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Sommario

Al giorno d’oggi chiunque acceda a internet lo fa per ricercare delle informazioni.
Il nostro lavoro propone l’applicazione di una serie di metodi di raccomandazione
per aiutare l’utente nella ricerca di informazioni sul web attraverso la ricerca esplo-
rativa multi-dominio. Con ricerca esplorativa si intende una ricerca che compone
la risposta all’interrogazione attraversando passo dopo passo una serie di servizi
che forniscono ognuno parte delle informazioni totali da fornire all’utente. Con
multi-dominio si intende una ricerca effettuata interrogando più servizi distinti,
anche tramite diversi protocolli di comunicazione, ognuno dei quali specializzato
in una specifica area tematica (film, cinema, hotel, viaggi, ristoranti, . . . ). Siamo
partiti da uno studio puramente teorico dei metodi di raccomandazione in caso
monodominio oggi presenti in letteratura analizzando come e dove questi potessero
essere usati in contensto multidominio. Abbiamo poi realizzato diverse soluzioni
per implementare tali metodi nel nuovo contesto. Infine abbiamo testato i nostri
algoritmi per verificare la validità ed efficacia dell’implementazione ma soprattutto
delle idee di base da noi sviluppate.
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Abstract

Today hundreds of millions of people use the Internet every day for searching
and collecting information related to their cultural or practical needs. Our work
aims to study recommendation techniques that can be applied to multi-domain
exploratory search to help users during their searches. Multi-domain is a search
done over more than one data source. When the user submits a query, it is “split”
into several sub-queries and each part is sent to the appropriate data source or
web service. All the results are collected and then the aggregate response is
sent to the user. Exploratory search is a search where the user looks for some
informations starting from an initial service. Then he choices the next service
to query to get more information. The user repeats those steps until he satisfies
his needs. We started from theoretical study of the recommendation methods in
mono-domain case analyzing how and where they could be used in multi-domain
context. Finally, we have tested our algorithms to verify the accuracy of the
techniques we have developed during this thesis work.
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Chapter 1

Introduction

Una vita senza ricerca non è
degna di essere vissuta.

Socrate in Platone, Apologia di
Socrate, 399/388 a.e.c.

1.1 Context

The aim of this thesis work is the study of recommendation techniques that can
help the user when performing multi-domain search and exploratory tasks. For
multi-domain search engine we mean a system which allows the search for more
than one type of information simultaneously. In other words, a multi-domain sys-
tem offers to the user the access to more services available at the same time and
provides a result that is the aggregation of the results of the individual services.
This result is not the aggregation of the raw data of each individual service, but
it is the result of a selection over each service according to suitable criteria like re-
ordering, clustering, addition or deletion of attributes, etc. With a fully functional
multi-domain search engine we will be able to respond to queries formulated over
different domains of interest with a good degree of accuracy of the result.

Multi-domain search is a new research field on which Politecnico di Milano is
at the forefront of research. In fact, one of the main projects in the IT sector is
the multi-domain search engine called SeCo. Exploratory search is a subject that
became relevant since the birth of the web and search engines. The study of how
a user moves through different information sources is crucial for facilitating and
recommending the best search paths for users. The new frontier of the web is
tied to multi-domain search. This means to switch from the exploration on single
data services to more services at the same time. Multi-domain is a search done
over more than one data source. The user submits a query, which is “split” into
several sub-queries, and each part is sent to the appropriate data source or web

17



18 CHAPTER 1. INTRODUCTION

service. All the results are collected and then the aggregate response is sent to the
user. Our work covers both recommendations for mono-domain and multi-domain
exploratory search.

1.2 Problem addressed

Have you ever had to go to a new place and wanted to know what it offers? In
recent years with the advent of the Internet you can answer many questions like
“what hotels are there?” or “Which concerts (or cinemas, museums, ecc . . . ) are
there?” Today, they are all unrelated information and the user is left with the
task of aggregating those information to obtain a result. Multi-domain search
engines have been designed to solve this problem. They allow users to consult
multiple information sources and they return an aggregated result.

Mono-domain search engines like Tripadvisor, Imdb, etc. . . , provide sugges-
tions to the user in addition to the result, or other information the user might be
interested in. The reason is strongly linked to the business. E-commerce search
engines try to sell more products recommending other item to user. The search
engine choses advices for the user based on his preferences or the item the user
has already bought.

The purpose of our discussion is to provide good suggestions on the best explo-
ration directions to follow to the user who is using multi-domain search engines.

1.3 Proposed solution

Our thesis is motivated by the following multi-domain scenario:

An user is using a multi-domain search engine. He chooses an
initial concept to search for, such as hotel, and requests a list of results.
Among these results, the user chooses one of them and decides how to
expand his search1. Once he has selected and queried the new service,
the user chooses a result among those proposed and eventually repeats
the process.

We aim to adapt and use some existing recommendation algorithms currently
used in mono-domain cases in this multi-domain scenario. Such recommendation
should aim at responding to the question: given a selected result by the user,
can we suggest what is the next service to be queried? And given the chosen
service, is there a result that could be highlighted with respect to the others? The
solution we propose is based on analyzing existing algorithms (Crowd searching,

1With the term expand the search we mean to perform a search of another concept related
to the first.
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Personalization, Search-based, Category-based, Collaborative filtering, Cluster-
ing, Association Rules) and studing the problem of applying these algorithms in
the multi-domain case.

