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Abstract 

The linear optimal control theory brought a lot in many fields, by providing proven 
methods that can be applied to several systems, the class of linear/linearized systems, 
in order to reach an optimal behavior according to the requirement defined by the 
control designer. During the last two decades, several studies aimed to develop 
similar methods that can be used for a larger class of systems, by taking in account the 
non linearities. This is the principle of the State Dependent Riccati Equation method. 
The first step of this method is to give a parameterization of the control problem, that 
is to say to go from a system where the governing equations are known to a specific 
factorized structure, with a matrix multiplying a vector composed by the parameters 
to control. This matrix is not easy to obtain and generally implies to manipulate the 
equations to find a proper expression. Besides, this matrix is not unique, fact which 
imposes a selection process. 
The aim of this study is to propose a systematic method which takes a set of equations 
to produce a parameterization, without the need to rewrite the equations in a proper 
way. For that, the approximation of the system equations was considered. Indeed, by 
having a polynomial expression of the equations, the factorization, even if non 
unique, is really easy. Thus a large part of this study was to evaluate the loss of 
information due to this approximation and justify the relevancy of the systematic 
method. A second part was dedicated to the selection process among the obtained 
parameterization in order to give to the control designer the values he will need to 
choose among the different possibilities. 
Among the different space problems, the space navigation is already subjected to 
research for SDRE control application, including rendezvous and docking procedures. 
The systematic method had been implemented in a SDRE rendezvous solver 
developed during a previous thesis, in order to prove the efficiency of the method by 
comparing the performances of the systematic parameterization with the ones 
obtained by the exact parameterization considered in the solver. 
Unfortunately, the simulations showed that this specific problem was not the best 
application since the impact of the parameterization is negligible face to the control 
law to follow. Because of that, any parameterization, even null, was reaching the same 
performances. But in any case, the systematic method code, justified with theoretical 
considerations, is developed and can be tested on another control problem. 
 
Keyword: Nonlinear control, State-Dependent Riccati Equation, SDRE, SDC 
parameterization, Optimal control, systematic control method, rendezvous. 
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Sommario 

I metodi di controllo ottimo per sistemi lineari sono stati molto importanti in diversi 
campi, dando la possibilità di controllare una grande classe di sistemi in modo 
ottimale, facendo in modo cioè che il sistema segua la prestazione imposta dal 
progettista. Gli ultimi decenni hanno visto lo sviluppo di tanti metodi adatti per 
sistemi più complessi tenendo in conto anche le non linearità. Questo è anche 
l’obiettivo del metodo ‘State Depedent Riccati Equation”. 
Il primo passo consiste nella parametrizzazione del problema di controllo, è 
necessario cioè di trasformare le equazioni del sistema in una forma fattorizzata: in 
forma matriciale il sistema viene rappresentato da una matrice moltiplicata per il 
vettore dei parametri da controllare. 
Il procedimento per trovare questa matrice non è banale: si devono manipolare le 
equazioni per ottenere un espressione utile allo scopo, inoltre, questa matrice non è 
unica, e risulta quindi necessario un processo di selezione. 
Lo scopo di questo studio è quello di sviluppare un metodo automatico per ottenere 
una parametrizzazione da un sistema di equazioni, senza bisogno di ulteriori 
manipolazioni del sistema. Per questo, la scelta è quella di approssimare queste 
equazioni: ottenere un espressione polinomiale permette una fattorizzazione facile, 
pur non garantendo l’unicità. 
Gran parte di questo lavoro è stato quindi dedicato alla valutazione dell’errore 
commesso a causa dell’approssimazione, e quindi di misurare la validità di questo 
metodo. La seconda parte del lavoro è stata incentrata sulla necessità di trovare 
metodi che permettessero di scegliere la parametrizzazione più adatta allo scopo, tra 
le diverse possibilità presenti. 
Il metodo SDRE ha trovato applicazione nel campo dell’ingegneria spaziale 
nell’ambito della navigazione, in particolare è stato implementato per le procedure di 
rendezvous; un metodo automatico è stato sviluppato e implementato nell’algoritmo 
SDRE e applicato poi a una missione di rendezvous, nell’ambito di un’altra tesi. In 
questo modo è possibile misurare le prestazioni in termini di controllo del modello 
ottenuto con il metodo automatico, e fare quindi il confronto con le prestazioni 
ottenute con la parametrizzazione. 
Le simulazioni hanno però mostrato che questa soluzione non era ideale per questo 
scopo, essendo l’effetto della dinamica trascurabile rispetto al controllo necessario per 
seguire la traiettoria prevista. Il codice è comunque disponibile, implementato e 
giustificato teoricamente; può quindi essere sfruttato per un altri tipi di problemi di 
controllo. 
 
