0 0 0 9 0 13 0 0

Layer 3 0 0 0 0 0 48 0 0

Layer 4 0 0 0 0 0 59 0 0

Layer 5 0 0 0 0 0 69 1 1

Layer 6 0 0 0 0 0 78 1 1

Layer 7 1 0 0 0 2 81 0 1

Layer 8 0 0 0 0 2 94 1 1

Layer 9 0 0 0 0 3 103 1 1

Layer 10 0 1 0 0 3 106 0 1

Layer 11 0 1 0 9 5 96 0 0

Table B.7: Number of points per layer per cluster for w-velocity (WV).

Water level

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

4 2 6 27 37 2 4 13 4 12

Table B.8: Number of points per layer per cluster for water level (h).

107

Appendix C

Variable selection results

C.1 Aggregation by hierarchical clustering

C.1.1 Salinity near the barrage salbarrt

Table C.1: Results obtained using IIS-RVS algorithm to select the most relevant variables to

explain salbarrt .

Step 0
Output variable salbarrt

Initial variance 71807.4000

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salC1
t 92.6011 66466.7000 0.9894

salC4
t 5.9314 4257.4100 0.9262

GIt 0.2811 201.7440 0.1461

Step 1
Output variable salbarrt - v̂0t
Initial variance 767.59

Candidate Feature Score % Variance reduction Performance SISO (R2)

GIt 37.2627 279.2710 0.3916

V V C3
t 9.6575 72.3798 0.1898

u2t 4.5759 34.2948 0.0436

WV C1
t 2.7336 20.4871 0.0757

salC5
t 2.5936 19.4384 0.0731

109

C.1.2 Dynamics of salinity in cluster 1 salC1
t+1

Table C.2: Results obtained using IIS-RVS algorithm to select the most relevant variables to

explain salC1
t+1.

Step 0
Output variable salC1

t+1

Initial variance 116.4780

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salC4
t 46.4205 53.9914 0.7787

salC1
t 16.6586 19.3755 0.7380

u2t 10.4154 12.1141 0.2027

salC5
t 9.5679 11.1284 0.7360

GIt 5.5935 6.5058 0.1015

Step 1
Output variable salC1

t+1 - v̂0t+1

Initial variance 25.6537

Candidate Feature Score % Variance reduction Performance SISO (R2)

u2t 56.1475 14.3125 0.7387

GIt 24.2330 6.1772 0.6234

u3t 1.6724 0.4263 0.1906

UV C2
t 0.8070 0.2057 0.1005

Step 1.1
Output variable salC1

t+1 - v̂1t+1

Initial variance 5.6695

Candidate Feature Score % Variance reduction Performance SISO (R2)

GIt 33.6883 1.8630 0.3321

UV C2
t 6.2316 0.3446 0.0285

WV C3
t 2.8864 0.1596 0.0121

u1t 2.6062 0.1441 0.0372

tempC5
t 2.4781 0.1370 0.1037

110

Step 1.2
Output variable salC1

t+1 - v̂2t+1

Initial variance 2.6577

Candidate Feature Score % Variance reduction Performance SISO (R2)

u1t 9.0774 0.2321 0.1180

UV C2
t 7.1100 0.1818 0.1177

WV C3
t 2.9675 0.0759 0.0348

WV C4
t 2.4358 0.0623 0.0379

tempC5
t 2.2503 0.0576 0.0863

C.1.3 Dynamics of salinity in cluster 4 salC4
t+1

Table C.3: Results obtained using IIS-RVS algorithm to select the most relevant variables to

explain salC4
t+1.

Step 0
Output variable salC4

t+1

Initial variance 98.6165

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salC4
t 53.8712 53.0850 0.8629

salC1
t 15.4741 15.2483 0.8206

salC5
t 12.1302 11.9532 0.8185

u2t 7.1364 7.0323 0.1297

salC3
t 4.5926 4.5256 0.7364

Step 1
Output variable salC4

t+1 - v̂0t+1

Initial variance 13.4640

Candidate Feature Score % Variance reduction Performance SISO (R2)

u2t 48.9985 6.5488 0.7484

GIt 15.7999 2.1117 0.5652

u1t 5.8067 0.7761 0.1819

UV C2
t 2.8651 0.3829 0.1517

WV C3
t 2.8269 0.3778 0.1425

111

Step 1.1
Output variable salC4

t+1 - v̂1t+1

Initial variance 2.4163

Candidate Feature Score % Variance reduction Performance SISO (R2)

GIt 18.2733 0.4266 0.2549

V V C3
t 6.5482 0.1529 0.1316

UV C2
t 4.0532 0.0946 0.0867

u1t 3.2215 0.0752 0.0438

It 2.9322 0.0685 0.0619

C.2 Aggregation in vertical layers

C.2.1 Salinity near the barrage salbarrt

Table C.4: Results obtained using IIS-RVS algorithm to select the most relevant variables to

explain salbarrt .

