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Sommario
Negli ultimi anni si è registrata una esplosione nella produzione di contenuti
multimediali digitali, specialmente sul Web, con la conseguente necessita di
strumenti e metodi sempre più efficienti per la gestione di dati multimediali.
Multimedia Information Retrieval è ormai una disciplina consolidata, che stu-
dia i problemi legati al processamento e alla analisi di contenuti multimediali.
Nonostante i progressi scientifici degli ultimi anni, i calcolatori mostrano limi-
tazioni e difficoltà nell’analisi di contenuti multimediali, principalmente dovute
a problemi come il cosiddetto “gap semantico”.
L’analisi e l’interpretazione di contenuti multimediali (come ad esempio immag-
ini e filmati) è invece un’esperienza quotidiana per ogni essere umano. Gra-
zie ai sensi e alle potenzialità del cervello, gli umani sono in grado di avere
prestazioni migliori rispetto alle macchine nello svolgere questi compiti. Questa
constatazione ha portato ad un rinnovato interesse per l’utilizzo della “com-
putazione umana” (in inglese Human Computation), cioè l’idea di utilizzare il
lavoro umano per eseguire operazioni che i calcolatori non sono ancora in grado
di eseguire in modo efficiente, al fianco della computazione automatica.

Questa tesi presenta un approccio per la progettazione e lo sviluppo di
“human-enhanced Search-based Applications” (hSBA), una nuova classe di sis-
temi di gestione dati, che considera la computazione umana come elemento
fondamentale per i processi di analisi e interrogazione di collezioni di documenti
multimediali.
All’interno dell’elaborato, vengono presentati i requisiti che vengono richiesti
dalla presenza di esseri umani all’interno dell’architettura della hSBA. Vengono
poi discussi i modelli necessari per descrivere i dati e i processi gestiti da una
hSBA. Viene inoltre presentato un caso d’uso, sviluppato all’interno di un pro-
getto di ricerca europeo, che esemplifica l’utilizzo dei modelli presentati e la sua
implementazione in un’applicazione reale e funzionante. Infine, viene proposta
una valutazione sull’implementazione del caso d’uso. I primi risultati sperimen-
tali mostrano che l’introduzione della computazione umana nell’architettura del
sistema porta ad un miglioramento non trascurabile delle prestazioni di ricerca
del sistema stesso.
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Abstract
Recent years witnessed an explosion in the production of digital multimedia con-
tents, especially on the Web, calling for efficient methods and tools for multime-
dia data management. Multimedia Information Retrieval is a mature discipline,
devoted to study of the problems of multimedia processing and analysis. Despite
the scientific advancements achieved in the last years, the automatic analysis of
multimedia contents exhibits several limitations, mainly due to problems such
as the semantic gap.
On the other hand, the analysis and interpretation of multimedia contents (i.e.,
images, videos, audios, etc.) is well developed skills of human beings which
are typically able to out-perform machines in several multimedia analysis tasks
(e.g., object recognition). This observation led to renewed interest in exploiting
Human Computation, i.e. the idea of using human effort to perform tasks that
computers cannot yet perform efficiently and correctly, to complement machines
in their analysis tasks.

This thesis presents a framework for the design and the development of
human-enhanced Search-Based Applications (hSBA), a new class of multimedia
data management systems that involves humans in the content analysis and
search processes.
First, we discuss the requirements introduced by the addition of humans in
the analysis and search processes. Then, we present a modeling framework to
describe the information and the processes that a hSBA should handle. We
exemplify the usage of the framework by means of a use case developed within
an European research project, describing its implementation in an industrial-
strength framework for search based applications. Finally, we provide an evalu-
ation on the application. Preliminary results show that the inclusion of humans
in the loop contributes to a non-negligible improvement in the retrieval perfor-
mances of the application.
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6.23 The matches section [Preciado Rodŕıguez et al.] . . . . . . . . . . 120
6.24 An example of match including a bounding box (in red) [Preci-
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1
Introduction

In the last decades, the realm of Multimedia Information Retrieval (MIR) has
gained an increasing importance due to the incremented availability of multime-
dia contents. Automated processing and analysis of multimedia contents have
become fundamental tasks that MIR systems have to address. New methods
and technologies has been developed in order to allow machines to inspect, infer
and characterize the actual content of multimedia items (i.e., videos, pictures,
audios, etc.), in terms of semantic concepts, objects, body parts, moods, etc..
Despite the techniques and the technologies introduced, many real world multi-
media retrieval applications still require the manual production of multimedia
objects’ metadata, an activity usually performed by experts rather than by ma-
chines. Retrieval applications, most often referred as Search-Based Applications
(SBAs), are complex data management systems, in which search engines, even
though being fundamental for the application, are just a part of them. SBAs
include further components as, for instance, heterogeneous data source integra-
tion, content analysis and user interfaces.
A limitation that machines exhibit when dealing with multimedia contents is
the low precision of the analysis outcomes that often they produce. Recent
studies such as [Bozzon et al., 2012c], show that the uncertainty on the quality
of the results, produced by automated multimedia content analysis tools, has a
sensible impact on the performances of the overall SBA.
Conversely, the analysis and interpretation of multimedia contents (i.e., images,
videos, audios, etc.) is a common skill for every human being. Human beings
are typically able to out-perform machines in several multimedia analysis tasks
(e.g., object recognition). This simple observation led to renewed interest in
exploiting human capabilities among machine computation. The idea of solving
the difficult artificial intelligence problems through human power, assumes the
name of Human Computation.
The inclusion of human performers in the analysis and search processes, intro-
duces new challenges in the design of applications. Humans are not fungible as
machines, so the recruitment and the motivation of the workers, are the main
challenges to address.
The last decade has seen also the definitive explosion of the World Wide Web
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Chapter 1. Introduction

and its evolution centered on the users (i.e., Web 2.0) that brought the crowds
to be constantly on-line, producing, consuming and sharing contents. Further-
more, the growth of new platforms, such as Social Networks (e.g., Facebook,
Twitter), brought users to share on the Web their personal information, their
tastes and preferences, as well as their relationships. Hence, on Web 2.0 we
interact with persons, even before that with just users. Relationship (or friend-
ship according to the Facebook vocabulary) is a powerful concept that allow to
link a single person to other persons, and, recursively, to a huge crowd.
Studies, such as [von Ahn and Dabbish, 2008], show that these crowd spend
plenty of time on-line performing many different activities, especially entertain-
ment ones, such as gaming.
Thus, nowadays the Web embeds an enormous potential labour force that could
be exploited for several tasks, including multimedia content analysis. Games
With A Purpose [von Ahn and Dabbish, 2008] are an effective and appealing
example on how to gather and channel this potential into useful work.
But entertainment is not the only way to recruit and motivate workers on the
Web. The idea of out-source tasks to the crowds on the Web, takes the name of
crowdsourcing. In the field of Crowdsourcing the power of Human Computation
is exploited by assign the tasks to an “undefined, generally large group of people
in the form of an open call” [Howe, 2006]. Amazon’s Mechanical Turk1 is an
interesting example of an online crowdsourcing platform. It is an online market
for small task, in which businesses and developers can access to an on demand
and scalable workforce and workers are rewarded with monetary payment.
Thus, today the Web offers new powerful means to easily access and exploit
Human Computation. Crowds can provide the needed knowledge and workforce
to overcome some of the limitations that search-based applications shows, espe-
cially when dealing with multimedia contents.
The idea of exploit crowdsourcing in SBAs, takes the name of crowdsearching.
Crowdsearching is a very recent trend in Information Retrieval and can be de-
fined as the promotion of individual and social participation to search-based
applications and improve the performance of information retrieval algorithms
with the calibrated contribution of humans [Bozzon et al., 2012c].
Within a SBA, Human Computation and crowdsourcing could be exploited to
perform tasks such as object recognition, image classification and audio genre
recognition. While, other kinds of tasks, such the ones which include huge nu-
merical calculations, could be still assigned to machines, which are definitively
better and more reliable than humans in fulfilling those tasks. So, such obser-
vations lead us to the idea that humans’ and machines’ skills could be conveyed
within a hybrid system, for multimedia analysis and search.
In our work we aim to propose a new framework in which humans’ efforts can
be used not as a replacement of machines, but as an improvement and an en-
hancement to the machine work. We define a human-enhanced Search-Based
Application (hSBA) as the addition of Human Computation tasks to a common
search-based application.

1http://www.mturk.com
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1.1 Original Contribution

Our work embraces different research areas: Multimedia Information Retrieval,
Search-based applications, Human Computation and Crowdsearching, to which
we provide the following original contributions:

• a discussion on the characteristics and the requirements that a multimedia
search-based application should fulfil in order to support human compu-
tation.

• the definition of reference models (i.e., data models and process models)
to address the problem of the introduction of human computation and
crowdsourcing in a default search-based application.

• the design of a reference multimedia search-based application architecture
that enables the support of crowdsourced tasks among automatic ones.

• a demonstration, through a use case, of the benefits that crowdsourcing
introduces in the quality performances of a multimedia search-based ap-
plication.

1.2 Thesis Organization

The thesis is organized as follows:

• Chapter 2 introduces the context of our thesis, providing the needed
concepts that we will use throughout the whole discussion on Multimedia
Information Retrieval, Human Computation, Crowdsearching and Search-
based applications.

• Chapter 3 highlights the requirements that drive the design of a mul-
timedia search-based application, that exploit human computation and
crowdsourcing tasks.

• Chapter 4 introduce a framework for the design and the development of
a human-enhanced search-based application.

• Chapter 5 presents the use case of a trademark logo detection application
that materializes the concepts and the models introduced in the proposed
framework.

• Chapter 6 describes the implementation of the trademark logo detection
application and provides an evaluation of its performances.

• Chapter 7 draws the conclusions of our work and presents the future
works directions of our study.
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2
Background

In this chapter we present the main research areas in which a Human-Enhanced
Multimedia Search-based Application (hSBA) falls, introducing terms and con-
cepts that we will encounter further throughout our thesis.
In Section 2.1 we introduce the main concepts of Multimedia Information Re-
trieval, starting from the classical theoretical definitions to the main state-of-
the-art techniques used in real systems.
Section 2.2 gives a definition of Human Computation, introduces its concepts
and provides an overview on the existing Multimedia Information Retrieval sys-
tems that exploit humans and crowds in their processes.
Then, in Section 2.3 we present the novel concept of Crowdsearching, reporting
recent studies on a framework to exploit crowd tasks in Multimedia Information
Retrieval and on a reference model for crowdsearching search.
Finally, in Section 2.4, we present the steps in the design of a Search-based ap-
plication, introducing the reference architecture, the reference processes and the
dimensions to be considered.

2.1 Multimedia Information Retrieval

2.1.1 Basic Concepts

Information retrieval deals with the representation, storage, organization of, and
access to information items [Baeza-Yates and Ribeiro-Neto, 1999]. As stated in
[Manning et al., 2008] Information retrieval (IR): “is finding material (usually
documents) of an unstructured nature (usually text) that satisfy an information
need from within large collections (usually stored on computers).”
Understanding the user information need is not an easy task and according
to the state-of-the-art the user cannot specify the information need using the
natural language. Instead, the user must first translate this information need
into a query which can be processed by the IR system. In its most common form,
this translation yields a set of keywords (or index terms) which summarizes the
description of the user information need.
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Given a user query, a good IR system should retrieve all the information which
might be relevant to the user, and rank them according to a degree of relevance
[Baeza-Yates and Ribeiro-Neto, 1999]. This concept of relevance is crucial in
IR, but relevancy might be subjective with respect to different users.
Multimedia Information Retrieval (MIR) is a branch of the classical IR, in which
information items are multimedia items, like images, audios or videos. Thus,
MIR has to deal with more complex data with respect to the classical IR.

2.1.2 Information Retrieval Models

In classical Information Retrieval documents are represented by a set of key-
words, called index terms. Index terms are used to index and summarize the
content of a document. The relevance of an index term within a document
is captured by a numerical weight, assigned to the index term itself. Thus, a
document dj can be represented an index term vector [w1j, w2j, . . . , wM j]

T in
which each wij is the numerical weight > 0, associated to the term ti and the
document dj .
In IR there are several models in order to build the document representation,
the main ones are:

• the Boolean model

• the Vector Space model

The Boolean model is the simplest IR model, the weight wij is equal to 1 if the
term ti is contained in the document dj , otherwise it is equal to 0. Queries are
defined as Boolean expressions over the index terms. Each document is repre-
sented as a set of word and is independent by the frequency or the position of
the terms. Despite its simplicity, this model holds some drawbacks: it does not
allow any ranking on the retrieved documents and the translation of an infor-
mation need in a Boolean expression is not a simple task.

((text OR information) AND retrieval AND NOT theory)

An example of Boolean expression

The Vector Space model (VSM) represents documents and queries as vectors in
the term space. The index term relevance in a document is represented by a
real valued numerical weight. Documents that are close to each other in the
vector space are similar to each other. In the Vector Space model a similarity
SC(q, dj) is computed between the query and each document, and results can
be ranked according to this similarity. There are several measures that can be
used to compute the similarity between documents, the most widely used ones
are Euclidean distance and Cosine similarity.

Euclidean distance: SC(p,q) =

√
n∑

i=1

(qi − pi)2

Cosine similarity: SC(p,q) = cos(α) = qTp
||q||||p||

The weighting of the index terms should be proportional to the importance
of the of the term in the document and in the document collection. The tf*idf
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(term frequency – inverse document frequency) weight is often used as weighting
factor in IR. The weight value increases proportionally to the number of times
a term appears in a document, but decreases with the frequency of the term in
the document collection.

tf ∗ idf(t, d,D) = tf(t, d) ∗ idf(t,D)

where

tf(t, d) =
tc(t, d)

max{tc(w, d) : w ∈ d}

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d}|

tc(t, d) : term count of t in d
max{tc(w, d) : w ∈ d} : maximum term count of d
|D| : the total number of documents in the corpus

|{d ∈ D : t ∈ d}| : number of documents where the term t appears

2.1.3 From text to multimedia

Classical Information Retrieval deals with terms, documents and vocabularies,
in other words it deals with text. The advent of the Web and the explosive
growth of digital media lead the user information needs to involve also multime-
dia resources (images, videos, etc.). Multimedia Information Retrieval aims to
apply the known and widely studied methods of IR in the realm of multimedia.
Over the years, different methods and approaches to MIR has been proposed,
the main ones are: Content-based MIR and Concept-based MIR.
In Content-based MIR, the information within a multimedia object is inferred
from the content of the object itself (e.g., colors and textures within an image,
pitches in a audio stream, etc.). On the contrary, Concept-based MIR relies on
a set of textual metadata attached to the multimedia item, that characterize
it. Figure 2.1 depicts two possible representations of the same sample image in
Figure 2.1(a): Figure 2.1(b) draws the color histogram as Content-based rep-
resentation of the image, while Figure 2.1(c) provides a set of concepts (a.k.a.
tags) that can be associated to the image in a Concept-based perspective.
According to the scope of this thesis, we will focus just on the Content-based
approach.

As in IR a document is represented by a set of terms, in Content-based MIR,
a media can be represented by its features. For the sake of clarity, let us consider
just the case of Image Retrieval, which was one of the first techniques in the
field of MIR.

2.1.4 Content-based Image Retrieval

Content-based Image Retrieval CBIR deals with images and relies on the con-
cept of visual features. A visual feature is an image property such as color,
texture, and shape. Those features should have some properties, like the in-
variance to scaling, cropping and rotations or the robustness to illumination
conditions, viewpoint change and occlusions. Figure 2.2 depicts a set of trans-
formation applied to an image.
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(a) A koala (b) The color histogram of the image

koala, marsupial, animal, Australia, ...
(c) A set of concepts related to the image

Figure 2.1: Content-based and Concept-based representations of an image

(a) Rotation, scaling and cropping transformations

(b) Occlusion, illumination and viewpoint transformations

Figure 2.2: Example of image transformations [Yan and Hsu, 2008]

Visual features may be global, if they summarize properties of the whole im-
age or local, if they refer to properties of particular structures within the image.
Figure 2.3 draws an example of visual feature representation of an image.

As for textual documents in Vector Space Model, the final representation of
an image is a vector that can be plotted onto a feature space. Similar images
are represented by vectors that are close in the feature space; with respect to
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Figure 2.3: The visual features approach [Yan and Hsu, 2008]

documents the metric used to establish the closeness of two vectors is the Cosine
similarity. Such metric, according to [Tan et al., 2005], has been judged to be
most reliable in Image Retrieval.
In Content-based Image Retrieval an image can be described either from its
overall properties (e.g., color, textures, etc.) or by the properties of some par-
ticular structures within it (e.g., corners, peculiar structures, etc.). In the next
section we introduce the global features and local features approaches; the latter
one allow us to present some of the image processing and description techniques
that we will use in our multimedia search-based application.

2.1.4.1 Global features

Thank to its robustness against image size and rotation, color is one of the most
widely used features in Image Retrieval.
Given a discrete color model defined by some color axes (e.g., RGB, HSV, etc.),
the color histogram Swain and Ballard [1991] is obtained by discretizing the
image colors and counting the number of times each discrete color occurs in the
image array. Color histograms are invariant to translation and rotation about
the viewing axis, and change slowly under the change of angle of view, change in
scale and occlusion. The value of a color bin in the histogram is proportional to
the number of pixel having that color, like term frequency within a document.

Another global feature used to characterize images, is the texture. Texture

Figure 2.4: An example of color histogram

refers to the visual patterns that have properties of homogeneity that do not
result from the presence of only a single color or intensity. Texture carries
important information about the structural arrangement of surfaces and their
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Figure 2.5: A classification of textures

relationship to the surrounding environment. Figure 2.5 report a classification
of textures that we can find within images. There are several methods in order
to compute texture features:

• Structural

• Statistical

• Spectral

Structural methods describes the arrangement of the texture elements within
the images. Indeed, statistical methods characterize a texture in terms of its sta-
tistical features. Finally, spectral methods, analyze the textures in the spatial-
frequency domain.
One of the most popular set of statistical texture features are the ones presented
in [Tamura et al., 1978], selected according to psychovisual experiments. The
so-called Tamura’s features are a set of six features: coarseness, contrast, direc-
tionality, lineliness, regularity and roughness.
In Spectral methods, the spectrum of an image, computed through the 2D dis-
crete Fourier Transform (i.e., DFT), is analyzed to extract information on the
texture characterizing the image. A lack of the Fourier transform-based spec-
trum analysis is the loss of spatial information. A local spatial-frequency anal-
ysis can be performed using Gabor filters [Manjunath and Ma, 1996].

2.1.4.2 Local features

Key-point detection In the local features approach, the goal is to character-
ize an image through features extracted from local regions of the image itself.
The position of these regions is determined by a set of interest points. The
number of interest points may vary depending on the image. Thus, in order to
compute local features we need to first detect the interest point (or key-point),
then for each interest point computed a descriptor of the surrounding image
region. Figure 2.6 depicts the key-points detected within an image.
One of the first methods proposed to perform feature detection is the Harris

corner detection algorithm. This algorithm is based on the observation that
around a corner point, the image intensity will change greatly when the window
is shifted in an arbitrary direction. The Harris interest point detector is based
on the difference between a patch with patches shifted by a small amount in
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Figure 2.6: An example of the key-points detected within an image

different directions. For each point within the image these differences are com-
puted, and a matrix capturing the intensity structure of local neighbor can be
derived. Analyzing the eigenvalues of this matrix, we can classify the each point
and establish whether a point is a constant intensity one, an edge or a corner.
The main drawback of the Harris detector is that is not invariant to scale and
affine transformations. To overcome the limitations of the Harris detector, scale
invariant detectors have been proposed [Lowe, 2004]. The concept behind a scale
invariant detector is that what the detector identifies is not just the position of
the key-point, but also the scale at which the point is a key-point.
Scale invariant detector rely on the assumption that scale changes are the same
in every direction, although they exhibit robustness to weak affine transforma-
tions. Such detectors search for local extrema not just in the (x, y) space of
the image, but in a 3D space, where the third axis is the scale coefficient. Such
tridimensional image space is called the scale-space representation of the image.
The scale space of an image is a function L(x, y, σ) produced by the convolution
of a variable-scale Gaussian G(x, y, σ), with the input image I(x, y). In order
to seek key-points in the scale-space several methods have been proposed:

• Laplacian of Gaussians (LoG)

• Hessian-Laplace

• Harris-Laplace

• Difference of Gaussians (DoG)

The latter one is an efficient solution to detect stable key-points locations [Lowe,
2004]. In DoG, the input image is convolved with the Difference of Gaussian
function D(x, y, σ), such function can be computed the difference of two nearby
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scales separated by a constant multiplicative factor k. Local minima and max-
ima of the D(x, y, σ) are detected by comparing each point with all its neighbor
along x, y, and scale axes. A point is considered a key-point only if its D(x, y,
σ) value is larger than all of these neighbors or smaller than all of them. Figure
2.7 draws the DoG scale space.

Figure 2.7: The computation of the DoG scale space [Lowe, 2004]

In order to achieve rotation invariance to each key-point detected an orien-
tation coefficient is computed, based on local properties of the image. Figure
2.8 shows the dominant orientations computed for the key-points of a sample
image.

Figure 2.8: The dominant orientations of the image key-points [Lowe, 2004]
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Key-point descriptors The location of the key-points within an image, the
output of the feature detection, is not enough to achieve Content-based Image
Retrieval goals, we need to characterize those peculiar structures within the
image, computing the so-called feature descriptors.
A widely used technique to compute feature descriptors is the SIFT (Scale In-
variant Feature Transform) [Lowe, 2004]. SIFT is based on the DoG feature
detector and characterize each key-point attaching to it information about the
orientations histograms of its surrounding regions (a.k.a. feature vectors or key-
point descriptors). For each key-point a 128 dimensional vector is computed,
that is formed by 16 8-bins orientation histograms related to a 4x4 region around
the key-point. SIFT is scale invariant thank to the use of the DoG detector,
it is rotation invariant if the histograms are computed with respect to the key-
point orientation and is robust to illumination changes if the feature vector is
normalized. Figure 2.9 shows a visual representation of the SIFT descriptors.

Figure 2.9: The SIFT local descriptors [Lowe, 2004]

An alternative to SIFT is SURF (Speeded-Up Robust Features) [Bay et al.,
2006] which uses a more efficient detector and compute a 64 dimensional feature
vector based as in SIFT on orientations in the key-point local neighborhood,
but more robust to noise within the image.

Matching Once feature vectors have been computed for a set of images, we
should be able to find the correspondences between key-points from different im-
ages. A way to perform the key-point matching have been proposed in [Lowe,
2004]: for each key-point descriptor in an image A we find the closest descriptor
of image B (e.g., the one that minimize the cosine similarity). We consider a
match correct if the ratio of the distance from the closest neighbor to the second
closest is above a given threshold.
As the matching process is subject to errors, verification techniques are needed
in order to find robust key-points correspondences. The key-points of the same
objects in two different images are related by a geometrical transformation (e.g.,
affine, perspective, etc.). Within a set of observed data (i.e., the set of key-point
matches) there are inliers and outliers. Spatial verification is based on the obser-
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Figure 2.10: The key-points correspondences prior to (above) and after (below)
spatial verification

vation that outliers do not comply with the geometrical transformation. Figure
2.10 draws an example of the key-point correspondences prior and after spatial
verification. The goal of spatial verification is to estimate the parameters of
such transformation. Once the transformation parameters are known, a model
can be built and according to the model correspondences can be refined.
Random Sample Consensus (RANSAC ) [Fischler and Bolles, 1981] is the typ-

ical algorithm used to perform spatial verification. In RANSAC algorithm the
parameters of the geometrical transformation are estimated by random sam-
pling.

Algorithm

1. Randomly select a sample of s data points from S and instantiate a model
from this subset;

2. Determine the set of data points Si which are within a distance threshold
t of the model. The set Si, is the consensus set of the sample and defines
the inliers of S.