Parole chiave: Controllo non lineare, State-Dependent Riccati Equation, SDRE, SDC 
parametrizzazione, Controllo ottimale, metodo automatico di controllo, rendezvous.  
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Chapter 1 

Chapter 1 Introduction 

1.1 Automatic control 

The introduction of linear algebra in automatics brought some powerful results 
in term of system control. One of the main is to have developed theories 
assessing the feasibility of a controller and giving systematic design methods, not 
for a specific system, but for a large class of systems, the linear systems. Then, 
without any loss of generality, a deep knowledge of the system is not anymore 
required as long as it is known that the system respects few specific conditions. It 
is even possible to prepare algorithms working directly on the system equations 
to produce a systematic controller for which the efficiency is assured by the 
theory. 
Among the control methods rising from the Linear control theory, the so called 
optimal control, or LQR method, allows designing a regulator according to some 
chosen/given criteria to optimize, a great advantage for an engineering problem.  
Unfortunately, this theory concerns only linear systems, then any more complex 
system needs to be modeled, and linearized. This linearization means a loss of 
information in general and induces a different behavior between the model and 
the real system, especially when the nonlinearities are not really negligible. Last 
decade saw a growing interest in the adaptation of the linear theory for non 
linear-system in order to develop better controller usable thanks to the on-board 
computation power available nowadays.  
The State Dependant Riccati Equation method is a trade off from the last studies 
on this subject, using a similar way to represent the system, but this time with 
matrices not anymore constant. This can be done by finding a factorization of 
the system, called quasi-linearization. But this process is not that easy, it requires 
researches and manipulations of the system equations.  
That is why more and more researches are trying to define and test systematic 
procedures that can be used on a large class of problems without any loss of 
generality. 
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1.2 The rendezvous problem 

Rendezvous and docking procedures are a key point in space operations, firstly 
due their necessity for in-space assembly, refueling and in general for manned 
missions, but also because they are among the most critical phases that one can 
find during a space mission. Indeed, a bad management of rendezvous and 
docking can simply lead to the incapacity to perform the contact between the 
two vehicles, or even worst, to a destructive collision. Unlike general space 
operations, dealing with standard celestial mechanics, those procedures are 
computed in the framework of the relative dynamics. Since the first operation of 
this kind, performed in the early 1966 by NASA, between a manned Gemini 
capsule with another unmanned vehicle, different methods and improvements 
were developed. One was to provide to some vehicle the capacity to perform 
those operations in an automatic way.  This led to the first Russian automatic 
docking in 1967, to the new generation ATV performing the ISS refueling. 
 

1.3 Objectives and scope 

This study aims to find a systematic SDRE method that will be applied to a 
rendezvous procedure, by defining an algorithm taking the relative dynamics 
equation set to provide an approximated parameterization that can be used by a 
SDRE controller. 
The model obtained will have to be compared to the real system behavior to 
assess its validity and to understand its limitations. 
Finally the resulting model will be implemented in a rendezvous simulation on 
MATLAB®, developed during another thesis last year.  
This would permit to measure the validity of this systematic method by applying 
it to a real case. 
 
