
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Automatic alignment of user identities in
heterogeneous social networks

Relatore: Piero Fraternali
Corelatore: Alessandro Bozzon

Tesi di Laurea di:
Giorgio Sironi, matricola 764852

Anno Accademico 2011-2012

Abstract

Record linkage is a well-known task that attempts to link different representations

of the same entity, who happens to be duplicated inside a database; in particu-

lar, identity reconciliation is a subfield of record linkage that attempts to connect

multiple records belonging to the same person. This work faces the problem in

the context of online social networks, with the goal of linking profiles of different

online platforms.

This work evaluates several machine learning techniques where domain-specific

distances are employed (e.g. decision trees and support vector machines). In ad-

dition, we evaluate the influence of several post-processing techniques such as

breakup of large connected components and of users containing conflicting pro-

files.

The evaluation has been performed on 2 datasets gathered from Facebook, Twitter

and LinkedIn, for a total of 34,000 profiles and 2200 real users having more than

one profile in the dataset. Precision and recall are in the range of cross-validated

90% depending on the model used, and decision trees are discovered as the most

accurate classifier.

i

Sommario

Il record linkage è un problema noto che si propone di collegare differenti rappre-

sentazioni di una stessa entità, che risultano essere duplicate in una base di dati;

in particolare, la riconciliazione di identità ne è una specializzazione che si pro-

pone di riunire differenti record rappresentanti la stessa persona. Questo lavoro

affronta il problema nel contesto dei profili utente dei moderni social network.

L’obiettivo perseguito è l’allineamento dei profili di diverse piattaforme, ovvero il

collegamento di tutti e soli i profili della stessa persona su piattaforme differenti.

Questa tesi valuta e confronta alcune tecniche di apprendimento automatico per

le quali sono state definite distanze speficiche per il problema (e.g. alberi di de-

cisione e macchine a vettori di supporto). In aggiunta, viene valutata l’influenza

di tecniche di post-processing come la separazione di componenti connesse e di

utenti contenenti profili in conflitto fra loro.

La validazione delle tecniche è stata eseguita sperimentalmente su due dataset

estratti da Facebook, Twitter e LinkedIn, per un totale di 34,000 profili e 2200

persone aventi più di un profilo. Precisione e recall sono a livelli di 90% in cross-

validazione a seconda del modello utilizzato, e gli alberi di decisione sono designati

come il classificatore più accurato.

iii

Contents

Abstract . i

Sommario . iii

Contents . v

List of Tables . ix

List of Figures . xi

Acknowledgements . xiii

Dedication . xv

1 Introduction . 1

1.1 Relevance . 2

1.2 Domain-specific issues . 3

1.3 Original contribution . 4

1.4 Thesis organization . 4

2 Background . 7

2.1 Problem definition and model 7

2.2 Algorithms . 9

v

Contents

2.2.1 Classical . 9

2.2.2 Clustering . 12

2.2.3 Supervised learning . 14

2.3 Social network related work . 17

3 Implementation experience . 19

3.1 Methods . 19

3.2 Distances . 19

3.2.1 Windowing . 21

3.2.2 Classifiers: Clustering 22

3.2.3 Classifiers: Decision trees 23

3.2.4 Classifiers: Linear SVM 24

3.3 System model . 25

3.4 Design . 30

4 Evaluation . 35

4.1 Datasets . 35

4.2 Ground truth . 39

4.3 Metrics . 42

4.4 Results . 46

4.4.1 Accuracy . 46

4.4.2 Significance . 47

4.5 Discussion . 49

4.5.1 Clustering . 49

4.5.2 Decision trees . 50

4.5.3 Linear support vector machines 51

4.5.4 Comparison of different classifiers 51

4.6 Technical issues . 52

4.6.1 Optimization . 52

vi

4.6.2 Testing . 55

5 Conclusions and future work . 59

Bibliography . 61

vii

List of Tables

3.1 All variations experimentally evaluated 19

4.1 Gathered datasets . 39

4.2 Completeness of profiles . 39

4.3 Small dataset results . 47

4.4 Expertfinding dataset results . 47

4.5 Significance testing for clustering post-processing variations . . . 48

4.6 Significance testing for trees post-processing variations 48

4.7 Significance testing for linear SVMs post-processing variations . . 48

4.8 Significance testing for trees and SVMs 49

4.9 Running times for a single fold of the expert finding dataset 52

ix

List of Figures

2.1 Blocking example . 11

2.2 Windowing example . 12

2.3 Clustering of profiles example 13

2.4 Decision Tree for weather prediction 15

2.5 Support Vector Machine for weather prediction 16

3.1 Black box model of the application 25

3.2 Profile linkage data flow . 27

3.3 Training data flow . 28

3.4 Validation data flow . 29

3.5 OAuth metaphor . 32

4.1 User interface for the manual production of ground truth 41

4.2 Special case search for surname ’Sironi’ 41

4.3 Visualization of false positives and negatives 43

4.4 Union/find data structure for profiles 54

4.5 Spy objects running in parallel on each seed 56

xi

Acknowledgements

I would like to thank Alessandro Bozzon and professor Piero Fraternali for direct-

ing this work with regular feedback, one of my preferred Lean tools.

I also recognize that the software developed for this academic work has benefited

from the teachings of the Extreme Programming User Group in Milan.

xiii

Dedication

Ai miei genitori che mi hanno supportato in anni di studi,

a Kiki che sa quanto impegnativo è il lavoro dietro una tesi,

ai ragazzi dell’oratorio di San Crispino

xv

1
Introduction

In the last years, online social networks such as Facebook, Twitter and LinkedIn

have reached a formidable penetration everywhere Internet access is available. As

such, these networks are the repository of a vast amount of knowledge about peo-

ple, their relationships with each other, their areas of interests, and so on. There

has been a vast amount of studies and commercial developments on the kinds of

information that can be extracted from a person’s online presence or from the APIs

of the services that he uses.

However, each information extraction scenario is currently limited to a single

platform: a person can be extracted from a network such as Facebook and his

details can be analyzed, but the results are normally not put into correlation with

the information extracted from other platforms.

In order to obtain a more complete understanding of the interests and capabili-

ties of a person, the information from the different networks should be aligned,

and an holistic analysis should be performed. Unfortunately, such an alignment

requires the exact identification of people through social networks, a task hindered

by the access limitation of social networks, and by the identity camouflaging or

dissimulation techniques (e.g. nicknames, private fields, fake avatars) adopted by

the users.

The problem addressed by this thesis is the linkage of online social networks

profiles, spanning from the retrieval of entities set from multiple platforms, to their

reconciliation as belonging to the same conceptual person (which is identified by

the set of profiles linked together and not by additional information.)

2 Introduction

More formally, in this domain:

• platform is the denomination for online social networks, such as Facebook

and Twitter.

• Entities are profiles extracted from a platforms.

• The term pair is intended as a pair of profiles.

• A person or user is identified as a set of matched profiles, usually from 1 to

N where N is the number of platforms.

1.1 Relevance

The importance of the problem is related to the presence of subsequent tasks of

analysis or model learning whose accuracy can be improved with data extracted

from different accounts of the same person.

For example, the expert finding task attempts to select a set of experts that are

knowledgeable on a particular topic; by leveraging the information of multiple

profiles of the same person expert finding algorithms have more data to work with.

At the very least, duplicate results generated by finding the same expert’s accounts

on multiple platforms can easily be eliminated as they are recognized as a single

person.

Along with expert finding, other tasks thay may take advantage from data from

multiple profiles of a user are:

• The research of scientific collaborators, which for example in Schleyer et al.

[30] sees the ability to exploit social networks and the aggregation of data

from different sources as a requirement in expertise location.

• Crowdsourcing and expertise retrieval, which contain a component of iden-

tity reconciliation where we want to correctly consider all documents and

material pointing to a candidate expert as a single score instead of to mul-

tiple fictitious people. Conversely, we would want to distinguish between

homonyms when assigning the same scores (Balog et al. [2]).

• Customization opportunities, that could mitigate the cold start problem (for

example in Carmagnola and Cena [5]), as new platforms cannot provide a

1.2. Domain-specific issues 3

tailored user experience or recommendations until they gather data from their

users. Correlating profiles with the ones of other platforms is a better starting

point than relying on an empty profile.

• The study of individual personality and its relation to online behavior, that

can use record linkage between survey-based and social-network data as a

preliminary step (Wehrli [34]).

• Brand reputation analysis, which may track which users spread content from

one network to another.

In general, analyses that span multiple domains are also an interesting field for

profile alignment as users tend to post about different topics on different platforms.

For example, LinkedIn is widely viewed as a professional network while Facebook

as a personal one: linking friends from both Facebook and LinkedIn could at the

very least rank the importance of work contacts, or even find common hobbies with

our work colleagues.

1.2 Domain-specific issues

The problem of linking multiple representations of the same person is called record

linkage (or duplicate detection, or identity reconciliation) and has a vast literature

spanning from probabilistic to machine learning techniques.

However, there are several issues related to the domain of online social networks

that are more specific than general person-based linkage:

• Anagraphical values are not always of high quality. It’s common to use not

only names but also informal abbreviations and pseudonyms, which would

never be found on census or company data.

• There is an undetermined quantity of missing fields due to omittance (only

a few fields like the name are mandatory, while birth dates and current lo-

cations are not always available) and because of restricted permissions and

privacy reasons. Not all of the personal details of a profile are always avail-

able as the full database is private and belongs to the platform’s.

• There is additional information about pairs and their compatibility. There is

the possibility of conflict between users: two profiles with different platform-

4 Introduction

wide autogenerated IDs, but belonging to the same platform are highly un-

likely to represent the same person (they would correspond to duplicate Face-

book or LinkedIn accounts).

• Non anagraphic fields can be considered: for instance, information about the

connections of profiles (such as friendships and followships) can in principle

carry information about their identity.

1.3 Original contribution

The setting of this thesis is the application of machine learning to the alignment

of user identities, in the context of online social networks. Several models are

trained and evaluated to be used to determine if pairs of profiles from different

social networks belong to the same person or to different ones.

With respect to the state of the art, this work’s contributions are:

1. The characterization of domain-specific features for classifying pairs of pro-

files that are mostly applicable to pairs of profiles extracted from an online

social network, with all the peculiarities explained in the last section.

2. The production of a dataset containing ground truth in the order of thousands

of profiles to evaluate the results of different learning algorithms.

3. The evaluation on the dataset of multiple existing approaches such as hierar-

chical clustering, decision tree induction and support vector machines.

The implementation of these techniques consists of an application which is able

to extract sets of aligned profiles from Facebook, Twitter and LinkedIn by starting

from a few seeds, users that have willingly authorized the application to access

their accounts through the standard social network APIs. The number of seeds

required is several orders of magnitude inferior to the number of users obtained

during the extraction.

1.4 Thesis organization

The remainder of the document is organized as follows.

1.4. Thesis organization 5

Chapter 2 first explores the prior art in the field of record linkage, with a look to

the literature describing usage of unsupervised and supervised learning. The base

record linkage problem is defined in mathematical terms along with several already

existing solutions.

Chapter 3 characterizes the different classifiers under test and the post-processing

variations that can be applied to their result. The design of the application and its

integration with the online platforms is discussed.

Chapter 4 describes the evaluation of the different models over a real dataset.

The statistical significance of the differences in performance between models is

investigated, and several non-functional aspects are discussed.

Finally, chapter 5 summarizes the findings of this work and recollects some ideas

for future research in the field under study.

2
Background

2.1 Problem definition and model

The record linkage problem is also known as the problem of duplicate detection or

of entity reconciliation. In this context, representations of a person are the subject

of study and the problem itself can be called people reconciliation. The rest of this

section will always refer to:

• entity to denote a record, a particular representation of a person like his ana-

graphic information in the university database, or his own profile on Face-

book.