1.4 Summary of the work done

Our work covers the study of the techniques of recommendation in mono-domain
case and their extension to the multi-domain case. To accomplish this, we have
designed and implemented the necessary data structures and algorithms to cover
the needs of recommendation techniques in multi-domain environments. During
the analysis of the recommendation techniques used today in mono-domain search
engines we have noticed how these can not be applied directly to the multi-domain
case. Mono-domain search do not cover important aspects such as the order of
access to services, the relationships between services, etc.

We have tested three different algorithms. Two are adaptations of techniques
used in mono-domain case, while the third has been realized ad hoc for the multi-
domain case. For each of these we have highlighted strengths and weaknesses in
order to obtain an evaluation of the recommendation techniques in a multi-domain
search engine.



20 CHAPTER 1. INTRODUCTION



Chapter 2

Background & Related Work

Part of the inhumanity of the
computer is that, once it is
competently programmed and
working smoothly, it is
completely honest.

Isaac Asimov, The Winds of
Change and Other Stories, 1983

This chapter will show what are the main recommendation algorithms and
how they are used today. For each of them we provide examples of existing
applications. We will focus on the most important techniques and show which
ones have been adopted in this thesis.

2.1 Related work

Nowadays many application examples of recommendation exist in the mono-
domain case. Since the creation of search engines, one of the main challenges
has always been trying to refine as best as possible the search of data in order to
obtain the best results.

Every time a user enters an e-commerce website, he is bombarded with advice
on what to buy, especially if he is a registered user on that site. This is a classic
example of recommendation. Similarly, the advertising often show on the side of
social networking sites, such as Facebook for example, are related to the search
and navigation done by the user. We will show some real-world examples later
when we’ll discuss in detail all the algorithms of recommendation present today in
literature and studied in the thesis. But all this is true in the mono-domain case
where one is interested in a search on individual service. There are many articles,
from academic sources and not, on research and development of these algorithms
in mono-domain case.

21
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multi-domain search changes the way we have to compute the suggestion. It’s a
new field of research and nowaday there isn’t a functional application. We need
more study and work to get targeted suggestion to the user. The aggregation of
information from multiple services is not easy even if the studies are moving in
the right direction. Increasingly, online you can see examples of pseudo-search
multi-domain. We take expedia.com as an example of multi-domain search.
When a user accesses on expedia.com and tries to perform a trip he has the
impression of being able to make a pure search on a multi-domain search engine
where over the trip result the user can choose hotels, rental cars. We see the
initial interface:

Figure 2.1: expedia.com home page

The red arrow in figure 2.1 indicates the area where you can choose among
several services. searching a trip to milan newyork, we obtain:
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Figure 2.2: expedia.com search of a travel + hotel + car

The obtained results are significant but they are not addressed to the user
preferences. The first results are those sponsored, then the rank is calculated
based on geolocation. Expedia results has not real correlation between the various
elements such as fly, car, hotel. For example, an user who chose a five star hotel
can be addressed to the same car rent which can be chosen by an user who reserves
a bed and breakfast. Moreover it bases every next choice on geolocation. There
are no other available relation between each service. Today we want to find a
multi-domain search engines with greater flexibility in the selection criteria of the
aggregation of results in order to cover all possible types of queries.

Today the web, as shown in figure 2.2, hasn’t a very high level multi-domain
search engine but it’s moving in the right direction. A project that is fully focused
on the multi-domain search and are having very positive feedback is SeCo that is
shown in the following section.

2.2 SeCo

The project Search Computing (Se-Co) [2] [1] is used to perform complex searches,
starting from an initial concept and allowing the user to refine, expand and
broaden your search by adding new concepts shown earlier on the results.
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This is possible by using the concept of liquid query, complex queries that may
change during the search session where the results fill the fields selected by the
user as water poured into a container.

The emerging paradigm of software services has so far been neutral to search.
Search Computing is an evolution of service computing focused on building the
answers of complex queries by interacting with a constellation of cooperating
search services, using ranking as the dominant factor for service composition.
New language and description paradigms are required for interconnecting services
and for expressing queries. Semantic domain knowledge helps enriching termi-
nological knowledge about objects being searched. New protocols help capturing
ranking preferences and their refinement; new interfaces present complex results
with simple visual descriptions. Ranking is relative to individuals and context
and therefore reflects personal and social contributions. Economical and legal im-
plications of Search Computing must be understood and mastered. In summary,
Search Computing is a multi-disciplinary effort which requires adding to sound
software principles contributions from other sciences such as knowledge represen-
tation, human-computer interfaces, psychology, sociology, economical and legal
sciences.

The user during the search session from a template in which the initial part
of the first search keys on the first concept (topic) that normally refers to a
specific search service. Once you have the results, the user can perform a number
of operations that can be collected into two categories: remote interactions and
local interactions.

Remote queries that require the server to perform some operation to produce
new results: the expansion to a new service, get more results from a single service
or all services together. Queries reorganize local results without making requests
to the server: clasterizzazione results, reorganize, roll-up and drill-down.

2.2.1 Liquid Queries and Liquid Results in Search Com-
puting

Liquid queries [1] are a flexible tool for information seeking, based on the progres-
sive exploration of the search space; they produce “fluid” results which dynam-
ically adapt to the shape of the query, as a liquid adapts to its container. The
liquid query paradigm relies on the SeCo service mart and multi-domain query
execution concepts: an expert user selects a priori the service marts relevant to the
information seeking task at hand and the connections necessary to join them, and
publishes such a definition in the SeCo back-end. The Liquid Query client-side
interface consumes the application definition created by the expert and dynami-
cally builds a query interface for the end-user. Such interface allows one to supply
keywords to query the pre-configured service marts and offers controls for explor-
ing the combinations computed by the SeCo execution engine. The interaction
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commands are based on a tabular representation of results and comprise: reorder-
ing, clustering, addition or deletion of attributes, addition of extra service marts
to the query for specific items in the result set or for the entire result set, request
of more results from all services or from selected ones, expansion of details on
selected items, and more. The Liquid Query is equipped with multiple data visu-
alization options suited to render multi-domain results and can be instrumented
with indicators showing the quality of the result set.