After a brief introduction to the linear control theory, Chapter 2 will present all 
the fundamentals of the SDRE method and the methods to implement it, in 
order to have the elements required to explain in Chapter 3 the design of the 
systematic method developed, from theoretical concepts to the used algorithms. 
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The application of the above mentioned method requires firstly setting the 
relative dynamics equations in Chapter 4, and then to explain what is a 
rendezvous procedure in Chapter 5. 
Chapter 6 gives the model of the control problem suggested, and the evaluation 
of the compliancy of the systematic method to this problematic. 
In conclusion, chapter 7 will be dedicated to the implementation of the obtained 
parameterization in the SDRE solver developed last year by another student. 
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Chapter 2 

SDRE control technique 

A lot of control problem can be faced with a linear controller. But on some 
complex systems, regarding to the non linearity of their governing equations, 
good performance can be obtained only by a non linear controller, widely more 
complex than the standard linear control problem due to the lack of a systematic 
design method. In the field of the nonlinear control problem, the 90s saw the rise 
of an optimal control based extended linearization method, the SDRE method, 
enabling to exploit the results of the LQR theory. This approach of the nonlinear 
quadratic regulator problem, NQR, can be seen as an extension of the linear case 
where the system matrices would not be anymore constants, without any 
approximation on the system to control. This chapter will firstly remind the 
fundamentals of the LQR theory [3] before to present the principles of the SDRE 
method developed by Cloutier, D’souza and Mracek [4] and summarized in [5] 
and [6]. 

2.1 Linear quadratic regulator 

2.1.1 General framework 

Considering a real linear/linearized time-invariant system, the standard 
analytical form to represent it is the following: 

 

�̇�  =  𝐴𝑥 + 𝐵𝑢𝑢 +  𝐵𝑑𝑑 

𝑥(0) = 𝑥0 

𝑦 =  𝐶𝑦𝑥 + 𝐷𝑦𝑢𝑢 +  𝐷𝑦𝑑𝑑 + 𝐷𝑦𝑟𝑟  

𝑧 =  𝐶𝑧𝑥 + 𝐷𝑧𝑢𝑢 + 𝐷𝑧𝑑𝑑 

(2.1) 
 

(2.2) 
(2.3) 

where the first differential equation represents the system dynamics under the 
disturbances d and the control u, while the second and third algebraic equations 
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are the measurement output y and the performance output z, r being the 
measurement noise. Under the time-invariant and linear system assumptions, all 
the matrices in those equations are constant and real. 
The effect of the disturbances and noises won’t be considered, simplifying the 
system: 

 
�̇�  =  𝐴𝑥 +  𝐵𝑢 

𝑧 =  𝐶𝑥 +  𝐷𝑢 

(2.4) 
(2.5) 

The LQR principle is to control the dynamics and obtain a wished state using a 
linear state-feedback control u that respects a certain criterion, function of the 
problem requirement: the minimization of a quadratic cost function: 

 𝐽(𝑥0, 𝑥𝑓 ,𝑢) =
1
2 ( 𝑥𝑓𝑡𝑃𝑓𝑥𝑓 + � (𝑧𝑡𝑊𝑧𝑧𝑧 + 𝑢𝑡𝑊𝑢𝑢𝑢)𝑑𝑡

𝑡𝑓

0
) (2.6) 

The matrices 𝑊𝑢𝑢 and 𝑊𝑧𝑧, being symmetrical, are the design parameters to 
impose specific performances according to the project requirement. 
On the other hand, the control law is written as a linear function of the state 
error, the difference between the command and the real state: 

 𝑢 = 𝐾(𝑥𝑐 − 𝑥) (2.7) 

where 𝑥𝑐  is the command to follow and K the gain matrix. This K matrix is the 
key of the LQR method: it is the parameter assuring the minimization of (2.6) 
and the control of (2.4).  

2.1.2 Minimization process 

In order to obtain the expression of this parameter, (2.6) shall be rewritten as a 
function of the state and the command by introducing the expression of z, given 
in (2.5), in the cost function. Thus the following general form is obtained: 

 𝐽 =
1
2 ( 𝑥𝑓𝑡𝑃𝑓𝑥𝑓 + � (𝑥𝑡𝑄𝑥 + 𝑢𝑡𝑅𝑢 + 2𝑥𝑡𝑆𝑢)𝑑𝑡

𝑡𝑓

0
) (2.8) 

where the three real matrices Q, R and S are symmetrical. Using the Lagrange 
parameters method, the constraint 𝜆𝑡(𝐴𝑥 + 𝐵𝑢 − �̇�) shall be added in the 
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previous expression, 𝜆𝑡 being the Lagrange multiplier. Introducing the 
Hamiltonian, the criteria to minimize becomes: 