• Person as a single physical person, conceptually spanning all the entities that

represent her in the available databases. A person may be composed of 1 to

N entities.

• Pair to denote a couple of entities that may or may not pertain to the same

person.

• Field to denote an attribute of an entity, like its name or birth date.

This terminology is biased towards the people-based subfield of record linkage, but

helps grounding the concepts explained in this background section and is in tune

with the scope of this thesis.

In the standard mathematical model from Fellegi and Sunter [11], each person

may belong to two populations A and B, whose elements can be denoted by a and

8 Background

b respectively. The assumption is that some elements are common to the A and B

set, but they are likely to be represented differently or incompletely in the different

sets.

The set of ordered pairs is defined as:

A×B = {(a,b);a ∈ A,b ∈ B}

and as such contains all the possible pairings between elements of A and B. The

taks of people reconciliation is then to classify each pair in this set as belonging

either to the matched or to the unmatched sets:

M = {(a,b);a = b,a ∈ A,b ∈ B}

U = {(a,b);a 6= b,a ∈ A,b ∈ B}

where = is an equivalence relationship. We can distinguish between the conceptual

people represented in the sets, elements a and b, and their recorded information,

α(a) and β (b).

Then, a and b are the same for each pair in M but α(a) and β (b) may differ

slightly. For example, the name of a person can be written as FirstName LastName

in α(a) but as LastName FirstName in β (b); or an abbrevation may be used for one

version of the name, such as Alex instead of Alexander; or a pseudonym may be

used instead of the real name, rendering the comparison between the name fields

moot.

Conversely, α(a) and β (b) can be equal (or very similar) even when the pair is in

U, in case of homonymy; many different database records of John Smith or Luca

Rossi exist without necessarily representing the same person.

The model does not exclude that A can be the same set as B: in this case the

problem assumes the name of duplicate detection as the goal is to find duplicates a

and b of any person that is represented multiple times in the list.

The result of the comparison of records a and b is called the comparison vector,

and each element of this vector is a function of the whole α(b)andβ (b):

γ[α(a),β (b)] = γ1[α(a),β (b)], ...,γk[α(a),β (b)]

2.2. Algorithms 9

although in most of the cases, when α(a) and β (b) are database records, it is just

a function of one of their fields.

The set of all possibile realizations of γ (a function on A×B) is called comparison

space, and if the cardinalities of A and B are comparable grows quadratically in

size.

This model is generally applicable for all record linkage specializations, while al-

ternative approaches are possible for the actual classification task. The approaches

range from probabilistic to supervised ones.

The models also implies no loss of generality in considering just two populations

A and B, as for additional populations such as C can be considered in isolation for

linkage with A and B respectively; D for linkage with A, B and C; and so on. The

M and U sets are the union of the respective pairwise matched and unmatched sets:

M = Mab∪Mbc∪Mac

U =Uab∪Ubc∪Uac

2.2 Algorithms

This section describes different approaches of increasing complexity for taking on

the pair classification problem. Active learning, which would require repeated user

interactions for intermediate phases of the classification, is not considered as out

of the scope of this work.

2.2.1 Classical

Naive approaches are based on equational rules for classifying pairs of records: the

comparison vector is built to allow these rules to be applied. For example, several

rules like ’matched if names are equal’ and ’matched if names differ by 1 letter and

birth date is equal’ can be applied in succession after a priority for each of them is

defined.

More sophisticated approaches build a comparison vector containing real num-

bers; each element of the vector representing a similarity between the values of the

same fields in the different records.

10 Background

The probabilistic approach applies the Expectation-Maximization algorithm on

comparison vectors generated from each pair by comparing their corresponding

fields. Each vector assumes a series of boolean values for field comparisons (0

for unmatched and 1 for matched) and a label 0 < g < 1 corresponding to the

probability of the pair being a positive match.

For instance, Jaro [19] applies the EM algorithm: in the E step classifications for

the records are estimated from the current parameters of the distribution, while in

the M step the log-likelihood of the data is maximized to give new values for the

mixture distribution of matched and unmatched pairs.

Gu et al. [16] also uses the EM algorithm in the same way: the parameters are the

conditional probabilities my and uy to observe the agreement vector y given that the

pair is a true match or a false match. Weigths are computed from the probabilities

and used to update the status of pairs.

Jin et al. [20] explores also an approach of using attribute-specific distance defini-

tions and predefined merging rules to map items on a multidimensional Euclidean

space, while preserving similarity. Mapping on such a space is interesting for the

subsequent usage of clustering algorithms that take advantage of the space proper-

ties to lower their computational complexity.

Transitive closure

In any case, classification of pairs alone does not solve the record linkage problem.

A transitive closure step is always applied as the final operation in order to link

chain of pairs into a single person: two matched pairs (a, b) and (b, c) may then

become a single entity {a, b, c} even if the (a, c) pair has not been classified as

matched or has not been classified at all.

Hernández and Stolfo [17] and Monge and Elkan [22] are examples of the popular

usage of a union/find data structure to efficiently compute the transitive closure.

Any pairwise matching algorithm can take advantage of this data structure.

The disjoint-set data structure is initialized with each element as a single subset;

it then provides two operations:

• determine in which subset an element is.

• Join two subsets in a single one.

2.2. Algorithms 11

Even in a simple linked list implementation, these operations are respectively linear

with the size of the subset (a list has to be traversed for each item) and constant

(two linked lists are joined.)

The data structure is initialized with all the entities to reconcile, and then a union

is performed between the components of each pair deemed as matched. A single

pass over all entities then maps them to the subset they are in, which corresponds

to a physical person.

Computational complexity reduction

The main computational problem in record linkage is that the size of the compar-

ison space increases quadratically with the number of records considered. For all

non-trivial problems, it is then unfeasible to consider all possible pairings between

entities, an O(N2) operation.

Gu et al. [16] lists two alternatives for lowering the cardinality of the comparison

space, named blocking and windowing.

As shown in figure 2.1, blocking reduces the pairs to the ones generated between

records with an identical value on a particular blocking field, which is revealing

of false matches but not necessarily of true matches. The A and B sets are parti-

tioned into disjuncted blocks: for example, blocking on ZIP code results in only

comparing people which live in the same city, a move that widely reduces the com-

putational complexity of the classification, hopefully without removing matched

pairs from the comparison space.

Figure 2.1: Blocking example

As shown in figure 2.2, windowing (also known as the sorted neighborhood

method) prescribes the movement of a fixed-size window of W records over the

list of sorted instances; only pairs contained in the window are considered. For

example, sorting a list of people by name is going to exclude most of clearly dif-

ferent names from the comparison, such as John and Thomas; but including in

12 Background

the set of pairs similar names such as Gianni and Giovanni for further analysis.

Multiple passes of windowing on different sorting fields increase the comparison

Figure 2.2: Windowing example

space at a linear cost, which is preferrable to the quadratic cost of considering all

possible pairings. In case of multiple passes, the union of the generated pair sets is

considered.

In both blocking and windowing all non-considered pairs are deemed as un-

matched pairs: the number of pairs increases linearly with the passes, which are

however a bound number.

The application of either blocking or windowing trade-offs recall for performance

reasons; they are both techniques statistically bound to found less matched pairs

because the most distant records will be excluded by the comparison space. Nev-

ertheless, they are able to reduce by 100x or 1000x the number of comparisons to

perform (from quadratic with the number of records, to even linear in the window-

ing case).

Hernández and Stolfo [17] uses multiple windowing passes and a final step to

compute the transitive closure between all matched pairs. The fields used as sorting

keys vary from the principal key (last name) to street address. Experiments with

window sizes from 2 to 60 confirm that multiple passes can achieve precisions in

the range of 90% and that these values are aymptotic and do not increase when

window size increases more.

Monge and Elkan [22] enhances multiple passes with different sorting fields by

scanning the list with a priority queue keeping references to a few (4) last clusters

detected.

2.2. Algorithms 13

2.2.2 Clustering

Clustering is an unsupervised approach to find matched pairs. The simplest cluster-

ing algorithm that can be applied to the problem is the agglomerative hierarchical

one, where records (and not pairs) are recursively merged into clusters represent-

ing people, starting from the nearest pair of profiles and continuing at each iteration

with the profile nearest to an existing cluster.

Figure 2.3 shows an example of profile clustering that aligns 8 profiles as 3 users.

Figure 2.3: Clustering of profiles example

The single linkage variation can be computed in O(N2), which makes cluster-

ing difficult to use on large datasets. Windowing can improve the complexity by

providing a list of similarities between entites sorted in descending order, that the

agglomerative algorithm can read in sequence. In this semplification, every pair

not in the list is then considered at infinite distance.

Naumann and Herschel [23] codifies this clustering approach followed by two

variations of post-processing. Before applying transitive closure, post-processing

14 Background

helps breaking up clusters that are unreasonably big and therefore cannot represent

just a single entity.

Post-processing starts from a graph where entities are nodes and the matched

pairs found via clustering are edges. Each edge is weighted with a single similarity

measure where provided, or with a constant value in case the classifier does not

provide a confidence value.

The first post-processing approach is partitioning based on connected compo-
nents. This post-processing recursively removes the edge with lower similarity (or

highest distance) until each connected component size is lower than a threshold

(for example 3, which corresponds to 3 entities at maximum making up a single

person.)

The second post-processing approach is partitioning based on centers. Edges are

sorted in descending order of similarity and their list is traversed: every time a new

node is encountered, is declared a center. All the remaining nodes connected to a

new center are assigned to it and never considered again, and the list scanning goes

on until all nodes have been considered, either as centers or as part of the cluster

formed around a center.

Other approaches in clustering comprehend farthest-first clustering, where new

users are created by targeting the farthest nodes from the last considered cluster.

Goiser and Christen [15] use farthest-first to improve the performance of unsuper-

vised (in this case clustering) learning on unblocked data, where K-means fails.

Even more sophisticated clustering approaches like sparse neighborhoods use a

different distance or size thresholds for each cluster. Cohen and Richman [8] use

a canopy method to generate the candidate pairs: this clustering method is more

adaptive and conservative as a subset of the assigned points to a canopy can be

reused and assigned to other ones (the farthest ones).

Verykios et al. [32] is still an example of unsupervised learning in that it uses

clustering first to find out the labels of an otherwise unlabeled set of pairs, and then

builds a decision tree which is broken down into rules.

2.2.3 Supervised learning

Supervised learning approaches start from a ground truth containing a mapping

of a set of pairs from the same domain (census data, social networks or such) to

2.2. Algorithms 15

booleans defining them as matched or unmatched. The hope of supervised learning

is to statistically learn a model that generalizes over the same domain and is able

to classify new pairs.

Ground truth is not always available and that restricts the applicability of super-

vised learning; however, these approaches open up new possibilities for choosing

the parameters of the model such as the importance of the distance between names

with respect to the distance between birth dates or current locations (in general,

between fields of the comparison vector).

Decision trees

Decision trees are one of the easiest to interpret model that can be learned from

data. Given a training set containing for each pair:

• a list of distances between correspondent fields as feature values

• a classification as matched or unmatched

the C4.5 algorithm is able to learn thresholds for each distance and the order in

which they should be considered in the decision rule. The end result is a tree

where each branch is split basing on a feature value, as shown in the example of

figure 2.4:

Figure 2.4: Decision Tree for weather prediction

The algorithm chooses the feature with the higher normalized information gain

at each split, and performs pruning of complex branches to avoid overfitting and

improve the legibility of the model.

In the realm of record linkage, Neiling [24] compares decision tree induction with

classic record linkage on real data (250,000 German people) and conclude that it is

16 Background

more accurate and robust than the latter. However, it is noted that decision trees do

not allow to bound the false negative rate (matched pairs not classified as matched)

nor to produce a list of dubious pairs for human examination; trees only produce a

binary classification, and not a real score that could be compared with a threshold.