2.3 Recommender systems

This section explains some of the main recommendation algorithms [5] used on
the Internet everyday.

2.3.1 Personalization

Personalization concerns adapting to the individual needs, interests, and prefer-
ences of each user so for example is defined as filling out a profile that aims to
obtain a detailed description as possible of the tastes of the user.

The compilation of the profile can be made directly by the user or can be
automated obtaining information already present on other sites or communities.
amazon For complex queries the personalization is useful for example to identify
which is the main concept on the results presentation. When choosing a trip you
can ask what are the main filters: weather, traffic, points of interest, . . . Obtained
the result, you can make a ranking based on this information.

2.3.2 Search-Based

The Search-Based is one of the basic methods of recommendation. The visitor
types a search query and the system retrieves all the items that correspond to
that query.

The system recommends some of the records in the result set like better
than the other ones, it’s a non-personalized ranking (sales rank, popularity,genre,
etc. . . ).

For example the user types a search query for a book or kind of a books. The
system returns all the items that correspond to that query, e.g. 6 books. The
recommendation is based on general, non-personalized ranking filters for books
like sales rank, popularity, authors, . . .

Now let’s see an example of Search-Based.

Consider a user who accesses the site amazon.com for a book, the user does
not know a priori which book to choose. So he thinks to look for a best-seller.
What happens?
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Figure 2.3: search-based relevance on amazon.com

The results in this first case are ranked by relevance. The recommendation
is then obtained based on the importance of the object. This recommendation,
however, can be changed, as can be seen from the image. In fact, there is a combo
box for the selection of the discriminant for search. What happens then if I change
my method of search?

If the user chooses an ordering of results we compared the popularity of this
set of values:

Figure 2.4: search-based by popularity on amazon.com

As you can see the results change. Passing by relevance to popularity we get
a set of data, in this case books, different.
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This type of recommendation is purely tied to the object and has no knowledge
of the tastes of the user but still offers the chance to get some advice on what
is the best best sellers depending on sales or popularity or other factors such as
price.

Pros:

1. Simple to implement

Cons:

1. Not very powerful

2. Which criteria to use to rank recommendations?

3. Is it really recommendations ?

4. The user only gets what he asked for

2.3.3 Category-Based

The category-based is based on the concept that each item belongs to one category
or more. The user makes an explicit or implicit choice selecting a category of
interest (refine search). The system selects categories of interest on the behalf
of the customer, based on the current item viewed, past purchases, etc. Certain
items(best-sellers,new items) are eventually recommended.

Now let’s see an example of Category-Based. Consider a user who accesses
the site amazon.com for a book, the user does not know a priori which book to
choose. So he thinks to look for a best-seller. What happens?

As a first step the user types best-seller in the search bar of amazon.com.

Figure 2.5: category based on amazon.com
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It can be seen immediately as the system shows, in addition to the query typed
by the user, other possible ways to enter / refine the query. In the picture you can
see, marked with an arrow, is recommended as a specific category of bestsellers,
those in Books (paper for example) or Kindle. This is an example of how the
items are categorized.

Assuming that the user chooses bestsellers in books, the system categorizes
the choice in the bar showing that the search is on books, rather than all as shown
in the follow figure.

Figure 2.6: category based - categorization

The amazon website offers a further categorization of the previous visible.
Once you have chosen bestsellers in the category Books, Amazon still offers the
possibility to choose between different types of product categories such as:

Figure 2.7: category based second-level of categorization

Pros:

1. Still simple to implement

Cons:

1. Not very powerful, which criteria to use to order recommendations? is it
really recommendations ?

2. Capacity highly depends upon the kind of categories implemented :

� Too specific: not efficient

� Not specific enough: no relevant recommendations

2.3.4 Collaborative-Filtering

Collaborative filtering [4] techniques compare customers, based on their previous
purchases, to make recommendations to similar customers. It’s also called social
filtering. The collaborative filtering techniques find customers who are similar
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(nearest neighbors) in term of tastes, preferences, past behaviors, then aggregate
weighted preferences of these neighbors and make recommendations based on these
aggregated, weighted preferences (most preferred, unbought items).

Imagine a system with multiple users. User C requires a recommendation on
the next book to buy.

Figure 2.8: example of collaborative filtering

Customer B is very close to C (he has bought all the books C has bought).
Book 5 is highly recommended Customer D is somewhat close. Book 6 is recom-
mended to a lower extent Customers A and E are not similar at all. Weight=0.

Pros:

1. Extremely powerful and efficient

2. Very relevant recommendations

Cons:

1. Difficult to implement, resource and time-consuming

2. What about a new item that has never been purchased?Cannot be recom-
mended

3. What about a new customer who has never bought anything? Cannot be
compared to other customers so no items can be recommended

2.3.5 Clustering

Clustering is similar to collaborative filtering because is another way to make rec-
ommendations based on past purchases of other customers clustering customers
into categories. Each cluster will be assigned typical preferences, based on prefer-
ences of customers who belong to the cluster. Customers within each cluster will
receive recommendations computed at the cluster level

Now let’s see an example of clustering on 5 users.
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Figure 2.9: example of clustering

Customers B, C and D are clustered together. Customers A and E are clustered
into another separate group. Typical preferences for cluster are:

1. Book 2, very high

2. Book 3, high

3. Books 5 and 6, may be recommended

4. Books 1 and 4, not recommended at all

Now let’s add a user assuming has already bought two books, What’s happen
now?