Step 0
Output variable salbarrt

Initial variance 71807.4

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salL1t 84.1711 60431.1 0.9930

salL2t 14.2826 10254.3 0.9644

GIt 0.2397 172.067 0.1465

Step 1
Output variable salbarrt - v̂0t
Initial variance 497.831

Candidate Feature Score % Variance reduction Performance SISO (R2)

GIt 37.6413 185.398 0.4289

UV L1
t 4.6626 22.9650 0.1630

UV L2
t 4.4916 22.1229 0.1673

ht 4.3730 21.5385 0.1285

V V L4
t 4.2241 20.8050 0.1500

112

C.2.2 Dynamics of salinity in layer 1 salL1
t+1

Table C.5: Results obtained using IIS-RVS algorithm to select the most relevant variables to

explain salL1
t+1.

Step 0
Output variable salL1t+1

Initial variance 120.106

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salL2t 34.1195 40.9388 0.7613

salL1t 14.9457 17.9329 0.7282

salL3t 11.4312 13.7159 0.7428

u2t 8.98024 10.7751 0.1994

salL6t 6.48655 7.78298 0.7017

Step 1
Output variable salL1t+1 - v̂0t+1

Initial variance 28.5366

Candidate Feature Score % Variance reduction Performance SISO (R2)

u2t 50.3218 14.3131 0.6855

GIt 27.187 7.7329 0.5918

u1t 1.9080 0.5427 0.2169

ht 1.5384 0.4376 0.1732

Step 1.1
Output variable salL1t+1 - v̂1t+1

Initial variance 8.0409

Candidate Feature Score % Variance reduction Performance SISO (R2)

GIt 35.72 2.8419 0.300597

UV L2
t 6.04684 0.481088 0.0928751

u1t 5.08762 0.404773 0.0615848

UV L3
t 3.41868 0.271991 0.0680266

ht 2.85791 0.227377 0.0516562

113

C.2.3 Dynamics of salinity in layer 2 salL2
t+1

Table C.6: Results obtained using IIS-RVS algorithm to select the most relevant variables to

explain salL2
t+1.

Step 0
Output variable salL2t+1

Initial variance 97.6546

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salL2t 31.1665 30.4163 0.8227

salL3t 24.6635 24.0698 0.8276

salL5t 8.7907 8.57907 0.7921

u2t 7.4692 7.2894 0.1565

salL6t 7.1822 7.00933 0.7412

Step 1
Output variable salL2t+1 - v̂0t+1

Initial variance 16.7514

Candidate Feature Score % Variance reduction Performance SISO (R2)

u2t 45.2788 7.5452 0.6048

GIt 10.1806 1.6965 0.4164

u1t 5.2352 0.8724 0.1927

tempL2t 4.0496 0.6748 0.0581

tempL1t 2.4065 0.4010 0.0481

Step 1.1
Output variable salL2t+1 - v̂1t+1

Initial variance 5.96178

Candidate Feature Score % Variance reduction Performance SISO (R2)

tempL2t 9.1683 0.5394 0.1916

GIt 7.4504 0.4383 0.1122

tempL1t 6.4878 0.3817 0.1670

u1t 3.7934 0.2232 0.0467

tempL3t 3.5910 0.2113 0.1613

114

Step 1.2
Output variable salL2t+1 - v̂2t+1

Initial variance 3.50768

Candidate Feature Score % Variance reduction Performance SISO (R2)

GIt 10.8073 0.3712 0.1379

u1t 5.17201 0.1777 0.0640

tempL10t 3.7840 0.1300 0.1070

tempL11t 3.5369 0.1215 0.1029

tempL9t 3.1879 0.1095 0.1037

C.2.4 Dynamics of salinity in layer 3 salL3
t+1

Table C.7: Results obtained using IIS-RVS algorithm to select the most relevant variables to

explain salL3
t+1.