3. IF the size of Si (i.e., number of inliers) is greater than some threshold
T :

re-estimate the model using all the points in Si and terminate,
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otherwise
select a new subset and repeat the above;

4. After N trials the largest consensus set Si is selected, and the model is
re-estimated using all the points in the subset Si.

2.1.4.3 Visual words

Similar to terms in a text document, an images has local interest points or key-
points defined as salient image patches (i.e., small regions) that contain rich
local information of the image. Images can be represented by sets of key-point
descriptors, but the sets vary in cardinality and lack meaningful ordering. This
creates difficulties for learning methods (e.g., classifiers) that require feature
vectors of fixed dimension as input [Yang et al., 2007].
A solution is to perform clustering in the feature space, and group descriptors
vectors in clusters. Each cluster represents a visual word. Thus, for each image
the histogram of visual words can be computed. Once those histogram have
been computed, we can treat visual words and images as they were terms and
documents in classical Information Retrieval and apply the related models (e.g.,
Vector Space Model) and techniques (e.g., TF ∗ IDF ). Figure 2.11 depicts the
construction of a visual word vocabulary.

Figure 2.11: The construction of a visual words vocabulary [Yang et al., 2007]

2.1.5 Concept-based Image Retrieval

Despite its potential, Content-based Image Retrieval (CBIR) presents some lim-
itations and practical issues that still keep keyword-based query the primary
input method in multimedia search. The main limitations of CBIR are:

• the need of translate information needs into images;

• the inefficiency due to the indexing of high-dimensional features;

• the difficulty to find proper query examples as initial queries.
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In Concept-based Image Retrieval images are translated into documents com-
posed by semantic concepts and retrieved by matching these semantic concepts
and the queries. The semantic concepts aims to fill the gap between user infor-
mation need and the low-level multimedia content. However, express in words
the content of an image is a challenging intellectual effort: for instance, what is
the best word to express a picture of a bus? Which one of this words vehicle,
truck or simply bus?
The extraction of concepts can be performed manually by humans, asking to
persons to provide a set of keywords given a single image or video (i.e., tag-
ging). An example of picture tagging is given by Flickr2, in which millions of
users are involved in upload and tag tons of pictures; this scenario is called a
social tagging. Another peculiar example of concept extraction for multimedia
resources is given by image labeling systems realized through Games With A
Purpose (GWAP) Web applications (see Section 2.2.4).

2.1.6 Multimedia Indexing

When dealing with Multimedia Information Retrieval system and multimedia
databases the word query assumes a novel meaning. In contrast to traditional
database applications, where point, range, and partial match queries are very
important, multimedia databases require a search for all objects in the database
which are similar (or complementary) to a given search object [Böhm et al.,
2001]. Indeed, we refer to those query as similarity queries. Similarity queries
are strictly related to the similarity measure. There’s no a general definition of
similarity measure as it is highly application dependent (e.g., Euclidean distance,
cosine similarity, etc.).
In multimedia databases there are usually two task to de defined in similarity
queries: ξ-similarity and NN-similarity. ξ-similarity means that the result of
the similarity query should be the set of object which similarity to the given
object is below the threshold ξ, where ξ is a real number. Instead in NN-
similarity (i.e., Nearest-Neighbor similarity) the result of the query are the N
object which are most similar to the given object.
Currently, solution adopted to solve similarity search problems in MIR systems
are mostly feature-based:

• extract important information (features) from multimedia object;

• map the features into high-dimensional feature vectors;

• search the database of feature vectors for objects with similar feature
vectors.

In such scenario, in order to perform an efficient similarity search, it is necessary
to store the feature vectors in an high-dimensional index structure.
Quadtrees, kd-trees, R-trees and R*-trees are indexing structures commonly used
for storing high-dimensional feature vectors.

2http://www.flickr.com
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2.2 Human Computation for Multimedia
Information Retrieval

2.2.1 Basic Concepts

Human Computation (HC) can be defined as “the idea of using human effort to
perform tasks that computers cannot yet perform, usually in an enjoyable man-
ner” [Law and von Ahn, 2009]. There exists some problems that computers are
either unable to or are very poor at solving, but they are easy for human to solve
(e.g., tag images, determine if a page is relevant, determining song genre, check
pages for offensive contents, etc.). The information collected by HC systems is
useful for machine learning systems [Yuen et al., 2009]. Human Computation
is related to, but not synonymous to other terms such as Crowdsourcing, Social
Computing and Collective Intelligence.

Figure 2.12: Human Computation w.r.t. Crowdsourcing, Social Computing and
Collective Intelligence [Quinn and Bederson, 2011]

Crowdsourcing refers to “the act of taking a job traditionally performed by
a designated agent (usually an employee) and outsourcing it to an undefined,
generally large group of people in the form of an open call” [Howe, 2006]. It
is a term derived from outsourcing. Users from the crowd are motivated to
participate and accomplish crowdsourced tasks for both intrinsic and extrinsic
motivations. A user can be motivated to participate by his, or her, desire to do
something good and to help someone, or because his, or her, efforts on the tasks
results in a public recognition (i.e., reputation), or because the nature of the
tasks engages and entertains him, or her, in accomplishing the task (i.e., tasks
designed as computer games, GWAP).
One of the most effective way to recruit users, or workers, is to reward them with
money. Amazon’s Mechanical Turk3 is an online market for small task (compu-
tational or not) that uses monetary payment. Usually the money involved for
the completion of a single task is around few dollar cents. Another example of

3http://www.mturk.com
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the use of monetary motivation is ChaCha4, a search service in which human
workers are involved in interpret queries and looking for relevant results. An
issue these crowdsourcing platforms has to deal with, is the tendency of workers
to cheat to increase their earnings; this tendency is boosted by the fact that
often workers are anonymous for the platform.
Social Computing is a term related to communication technologies as blogs,
wikis and social networks. Despite this relationship, the purpose of social com-
puting is not a computation. An effective definition of social computing is
given in [Parameswaran and Whinston, 2007]: “applications and services that
facilitate collective action and social interaction online with rich exchange of
multimedia information and evolution of aggregate knowledge”.
Collective intelligence is a broad term that refers to “groups of individuals do-
ing things collectively that seem intelligent” [Malone et al., 2009]. The main
distinction between Human Computation and Collective Intelligence is that the
latter one depends on a group of participants, while in Human Computation
the task could be performed by just one human worker in isolation.

2.2.2 HC for MIR systems

In this section we briefly present some studies that demonstrate how Human
Computation can be exploited in order to validate the outcomes of multimedia
information retrieval systems.
In the field of MIR, Human Computation is used:

• to improve, extend and validate the outcomes of automatic annotations
components in Content-based Multimedia Retrieval systems.

• expand or reformulate user queries.

• to generate reliable metadata on multimedia objects, such as tags and
annotations, to be used in Concept-based Multimedia Retrieval systems.

The MIR systems use automatic technologies to annotate the multimedia ob-
jects (e.g., automatic speech recognition, local feature detectors, etc.); such
annotations are validated by the crowd, which gives back feedbacks to the sys-
tems. The human feedbacks can be used either to establish the quality of an
annotation or to enrich to create a new annotation for the multimedia object.

2.2.2.1 Crowdsourcing Rock N’ Roll Multimedia Retrieval

Multimedia Retrieval is a topic that arouses interest in research, but up to now
does not have many real-world applications. For instance, video retrieval on the
Web is still mainly based on textual queries and tags.
[Snoek et al., 2010] presents a real-world video search engine based on advanced
multimedia retrieval technology, which allows for user-provided feedback to im-
prove and extend automated content analysis results.
The search engine uses archived video footage of the Pinkpop5 festival.
Humans are asked to provide feedbacks on the visual concepts associated to
video fragments by the system. Due to the specificity of the videos selected

4http://www.chacha.com
5an annual Dutch rock festival
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for the experiment, the set of visual concepts is limited to 12 concepts, called
concert concepts. Human performers interacts with the video search engine by
means of a timeline-based video player (see Figure 2.13).
The player enables users to watch and navigate through a single video concert.

Figure 2.13: The crowdsourcing video player

Colored dots on the timeline mark the location of an interesting fragment cor-
responding to an automatically derived label. Users can browse the generated
labels and indicate that they agree with the automatically detected label for the
video fragment. If they disagree, users are asked to correct the label. Within a
few clicks the user can select another pre-defined label or create a new label on
demand. In addition, users are allowed to indicate whether the start or end of
the fragment is inconsistent with the label. If needed, the user can also manu-
ally select more concept labels.
Besides providing feedbacks on the automatically detected labels, humans are
allowed to comment on the individual fragments, share the fragment through
e-mail or Twitter, and embed the integrated video player, including the crowd-
sourcing mechanism, on different websites.
The crucial point of the demonstration is the motivation to partecipate of hu-
man performers. The demonstration focuses on a dedicated user community
of rock n’ roll enthusiasts. In order to find a balance between an appealing
user experience and a maximized user participation, humans are motivated to
participate by providing them with access to a selection of exclusive, full-length
concert videos.

2.2.2.2 Crowdsourcing Event Detection in YouTube Videos

The amount of video content published on YouTube is constantly growing, up
to 48 hours of video uploaded every minute according to official statistics. This
huge quantity of data implies the need of advanced search techniques in order
to retrieve relevant videos.
In [Steiner et al., 2011] a browser extension that allows the video navigation
through events, is presented.
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The paper introduces three types of events: visual, occurrence and interest-based
ones. Both crowdsourcing and automated components are used to detect these
types of events within videos.
Event detection in videos is an ideal candidate for crowdsourcing, as each video
is an independent object in itself, i.e., the whole set of all existing YouTube
videos can be easily split into subtasks by just analyzing one video at a time.
Visual and occurrence events are detected on-the-fly in an automated fashion
using respectively computer vision (e.g., local histograms) and NLP techniques.
For those events types, shots and named entities in the video are detected once
by the first YouTube user that watches the video. Subsequent viewers can
directly profit from the generated annotations.
For interest-based events, acknowledging that points of interest within a video
might change over time, purposeful navigation events by all users are captured.
This allows for the generation of a heat-map-like overlay on top of the video
shots, which results in an intuitive representation of popular scenes.
Figure 2.14 depicts the event detection YouTube player.

Figure 2.14: The event detection YouTube player extension

2.2.2.3 Visual-based Plant Species Identification from
Crowdsourced Data

Another example of a crowdsourced application used to validate the outcomes
produced by automated components is reported in [Goëau et al., 2011].
The case of study on which the study focuses is the identification of plants
species given pictures of plant leafs. Such task is usually impossible for the
general public, and often a difficult task for professionals, such as farmers or
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wood exploiters and even for botanists themselves.
The automated part of the application deals with the content-based identifica-
tion of plant leafs, and is composed by the following steps:

1. local features extraction;

2. local features nearest neighbors search with an efficient hashing-based in-
dexing scheme;

3. spatially consistent matches filtering with a RANSAC algorithm using an
affine model;

4. basic top-K decision rule as classifier: for each species, the number of
occurrences in the top-K images returned is used as its score.

Users query the system, through a Web application, providing a scan or a pic-
ture of a leaf. The system returns and displays the top-3 species with the most
similar pictures. The user can then either select and validate the suggested
species, or he can choose among other species in the list, or even enter a new
species name if it is not available. The uploaded image used as query is tempo-
rary stored with its associated species name. Then, other users might interact
with these new pictures later, after that some professional botanists involved in
the project validate the images and theirs species names.
Figure 2.15 draws the Web interface developed for the leaf classification task.
Scans of leaves were collected over two seasons, between July and September

Figure 2.15: The leaf classification Web interface

2009 and between June and September 2010 thanks to the work of active con-
tributors from Tela Botanica6 social networks. The first online application did
contain 457 validated scans over 27 species and the link was mostly disseminated
through Tela Botanica. It finally allowed to collect 2228 scans over 55 species.

2.2.2.4 CrowdSearch: Exploiting Crowds for Accurate Real-time
Image Search on Mobile Phones

[Yan et al., 2010] presents CrowdSearch, an accurate image search system for
mobile phones. CrowdSearch combines automated image search with real-time

6a large social botany network: http://www.tela-botanica.org/
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human validation of search results. Automated image search uses a combination
of local processing on mobile phones and remote processing on powerful servers.
For a query image, the system generates a set of candidate search results that
are packaged into tasks for validation by humans. Real-time validation uses
the Amazon Mechanical Turk, where tens of thousands of people are available
to work on simple tasks for monetary rewards. Search results that have been
validated are returned to the user. Figure 2.16 depicts the CrowdSearch mobile
interface and an example of the candidate result images including the outcomes
of the crowd validation tasks.

The study demonstrates how humans can improve the precision of the im-

Figure 2.16: The CrowdSearch mobile application

age search system. Four different schemes for human validation has been used:
first-response, majority(3)7, majority(5), and one-veto (i.e., complete agreement
among validators).
The demonstration used the four different image categories: face, flowers, book
covers and buildings.
The results reveal two key observations. First, a considerable improvement in
precision is observed whatever the strategy used. All four validation schemes
are considerably better than automated search. For face images, even using
a single human validation improves precision by 3 times whereas the use of a
majority(5) scheme improves precision by 5 times. Even for book cover images,
majority(5) still improves precision by 30%. In fact, the precision using human
validators is also considerably better than the top-ranked response from the
automatic search engine.
Second, among the four schemes, human validation with majority(5) is easily
the best performer and consistently provides accuracy greater than 95% for all
image categories. Majority(3) is a close second, but its precision on face and
building images is less than 95%. The one-veto scheme also cannot reach 95%
precision for face, flower and building images. The use of first-response gives
the worst precision as it is affected most by human bias and error. Based on the
above observation, majority(5) is the best validation scheme, for mobile users
who care about search precision.

7The majority(N) rule require each validation task to be duplicated N times, then the final
outcome of the task is one which appears the major number of times among the N responses.

22



2.2. Human Computation for Multimedia Information Retrieval

Along with providing an implementation of the image search system, the study
report a detailed analysis on the system trade-off in terms of: delay, accuracy
and cost.
A scheme that optimizes delay would post all candidate images to the crowd-
sourcing system at the same time (i.e., parallel posting). While parallel posting
reduces delay, it is expensive in terms of monetary cost. Parallel posting is also
wasteful since it ignores the fact that images with higher rank are more likely
to be better matches than those lower-ranked ones. As a result, if the first
candidate image is accurate, the rest of the candidates need not to be posted.
In contrast to parallel posting, a scheme that optimizes solely the monetary cost
would post tasks serially. A serial posting scheme first posts the top-ranked
candidate for validation, and waits to see if the majority of validators agree
that it is a positive match. If so, the process ends and returns a positive match,
otherwise the next candidate is posted, and so on. This scheme uses the least
number of tasks to find the first correct match, and thus costs considerably less
than the parallel posting scheme. However, in cases where top-ranked image is
incorrect, serial posting incurs much higher delay than parallel posting.
CrowdSearch aims to provide a balance between serial and parallel schemes.
More precisely, the goal is to minimize monetary cost while ensuring that at
least one valid candidate, if present in the ranked list returned from the search
engine, is provided to the user within a user specified deadline.

2.2.3 Query expansion and reformulation

A recent study [Harris, 2012] has examined the effects of using students, crowd-
sourcing, and YouTube’s search interface on user-generated-content (UGC) searches.
Figure 2.17 summarizes the three search approaches followed in the study.
Due to the broad categories used to tag videos on YouTube and the inadequacy

Figure 2.17: The video retrieval process

of many tags in describing the actual video content, many user queries for UGC
go unsatisfied. Thus, in order to satisfy their UGC information needs, people
often refer to knowledge markets Websites (e.g., Yahoo! Answers8): as of Jan-

8http://answers.yahoo.com
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uary 2012, Yahoo! Answers had more than 250,000 requests for assistance to
locate videos.
The study states that crowdsourcing may provide a viable solution for searching
UGC. The crowd introduces diversity of search terms since different members of
the crowd will apply different search strategies based on their familiarity with
the search topic.
The study compares YouTube’s own search interface with a search conducted by
students as well as a search approach using crowdsourcing. Results are evaluated
using two methods: mean average precision (MAP) determined after applying
pooling, and a simple list preference, where the entire list of videos judged as
relevant by each method are compared.
The study experiment was organized as follows:

1. A set of 100 questions were randomly taken from four knowledge mar-
ket sources (Yahoo! Answers, Answers.com9, Blurtit10 and Allexperts11)
containing the terms find and video and remained either unanswered or
partially-answered (i.e., the requestor did not indicate their query had
been satisfied).

2. The list was pruned of questions down to 45 by removing those where the
requestor’s need could not be clearly determined or any candidate videos
on YouTube could not be found.

3. Then, noisy terms were removed from the original request, to build the
so-called Restated Query.

4. The requests were then classified in three categories easy, medium and
difficult.

5. Restated Queries were run using YouTube’s own search interface.

6. For the student search method, we asked five university students to per-
form each search, each student was instructed to provide a list (of up to
40) YouTube video links for each Restated Query.

7. For the crowdsourced search method, we use the Amazon Mechanical Turk
platform to list tasks, and provide each worker with Restated Query for
each question with instructions to return at least 10, but not more than
40, of the most relevant YouTube video links.

Results demonstrate that human computation efforts provide better MAP scores
than YouTube’s own search interface across all categories. The best MAP val-
ues are achieved by five students, but if time and cost are to be considered,
crowdsourcing achieves additional consideration due to the cost savings it offers
over student search.

2.2.4 Games With a Purpose

Games With a Purpose12(a.k.a. GWAP) come from the observation, that can be
easily experienced by everyone, that people around the world spend billions of

9http://answers.com
10http://www.blurtit.com
11http://www.allexperts.com
12http://www.gwap.com
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hours playing computer games, especially on the Web. As reported in [von Ahn
and Dabbish, 2008], more than 200 million hours are spent each day playing
computer and video games in the U.S.. The underlying idea of GWAP is to
channel these time and effort into useful work. A massive computation can be
divided into small tasks, and the tasks can be distributed to the human workers.
The entertainment nature of the task is the incentive for humans to participate.
The ESP Game [von Ahn and Dabbish, 2004], Peekaboom [von Ahn et al., 2006],
KissKissBan [Ho et al., 2009] and TagATune [Law et al., 2007] are famous and
peculiar examples of GWAPs used to collect tags for multimedia items, such as
images or audios.

2.3 CrowdSearcher

Link analysis, the field of research that has shaped Web search technology in
the last decade, can be seen as a massive mining of crowd-secured reputation
associated with pages. With the exponential increase of social engagement, link
analysis is now complemented by other kinds of crowd-generated information,
such as multimedia content, recommendations, tweets and tags, and each per-
son can ask for information or advices from dedicated sites. With the growth of
online presence, we expect questions to be directly routed to informed crowds.
At the same time, many kinds of tasks - either directly used for search or in-
directly used for enriching content to make it more searchable - are explicitly
crowd-sourced, possibly under the format of games. Many such tasks can be
used to craft information (e.g., by naming and tagging data objects and by solv-
ing representational ambiguities and conflicts), thereby enhancing the scope of
searchable objects. Thus, social engagement is empowering and reshaping the
search of Web information.
Crowdsearch is targeted to enabling, promoting and understanding individual
and social participation to search [Baeza-Yates et al., 2012].
Crowdsearch uses the crowds as sources for the content processing and informa-
tion seeking processes; it fills the gap between generalized search systems, which
operate upon world-wide information - including facts and recommendations as
crawled and indexed by computerized systems – and social systems, capable of
interacting with real people, in real time [Baeza-Yates et al., 2012].
Crowdsearching is a brand-new paradigm in Information Retrieval and can be
defined as the promotion of individual and social participation to search-based
applications and improve the performance of information retrieval algorithms
with the calibrated contribution of humans [Bozzon et al., 2012c].

2.3.1 A General Approach for Crowdsourced Multimedia
Processing and Querying

In the field of Information Retrieval, crowdsearching is usually used in solving
problems in which humans out-perform machines. In such approach the results
of human computation (e.g., tags, annotations, etc.) replace the output of the
automatic tools and algorithms. During the CrowdSearch 2012 workshop at
WWW 2012, a different framework for crowdsearching has been proposed.
In the approach proposed by [Bozzon et al., 2012c] humans do not replace au-
tomatic feature extractors in the architecture of a MIR system; humans’ skills
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and efforts are used to improve the performance of such components. In order
to do so, it is crucial the selection of the tasks to be performed by the humans
executors. As for any other human computation approaches to problem solving,
also in the crowdsearching case, a problem has to be mapped into a set of tasks.
Then the tasks, according to some criteria (i.e., expected quality of the results,
cost of the assignment, etc.), can be assigned either to the crowd or to machine
executors.
When a task (i.e., Crowd Task) is assigned to the crowd, its modalities of ex-
ecution need to be defined; this operation is called Human Task Design. The
Human Task Design activity produces the actual design of the Task Execution
GUI, and the specification of Task Deployment Criteria. These criteria can be
logically subdivided into two subject areas: Content Affinity Criteria (i.e., what
topic the task is about) and Execution Criteria (i.e., how the task should be
executed). The Execution Criteria could specify constraints or desired charac-
teristics of task execution including: a time budget for completing the work,
a monetary budget for incentivizing or paying workers, bounds on the number
of executors or on the number of outputs (e.g., a level of redundancy for out-
put verification) and desired demographic properties (e.g., workers’ distribution
with respect to geographical position or skill level).

Figure 2.18: The CrowdSearcher framework

The framework provides also an abstraction for the crowd and their capabil-
ities. In this abstraction (i.e., the Crowd Abstraction), human performers and
content elements are represented as nodes connected by edges in a bi-partite
graph. An edge connecting two performers could denote a friendship, while an
edge between two content elements denotes a semantic relationships. Finally, a
connection from a performer to a content element may denote an interest.
The subsequent step to the Human Task Design is the so-called Task Deploy-
ment. The goal of Task Deployment is to assign the crowd tasks to the best
suited human performers. Thus, this step is composed by two sub-step: People
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to Task Matching and Task Assignment. People to Task Matching can be seen
as a query matching problem, in which the result is a ranked list of potential
candidate workers according to the Task Deployment Criteria and the workers’
expected suitability in executing the task. Once a set of suitable workers is
selected (e.g., the top-k performers), the task is assigned to them. The next
step is the Task Execution. This step is the actual execution of the Crowd Task
an its outcome are multiple results. These results are then merged to form the
final result of the Crowd Task.
The aim of our thesis is to refine this general framework into an actual framework
for multimedia search-based application, providing also an actual implementa-
tion of the processes and the activities introduced in [Bozzon et al., 2012c].
The paper also explains the design of a logo detection application, as proof-of-
concept of the framework. That design is the basis of logo detection application
demo we designed and implemented in this thesis, that will be discussed in
Chapter 5.

2.3.2 A Model-driven Approach for Crowdsourcing
Search

People often, when performing a Web search, tend to ask for human help for an
opinion on a result or for suggestions about the best query terms to use. For
instance, if a user is looking for a good restaurant in Como, it is more likely
that he, or she, will trust the opinion of a friend than the review returned by a
search engine. This phenomenon, in current Web search system is not consid-
ered, hence the user has to search for help independently on social networks or
crowdsourcing platforms.
The work presented in [Bozzon et al., 2012b] aims to introduce a model driven
approach to the design of Web applications that support crowdsourced search.
According to such approach a meta-model for the query task and a model for
the user interaction need to defined.