[1] uses clustering and decision trees to perform experiments in duplicate de-

tection over synthetic data and over the set of Walmart products (200 millions of

pairs), and results suggest that machine learning models outperform probabilistic

(classic) approaches.

Support vector machines

Support vector machines estimates an hyperplane that separate the inputs in the

feature space with the widest possible margin, or in the common case of non-

linearly separable inputs minimizes the misclassified inputs. Linear support vector

machines are considered here, such as the one of figure 2.5.

In the case of record linkage, inputs are pairs and the two classes to separate are

still matched and unmatched in the same classification problem solved by decision

trees.

SVMs have a greater complexity of training with respect to trees, but they also

outperform state of the art trees in several empirical results.

Figure 2.5: Support Vector Machine for weather prediction

Bilenko and Mooney [4] adopt SVM both for learning domain-specific string sim-

ilarity measures (adapted to each field) and for formulating a predicate for pair

classification by combining all measures according to learned weights. The claim

is that this two-step approach outperforms non-adaptive ones as the similarites can

be tuned to the data present in different domains instead of being statically chosen

from a library of standard string distance metrics.

Christen [7] uses an unsupervised two-step approach where first training examples

of high quality are selected as seeds and matched without a ground truth; second,

2.3. Social network related work 17

these pairs are used to train a SVM classifier. Newly classified pairs are iteratively

added to the training set. The aim of this approach is to improve over other unsu-

pervised algorithms, and not to compete with supervised ones where ground truth

already exists.

2.3 Social network related work

Social network profiles matching and in general online profiles matching is not a

new task. The literature contains several examples of work oriented to people and

profile matching.

Carmagnola and Cena [5] build a framework for the interoperability of different

systems (not public social networks) that ask to each other info on new users that

have registered to retrieve more data for customization purposes. They use names,

mails, and birth date as identifying fields and set model parameters by hand (the

weights of matching field and the weight of how that field has univocity or multiple

values per user).

Each field importance with respect to to other fields is learned from the data.

A linear model is built with a threshold learned via validation on a 100-person

dataset.

The domain of application is restricted as it consists of user-adaptive systems

where performance is improved by real data and the user is incentivized to enter

real data to get back appropriate recommendations or information.

Zafarani and Liu [35] study the identity elicitation problem: the search for a sin-

gle user on different platforms. This is a username-based analysis, which involves

pseudonyms and urls that contain these pseudonymes; no anagraphical data is an-

alyzed for lack of availability. The average accuracy reported is of 66% across 12

online communities.

Vosecky et al. [33] use manual settings for the weights of different fields, but

full profile vectors including information as name, home town, birthday, website

or gender (but no connectivity information). The study is based on Facebook and

the German-based network StudiVZ. The study reports an 83% success rate in

identifying duplicate users as the evidence that the problem is solvable.

Carmagnola et al. [6] perform user elicitation via crawling: the input is a single

user. The approach is based on public data available through crawling of HTML

18 Background

pages and not on published APIs. Weights for fields similarities are chosen from

a priori probabilities of the field values: for example, a match on gender is much

less restricting than a match on names as the a priori probabilities of the male and

female values are very high (both 0.5).

Iofciu et al. [18] use a combination of username similarity and tags similarity

in a mixture model, modelling both explicit information (like anagraphic details)

and implicit information like the tag used by a profile to categorize bookmarks on

Delicious. The metric used for success is the rank at which the input user appears

in elicited list, as in this context it would be very difficult to provide an exact match

with this limited information.

Tang et al. [31] perform statistical analysis on names in Facebook’s New York

network, recognizing that first and last name are features that cannot be hidden

by privacy on this particular platform. This observation is valuable and reflect a

fundamental attribute of some social networks: in this case Facebook, but even

more so for LinkedIn as in a professional network the user is expected to enter his

real name.

The study is not focused on reconciliation but only to gender prediction and sta-

tistical analysis of names.

Raad et al. [28] is the most similar work in the state of the art, as it defines the

same base problem of merging profiles from different platforms. However, this

work defines a framework for evaluating unsupervised decision making algorithms,

and the evaluation dataset is synthetic (having been randomly generated).

Bartunov et al. [3] define the concept of seed user and works on a single ego net-

work: neighborhoods of the same person in different platforms. The study focuses

on first neighborhood samples but could be in theory expanded to larger networks

with the use of more anchor nodes.

Anchor nodes can even work as a de-anonymization tool as the graph signature of

a node in one of the graphs with respect to anchor nodes can make it identifiable

in other platforms. In this study, performance (mainly recall) is very influenced by

the presence of at least some anchor nodes, due to the kind of similarities used.

To the best of our knowledge, no previous work in the literature provides an ex-

austive experimental study for the adoption of record linkage techniques in on-

line social networks, comparing multiple classifiers and their variations over a real

dataset, and attempting to automatically learn model parameters from the data in-

2.3. Social network related work 19

stead of requiring a human decision.

3
Implementation experience

This section describes the techniques evaluated by this work in the context of online

social networks. First, the techniques under evaluation are listed along with the

available record features for the classification problem. Then, the architecture and

design of the application are presented.

3.1 Methods

post-processing Clustering Decision trees Linear SVMs
No post-processing X X
Connected components breakup X X X
Single profile per platform X X X

Table 3.1: All variations experimentally evaluated

Different techniques and variations have been compared experimentally. Table

3.1 shows all the combinations that have been experimented with, and compared

column-wise (post-processing variations for a given technique) and row-wise for

what regards decision trees and SVMs (best technique given a post-processing

strategy).

3.2 Distances

Several pair-to-pair distances from the literature have been defined on the available

data, to be used as features for linking profiles, or classifying pairs:

22 Implementation experience

• Levenshtein distance between real names.

• Jaro-Winkler distance between real names.

• TF/IDF distance between real names.

• Url distance between normalization of homepage fields.

• Levenshtein distance on other anagraphic fields such as: normalized birth

date, location, nickname.

The Levenshtein distance is a simple edit distance for strings, that measures the

amount of characters to remove or replace to transform a string into another.

The Jaro-Winkler distance is a more complex edit distance designed for the

specific domain of record linkage and in particular of person names.

The TF/IDF distance is a classic information retrieval concept: in this case the

terms of documents are actually the words contained in the string field where it is

calculated. The term frequency is almost always 1 as there are very rare repetition

in person names; the inverse document frequency is calculated over the available

dataset, making rare names or surnames such as Sironi stand out with respect to

more common ones such as Rossi, Smith or else.

The Url distance is calculated as the Levenshtein distance after normalization of

Url values; for example, prefixes like http:// and www. are removed as a form of

stemming.

Birth dates are also normalized to the yyyy-mm-dd form, with missing segments

like the year substituted by question marks.

For consistency of interpretation, all measures are expressed as distances (the

lower the better), even if some of them are calculated as similarities. The conver-

sion is made where necessary by elevating to the -1 power.

Note that (also in literature) these dissimilarity functions are often called dis-

tances, but only some of them (like Levenshtein’s distance) are actually metrics.

For example, the Jaro-Winkler distance does not satisfy the triangle inequality and

is then not a metric distance in the mathematical sense.

Some additional features introduce domain-specific dissimilarities:

• Conflict: 1 if profiles are on the same platform, 0 otherwise.

3.2. Distances 23

• Common seed identity: 1 if the seeds are equal, 0 otherwise.

For what regards the conflict dissimilarity, it serves to exclude that two different

profiles that reside on the same platform may belong to the same person. There

are possible limit cases in where a real person has created multiple accounts on

the same platform, but the datasets confirm that these are a few cases in the whole

30K profile set and may then be ignored for the sake of correctly classifying the

majority of pairs.

The seed dissimilarity attempts to include a simple measurement for the presence

or absence of a connection in the social graph. If two profiles point to the same

seed, at least a common friend (the seed itself) exists between them; then this

feature assumes the 1 value. We cannot say anything in case the seed identity is

different, and the feature assumes the 0 value. This information is always freely

available from the way the dataset is extracted from platforms (by using a relatively

small set of authorizing user as seeds and crawling their neighborhood) and as such

it does not add weight to the retrieval process, which is network-intensive.

Unknown (null) values are assigned for distances that cannot be calculated due to

missing information (usually the absence of one of the two fields). The learning

algorithms are supposed to be capable to deal with the missing value.

The datasets are stored as MongoDB BSON databases and as such conceptually

in the JSON format. However, they can’t be published due to personal details

being present and to the Terms Of Service of the various platform from which they

originate. Due to the particular nature of the features of the profile pairs, involving

full names and nicknames, the anonymization of the datasets would prevent their

usage.

3.2.1 Windowing

Pair generation is a common step for all the techniques under study, and takes

place in the same way for both the training and validation sets, where the latter is

present. Generating all the possible pairings between profiles is quadratic with the

size of the dataset; the windowing approach from the literature generates instead a

number of pairs linear with the size of the dataset and the fixed size of the window

(20 profiles).

Windowing is preferrable to blocking due to the application domain: blocking

24 Implementation experience

assumes there exist at least a field that uniquely identifies false match pairs when

its values are different between the profiles (like a ZIP code or a nationality field).

However, for most of the available data each field has many missing values or is

expressed in non standard formats; for example location may assume the value

Milano or Milan area, Italy for two profiles belonging to the same person. Thus

blocking is not applicable in this domain due to the lack of a grouping attribute in

the profiles.

Two windowing passes are executed on the profile set, by sorting records on the

name and website field. Only pairs whose profiles are inside the same N=20 win-

dow in the sorting are considered, excluding of course the pairing of a profile with

itself.

An advantage of consistently performing windowing is to make the prior proba-

bility of labels comparable: in the full pair set the probability of a pair to be a true

match decreases quadratically with the size of the profile set. When windowing is

present, the total number of pairs is linear and since only false matches are (hope-

fully) excluded, the prior probability of the true match class raised very much.

For example, in the larger evaluation dataset available, a single pair sampled from

the full pair set has a 2.5E-6 probability of being a true match and as such an almost

1 probabiity of being a false match. When sampled from the windowing-based pair

set, it has instead a 0.05 probability of being a true match.

Windowing has however to be kept consistent between training and usage of the

classifier on a new dataset, to avoid skewing the prior probabilities the classifier

has been trained on.

3.2.2 Classifiers: Clustering

Agglomerative hierarchical clustering was performed on the dataset as a form of

unsupervised learning. The distance chosen was the Manhattan distance combining

the Levenshtein distances over the name and url fields.

Windowing provides the clustering algorithm with a list of distances between

points which is sorted in descending order, so that the algorithm has only to evalu-

ate such a list instead of computing all the possible pairings by itself. All pairs not

contained in the list are thus considered at infinite distance and never considered

matched.

3.2. Distances 25

Each pair (that constitutes a linkage between points inside a cluster) consists of the

identifiers {(plat f orm1, id1),(plat f orm2, id2)} mapped to a floating point value

D, where in this implementation 0≤ D≤ 5 ·2.

Two post-processing techniques are experimented with in the clustering approach:

• As described in section 2.2.2, connected components partitioning breaks the

clusters bigger than 3 profiles into smaller users (which would certainly con-

tain at least a misclassified pair as there are only 3 different platforms in the

dataset).

• single profile per platform partitioning breaks the cluster recursively by until

each resulting user is not composed of multiple profiles belonging to a single

platform.

The results in the absence of post-processing are not evaluated as this option is

already ruled out by the state of the art as ineffective.

Single profile per platform can be generally applied only when it is known that

there are no duplicates in the different source sets of profiles. This is true for the

web-based platforms considered in this work, as they provide means for finding and

retrieving access to existing accounts. The empirical data validates this assumption,

as a proportion of less than 10 duplicated profiles on the same platform has been

verified over a dataset of several tens of thousands profiles.

In the single profile per platform variation, each user formed by linking pairs

judged as matched is processed independently; until there is a conflict in the mesh

set of pairs generated by the user, an link between two pairs is iteratively removed.