Step 0
Output variable salL3t+1

Initial variance 63.5384

Candidate Feature Score % Variance Reduction Performance SISO (R2)

salL3t 37.1280 23.5887 0.9818

salL4t 23.8781 15.1706 0.9683

salL5t 13.3729 8.49625 0.9134

salL11t 4.7563 3.02186 0.5721

salL10t 4.3524 2.76522 0.5733

Step 1
Output variable salL3t+1 - v̂0t+1

Initial variance 1.14446

Candidate Feature Score % Variance reduction Performance SISO (R2)

u2t 28.9517 0.3302 0.6725

u1t 15.1117 0.1724 0.3010

GIt 7.6087 0.0868 0.4714

ht 4.9324 0.0563 0.2123

It 4.7457 0.0541 0.4544

115

C.2.5 Dynamics of temperature in layer 2 tempL2
t+1

Table C.8: Results obtained using IIS-RVS algorithm to select the most relevant variables to

explain tempL2
t+1.

Step 0
Output variable tempL2t+1

Initial variance 61.2627

Candidate Feature Score % Variance Reduction Performance SISO (R2)

tempL3t 26.2025 16.0475 0.9194

tempL4t 21.6484 13.2584 0.8683

tempL1t 21.0337 12.8819 0.8644

tempL2t 18.5094 11.3359 0.9253

dt 2.7818 1.7037 0.9396

Step 1
Output variable tempL2t+1 - v̂0t+1

Initial variance 3.64568

Candidate Feature Score % Variance reduction Performance SISO (R2)

u2t 20.3046 0.7342 0.3787

GIt 8.5625 0.3096 0.3227

tempL2t 8.3002 0.3001 0.2019

u1t 5.8765 0.2125 0.1181

tempL1t 5.8327 0.2109 0.1563

Step 1.1
Output variable tempL2t+1 - v̂1t+1

Initial variance 1.6907

Candidate Feature Score % Variance reduction Performance SISO (R2)

tempL1t 11.1909 0.1868 0.2674

tempL2t 10.5893 0.1767 0.2883

GIt 5.1110 0.0853 0.0812

tempL3t 2.3815 0.0398 0.1617

u1t 2.0444 0.0341 0.0268

116

Bibliography

M.S. Aldenderfer and R.K. Blachfield. Cluster Analysis. Sage, Beverly Hills, 1984.

M. Amann. Integrated assessment tools. the greenhouse and air pollution interac-

tions and synergies (gains) model. Pollution Atmospherique, pages 73–76, 2009.

M.R. Anderberg. Cluster analysis for applications. Academic Press, New York and

London, 1973.

M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander. Optics: ordering points

to identify the clustering structure. In Proceedings of the 1999 ACM-SIGMOD

International Conference on Management of Data, Philadelphia, PA, pages 49–60,

1999.

J.P. Antenucci, K.M. Tan, H.S. Eikaas, and Imberger J. The importance of transport

processes and spatial gradients on in-situ estimates of lake metabolism. Hydrobi-

ologia, pages 1–13, 2012.

C.A. Aumann. Constructing model credibility in the context of policy appraisal.

Environmental Modelling & Software, 26(3):258–265, 2011.

V. Babovic. Introducing knowledge into learning based on genetic programming.

Journal of Hydroinformatics, 11(3-4):181–193, 2009.

The World Bank. Dealing with water scarcity in singapore: Institutions, strategies

and enforcement. Technical report, The World Bank, 2006.

R.R. Barton. Simulation metamodels. In Proceedings of the Winter Simulation

Conference, pages 167–174, 1998.

A. Bennett. Inverse modeling of the ocean and atmosphere. Cambridge University

Press, Cambridge, U.K., 2002.

119

J. Beran and G. Mazzola. Visualizing the relationship between time series by hier-

archical smoothing models. Journal of Computational and Graphical Statistics, 8

(2):213–238, 1999.

J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum

Press, New York and London, 1987.

R.W. Blanning. The construction and implementation of metamodels. Simulation,

24(6):177–184, 1975.

Public Utilities Board. Four taps provide water for all. Technical report, Public

Utilities Board, Singapore, 2005.

G.J. Bowden, G.C. Dandy, and H.R. Maier. Input determination for neural network

models in water resources applications. Journal of Hydrology, 301(1-4):75–92,

2005.

G.E.P. Box and K.B. Wilson. On the experimental attainment of optimum condi-

tions (with discussion). Journal of the Royal Statistical Society Series B, 13(1):

1–45, 1951.