 𝐽 =
1
2 ( 𝑥𝑓𝑡𝑃𝑓𝑥𝑓 + � (𝐻(𝑢, 𝑥, 𝑡, 𝜆) − 𝜆𝑡�̇�)𝑑𝑡

𝑡𝑓

0
) 

𝐻 = 𝑥𝑡𝑄𝑥 + 𝑢𝑡𝑅𝑢 + 2𝑥𝑡𝑆𝑢 + 𝜆𝑡(𝐴𝑥 + 𝐵𝑢) 

(2.9) 

(2.10) 

Finally, integrating per party the last term of the integral: 

 � 𝜆𝑡�̇�𝑑𝑡
𝑇

0
= [𝜆𝑡�̇�]0

𝑡𝑓 − � �̇�𝑡𝑥𝑑𝑡
𝑇

0
  

Then the criterion to minimize becomes: 

 𝐽 =
1
2 ( 𝑥𝑓𝑡𝑃𝑓𝑥𝑓 + [𝜆𝑡𝑥]0

𝑡𝑓 + � �𝐻(𝑢, 𝑥, 𝑡, 𝜆) − �̇�𝑡𝑥�𝑑𝑡
𝑡𝑓

0
 (2.11) 

From the variational form of this criterion, the following set of equations, 
representing the minimization process, is obtained: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝜕𝐻
𝜕𝑢 = 0

𝜕𝐻
𝜕𝑥 = −�̇�𝑡

𝜕𝐻
𝜕𝜆 = �̇�

 �̇�𝑡(𝑡𝑓) = 2𝑃𝑓𝑥�𝑡𝑓�

� (2.12) 

The solution is obtained thanks to the expression of the Hamiltonian given in 
(2.10), reducing the problem to the determination of the pair (𝑥, 𝜆): 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑢 = −𝑅−1𝑆𝑡𝑥 −

1
2𝑅

−1𝐵𝑡𝜆

�̇� = −2(𝑄 − 𝑆𝑅−1𝑆𝑡)𝑥 − (𝐴𝑡 − 𝑆𝑅−1𝐵𝑡)𝜆

�̇� = (𝐴 − 𝐵𝑅−1𝑆𝑡)𝑥 −
1
2
𝐵𝑅−1𝐵𝑡𝜆

 �̇�𝑡(𝑡𝑓) = 2𝑃𝑓𝑥�𝑡𝑓�

� (2.13) 
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To make this set consistent, the assumption that R is positive-definite is 
required. The problem can be rewritten in the Hamiltonian sub-matrices form: 

 

��̇� = 𝐴̅𝑥 −
1
2𝐵𝑅

−1𝐵𝑡𝜆

�̇� = −2𝑄�𝑥 − 𝐴�̅�𝜆
� 

𝐴̅ = 𝐴 − 𝐵𝑅−1𝑆𝑡 

𝑄� =  𝑄 − 𝑆𝑅−1𝑆𝑡 

(2.14) 

Unfortunately, x being defined with an initial condition and λ with a final 
condition, this system is pretty difficult to solve. 
 
But adding the assumption that the pair (𝐴̅,𝐵) is controllable and the pair 
(𝐶̅,𝐴̅) is observable, with 𝐶̅ a factorization of 𝑄�   one can prove that: 

 𝜆(𝑡) = 2𝑃(𝑡)𝑥(𝑡) (2.15) 

with P a 𝑛 𝑥 𝑛 matrix with the final condition: 𝑃�𝑡𝑓� = 𝑃𝑓 . It is important to 
note that the factorization 𝑄� = 𝐶̅𝑡𝐶̅ implies that 𝑸�  is positive-semidefinite. 