Figure 2.10: example of clustering

Any customer that shall be classified as a member of CLUSTER will receive
recommendations based on preferences of the group:

1. Book 2 will be highly recommended to Customer F

2. Book 6 will also be recommended to some extent

A significant problem is what happens to the clusters when you the number of the
users. Most users increases more likely that a user belongs to multiple clusters
(clusters overlap).
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Figure 2.11: example of clustering

Predictions are then averaged across the clusters, weighted by participation
Pros:

1. Clustering techniques work on aggregated data: faster

2. It can also be applied as a first step for shrinking the selection of relevant
neighbors in a collaborative filtering algorithm

Cons:

1. Recommendations (per cluster) are less relevant than collaborative filtering
(per individual)

2.3.6 Association Rule

Association rules are created by analyzing data for frequent if/then patterns and
using the criteria support and confidence to identify the most important relation-
ships. Support is an indication of how frequently the items appear in the database.
Confidence indicates the number of times the if/then statements have been found
to be true.

In data mining, association rules are useful for analyzing and predicting cus-
tomer behavior. They play an important part in shopping basket data analysis,
product clustering, catalog design and store layout.

Programmers use association rules to build programs capable of machine learn-
ing. Machine learning is a type of artificial intelligence (AI) that seeks to build
programs with the ability to become more efficient without being explicitly pro-
grammed.

One of the original motivations of the latter approach is to help supermar-ket
managers to analyze past transaction data and to improve their future business
decisions including catalog design, store layout design, coupon design and so on.
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Given a large database of customer transactions with each transaction storing
items purchased by a customer during a visit, association rule mining aims to
discover all significant associations between items in the database.

Association rules work at the item level.
Now let’s see an example of the use of the techniques of association-rule in the

context of recommendation.

Figure 2.12: example of association rule

These association rules are sed to make recommendations.
If a customer has some interest in Book 5, he will be recommended to buy Book
3 as well.
Recommendations are constrained to some minimum levels of confidence, What
if recommendations can be made using more than one piece of information? Rec-
ommendations are aggregated.
Pros:

1. Fast to implement

2. Fast to execute

3. Not much storage space required

4. Not individual specific

5. Very successful in broad applications for large populations, such as shelf
layout in retail stores

Cons:

1. Not suitable if knowledge of preferences change rapidly
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2. It is tempting to do not apply restrictive confidence rules so May lead to
litteraly stupid recommendations.

2.3.7 Information Filtering

Information filtering is a suggestion technique that compares objects based on
their contents or characteristics. It can exploit syntactical information on objects
(based on features like word frequency, . . . ) but also semantic knowledge of objects
(using ontologies).

There are two major approaches for information filtering: content-based fil-
tering and collaborative filtering. The content-based filtering system selects items
based on the correlation between the content of the items and the user’s prefer-
ences, while a collaborative filtering system chooses items based on the correlation
between people with similar preferences.

The content-based filtering require the definition of the content of an item. It
can be explicit attributes or characteristics of the item. For example for a film can
be author, main character, production year, . . . The content can also be textual
content, like title, description, table of content, etc.

Several techniques exist to compute the distance between two textual docu-
ments. The term frequency - inverse document frequency (TF-IDF) is a numerical
statistic which represents how important a word is to a document. This weight is
computed as

TFIDF =
TF × IDF∑

N(TF × IDF )2
(2.1)

where

TF = log(count + 1) (2.2)

is the Term Frequency, the number of occurrences of the term in a document, and
the

IDF = log(
docs + 1

docs− the− term− occurs− in
) (2.3)

is the inverse document frequency, a measure of whether the term is common or
rare across all documents
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Figure 2.13: Word frequency calculated on 7 book’s titles

Figure 2.14: TFIDF calculated on 7 book’s titles

Pros:

1. No need for past purchase history

2. Not extremely difficult to implement

Cons:
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Recommendation Algorithms Questions
Services Instances Attributes Displaying

Crowd X X - -
Personalization X X X X
Search-based X X - X

Category-based - - - -
Collaborative filtering X X - X

Clustering X (X) - X
Association rule X - X X

Information filtering X - - X

Table 2.1: X use case where the algorithm is applicable

1. Static recommendations

2. Not efficient is content is not very informative e.g. information filtering is
more suited to recommend technical books than novels or movies

2.3.8 Crowd

The technique of Crowd recommendation is based on shared help between users.
A user who needs help asks a question to the community that tries to answer it.
Obtained the answers the user chooses what he considers the best one. Examples
of such applications are Yahoo-Answer or ToogleChat. The former, the users ask
questions and wait for the response of other users connected to the community. To
encourage users to answer the system offers bonus that allow users to use Yahoo
features. The second one, users are connected to a chat room available into their
browsers. They can chat while are searching information in the web so they can
ask a question about their search and obtain answer about that. A similar thing
is done by the Italian search engine Volunia.

2.3.9 Overview

In section 2.3 we have explained the algorithms one by one with their pros and
cons. Now we show in table 2.1 where these algorithms can be used.

A previous thesis made by students of Politecnico di Milano in Como has
focused on how to use these suggestion tecniques to chose the best way to display
tuples.

We focus mainly on services and instances. Let’s see now, with a new table,
the case studies discussed in the thesis.