G.A. Carpenter and S. Grossberg. A massively parallel architecture for a self-

organizing neural pattern recognition machine. Computer Vision, Graphics and

Image Process, 37:54–115, 1987.

A. Castelletti and R. Soncini-Sessa. A procedural approach to strengthening inte-

gration and participation in water resource planning. Environmental Modelling &

Software, 21(10):1455–1470, 2006.

A. Castelletti and R. Soncini-Sessa. Bayesian networks and participatory modelling

in water resource management. Environmental Modelling & Software, 22(8):1075–

1088, 2007.

A. Castelletti, S. Galelli, A. Salvetti, and A. Ventimiglia. Extremely Randomized

Trees and Feature Ranking for daily streamflow prediction. In Proceedings of the

9th International Conference on Hydroinformatics. Tianjin, RC., 2010a.

A. Castelletti, S. Galelli, and R. Soncini-Sessa. A tree-based feature ranking ap-

proach to enhance emulation modelling of 3D hydrodynamic-ecological models.

120

In Proceedings of the International Congress on Environmental Modelling and

Software. (eds) IEMSS2010, 2010b.

A. Castelletti, F. Pianosi, R. Soncini-Sessa, and J.P. Antenucci. A multi-

objective response surface approach for improved water quality planning in

lakes and reservoirs. Water Resources Research, 46(W06502), 2010f. doi:

10.1029/2009WR008389.

A. Castelletti, S. Galelli, M. Restelli, and R. Soncini-Sessa. Tree-based feature

selection for dimensionality reduction of large-scale control systems. In Proceedings

of the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement

Learning. Paris, F., 2011.

A. Castelletti, S. Galelli, M. Restelli, and R Soncini-Sessa. Data-driven dynamic em-

ulation modelling for the optimal management of environmental systems. Environ-

mental Modelling & Software, pages –, 2012a. doi: 10.1016/j.envsoft.2011.09.003.

A. Castelletti, S. Galelli, M. Ratto, R Soncini-Sessa, and P. Young. A general frame-

work for dynamic emulation modelling in environmental problems. Environmental

Modelling & Software, pages –, 2012b. doi: 10.1016/j.envsoft.2012.01.002.

P. Cheeseman and J. Stutz. Advances in Knowledge Discovery and Data Mining.,

chapter Bayesian classification (AutoClass): theory and results, pages 153–180.

1996.

L. Chen and V. Ozsu, M.T.and Oria. Robust and fast similarity search for moving

object trajectories. In SIGMOD, 2005.

M.A. Chen, Y. andNascimento, B.C. Ooi, and A.K.H. Tung. Spade: On shape-based

pattern detection in streaming time series. In ICDE, 2007.

V.C.P. Chen, K.L. Tsui, R.R. Barton, and M. Meckesheimer. A review on design,

modeling and applications of computer experiments. Transactions, 38:273–291,

2006.

D.L. Davies and D.W. Bouldin. A cluster separation measure. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 1(2):224–227, 1979.

Deltares. Delft3D-FLOW, Simulation of multi-dimensional hydrodynamic flows and

transport phenomena, including sediments., 2010.

121

H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and

mining of time series data: experimental comparison of representations and dis-

tance measures. In Proceeding of VLDB, Endow., volume 1, pages 1542–1552.

VLDB Endowment, August 2008.

J.C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact

well-separated clusters. Journal of Cybernetics, 3(3):32–57, 1973.

M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-

ering clusters in large spatial databases. In Proceedings of the 1996 International

Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR,

1996.

B. Everitt. Cluster Analysis. Halsted, New York, 1980.

E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar trajectory

sear. In ICDE, 2007.

S. Galelli, C. Gandolfi, R. Soncini-Sessa, and D. Agostani. Building a metamodel of

an irrigation district distributed-parameter model. Agricultural Water Manage-

ment, 97(2):187–200, 2010.

P. Geurts and D. Ernst. Extremely randomized trees. Machine Learning, 63(1):

3–42, 2006.

R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in

Markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

G.C. Goodwin and R.L. Payne. Dynamic System Identification: Experiment Design

and Data Analysis. Academic Press, New York, N.Y., 1977.

S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large

databases. In Proceedings of the 1998 ACMSIGMOD International Conference

on Management of Data, Seattle, WA, pages 73–84, 1998.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal

of Machine Learning Research, 3:1157–1182, 2003.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh. Feature Extraction, Foundations

and Applications (Series Studies in Fuzziness and Soft Computing). Physica-

Verlag, Springer, Berlin, D., 2006.