For example, two Twitter profiles may be found in the same user, either because

of a direct link or because of them being linked to a common third profile. In this

case, the user is broken up until the two profiles are not connected anymore, not

even indirectly.

To achieve the final result, the transitive closure is calculated so that all matched

pairs inside a cluster are merged as a single user.

3.2.3 Classifiers: Decision trees

Decision trees are used as classifiers for directly assigning the windowed pairs

to the matched or non matched class. Trees combine all the available features

26 Implementation experience

(distances, conflict and seed identity) and learn the importance of each feature

from the available training data.

The C4.5 algorithm builds and prunes a tree from a given training set consisting

of feature values and matched or unmatched labels. All the Weka default options

are set.

The confidence threshold for pruning has been held to the default 0.25, and it

does not experimentally influence the accuracy of the result when varied from 0.1

to 0.75. Tuning this parameter too would require a separate test set for comparison

with other methods, as its choice may overfit the validation set (which is used here

only for gathering metrics and not for selecting any parameter or structure of the

tree).

The decision tree classifier does not only consists of a tree: post-processing takes

place, on both training and validation sets. As a control, the no partitioning vari-

ation and is evaluated, to verify the effectiveness of the connected components

partitioning and single profile per platform strategies, as described in 3.2.2.

Summing up, the partitioning variations are:

• the already described single profile per platform partitioning.

• connected components partitioning: pairs are recursively removed until each

user does not contain more than 3 profiles (the number of different plat-

forms).

• no partitioning: used as a control group.

All the remaining valid pairs are merged to form users via the transitive closure.

3.2.4 Classifiers: Linear SVM

Support Vector Machines are general purpose classifiers and thus can be swapped

in instead of a trees and leverage the same features. In fact, the post-processing

steps available to SVMs to compute a transitive closure of pairs are the same as for

trees.

The learning algorithm used is Sequential Minimal Optimization, with a polyno-

mial kernel and a maximum esponent of 1 (which corresponds to a linear model).

The C complexity constant is varied in the interval [1× 10−2;1× 102], but does

3.3. System model 27

not influence the accuracy of the result, and as such is not discussed further as a

parameter. The other Weka defaults (normalization of all features and replacement

of missing values) are maintained.

Due to the functional equivalence to trees, SVMs support the same post-processing

variations:

• single profile per platform partitioning.

• connected components partitioning.

• no partitioning.

The windowing and the transitive closure computation steps are shared with the

decision tree process, as described in section 3.2.3.

3.3 System model

Figure 3.1: Black box model of the application

As shown in 3.1, the input of the system is a set of seeds. Each seed is a set of

from 1 to P authentication tokens to access the API of an online social network on

behalf of a user. P is the number of different platforms available; the access tokens

of each seed are issued for hypothesis by the same person and are the only way for

a 3rd party application to access data stored on the online platforms.

28 Implementation experience

The output of the system is a set of N users. Each user represents a single physical

person and contains from 1 to P profiles on the defined social networks. Each

profile can be identified in the output by just the name of the platform and the

platform-specific id; if other data is available, it is easy to link to the profile by

these two informations.

Figure 3.2 shows the profile linkage data flow. The User Repository provides a

set of profiles, and windowing is run over them to produce a set of possible pairs.

A distance value for each of the Di features is calculated and attached to each pair.

Then, a classifier divides the pairs in matched or unmatched, and a post-processing

phase builds the transitive closure while trying to avoid to build users composed of

an high number of profiles, which is not consistent with reality.

Figure 3.3 shows the data flow for the training of classifiers. A User Reposi-

tory containing ground truth information extracts a training set composed of users,

instead of single profiles. The profiles are then extracted and a windowing pass

produces a large set of pairs, ignoring the ground truth and behaving as if it was

not available.

A distance value is again calculated for each of the Di features and the classifier

training algorithm is fed the pairs with their associated distances, and the label for

each. The output of the process is a classifier instance with all its parameters (e.g.

weights for SVMs). The training process is not present for clustering, being an

unsupervised approach.

The validation process in figure 3.4 is very similar to the main linkage process.

However, pairs are produced by windowing in the training process. Moreover,

there is an additional final step that compares the output of the process (the list of

users) and compares it with ground truth.

Typical values for these parameters are:

• P = 3 e.g. Facebook, Twitter, Google+

• M = 10 as N will grow much quicker than M.

• N = 10000 or more.

3.3. System model 29

Figure 3.2: Profile linkage data flow

30 Implementation experience

Figure 3.3: Training data flow

3.3. System model 31

Figure 3.4: Validation data flow

32 Implementation experience

3.4 Design

Each platform provides its own proprietary APIs containing a resource representing

each profile. For example, Facebook provides a list of anagraphical fields depend-

ing on the level of privacy set by the profile’s user:

1 {
2 " i d " : " 1588293761 " ,
3 " name " : " G i o r g i o S i r o n i " ,
4 " f i r s t _ n a m e " : " G i o r g i o " ,
5 " l a s t _ n a m e " : " S i r o n i " ,
6 " username " : " p i c c o l o p r i n c i p e " ,
7 " g en de r " : " male " ,
8 " l o c a l e " : " en_US "
9 }

Twitter provides a monolithic set of fields for each profile:

1 {
2 " i d " : 47998559 ,
3 " f a v o u r i t e s _ c o u n t " : 86 ,
4 " p r o f i l e _ i m a g e _ u r l " : " h t t p : \ / \ / a0 . twimg . com \ / p r o f i l e _ i m a g e s

\ / 4 2 7 1 0 8 0 0 2 \ / i o _ j a m a i c a _ q _ n o r m a l . j p e g " ,
5 " p r o f i l e _ b a c k g r o u n d _ t i l e " : f a l s e ,
6 " p r o f i l e _ s i d e b a r _ f i l l _ c o l o r " : "CCF0FE" ,
7 " v e r i f i e d " : f a l s e ,
8 " l o c a t i o n " : "Como , I t a l y " ,
9 " u t c _ o f f s e t " : 3600 ,

10 " name " : " G i o r g i o S i r o n i " ,
11 " l a n g " : " en " ,
12 " i s _ t r a n s l a t o r " : f a l s e ,
13 " d e f a u l t _ p r o f i l e " : f a l s e ,
14 " p r o f i l e _ b a c k g r o u n d _ c o l o r " : "CCF0FE" ,
15 " p r o t e c t e d " : f a l s e ,
16 " c o n t r i b u t o r s _ e n a b l e d " : f a l s e ,
17 " t ime_zone " : "Rome" ,
18 " p r o f i l e _ b a c k g r o u n d _ i m a g e _ u r l " : " h t t p : \ / \ / a0 . twimg . com \ /

p r o f i l e _ b a c k g r o u n d _ i m a g e s \ / 3 9 2 3 1 5 9 5 \ / t w i t t e r _ b g 4 . j p g " ,
19 " p r o f i l e _ l i n k _ c o l o r " : " 0084B4" ,
20 " d e s c r i p t i o n " : " B a c h e l o r o f Computer E n g i n e e r i n g , web

d e v e l o p e r . Blogs on I n v i s i b l e t o t h e eye a b o u t [web]
programming and e n g i n e e r i n g . " ,

21 " g e o _ e n a b l e d " : f a l s e ,
22 " l i s t e d _ c o u n t " : 128 ,
23 " s h o w _ a l l _ i n l i n e _ m e d i a " : f a l s e ,

3.4. Design 33

24 " n o t i f i c a t i o n s " : nul l ,
25 " i d _ s t r " : " 47998559 " ,
26 " s t a t u s e s _ c o u n t " : 5195 ,
27 " p r o f i l e _ i m a g e _ u r l _ h t t p s " : " h t t p s : \ / \ / s i 0 . twimg . com \ /

p r o f i l e _ i m a g e s \ / 4 2 7 1 0 8 0 0 2 \ / i o _ j a m a i c a _ q _ n o r m a l . j p e g " ,
28 " f o l l o w i n g " : nul l ,
29 " p r o f i l e _ u s e _ b a c k g r o u n d _ i m a g e " : true ,
30 " sc reen_name " : " g i o r g i o s i r o n i " ,
31 " p r o f i l e _ b a c k g r o u n d _ i m a g e _ u r l _ h t t p s " : " h t t p s : \ / \ / s i 0 . twimg . com

\ / p r o f i l e _ b a c k g r o u n d _ i m a g e s \ / 3 9 2 3 1 5 9 5 \ / t w i t t e r _ b g 4 . j p g " ,
32 " f o l l o w e r s _ c o u n t " : 1228 ,
33 " p r o f i l e _ t e x t _ c o l o r " : " 333333 " ,
34 " f o l l o w _ r e q u e s t _ s e n t " : nul l ,
35 " f r i e n d s _ c o u n t " : 417 ,
36 " u r l " : " h t t p : \ / \ / g i o r g i o s i r o n i . b l o g s p o t . com" ,
37 " c r e a t e d _ a t " : "Wed Jun 17 1 5 : 3 5 : 3 0 +0000 2009 " ,
38 " d e f a u l t _ p r o f i l e _ i m a g e " : f a l s e ,
39 " p r o f i l e _ s i d e b a r _ b o r d e r _ c o l o r " : "C0DEED"
40 }

LinkedIn provides an highly customizable output, still depending on the profile’s

privacy settings and on the requested fields:

1 {
2 " v a l u e s " : [{
3 " h e a d l i n e " : " Deve lope r Advocate a t L i n k e d I n " ,
4 " i d " : " 4Lpna3NZkr " ,
5 " las tName " : " J o n e s " ,
6 " p i c t u r e U r l " : " h t t p : / / media . l i n k e d i n . com / mpr / mprx / 0

_8LXTPUg" ,
7 " _key " : "~ " ,
8 " f i r s t N a m e " : " K i r s t e n "
9 }] ,

10 " _ t o t a l " : 1
11 }

In addition, all APIs provide other resources, such as posts and groups, that can

be linked to each profile by using its ids.

However, a minimum common denominator has to be extracted from these APIs

as attributes of a profile are only relevant for profile linkage if they are present

on multiple platforms. Many fields have to be discarded instead because of being

platform-specific (the creation date or customization settings).

34 Implementation experience

There are also several issues in extending the profile attributes:

• Privacy settings may cut out the current access token from reading some of

the attributes.

• Completeness is not guaranteed: many users leave explicit profile fields

blank.

• When the desired data are available from a different resource from the pro-

file’s URL, additional network calls for each user linearly increase the re-

trieval time.

The integration of profile data from the chosen platforms (Facebook, Twitter,

LinkedIn) is consistently carried out with OAuth, the open standard for 3rd party

authorization.

In the OAuth framework, users allow access to their data on a service provider (a

platform like Facebook) without sharing their access credentials with the 3rd party.

Instead, a random token is generated in the process and authorized for usage by

a dialogue between the user and the service provider. The 3rd party only gets to

know the token and can access the user’s data only within the limits set by the user

on the token itself.

The system metaphor corresponds to a user issuing a valet key for the 3rd party, in

the example of figure 3.5 being an Android application. The valet key has limited

permissions and duration with respect to the full key.

Figure 3.5: OAuth metaphor

Tokens begin their lifecycle in the 3rd party, that generates them either via an

SDK or by asking directly the service provider for one. Users are directed on a

trusted page on the service provider’s website where they can authorize this token.

3.4. Design 35

A few (dozen) seeds are used by the application as a point of entry: their own

profiles are crawled along with their more massive circle of connections, following

or friends. A few tokens can easily allow access to some hundreds more profiles.

4
Evaluation

The evaluation is described as follows. First, the gathered datasets are presented,

and the ground truth manual generation method is documented. Second, the eval-

uation methodology for the classifiers and their comparison is defined. Third, the

experimental results for the various models are presented and discussed.

4.1 Datasets

Each seed user allows the application to act on his behalf with the available plat-

forms, resulting in the profiles of him and his friends being available for extraction.