In section 2.3.9 we show how search-based and collaborative filtering can be
used to suggest services an instances to the user. Let us now see the scenarios on
which algorithms are studied in the thesis.
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Questions
Recommendation
Algorithms

Abstract
concept
(ho-
tel,. . . )

Services
(Expe-
dia,. . . )

Instances
(tuples to
display)

Instances
(filters to
apply)

Crowd X X X -
Personalization X X X -
Search-based X X X -
Category-based - - - -
Collaborative fil-
tering

X X X X

Clustering X X X X
Association rule X X - -
Information fil-
tering

X - - -

Table 2.2: X: use case where the algorithm is applicable. X has been studied in this thesis

Search-Based

This technique suggests what were the results most seen based on global statistics.
For example, if you search a restaurant in your city, a Search-Based system returns
the restaurant with more feedback. It’s a technique of ranking.
On the technical concepts the Search-Based technique is not of great importance
while on services it is useful because reccomends the most used service.
For instances, seen as tuples to display, the Search-Based has good results because
the underlying services have a limited degree of change. For filters, the issue is
more subtle. If you search for a restaurant, for example, the system suggests
which already filters are applied.

We have focused on Search-Based for physical services: This recommendation
methods NOT binds the current user and its profile with the suggestion proposed.
Recommended services depend on the overall statistics.

We need a history of searches previously carried out by using the system, so
we must keep track of which physical services have been selected by users for
each query. This information can be obtained in different ways according to the
architecture of the system.

Collaborative-Filtering

This technique suggests similar elements based on previous search of users who
have done similar search.
On abstract concepts, this technique is applicable because it encourages user
choices using the choices done by similar users (users who have similar search).
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For services is not recommended because using a Search Based i would expect
better results, but on the other side can bring an advantage if used with more
precise suggestion algorithms. Instances, seen as linked tuples, could be used in
the Collaborative Filtering like: the user performs a search like a restaurant in a
city, and the system tells him what is the most visited restaurant by the largest
number from his friends.
For the filters to be applied, Collaborative Filtering is useful because by previous
search is possible to know what filters were chosen by the users and then these
can be assumed correct for the user.

Finally for attributes is more convenient using other techniques.
We have focused on Collaborative filtering on concept. The system according

to the query and the current concept, search who else has made similar queries
and it provides suggestions as other concepts. To obtain the reccommendation we
need to save:

1. users on the system

2. domains explored

It’s also considered very very important in the timeline where the exploration is
carried out. We get, in this way, a timeline of the search. The final result is the
next service to explore.

2.4 Apache Mahout

Apache Mahout [3] is a library for building scalable machine learning applications.
At the time of writing Mahout support four use case:

� Recommendation mining;

� Clustering;

� Classification;

� Frequent itemset mining.

Clustering takes e.g. text documents and groups them into groups of topically
related documents.

Classification learns from exisiting categorized documents what documents of
a specific category look like and is able to assign unlabelled documents to the
(hopefully) correct category.

Frequent itemset mining takes a set of item groups (terms in a query ses-
sion, shopping cart content) and identifies, which individual items usually appear
together.
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Recommendation mining takes users’ behavior and from that tries to find items
users might like. Apache Mahout uses the collaborative filter approach and the
sub-framework named Tast implement this tecnique.

2.4.1 Mahout - Taste

Taste is a sub-framework of Apache Mahout since 2008. The system architecture
is shown in figure 2.15

Figure 2.15: Mahout-Taste architecture

The main building block in Taste is the Recommender. The Recommender rec-
ommends items based on a given item or it determines users with similar tastes.
To determine the items (or the users) similar to the chosen one the recommender
applies a similarity function on a subset of pairs of items (or users) in the dataset.
A similarity function usually returns a value between 0 and 1, with 1 representing
two completely similar items and 0 completely dissimilar items. When the sim-
ilarity function processes pairs in the dataset the resulting similarity values are
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collected and are either kept in memory or stored on the filesystem or a database.
When the Java application requests a few recommendations for a given item, the
Recommender returns the items with the highest similarity.

The Recommender retrieves items and users through the DataModel abstrac-
tion. Taste contains DataModel implementations for retrieving your dataset
through the filesystem or a database. In addition, the DataModel provides meth-
ods that count the total number of users, total number of items, number of users
that prefer a certain item, and many more functions. Similarity functions use
these numbers to compute a similarity value for pairs of items or users. You can
build a recommender with Taste by adding a DataModel and a similarity function
to a Recommender. You can also define your own similarity function by extending
UserSimilarity or ItemSimilarity to recommend users or items, respectively.
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Chapter 3

Recommendation algorithms for
exploratory search

The real danger is not that
computers will begin to think
like men, but that men will
begin to think like computers.

Sydney Justin Harris

This chapter will present all the components and processes necessary to obtain
recommendations in multi-domain environment.

3.1 Defining the problem

In recent years any information, doubts, questions of everyday life, they can be
placed as a query to a service on the internet. The result obtained, however, often
does not reflect what you want to obtain. For example the search returns too
many useless information cause lack of refining the query, misunderstandings due
to natural language, etc. . . .

Over the years, the various search engines have improved search techniques to
provide results as close as possible to the desired one.
But what’s happen if a user tries to perform a search of information across multiple
services?, ie what happens when the query concerns more services? How can you
be sure that the given result is correct?. For example, what is the most comfortable
hotel in London? Where is the most famous restaurant near the San Francisco
airport? Which museums is recommended to see in Paris? The thesis presents
algorithms, ideas and suggestions on how to tackle problems such as previous
queries.

It’s now necessary to focus on some important definitions to understand how

41
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we implemented the algorithm.