122

J. Hartigan. Clustering Algorithms. Wiley, New York, 1975.

J.A. Hartigan. Consistency of single linkage for high-density clusters. Journal of the

American Statistical Association, 76(374):388–394, 1981.

J.A. Hartigan and M.A. Wong. Algorithm as 136: A k-means clustering algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–

108, 1979.

M.I. Hejazi and X. Cai. Input variable selection for water resources systems us-

ing a modified minimum redundancy maximum relevance (mMRMR) algorithm.

Advances in Water Resources, 32(4):582–593, 2009.

A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, Engle-

wood Cliffs, New Jersey, 1988.

A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: a review. ACM Computing

Surveys, 31(3):264–323, 1999a.

Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering: a review.

ACM Computing Surveys - CSUR, 31(3):264–323, 1999b.

A. Janssen and H. Ogink. Singapore marina reservoir study.hydrological and hy-

draulic model report. Technical report, Delft, The Netherlands, Deltares, 2007.

N. Jardine and R. Sibson. Mathematical Taxonomy. Wiley, London, 1971.

I.T. Jollife. Principal Component Analysis. Springer, New York, NY., 1986.

K. Jong, J. Mary, A. Cornuéjols, E. Marchiori, and M. Sebag. Ensemble feature

ranking. Springer, Verlag, 2004.

E. Kalnay. Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge

University Press, Cambridge, U.K., 2002.

G. Karypis, E.H. Han, and V. Kumar. Chameleon: hierarchical clustering using

dynamic modeling. Computer, pages 68–75, 1999.

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to

Cluster Analysis. Wiley, New York, 1990.

123

E.J. Keogh and C.A. Ratanamahatana. Exact indexing of dynamic time warping.

Data Mining and Knowledge Discovery, 3(3):263–286, 2005.

J.P.C. Kleijnen. Response surface methodology for constrained simulation optimiza-

tion: An overview. Simulation Modelling Practice and Theory, 16(1):50–64, 2008.

T. Kohonen. The self-organizing map. In Proceedings of the IEEE, 1990.

K. Košmelj and V. Batagelj. Cross-sectional approach for clustering time varying

data. Journal of Classification, pages 99–109, 1990.

R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi. Low complexity fuzzy relational

clustering algorithms for web mining. IEEE Trans. Fuzzy Systems, 9(4):595–607,

2001.

J.A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Springer, New

York, NY., 2007.

T.W. Liao. Clustering of time series data - a survey. Pattern Recognition, 38(11):

1857–1874, 2005.

S.C. Liew, S.Y. Liong, and M.T. Vu. A study of urban stormwater modeling ap-

proach in singapore catchment. Advances in Geosciences, Hydrological Science

(HS), 23:89–101, 2001.

M. Lorr. Cluster analysis for social scientists. Jossey-Bass (San Francisco), 1983.

J. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In L.M. LeCam and J. Neyman, editors, Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297,

1967.

P. Magni, F. Ferrazzi, L. Sacchi, and R. Bellazzi. Timeclust: a clustering tool

for gene expression time series. Bioinformatics Application Note, 24(3):430–432,

2008.

R.J. May, H.R. Maier, G.C. Dandy, and T. Fernando. Non-linear variable selection

for artificial neural networks using partial mutual information. Environmental

Modelling and Software, 23(10-11):1312–1326, 2008a.

124

R.J. May, G.C. Dandy, H.R. Maier, and J.B. Nixon. Application of partial mutual

information variable selection to ANN forecasting of water quality in water dis-

tribution systems. Environmental Modelling and Software, 23(10-11):1289–1299,

2008b.

M. Nayak and S. Dash. Gpac-apso clustering using modified s-transform for data

mining. International Journal of Engineering Science and Advanced Technology,

2(1):38–48, 2012.

H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: cri-

teria of max-dependency, max-relevance, and minimum redundancy. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, 2005.

N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P.K. Tucker.

Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41

(1):1–28, 2005.

E. Rendon, I. Abundez, A. Arizmendi, and E.M. Quiroz. Internal versus external

cluster validation indexes. International Journal of Computers and Communica-

tion, 5(1):27–34, 2011.

H.C. Romesburg. Cluster Analysis for Researchers. Lifetime Learning, California,

1984.

J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis of com-

puter experiments. Statistical Science, 4(4):409–435, 1989.

N. Sadegh. Minimal realization of nonlinear systems described by input-output

difference equations. IEEE Transactions on Automatic Control, 46(5):698–710,

2001.