The tokens of each seed are correlated and stored in this form:

1 {
2 " _ i d " : 20 ,
3 " f a c e b o o k " : "AAABjAfwd . . . azfPLQZD " ,
4 " t w i t t e r _ t o k e n " : " 1 6 1 8 2 0 7 8 . . . eOC3UVK8" ,
5 " t w i t t e r _ s e c r e t " : " D797IKOh . . . 5 nDCBeMM" ,
6 " l i n k e d i n _ t o k e n " : " f4761832 . . . 2 2 9 fe8d0 " ,
7 " l i n k e d i n _ s e c r e t " : " 3 d1f80c8 . . . 8 c4bbc77 "
8 }

The circle of users surrounding the seeds is gathered by stopping at the directly

connected nodes of the social graph (distance 1 from the seed).

This work has been part of the Cubrik project described in Fraternali et al. [12],

and the Cubrik data model has been extended with:

• a profile-specific name considered for each user, to allow different declina-

38 Evaluation

tion, abbreviations, and nicknames.

• a seed identity field is added to each profile to consider the provenance of

the data.

• Only populated fields are included into the model, as a simplification over

the full one.

After the retrieval process, the input data for the reconciliation process is a list

of separate users, each with a single profile. Before reconciliation a single person

may appear multiple times in the list, one for each of the platforms where he has

registered.

1 {
2 " _ i d " : O b j e c t I d (" 4 f f 7 0 6 f e e 4 b 0 3 b e 4 9 9 e 0 f 3 6 5 ") ,
3 " membership " : [{
4 " p l a t f o r m " : " f a c e b o o k " ,
5 " p l a t f o r m _ p r o f i l e " : {
6 " i d " : " 1588293761 " ,
7 " p r o f i l e _ u r l " : " h t t p : / / www. f a c e b o o k . com /

p i c c o l o p r i n c i p e " ,
8 " nickname " : " p i c c o l o p r i n c i p e " ,
9 " name " : " G i o r g i o S i r o n i " ,

10 " o r i g i n " : 5 ,
11 " d a t e _ o f _ b i r t h " : " 1988−12−31 " ,
12 " a t t r i b u t e s " : {
13 " l o c a t i o n " : "Como , I t a l y " ,
14 " homepage " : " h t t p : / / g i o r g i o s i r o n i . b l o g s p o t . com"
15 }
16 }
17 }]
18 " name " : " G i o r g i o S i r o n i "
19 } ,
20 {
21 " _ i d " : O b j e c t I d (" 4 f f 6 f a e a e 4 b 0 1 7 5 0 1 3 a c c e 4 0 ") ,
22 " membership " : [{
23 " p l a t f o r m " : " l i n k e d i n " ,
24 " p l a t f o r m _ p r o f i l e " : {
25 " i d " : "eQIMxUpSV_" ,
26 " p r o f i l e _ u r l " : " h t t p : / / www. l i n k e d i n . com / i n /

g i o r g i o s i r o n i " ,
27 " nickname " : "eQIMxUpSV_" ,
28 " name " : " G i o r g i o S i r o n i " ,
29 " d a t e _ o f _ b i r t h " : " 1988−12−31 " ,

4.1. Datasets 39

30 " a t t r i b u t e s " : {
31 " l o c a t i o n " : " Milan Area , I t a l y " ,
32 " homepage " : " h t t p : / / g i o r g i o s i r o n i . b l o g s p o t . com"
33 } ,
34 " o r i g i n " : 0
35 }
36 }]
37 } ,
38 {
39 " _ i d " : O b j e c t I d (" 4 f f 7 1 1 a 9 e 4 b 0 2 7 c 7 e a e 5 e 1 9 b ") ,
40 " membership " : [{
41 " p l a t f o r m " : " t w i t t e r " ,
42 " p l a t f o r m _ p r o f i l e " : {
43 " i d " : " 47998559 " ,
44 " p r o f i l e _ u r l " : " h t t p s : / / t w i t t e r . com / # ! / g i o r g i o s i r o n i " ,
45 " nickname " : " g i o r g i o s i r o n i " ,
46 " name " : " G i o r g i o S i r o n i " ,
47 " d a t e _ o f _ b i r t h " : nul l ,
48 " o r i g i n " : 7 ,
49 " a t t r i b u t e s " : {
50 " l o c a t i o n " : "Como , I t a l y " ,
51 " homepage " : " h t t p : / / g i o r g i o s i r o n i . b l o g s p o t . com"
52 }
53 }
54 }]
55 }

Only the common subset of fields present on at least two platforms is present in

this data model. Only profile fields are extracted for performance reasons; due

to privacy and completeness issues described in 3.4, it is not proficient to retrieve

additional data from the platform.

After reconciliation, the goal is to merge multiple profiles from the same person

into a single entity (for all the available users that have more than one profile in the

list; there is no elicitation of profiles that are not in the retrieved list.)

1 {
2 " _ i d " : O b j e c t I d (" 4 f f a 7 d f e e 4 b 0 c 2 f 8 9 4 6 c 4 0 9 5 ") ,
3 " membership " : [{
4 " p l a t f o r m " : " l i n k e d i n " ,
5 " p l a t f o r m _ p r o f i l e " : {
6 " i d " : "eQIMxUpSV_" ,
7 " p r o f i l e _ u r l " : " h t t p : / / www. l i n k e d i n . com / i n /

g i o r g i o s i r o n i " ,

40 Evaluation

8 " nickname " : "eQIMxUpSV_" ,
9 " name " : " G i o r g i o S i r o n i " ,

10 " o r i g i n " : 0 ,
11 " d a t e _ o f _ b i r t h " : " 1988−12−31 " ,
12 " a t t r i b u t e s " : {
13 " l o c a t i o n " : " Milan Area , I t a l y " ,
14 " homepage " : " h t t p : / / g i o r g i o s i r o n i . b l o g s p o t . com"
15 }
16 }
17 } , {
18 " p l a t f o r m " : " f a c e b o o k " ,
19 " p l a t f o r m _ p r o f i l e " : {
20 " i d " : " 1588293761 " ,
21 " p r o f i l e _ u r l " : " h t t p : / / www. f a c e b o o k . com /

p i c c o l o p r i n c i p e " ,
22 " nickname " : " p i c c o l o p r i n c i p e " ,
23 " name " : " G i o r g i o S i r o n i " ,
24 " o r i g i n " : 5 ,
25 " d a t e _ o f _ b i r t h " : " 1988−12−31 " ,
26 " a t t r i b u t e s " : {
27 " l o c a t i o n " : "Como , I t a l y " ,
28 " homepage " : " h t t p : / / g i o r g i o s i r o n i . b l o g s p o t . com"
29 }
30 }
31 } , {
32 " p l a t f o r m " : " t w i t t e r " ,
33 " p l a t f o r m _ p r o f i l e " : {
34 " i d " : " 47998559 " ,
35 " p r o f i l e _ u r l " : " h t t p s : / / t w i t t e r . com / # ! / g i o r g i o s i r o n i " ,
36 " nickname " : " g i o r g i o s i r o n i " ,
37 " name " : " G i o r g i o S i r o n i " ,
38 " o r i g i n " : 7 ,
39 " a t t r i b u t e s " : {
40 " l o c a t i o n " : "Como , I t a l y " ,
41 " homepage " : " h t t p : / / g i o r g i o s i r o n i . b l o g s p o t . com"
42 }
43 }
44 }] ,
45 }

A small dataset was gathered at the start of this work to gain a feeling for real

data; a much larger dataset has been gathered for evaluation once the application

was running. This larger dataset is named expertfinding because the seed users are

4.2. Ground truth 41

Name small expertfinding
Seeds 7 60
Profiles 3512 30614
Matched pairs 420 2100
Users 3092 28514
Users with multiple profiles 344 1920

Table 4.1: Gathered datasets

Dataset small expertfinding
Real name 100% 100%
Nickname 91.0% 98.8%
Location 75.2% 41.6%
Homepage 54.1% 28.7%
Birth date 45.0% 6.95%

Table 4.2: Completeness of profiles

borrowed from a different application evaluating expert finding strategies on online

social networks.

The relevant measurements for these datasets are shown in table 4.1.

Table 4.2 shows the percentage of the profiles that contain a value for a particular

field (whether that value is consistent with the field or not; for example nicknames

can be inserted in the name field.)

As a common practice in the related work, an instance is defined as a pair of

profiles, and it is then classified as belonging to the true match class or to the false

match class. Features that can be used by classifiers to decide between the two

labels are calculated over the pair, using information contained in both the profiles.

4.2 Ground truth

The ground truth for each dataset was built by hand, by duplicating the crawled

database and performing two successive manual steps:

• windowing over real names ordered alphabetically, addressed to the neigh-

borhood of each user.

• Special cases search on all non proper nouns (pseudonymes, nicknames, in-

verted last/first name) addressed to all the rest of the dataset.

42 Evaluation

All the evaluations of pairs deriving from the windowing step or the special case

search are performed by a human. Fortunately, the parallelization of this process is

trivial - simply dividing the windowing phase into different initial letters (matching

names from A to Z) is enough to scale the generation process to 26 operators

(although the distribution of the users over initial letters is not flat - further divisions

like AA to AM and AN to AZ may be needed.)

The windowing step is necessary because the full comparison space is still too

large for a human to handle: with a dataset in the order of thousands of users,

millions of comparisons will be needed for a full evaluation of the space. The user

interface for windowing is shown in figure 4.1.

To counter the minor recall provided by the windowing step, the special case

search attempts to determine the real full name of every profile which happens to

be named with a nickname or in any way different from the ordinary FirstName

LastName scheme. For example, the Twitter user @42John may be determined to

be John Smith from its profile. Note that matched pairs containing @42John may

not appear in the windowing step, because 42John and John Smith will be far from

each other in the alphabetical order of profiles.

Therefore, each special case is looked up to determine a name and searched in

the whole database for a comparison, as shown in figure 4.2. Usually, the first or

last name search if enough to bring up profiles belonging to the same person which

happen to contain a real name instead of a pseudonym. It it still not possible to link

matched profiles which both use pseudonyms instead of real names.

For the purpose of speeding up the human linkage process, a web-based user

interface has been built containing links to the real profiles for checking the identify

of a profile with additional information, and facilities for merging profiles into a

single recognized user.

While the user interface provides just names and seeds in its own screen, it is often

possible to deduce additional information from the linked version of the profiles;

online profiles contain photographs, interests and text that can solve the problem-

atic cases.

4.2. Ground truth 43

Figure 4.1: User interface for the manual production of ground truth

Figure 4.2: Special case search for surname ’Sironi’

44 Evaluation

4.3 Metrics

The evaluation of the quality of a model is based on the information retrieval preci-

sion and recall metrics (as described for example in Manning et al. [21]) calculated

over the set of pairs; instead of retrieved and relevant sets, this version of the met-

rics considers the classified as matched set, and ground truth matched sets.

In this framework:

• False Positives are defined as pairs of profiles that do not belong to the same

person, but were classified as matched.

• False Negatives are defined as pairs of profiles that do belong to the same

person, but were classified as unmatched.

• True Positives as matched pairs correctly classified.

• True Negatives as unmatched pairs correctly classified.

These categories are visualized as Venn diagrams in figure 4.3.

Precision and recall can then be defined as:

P = T P/(T P+FP)

R = T P/(T P+FN)

where precision is a measure of how many of the pairs classified as matched were

actually True Positives. Conversely, recall is a measure of how many matched pairs

were correctly classified as matched and not left out.

In scenarios where a single metric has to be obtained, the F-measure (or another

combination of precision and recall) can be calculated starting from P and R values:

F =
2 ·P ·R
P+R

The two precision and recall metrics are calculated over a portion of the dataset

selected according to the learning algorithm under evaluation. The two datasets are

always used separately as their ground truth has been generated accordingly.