2.1.3 Riccati Equation 

Now, the solution of the minimization is reduced to the determination of this 
matrix P, called the Riccati matrix, the command u being obtained from 𝜕𝐻

𝜕𝑢
= 0 

and (2.15), with the expression: 

 𝑢(𝑡) = 𝑅−1�𝑆𝑡 + 𝐵𝑡𝑃(𝑡)�(𝑥𝑐(𝑡) − 𝑥(𝑡)) (2.16) 

To obtain this matrix, the derivation of (2.15) introduced in (2.14) leads to the so 
called nonlinear differential Riccati equation: 

 𝑃𝐴̅ + 𝐴̅𝑡𝑃 − 𝑃𝐵𝑅−1𝐵𝑡𝑃 + 𝑄� = −�̇� (2.17) 
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Facing a differential problem with a matrix as a variable, the solution is still 
complex to determine. Restricting the problem to the infinite horizon H∞, that is 
to say 𝑡𝑓 = ∞, the previous equation is simplified: 

 𝑃𝐴̅ + 𝐴̅𝑡𝑃 − 𝑃𝐵𝑅−1𝐵𝑡𝑃 + 𝑄� = 0 (2.18) 

the so called Algebraic Riccati Equation (ARE), which admits at least one 
solution if the system is controllable/observable, and a unique one that stabilize 
the system in closed loop. 

2.1.4 Summary 

To conclude, for a linear/linearized system in the infinite horizon case, if: 
- The pair (𝐴̅,𝐵) is controllable and the pair (𝐶̅, �̅�) is observable, with 𝐶̅ a 

factorization of 𝑄� , 
- 𝑄�  and 𝑅 being respectively symmetrical positive-semi definite/definite, 

it exists a unique solution u controlling the system and minimizing the cost 
function (2.6). This solution is expressed in (2.16). 

2.2 Nonlinear quadratic SDRE regulator 

2.2.1 The NQR problem 

As showed before, the LQR method is a good way to control a linearized system 
by minimizing a criterion defined by the designer according to the requirement. 
But this restriction of linearization means a loss of information, a less accurate 
model from which the controller is designed. To avoid this, the nonlinear 
quadratic regulator approach is required, then facing the following system to 
control: 

 �̇�(𝑡) = 𝑓�𝑥(𝑡)�+ 𝑔�𝑥(𝑡),𝑢(𝑡)� 
𝑥(0) = 𝑥0  

(2.19) 

 
 
 



 
2.SDRE control technique 9 
 

 
 
 

The NQR method as an analog aim than the LQR, that is to say to define a 
control law u minimizing the criterion (2.6), for each x on the control domain Ω. 
To simplify the approach, the cross term will be neglected, that is to say S 
considered null, in the infinite horizon case: 

 𝐽(𝑥0, 𝑢) =
1
2
� (𝑥𝑡𝑄𝑥 + 𝑢𝑡𝑅𝑢)𝑑𝑡
∞

0
 (2.20) 

with the same conditions on Q and R, both symmetric and respectively positive-
semi definite and positive-definite. Using the same development than in the 
previous section, analog equations are found for the minimization process: 

 

⎩
⎪
⎨

⎪
⎧𝜕𝐻
𝜕𝑢 = 0 = 𝑅𝑢 +

𝜕𝑔𝑡

𝜕𝑢 (𝑥,𝑢)𝜆

𝜕𝐻
𝜕𝑥 = −�̇�𝑡 = 𝑄𝑥 −

𝜕𝑓𝑡

𝜕𝑥 (𝑥)𝜆

𝜕𝐻
𝜕𝜆 = �̇� = 𝑓(𝑥) + 𝑔(𝑥,𝑢)     

� +
𝜕𝑔𝑡

𝜕𝑥 (𝑥, 𝑢)𝜆 (2.21) 

Then the control law is defined in an identical way than (3.16): 

 𝑢(𝑡) = −𝑅−1
𝜕𝑔𝑡
𝜕𝑢 �𝑥(𝑡),𝑢(𝑡)�𝜆(𝑡) (2.22) 

where the dependence on u in both sides of the equation will be noted. 

This is the general NQR problem considering constant weight matrices and only 
state dependant dynamics.  