A. Saltelli, K. Chan, and M. Scott. Sensitivity Analysis. Wiley, New York, NY.,

2000.

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity analysis in

practice. A guide to assessing scientific models. John Wiley & Sons, Ltd, Hoboken,

NJ., 2004.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,

and S. Tarantola. Global Sensitivity Analysis. The Primer. John Wiley & Sons,

Ltd, Hoboken, NJ., 2008.

125

L.M. See, A. Jain, C.W. Dawson, and R.J. Abrahart. Visualisation of hidden neuron

behaviour in a neural network rainfall-runoff model. In: Practical Hydroinformat-

ics. Water Science and Technology Library, 2008.

S. Selvalingam, S.Y. Liong, and P.C. Manoharan. Use of RORB and SWMM models

to an urban catchment in Singapore. Advances in Water Resources, 10(2):78–86,

1987.

C. Shaw and G.P. King. Using cluster analysis to classify time series. Physica D:

Nonlinear phenomena, 58:288–298, 1992.

T.W. Simpson, J.D. Peplinski, P.N. Koch, and J.K. Allen. Metamodels for com-

puter based engineering design: survey and recommendations. Engineering with

Computers, 17(2):129–150, 2001.

J. Smits and Beek J.V. Marina reservoir study: Water quality mitigation scenario

analysis. Technical report, Delft, The Netherlands, Deltares, 2007a.

J. Smits and Beek J.V. Marina reservoir study. water quality modelling. Technical

report, Delft, The Netherlands, Deltares, 2007b.

R.R. Sokal and C.D. Michener. A Statistical Method for Evaluating Systematic

Relationships., volume 28. University of Kansas Scientific Bulletin, 1958.

T. Sorensen. A Method of Establishing Groups of Equal Amplitude in Plant Sociology

Based on Similarity of Species Content and Its Application to Analyses of the

Vegetation on Danish Commons., volume 5. Biologiske Skrifter, 1948.

D. Twigt and D. Burger. Water quality operational management system (wq

oms), functional and technical design. Technical report, Delft, The Netherlands,

Deltares, 2010.

J.J. Van Wijk and E.R. Van Selow. Cluster and calendar based visualization of time

series data. In Proceedings of IEEE Symposium on Information Visualization,

San Francisco, CA, October 25-26 1999.

M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional

trajectories. In ICDE, 2002.

A. Voinov and F. Bousquet. Modelling with stakeholders. Environmental Modelling

& Software, 25(11):1268–1281, 2010.

126

W. Wang, J. Yang, and R. Muntz. Sting: a statistical information grid approach to

spatial data mining. In Proceedings of the 1997 International Conference on Very

Large Data Base (VLDB’97), Athens, Greek, pages 186–195, 1997.

L. Wehenkel. Automatic Learning Techniques in Power Systems. Kluwer Academic,

Boston, MA., 1998.

H.S. Wheater, A.J. Jakeman, and K.J. Beven. Modelling Change in Environmental

Systems. IWA Publishing, Wiley, Chichester, U.K., 1993.

K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal

decomposition. AIAA Journal, 40(11):2323–2330, 2002.

Y. Xiong and D.Y. Yeung. Mixtures of arma models for model-based time series

clustering. In Proceedings of the IEEE International Conference on Data Mining,

Maebaghi City, Japan, December 9-12 2002.

B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. In

VLDB, 2000.

P. C. Young and M. Ratto. A unified approach to environmental systems modeling.

Stochastic Environmental Research and Risk Assessment, 23:1037–1057, 2009.

P. C. Young and M. Ratto. Statistical emulation of large linear dynamic models.

Technometrics, 53(1):29–43, 2011.

P.C. Young. Data-based mechanistic modeling of environmental, ecological, eco-

nomic and engineering systems. Environmental Modelling & Software, 13(2):105–

122, 1998.

T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering

method for very large databases. In Proceedings of the 1996 ACM-SIGMOD

International Conference on Management of Data, Montreal, Canada, pages 103–

114, 1996.

W. Zhang and B. Michaelis. Shape control with karhunen-love decomposition: The-

ory and experimental results. Journal of Intelligent Material Systems and Struc-

tures, 14(7):415–422, 2003.

F. Zijl and D. Twigt. Singapore marina reservoir study. hydrodynamic modelling.

Research Report Z.4265.10/20/30, Deltares, 2007.

127