In the case of unsupervised techniques (clustering), it is possible to pass the whole

dataset (without any ground truth information) to the learning algorithm and eval-

4.3. Metrics 45

Figure 4.3: Visualization of false positives and negatives

46 Evaluation

uate the final result separately. Thus clustering has been performed over the whole

datasets.

In the case of supervised approaches, it is known that evaluating a model on the

same data used for training it produces a danger of overestimation of the model’s

predictive power. 5-fold cross-validation is thus employed to produce a realistic

estimate of the models accuracy, by averaging the 5 values of precision and recall

for each round of cross-validation.

This implementation of cross-validation is stratified to guarantee that the percent-

age of users with more than one profile is constant in each fold. The selection

in each stratum is random but predictable, as reconciled users can be consistently

ordered with their record UUID (randomly generated on insertion).

1 g e t F o l d (i n t index , i n t f o l d s) {
2 re turn
3 sample (u s e r s W i t h S i n g l e P r o f i l e () , index , f o l d s)
4 U
5 sample (u s e r s W i t h M u l t i p l e P r o f i l e s () , index , f o l d s) ;
6 }
7
8 sample (c o l l e c t i o n , i n t f o l d I n d e x , i n t f o l d s) {
9 i n t s i z e = c o l l e c t i o n . c o u n t () ;

10 i n t f o l d L e n g t h = s i z e / f o l d s ;
11 i n t s t a r t = (i n d e x − 1) ∗ f o l d L e n g t h ;
12
13 c o n t e n t s = view . f i n d () . s o r t (byId ()) . l i m i t (f o l d L e n g t h) . s k i p (

s t a r t) ;
14
15 s e t = { } ;
16 f o r e a c h (c o n t e n t s a s f u l l U s e r) {
17 s e t = s e t U r e c o n s t i t u t e S e p a r a t e U s e r s F r o m R e c o n c i l e d (

f u l l U s e r) ;
18 }
19 re turn s e t ;
20 }

In addition to the evaluation of single models, it is interesting also to perform a

comparison between different versions of the same model where the post-processing

policy vary between the no post-processing control strategy, the breakup of large

connected components and the single profile per platform strategy.

However, performing statistical significance tests with the standard α = 5% on all

4.3. Metrics 47

the combinations of variations (such as C4.5 trees and SVM with or without post-

processing) results in the problem of multiple comparisons Salzberg [29]. The

significance level α of the tests corresponds to the probability of committing a

type I error on that test; given that we perform N multiple tests in parallel, the

probability of committing at least an error αT is:

αT = 1− (1−α)N

Thus a significance level of 5% repeated over 10 tests that compare classifiers

corresponds to an overall significance level of 40%, which is much higher than the

original.

For this reason, a more stringent criterion is used for the tests: Bonferroni’s cor-

rection.

α = αT/N

where N is the number of classifier comparisons. The α value may be relative

either to a one-tailed or two-tailed test.

The significance test suggested by Dietterich [10] is McNemar’s test, which is

similar and in some cases equivalent to the binomial sign test. When a ground

truth is given:

G(i) =

{
1 if i ∈M

0 if i ∈U

A similar function can be defined for a classifier A:

A(i) =

{
1 if i is classified as matched

0 if i is classified as unmatched

To compare two classifiers A and B, a test statistic is calculated starting from the

parameters:

a = |i|G(i) = A(i),G(i) 6= B(i)|

b = |i|G(i) 6= A(i),G(i) = B(i)|

Plainly speaking, a is the number of instances the A classifies correctly as matched

or unmatched and B classifies incorrectly. Conversely, b is the number of instances

that B classifies correctly as matched or unmatched, but A classifies incorrectly.

By design, the instances where the two classifiers agree are ignored by the test.

48 Evaluation

Under the null hypothesis that the classifiers are equivalent, a and b should have

roughly equal values. The binomial distribution can be used in an exact test to

calculate the probability that a and b differ by at least the experimental amount:

X ∼ Bi(0.5,a+b)

p = P(b−a≥ observedvalue|p(success) = 0.5)

that is, the probability of committing a Type I error by rejecting the hypothesis that

the classifiers are identical.

Assuming a < b with no loss of generality, and developing the expression of p:

p =
a+b

∑
k=b

(a+b)!
k!(a+b− k)!

·0.5a+b

p is the value to compare with the significance α . The null hypothesis will be

rejected only if p < α .

4.4 Results

4.4.1 Accuracy

The following tables present the results for the small and expertfinding dataset, in

the form of a precision and recall figure for each algorithm and variation. Only the

expertfinding dataset will be considered in further discussion as the small dataset

has been used for exploration and tuning of the distance measures, and as such is

not disconnected from the training of the various techniques.

The post-processing variations are listed in table 4.3 and table 4.4 with the fol-

lowing labels as the table columns:

• null: no post processing.

• connected: breakup of connected components with size greater than 3.

• single: breakup of users until a single profile per platform remains.

4.4. Results 49

Precision Recall
technique null connected single
clustering - 0.859 0.921(t=6) 0.954 0.929 (t=6)
decision trees 0.965 0.915 0.961 0.915 0.980 0.909
SVM 0.980 0.898 0.980 0.898 0.987 0.892

Table 4.3: Small dataset results

Precision Recall
technique null connected single
clustering - 0.673 0.995 (t=5) 0.866 0.877 (t=5)
decision trees 0.782 0.933 0.884 0.931 0.905 0.928
SVM 0.892 0.903 0.902 0.901 0.916 0.897

Table 4.4: Expertfinding dataset results

4.4.2 Significance

There are 7 possibile significance tests that can be performed on post-processing

variations:

• 1 comparison of the two clustering variations

• 3 comparisons of the three trees variations (in pairs)

• 3 comparisons of the three SVM variations (in pairs)

Furthermore, there are 3 possible comparisons between different techniques:

• trees and SVMs with no post-processing

• trees and SVMs with connected components post-processing

• trees and SVMs with single profile per platform post-processing

for a total of 10 significance tests.

The critical value for McNemar’s test is:

α =
0.05
10 ·2

= 2.5×10−3

because of the 10 tests to perform on techniques variations, and of them being two-

tailed tests. Two-tailed tests are more robust for comparison of these classifiers

50 Evaluation

as often different variations increase recall while decreasing precision (and vicev-

ersa); the alternative hypothesis is then just that the classifiers are significantly

different, and the winner of the comparison should be decided by the test itself.

Table 4.5 shows McNemar’s statistical significance test shows that the single vari-

ation has a better accuracy when used after clustering.

variation A variation B A beats B B beats A p-value significant
connected single 80 894 < 1×10−6 yes

Table 4.5: Significance testing for clustering post-processing variations

Table 4.6 shows McNemar’s test executed over the results of different variations

of the decision tree classifier.

variation A variation B A beats B B beats A p-value significant
null connected 0 6 1.56×10−2 no
null single 4 24 9.00×10−5 yes
connected single 4 18 2.17×10−3 yes

Table 4.6: Significance testing for trees post-processing variations

Table 4.7 shows McNemar’s test executed over the results of different variations

of the linear SVM classifier.

variation A variation B A beats B B beats A p-value significant
null connected 2 10 1.93×10−2 no
null single 9 33 1.36×10−4 yes
connected single 8 24 3.50×10−3 no

Table 4.7: Significance testing for linear SVMs post-processing variations

Table 4.7 shows McNemar’s test executed between the tree and linear SVM clas-

sifiers, each instantiated with the same post-processing policy to keep all other

factors equal in the comparison.

4.5. Discussion 51

Variation Tree beats SVM SVM beats tree p-value significant
null 86 46 3.16×10−4 yes
connected 84 45 3.78×10−4 yes
single 75 41 1.02×10−3 yes

Table 4.8: Significance testing for trees and SVMs

4.5 Discussion

4.5.1 Clustering

Clustering shows adequate results, but there are several issues with this approach

that makes it difficult to rely on.

The first issue is scalability: clustering algorithms are at least O(N2) if not O(N3)

in some cases, depending on the type of linkage chosen. Computational complexity

can be improved via windowing or blocking if we define all non generated pairs

has having an infinite (or simply very large) distance: in that case the algorithm

limits itself to consider the distance over the pairs set while searching for the next

point to add to a cluster.

The second issue is the arbitrariness of many parameters, due to the unsupervised

approach. Parameters have to be chosen for:

• the maximum distance between two profiles.

• The unknown distance value to use when one of the profiles in the pair has a

null value. Both corner cases are mapped to 5 in this implementation.

• The weights for combining different distances, which are defined on an ar-

bitrary scale.

• The threshold to reach as the distance between the next two profiles in order

to stop clustering.

Different threshold levels of the clustering (0 to 9) influence the trade-off between

precision and recall. In this implementation, the sweet spot seems to be around the

6 and 7 thresholds; this empirical threshold means that to correctly classify an high

percentage of pairs at least one of the distances may assume a maximum value in

a matched pair, while the other is a perfect or almost perfect match showing 1 or 2

edit distance.

52 Evaluation

Given a choice of threshold for clustering, there is a significant advantage in using

the single variation for post-processing with respect to the connected one. Cluster-

ing is in fact mostly used in the literature in the context of duplicate detection in a

single list of profiles, where the single variation cannot be applied at all.

4.5.2 Decision trees

Decision trees reveal a strong sensibility to the presence of post-processing and to

its implementation:

• no partitioning results in the worse precision, due to the agglomeration of

an high number of profiles into the same user and consequently due to the

creation of too many artificial pairs in the transitive closure step.

• Standard cluster-size partitioning (the same as in clustering approach) results

in 88% precision.

• The domain-specific conflict-based partitioning results in 90% precision.

Recall values are almost constant throughout the variations.

McNemar’s test results declare that there is a statistically significant difference

between the single variation and either the null or connected ones: the single vari-

ation achieves an higher precision. This results demonstrates empirically the need

for post-processing and that choosing the best post-processing policy matters. It is

unclear from these results whether the connected components partitioning is more

effective as the null one or not (the null hypothesis stands.)

Boosting

Boosting is the linear combination of multiple high-bias decision trees for classi-

fication. This technique was investigated because of the potential for a weighted

combination of trees to produce a confidence value as their output, instead of a

single matched/unmatched label.

This further analysis was based on AdaBoost as implemented in Freund and

Schapire [14] and ignored bagging of trees (which fixes weight to +1 or -1) be-

cause of the notion diffused by Quinlan [26] that boosting almost always outper-

form bagging.

4.5. Discussion 53

Boosting proved not useful with C4.5 the trees as they are already too accurate to

benefit: all the trees iteratively trained after the first are weighted with a coefficient

near to 0. By augmenting the bias of trees different results may be reached.

An examples of weights for a list of trees obtained by boosting is:

1. 3.8547516858069897

2. 219.751911405549351E-5

3. 219.751911405549351E-5

and it is clear that only the first tree influences the final result.

4.5.3 Linear support vector machines

Support Vector Machines do not show much sensibility to the kind of post-processing

chosen in terms of average precision or recall (coming from 5-fold cross-validation).

However, McNemar’s test show a significant difference between the null variation

(absence of post-processing) and the single post-processing policy.

4.5.4 Comparison of different classifiers

Clustering is excluded from the comparison with other kinds of classifiers due to

its lack of leveraging of all features of record instances.

McNemar’s test comparing decision tree induction to support vector machines

show a significant difference in the results of the two classifiers, signaling that trees

always outperform linear support vector machines, for every given post-processing

policy.

Trees achieve this result by having an higher recall in all cases, and approaching

the SVM’s precision when the best post-processing policy is available.

The pairs classified differently by trees and SVM are a larger set than in the case

of post-processing variations for the same algorithm. This suggests that:

• the choice of classifier has a larger impact on the end result than the choice

of post-processing policy.

• different kinds of problematic pairs are identified as matched by trees and

SVMs.