2.2.2 The SDRE method 

From this point, the SDRE method is bringing a way to solve (2.21) to obtain the 
control law. The first step is to perform a quasi-linearization of the dynamics, 
thanks to a factorization process on Ω: 

 𝑓(𝑥) = 𝐴(𝑥)𝑥 
𝑔(𝑥,𝑢) = 𝐵(𝑥,𝑢)𝑢 (2.23) 
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Among the literature, this procedure is called extended linearization, apparent 
linearization or SDC parameterization [4], giving a linear-like structure of the 
system (2.19). The resulting factorization is clearly not unique when the state 
dimension is superior to 1.  
 
This process requires working on the functions f and g to write them in a form 
easily factorable. Unfortunately this implies generally a human intervention since 
it is needed to have each part of f and g proportional to at least one of the state 
vector’s components, so by mathematical manipulation or using some 
assumption on the system needing to be controlled.  
 
This is one the main point of this study, define a process to obtain this 
factorization in a systematic way, and will be theoretically discussed in the next 
section. But it is know from [5] that if f is continuously differentiable on Ω, then 
such a factorization can be found. 
Thanks to the expression (2.23), the SDRE method mimics the LQR method 
presented before, by seeking for a costate with the form: 

 𝜆(𝑡) = 𝑃�𝑥(𝑡),𝑢(𝑡)�𝑥(𝑡) (2.24) 

As for the LQR, the controllability and observability of the pairs (𝐴,𝐵) and 
(𝐶,𝐴) is required, but for each 𝑥 ∈ 𝛺. The first equation of the minimization set, 
the, control law can then be written as: 

 𝑢(𝑥) = −𝑅−1(𝐵𝑡(𝑥,𝑢)𝑃(𝑥, 𝑢)𝑥 −�𝑢𝑖 �
𝜕𝐵1→𝑚,𝑖 
𝜕𝑢

(𝑥,𝑢)�
𝑡

𝑃(𝑥,𝑢)𝑥
𝑘

𝑖=1

)  (2.25) 

The derivation of the relation (3.24) reintroduced in the set (3.21) gives a 
Riccati-like equation: 
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𝑃(𝑥, 𝑢)𝐴(𝑥) + 𝐴𝑡(𝑥)𝑃(𝑥,𝑢) − 𝑃(𝑥,𝑢)𝐵(𝑥, 𝑢)𝑅−1𝐵𝑡(𝑥,𝑢)𝑃(𝑥,𝑢) + 𝑄

= −��̇�(𝑥,𝑢) + �𝑥𝑖 �
𝜕𝐴1→𝑚,𝑖 
𝜕𝑥

(𝑥,𝑢)�
𝑡

𝑃(𝑥,𝑢)
𝑘

𝑖=1

+ �𝑢𝑖 �
𝜕𝐵1→𝑚,𝑖 
𝜕𝑥

(𝑥,𝑢)�
𝑡

𝑃(𝑥, 𝑢)
𝑘

𝑖=1

)

− 𝑃(𝑥, 𝑢)𝐵(𝑥, 𝑢)𝑅−1�𝑢𝑖 �
𝜕𝐵1→𝑚,𝑖 
𝜕𝑢

(𝑥,𝑢)�
𝑡

𝑃(𝑥,𝑢)
𝑘

𝑖=1

)�    

(2.26) 

By assuming the derivatives of the SDC are negligible, the previous expression is 
largely simplified [6]. The resulting formula is the SDRE. Thus the solution 
obtained will represent only a suboptimal control, the precision depending on 
the validity of the previous assumption. The SDRE system to solve is: 

 
𝑃(𝑥, 𝑢)𝐴(𝑥) + 𝐴𝑡(𝑥)𝑃(𝑥,𝑢) − 𝑃(𝑥,𝑢)𝐵(𝑥,𝑢)𝑅−1𝐵𝑡(𝑥,𝑢)𝑃(𝑥,𝑢) + 𝑄 = 0 

𝑢(𝑥) = −𝑅−1(𝐵𝑡(𝑥,𝑢)𝑃(𝑥, 𝑢)𝑥 

(2.27) 

(2.28) 

This is the system generally implemented in SDRE solver instead of the previous 
expression given in (2.26). It is easy to see that the assumption made previously 
is a measure of the non-linearity. Indeed by having derivatives small compare to 
the original matrix is having a system not far from being linear, for which the 
derivative is exactly zero since the matrix A is constant. That is why for highly 
non linear systems, the expression (2.26) can be used, if the computing time is 
not too high. 