The Query Task meta-model is the meta-model to which every query task
should conform. The main element in this Query submitted by a User. The
Query is defined by a Question and by a list of structured information (i.e.,
relationships), called CrowdObjects. The Question is the Query expressed in
the user natural language.
CrowdObjects can be either Input CrowdObjects or Output CrowdObjects. In-
put CrowdObjects are a set of data attached to the question upon which the
responder can apply its response (i.e., list of restaurants); the model of these
objects has to defined within a schema. Input CrowdObjects can be of different
types according to the action that the responder has to perform to answer the
question (voting or writing a comment one or more inputs, or adding a new
instance of Output CrowdObject). Output CrowdObjects represent the answers
submitted by the crowd.
There may exists relationships between CrowdObject. A relation is created when
a query is split into sub-queries. These relations can be either Input-Input or
Output-Input.
In an Input-Input relation the initial set of inputs is partitioned on several in-
stances of the same query, to reduce the workload of each responder (i.e., a list
of 100 restaurants is partitioned in lists of 10 restaurants).
An Output-Input relation occurs when the query task is complex, hence it is
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Figure 2.19: The Query Task meta-model

divided into a sequence of sub-tasks. Each responder will perform a particular
sub-task and his, or her, answers will be the input of the subsequent task.
The user interaction model describes the interface and the navigation aspects
of the crowdsearch application. It has to cover three phases of the crowdsearch
process:

• the submission of the question by the asker,

• the gathering of the answers from the crowd

• and the analysis of the results to be returned to the asker.

The paper also reports a possible outcome of the user interaction design for the
query creation and the query answering on Facebook.

2.4 Modeling Search-based Applications

Search-based Applications (SBAs) are data management systems, that have not
to be confused with traditional search engines. A search engine is a data man-
agement system that deals with the retrieval and the indexing of information
items from one or more data sources and allow users to access those items
by submitting queries. Indeed, a search-based application is a more complex
system, in which search engines, even though being fundamental for the appli-
cation, are just a part of it. SBAs include further components as, for instance,
heterogeneous data source integration, content analysis and user interfaces.
In the next section we will present an overview on the architecture of SBAs.

2.4.1 Search-based Application High-level overview

As well as any IR system, the goal of search-based applications is to satisfy
user information needs by searching over the available content collections for
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information that seems relevant [Middleton and Baeza-Yates, 2007]. To fulfil
this, the application is composed by several modules that interact among them.
Figure 2.20 provide a coarse overview of the main modules that compose SBAs.

Figure 2.20: The Search-based Application coarse processes

This architecture, as discussed in [Middleton and Baeza-Yates, 2007], can
be seen as constituted by three main areas: Indexing, Searching and Ranking.
The Indexing area is in charge of the representation and the organization within
an index of the information items, retrieved from the data sources; it should
also provide means for a rapid access to the information. The indexing process
includes the following tasks:

• the extraction of contents from data repositories (e.g., text documents,
images, videos, etc.);

• the analysis of the contents to provide metadata, also called annotations,
to build a contents’ representation;

• the building of an optimized index of the managed information, for effi-
ciently answer to users’ queries.

The Searching area extracts information from the index which satisfies the user
information need.
The Ranking area is responsible of sorting the results, according to some heuris-
tics, and to determine which of them better satisfy the user information needs.
The user interacts with the application through a user interfaces which provides
the means for querying the index and for displaying the results.

2.4.2 Search-based Application Reference Architecture

Performance, flexibility, maintainability, reusability, and scalability are non-
functional requirements of SBAs. The multi-tier architecture is generally known

29



Chapter 2. Background

as the best suited software architecture to cope those needs.
A SBA is usually characterized by three architectural layers, as depicted in 2.21.

Figure 2.21: The Search-based Application architecture

This architecture is very similar to the three-tiers architectures, widely used
in Web applications and net-centric information systems. The three components
that form the overall architecture are: the Presentation tier, the Front-end tier
and the Back-end tier.
The Presentation tier is at the top of the SBA architecture and contains all
the components that allow users to interact with system for information seeking
and social interaction. This tier includes the user interfaces.
The Front-end tier is the mid-tier in the architecture, it relates to the busi-
ness logic of the application. In a SBA, it coordinates the application processes
according to the functionalities needed by the Presentation tier. Within this
tier all the logical and decisions and evaluations are taken. It also manages the
movements and the processing of data between the Presentation tier and the
Back-end tier. The business logic can be split in two sub-layers: the Query
Management and the Result Presentation.
Query management layer deals with the orchestration and manipulation of the
queries to send to the search components. Queries comes from the Presenta-
tion tier and are needed to perform the search activity over the application’s
search engines. A query may need to be transformed (w.r.t. its original format)
and analyzed, possibly in the same way as the indexed data; the goal of the
Front-end business logic layer is to provide a common representation space for
both contents and queries; for instance, in a content based information retrieval
system, indexed contents are represented as low-level features in a vector space:
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in such a case, users can query the system in a query-by-example fashion (e.g.,
providing a sample image or a music track, etc.); therefore, to compare the user
query with the indexed contents, the query itself needs to be transformed to the
same vector space as the original content. Additionally, queries may be enriched
taking into account contextual information, like the users behavioral, or social
profile. Finally, if the search application connects to multiple search engines,
queries must be properly partitioned and orchestrated, so to address them to
the proper engine.
The Result Presentation, indeed, is responsible of the aggregation and manipu-
lation of the results of search operations: results returned by the search engines
may need to be fused into a single result-set, transformed and/or enriched. The
goal of this layer is to enhance the expressivity of the retrieved information, pos-
sibly by adding data coming from other sources. Data sources can be internal
to the SBA (e.g., a data repository containing the original contents) or external,
like third-party search engines, Web services, etc. MashUp applications [Bena-
tallah et al., 2005] are a typical example of result aggregation and manipulation
applications. A MashUp is an application which uses and composes existing
distributed Web services for achieving a complex goal: for instance, a SBA
querying an audiovisual search engine may use an external service to enrich the
result presentation with information about the location where the video were
shot.
The core of a search-based applications are the search engines. In the multi-tier
architecture their tasks are in between the Front-end and the Back-end tiers.
First search engines perform the actual query operation on the contents, such
task is related to the Front-end tier logic. Second, they perform content index-
ing, managing the creation and the update of indexes, which is are more close
to a Back-end tier logic. Finally, at the bottom of the architecture, we find the
Back-end business logic tier. This is the tier that contains all the components
that perform the retrieval (also called Data Interaction) and the processing (also
called Data Analysis) of the data managed by the application.
Data interaction components manage all the operations needed to interact with
the data sources. Typical examples of such components are crawlers, XML and
JSON parsers, database connectors, etc..
Data Analysis components, instead, perform the operations on the content items
in order to analyze them, for instance producing annotations.

2.4.3 Reference Architecture Processes

In a search-based application information flows through its layers according to
some interaction processes. Figure 2.22 draws an high-level view of the main
processes that characterize a SBA.
Within a SBA we can identify three interaction processes:

• Indexing process

• Query and Result Presentation process

• User Interaction process

The Indexing process addresses the indexing of the contents retrieved from the
external data source; this process includes the actual data retrieval from the
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Figure 2.22: The Search-based Application processes

data sources, the transformations and the aggregation of the data retrieved and
their indexation.
The Query and Result Presentation process (also referred as QRP) address the
operations related to the query execution, orchestration and result-set compo-
sition.
Finally, the User Interaction process is related to the way the user interacts
with the application.

2.4.4 Design Dimensions

The design of a search-based application is subject to a set of orthogonal di-
mensions that arise from the domain of the application and affects the design
of the application’s component and the processing flows. The importance and
the prominence of each of the dimension that we are going to list, is highly
dependent from the business requirements.

• Retrieval Policy
The data retrieval dimension affect the Indexing process and depends on
the data source type. Two most common policies are, pull and push. Pull
policy is used when the data source is uncontrolled and is not possible to
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track the updates (e.g., the Web), while the push policy is more suited
for applications that require the data to be continuously refreshed and
updated (e.g., news, financial, etc.).

• Data Homogeneity
The data format is another dimension that affects the Indexing process.
According to the composition of the collection we distinguish between ho-
mogeneous data collections (e.g., text document collections, video collec-
tions, etc.) and heterogeneous data collections (e.g., collection including
both audio and video files). From the data formats in the collections
depend the annotators to use in the Indexing process.

• Data Analysis
Data Analysis relates to the way information items are analyzed, accord-
ing to the file type and the content type. We can distinguish two kinds
of analysis: Mono-annotation data analysis and Multi-annotation data
analysis. Mono-annotation data analysis takes place when a single com-
bination of file type and content type (e.g, the audio track of a video file)
is represented by a single annotations set. Conversely, Multi-Annotation
data analysis provide multiple viewpoints over the same content, in order
to produce more valuable annotations.

• Search Technology
The design of a SBA is influenced by the type of the search engines in the
architecture (e.g., unstructured, semi-structured, content-based), as well
as their number and heterogeneity. The Search Technology dimension
affects both the Indexing process and the Query and Result Presentation
process.

• Query Format
From the search technology chosen for a SBA directly depends the query
format type. The type of queries drives the design of both User Interac-
tion process and QRP process.
Textual search engines require queries to be expressed as compounds of
textual terms, while content-based search engines expect queries to ad-
dress the same feature vector space as the indexed contents. Neverthe-
less, the query type may be inappropriate for users (users cannot express
queries in terms of feature vectors), thus the application should provide
to users the simplest and the most effective way to pose queries, ignoring
the complexity of the underlying search technology. Query formats may
be Mono-modal, if the application provides a distinct interfaces for each
distinct search engine (e.g., Google), or Multi-modal, if the application is
able to gather, from the same interface, different query terms to different
search engines.

• User Query Interaction
Depending on the domain requirements, the User Interaction process must
be designed in order to support different user interactions styles, like
searching, browsing of the indexed collection, push notifications, etc..

• User Social Interaction
The presence of social functionalities influences the design of a SBA and of
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all its processes. We can identify three main functions for social interaction
support, namely Clustering, Social Relevance, and Connections.
Clustering refers to activities where users collaboratively group together
contents in order to provide additional annotations to better understand
their properties.
Social Relevance refers to establishing the quality of the contents quality
according to user feedbacks. Feedbacks can be provided both as an explicit
action (e.g., voting) or as an indirect evaluation derived from user behavior
(e.g., the number of times a document has been viewed).
Finally, the Connections between users can be exploited in order to enable
features like content recommendation.

2.4.5 Conceptual Design of a Search-based Application

In the development of a search-based application the Conceptual Design is the
core activity. This is macro activity as it involves the main design activities.
The first steps in the Conceptual design are the Process Design and the Domain
Model Design, followed by the Application Design.
The Domain Model Design describes the domain models used by the designed
processes. Such models usually include: the Content model, the Usage model,
the Index model, the Query data model, the Result data model, the User data
model and the Process data model.
The Process Design defines the base processes of the application, as the Index-
ing, the Query and Result Presentation and the User Interaction processes.
The Application Design is the activity that transforms the functional require-
ments identified during requirements specification, and the constraints intro-
duced in the Process Design activity, into one or more models embodying the
needed services for information delivery and data manipulation.
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3
Requirements for
Human-Enhanced

Multimedia Analysis and
Search

In this chapter we describe the requirements that a multimedia search-based ap-
plication (SBA), that benefits of the contribution of human computation tasks,
should fulfil. First, we concentrate our attention on the prerequisites that a
SBA need to satisfy in order to manage multimedia resources. Then, we will
highlight the main challenges that Human Computation introduces in the design
of an human-enhanced SBA (hSBA).

3.1 Requirements for Multimedia Search-based
Applications

When designing a multimedia search-based application (whether human-enhanced
or not) some requirements, such as execution, performance, reliability and dis-
tribution need to be considered and possibly addressed. Those requirements
are generated from the multimedia nature of the data managed from the ap-
plication; multimedia objects require a different handling w.r.t. classical text
document (e.g., video segmentation, feature detection, etc.). In this section we
focus on classical SBAs in which tasks are executed by automated components.

Execution In a coarse view, a multimedia SBA is composed by two workflows,
one in charge of the retrieval, the processing and the analysis of the multime-
dia items (i.e., the Indexing workflow) and one in charge of the search of the
multimedia items stored in the application indexes (i.e., the Search workflow).

35



Chapter 3. Requirements for Human-Enhanced Multimedia Analysis and Search

The design of those workflows is influenced by the types of multimedia items
that the system have to manage. The presence of heterogeneous multimedia
items (e.g., videos and images at the same time) results in designing different
indexing and search workflows according to the item type. For instance, an
application that deals with both videos and images has to provide, at least two
different processing workflows, which include different analysis operation (e.g.,
video segmentation, key-frame detection, frame extraction, feature detection,
etc.).
Furthermore, we can distinguish the application workflows in two types: batch
and triggered ones. For instance, a video processing workflow that retrieves and
processes videos from a collection can run in a batch fashion, while a search
workflow is, by definition, triggered by a user query.
The architecture of the SBA should support the simultaneous execution of the
several Indexing and Search workflows. This prerequisite implies that the SBA
should act as a workflow orchestrator (see Section 6.1).

Analysis performance The particular nature of the multimedia items to
be managed (e.g., videos, images, etc.) along with the huge amount of data
that these items carry (e.g., the binary file of a video may reach several MB of
size), cause the designer to introduce in the architecture components in charge
of reducing and transforming such data. These transformations are needed to
improve the performances of the overall system, in order to optimize the amount
of data to be processed w.r.t. the useful information that can be extracted and
queried from them.
For instance, in the multimedia search-based application we present in Chapter
5, each video is processed in order to extract its frames. The frames are the
multimedia objects on which we compute local feature descriptors to be used
for the image matching. The number of frames within a video depends on the
frame rate and on the video length; typically a 2-minutes-long video contains
up to 3600 frames (i.e., 30 frames per second). Then, if the application has
to process several tens of videos, the number of frame images to be analyzed
may grow dramatically. Actually, it can be observed the most of the frame
extracted from a video are redundant and they do not contributes to the overall
video characterization (e.g., two subsequent frames in a video are very likely to
depict the same subjects). Thus, we are just interested in the video frames that
denote a sensible variation in the image contents (i.e., the key-frames). Key-
frame detection reduces the amount of frame to be processed for each video
from thousands to tens, corresponding to an impressive boost in the application
analysis and indexing performances.

Precision Despite the improvements of the last decades in multimedia analy-
sis and processing, state-of-the-art automatic annotators are not always reliable
and may produce unreliable annotations. Those wrong, or low-quality, annota-
tions affects the quality performance of the application. To address and manage
such issue, the outcomes of the automatic annotators should also include a value
of confidence on the outcomes themselves. According to its value of confidence,
and a set of thresholds, an annotation can be treated in different fashions:

• discarded : when its confidence is less than the low-confidence threshold;
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• validated : when its value of confidence denotes uncertainty ;

• accepted : when its confidence is greater than the high-confidence thresh-
old.

Distribution In order to further improve performances and optimize the
hardware resources, the workflows (Indexing and Search ones) that compose
a multimedia SBA application can be executed on several different machines
(both physical or virtual ones). For instance, Indexing and Search workflows
can be separated in different machines. A machine executing Indexing work-
flows should provide hardware resources to deals with huge amount of data,
conversely a machine that executes Search workflows needs to provide fast and
optimized means to interact with the application indexes.
Furthermore, we can execute in parallel the single tasks which compose a work-
flows, distributing them among multiple machines. For instance, we could run
multiple instances of the same annotator on multiple machines, in order to anno-
tate multiple resources at the time. This parallelism should result in a speed-up
of the indexing performance of the application, but it may introduces trade-offs,
especially in case of multimedia resources, due to the need of moving resources
across a network from a machine to another (i.e., increment in the bandwidth
usage).
The deployment of the workflows on different machines implies that the mul-
timedia items, managed by the application, should be universally referenced.
The SBA should provide a service that allows the storage of the multimedia
resources, returning a unique reference (i.e., an ID) to the objects. Querying
the service with the resource ID, it should be possible to retrieve the multimedia
resource from every point in the SBA architecture.
The use of IDs allows also to optimize the exchange of data among the workflows,
as it is possible to avoid the exchange of the huge binary files that constitute
the multimedia objects.

3.2 Requirements for the Human Enhancement

Thanks to their natural capabilities, humans can be powerful allies for machines
in problem solving. We can say that people’s and machines’ capabilities com-
plement each other. Indeed, humans are good in performing certain tasks, like
image and object recognition, while machines are bad at these tasks; conversely,
machines are good at certain other tasks, like performing huge numerical cal-
culation, that humans may be not able to perform. This observation lead us
to the idea of convey humans’ and machines’ skills within a hybrid system, for
multimedia analysis and search.
As proposed in [Bozzon et al., 2012c] humans’ efforts can be used not as a
replacement of machines, but as an improvement to the machine work. For
instance, crowdsourcing could be used as a validation for the outcomes of
automatic components for content analysis (e.g., object detection algorithm,
RANSAC matcher, etc.). We call Human-Enhancement the addition of Human
Computation tasks to a common search-based application.
In the design of a human-enhanced SBA (hSBA) some new challenges arise
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w.r.t. a common SBA. In the following paragraphs, we will highlight some of
the key ones, also reported in [Franklin et al., 2011].

Performance A great difference between humans and machines is the speed
at which they work. A task that a machine can crunch in few milliseconds for
a common human being can take several minutes. Such delay may cause per-
formance drawbacks in the search application. The application should address
this issue, for instance producing partial result, to be updated just when the
outcomes of Human Computation tasks are known.

Asynchrony The time needed for humans to perform a certain task, may be a
blocking factor in the application architecture; for instance, a feature extractor
component that process a set of human validated images, may have to wait until
the validation process is finished. This fact introduces asynchronicity in the
information flows of the application, as the execution of some automated tasks
may depend on the outcomes of the crowdsourced task, and the time needed to
perform the task is not known a-priori. In off-line processes (e.g., the Indexing
process) the asynchronous fashion of the workflows may affect just the time
needed to end the process and thus its performances. Instead, in online processes
(e.g., Query and Result Presentation process and User Interaction process) an
asynchronous workflow may ask to change the usual way users interact with the
system. For instance in a content-based image retrieval system users can query
the system providing a sample image. If the sample image need to be analyzed
by humans, users may need to wait for several minutes before the results can be
computed and presented. Hence in such scenario, a best suited user interaction
could require the application to push the result to the user as soon as they are
available (e.g., send an email notification).

Variability Each human being is unique and unrepeatable. In the realm
of crowdsourcing this means that people may show tremendous variability in
performing the same task, both from one individual to another and over time for
a particular individual. This differences in human performances are enhanced if
results of crowdsourced tasks need to be merged (e.g., the set of annotation for
an image). The application should consider this variability and provide a way
to manage it (e.g., consider just the outcomes of the quickest human performer
vs. collecting results for several performers).

Quality If they cheat or try to sabotage the system, human workers may
provide low quality results. The workers may also misunderstand the task di-
rections or simply make mistakes due to personal bias or to a lack of experience
in the subject. The application has to take into account that the crowdsourcing
outcomes for a task are not gold-plated and, hence, provide some sort of con-
trols on their quality. For instance, the following policy could be applied in the
assignment and evaluation of the human computation results: the same task
is assigned to different workers and the results are accepted just if there is an
agreement between the workers’ outcomes (a.k.a. Output Agreement).

Task design Crowdsourced tasks have to be presented to workers in human-
readable way (i.e., natural language). Unlike programming languages, natural
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language may be interpreted in several ways, introducing possible ambiguities
in the task instructions. The design of the task and the layout of the worker’s
interface have a direct effect on the speed and the accuracy with which people
complete the tasks.

Task affinity Human workers are not fungible as CPUs. Some workers may
be more suited in performing certain tasks than others according to their skills or
their culture; for instance, in a logo detection application which require humans
to provide logo instance images, a worker from the U.S. may be more skilled
in providing good logos from an American detergent brand than a worker from
Europe.

Workers recruitment In the field of Human Computation, the term crowd-
sourcing implies that the tasks are executed by “an undefined and large group
of people” [Howe, 2006]. Thus, one challenge in the design of a hSBA is where
to recruit workers. Amazon’s Mechanical Turk is the online market that may
guarantee the set of workers needed to fulfil the crowdsourced task of the ap-
plication, under monetary payment. Another option is to publish the tasks
on social networks, such as Facebook, where a huge crowd is online everyday.
On social networks the spread and the assignment of the tasks depends on the
friendships links associated to the account owned by the SBA and on further
shares from the workers themselves in their communities.

Workers motivation As well as the recruitment, motivation is one of the
main challenges in human computation systems. Since the computations usu-
ally involve small unit tasks that do no benefit the contributors, they will only
participate if motivated. One of the most effective motivation factors is the
monetary payment (e.g., Amazon’s Mechanical Turk, ChaCha), but there also
other ways to recruit workers, as enjoyment (e.g., GWAPs) or reputation (i.e.,
public recognition).

In the design of our multimedia hSBA performance, asynchrony and variability
dimensions force us to think the application’s architecture in order to avoid, or
at least reduce, stalls in the workflows (e.g., wait until the outcomes of crowd-
sourced task are known), that may have a dramatic impact on the overall system
performances.
Quality dimension, along with Task design and Task affinity ones, asks us to
adopt a framework able to support the design, the deployment and the result
aggregation of the crowdsourced tasks.
Workers recruitment and Workers motivation dimensions highlight the need of
interaction with crowdsourcing platforms and social networks, thus our multi-
media search-based application should provide means to interact with them.
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4
A Conceptual Framework

for Human-Enhanced
Multimedia Analysis and

Search
In this chapter we introduce a framework for multimedia search-based appli-
cations (SBAs) in which Human Computation is used to improve the quality
performances of automatic components.
In Section 4.1, we introduce a methodology in order to drive the development of
a human-enhanced SBA (hSBA) starting from high-level models until its actual
implementation.
The components that will compose the application are founded on a data model,
which describes the logical structure of the data handled by the application.
The data model, we introduce in Section 4.2, is composed by three parts: the
Content model, the Human Enhancement model and the Action model.
First, the Content model provides the concepts in order to characterize the mul-
timedia items (e.g., images, videos, etc.) that the application is managing and
the annotations that describe these information items.
Second, the Human Enhancement model introduces Human Computation in the
conceptual model, describing the tasks and the roles the humans can play within
the application.
Third, the Action model provides the mean to keep track of the events that
occur in the application life-cycle. Such events may be related either to actions
performed by automatic components (i.e., Automatic Actions) or by humans
(i.e., Human Actions).
Finally, in Section 4.4, we will focus on the presentation of a suitable model to
describe the processes involved in a hSBA.
To give a particular emphasis on the human enhancement of multimedia search-
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based application, we will present the Human Enhancement data model and the
Human Enhancement process in a separate section.

4.1 Development Methodology

In the development process of our framework, illustrated in Figure 4.1, the de-
sign of data models (i.e., Domain Models) is one of the main activities. The Do-
main Model Design activity needs to be properly performed in order to provide
a high-level representation of the contents to tackle the problem of multimedia
analysis and search; a problem that is made more difficult due to the presence
in the application architecture of both automatic and human tasks.
Parallel to the Domain Model Design activity, in the Process Design activity,
we need to identify and design the processes that composes our search-based
application.
Both Domain Model Design and Process Design activities are influenced by a
third “cross-activity”: the Human Enhancement Design, which takes into ac-
count the presence of human computation tasks and humans in the loop.
Finally, during the Application Design activity we materialize the data mod-
els in actual data structures and the processes into actual workflows, tasks,
components and data structures throughout a development process.

Figure 4.1: The development activities
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4.1.1 The Domain Model Design

In the Domain Model Design activity we organize the information objects, han-
dled by our multimedia search-based application, into a conceptual data model.
The design of the Domain Models is influenced by the application requirements
(see Chapter 3) and, at the same time, by the Process Design activity.
For our human-enhanced multimedia search-based application (hSBA) we iden-
tify four models: the Content model, the Human Enhancement model, the Action
model and the Content Processing model.

Content model The Content model describes the multimedia items handled
by the application, the relationships that may occur between the multimedia
objects and, as we deal with analysis process, the produced annotations (e.g.,
low-level features).

Human Enhancement model See Section 4.1.2

Action model The Action model is used to describe the actions (we will
further refer to them as events) that are performed during the processing of
multimedia objects.

Content Processing model The Content Processing model describes the
processing on the multimedia objects that takes place within the application,
the application components (i.e., annotators) and the workflows (i.e., pipelines)
that execute the actions presented in the Action Model.