3.1.1 Overview

The user wants to get an aggregate of information (Hotel + Museum + . . . ); To
build this aggregate we use an iterative approach.

The user, starting from a service, step by step, it collects information increasing
the data obtained passing from service to the next one. Our goal is to suggest to
the user what other source of information use and highlight some records that are
the more interesting than other ones. To better understand this process we need
to understand what does it mean that the user moves on services. Moreover what
it means to get information(instances)?. We begin to answer the former question.
Imagine a system with 7 services related according to a certain logic.

Figure 3.1: space of services

For example, the service E represents the cinemas, while the service G movies.
This is a services space.

A user can access any of these services offered by the system and then, by
querying the service, he obtains information to the services directly related. In
this way the user creates paths on the space of services. These generated paths will
become the future log stored in the database and they are used for the calculation
of the recommendations.
Suppose a user U1 accesses the service A, then from there it moves to B and then
C.
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Figure 3.2: path on the space of services

From the process show in 3.2 we can obtain the following information:

1. to characterize the user with an identifier;

2. to define the session;

3. to save the search path, ie services visited, obtaining the log.
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Figure 3.3: data extraction step-1

Once the user navigation logs are produced, they are saved in a database and
queried using SQL queries to obtain recommendations.
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Figure 3.4: data extraction step-2

All the previously described process (described in figure 3.4) is implemented
in the thesis.
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Instances and log

When a user focuses on a service, he implicitly requires to show the instances
available on the service that respond to the query.
For example, a user wants to look for hotels in a particular place and obtains some
instances. These instances are part of the search conducted by the user and then
these are saved in the log.
They are of fundamental importance because they contain the meaning of a move
between a service and another. In the case of suggestion for instances, after seeing
similar path on the services is necessary to compare instances and thus they must
be saved.

Figure 3.5: save instances from service
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3.2 Recommendation algorithms

This section describes the various recommendation algorithms designed in the
thesis. For each algorithm will expose the basic idea, positive and negative aspects
and usage examples. All these algorithms have been written in Java for greater
portability to any system can be used.

3.2.1 Purely statistic approach

The first method is purely based on a statistical computing of the services seen
by users. During a session, a user can visit a single service or multiple services.
At each step of the exploration the recommender system can advise what is the
next best service looking at all the paths made by previous users.

In this case the algorithm has a database with all the users logs.
When a user visits a service, the recommendation is calculated by looking what

is the next best service by counting the occurrences starting from the current
service seen by the user. In other words, if a user has viewed a service A, the
algorithm recommends the next services calculating first how many other users
have seen the current user service and from then it counts the occurrences of the
next services creating the rating. The result will be sorted in descending order to
obtain the recommended service (highest number of occurrences)first.

Pros:

1. easy to implement;

Cons:

1. Does not care the user’s profile;

2. Purely statistical;

3.2.2 Machine-learnig based approach, implemented with
Mahout-Taste

The second method was implemented using Mahout libraries (see chapter 2.4.1).
This algorithm, thanks to the use of libraries provided by mahout-taste, is a re-
finement of the previous. In fact, it takes the similarity between users. In the
previous case it had a recommendation given the current path without considering
of who is the user and whether the user has done other search previously, now,
instead, the recommendation is calculated given the user.

The basic idea is to find similar users and calculate on these the recommen-
dation for the current user.
A problem of the libraries provided by Apache Mahout-Taste was the absence
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of the library for the connection to the database. This problem were solved by
creating the class DbDataModel.java.

Pros:

1. recommendation based on user profile;

2. wide variety of clustering methods offered by the library

Cons:

1. doesn’t care the temporal sequence of the searches;

3.2.3 Refined approach, ad-hoc for multi-domain exploratory
search

The third algorithm implemented represents a further evolution of the previous
ones. It includes new features such as:

1. the temporal sequence of the visited services;

2. the choice of different methods of recommendation related to the similarity
of the search paths.

The basic idea is to compare the paths and find similar sequences. To do so,
we first represent all the services and their connection as a graph.

Figure 3.6: This graps is an example scenario with seven services
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The graph in figure 3.6 shows a scenario with seven services. Each node
represents a service labeled by a character while an arch represent the available
connection between two services. The user can move from a service to another
only if they are connected by an arc.

Figure 3.7: lookup-table

As we label each service with a letter of the alphabet, a string identify a path
among the services. For example we can take a lookup table in figure 3.7. If an
user explore hotel, restaurant and museum in this order, the corrisponding string
will be “abc”.

Figure 3.8: example of path

The graph in figure 3.8 shows a three steps exploration made by three different
users. These paths are highlited in the above graph and can be represented by
the sequence of the node labels. So, in this case the users paths are converted in
the following strings: “abc”, “abe”, “abf”. The strings obtained can be compared
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in many ways to define the degree of similarity between them. The recommenda-
tion will be obtained by using strings comparison algorithms implemented in this
thesis. In other words the algorithm passes from a study of similarity between
paths to a study of similarity between strings. The string processing algorithms
implemented in this case study are:

armonic returns a score greater for paths with final services similar to the current
one.

exponential use an exponential calculation giving decreasing weight from newest
to oldest. It admits paths of different length.

Levenshtein calculate the Levenshtein distance. It admits paths of different
length. The calculation of the similarity is the inverse of the distance of
levenshtein added to one.



Chapter 4

Implementation and experiments

Program testing can be used to
show the presence of bugs, but
never to show their absence!

Edsger Dijkstra, Structured
Programming, 1972

This chapter will show the implementation of the various processes related
to the studied recommendation techniques. In addition we will show the exper-
iments we performed for validating the quality and effectiveness of the different
techniques.