54 Evaluation

Classifier Training time Validation time
C4.5 trees 90-100s 5s
SVM 10s 5s

Table 4.9: Running times for a single fold of the expert finding dataset

If we compare training times as shown in table 4.9, we can see that trees training

lasts as much as 9-10 times the SVMs one. This suggests there exists a trade-off

between time efficiency and accuracy in this context: trees can be used to maximize

recall and accuracy, while SVM have slightly inferior results but a training time an

order of magnitude inferior to trees. Moreover, execution times of a already built

model are roughly comparable for the two methods. Therefore, execution time

should not be used as a parameter to decide between the two classifiers.

These execution times have been gathered on an Intel Pentium E5300 (2M Cache,

2.60 GHz, 800 MHz FSB) and all data (distances included) is preloaded in memory

or precomputed so that the training algorithms are CPU-bound. However, they have

only been reported for a relative comparison of classifier performance and not as

an absolute benchmark.

4.6 Technical issues

4.6.1 Optimization

Windowing

As explained in the background section, windowing is strongly necessary to re-

duce the number of pairs to evaluate as matched or unmatched. This kind of time

optimization has been already extensively treated in 2.2.1 and 3.2.1.

Data structures

Due to the high amount of computation involved but relatively moderate amount of

data to keep in memory, it is beneficial to optimize the data structures used in pre-

and post-processing and in the implementation of algorithms for time with respect

to space.

For example, all distances for each pair to be classified are precomputed and thus

4.6. Technical issues 55

calculated only once for each pair. Pairs and users are always stored in hash sets or

hash tables with the goal of constant lookup time. The hash functions for them are

defined as follows:

• User objects are hashed as the Java String class hash of their alphanumeric

id, randomly generated by the underlying database.

• Pairs are hashed as the sum of the hashcodes of the plat f orm|id representa-

tions of the profiles they are composed of (e.g. f acebook|15162342). This

is a simple way to guarantee an equal hash value even for pairs whose con-

tained profiles are inverted.

Data structures

The well-known union/find data structure is used in various post-processing vari-

ations to compute the connected components of the profiles graph. An instance

of DisjointSet is created for each node in the graph (or in a cluster) and the union

operation is performed for each matched pair. The union operation consists of set-

ting one of the profiles as the successor of the other, establishing a new conceptual

linked list.

The result is a series of inverted trees, one for each connected component: by

putting the head of the tree into a map it is immediate to generate the number of

different elements, which corresponds to the number of components.

In the example of figure 4.4, 5 profiles have been connected for a total of 4 union

operation:

• A-B

• C-B

• D-C

• B-E

Each profile in the data structure can calculate the same head of the list E, and use

it for disambiguating whether it has been (even indirectly) connected to one of the

other given profiles.

56 Evaluation

Figure 4.4: Union/find data structure for profiles

Caching

The UserSet object, representing a training or validation set, is one of the base data

structures of the application. As such, it is a bottleneck for all operations that build

on users, profiles and pairs.

The UserSet however is rarely modified once data have been retrieved from the

database and User objects have been put in it. As such, it caches the following

objects:

• The list of all pairs of the users in the set (thus considering profiles belonging

to the same user only); this is necessary for calculating precision and recall.

• The hash set of all profiles belonging to the users in the set; this cache guar-

antees fast lookup of a profile id to discover whether is contained in the set.

• A linear list containing a snapshot of the contained users. Users are stored

primarily in a set to provide fast containment queries (is a user in this set?).

The snapshot guarantees a consistent order of the users in the set in between

modifications; that is, until a user is added or merged with the set, users can

be listed in the same order.

Cache invalidation is performed every time a modification occurs, which means

during addition of an user or merging of a user due to the acquisition of a matched

pair. Cache rebuilding only takes place during the first read after an invalidation.

Parallelization

Parallelization in the learning algorithms or in post-processing has not been investi-

gated. There is instead a much stricter bottleneck that has to be addressed: retrieval

of the users details from the platforms of interest.

4.6. Technical issues 57

There are two different issues at play in the retrieval process.

First, network calls add considerable latency. For this reason every profile is

retrieved first and kept for long-term storage into a local database.

Second, rate limits impact the availability of the platforms API, which may stop

the application from issuing too many HTTP requests in a given period of time.

At the time of this writing, these are the limits imposed by the platforms:

• Facebook allows 600 calls every 600 seconds per seed (Quora [27])

• Twitter allows 350 requests per hour per seed (Developers [9])

• LinkedIn provides from 50 to 300 requests per seed as a daily limit, plus a

100k application limit (Network [25])

Each seed corresponds to a different authentication token: given the nature of the

rate limits, it is possible to parallelize data retrieval by issuing many simultaneous

requests but at the same time creating only one process per each token. Moreover,

it is possible also to parallelize over the platforms axis as different platforms do not

interact with each other and bandwidth is far from be saturated.

Thus a number of different Spy objects run in parallel, each instantiated with a

seed and sending its results to a single database, where users are inserted as new

documents.

Each Spy is able to detect rate limits notices issued by the APIs by inspecting

HTTP response headers or fields of the JSON response bodies. In case a rate limit

is detected, the Spy waits for 15 minutes before the next retry, but does not block

the other processes.

4.6.2 Testing

Automated testing of the application (with developer-oriented test) is carried out

by a mixture of integration and unit tests.

Unit tests cover the inner workings of the application, by exercising objects in

isolation or in collaboration with other in-memory objects. Integration tests cover

the interaction with external systems like the MongoDB database and the platforms

APIs as suggested in Freeman and Pryce [13].

58 Evaluation

Figure 4.5: Spy objects running in parallel on each seed

It is particularly important to be able to execute automated tests against external

APIs to guarantee an early detection of interaction problems in case the API is

updated or changed in a way that interrupts the extraction of profiles or of some of

the necessary fields.

Integration testing of the platform profiles extraction layer is then performed with

a set of stored tokens and in some cases even with fake accounts.

For what regards authorization tokens, they are generally long-lived and with no

expiration time; for this reason they can be included in automated tests without

a particular need for maintenance. An exception is Facebook, which changed its

policy to limit the duration of tokens to 2 months; the token used by the suite needs

then to be renewed periodically.

Reliable test repeatability can also be ensured by targeting the fake accounts for

extraction where necessary. For example, the profile of the Facebook user

JohnnyGalt[htt ps : //www. f acebook.com/ johnny.galt.733]

is extracted during the automated tests for the Facebook platform integration. Since

no real person is regularly updating the profile, the test can perform strict assertion

4.6. Technical issues 59

on its content - real name, birth data, homepage and other fields. The test is thus

able to fail when the platform changes its API in a non backward compatible way

or when a regression is introduced in the Facebook-related code.

1 @Test
2 p u b l i c vo id a F r i e n d M e m b e r s h i p I s E x t r a c t e d () throws JSONException {
3 UserAccess j o h n G a l t A c c e s s = a c c e s s . g e t R e l a t i o n s h i p (" Johnny

G a l t ") ;
4 JSONObject membership = j o h n G a l t A c c e s s . ge tMembership () ;
5 a s s e r t T o k e n I s P r e s e n t (p l a t f o r m . ge tToken () . t o S t r i n g () ,

membership) ;
6 a s s e r t F i e l d E q u a l s (" p l a t f o r m " , " f a c e b o o k " , membership) ;
7
8 JSONObject p r o f i l e = membership . ge tJSONObjec t ("

p l a t f o r m _ p r o f i l e ") ;
9 a s s e r t F i e l d E q u a l s (" i d " , " 100003792992839 " , p r o f i l e) ;

10 a s s e r t F i e l d E q u a l s (" p r o f i l e _ u r l " , " h t t p : / / www. f a c e b o o k . com /
johnny . g a l t . 7 3 3 " , p r o f i l e) ;

11 a s s e r t F i e l d E q u a l s (" nickname " , " johnny . g a l t . 7 3 3 " , p r o f i l e) ;
12 a s s e r t F i e l d E q u a l s (" d a t e _ o f _ b i r t h " , " 1950−01−01 " , p r o f i l e) ;
13 }

5
Conclusions and future work

This work has applied known record linkage and machine learning techniques in

the domain of online social networks, demonstrating that accurate results can be

achieved in the automatic alignment of profiles belonging to a unique person.

The experimental results in the comparison of models and post-processing strate-

gies have shown that:

• There is a significant advantage in performing a post-processing step (i.e.

the single profile per platform strategy), for every given technique used for

classifying pairs, with improvements in precision of up to 16%.

• Decision trees can achieve an higher accuracy in this domain than linear

SVMs, and in particular an higher recall.

• Nevertheless, linear models produced by support vector machines reach a

good level of accuracy but maintain one order of magnitude faster training

times.

There are several directions that further research in the social network domain

may follow.

For example, the recollection of other real datasets or the generation of synthetic

ones could help the comparison of classifiers on a larger sample. Given the mod-

erate amount of seeds necessary to generate the dataset presented in this work, it

is definitely possible to collect a larger sample, although the production of ground

truth will be time expensive.

62 Conclusions and future work

Datasets can not only be expanded by adding profiles from the existing platforms,

but also by integrating new platforms into the process.

An orthogonal direction for further research is the introduction of other approaches

for classification, such as boosting or bagging of decision trees, entirely different

tree models or classifiers. Support vector machines have a choice of kernel meth-

ods that can be evaluated for studying non-linear models.

Performance optimization is possible in many phases of the reconciliation pro-

cess: for example, tweaking windowing could provide a nearly linear speedup. A

sensitivity analysis on the existing similarities may exclude the ones that are not

useful for classification or that are already represented by correlated features.

A final direction could be the increase of accuracy with different features; there

are two kind of features which haven’t been used in this work and whose effect on

precision and recall is yet to be discovered.

The first of these features is the information from the social graph: friendships

and connections of the profiles to pages and groups. It can be expected that social

connections such as people already identified on multiple platforms can be helpful

in identifying new users, just as seed users are.

The second of these features is of a multimedia nature. For instance, avatars and

photographs representing the profiles from multiple platforms could be compared,

in a form of face recognition that attempts to conserve high accuracy when when

information with a standard representation (e.g. names and birth dates) are hidden,

missing or inaccurate.

Bibliography

[1] . Tailor: A record linkage tool box. In Proceedings of the 18th Interna-

tional Conference on Data Engineering, ICDE ’02, pages 17–, Washing-

ton, DC, USA, 2002. IEEE Computer Society. URL http://dl.acm.org/

citation.cfm?id=876875.879014.

[2] Krisztian Balog, Yi Fang, Maarten de Rijke, Pavel Serdyukov, and Luo

Si. Expertise retrieval. Found. Trends Inf. Retr., 6(2–3):127–256,

February 2012. ISSN 1554-0669. doi: 10.1561/1500000024. URL http:

//dx.doi.org/10.1561/1500000024.

[3] Sergey Bartunov, Anton Korshunov, Seung-Taek Park, Wonho Ryu, and

Hyungdong Lee. Joint link-attribute user identity resolution in online social

networks. 2012.

[4] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection us-

ing learnable string similarity measures. In Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data min-

ing, KDD ’03, pages 39–48, New York, NY, USA, 2003. ACM. ISBN 1-

58113-737-0. doi: 10.1145/956750.956759. URL http://doi.acm.org/

10.1145/956750.956759.

[5] Francesca Carmagnola and Federica Cena. User identification for cross-

system personalisation. Inf. Sci., 179(1-2):16–32, January 2009. ISSN

0020-0255. doi: 10.1016/j.ins.2008.08.022. URL http://dx.doi.org/

10.1016/j.ins.2008.08.022.

http://dl.acm.org/citation.cfm?id=876875.879014
http://dl.acm.org/citation.cfm?id=876875.879014
http://dx.doi.org/10.1561/1500000024
http://dx.doi.org/10.1561/1500000024
http://doi.acm.org/10.1145/956750.956759
http://doi.acm.org/10.1145/956750.956759
http://dx.doi.org/10.1016/j.ins.2008.08.022
http://dx.doi.org/10.1016/j.ins.2008.08.022

64 Bibliography

[6] Francesca Carmagnola, Francesco Osborne, and Ilaria Torre. User data dis-

tributed on the social web: how to identify users on different social systems

and collecting data about them. In Proceedings of the 1st International Work-

shop on Information Heterogeneity and Fusion in Recommender Systems,

HetRec ’10, pages 9–15, New York, NY, USA, 2010. ACM. ISBN 978-

1-4503-0407-8. doi: 10.1145/1869446.1869448. URL http://doi.acm.

org/10.1145/1869446.1869448.