4.1.2 The Human Enhancement Design

The Human Enhancement Design activity introduces the human factor within
the design of a search-based application. It is driven by the requirements that
the presence of humans in the loop asks to be satisfied (i.e., Human require-
ments) and influences the other activities of the design phase.
This activity influences the Domain Model Design activity through the defini-
tion of the Human Enhancement model.

Human Enhancement model The Human Enhancement model addresses
the problem of the need of human computation tasks to process the outcomes
produced by automatic components (e.g., enrichment, validation, etc.). The
model introduces a format to describe this need, the tasks to be crowdsourced
and the outcomes produced by human performers.

The Process Design is influenced through the design of the Human Enhancement
process.

Human Enhancement process The Human Enhancement process is the
process involved in the management and the resolution of the uncertainty that
may arise during the content processing tasks. Automatic components may
produce inadequate, unreliable, inconsistent and even missing representations
of the content items. Thus, prior to their definitive indexation, the uncertain
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representations are processed by human performers (i.e., the crowd). The re-
sults collected from the human computation tasks are used in the search-based
application in order to enrich, validate or correct the indexed content repre-
sentations. The main tasks to be performed during the Human Enhancement
process are:

• the design of the tasks to be executed by the human performers, in order
to fulfil the content processing tasks;

• the allocation of the task to a set of human performers;

• the support to the execution of the crowdsourced tasks on a proper plat-
form (e.g., Amazon’s Mechanical Turk, Facebook, etc.);

• the aggregation of the results, produced by each crowdsourced task which
relates to a specific processing task, into a single outcome.

This process is partially performed by the application in the Back-end business
logic tier, while the majority of its tasks are executed by an external framework
(see Section 2.3), which enables the interaction with human computation and
crowdsourcing platforms.

4.1.3 The Process Design

The Process Design activity provides a high-level representation for the pro-
cesses supported by the search-based application (SBA).
In our case, we describe the workflows and the activities of a multimedia human-
enhanced SBA (hSBA) through UML activity diagrams.
During Process Design activity we should take into account the application re-
quirements and the data model produced in the Domain Model Design activity.
Indeed, the concepts introduced in the data models are the data objects man-
aged by the designed processes.
In our framework we identify three main coarse processes (as depicted in Figure
4.2), that we will present in the following paragraphs.

Figure 4.2: The Process Design activity
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Indexing process The Indexing process is the set of activities that the ap-
plication performs in order to achieve the indexation of the information items
consumed. According to the reference SBA architecture introduced in Section
2.4.2, the Indexing process is executed by the components belonging to the
Back-end business logic tier.
The main tasks to be performed are:

• the retrieval, the validation and the registration of the information items
from the data sources. Such task is usually executed by the components
belonging to the Data Interaction layer (i.e., crawlers);

• the analysis of retrieved content items in order to produce a representa-
tion suitable to their indexation. Analysis operations are performed by
components belonging to the Data Analysis layer;

• the construction of an index structure by taking the representation of con-
tent produced in the previous task and transforming it into the structure
of search engines’ indexes.

Human Enhancement process See Section 4.1.2.

Search process The Search process manages the information exchange be-
tween the search engines, the data sources and the user interfaces. In our
framework the Search process embodies the activities that in the reference SBA
architecture processes are performed during the Query and Result Presentation
process presented in Section 2.4.3. Such activities includes:

• support the formulation of user queries, by exposing a query interface. A
query interface is an abstraction of the languages offered by the different
application’s search engines;

• enrich the queries with contextual information in order to improve the
retrieval performance of the system;

• translate the queries posed by the user into the search engine’s internal
format, and orchestrating their execution;

• fuse the results coming from the different search engines;

• enhance the retrieved information with data coming from other sources,
both internal to the application (e.g., the repository containing the original
contents) or external (e.g., the Web).

The Search process is performed by the components belonging to the Front-end
business logic tier.

4.1.4 The Application Design

The Application Design activity is a domain-specific task that allow us to ma-
terialize the requirements, the data models and the processes identified during
the Process Design activity into actual processing workflows and components
that will compose the multimedia human-enhanced search-based application
(hSBA). Figure 4.3 draws the sub-activities performed during the Application
Design activity.
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Figure 4.3: The Application Design activity

From Domain Models to data structures The representation of contents
provided by the Content model acts as a reference for the design of the ac-
tual data structures (e.g., databases, records, etc.) handled and processed in
the application. As soon as a content item is registered into the application,
a representation of it is produced according to the attributes identified in the
data models and the underlying technologies of the working application (e.g.,
a workflow orchestrator engine). In addition, the Content Model reveals the
annotations that need to be produced during the processing and the analysis of
the content items, according to the application requirements. These informa-
tion lead us to the design of the inputs and the outputs of the single processing
components (e.g., video segmenter, key-frame detector, etc.).
The Action model identifies: (i) the set of actions (both automated and human
ones) that compose the application, (ii) the contents they consume and (iii) the
annotations they produce. In the working application an action is materialized
into a set of operations performed by a software component or by a human
worker.
The Content Processing model highlights (i) which component is in charge of a
certain action and (ii) how the single components (or human performers) have
to interact each other (e.g., execution order) in order to produce the overall
result of the content processing.
Thank to the Human Enhancement model we identify (i) the tasks to be crowd-
sourced as well as (ii) the content items and the annotations that need to be
processed by human workers and (iii) design the format of the annotations to
be produced during the crowdsourced tasks.
Both requirements and Content model drive us to the design of the application
indexes. The design of the application indexes should take into account the
required querying fashion (e.g., text-based, content-based) and the technology
used to materialize the indexes (e.g., Solr, Lucene, etc.).
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From Process Design to workflows The three reference processes (Index-
ing process, Human Enhancement process and Search process) that we design
during the Process Design activity enable us to develop the workflows that
the actual search-based application (SBA) manages and executes. The activ-
ity diagrams produced during the design phase can be translated in executable
representations, such as BPEL workflow specifications. Indeed, in its usual im-
plementation, a SBA acts as a workflow orchestration engines.
According to the single activities identified in the Process model and the data
structures materialized from the Domain Models, we develop the automatic soft-
ware components (or the software components which support Human Computa-
tion) needed to achieve the goal of each process. For instance, in a multimedia
SBA, the analysis activities identified during the Process Design may result in
the development of software components for the detection of key-frames or the
temporal segmentation of the videos.
Once the components have been developed, the reference processes give us the
guidelines on how to place them within workflow and how each components has
to interact with the subsequent one(s).

4.2 The Data Model

4.2.1 The Content Data Model

The Content model aims to provide the minimum set of concepts and relation-
ships to address the requirements of a multimedia human-enhanced search-based
application (hSBA). The contents managed by our application can be described
in terms of:

• Content Objects, the abstract representations of the multimedia objects
managed by the application (i.e., the Content Object) and of the relation-
ships that may occur between multimedia objects (e.g., a frame as part of
a video stream).

• Content Descriptions, which represent the metadata of each multimedia
object.

• Entities, which are the representations of objects in the real-world.

4.2.1.1 Content Objects

The main element in the model is the Content Object ; it is an abstract entity
that represents a multimedia information item that can be accessed through a
storage system (e.g., a video, a picture, a document, etc.). For the scope of this
thesis, the following data model is shaped on audiovisual Content Objects, such
as Audio Objects (e.g., music tracks), Video Objects and Image Objects.
Each Content Object is characterized by the following attributes:

• ID : the unique identifier of the multimedia object; it is always required.

• Media Locator : the string path that universally identifies the location of
Content Object in the application (i.e., its URI).
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• Descriptions: this attribute refers to the set of annotations that describes
the Content Object (see Section 4.2.1.2).

• Provider : the Content Provider which owns the Content Object. For
instance, a Web provider like YouTube and Google or a System Component
(e.g., key-frame detector component).

• Collections: this attribute denote the Content Collection to which a Con-
tent Objects belongs. A Content Collection is a meaningful set of Content
Objects (e.g., the set of match highlights video for a football team in the
2011-2012 season) and it is identified by an ID and a name.

• MimeType: specifies the actual file format and encoding of the multimedia
object (e.g., MPEG4, JPEG, etc.).

There may exists relationships between Content Objects; for instance, the Image
Object that represents a frame of a football match video is related to the Video
Object representing the video itself. In our model, relationships are materialized
in Content Relationship objects.
Relationships may either exist from before the management of the information
object within the application or be generated by the application itself. An
example of this latter relationship is the one that relates a video to its key-
frames (i.e., Image Objects) detected during the video processing stage.
Content Relationships are denoted by a type attribute. Here a list of some
possible relationships types:

• Derived Object : the relationship between the video and its key-frames is
an example of this relationship type.

• Version Of : when two Content Objects represent alternative versions of
the same physical object. For instance, the relationships between a video
and a down-sampled version of the same video.

• Duplicate Of : the relationship between a Content Object and its duplicate.

• Perceptual Duplicate Of : the relationship between a Content Object and
its near duplicate.

• Similar Content Of : when two Content Objects contain instances of the
same piece of information (e.g., a real-world object, a monument, a face,
etc.). For instance, this relationship exists between two images that both
contain a logo for the brand Coca Cola. Unlike other relationships, Similar
Content Of relationships may be characterized by a set of annotations,
as any Content Object ; for instance, the level of similarity between the
images low-level features could be attached to the Similar Content Of
relationship existing between the two images of the previous example.

Figure 4.4 depicts the Content model taxonomy introduced so far.
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Figure 4.4: The Content model taxonomy
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4.2.1.2 Content Descriptions

Content Descriptions describe any Content Object ; they embed information
about automatic and manual annotations and about the decomposition of the
multimedia objects in Media Segments. A Content Description is characterized
by an ID, its Annotations, the Media Segments and the related Content Object.
Annotations express metadata that describe a Content Description or a Media
Segment Descriptor. An Annotation is created by an Annotation Action (i.e.,
the execution of an Annotator Component). Multiple annotations can be cre-
ated for the same action (e.g., the image tags generated from a GWAP). An
Annotation is characterized by an ID, the activity that generated it (automatic
or manual) and the timestamp in which the annotation has been generated.
Each annotation has a degree of confidence, called Annotation Confidence, that
highlights its consistency; such confidence may result from an automatic anno-
tators or an human annotators (e.g., a face detection component may return a
value of 0.7).
From the Annotation class derives some sub-classes:

• Text Annotation, an annotation that contains textual values in a given
language (e.g., user comments, tags, etc.).

• Numeric Annotation: an annotation that contains numerical values (e.g.,
frame number, the milliseconds elapsed, etc.).

• Boolean Annotation

• Low-level Features, an annotation that contains array(s) of numerical val-
ues, which, for instance, may represent the result of a numerical analysis
on the Content Object (color histograms, SIFT descriptors, etc.).

• Entities, see Section 4.1.3.

• Media Segments are the result of a segmentation process (e.g., temporal
segmentation, spatial segmentation, etc.). Each Media Segment has its
own ID, a Title, the Segmentation Criteria (e.g., temporal, spatial) and
a set of annotations. Within the Content model, Media Segments are
described by the Media Segment Descriptors.

Figure 4.5 draws the model described so far.

4.2.1.3 Entities

Entities are a specialization of Annotations. An Entity is an object of the real
world which is important to be denoted with a name (e.g., the city of Como).
Entities are used to annotate a multimedia object with the place, the person or
the event it refers to.
We distinguish entities into two types:

• Basic types:

– Location, an entity for which the spatial dimension is relevant. It
refers to spatial objects, real entities occupying regions of space (e.g.,
regions, cities, boundaries, parcels of land, water bodies, roads, build-
ings, bridges, etc.).
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Figure 4.5: The Content Description model
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– Organization, corporations, agencies, and other groups of people de-
fined by an established organizational structure are all examples of
organizations.

– Event, something that happens at a given location and time, for
example a conference, a party or a battle.

– Person, a human being, for instance Barack Obama, the president of
the USA.

• Media types:

– File, it corresponds to a computer file and is used for storage purposes
(e.g., the file containing the SIFT descriptors of an image).

– Image file, a computer file used to store a graphical object (e.g., a
photo or a scanned document).

– Video file, a computer file used to store recordings constituted by a
sequence of images and audio.

Entities are an open schema ad can be extended with new entity types.

4.2.2 The Action Model

Within our application, an Action corresponds to an event that involves the
interaction with, the processing, or the creation of, Content Objects and Anno-
tations. we identify two types of actions:

• Automatic Actions, if they are performed by software components (e.g.,
temporal video segmentation software, object recognition software, etc.).

• Human Actions, if they are performed by Performers on a Conflict Reso-
lution Platform (e.g., social networks).

As depicted in Figure 4.6, Human Actions are modeled as Tasks on the Conflict
Resolution Platform (see Section 4.3).

4.2.3 The Content Processing Model

In the implementation of our multimedia human-enhanced search-based appli-
cation (hSBA), described in Chapter 6, all the content analysis components
are executed within a framework for the management of unstructured informa-
tion (i.e., SMILA). In the SMILA13 approach the processes are executed within
Pipelines, which orchestrate the execution of System Components. System Com-
ponents include also the Annotations Components. System Components may
act as Content Provider for Content Objects generated within the search appli-
cation (e.g., the key-frames extracted from a video). The Content Processing
model, depicted in Figure 4.7 aims to give a description of the processing on the
contents that takes place within the application.

13http://www.eclipse.org/smila/

52



4.2. The Data Model

Figure 4.6: The Action model
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Figure 4.7: The Content Processing model

4.3 The Human Enhancement Model

In this section we focus our attention on the enhancement that Human Com-
putation may introduce in a multimedia search-based application (SBA).
The outcomes of the software analysis components are not always reliable and
this fact has an impact on the overall quality performances of the application.
Especially, when dealing with multimedia contents, software components are
more subjected to errors, due to the complexity of the analysis to be performed.
Conversely, some multimedia analysis tasks are trivial for humans (e.g., object
recognition), hence humans and crowds can be precious allies for software com-
ponents in order to achieve an higher quality in the results produced.
First, we will provide a suitable data model (i.e., the Human Enhancement Data
model) to describe the items that humans performers have to process. Then,
we will introduce a novel process (i.e., the Human Enhancement process) that
characterizes human-enhanced SBA w.r.t. to classical SBAs.

4.3.1 The Human Enhancement Data Model

In Section 4.2.1 we presented a data model to describe the multimedia con-
tents managed by our multimedia human-enhanced search-based application.
Humans play a central role in our application as they are involved so to im-
prove the quality of content analysis and querying, beyond the limitations of
the state-of-the-art content analysis components.
We will refer to the activities that include human computation operations as
Conflict Resolution Tasks. The name Conflict Resolution highlights the usage
of humans’ capabilities to solve conflicts that might arise during the analysis of
multimedia contents.
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During the analysis of a Content Object (i.e., Annotation Actions) conflicts may
arise when there are lacks or contradictions in the object’s annotations:

• Missing Annotation: the performer of the analysis (either an automatic
component or even a human worker) is not able to find a suitable Anno-
tation for the analyzed content.

• Uncertain Annotation: the Annotation Confidence falls in an confidence
interval that cause the Annotation to be considered uncertain (e.g., the
result of a matching between two images).

• Inconsistent Annotation: two different annotators produced conflicting
annotations on the same Content Object.

A Conflict is characterized by an ID, by either a set of Annotations (i.e., the
Conflictual Annotations) or a set of Content Objects (i.e., Conflictual Objects)
that generated it, and the Conflict Resolution Task produced in order to solve
it.
When a conflict occurs a Conflict Resolution Task is triggered. The Conflict
Resolution Task (e.g., comparing two pictures) is executed on one or more Con-
flict Resolution Platforms (i.e., social network or a human computation plat-
form) and assigned to a human performer.
In case of complex computations a Conflict Resolution Task can be organized
in a Macro Task, which represents a workflow composed by atomic tasks (i.e.,
Micro Tasks), in order to achieve an high-level goal. A Micro Task may consist
either of a preference task or data manipulation task that typically does not re-
quire any particular skill to be performed. Preference tasks correspond to social
interactions such as like, dislike, comment or tag, while data manipulation tasks
refer to simple human computation activities such as create, order, complete,
find or cluster. For instance, the optimal bounding boxes detection Macro Task
may consist of an object recognition task, that identifies the position of the
objects inside an image, and of a bounding box used to re-shape tasks to refine
the bounding boxes around the objects.
A Performer is a Person (see Section 4.2.1.3) that consumes or produces re-
sources when he/she is requested to solve some computation tasks to resolve a
conflict. The human worker performs Conflict Resolution Tasks on a Conflict
Resolution Platform. A Performer can be subscribed to one or more Conflict
Resolution Platforms and its profiles on each platform are described by the Con-
flict Resolution Platform Membership relationship.
Figure 4.8 illustrates the Conflict Resolution model.

4.3.2 The Human Enhancement Process

The Human Enhancement process is in charge of managing the Conflict Reso-
lution Task, design a set of suitable Crowd Tasks, assign the tasks to the human
performers and merge the results.
The Human Enhancement process specializes and embodies the general frame-
work presented in [Bozzon et al., 2012c]. The process is composed by a set of
activities:

• the Human Task Design,
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Figure 4.8: The Conflict Resolution model

• the Task Deployment,

• the Task Execution

• and the Output Aggregation

Figure 4.9 draws the set of activities that forms the Human Enhancement pro-
cess.

4.3.2.1 Human Task Design

Once a Conflict Resolution Task is defined, the Human Task Design activity is
in charge of designing the Crowd Tasks (a.k.a. Macro Tasks) needed to achieve
the resolution of the conflict and the modalities for their execution on the Con-
flict Resolution Platform (i.e., social networks, crowdsourcing platforms). For
each created Crowd Task, the Human Task Design activity builds a Task Ex-
ecution GUI ; the GUI and the user interaction design depend on the Conflict
Resolution Platform (e.g., post on a Facebook profile, task published on Ama-
zon’s Mechanical Turk, etc.).
Prior to the Task Deployment activity, at this stage the Task Deployment Cri-
teria are defined. These criteria include the Content Affinity Criteria and the
Execution Criteria. The former ones relates to the topic of the task (i.e., object
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Figure 4.9: The Human Enhancement process

recognition) and can be used in the next stages, when defining the User Selec-
tion Strategy to select the human performers to assign to a task, according to
their capabilities and tasks preferences. Indeed, the Execution Criteria comprise
the Platform Selection Strategy (i.e., the methods to choose the best resolution
platform on which send the conflict for the resolution) and the Conflict Resolu-
tion Strategy. the latter strategy dictates the characteristics of the execution of
the crowd task, like (i) the budget, both in terms of time and money, (ii) the
desired performers profiles (e.g., language, culture, skills, etc.), (iii) the number
of performers involved, (iv) the result aggregation method (e.g., majority vote)
and (v) the number of outputs to be returned (e.g., for validation purposes).

4.3.2.2 Task Deployment

This activity is in charge of the assignment to the human performers of the
Crowd Tasks defined in the Human Task Design stage. The Task Deployment
activity is composed by two sub-activities: the People to Task Matching and
the Task Assignment.
According to the Conflict Resolution Strategy defined at the previous stage, the
People to Task Matching activity selects the best set of performers to execute a
given Crowd Task. The Conflict Resolution Platform is queried in order to re-
trieve the most suitable set of performers. We define a performer to be suitable
for the execution of a Crowd Task if he, or she, respects the Content Affinity
Criteria (i.e., the topic of the task, performer task preferences) and the Execu-
tion Criteria (i.e., the skills of the performer, the difficulty of the task). The two
criteria produce respectively a content-based and an execution-based performers
rankings; the combination of these two rankings gives us the performers ranking
among which the top-k performers can be selected for the task assignment.
During the Task Assignment activity the Crowd Task is assigned to the selected
performer.

4.3.2.3 Task Execution

At this stage the performers execute the Crowd Tasks. To cope with the un-
certainty on the quality of the performers’ performances, the same task can be
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assigned to multiple performers. Thus, for the same task we might have multiple
outcomes.

4.3.2.4 Output Aggregation

The Output Aggregation activity merge the outcomes of the Task Execution
activity in order to produce the final task result. At this stage an aggregation
policy, such as Output Agreement (see Quality requirement in Section 3.2), may
need to be introduced.

4.4 The Process Model

In this section we define and detail the processes that compose our multimedia
human-enhanced search-based application. The model we present is based on
the studies reported in [Bozzon, 2009].
First, we introduce the Indexing process, which includes several activities, such
as the retrieval of the contents to be managed by the application, the analysis of
the content items and their indexation within the application. For the purposes
of this thesis, we will focus on the Content Analysis activity, highlighting the
presence of human computation tasks.
Then, we introduce the Search process model, which deals with the management
of the queries and result presentation to the users.

4.4.1 The Indexing Process

The Indexing process in a search-based application is the activity that manages
the contents’ life-cycle. As depicted in Figure 4.10 is composed by three macro-
activities:

• the starting one is the so-called Content Registration which deals with
the fetching of the raw contents from one or more data sources and their
registration into the application;

• the next activity is the Content Analysis, in which contents are analyzed
by a set of components (automated or human-based) and enriched with a
set of annotations;

• finally, the Content Indexation activity translates the outcomes of the
previous activities in an indexing language, in order to feed the search
engine indexes.

Figure 4.10: The Indexing process
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Within our application both Content Analysis and Content Indexation activities
may be executed several times in the Indexing process; this may happen when
the analysis of the content is performed in an incremental fashion. For instance,
the annotations of a content object, that has been already indexed, are sent to
the crowd for further processing (e.g., validation); when the application receives
these outcomes of crowdsourced tasks overtime from the Conflict Resolution
Platform, thus also the application indexes need to be updated.

4.4.1.1 Content Registration

The Content Registration process is the triggering point for the whole Indexing
process. Within this process, Content Objects to be processed by the search-
based application are found and retrieved from the data sources. Data sources
can be file systems, repositories, the Web, databases and, in a Human Com-
putation view, even users (i.e., Content Providers). Once contents are fetched,
the content items are registered into the application (i.e., stored in order to be
consumed by the application components).
The content items consist of the multimedia file to be indexed (e.g., a video, an
image) and, in certain cases, also of the annotations provided by the contents’
provider itself (e.g., the textual description of a YouTube video given by the
owner). Hence, a content item may already hold some annotations before being
processed by the application annotators.
The Content Registration process can be further split into four main stages:

• the Content Retrieval process,

• the Content Storage process,

• the Content Validation

• and the Annotation Storage process

Figure 4.11 draws the steps that compose the Content Registration process.

Figure 4.11: The Content Registration process

Content Retrieval Content Retrieval process relates to the actual fetching
of the multimedia resources from the data sources. During the fetching of a sin-
gle resource, multiple pieces of information can be retrieved; for instance, when
fetching a video from an HTML page, the application may retrieve the video
object and some other information, like the title, the tags and its description.
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Inside the application, these information are attached to the multimedia content
object as usual annotations.
The design of this process depends on the Retrieval Policy (see Design Dimen-
sions, Section 2.4.4), which itself depends on the type of data source from which
we fetch the contents. The two main policies for retrieval are push and pull
modalities.
The push mode requires the data sources to notify the application, when a new
information item is available. Thus, the Content Retrieval process is triggered
by the content provider and such operation can be either manual or automatic.
In our human-enhanced approach the push mode can be used to allow users
to provide new multimedia contents to the application, in order to enrich and
extend our indexes. For instance, in a trademark logo detection application,
users could provide to the system new logo images given a brand name, im-
proving the diversity of the logo instances indexed in the system. Moreover,
another example of manual triggering of the Content Retrieval process in the
logo detection application could occur in the case the system is queried with
an unknown brand (i.e., not indexed yet): in addition to the usual “No result
found” message, the user may have the chance to start a new instance of the
Indexing process pushing the name of the brand to be processed.
Usually, the push mode is used on limited and controlled data sources, in which
the update frequency is low.
Indeed, the pull mode, is used when it is impossible for the data source to no-
tify the application about new content, due to its size or heterogeneity (e.g., the
Web). Thus, the application should periodically explore (i.e., crawl) the data
source in order to catch changes in the data source status (e.g., addition of a
resource, update of a resource, etc.).