2.2.3 SDRE control design 

As showed before, a quasi-linearization of the dynamics is giving the opportunity 
to extend the quadratic regulation problem to nonlinear systems which are 
respecting the following conditions [5]: 

- The dynamics f is continuously differentiable on Ω. 
- The origin 0 is an equilibrium point of the system: 𝑓(0) = 0 
- The design parameters Q and R are respectively positive-definite and 

semi definite. 
- The pair (𝐴(𝑥),𝐵(𝑥,𝑢)) is controllable and the pair (𝐶,𝐴(𝑥)) is 

observable on Ω, with 𝐶 a factorization of 𝑄. 
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Then for a given parameterization (𝐴(𝑥),𝐵(𝑥, 𝑢)), the existence of a unique 
matrix 𝑃(𝑥,𝑢) solving the SDRE is guaranteed, and so a unique law u(x), given 
in (2.28), controlling the system. This SDC parameterization being not unique, it 
represents another set of design parameters to control the real system described 
in (2.19). 

In addition, the results given in the previous part can be extended to design 
parameters which are also function of x, under the hypothesis that the derivate of 
𝑄(𝑥) can be neglected and the condition 3 is respected and the pair 
(𝐶(𝑥),𝐴(𝑥)) is observable for each 𝑥 ∈ 𝛺 [5]. 

2.2.4 Power series formulation 

Even with the previous simplification, some significant difficulties can be 
encountered with the SDRE method, especially when the SDC are depending on 
both state and control law because of the dependence in u on both sides of 
(2.19). A way to overpass those difficulties is to use a power series formulation of 
the Riccati matrix, as developed by Wernli and Cook in 1974 [7]: 

 𝑃(𝑥,𝑢, 𝜀) = �𝜀𝑗𝐿𝑗(𝑥, 𝑢, 𝜀)
∞

𝑖=0

 (2.29) 

where ε is a temporary variable. This variable is also used to decompose A and B 
in two parts separating the linear part from the rest: 

 
𝐴(𝑥) = 𝐴0 + 𝜀

𝐴1(𝑥)
𝜀  

𝐵(𝑥, 𝑢) = 𝐵0 + 𝜀
𝐵1(𝑥, 𝑢)

𝜀  
 

Those three expressions are then reintroduced in the state dependent Riccati 
equation and then gathered by power of ε. This brings the following infinite set 
of equations: 

 

𝐿0𝐴0 + 𝐴0𝑡𝐿0 − 𝐿0𝐵0𝑅−1𝐵0𝑡𝐿0 + 𝑄 = 0 

𝐿1𝐴0��� + 𝐴0 
𝑡����𝐿0 +

1
𝜀

[𝐿0𝐴1 + 𝐴1𝑡𝐿0 − 𝐿0(𝐵0𝑅−1𝐵1𝑡 + 𝐵1𝑅−1𝐵0𝑡)𝐿0] = 0 

(2.30) 

(2.31) 
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𝐿𝑗𝐴0��� + 𝐴0 
𝑡����𝐿𝑗 −�𝐿𝑖𝐵0𝑅−1𝐵0𝑡𝐿𝑗−𝑖

𝑗−1

𝑖=1

+
1
𝜀
�𝐿𝑗−1𝐴1 + 𝐴1𝑡𝐿𝑗−1 −�𝐿𝑖(𝐵0𝑅−1𝐵1𝑡 + 𝐵1𝑅−1𝐵0𝑡)

𝑗−1

𝑖=0

𝐿𝑗−1−𝑖�

−
1
𝜀2
�𝐿𝑖𝐵1𝑅−1𝐵1𝑡𝐿𝑗−2−𝑖

𝑗−2

𝑖=0

= 0 

 
 

 

(2.32) 

where 𝐴0��� = 𝐴0 − 𝐵0𝑅−1𝐵0𝑡𝐿0, which is a constant matrix. Equation (2.30) is a 
standard Riccati equation easily solved. The next equation is a Lyapunov 
equation with Q non constant. This equation can be written in the form: 