[7] Peter Christen. Automatic record linkage using seeded nearest neighbour

and support vector machine classification. In Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining,

KDD ’08, pages 151–159, New York, NY, USA, 2008. ACM. ISBN 978-

1-60558-193-4. doi: 10.1145/1401890.1401913. URL http://doi.acm.

org/10.1145/1401890.1401913.

[8] William W. Cohen and Jacob Richman. Learning to match and cluster

large high-dimensional data sets for data integration. In Proceedings of

the eighth ACM SIGKDD international conference on Knowledge discov-

ery and data mining, KDD ’02, pages 475–480, New York, NY, USA,

2002. ACM. ISBN 1-58113-567-X. doi: 10.1145/775047.775116. URL

http://doi.acm.org/10.1145/775047.775116.

[9] Twitter Developers. Rate Limiting | Twitter Developers . https://

dev.twitter.com/docs/rate-limiting, 2012. [Online; accessed 07-09-

2012].

[10] Thomas G. Dietterich. Approximate statistical tests for comparing super-

vised classification learning algorithms. Neural Computation, 10:1895–1923,

1998.

[11] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the

American Statistical Association, 64:1183–1210, 1969.

[12] Piero Fraternali, Marco Tagliasacchi, Davide Martinenghi, Alessandro Boz-

zon, Ilio Catallo, Eleonora Ciceri, Francesco Nucci, Vincenzo Croce, Is-

mail Sengor Altingovde, Wolf Siberski, Fausto Giunchiglia, Wolfgang Ne-

jdl, Martha Larson, Ebroul Izquierdo, Petros Daras, Otto Chrons, Ralph

Traphoener, Bjoern Decker, John Lomas, Patrick Aichroth, Jasminko No-

vak, Ghislain Sillaume, F. Sanchez Figueroa, and Carolina Salas-Parra. The

http://doi.acm.org/10.1145/1869446.1869448
http://doi.acm.org/10.1145/1869446.1869448
http://doi.acm.org/10.1145/1401890.1401913
http://doi.acm.org/10.1145/1401890.1401913
http://doi.acm.org/10.1145/775047.775116
https://dev.twitter.com/docs/rate-limiting
https://dev.twitter.com/docs/rate-limiting

65

cubrik project: human-enhanced time-aware multimedia search. In Pro-

ceedings of the 21st international conference companion on World Wide

Web, WWW ’12 Companion, pages 259–262, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1230-1. doi: 10.1145/2187980.2188023. URL

http://doi.acm.org/10.1145/2187980.2188023.

[13] Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided by

Tests. Addison-Wesley Professional, 1st edition, 2009. ISBN 0321503627,

9780321503626.

[14] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algo-

rithm, 1996.

[15] Karl Goiser and Peter Christen. Towards automated record linkage. In

Proceedings of the fifth Australasian conference on Data mining and ana-

lystics - Volume 61, AusDM ’06, pages 23–31, Darlinghurst, Australia, Aus-

tralia, 2006. Australian Computer Society, Inc. ISBN 1-920682-41-4. URL

http://dl.acm.org/citation.cfm?id=1273808.1273812.

[16] Lifang Gu, Rohan Baxter, Deanne Vickers, and Chris Rainsford. Record link-

age: Current practice and future directions. Technical report, CSIRO Mathe-

matical and Information Sciences, 2003. URL http://festivalofdoubt.

uq.edu.au/papers/record_linkage.pdf.

[17] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is dirty:

Data cleansing and the merge/purge problem. Data Min. Knowl. Discov., 2

(1):9–37, January 1998. ISSN 1384-5810. doi: 10.1023/A:1009761603038.

URL http://dx.doi.org/10.1023/A:1009761603038.

[18] Tereza Iofciu, Peter Fankhauser, Fabian Abel, and Kerstin Bischoff. Iden-

tifying users across social tagging systems. In Lada A. Adamic, Ri-

cardo A. Baeza-Yates, and Scott Counts, editors, ICWSM. The AAAI Press,

2011. URL http://dblp.uni-trier.de/db/conf/icwsm/icwsm2011.

html#IofciuFAB11.

[19] Matthew A. Jaro. Advances in record-linkage methodology as applied to

matching the 1985 census of Tampa, Florida. Journal of the American Sta-

tistical Association, 84(406):414–420, 1989.

http://doi.acm.org/10.1145/2187980.2188023
http://dl.acm.org/citation.cfm?id=1273808.1273812
http://festivalofdoubt.uq.edu.au/papers/record_linkage.pdf
http://festivalofdoubt.uq.edu.au/papers/record_linkage.pdf
http://dx.doi.org/10.1023/A:1009761603038
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2011.html#IofciuFAB11
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2011.html#IofciuFAB11

66 Bibliography

[20] Liang Jin, Chen Li, and Sharad Mehrotra. Efficient record linkage in large

data sets. In Proceedings of the Eighth International Conference on Database

Systems for Advanced Applications, DASFAA ’03, pages 137–, Washington,

DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1895. URL http:

//dl.acm.org/citation.cfm?id=789081.789250.

[21] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-

duction to Information Retrieval. Cambridge University Press, Cambridge,

UK, 2008. ISBN 978-0-521-86571-5.

[22] Alvaro E. Monge and Charles P. Elkan. An efficient domain-independent al-

gorithm for detecting approximately duplicate database records. In Proceed-

ings of the SIGMOD 1997 Workshop on Research Issues on Data Mining and

Knowledge Discovery, pages 23–29, Tuscon, AZ, May 1997.

[23] Felix Naumann and Melanie Herschel. An Introduction to Duplicate De-

tection. Morgan and Claypool Publishers, 2010. ISBN 1608452204,

9781608452200.

[24] Mattis Neiling. Identification of real-world objects in multiple databases. In

Myra Spiliopoulou, Rudolf Kruse, Christian Borgelt, Andreas Nürnberger,

and Wolfgang Gaul, editors, GfKl, Studies in Classification, Data Anal-

ysis, and Knowledge Organization, pages 63–74. Springer, 2005. ISBN

978-3-540-31313-7. URL http://dblp.uni-trier.de/db/conf/gfkl/

gfkl2005.html#Neiling05.

[25] LinkedIn Developer Network. Throttle Limits | LinkedIn Developer Network.

https://developer.linkedin.com/documents/throttle-limits,

2012. [Online; accessed 07-09-2012].

[26] R. Quinlan. Bagging, boosting, and C4. 5. In Proceedings of the Thirteenth

National Conference on Artificial Intelligence and the Eighth Innovative Ap-

plications of Artificial Intelligence Conference, pages 725–730, Menlo Park,

August4–8 1996. AAAI Press / MIT Press. ISBN 0-262-51091-X.

[27] Quora. What’s the Facebook Open Graph API rate limit? - Quora. http://

www.quora.com/Whats-the-Facebook-Open-Graph-API-rate-limit,

2012. [Online; accessed 07-09-2012].

http://dl.acm.org/citation.cfm?id=789081.789250
http://dl.acm.org/citation.cfm?id=789081.789250
http://dblp.uni-trier.de/db/conf/gfkl/gfkl2005.html#Neiling05
http://dblp.uni-trier.de/db/conf/gfkl/gfkl2005.html#Neiling05
https://developer.linkedin.com/documents/throttle-limits
http://www.quora.com/Whats-the-Facebook-Open-Graph-API-rate-limit
http://www.quora.com/Whats-the-Facebook-Open-Graph-API-rate-limit

67

[28] Elie Raad, Richard Chbeir, and Albert Dipanda. User profile matching in

social networks. In Proceedings of the 2010 13th International Conference on

Network-Based Information Systems, NBIS ’10, pages 297–304, Washington,

DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4167-9. doi: 10.

1109/NBiS.2010.35. URL http://dx.doi.org/10.1109/NBiS.2010.35.

[29] Steven Salzberg. On comparing classifiers: Pitfalls to avoid and a recom-

mended approach. Data Mining and Knowledge Discovery, 1:317–327, 1997.

[30] Titus Schleyer, Heiko Spallek, Brian S. Butler, Sushmita Subramanian,

M. Louisa Poythress, Phijarana Rattanathikum, and Gregory Mueller. Re-

quirements for expertise location systems in biomedical science and the se-

mantic web.

[31] Cong Tang, Keith Ross, Nitesh Saxena, and Ruichuan Chen. What’s in a

name: a study of names, gender inference, and gender behavior in face-

book. In Proceedings of the 16th international conference on Database sys-

tems for advanced applications, DASFAA’11, pages 344–356, Berlin, Hei-

delberg, 2011. Springer-Verlag. ISBN 978-3-642-20243-8. URL http:

//dl.acm.org/citation.cfm?id=1996686.1996731.

[32] Vassilios S. Verykios, Ahmed K. Elmagarmid, and Elias N. Houstis.

Automating the approximate record-matching process. Inf. Sci. Inf.

Comput. Sci., 126(1-4):83–98, July 2000. ISSN 0020-0255. doi:

10.1016/S0020-0255(00)00013-X. URL http://dx.doi.org/10.1016/

S0020-0255(00)00013-X.

[33] Jan Vosecky, Dan Hong, and Vincent Y. Shen. User identification across

social networks using the web profile and friend network. IJWA, 2(1):23–34,

2010.

[34] Stefan Wehrli. Personality on social network sites: An application of the five

factor model. ETH Zurich Sociology Working Papers 7, ETH Zurich, Chair

of Sociology, 2008. URL http://EconPapers.repec.org/RePEc:ets:

wpaper:7.

[35] Reza Zafarani and Huan Liu. Connecting corresponding identities across

communities. In Eytan Adar, Matthew Hurst, Tim Finin, Natalie S. Glance,

Nicolas Nicolov, and Belle L. Tseng, editors, ICWSM. The AAAI Press,

http://dx.doi.org/10.1109/NBiS.2010.35
http://dl.acm.org/citation.cfm?id=1996686.1996731
http://dl.acm.org/citation.cfm?id=1996686.1996731
http://dx.doi.org/10.1016/S0020-0255(00)00013-X
http://dx.doi.org/10.1016/S0020-0255(00)00013-X
http://EconPapers.repec.org/RePEc:ets:wpaper:7
http://EconPapers.repec.org/RePEc:ets:wpaper:7

68 Bibliography

2009. ISBN 978-1-57735-421-5. URL http://dblp.uni-trier.de/db/

conf/icwsm/icwsm2009.html#ZafaraniL09.

http://dblp.uni-trier.de/db/conf/icwsm/icwsm2009.html#ZafaraniL09
http://dblp.uni-trier.de/db/conf/icwsm/icwsm2009.html#ZafaraniL09

	Abstract
	Sommario
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Relevance
	Domain-specific issues
	Original contribution
	Thesis organization

	Background
	Problem definition and model
	Algorithms
	Classical
	Clustering
	Supervised learning

	Social network related work

	Implementation experience
	Methods
	Distances
	Windowing
	Classifiers: Clustering
	Classifiers: Decision trees
	Classifiers: Linear SVM

	System model
	Design

	Evaluation
	Datasets
	Ground truth
	Metrics
	Results
	Accuracy
	Significance

	Discussion
	Clustering
	Decision trees
	Linear support vector machines
	Comparison of different classifiers

	Technical issues
	Optimization
	Testing

	Conclusions and future work
	Bibliography