Content Storage This activity stores the multimedia resource within the
application and assigns a unique identifier to it. The goal of the Content Storage
activity is to make multimedia content items available for the following indexing
processes.

Content Validation The Content Validation activity has a threefold pur-
pose:

• perform controls on the format of the content items to filter out resources
not manageable by the application;

• collect and create annotations coming from the Content Provider ;

• check the legitimacy of the content items, in order to with respect to the
application requirements, by validating the Content Provider ’s annota-
tions.

At the latter step checks are performed in order to exclude contents that are
not indexable, such as duplicates, materials protected by copyright and illicit
or offensive contents.

Annotation Storage The annotations created in the Content Validation
stage are stored in order to make them available to the following Content Anal-
ysis process.
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4.4.1.2 Content Analysis

In the Content Analysis process, the content items are analyzed in order to
extract and produce annotations that can enrich their representation within the
application. In addition, the Content Analysis process may post-process the
annotations produced in the previous Content Registration process.
The activities that take place at this stage depend on the data managed by the
application and on the underlying search engines (see Data homogeneity, Data
Analysis and Search Technology design dimensions in Section 2.4.4). In our mul-
timedia human-enhanced search-based application (hSBA), we limit our scope
on the management of multimedia objects, such as videos and images. The
same content item can be processed in several ways, hence the Content Anal-
ysis process may be not unique and there may be alternative content analysis
models, composed by different sets of operations.
Within the Content Analysis process, each operation usually depends on the
outcomes of another operation, thus they must be performed in a particular
order. For instance, the detection of the key-frames within a video must hap-
pen before the extraction of low-level feature descriptors from the key-frames
themselves.
Furthermore, some operations may be executed in parallel, for instance the clas-
sification of the audio track of a video and the low-level feature extraction of
the video key-frames can be performed simultaneously.
All the analysis operations that can be carried out at this stage can be aggre-
gated in three main stages:

• Content Preparation,

• Content Processing

• and Annotation Storage.

Figure 4.12 depicts the stages in the Content Analysis process.

Figure 4.12: The Content Analysis process

Content Preparation This activity performs some pre-processing operations
on the Content Objects, like read them from the storages and transform them
into a suitable format. For instance, a video in .AVI format may need to be
converted into .MPEG format in order to be processed by the video segmenta-
tion component.
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Another example is given in the logo detection application (see Chapter 6): the
Content Objects to be analyzed by the annotators are the video key-frames,
hence key-frame detection and extraction are operations that we consider as
part in the content preparation process.

Content Processing This activity is the core step in Content Analysis pro-
cess. At this stage all the analysis operations on the multimedia content objects
take place and annotations on the content objects are produced by automatic
components. Typical analysis operations on multimedia contents are: video
temporal segmentation, object detection, audio segmentation, audio classifica-
tion, image matching. Notice that most of the operations reported require the
computation of the low-level features of the multimedia content object (e.g.,
color histograms, local descriptors).
Automatic analysis components extract annotations and associate to them a
value of confidence, that represent the reliability of the outcome. In a human-
enhanced application some analysis operations on multimedia contents are per-
formed by human beings. As proposed in [Bozzon et al., 2012c], human compu-
tation can enter in the content analysis workflows as a validation of the outcomes
of the automatic annotators. For instance, humans could validate the results
of an image matching component, which uses SIFT descriptors and RANSAC
algorithm to match images. The confidence of the annotation returned by the
software analysis component can be used as discriminant for the annotation’s
quality: annotations having the confidence value above a threshold are consid-
ered as reliable, while annotations with a confidence value falling in a lower
range are marked as uncertain. As the name of the latter class suggests, within
uncertain annotation may be wrongly classified also good annotations, thus hu-
mans can help in correctly classifying the annotations and, thus, in improving
the annotators’ performances in terms of quality.
The main drawback in the addition of human computation tasks in a Content
Analysis process is the impact on time performances of the application (see
Chapter 3) and the blocking effect that these tasks may have in the information
flow of the application.
Thus, in our information flow, when the outcome of the Content Analysis is
uncertain its validation is allocated to the Human Enhancement process, that
we will discuss in Section 4.3.2.

Annotation Storage Annotations extracted and generated in the Content
Processing step are merged, associated to the respective Content Objects and
stored.
Among annotations, the Content Processing process may also create new con-
tent items for further analysis or later reuse. For instance, the key-frames
extracted from a video objects are content items themselves on which image
content analysis can be carried out.

4.4.1.3 Content Indexation

After the Content Analysis process, each Content Object is enriched by a set of
annotations. In order to enable the search onto the processed Content Objects,
annotations must be put in the search engine indexes.
Before annotations are put into the indexes, they need to be to be transformed
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into a suitable format, according to the technology of each search engine within
the search-based application (plain text, XML, content-based, etc.).
Thus, also the Content Indexation process can be split in two steps:

• Index Entries Preparation, the activity in charge of transform annotation
into a suitable index format.

• Index Entries Indexing, the actual update of the search engine’s indexes.

Figure 4.13 shows the two activities in the Content Indexation process.

Figure 4.13: The Content Indexation process

4.4.2 The Search Process

Parallel to the Indexing process, a search-based application has to provide to
users the means to query the indexes and to obtain results. According to the
framework presented in Section 2.4.3, these tasks are in charge to the Search
process, which allow the user interface to interact with the underlying search
technologies. The Search process manages the queries (e.g., reformulates, trans-
forms, expands them) and then forward them to the search engines and viceversa
aggregates the results retrieved from the search engine’s indexes and return to
the user interface for the presentation to the users.
Hence, during the Search process several different activities take place; as for
the Indexing process we can group them three main stages:

• the Query Management, that is in charge of the query processing;

• the Search Orchestration, which uses the queries to interact with the search
engines;

• and the Result Presentation, which aggregates and the outcomes of the
previous activity.

Figure 4.14 depicts the activities that take place during the Search process.
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Figure 4.14: The Search process

In a human-enhanced search-based application, humans could contribute in
the Query Management stage.

4.4.2.1 Query Management

The Query Management activity, as showed in Figure 4.15, is composed by three
sub-activities:

• the Query Analysis,

• the Query Adaption,

• and the Query Transformation

Figure 4.15: The Query Management process

Query Analysis In the Query Analysis step the queries are analyzed in order
to check their correctness and to enable their execution within the application.
According to the format of the query (e.g., textual, content-based, etc.) different
query analysis are performed. For textual queries, query terms are subjected
to linguistic processing (e.g., stemming, lemmatization, stop words removal,
etc.). Content-based queries, instead, are processed in order to extract low-level
features from the multimedia query terms to be use in similarity searches.
At this stage humans can help the application in several ways, performing tasks
such as:

• check the syntax of the textual query terms (i.e., spell-check);

• provide new query terms to enrich the query terms, both textual and
content-based queries (i.e., query expansion);
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• transform textual query terms into content-based query terms and vicev-
ersa.

Hence, also during the Search process, the Human Enhancement process could
be triggered. For instance, humans may be asked to provide a set of images
given a concept (e.g., a location, a brand name, etc.), once the set of images is
returned to the application, it is used to query the content-based search engine.

Query Adaptation As well as the Query Analysis step, the Query Adapta-
tion step may modify the query terms. Such changes are introduced according
to some contextual variables, like the user device or the user profile (e.g., expand
the query with the geographical location of the device).

Query Transformation The Query Transformation step takes as input the
analyzed and adapted queries and transform them into a format suitable for the
search engines of the application, according to their Search Technology (e.g.,
textual, content-based, etc.).

4.4.2.2 Search Orchestration

The Search Orchestration process performs the actual search operations on the
search engines. It is composed by two stages: Query Planning and Query
Execution activities.

Query Planning The Query Planning activity (i) defines the query plan and
(ii) dispatches the queries to their respective search engine.

Query Execution The query plan triggers the multiple Query Execution
tasks that send queries to the search engines a collect their outcomes.

4.4.2.3 Result Presentation

Finally, the Result Presentation process is in charge of managing the results
produced by the queries and making them suitable for the user interfaces. As
depicted in Figure 4.16, the process is performed in three steps: the Result
Aggregation, the Result Enhancement and the Result Transformation.

Figure 4.16: The Result Presentation process

65



Chapter 4. A Conceptual Framework for Human-Enhanced Multimedia Analysis and Search

Result Aggregation If the search-based application contains more than one
search engine, the Result Aggregation step collects the outcomes of each search
engine and merges them to produce a unique and coherent result set. For in-
stance, in a multimedia search-based application user can send a query composed
by a word and an image, with the following semantics: retrieve all the images
having the word among its tags and that are similar to the sample image.

Result Enhancement The Result Enhancement activity attaches to the re-
sult set information coming from data sources (different from the search engines’
indexes), in order to enrich the representation of the results. For instance, an
audio search-based application may enrich the results associating to each song
the lyrics, which are retrieved from the Web.

Result Transformation The last step in the Result Presentation process
is the Result Transformation activity in which the format of the result set is
adapted (either at design time or at query time) according to user interface.

In Chapter 5 we will describe the case study of a human-enhanced logo detection
application and materialize the concepts and the models we have presented in
this chapter.
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5
Use Case: The Logo

Detection
In the previous chapter we introduced a framework for a multimedia search-
based application, in which Human Computation is involved in the processing
of the contents and the annotations produced by automatic components. In
this chapter we present a case of study which materializes the concepts and the
models of our framework.
The use case on which we focus on is a search-based application for trademark
logo detection within a video collection.

Figure 5.1: The logo detection Use Case Diagram

As depicted in the use case diagram in Figure 5.1, the application should:

• allow users to query with the name of a brand (e.g., Coca Cola) and should
produce a report including all the occurrences of the brand logos in a video
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collection;

• allow users to start the processing of a new brand, in case of the query
brand has not been processed yet;

• allow administrators of the application to process new videos.

In the next section we will delve into the processes needed in the logo detection
application, then in Section 5.2 we will fit the data managed by the application in
the data model we introduced in Chapter 4, finally in Section 5.4 we will review
the use case processes according to the process model introduce in Section 4.4.

5.1 The Use Case Activities

In the logo detection application we are presenting in this thesis, the content
processing flow is completely synchronous and has no delays due to the uncer-
tain duration of the crowdsourced tasks. Indeed, the human computation tasks
(i.e., validate logo instances, validate matches) cause just asynchronous updates
on the application index (i.e., the match index).
According to this approach the index is built in an incremental fashion and we
can keep track of the changes (i.e., events) that may happen in the index after
the human computation tasks.
In order to perform a content-based search on the video collection we retrieve
top-32 Google Images14 logo instances.
The core logo detection application is the matching task between logo instances
and key-frames of the videos. The matching is performed by computing the
image similarity on the SIFT descriptors of the logo instances and the video
key-frames. In literature [Lowe, 2004] is well-known that image similarity based
on SIFT is largely affected by the quality of the images; according to this and to
the fact that logo instances retrieved from Google Images may contain many ir-
relevant results (i.e., image not related to the brand), it make sense to introduce
a validation task, which exploits crowdsourcing (i.e., a human validation task),
to detect the real confidence of the logo instances (according to the brand name)
to be used in the content-based search. This logo confidence can be used in the
Result Presentation stage to discard the matches generated from low-confidence
logo instances.
Moreover, the image matching task is itself subject to errors, thus human valida-
tion can be used also for validating the uncertain outcomes of this task (i.e., the
low-confidence matches), providing a judgement on the generated low-confidence
matches (i.e., relevant/not relevant).
Parallel to the processing of the logo instances, the logo detection application is
in charge of retrieving the videos from the collection and process them in order
to detect the video key-frames and to compute the SIFT descriptors of each
key-frame to be used later in the matching task.
The logo detection application has been designed to support two modes: off-line
indexing and on-line indexing.
In the off-line indexing mode the application processes videos crawled from a
collection, simultaneously processes sets of logo instances related to a set of

14http://images.google.com
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Figure 5.2: The logo detection activities

69



Chapter 5. Use Case: The Logo Detection

brand name defined a-priori, collects the crowdsourced tasks outcomes, com-
putes the matches and puts them into the index.
In the on-line mode the logo detection application is triggered by a user textual
query (i.e., the name of a brand). If the brand name has already been processed
(i.e., the top-32 logo instances have been processed and compared with video
key-frames), it is used to query the match index and results are presented. On
the other hand, if it is the first time that the brand name is send to the applica-
tion then the logo retrieval process and the subsequent processes are triggered
to index on-the-fly new matches. This latter processes may last for several min-
utes, thus the end user has to wait for a while before receiving results from the
application.

5.2 The Data Model

In the next sections we will instantiate the data models presented in Chapter 4
for the scenario of the trademark logo detection application.

5.2.1 The Content Data Model

The multimedia items managed by the application are a set of videos belonging
to a collection (e.g., GroZi-120 15 multimedia database) and some sets of logo
images, each set related to a trademark (i.e., a brand). Hence, according to
the Content Data model described in Section 4.2.1, the application deals with
Video Objects and Image Objects. During the processing of each video, after
the detection of the video key-frames, other Image Objects are created, each one
associated to a detected key-frame.
The core data object that the application manages and indexes are the matches.
A match is one result of the Match logo instances in key-frames activity and
it is created just if the logo instance and key-frame have an image-similarity
(i.e., match confidence) greater than zero. In our approach a match is modeled
as a relationship between a key-frame and a logo instance, to which a value of
confidence and the bounding box coordinates are associated. According to our
model a match is a Similar Content Of relationship between two Image Objects
(i.e., the key-frame and the logo instance).
Figure 5.3 shows an instantiation of the Content Data model according to the
multimedia items managed by the logo detection application. The most impor-
tant annotations produced within the logo detection application are the low-level
features, i.e., SIFT descriptors, for each Image Object processed. These features
are needed by the matching software component to identify possible matches be-
tween key-frames an logo instances.
During the Process videos activity, the SIFT feature extractor component com-
putes the low-level features descriptors for each key-frame extracted from the
videos, and generates the low-level-features annotations. Similarly, in the Pro-
cess logo instances activity the SIFT feature extractor component computes
SIFT descriptors for logo instances retrieved from Google Images.
In Figure 5.4 we report the data model including the annotations. Once a set
of key-frames and a set of logo instances are processed, the SIFT descriptors
matching software component, beside creating the match relationships between

15http://grozi.calit2.net/grozi.html
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the key-frames and the logo instances Image Objects, generates the annotations
to be attached at the match relationships: the “found match” annotation (i.e.,
a textual annotation describing the match) and the bounding box coordinates.
To the former annotation an Annotation Confidence value is attached, which
corresponds to the image-similarity (i.e., the match score) computed by the
matching software component. Such confidence value, given an uncertainty in-
terval, is used as discriminant to identify Uncertain Annotations (i.e., uncertain
matches) to be validated by the crowd.

Figure 5.3: Instantiation of the Content Data model for the logo detection use
case
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Figure 5.4: Instantiation of the Content Description model for the logo detection
use case
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5.2.2 The Action Data Model

The operations on the multimedia items are modeled as Actions in the Action
data model (see Section 4.2.2). The actions performed are both Automatic
Actions and Human Actions. Automatic Actions comprise the processing of
the video, their key-frames, the logo instances and the matching process, while
Human Actions include the two validation tasks (see Section 5.3.1). Figure 5.5
draws an instantiation of the Action model and the Content Processing model
for the key-frame and the SIFT descriptors extraction actions.

5.2.3 The Content Processing Data Model

The logo detection application is implemented in the SMILA framework (see
Chapter 6), and its processes are instantiated in the SMILA pipelines. The
Automatic Actions that occur in the application are created by the System
Components. For instance, the SIFT descriptor extraction Action is created by
the SIFT descriptor extractor Software Component.
System Components are executed in the Processing Pipelines of the logo detec-
tion application, as follows:

• Video processing pipeline:

– Key-frame detection component

– Key-frame extraction component

– SIFT descriptors extraction component

• Logo retrieval pipeline:

– Google Images crawler component

• Logo processing pipeline:

– SIFT descriptors extraction component

• Key-frame matching pipeline:

– SIFT descriptors matching component

• Index update pipeline
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Figure 5.5: Instantiation of both the Action model and the Content Processing
model for the key-frame and the SIFT descriptors extraction actions
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5.3 The Human Enhancement Model

This section presents the instantiation of the Human Enhancement data model
and of the Human Enhancement process for the logo detection application use
case.

5.3.1 The Human Enhancement Data Model

Among the annotations created by automatic components, like the SIFT de-
scriptors extractor or the matching component, the logo detection application
receives also annotations generated by the Conflict Resolution Tasks. The crowd
is involved in resolving two different type of conflicts:

1. assign a confidence to the logo instances retrieved from Google Images
(i.e., Missing Annotation conflict);

2. determine the effective relevance of matches produced (i.e., Uncertain An-
notations).

In the former task the annotations generated by human performers are needed
to provide reliable level of confidence to the logo instance, as we cannot rely
on the rank given by Google Images. The logo confidence is used to build an
effective logo instance rank in terms of quality.
In the latter task the outcome of the crowdsourced Action is simply a Boolean
filtering (e.g., relevant/not relevant) on the matches identified by the automatic
matching component, that have a confidence within the uncertainty interval.
The Content Resolution Platform we consider as execution platform for our
crowdsourced tasks is the social network Facebook and the Micro Tasks to be
executed by the human performers are simple preferences tasks (i.e., like).
In the logo instances validation case, the Macro Task is the validation of the
top-32 logo instances retrieved form Google Images for a certain brand. This
Macro Task can be split in several Micro Tasks, in which a single performers
has to validate just a subset of the 32 logo instances. The activity of the human
performer is the selection (i.e., like) of the logo instances images that he/she
considers the most related to a given brand name. These subsets should be not
exclusive as we wish to collect more than one opinion on a certain logo instance
for higher reliability.
Indeed, in the match validation case, the Macro Task is the validation of a set
of matches (e.g., the matches generated from the top-32 logo instances for the
brand “Hefty”), which can be split in several Micro Tasks. Each Micro Task
consists in the validation of a subset of the matches. Given a set of couples
key-frame/logo instance, the human performer is asked to vote (i.e., like) the
couples in which the logo instance, or a similar one, appears in the key-frame.
In Figure 5.6 we provide an instantiation of the Conflict Resolution model for
the logo instances validation task.
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Figure 5.6: Instantiation of the Conflict Resolution model for the logo instances
validation task
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5.3.2 The Human Enhancement Process

In our use case, humans enter in the loop to provide a reliable validation on the
uncertain annotations (i.e., conflicts) produced by software components in the
application. As introduced in Section 4.3.2. the Human Enhancement process
is in charge of managing the resolution of the conflicts.
Conflict Resolution Tasks are triggered in two distinct moments during the
Indexing process (see Section 5.3.1), i.e., when:

• the top-32 logo instances are retrieved from Google Images;

• uncertain matches are identified by the matching software component.

The two situations trigger respectively the following Macro Tasks:

Validate logo instances The logo instances retrieved from Google Images
may contain irrelevant results (w.r.t. to the query brand name). Thus, we need
to annotate each logo instance with a level of confidence (i.e., logo confidence)
w.r.t. the brand name, used to retrieve them. As such task is very complex for
a software component, we opted to assign it to the human performers on the
Conflict Resolution Platform (i.e., Facebook).

Validate uncertain matches The key-frames/logo instances matching activ-
ity is subject to errors. The image-similarities (i.e., match confidences) returned
by the matching component range from 0 to 1. Thus, beside the selection of
an high confidence and a low confidence threshold, the match confidences can
be used to discriminate between good matches, uncertain matches and re-
jected matches. Humans can help the logo detection application in finding
good matches that the matching component wrongly classified as uncertain
ones.

When a Conflict Resolution Task arises, its management is allocated to the
Human Enhancement process that design a set of suitable Crowd Tasks, as-
sign the tasks to the human performers and merge the outcomes. The Conflict
Resolution Platform chosen for the execution of the Crowd Tasks is Facebook
[Bozzon et al., 2012c].
Due to its specific nature, the Human Enhancement process is performed be-
yond the boundaries of the logo detection application, thus it is delegated to
the Conflict Resolution Manager : CrowdSearcher [Bozzon et al., 2012a]. Figure
5.7 depicts the process for both logo instances validation and match validation
tasks. In the following sections we fit the activities of the Human Enhancement
process in the context of our use case.

5.3.2.1 Human Task Design

The Human Task Design is in charge of defining the Task Execution GUI, i.e.,
the interface that is provided to the human performers to fulfil the Crowd Tasks.
The GUI template is similar in both logo instances and match validation cases.
It simply consists in a list of images, each one associated to a checkbox:

• in the logo validation case a subset of the top-32 Google Images logo in-
stances is presented to the performers and each performer is asked to select
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Figure 5.7: The Human Enhancement process in the logo detection application

(i.e., checking the corresponding checkboxes) the logo instances he/she
consider to be the most relevant w.r.t. a given brand name.

• indeed in the match validation case a subset of uncertain matches (i.e.,
the couple key-frame/logo instance) identified within the logo detection
application is presented to the performers and each performer is asked to
select the key-frame/logo instance couples in which the logo instance (or
a similar one) actually appears in the key-frame.

The Human Task Design activity should also define the Task Deployment Cri-
teria in order to select the best performers for each task. For the scopes of this
thesis candidate performers are simply selected among the friends of the task
owner (e.g., a Facebook account associated to the logo detection application) on
Facebook, with no restrictions on their location, skills and preferences.

5.3.2.2 Task Deployment

In this activity the task owner connects to the Conflict Resolution Platform (i.e.,
Facebook) and collects the set of human performers in a worker pool, selecting
them from its friends list (i.e., People to Task matching step). Once performers
are selected the crowd tasks are assigned to them (i.e., Task Assignment step).

5.3.2.3 Task Execution

The Task Execution activity is implemented as a native Facebook application
that the performer has to install in order to perform the task, and, if he/she
wishes, to re-dispatch it to other friends.

5.3.2.4 Output Aggregation

The Output Aggregation activity is in charge to collect the outcomes of the
single Crowd Tasks assigned to human performers and to collect them in order
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to produce a unique result.
In our use case we use two different aggregation policy for the validation tasks:

• in the logo validation case, CrowdSearcher collects the number of votes
that each logo instance receives, the number of votes is used to compute
the confidence value (which ranges from 0 to 1) to the logo instance;

• indeed, in the match validation case, we use a majority rule approach.
CrowdSearcher collects the performers choices (checked or unchecked) for
each key-frame/logo instance couple, then a couple is considered relevant
if the number of checks (i.e., performers that voted for the couple) is more
than the number of unchecks.

5.4 The Process Model

In this section we will fit the logo detection application processes, introduced at
the beginning of this chapter, in the search-based application framework pre-
sented in Chapter 4. Moreover we will delve into the logo detection application
processes providing a detailed description of all the activity involved in the ap-
plication.
Figure 5.8 depicts the activities of the logo detection application highlighting
the coarse search-based application processes to which they are related (i.e.,
indexing, human validation and search).

5.4.1 The Indexing Process

In our logo detection application the indexing process is in charge of the following
tasks:

• retrieve the videos from the GroZi-120 video collection;

• retrieve the top-32 logo instances from Google Images, given a brand name;

• process each video (key-frame detection, key-frame extraction, etc.);

• compute the matches between key-frames and logo instances;

• index the found matches.

In the next sections we associate each one of the listed tasks to the related index-
ing process activity (i.e., Content Registration, Content Analysis and Content
Indexation).

5.4.1.1 Content Registration

As introduced in Section 4.4.1.1 the Content Registration activity has to feed
the whole indexing process, retrieving the information items to be processed and
indexed from the external data sources (e.g., file repositories, the Web, etc.).
As depicted in Figure 5.9, in our logo detection application the Content Regis-
tration activity comprises the following tasks:

• Content Retrieval :
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Figure 5.8: The coarse SBA processes in the logo detection application
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Figure 5.9: The Content Registration activity in the logo detection application

– Retrieve videos: the GroZi-120 video collection (29 video files in AVI
format) is stored in a directory on a local file system. A crawler is in
charge to periodically explore the directory in order to detect changes
in the video collection status (i.e., addition of a new video file). The
choice of a pull mode for the retrieval of the videos is due to the use
of the SMILA technology (see Chapter 6).