4.1 Algorithms implementation

All the algorithms implemented in the thesis has been written in Java for maxi-
mum portability on different systems.

As first step we studied how should be the structure of a log to understand
how to store it in the database and then use it for our purposes. This structure
is based on the described one in the previous chapter in the overview section, but
we now want to investigate some things about them.

4.1.1 Logs of exploratory search activities

Logs of exploratory search activities input data for the designed algorithms in this
thesis.

The logs come from paths made by users on the state space. During these
search paths, users move over the services looking for the request instances. This
process is a fully important kind of information that must be saved. In figure 3.4
we can see how you can save the information content of a log in a database.
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For “Step of user on the state space”, we mean the movement of a user over
an edge between two services. There is a particular case when the user looks for
only one service or the user is on the last service viewed on his search path. Take
for example a user U1 who step between two services:

Figure 4.1: path over two services

We can obtain the following information:

1. user identification;

2. initial service

3. next service

4. instance seen in initial service

5. instance seen in next service

6. timestamp that identifies the search step in the current user session

Assuming instead a single step, ie a visit to one service or the last step of
exploration, we have:



4.1. ALGORITHMS IMPLEMENTATION 53

Figure 4.2: path over one service

So we can obtain the following information:

1. user identification;

2. service seen by the user

3. next service seen by te user is null because there is no more step in the
exploration like for istance seen in it.

4. instance seen in the service

5. timestamp that identifies the search step in the current user session

So the structure of the database for saving the log can be seen as the following:

Figure 4.3: database structure

In figure 4.3 you can see the representations, in terms of data to be saved on
database, of the explorations described above, respectively in figure 4.1 for the
first record and in figure 4.2 for the second record

Given the structure of logs, an important part is now to show how these logs
can be grouped into two categories: random and real.
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Random-log

We created an algorithm that automatically generates paths on graphs services.This
was done to get a good set of data to work on.

The question now is: how reliable are these paths?
The answer is not simple. This method is the most effective way to perform
a stress test on the implemented algorithms in order to have a wide variety of
possible paths .

Figure 4.4: random generation of logs

In addition, the paths generation algorithm respects the logical ordering of the
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arcs between services, so we tried to create a graph as close as possible to a real
space services in order to obtain paths as close as possible to real person.

At the implementation level, the structure of the state space (with constraints)
is stored in the database by entering the source and destination of each arc.

The Java class PrefGenerator.java draws connections between services and cre-
ate paths so creates the logs. In fact, the database will contain the complete log
obtained as:

1. generating random user

2. for each user the generated paths

3. session identified by the timestamp
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Figure 4.5: random generation of logs detailed

In this way we can create all possible log randomly but with a logic that makes
them as close as possible to the real ones. Implementation details of the algorithm
and database management will be explained in chapter 4.

Real-log

The real logs come from paths made by users on real services such as those offered
by Seco. These logs are saved in a text document with parts of JSON code. In
order to use these logs we have:

1. filter files using regular expressions to divide text portions and JSON-code
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2. eliminate the uninteresting parts like events on ”mouse moves on the screen”.

real log

3. extract the names and instances serivizi seen.

4. build paths for each user with their sessions.

5. put it all in the related database

This is all done by a Java parser (getPrefFromLog.java) that takes files filtered
by unnecessary parts and ”translates” routes stored in the JSON in database
queries.



58 CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

Figure 4.6: getPrefFromLog.java

4.1.2 From logs to suggestion

We structured logs to support multi-domain search features and we saved all the
necessary information in the database. After that we have obtained the set of
inputs needed to find recommendations. Given the input in the correct form, it
is possibile, through the recommender system, to obtain the reccomendation.

Figure 4.7 shows the various steps.
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Figure 4.7: complete process

The implemented algorithms present, at high-level view, the same type of pro-
cess from the input data (log) to the output(recommendation).
Entering in the details of three algorithms is possible to notice some difference
that is good to expose. All implemented algorithms take as input a set of data
that are the logs in the computable form. Then return the output as the recom-
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mendation of what is the best next service at every step. What really changes in
the implemented algorithms is the process inside them.

Statistic

Figure 4.8: Statistic.java process
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As shown in figure 4.8 the class Statistic.java takes as input the log and the
current path and calculates the recommendation counting the occurrences of the
next services obtained as looking what is the next best service by counting the
occurrences of next-services starting from the current service seen by the user.
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Machine-learnig with Mahout-Taste

Figure 4.9: MahoutTaste.java process
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As shown in figure 4.9 the class MahoutTaste.java takes as input the logs and
the user with his paths and, thanks to the mahout-taste libraries, finds which are
the most similar user referring the current user an then calculate using again the
mahout-taste functions the recommendation.
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Refined

Figure 4.10: Refined.java process

As shown in figure 4.10 the class Refined.java take as input current user path and
log and convert both into string and thanks to the ad-hoc implemented algorithms
for stirng comparison can generate the recommendation.
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Table 4.1: Execution time in milliseconds
Algorithm Execution Time 1M records Execution Time for 2.5M records

Static 500 1068
Mahout 2256 5347
Refined 56000 141236

4.2 Experiments

The goal of these experiments is to compare the performance of each algorithm
on the same dataset.

The former test done is the calculus of the execution time. The execution time
has been calculated over the 2.5 millions record randomly generated by our script.
In a real application this time can be reduced by using a distributed version these
algorithms or by other optimization (record index, . . . )

The latter test has been the comparison of the outputs of each algorithm. This
test has been made for show the different suggestions made by each strategy.