– Retrieve logo instances from Google Images: a software component
(i.e., the Google Photo crawler) sends a query to Google Images in or-
der to retrieve the top-32 images related to a given brand name. After
the retrieval, the Human Enhancement process is triggered (see Sec-
tion 5.3.2), in order to establish the actual confidence logo instances
w.r.t the brand name.

– Content Storage:

∗ Store videos

∗ Store logo instances

Both video and logo instances objects are uploaded on a Data Service
(see Section 6.1.2.1) that returns for each object an unique identifier,
that makes multimedia objects available for the following indexing
processes.

• Content Validation

– Filter logo instances: logo instances having an image format not
compatible with the annotator components (e.g., .gif image files) are
discarded from further processing.

– Collect video annotations: a set of annotations derived from the cor-
responding video file is associated to each video object (e.g., video
title, format, size, etc.).

– Create logo instance annotations: a set of annotations is created for
each logo instance image objects (e.g., brand name, URL, confidence,
etc.).

• Annotation Storage: the annotations collected and created in the previous
stages are store in SMILA compliant data structures (i.e., the SMILA
records).
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5.4.1.2 Content Analysis

The Content Analysis process carries out all the operations needed to perform
the content-based comparison between the videos and the logo instance objects.
To perform such comparison we need to compute the SIFT descriptors of the
logo instances and the SIFT descriptors of the key-frames of each video. Hence,
the videos need to be pre-processed in order to extract key-frames image objects.
Notice that this video pre-processing activity, produces new Image Objects to
be analyzed.
Once the new Image Objects have been produced, we can compute their SIFT
descriptors and use them to compute the image-similarity w.r.t. to the logo
instances image objects.
Figure 5.10 depicts the activities involved in the Content Analysis workflow.

As described in Section 4.4.1.2 within the Content Analysis process we can
identify four stages; here we report the logo detection application activity per-
formed at each stage:

• Content Preparation:

– Detect key-frames: a video analyzer component is used to detect the
key-frames in the videos.

– Extract key-frames: for each key-frame detected, a software com-
ponent is in charge of extracting the corresponding image file (e.g.,
.JPEG file) from the video file.

• Content Processing :

– Extract SIFT descriptors from key-frames: a software component is
in charge of detect the local features in the key-frame image object
and calculate the SIFT descriptors.

– Extract SIFT descriptors from logo instances: the same software
component is used to compute the SIFT descriptors of the logo in-
stances image objects.

– Match logo instances in key-frames: a software component performs
the matching of the SIFT descriptors of each key-frame/logo instance
couple and returns an image-similarity (i.e., match confidence) and
the coordinates of the bounding box surrounding the area in the key-
frame image in which the logo instance should have been detected. If
the match is classified as uncertain (see Section 5.3.2) the Human
Enhancement process is triggered.

• Annotation Storage: the annotations collected and created in the previous
stages are stored in SMILA compliant data structures (i.e., the SMILA
records).

5.4.1.3 Content Indexation

In our logo detection application the matches produced during the Match logo
instances in key-frames activity are the information items to be indexed and
searched by end users. According to the indexing technology provided within
SMILA, match are put in a Solr index (see Chapter 6). Hence during the
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Figure 5.10: The Content Analysis activity in the logo detection application
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Content Indexation activity, prior to the actual insertion in the index, match
annotations need to be translated in a format that the index can accept and
manage (i.e., Index Entries Preparation stage).
Figure 5.11 depicts the use case activities according to the Content Indexation
activity ones.

Figure 5.11: The Content Indexation activity in the logo detection application

Insertions and updates of matches in the index happen in three distinct
moment: after the computation of the matches and after the validation of logo
instances and of uncertain matches by the crowd. In addition, to the match
index, we need to keep track also of the searched brands and of the processed
logo instances (see Section 5.3.2), hence we put the processed logo instances
in another Solr index (i.e., logo index). The activities needed in the Content
Indexation activity are associated to the activity’s stages as follows:

• Index Entries Preparation:

– Prepare matches: matches annotations are converted in the index
format. For instance, in order to maintain the relationship integrity
between the match and the couple key-frame/logo instance to which
it is related, in the index we need to collapse the annotations of the
triple match/key-frame/logo instance.

– Prepare logo instances: logo annotations are converted in the index
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format. The annotations to index are simply the brand name and
the URL of the logo instance (i.e., returned by Google Images).

• Index Entries Indexing :

– Index matches: after the matches have been computed, their anno-
tations are indexed.

– Index logo instances: after the logo instances have been processed,
their annotations are indexed.

– Update match index : the match index is updated when we receive
the validation from the crowd. This can happen after the validation
of the logo instances (i.e., matches generated by the validated logo
instance are affected) and after the validation of a match.

5.4.2 The Search Process

Together with the activities needed to collect, annotate and index videos and
logo instances, our logo detection application provides to user the means to
search for the occurrences of a trademark logo (i.e., a brand) in the GroZi-120
video collection.
The user expresses his/her query in a textual form, simply providing to the
application the name of a brand (e.g., Coca Cola). Then, the logo index is
checked:

• if the brand name is already present in the logo index, the brand name
is used to query the match index and related matches are retrieved and
presented in the user interface;

• otherwise, this means that there are also no matches to display. Hence,
we let the user to decide whether he/she want to start a new Indexing
process fed with the searched brand name.

Figure 5.12 draws the use case activities within the Search process.

5.4.2.1 Query Management

The Query Management activity is simply composed by the Query Analysis
stage, in which the brand name is subjected to linguistic processing (e.g., nor-
malization, stemming).

5.4.2.2 Search Orchestration

The Query Planning and Query Execution activity are managed by SMILA
framework, which provides the services to interact with the index.

5.4.2.3 Result Presentation

This activity is in charge of managing the results retrieved from the index. As
the SMILA framework provides a single search engine on top of the Solr index,
there is no need of Result Aggregation stage. The only process to be performed
on the results is the transformation into a format that the user interface can
consume (e.g., JSON) in order to produce the final presentation of the results.
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Figure 5.12: The use case Search process

In Chapter 6 we will provide an implementation of the logo detection appli-
cation built on top of the SMILA framework.
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6
Implementation and

Evaluation
This chapter describes the actual implementation of the logo detection appli-
cation, instantiating the application processes and the activities described in
Chapter 5.
The application has been developed within the CUbRIK project16 and it served
as a blueprint for the forthcoming projects’ applications.
The Indexing and the Search processes are implemented in the SMILA frame-
work, while the Human Enhancement process is allocated to the CrowdSearcher
framework (see section 2.3).
SMILA “is a framework for creating scalable server-side systems that process
large amounts of unstructured data in order to build applications in the area
of search, linguistic analysis, information mining or similar”17. It is an open-
source project developed by Attensity18 and part of the EclipseRT project19.
In the following sections:

• we delve into the architecture of the logo detection demo, in the SMILA
environment;

• we present the user interface by which end user can interact with the
application in order to find the occurrences of a trademark in the GroZi-
120 video collection;

• we present the performance of the application in terms of indexing and
searching time on the GroZi-120 video collection.

16CUbRIK is an European research project, partially founded by the European Union, which
aims to “introduce real innovative patterns inside the Multimedia search domain, proposing
the paradigm of human-enhanced time-aware multimedia search, driven by openness at all
levels”, http://www.cubrikproject.eu.

17http://wiki.eclipse.org/SMILA/Documentation/Architecture Overview
18http://www.attensity.com/home/
19http:/www.eclipse.org/eclipsert
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6.1 Architecture

Prior to presenting the architecture and the components that implement the
application processes (i.e., Indexing, Human Enhancement and Search), we in-
troduce the SMILA architecture and the taxonomy that we will adopt in the
presentation of the architecture.

6.1.1 SMILA Architecture and Taxonomy

As depicted in Figure 6.1, SMILA architecture is composed by two main distin-
guished parts:

• First, data has to be imported into the system and processed to build an
search index or extract an ontology or whatever can be learned from the
data.

• Second, the learned information is used to answer retrieval requests from
users, for instance search requests.

Figure 6.1: The SMILA framework architecture

In the first process data sources are crawled or an external client pushes the
data from the source into the SMILA system (e.g., through the HTTP ReST
API). Often, the data consist of a large number of documents (e.g., a file sys-
tem, web site, or content management system) to be processed. In SMILA, each
document is represented by a record (see Section 6.1.1.1), which describes the
metadata of the document (name, size, access rights, authors, keywords, etc.)
and its the original content.
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To process large amounts of data, SMILA can distribute the work to be done
on multiple SMILA nodes (i.e., machines). Therefore, an on-purpose compo-
nent (i.e., the bulkbuilder) separates the incoming data into bulks of records of a
configurable size. For each of these bulks, the Job Manager (see Section 6.1.1.3)
creates a set of tasks for the workers in order to process the bulks and produce
other bulks, which contain the results of processing.
When a new worker is available, it asks the Task Manager (see Section 6.1.1.4)
for tasks to be done, it does the work and finally notifies the Task Manager
about the result.
Workflows define which workers should process a bulk in what sequence. When-
ever a worker finishes a task for a bulk successfully, the Job Manager can create
follow-up tasks based on the workflow definition. In case a worker fails process-
ing a task (e.g., because the process or machine crashes or because of a network
problem), the Job Manager can decide to retry the task later and so ensure
that the data is processed even in problematic conditions. The processing of
the complete data set using such a workflow is called a job run.
Eventually, the final step of the asynchronous processing workflow will write the
processed data to a target system, for instance, to a database or an index. The
target system can be used to process retrieval requests which are being handled
by the second part of the system. Such requests are coming from an external
client application via the HTTP ReST API. They are usually of a synchronous
nature, this means that the user sends a request and then waits until the results
are ready.

6.1.1.1 Records

In SMILA, the record is the fundamental data structure that contains all the
data to process (e.g., contents and metadata of a document or multimedia item).
A record consists of metadata and optional attachments.

Metadata consists of typed values (literals) arranged in Maps (i.e., key-
anything associations) and sequences (lists of anything). Values can be strings,
long integers, double precision floating point numbers, booleans, dates (year,
month, day) or datetimes (date and time of day, down to seconds). Maps and
sequences can be nested arbitrarily, map keys are always strings. Notice that
all metadata of one record is arranged in a single Map.

Attachments contain any binary content (e.g., the binary stream of a video),
possibly of large size.

Figure 6.2 draws the SMILA data model. Records are created by the crawlers.
The crawler iterates over the elements (e.g., videos) of the data source (e.g.,
video collection) and creates a record for each element and send them to SMILA.

6.1.1.2 Blackboard

The blackboard holds the records while they are pushed through a pipeline.
Pipelets are invoked with a blackboard instance and a list of IDs of records to
process. The pipelet can then access the blackboard to get record metadata and
attachments.
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Figure 6.2: The SMILA data model

The blackboard hides the handling of record persistence from the other SMILA’s
services. The blackboard instance is released after the pipeline execution has
been finished, for each pipeline execution a new blackboard instance is created.

6.1.1.3 Job Manager

The Job Manager controls the processing logic of asynchronous workflows in
SMILA, by regulating the Task Manager, which in turn generates tasks and
decides which task should be processed by which worker and when.

Asynchronous wokflows An asynchronous workflow consists of a set of ac-
tions. Each action connects the input and output slots of a worker to the
appropriate buckets. A bucket is a virtual container of data objects of the same
type. The most common data object type in SMILA is the record bulk, which is
just a concatenated sequence of records (including attachments). Record bulks
are created by the Bulk Builder.
The Bulk Builder is the standard entry worker for data to an asynchronous
workflow in SMILA. It receives single records and combines them into one sin-
gle bulk for further processing in an asynchronous workflow.
When a new data object arrives in a bucket connected to the input slot of a
worker, a task is created for the worker to process this object and to produce
data object with the results in the buckets connected to the output slots. Thus
the workflow describes a data flow of the data objects through the workers. The
workflow usually starts with a worker that creates data objects from the data
which have been extracted from an external data source (e.g., extracted by a
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Crawler worker) or by data pulled using the SMILA REST API. The workflow
ends either when workers do not have output buckets, or the output buckets are
not connected to input slots of other workers.

Synchronous workflows (BPEL pipelines) A pipeline is a synchronous
workflow composed of components called pipelets. Pipelets that processes a list
of records given as the input. Synchronous means that the invoker of the pipeline
blocks until the execution has finished, and, if the processing is successful, a set
of result records is returned that represents the result of the processing.
The pipelets lifecycle and configuration is managed by the workflow engine. An
instance of a pipelet is not shared by multiple pipelines, even multiple occur-
rences of a pipelet in the same pipeline do not share the same instance. The
configuration of each pipelet instance is included in the pipeline description.
The default SMILA workflow processing engine uses BPEL to describe pipelines.

6.1.1.4 Task Manager

The Task Manager is the component that administrates and delivers tasks dur-
ing a job run. Tasks are stored in internal queues and are consumed by workers
pulling them for processing. They are produced as initial tasks or as follow-up
tasks when workers finish their processing of their current task.
The Task Manager guarantees that tasks are delivered at least once, but, in
certain cases, tasks may be also delivered more than once (e.g., when process
crashes or timeouts occur).

6.1.2 Architecture Overview

In this section we present the architecture of the trademark logo detection appli-
cation implemented in the SMILA framework, in terms of asynchronous work-
flows, workers and BPEL pipelines.
Figure 6.3 depicts the overall architecture of the logo detection application. The
core of the application are the Indexing workflows, which are in charge of:

• retrieving both videos and logo instances,

• process them,

• find matches between video key-frames and logo instances,

• send to CrowdSearcher logo instances and matches to be validated,

• put logo instance and matches in the Solr index;

Indeed, the Search workflow, highly based on the SMILA default Search BPEL
pipeline is in charge of query the Solr index and produce the result set in a
JSON format, to be consumed by the user interface.
Two fundamental components in our architecture are the Data Service and the
SMILA Record Storage.
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Figure 6.3: The logo detection application architecture

6.1.2.1 Data Service

The Data Service is a Web service that allow resources (i.e., videos, key-frames
and logos) to be updated. Once a new resource is uploaded, the service returns
an unique identifier, the URI (i.e., the Media Locator see Section 4.2.1). Query-
ing the Data Service with an URI the related resource can be retrieved.
The interaction with the Data Service are managed by the File Utils OSGi
service which provides to the SMILA components (i.e., workers, pipelets, etc.)
the interfaces to upload and download files and to retrieve all the URIs of the
resources uploaded in a certain directory.

6.1.2.2 Record Storage

The Record Storage20 is a SMILA service, based on a Derby database, which
provides an easy way to store and access record objects. It persists only the ID
and the metadata of the records. Given the record ID it is possible to retrieve
the corresponding record.

6.1.3 Indexing workflows

The Indexing workflows include six different workflows:

20http://wiki.eclipse.org/SMILA/Documentation/Record Storage
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• the Logo instances Retrieval workflow;

• the Logo Processing workflow;

• the Video Processing workflow;

• the Key-frame Matching workflow;

• the Index Update workflow;

• the Match Index Update workflow.

6.1.3.1 Events tracking

Among the retrieval, the analysis and the indexing of the multimedia Content
Objects that allow us to perform the actual logo detection, we should also pro-
vide the means to track the events that occurs in the application, in order to
exploit the benefits introduced by Human Computation. To do so, we insert in
the records associated to the multimedia objects to be processed (i.e., videos,
key-frames and logo instances) a metadata called events. Such metadata is a
sequence of event maps; each event map correspond to a main operation in the
workflows (e.g., processed video, found matches, etc.) and we store its times-
tamp, the type of the event and the multimedia item that is processed during
the operation.
The event records are stored in the Record Storage and the multimedia objects
records just keep the reference to the event records (i.e., the ID of the record)
and their status at the instant of the event occurrence (e.g., the logo confidence
at that time instant).
The events to be tracked are:

• New processed video: SIFT descriptors for all video key-frames have been
computed and key-frames nave been uploaded to the Data Service;

• New user query : a new brand has been searched by the end user and its
logo instances have been sent to the crowd in order to be validated;

• Validated logo instance: a logo instance has been validated by the crowd
and its confidence has been sent back to SMILA;

• Processed logo instances: SIFT descriptors for a set of logo instances have
been computed, logo instances have been uploaded on the Data Service,
and logo metadata are put in the Solr index;

• Found matches: a set of relevant matches for a new key-frame, or a new
logo instance, has been found;

• Validated match: a match has been validated by the crowd.

At the time of indexing of the matches in the Match core of the Solr index
all the metadata of the related multimedia objects (video, key-frame and logo
instance) are collapsed (see 6.1.3.5) in the match record and put in the Solr
index. Among the metadata we find also the list of event record IDs associated
to each multimedia object, a specific pipelet, the MergeMatchEventsMetadata
pipelet, is in charge of the retrieval of the event records for the Record Storage,
their ordering and their attachment to the match record to be indexed. In
Listing 6.1 we report a sample of the events list attached to a match record.
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"events" : [ {

"ID" : "d8703002-08f6-4784-b61d-9e28ef64d608",

"logoConfidence" : "",

"matchConfidence" : "",

"isRelevant" : "",

"timestamp" : 1346242155868,

"type" : "Processed video",

"target" : "https://85.18.109.178:443/logodetection/DATA/nick/videos/avi/Shelf_1.avi",

"matchEvent" : false,

"description" : "Processed video: https://85.18.109.178:443/logodetection/DATA/nick/videos/avi/Shelf_1.avi"

}, {

"ID" : "8c6d8521-e4af-45cf-b9cc-13167717109c",

"logoConfidence" : 0.484375,

"matchConfidence" : "",

"isRelevant" : "",

"timestamp" : 1346244088788,

"type" : "New searched brand",

"target" : "hefty",

"matchEvent" : false,

"description" : "New searched brand: hefty"

}, {

"ID" : "1130d77f-c83e-4a26-889e-ccf05302bb7e",

"logoConfidence" : 0.484375,

"matchConfidence" : "",

"isRelevant" : "",

"timestamp" : 1346244122920,

"type" : "Processed logos",

"target" : "hefty",

"matchEvent" : false,

"description" : "Processed logos for brand: hefty"

}, {

"ID" : "7d906389-80f9-447d-b8d5-777abc3abe9b",

"logoConfidence" : 0.484375,

"matchConfidence" : 0.164557,

"isRelevant" : "",

"timestamp" : 1346244144062,

"type" : "Found matches",

"target" : "hefty",

"matchEvent" : true,

"description" : "Found matches"

} ]

Listing 6.1: A sample of the events associated to a match

6.1.3.2 Logo instances retrieval workflow

The Logo instances retrieval workflow is triggered by a REST API call that
allow to pull in the workflow a record, which contains in its metadata the name
of the brand.
Here we report the job and workflow definitions in JSON format:

{

"name":"LogoInstancesRetrievalJob",

...

"workflow":"LogoInstancesRetrievalWorkflow"

}

Listing 6.2: Logo instances retrieval job definition

{

"name":"LogoInstancesRetrievalWorkflow",

...

"startAction":{

"worker":"bulkbuilder",

"output":{

"insertedRecords":"importBucket"

}

},

"actions":[

{

"worker":"pipeletProcessor",

"parameters":

{

"pipeletName" :

"eu.cubrikprj.pipelet.polmi.RetrieveLogoInstance.RetrieveLogoInstancesFromGooglePipelet",

"googleContribution" : "0.5",

"crowdContribution" : "0.5"

},

"input":{

"input":"importBucket"

},

"output":{

"output":"logoURLsBucket"

}

},
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{

"worker":"SubmitLogosToCrowdWorker",

"input":{

"input":"logoURLsBucket"

}

}

]

}

Listing 6.3: Logo instances retrieval workflow definition

The workflow is composed by three actions:

• the Bulk Builder ;

• a Pipelet Processor worker ;

• a custom worker ;

The Bulk Builder receives the brand name record for the REST API and build
a record bulk to be processed by the workers within the asynchronous workflow.
The Pipelet Processor worker is a worker optimized to execute a single pipelet,
without the overhead of a full pipeline.
The RetrieveLogoInstancesFroomGoogle pipelet contains the business logic needed
to interact with the GooglePhotoCrawler OSGi service, which is in charge of
query the Google Images search engine and to retrieve the URLs of top-32
images (i.e., the logo instances). The query sent to Google Images is simply
composed by the brand name and by the term “logos” (e.g., “Coca cola logos”).
Figure 6.4 draws the sequence diagram of the interaction between the pipelet
and Google Images. Among the configurations of the pipelet we find two float
parameters: googleContribution and crowdContribution.
This values are needed to compute the confidence of each logo instance, as shown
in Equation 6.1:

Confidence =

= googleContribution ∗ googleConfidence+
+ crowdContribution ∗ crowdConfidence (6.1)

The googleConfidence is the confidence related to the position of the logo in-
stance among the top-32 images of Google Images.
The crowdConfidence is a confidence value proportional according to the votes
received by the human performers. Obviously, at this stage such value is un-
known and it is always set to zero; it will be updated when the application
receives the outcomes of the crowdsourced validation task.
After the retrieval operation is performed, the pipelet creates a record for each
logo instance URL retrieved and put them in the logoURLs bucket.
The logo instance record have the following metadata:

• URL: the URL returned by Google Images;

• brand query : the user query string;

• brand name: the normalized brand query;

• confidence;

• events: the list of events IDs associated to the logo instance.
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Figure 6.4: The interaction between the RetrieveLogoInstancesFroomGoogle
pipelet and Google Images

As soon as the pipelet fills the logoURLs bucket, the SubmitLogosToCrowd
worker is triggered. For each set of 32 logo instances record the worker creates
a Conflict Resolution Task on the CrowdSearcher Conflict Resolution Manager.
Together with the SubmitLogosToCrowd worker, the logoURLs bucket is linked
to the Logo processing workflow, which we describe in the following section.

6.1.3.3 Logo processing workflow

The Logo processing workflow is in charge of the retrieval of the actual image
file of the logo instance from the Web, of the computation and the storage of its
SIFT descriptors and, finally, of the upload the logo image on the Data Service
to obtain the universal reference to be further used in the subsequent workflows.

{

"name":"LogoProcessingJob",

...

"workflow":"LogoProcessingWorkflow"

}

Listing 6.4: Logo processing job definition

{

"name":"LogoProcessingWorkflow",

...

"startAction":{

"worker":"pipelineProcessor",

"parameters":

{

"pipelineName": "LogoProcessingPipeline"

},

"input":{

"input":"logoURLsBucket"
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},

"output":{

"output":"imagesBucket"

}

}

}

Listing 6.5: Logo processing workflow definition

The Logo processing workflow is composed by a single Pipeline processor worker
which executes the LogoProcessing BPEL pipeline, depicted in Figure 6.5, de-
fined as follows:

Figure 6.5: The Logo processing BPEL pipeline

<process name="LogoProcessingPipeline" ... >

...

<sequence name="LogoProcessingPipeline">

<receive name="start" partnerLink="Pipeline" portType="proc:ProcessorPortType"

operation="process" variable="request" createInstance="yes" />

<extensionActivity>

<proc:invokePipelet name="LogosDownloadPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.LogosDownload.LogosDownloadPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="outputDir">D:/logos</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="DescriptorExtractionPipelet">

<proc:pipelet

class="eu.cubrikprj.pipelet.polmi.DescriptorExtraction.DescriptorExtractionPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="imagesDir">D:/logos</rec:Val>

<rec:Val key="descriptorsDir">D:/indexes</rec:Val>

<rec:Val key="indexerPath">D:/CubrikIndexer/Indexer.exe</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>
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<proc:invokePipelet name="LogoUploadPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.ImageUpload.LogoUploadPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="serverAddress">https://85.18.109.178:443/logodetection/uploadurl.cgi

</rec:Val>

<rec:Val key="userID">polmi</rec:Val>

<rec:Val key="password">logo_detection_2012</rec:Val>

<rec:Val key="owner">nick</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="SolrIndexPipelet">

<proc:pipelet class="org.eclipse.smila.solr.index.SolrIndexPipelet" />

<proc:variables input="request" output="request"/>

<proc:configuration>

<rec:Val key="ExecutionMode">ADD</rec:Val>

<rec:Val key="CoreName">LogoCore</rec:Val>

<rec:Seq key="CoreFields">

<rec:Map>

<rec:Val key="FieldName">URI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">brandName</rec:Val>

</rec:Map>

</rec:Seq>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

...

<exit />

</sequence>

</process>

Listing 6.6: Logo processing BPEL pipeline definition

The Logo processing pipeline is a sequence of the following pipelets:

• LogoDownload pipelet : this pipelet is in charge of retrieving the logo
instance image from the Web, through the URL returned by Google Im-
ages. The downloaded file is stored on the local file system and a reference
to the local file (i.e., localURI matadata) is attached to the logo instance
record.

• DescriptorExtraction pipelet : this pipelet triggers a binary executable
which extracts the SIFT descriptors from the logo instance image file. The
SIFT descriptors are stored on the local system and the reference to the
file is attached at the logo instance record (i.e., SIFTdescriptorsLocalURI
metadata). The pipelet configurations includes the credential to access
and modify the resources on the Data Service (i.e., serverAddress, userID,
password, owner).

• LogoUpload pipelet : at this stage the logo instance image is uploaded
on the Data Service and the URI of the resource is returned. Upload
and download operations are managed by the File Utils OSGi service (see
Section 6.1.2.1). In order to save time we will send to the Data Service
the URL of the logo instance instead of the image binary stream, a cgi
executable on the HTTP service will retrieve the actual image file. The
URI returned from the Data Service is used as unique reference to the logo
instance in the application and also as new record ID of the logo instance
record.

• SolrIndex pipelet : the logo instance records are put in the Logo core
of the Solr index. The Logo core allow to keep track of the processed
logo instances and searched brand. The metadata to be stored are the
brand name and the URL associated to the logo instance. The Logo core
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is configured to use as search field the one associated to the brand name
metadata.

At the end of the pipeline logo instance records are put in the imagesBucket
bucket to be forwarded to the matching workflow.

6.1.3.4 Video processing workflow

The Video processing workflow is in charge of the detection of the video key-
frames, the extraction of JPEG images corresponding to the key-frames, the
computation of the SIFT descriptors of each key-frame and the upload of the
key-frame image files on the Data Service.
The workflow is triggered by the SMILA’s filesystem crawler worker which pulls
the video files in the BPEL pipeline.

{

"name":"crawlFilesystem",

"workflow":"fileCrawling",

"parameters":{

...

"dataSource":"file",

"rootFolder":"D:/videos",

"jobToPushTo":"VideoProcessingJob"

}

}

...

{

"name":"VideoProcessingJob",

...

"workflow":"VideoProcessingWorkflow"

}

Listing 6.7: Filesystem crawler job definition

{

"name":"VideoProcessingWorkflow",

...

"startAction":{

"worker":"bulkbuilder",

"output":{

"insertedRecords":"importBucket"

}

},

"actions":[

{

"worker":"pipelineProcessor",

"parameters":{

"pipelineName": "VideoProcessingPipeline"

},

"input":{

"input":"importBucket"

},

"output":{

"output":"imagesBucket"

}

}

]

}

Listing 6.8: Video processing workflow definition

The workflow is composed by two actions:

• the Bulk Builder : which receives the video records from the File System
Crawler worker and creates the record bulks;

• a Pipeline processor worker which executes the VideoProcessing BPEL
pipeline.

The VideoProcessing BPEL pipeline, presented in Figure 6.6, is defined as fol-
lows:
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Figure 6.6: The Video processing BPEL pipeline

<process name="VideoProcessingPipeline"...>

...

<sequence name="VideoProcessingPipeline">

<receive name="start" partnerLink="Pipeline" portType="proc:ProcessorPortType"

operation="process" variable="request" createInstance="yes" />

<invoke name="adaptFileCrawlerWorkerOutput" inputVariable="request"

partnerLink="AdaptFileCrawlerWorkerOutput"

outputVariable="request" operation="process" portType="proc:ProcessorPortType" />

<extensionActivity>

<proc:invokePipelet name="VideoConvertionPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.eng.video.VideoConvertionPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="outputDir">D:/videos</rec:Val>

<rec:Val key="extensions">ogv avi webm mp4</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="KeyframeDetectionPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.KeyframeDetection.KeyframeDetectionPipelet" />

<proc:variables input="request" output="request" />

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="FrameExtractionPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.FrameExtraction.FrameExtractionPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="outputDir">D:/frames</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>
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<extensionActivity>

<proc:invokePipelet name="DescriptorExtractionPipelet">

<proc:pipelet

class="eu.cubrikprj.pipelet.polmi.DescriptorExtraction.DescriptorExtractionPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="imagesDir">D:/frames</rec:Val>

<rec:Val key="descriptorsDir">D:/indexes</rec:Val>

<rec:Val key="indexerPath">D:/CubrikIndexer/Indexer.exe</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="VideoUploadPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.eng.video.VideoUploadPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="serverAddress">https://85.18.109.178:443/logodetection/uploadfile.cgi</rec:Val>

<rec:Val key="userID">nick</rec:Val>

<rec:Val key="password">logo_detection_2012</rec:Val>

<rec:Val key="videoBaseURI">http://85.18.109.178:82/logodetection/DATA/videos</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="KeyframesUploadPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.ImageUpload.KeyframesUploadPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val

key="serverAddress">https://85.18.109.178:443/logodetection/uploadfile.cgi</rec:Val>

<rec:Val key="userID">polmi</rec:Val>

<rec:Val key="password">logo_detection_2012</rec:Val>

<rec:Val key="owner">nick</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="VideosToKeyramesPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.ImageUpload.VideosToKeyramesPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

...

<exit />

</sequence>

</process>

Listing 6.9: Video processing BPEL pipeline definition

Prior to the execution of its pipelets the Video processing pipeline need to invoke
another pipeline, the AdaptCrawlerWorkerOutput pipeline: the video records
pulled by the File System Crawler worker has to be adapted in order to be
processed by the other pipelets.
Once the adaptation operation is performed the following pipelets can be exe-
cuted:

1. VideoConversion pipelet : the pipelet is in charge to convert the .AVI
video into formats suitable for the visualization in a HTML 5 environment
(e.g., .MP4, .OGV, .WEBM, .OGG, etc.). the alternative format videos
are temporary stored locally and the local URI to each video are appended
to the video record.

2. KeyframeDetection pipelet : this pipelet invokes the video segmenter
component in order to retrieve the numbers of the key-frames within a
video. The list of the key-frames’ numbers are appended to the video
record in the Seq of Maps called keyframes. Figure 6.7 depicts the inter-
action between the pipelet and the component.

3. FrameExtraction pipelet : the pipelet receives the video records, each
on including the list of the key-frames. For each detected key-frame the
pipelet invokes the ffmpeg component passing the local URI of the video
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file and the number of the frame (i.e., the key-frame) to extract. The
ffmpeg component store the .JPEG image file of the key-frame on the
local file system, and the path to the image is appended, in the keyframes
Seq element, to the Map corresponding to the key-frame under the name
of localURI.

4. DescriptorExtraction pipelet : as well as the same pipelet in the Logo
processing pipeline, this pipelet is in charge of invoking the binary ex-
ecutable which extracts the SIFT descriptors for each key-frame image.
Figure 6.8 depicts the interaction between the pipelet and the SIFT de-
scriptors extractor component.

5. VideoUpload pipelet : the pipelet is in charge to upload on the Data
Service the original video and its alternative versions in the formats de-
clared in the VideoConversion pipelet, for each video uploaded the Data
Service return a URI to be appended at the video record.

6. KeyframesUpload pipelet : as for the LogoInstanceUpload pipelet, this
pipelet uses the File Utils OSGi service to upload on the Data Service the
key-frames. For each key-frame the Data Service returns a URI that is
appended to the key-frame metadata in the video record.

7. VideosToKeyframes pipelet : this pipelet has a twofold purpose:

• create a new SMILA record for each key-frame detected and pro-
cessed;

• store the video records in the SMILA Record Storage.

Each video record is parsed and for each key-frame in the key-frames’ Seq a
new record is created. The key-frame record holds the following metadata:

• URI : the reference to the image returned by the Data Service, to be
used also as record ID.

• Video record ID : the ID of the video record associated to the video
to which the key-frame belongs to.

• Frame number : the frame number returned by the video segmenter
component.

• Frame instant : the time instant in the video in which the frame
appears.

• SIFT descriptors local URI : the path to the SIFT descriptors file on
the local file system.

The new key-frames records are put in the blackboard and in the workflow output
bucket (i.e., the imagesBucket bucket) in order to be processed in the subsequent
matching workflow. On the contrary, video records are removed from the black-
board and stored in the Record Storage.

6.1.3.5 Key-frame matching workflow

The Key-frame matching workflow is the application stage where the logo de-
tection task is exploited. The workflow receives in input records both from the
Video processing pipeline and the Logo processing pipeline.
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Figure 6.7: The interaction between the Key-frameDetection pipelet and the
video segmenter component

{

"name":"KeyframeMatchingJob",

...

"workflow":"KeyframeMatchingWorkflow"

}

Listing 6.10: Key-frame matching job definition

{

"name":"KeyframeMatchingWorkflow",

"startAction":{

"worker":"pipelineProcessor",

"parameters":{

"pipelineName":"KeyframeMatchingPipeline"

},

"input":{

"input":"imagesBucket"

},

"output":{

"output":"matchesBucket"

}

},

"actions":[

{

"worker":"SubmitMatchesToCrowdWorker",

"input":{

"input":"matchesBucket"

}

}

]

}

Listing 6.11: Key-frame matching workflow definition

The workflow is composed by a BPEL pipeline, the KeyframeMatching pipeline,
and a custom worker, the SubmitMatchesToCrowd worker.
The KeyframeMatching pipeline, depicted in Figure 6.9, is defined as follows:
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Figure 6.8: The interaction between the DescriptorExtraction pipelet and the
binary executable

Figure 6.9: The Key-frame matching BPEL pipeline

<process name="KeyframeMatchingPipeline" ...>

...

<sequence name="KeyframeMatchingPipeline">

<receive name="start" partnerLink="Pipeline" portType="proc:ProcessorPortType"

operation="process" variable="request" createInstance="yes" />

<extensionActivity>

<proc:invokePipelet name="KeyframeMatchingPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.KeyframeMatching.KeyframeMatchingPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="matcherPath">D:/Matcher/Matcher.exe</rec:Val>

<rec:Val key="matcherThreshold">0.001</rec:Val>

<rec:Val key="serverAddress">https://85.18.109.178:443/logodetection/listfolder.cgi</rec:Val>

<rec:Val key="userID">polmi</rec:Val>
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<rec:Val key="password">logo_detection_2012</rec:Val>

<rec:Val key="owner">nick</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MergeMatchEventsMetadataPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MergeMatchEventsMetadataPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MatchMetadataSerializationPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MatchMetadataSerializationPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="SolrIndexPipelet">

<proc:pipelet class="org.eclipse.smila.solr.index.SolrIndexPipelet" />

<proc:variables input="request" output="request"/>

<proc:configuration>

<rec:Val key="ExecutionMode">ADD</rec:Val>

<rec:Val key="CoreName">MatchCore</rec:Val>

<rec:Seq key="CoreFields">

<rec:Map>

<rec:Val key="FieldName">matchID</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">frameURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">frameInstant</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoOgv</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoMp4</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoWebm</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoTitle</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoPreview</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">logoURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">logoName</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">brandName</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">boundingBoxCoordinatesSerialized</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">eventsSerialized</rec:Val>

</rec:Map>

</rec:Seq>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MatchFilterPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.KeyframeMatching.MatchFilterPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="lowConfidenceThreshold">0.05</rec:Val>

<rec:Val key="highConfidenceThreshold">0.1</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<reply name="end" partnerLink="Pipeline" portType="proc:ProcessorPortType" operation="process"

variable="request" />

<exit />

</sequence>

</process>

Listing 6.12: Key-frame matching BPEL pipeline definition
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The pipeline is the sequence of the following pipelets:

• KeyframeMatching pipelet : this pipelet is the core of the logo detec-
tion application. It receives in input record bulks, from the imagesBucket
bucket, that can be composed both by key-frame record and logo instances
record. According to the type of each record the business logic of the pipelet
slightly changes: if the current record is related to a key-frame the pipelet
queries the Data Service to retrieve the list of the URI of the logo in-
stances already processed (i.e., the logo upload is performed at the end of
the Logo processing pipeline). Conversely, if the record relates to a logo
instance, the pipelet queries the Data Service to retrieve the list of the
URI of the processed video key-frames.
Once the set of URIs is downloaded from the Data Service, each URI is
used to retrieve from the Record Storage the corresponding record (e.g., a
logo instance record if the pipelet is processing a key-frame record).
From the current record and the record retrieved from the Record Stor-
age the SIFTdescriptorsLocalURI metadata (i.e., the path to the SIFT
descriptors files) are read and passed, among a minimum accepted thresh-
old (i.e., the matcher threshold), to the binary executable in charge of the
SIFT descriptors matching. As depicted in Figure 6.10, the binary returns
an image similarity value (i.e., the match confidence between 0 and 1) and
four coordinates representing the edges of the bounding box that should
surround the area in the key-frame that includes the logo instance.
When the match confidence returned is higher than 0 a new match has
been found. For each found match a new record is created merging the
metadata coming from the key-frame, the video and the logo instance. To
each match record we also append the list of events record IDs associated
to the related video and the related logo instance. Finally, the match
records are stored in the SMILA Record Storage for further updates (see
Sections 6.1.3.6 and 6.1.3.7).

• MergeMatchEventsMetadata pipelet : this pipelet is invoked to re-
trieve from the Record Storage the event records related to each match,
and to add the event records metadata to the match record.

• MatchMetadataSerialization pipelet : some metadata in the match
record cannot be indexed in the Solr index as they are: the Solr index,
indeed, accept just plain text or numerical values. Thus, match metadata
like the list of the events, which is a sequence of Maps, cannot be indexed.
To allow the indexing of the events the sequence of Maps is serialized
into a JSON and appended to the record as a textual metadata called
eventsSerialized. The same problem arises for the four coordinates of the
bounding box, which are serialized in a JSON text and put in a new match
metadata, called boundingBoxCoordinatesSerialized.

• SolrIndex pipelet : the match records are put in the Match core of the
Solr Index. The following metadata are stored:

– matchID : the ID of the record, to be used to retrieve it from the
Record Storage;

– frameURI : the URI of the key-frame image on the Data Service;
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Figure 6.10: The interaction between the KeyframeMatching pipelet and the
Matcher component

– frameInstant : the millisecond in which the key-frame appears in the
video;

– videoURI : the URI of the video on the Data Service;

– videoOgv, videoMp4, videoWebm: the references to the HTML 5 com-
pliant video formats on the Data Service;

– videoPreview : the URI of the key-frame to be used in the preview of
the video;

– videoTitle: the title of the video;

– logoURI : the URI of the logo instance image on the Data Service;

– logoName: a name associated to the logo instance (e.g., the file
name);

– brandName: the brand name associated to the logo instance;

– boundingBoxCoordinatesSerialized

– eventsSerialized

The Match core is configured to use as search field the one associated to
the brand name metadata.

• MatchFilter pipelet : this pipelet is in charge to select the matches to
be forwarded to the SubmitMatchesToCrowd worker. The pipelet receive
as configuration two threshold: the high-confidence threshold and the low-
confidence one.
Matches having a confidence above the high-confidence threshold are con-
sidered as Good matches, while matches in between the high-confidence
threshold and the low-confidence one are considered Uncertain matches.
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Finally, matches with a confidence below the low-confidence threshold
are classified as rejected matches (see Section 5.10). Just the uncer-
tain matches are kept in the blackboard and forwarded to the subsequent
worker.

The SubmitMatchesToCrowd worker arises a Conflict Resolution Task for each
set of uncertain matches on the CrowdSearcher Conflict Resolution Manager.

6.1.3.6 Index update workflow

When the human performers complete the logo instance validation tasks, Crowd-
Searcher triggers this workflow, sending back to SMILA the results. Once
crowdsourced tasks results (i.e., the logo confidences) are collected, logo in-
stances records and match records need to be updated both in the Record Storage
and in the Solr index.

{

"name":"IndexUpdateJob",

...

"workflow":"IndexUpdateWorkflow"

}

Listing 6.13: Index update job definition

{

"name":"IndexUpdateWorkflow",

"parameters":{

"pipelineRunBulkSize":"30"

},

"startAction":{

"worker":"bulkbuilder",

"output":{

"insertedRecords":"importBucket"

}

},

"actions":[

{

"worker":"pipelineProcessor",

"parameters":{

"pipelineName": "IndexUpdatePipeline"

},

"input":{

"input":"importBucket"

}

}

]

}

Listing 6.14: Index update workflow definition

CrowdSearcher interacts with SMILA workflows through the SMILA REST
API, thus the Bulk Builder worker is needed to build the record bulks to be
processed by the BPEL pipeline, as shown in Figure 6.11.

<process name="IndexUpdatePipeline" ...>

...

<sequence name="IndexUpdatePipeline">

<receive name="start" partnerLink="Pipeline" portType="proc:ProcessorPortType"

operation="process" variable="request" createInstance="yes" />

<extensionActivity>

<proc:invokePipelet name="LogoRecordsUpdatePipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.LogoRecordsUpdatePipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="googleContribution">0.5</rec:Val>

<rec:Val key="crowdContribution">0.5</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MatchRecordsUpdatePipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MatchRecordsUpdatePipelet" />

<proc:variables input="request" output="request" />
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<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MergeMatchEventsMetadataPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MergeMatchEventsMetadataPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MatchMetadataSerializationPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MatchMetadataSerializationPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="SolrIndexPipelet">

<proc:pipelet class="org.eclipse.smila.solr.index.SolrIndexPipelet" />

<proc:variables input="request" output="request"/>

<proc:configuration>

<rec:Val key="ExecutionMode">ADD</rec:Val>

<rec:Val key="CoreName">MatchCore</rec:Val>

<rec:Seq key="CoreFields">

<rec:Map>

<rec:Val key="FieldName">matchID</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">frameURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">frameInstant</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoOgv</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoMp4</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoWebm</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoTitle</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoPreview</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">logoURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">logoName</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">brandName</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">boundingBoxCoordinatesSerialized</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">eventsSerialized</rec:Val>

</rec:Map>

</rec:Seq>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<reply name="end" partnerLink="Pipeline" portType="proc:ProcessorPortType" operation="process" variable="request" />

<exit />

</sequence>

</process>

Listing 6.15: Index update BPEL pipeline definition

The IndexUpdate pipeline is composed by the following pipelets:

• LogoRecordsUpdate pipelet : CrowdSearcher returns a record for each
validated logo instance. Each record hold the URL of the logo instance
and the logo confidence computed thank to human performers votes (see
Section 4.3.2.4). The URL allow us to retrieve the logo instance record
stored in the Record Storage and hence the logo instance URI (if in the
meanwhile the logo instance have been processed). The retrieved logo in-
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Figure 6.11: The Index update BPEL pipeline

stance record is updated by appending Validated logo event ID and
the logo confidence metadata couple in the record events list. The up-
dated logo instance records are put in the blackboard and forwarded to the
subsequent pipelets.

• MatchRecordsUpdate pipelet : this pipelet is in charge of updating the
match records associated to the validated logo instances. The update
simply consists in appending to the match events, the Validated logo
event ID and the logo confidence.

• MergeMatchEventsMetadata pipelet : as in the key-frame matching
pipeline, this pipelet is used to retrieve the events metadata from the
Record Storage and adding them to the match events list.

• MatchMetadataSerialization pipelet : before putting the update match
records in the Solr index, some metadata (i.e., bounding box coordinates
and events sequence) need to be serialized in JSON format

• SolrIndex pipelet : the updated match records are put in the Solr index.
The fields stored in the index are the same declared in the pipeline.

6.1.3.7 Match index update workflow

At the end of the Key-frame matching workflow, uncertain matches are sent
to CrowdSearcher in order to be validated by human performers. When the
performers fulfil the tasks, the results are pulled back to SMILA, through the
REST API, as well as in the case of the logo instance validation. The result
of the crowsourced tasks is a Boolean judgement on the relevance of the match
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couple, key-frame and logo instance (see Section 4.3.2.4). Hence, the match
records stored in the Solr index, associated to the matches validated by the
crowd, need to be updated.

{

"name":"MatchIndexUpdateJob",

...

"workflow":"MatchIndexUpdateWorkflow"

}

Listing 6.16: Match index update job definition

{

"name":"MatchIndexUpdateWorkflow",

"parameters":{

"pipelineRunBulkSize":"30"

},

"startAction":{

"worker":"bulkbuilder",

"output":{

"insertedRecords":"importBucket"

}

},

"actions":[

{

"worker":"pipelineProcessor",

"parameters":

{

"pipelineName": "MatchIndexUpdatePipeline"

},

"input":{

"input":"importBucket"

}

}

]

}

Listing 6.17: Match index update workflow definition

As always when a SMILA workflow is triggered by the REST API the start
action of the workflow has to be the Bulk Builder worker.
The subsequent action is a pipeline processor worker in charge of executing the
MatchIndexUpdate BPEL pipeline presented in Figure 6.12:

<process name="MatchIndexUpdatePipeline" ...>

...

<sequence name="MatchIndexUpdatePipeline">

<receive name="start" partnerLink="Pipeline" portType="proc:ProcessorPortType"

operation="process" variable="request" createInstance="yes" />

<extensionActivity>

<proc:invokePipelet name="MatchIndexUpdatePipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MatchIndexUpdatePipelet" />

<proc:variables input="request" output="request"/>

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MergeMatchEventsMetadataPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MergeMatchEventsMetadataPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MatchMetadataSerializationPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MatchMetadataSerializationPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="SolrIndexPipelet">

<proc:pipelet class="org.eclipse.smila.solr.index.SolrIndexPipelet" />

<proc:variables input="request" output="request"/>

<proc:configuration>

<rec:Val key="ExecutionMode">ADD</rec:Val>

<rec:Val key="CoreName">MatchCore</rec:Val>

<rec:Seq key="CoreFields">

<rec:Map>

<rec:Val key="FieldName">matchID</rec:Val>

</rec:Map>
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<rec:Map>

<rec:Val key="FieldName">frameURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">frameInstant</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoOgv</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoMp4</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoWebm</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoTitle</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">videoPreview</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">logoURI</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">logoName</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">brandName</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">boundingBoxCoordinatesSerialized</rec:Val>

</rec:Map>

<rec:Map>

<rec:Val key="FieldName">eventsSerialized</rec:Val>

</rec:Map>

</rec:Seq>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<reply name="end" partnerLink="Pipeline" portType="proc:ProcessorPortType" operation="process"

variable="request" />

<exit />

</sequence>

</process>

Listing 6.18: Match index update BPEL pipeline definition

Figure 6.12: The Match Index update BPEL pipeline
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The BPEL pipeline is the sequence of the following pipelets:

• MatchIndexUpdate pipelet : the pipelet receives form the Bulk Builder
the set of matches validated by the crowd. The records include the
matchID and the Boolean judgement of the crowd. The matchID is used
to retrieve the match record from the Record Storage.

• MergeEventsMetadata pipelet : see Section 6.1.3.5.

• MatchMetadataSerialization pipelet : see Section 6.1.3.5.

• SolrIndex pipelet : see Section 6.1.3.5.