4.2.1 Random exploration

We have generated a random graph with ten node and twenty oriented connection.
Each node represent a web service or another datasource where the user can
extract information and select an item. The connections represent the possible
expansion of each service.

Each exploration path generated by this graph is a simulation of a real ex-
ploration of a generic user. The exploration has been generated as follow: the
algorithm chose a random service, then it chose a neighbour and ”jump” on the
next service. The number of jumps is a number between 1 and 5. If there are any
path aviable, the program end the exploration of the current user and generate
another path on the graph.

After the generation of these paths we have run all the implemented algorithms
on dataset of different size. The goal of this test is to show how much time one
user could wait to obtain a suggestion.

The table 4.1 shows the execution time of each implmented algorithms.
It’s not surprising that the former case is the fastest one. The main operation

is a simple query on a database. This operation has been optimize using two index
on colum userid and serviceid. The data we have obtained this way are shown
with a simple postprocess.

The execution time of the second case is very good, because in a real applica-
tion we can show data and suggestion to the user at the same time. Mahout is a
stable library with ten years of continue development and this suggestion-engine
is optimized, as expected.

The latter case has the worst execution time. The sugestions made by this
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algorithm can’t be presented with the data. The long execution time is due to the
low code optimization. The suggestions made by this algorithm have to be shown
after the presentation of results obtained from the webservice chosed. Some multi-
domain search engine do so:in the example exposed in chapter 2.1 we have shown
a suggestion made by Expedia. That suggestion has been made in 34 seconds.

4.2.2 ad-hoc Exploration

We chose this dataset to show the difference between each algorithm. We want
some suggestion for the next step for the exploration of user 1

Figure 4.11 show the dataset.

Figure 4.11: ad-hoc dataset

User 2 has made two exploration in two different session. This is a real case,
because every user can make more than one search using the same account.

The suggestions made with the first alghorithm are (service/rank):
T/1, A/1, D/1
These suggestions do not care of the path chose by the user 1. These sugges-

tions show only that t, a and d were visited one time after one user visited the
service b

The suggestion mades with the second algorithm is (service/rank):
C/1
This suggestion does not take in advice that service b is never followed by

service c. Service c could be not conneced to b, but is suggested because user 2
and 3 has visited this Service together with service a and b.

The suggestion made with the latter algorithm are (service/rank):

1. T/1.0, A/0.5, D/0.5 for Levenshtein algortihm
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2. T/1.36, A/1, D/1 for Exponential algorithm

These suggestion take care that service t, a and d are visited after service b
(most probably they are connected) and the algorithm rank these service based
on the similarity between the search path of user 1 and the search path made by
other users.

4.3 Evaluation

The purely statistic approach has fast execution time, and the suggestion made are
quite good. These suggestion suggestions do not consider the user’s preferences
and therefore it is not the best choice for obtaining good quality recommendations.

The Machine-learnig based approach, implemented with Mahout-Taste, is fast
and take care of the users preferences, but it doesn’t take care of the existing
connection between services. Mahout can suggest some services for the next step
of the exploration but we have to chose between these suggestions and use these
that are connected to the last service selected by the user.

The refined approach, ad-hoc for multi-domain exploratory search, is the most
accurate one but is very slow.
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Chapter 5

Conclusions

One of the main causes of the
fall of the Roman Empire was
that, lacking zero, they had no
way to indicate successful
termination of their C programs.

Robert Firth

5.1 Summary of the work

Nowadays mono-domain search engines use recommendation techniques to provide
more information tailored to the user. This task becomes much more complex in
the case of exploratory search over multi-domain sources. Our goal has been to
apply the existing recommendation algorithms in multi-domain environment. We
have proposed three different strategies for the multi-domain case:

1. purely statistic approach that is based on a statistical computing of the
services seen by users

2. Machine-learnig based approach that is a refinement of the previous but
takes the similarity between users

3. refined approach that compares the paths converted to string and find similar
sequences

.
To validate the proposed approaches, we have performed two esperiments:

1. tested the implemented algorithms with a randomly generated dataset to
evaluate performance.

2. extracted a set of data, from real logs, for testing the algorithms in real case.

69
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Finally, we have evaluated the results obtained and then we have analyzed the
quality of the contributions of the different techniques in case of multi-domain
exploratory search.

5.2 Conclusion

In conclusion we can say that the recommendation techniques used today in mono-
domain search engines can be integrated and extended to cover multi-domain
search.

In this thesis we have integrated the techniques of search-based and collaborative-
filtering successfully and we have demonstrated the possibility of this kind of
integration.

Each algorithm implemented can be used in one specifc application. The
former algorithm (static.java) is very fast but the suggestion may not be correctly
addressing the user profile. This is because it is based on general statistics of
all the users. The second algorithm (mahout-taste.java) is fast enough to show
the suggestions together with the data retrived. Unfortunately in some cases the
suggestions are not available for the user because the obtained services are not
connected to the services explored by the user. The latter case (refined.java) is
the most accurated and targeted on the user profile, but it may require longer
waiting time so suggestions may be shown with some delay to the user.

5.3 Future work & extensions

We have analyzed the techniques of search-based and collaborative-filtering. These
are only a part of the recommendation techniques existing in literature. A future
development will be the analysis of other techniques not discussed in the thesis.
Another future work is the integration of the implemented algorithms into a multi-
domain search engine such as SeCo to verify the potential of the studied techniques
within a real system.

The next extension we can made is to realize a system that provides suggestions
at instance level by highlighting the best result instances and not only the services.
The most difficult issue to tackle in this direction is that typically there is no way
to uniquely identify a result returned by a set of web services in multi-domain
search systems.
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