6.1.4 Search workflow

When the user sends a query (i.e., the brand name) through the logo detection
user interface, the request is managed by a servlet executed in the SMILA en-
vironment.
The servlet triggers a BPEL pipeline (i.e., the LogosSearch pipeline) pulling a
single record, containg in its metadata the query brand name. The LogosSearch
pipeline, depicted in Figure 6.13, is in charge of forwarding the query brand
name to the Logo core in the Solr index. This operation is needed to check if at
least one logo instance for the query brand name has been already processed or
not. If the brand name is not contained in the Logo core, then also no matches
related to the query brand name can be found, thus the logo detection applica-
tion returns to the user a message in which asks him/her whether he/she wants
to start the processing of the brand name.
Instead, if the brand name is found in the Logo core then the query is forwarded
to the Match core by the LogoDetectionSearch pipeline, in order to collect the
found matches. The LogoDetectionSearch pipeline is drawn in Figure 6.14
The result matches are appended to the result record and sent back to the
servlet.
In both BPEL pipelines, we use the default SMILA Solr search pipelet to query
the Solr cores. To select the proper core (i.e., either Logo core or Match core)
we simply set the indexname parameter in the pipelet configuration.
When dealing with the match records, we should remember that some meta-
data have been serialized (see Section 6.1.3.5), thus, before returning the result
records, we should deserialize those metadata. In order to do so, we invoke the
MatchMetadataDeserialization pipelet.

<process name="LogosSearchPipeline" ...>

...

<sequence name="LogosSearchPipeline">

<receive name="start" partnerLink="Pipeline" portType="proc:ProcessorPortType"

operation="process" variable="request" createInstance="yes" />

<extensionActivity>

<proc:invokePipelet name="invokeSolrSearchPipelet">

<proc:pipelet class="org.eclipse.smila.solr.search.SolrSearchPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="indexname">LogoCore</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<reply name="end" partnerLink="Pipeline" portType="proc:ProcessorPortType" operation="process"

variable="request" />

</sequence>

</process>

Listing 6.19: LogosSearch BPEL pipeline definition
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Figure 6.13: The LogosSearch BPEL pipeline

Figure 6.14: The LogoDetectionSearch BPEL pipeline

<process name="LogoDetectionSearchPipeline" ...>

...

<sequence name="LogoDetectionSearchPipeline">

<receive name="start" partnerLink="Pipeline" portType="proc:ProcessorPortType"

operation="process" variable="request" createInstance="yes" />

<extensionActivity>

<proc:invokePipelet name="invokeSolrSearchPipelet">

<proc:pipelet class="org.eclipse.smila.solr.search.SolrSearchPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration>

<rec:Val key="indexname">MatchCore</rec:Val>

</proc:configuration>

</proc:invokePipelet>

</extensionActivity>

<extensionActivity>

<proc:invokePipelet name="MatchMetadataDeserializationPipelet">

<proc:pipelet class="eu.cubrikprj.pipelet.polmi.IndexUpdate.MatchMetadataDeserializationPipelet" />

<proc:variables input="request" output="request" />

<proc:configuration/>

</proc:invokePipelet>

</extensionActivity>

<reply name="end" partnerLink="Pipeline" portType="proc:ProcessorPortType" operation="process"

variable="request" />

</sequence>

</process>

Listing 6.20: LogoDetectionSearch BPEL pipeline definition
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6.2 Human Enhancement

In this section we describe the implementation of the crowdsourced tasks on
the Conflict Resolution Manager. The human enhancement implementation is
based on the study reported in [Bozzon et al., 2012c].
The tasks to be performed by humans are the logo instances validation and the
match validation (see Section 5.3.1).
CrowdSearcher (see Section 2.3) manages the task design, the task distribution
and the aggregation of the outputs, while Facebook is the social network plat-
form in charge of providing human performers and actually executing the tasks.
CrowdSearcher acts in the context provided by a given Facebook user, who is
instrumental to the crowd-sourcing process, being responsible of initiating the
tasks which are spawn to the crowd, and by offering friends and colleagues as
workers.
The Facebook application interacts with CrowdSearcher through a platform-
specific client. The client has a twofold purpose. On one hand, it allows human
performers (i.e., Facebook users) to execute the deployed tasks.
On the other hand, the application exploits the native Facebook Graph API to

Figure 6.15: The user interface for the logo instances validation task
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enable a user-defined worker selection, where new workers are explicitly invited
by their friends (see Figure 6.16).

Figure 6.16: The ask invitation message displayed on the Facebook user’s wall

Tasks are assumed to have a timeout for completion, that defines how long
the system should wait for human execution. When the timeout triggers, the
system automatically aggregates the task results.
According to the validation task, (i.e., logo instance validation or match val-
idation) the system collects the number of preferences for each logo instance,
which is next used to establish the logo confidence or the number of preferences
for each match, to be used to establish whether the match is relevant (i.e.,
the logo instance is actually present in the video key-frame) or not.

6.3 User Interface

In this section we describe and provide some screenshots of the user interface
implemented on top of the logo detection application.
The interface, as well as providing the means to browse the results of the key-
frame/logos matching tasks, allow users to explore the intermediate steps in
the result formation (see Section 6.1.3.1). The idea behind the timeline is to
highlight the contribution of the human computation tasks in improving the
quality of the result of the application.

6.3.1 User Interaction

User interaction starts when the user sends his query (the name of a brand or
a logo instance image) to the logo detection application that queries the Logo
core.
If the requested brand has already been indexed, the matches for that brand
are returned to the user.
Otherwise, if the requested brand has not been indexed yet:

• the SMILA Logo retrieval pipeline is started providing the brand name to
be query Google Images;

• a notification of work in progress is sent to the user;
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• as soon as the application updates the Match core, the system notifies the
Web application that the processing and matching phases are concluded;

• finally the application notifies the user of the search task completion.

6.3.2 User Interface Design

The starting page21 includes a text-based search form for keyword-based queries.

Figure 6.17: The starting page [Preciado Rodŕıguez et al.]

If the brand name searched by the user is not associated to any of the logo
instances in the Logo core, the user is asked whether he/she wants to start the
processing of the new brand, by clicking on a confirmation button. If the user
confirms, then the application replies with a notification in which the user is
asked to wait until the process is completed. Figure 6.18 shows the “brand not
found” page.

Figure 6.18: The “brand not found” page [Preciado Rodŕıguez et al.]

21The screenshots reported in Figures 6.17, 6.18 and 6.19 have been designed and imple-
mented by [Preciado Rodŕıguez et al.]
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Otherwise, if the searched brand has already been indexed (i.e., its logos
instances retrieved, processed and matched against the video key-frames), the
corresponding matches are shown in the result page.
The result page, depicted in Figure 6.19, is composed of the following sections:

Figure 6.19: The result page [Preciado Rodŕıguez et al.]

1. The search form : the form, depicted in Figure 6.20, allows the user to
send a textual query (i.e., the brand name).

Figure 6.20: The search form [Preciado Rodŕıguez et al.]

2. The statistics: summarizing some statistics about the search process
(e.g., the number of times a brand has been found in the video collection
as depicted in Figure 6.21).

Figure 6.21: The statistics [Preciado Rodŕıguez et al.]

3. The logos: this section contains the top-k logo instances for the query
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brand. The logos are ranked according to their logo confidence. The value
of k can be modified by changing the value of a numeric stepper.

Figure 6.22: The logos section [Preciado Rodŕıguez et al.]

4. The matches: this section, depicted in Figure 6.23, includes the actual
results of the user query. Here videos, in which the top-k logo instances
for the query brand have been detected, are listed. For each video, the set
of key-frames, in which a match has been found, are shown. Key-frames
are divided into three groups, Good (i.e., high-confidence), Uncertain
(i.e., low-confidence) and Rejected ones, according to their score, the
high confidence threshold, the low-confidence threshold and the crowd
judgement. A match is classified as Good if:

• its score is above the high confidence threshold for the query brand
OR

• the crowd has judged it as Relevant.

A match is classified as Uncertain if:

• its score is between the low confidence threshold and the high-confidence
threshold for the query brand;

A match is classified as Rejected if:

• its score is below the low-confidence threshold for the query brand
OR

• the crowd has judged it as Not relevant.

Rejected matches are not displayed in the result page, but a link (e.g.,
the waste bin icon) is provided in order to show them in a different page.
When the mouse pointer passes over a frame image the contained logo
instance should be highlighted.
Similarly, when the pointer passes over a logo instance, the set of key-
frames that contains that instance should be highlighted.
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When the user clicks on the time instant reported under the key-frame
image the video starts playing from that time instant.
When the user clicks on the key-frame image a magnified version of the
key-frame is shown in a superimposed frame (depicted in Figure 6.24),
showing also the bounding box shape around the logo instance.

Figure 6.23: The matches section [Preciado Rodŕıguez et al.]

Figure 6.24: An example of match including a bounding box (in red) [Preci-
ado Rodŕıguez et al.]
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5. The storyboard : a set of related events is associated to each result match
(e.g., new processed video, new processed logo instances, found
matches, etc.). From the entire result set we can retrieve all the events,
that are relevant for the query. The timestamp of each event is known,
therefore the events can be ordered using a timeline. For each timestamp,
matches will be displayed in the status (i.e., logo confidence and match
confidence) they had in that timestamp; if a match has no event for that
particular timestamp, the status associated to is the one in which the
match was in the maximum of the lesser timestamps. The timeline is
also enriched with milestone timestamps, which correspond to the main
system events (see Section 6.1.3.1). Thus, the user can navigate through
the results formation story, using the timeline. Timestamps in which there
are updates in the result set are highlighted with a cue on which the user
can click in order to move to that timestamps, on the contrary milestone
timestamps cannot be navigated by the users. The set of matches shown
to the user in the matches section is the one corresponding to the latest
status, and the corresponding cue on the timeline is highlighted. Figure
6.25 draws the storyboard implementation.

Figure 6.25: The storyboard section [Preciado Rodŕıguez et al.]

6.4 Evaluation

In this section we provide an evaluation of the logo detection application, w.r.t.
both the Human Enhancement process andthe automated ones (i.e., video pro-
cessing, key-frame matching and search).
In the case of the Human Enhancement process we report the experimental
results collected in [Bozzon et al., 2012c]22, in which humans were involved in
the selection of relevant logo instances w.r.t. a brand name. To evaluate the
automated processes, we collected system performance in processing videos (see
Section 6.1.3.4), compute matches between video key-frames and logo instances
(see Section 6.1.3.5) and retrieving the matches from the Solr index (see Section
6.1.4). We observed the time needed to execute the logo application workflows
and the time needed to execute single automatic tasks, such as the key-frame
detection task and the SIFT descriptors extraction task, w.r.t. the number of
resources (i.e., videos, key-frames, logo instances and matches) to be processed.
Finally, in Section 6.4.5 we provide a discussion on the outcomes of each evalu-
ation task.

22The experiment had been carried out during the development activities related to this
thesis.

121



Chapter 6. Implementation and Evaluation

6.4.1 Human Enhancement Process Evaluation

The experiments reported in [Bozzon et al., 2012c], involved humans in the vali-
dation of the logo instances of three trademark brands (i.e., Aleve, Claritin and
Chunky). The logo application demo was tested using the standard measures
of precision and recall on the output of Key-frame Matching process.
The CrowdSearcher system has been used as Conflict Resolution Manager to
support the logo instances validation crowd task, by allowing users to:

1. select existing logos to improve the precision of the application by provid-
ing the matching component with correct logo instances

2. add new logos, with the purpose of increasing the overall recall by adding
novel logo instance samples.

Around 40 people were involved as workers for the selection or provision of
image logos, mostly from the students of Politecnico di Milano, or student’s
friends who volunteered to be part of the experiment. Some 50 task instances
were generated in a time-span of three days, equally distributed on the set of
considered logos, resulting in 70 collected answers, 58% of which related to logo
images selection tasks.

1. The performance was tested under three experimental settings. No human
intervention in the logo instance validation task: here, the top-4 Google
Images result set is used as a baseline for the logo search in the video
collection; the result set may contain some irrelevant images, since they
did not undergo validation.

2. Logo instances validation performed by a crowd of domain experts (simu-
lation): the top-32 Google Images results are filtered by experts, thereby
deleting the non-relevant logos and choosing three images among the rel-
evant ones.

3. Inclusion of the actual crowd knowledge: filtering and expansion of the
set of matched logos is done via the CrowdSearcher application.

The results are shown in 6.1. For each brand, precision and recall are evaluated
for the three settings of the application.

Brand name Test Precision Recall
No Crowd 0.27 0.27

Aleve Experts 0.42 0.54
Crowd 0.33 0.41

No Crowd 0.65 0.19
Chunky Experts 0.70 0.58

Crowd 0.40 0.21
No Crowd 0.31 0.09

Claritin Experts 0.57 0.72
Crowd 0.36 0.73

Table 6.1: Precision and recall of the logo detection application in the three
considered experimental settings
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We can notice that the human contribution, both through the expert and
the crowd, brings to an improvement in the system performances w.r.t. the
fully automated case. It can be also noticed that the improvement is not evenly
distributed over the brands.

6.4.2 Video Processing Evaluation

We considered the GroZi-120 video collection, composed by 29 .AVI video files.
We measured the performances of the system in processing 28 of the 29 videos23

individually. Then, we plotted the measured values against the number of key-
frames detected in each video and through linear regression we get the relation-
ship between the number of key-frames and the time needed to process a video.
The mean duration of the videos in the collection is around 57.76 seconds, span-
ning from a 9 seconds-long video to 1 minute and 50 seconds-long one. The mean
number of key-frames detected in a video is 19.
First, we considered the SIFT descriptor extraction task, that is the main task
performed in the video processing workflow, both for the annotations produced
(i.e., the SIFT descriptors files to be used in the subsequent matching workflow)
and for the computational efforts. The average measured time needed by the
external component to compute the descriptors of a single key-frame image is
3 seconds. For each video in the collection we measured the time needed to
extract the SIFT descriptors of all its key-frames; then we plotted the measured
time values against the number of key-frames and fitted a line, through the lin-
ear regression method. The linear regression function used to fit the data set is
a line without intercept: y = a ∗ x.
Figure 6.26 draws the measured values (i.e., the blue triangles) and the fitted
line (i.e., the red line).
The parameter a [seconds/key-frame] represents the time needed to process a

Figure 6.26: The SIFT descriptors extraction processing time vs. the number
of key-frames

23the video named “Shelf 16” had been discarded due to a file corruption
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single key-frame and assume the value of 2.426, that is close to the average time
needed to process a key-frame image (i.e., 3 seconds).
We can observe that the data set contains some outliers, this is due to the fact
that the time needed to extract the SIFT descriptors from the video key-frames,
also depends on the image properties of the each key-frame (e.g., image size).
Second, we measured the overall time needed to process a video (i.e., complete
the Video Processing workflow) and fitted a linear function, (see Figure 6.27).

We can observe that the latter data set is more compact and contains less

Figure 6.27: The video processing time vs. the number of key-frames

outliers than the one we collected in the case of the SIFT descriptor extraction.
Thus, is this case the linear fit well estimates the relationship between the time
to process a video and its number of key-frames.

6.4.3 Key-frame Matching Evaluation

We run the Key-frame Matching workflow several times, pushing as input al-
ways the same logo instance. Before each run, a new video was processed by
the application; videos were added one at a time, according to their number of
the key-frames. We started from a single video processed (i.e., “Shelf 10” video
and its 2 key-frames), to the whole video collection processed (i.e., 28 videos
and 542 key-frames).
The mean time needed for the logo detection application to perform the match-
ing operation between a logo instance and a single key-frame is 0.309 seconds.
We plot the measured matching times, and fit a linear regression function with
no intercept y = a ∗x (see Figure 6.28). Notice that the x-axis is in logarithmic
scale. The value of the parameter a is 0.337 [seconds/key-frame].
Figure 6.29 draws the relationship between matching time and the number of
video. The relationships between the matching time and the number of videos
is described by a 2-degree curve:

y = 0.13 ∗ x2 + 2.24 ∗ x

where x is the number of videos processed.
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Figure 6.28: The key-frame matching time vs. the number of key-frames

Figure 6.29: The key-frame matching time vs. the number of videos
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6.4.4 Search Process Evaluation

We tested the performances of the application in querying and retrieving result
from the Solr index. In particular, we focused our analysis on the Match index
(see Section 6.1.3.5).
We started with a system configuration in which 131 logo instances related to
5 brands were processed and indexed, while no videos and no key-frames were
processed. Notice that 131 is less than 32 ∗ 5 = 160 (i.e., the actual number
of logo instances retrieved from Google Images), because some of the URLs re-
turned by Google Images were corrupted or reference to an not-accessible image
files. Table 6.2 summarizes the number of logo instances considered for each
brand.

Brand name # logos
Hefty 24
Raid 28

Chunky 20
Halls 29

Campbells 30

Table 6.2: The number of logos processed for each sample brand

We started querying the system with the five sample brands, measuring the
response times with cache disabled of the Solr index. Then, we added a video
at a time, until we processed the whole GroZi-120 video collection (i.e., 28
videos), repeating at each step the measurements. Videos were added according
to the number of their key-frames, from the one holding the lowest number of
key-frames to the largest one. After the addition of a new video, response times
were estimated with the following heuristics:

• for each query brand:

– run some warm-up queries;

– measure the response time of 10 queries;

– compute the trimmed mean of the measured response times;

• estimate the overall response time computing the mean w.r.t the query
brands.

Figure 6.30 reports the query time measured w.r.t. the number of videos pro-
cessed, while Figure 6.31 and Figure 6.32 depicts the relationships of the query
time, respectively, with the number of key-frames and the number of matches.
We can notice that the relationship between the query time and the number
of video can be estimated with a quadratic function. In particular the fitting
curve we computed has the following form:

y = 0.053 ∗ x2 + 0.45 ∗ x+ 6.95

where x is the number of videos processed.
Instead, if we consider the number of key-frames processed the relationship turns
into a linear one:

y = 0.103 ∗ x+ 7.69
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where x is the number of key-frames processed.
Finally, if we consider the number of matches indexed in the Solr core the
relationship is estimated by the following linear equation:

y = 0.011 ∗ x+ 6.64

where x is the number of matches.

Figure 6.30: The query time vs. the number of videos

Figure 6.31: The query time vs. the number of key-frames
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Figure 6.32: The query time vs. the number of matches

6.4.5 Discussion

Human Enhancement process Results reported in Section 6.4.1 show that
the expert validation increases the application performance in both precision
and recall, with respect to a fully-automated solution. This is due to the fact
that the validation process performed on the set of logo instances eliminates
irrelevant logos from the query set, and consequently reduces the number of
false positives in the result set.
On the other hand, the validation conducted by the crowd showed generally
a slight increase in both precision and recall. It can be noticed that the per-
formance increase is not evenly distributed over all the brands; this could be
due to a different user behavior in the choice of the relevant image set. For
instance, when validating the Chunky brand logo instances, the crowd chose
within the top-2 image an irrelevant logo. Consequently, the performance has
been affected, with a considerable decrease both in terms of precision and recall
w.r.t. the expert evaluation. This observation highlight that importance of the
human context of the execution of the crowd tasks: the chances to get good
responses depend on the appropriateness of the users’ community. Both the
geographical location and the expertise of the involved users can heavily influ-
ence the outcome of crowdsourcing activities, thus the People to Task Matching
phase is a crucial phase in the Human Enhancement process.

Video Processing workflow Experiments shown that the number of key-
frames is not the main factor that influences the time needed to compute the
SIFT descriptors for a whole video. The processing time to compute the SIFT
descriptors for a single image highly depends on the complexity of the image
itself, in terms of structures and details it contains. The more the details an im-
age hold, the more key-points are likely to be detected and the more the number
of key-points detected, the more the key-point descriptors to be computed.
Conversely, if we consider the time needed to completely process a video, we can
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notice that the number of key-frames affect considerably the whole processing
time. Indeed, the time needed to perform the video conversion, the key-frame
detection, the key-frame extraction the video upload and the key-frame upload
activities clearly depend just on the length of the video and on the number of
the key-frames, and the time needed to fulfil these activities represents the 80%
of the whole video processing time.

Key-frame Matching workflow From a theoretical point of view the com-
putational complexity of the Key-frame Matching workflow is O(NM), where
N is the number of logos and M the number of key-frames to match.
The measurement we collected, reported in Section 6.4.3, confirm that the re-
lationship between the time needed to perform the matching between a single
logo instance and the whole key-frame set is linear, O(M).
W.r.t. the previous case, the business logic of the Key-frame Matching workflow
does not vary significantly if we run it pushing a single key-frame. Thus, it can
be reasonably assumed that also the relationship between the time needed to
perform the matching between a single key-frame and the whole logo instances
set is linear, O(N).
Hence, our measurement and observations confirmed that the computational
complexity of the workflow is depends from the number of both the logo in-
stances and the key-frames to be processed.

Search process Our measurements show that there is quadratic relationship
between the query time and the number of videos. Obviously the form of fitting
function we estimated is influenced by the order of addition of a new video in
the collection to be processed. But in general, we can observe that it is a always-
increasing function and that the change in slope is dependent on the number of
key-frames that the new added video holds.
Thus, if we change our point of view and focus on the number of key-frames, we
can observe that the query time increase in a linear fashion w.r.t. the number
of key-frames. Indeed, the more the new key-frame the system process the more
likely the system will find new matches to index.
The number of matches put in the index is the factor that directly affect the
query time: the larger the index, the larger the time needed to retrieve contents
from it. According to our measurements, the relationship between query time
and number of matches is linear.
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7
Conclusions and future

works
This work introduced a new framework for the design of multimedia search-
based applications (SBAs) that comprise human computation and crowdsourced
tasks.
The framework considers human as first-class citizens in the search and analysis
processes, where performers can, for instance, be exploited in the validation of
the outcomes produced by the automated components in SBAs architecture, in
order to improve the quality performances of the retrieval system.
We discussed the challenges and the requirements that a human-enhanced mul-
timedia search-based application (hSBA) should address, focusing especially on
the requirements driven by the presence of humans in the analysis and search
loops.
We proposed a conceptual framework consisting of a development methodology,
and data and process models, to support the design and the implementation of
hSBAs. In particular, we introduced the Conflict Resolution model and Human
Enhancement process. The former is a data model that allow us to define and
characterize the concepts and the actors that are involved in the management
and in the resolution of the uncertainty that is exhibited by automated com-
ponents. Indeed, the Human Enhancement process describes all the activities
needed to assign the validation tasks to the human workers, such as the design
of a suitable user interface and the assignment to the best suited workers, that
are peculiar activities w.r.t. to classical Indexing and Search processes’ ones.
We presented the logo trademark detection application, a use case application
developed in the context of an European research project which has been de-
signed and realized by using the proposed framework. After having presented
and detailed the use case scenario, we proposed an implementation of the logo
detection application in the SMILA framework.
We also provided an evaluation of SBA performances in terms of processing
time, query time w.r.t. the videos processed, the key-frames processed and the
matches found. Thank to preliminary experiments on the Human Enhancement
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process, we can state that human validation can contribute to a non-negligible
improvement in the retrieval performance of the system.

7.1 Future works

This thesis and recent studies on crowdsearching reveal the potential of em-
bedding Human Computation and crowdsourcing in search-based application,
but the actual impact on SBAs performances needs to be further studied. For
instance, we may be interested in observing how the design of the crowdsourced
task affects the quality of the outcomes produced (e.g., number of logos to be
validated per single task), or what is minimum number of workers, to which
assign the same task, in order to guarantee the consistency of the task outcome.
The selection of the most appropriate set of workers is another challenge: work-
ers’ profiles, accessible through the crowdsourcing platforms, could be exploited
in order to assign a task to the most suited workers (e.g. country, culture, etc.).
We consider to continue the evaluation of the logo trademark detection appli-
cation, in terms of precision/recall, including the results variations after the
validation of the matches by the crowd.
To confirm our findings, we also plan to test our application on different video
collections.
An interesting improvement of our use case could be the enrichment of the logo
detection application with new crowdsourced tasks, such as the addition of new
logo instances among the validation of the ones returned by Google Images.
Another improvement is the adoption of several crowdsourcing platforms (e.g.,
Twitter, Google Plus, etc.) for human computation tasks. Moreover, new use
cases could be thought to enforce our conceptual framework and new human
tasks could be designed to exploit human capabilities and knowledges.
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