 

�̂�0𝑣𝑒𝑐𝑡(𝐿1(𝑥, 𝜀)) = −𝑣𝑒𝑐𝑡(𝑄1(𝑥,𝑢, 𝜖)) 

�̂�0 = 𝐾𝑟𝑜𝑛(𝐼𝑛,𝐴0���) + 𝐾𝑟𝑜𝑛(𝐴0���, 𝐼𝑛) 

𝑄1(𝑥, 𝑢, 𝜖) =
1
𝜀

[𝐿0𝐴1 + 𝐴1𝑡𝐿0 − 𝐿0(𝐵0𝑅−1𝐵1𝑡 + 𝐵1𝑅−1𝐵0𝑡)𝐿0] 

 

with 𝐾𝑟𝑜𝑛(𝐴,𝐵) being the Kronecker product of A and B. The solution can be 
easily expressed in a closed form: 

 𝑣𝑒𝑐𝑡�𝐿1(𝑥, 𝜀)� = −�̂�0−1𝑣𝑒𝑐𝑡(𝑄1(𝑥,𝑢, 𝜖)) (2.33) 

The same procedure can be applied for 𝑗 > 2 to obtain all the 𝐿𝑗(𝑥,𝑢, 𝜀), up to a 
certain order N, the order of the power expansion. Then, the expressions like 
(2.33) shall be transformed into a matrix form to be gathered, giving the 
suboptimal control law u: 

 𝑢(𝑥) = −𝑅−1𝐵𝑡(𝑥,𝑢)�𝜀𝑗𝐿𝑗(𝑥,𝑢, 𝜀)𝑥
𝑁

𝑗=0

 (2.34) 

It is important to note that u is not depending on the temporary variable, since 
from (2.30), (2.31) and (2.32) is can be easily seen that 𝐿𝑗(𝑥, 𝑢, 𝜀)  ∝  1

𝜀𝑗
. 

 
The previous expression of the control law can still represent a difficulty, as said 
before, due to the dependence in u of 𝐵 and 𝐿𝑗. An alternative can be the 
expression of u as a serie solved iteratively online. Although this opportunity will 
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not be considered, for a matter of simplification B will be supposed depending 
only on the state, not on the control. Thus: 

 𝑢(𝑥) = −𝑅−1𝐵𝑡(𝑥)�𝜀𝑗𝐿𝑗(𝑥, 𝜀)𝑥
𝑁

𝑗=0

 (2.35) 

2.3 Conclusion 

All the precedent considerations gave a method to find a suboptimal control law 
for a nonlinear system respecting some conditions. The last process to define is 
the choice of a parameterization of the dynamics thanks to a quasi-linearization. 
If this parameterization is respecting the conditions described previously, a 
unique control law can be found, representing a suboptimal control of the 
system. To find this law, a power series expansion can be used by introducing a 
temporary variable. Most of the computation can be done offline since the 
elements of the expansion are expressed in a closed form. The evaluation of the 
control law given in (2.35) is then reduced to the online evaluation of the 𝐿𝑗. 

The design of the control is then ruled by: the weight matrices Q and R, the 
choice of the parameterization, and the order of the power series expansion. This 
last parameter is not that evident to set, a higher order does not mean a better 
optimality since the method is supplying a suboptimal control. 
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Chapter 3 

Systematic parameterization 

The previous section set the fundamentals concerning the development of a 
nonlinear controller optimizing a criterion defined by the designer or the 
project’s requirement. When a good parameterization is obtained, respecting few 
conditions, then a unique control law can be computed. But the way to find this 
parameterization is not that easy. One can find a way, by using mathematical 
manipulations as identities, to express the system’s governing equations with at 
least one of the state vector’s components appearing in each term of the 
numerator. But this can’t be performed by a machine. Some assumptions can be 
made also, neglecting some parts of the equation, which needs as well a human 
intervention. Some researches published in the early 90’s tried to defined 
systematic ways to obtain a parameterization of some governing equations to 
introduce them in a SDRE solver. 

3.1 An example of systematic  parameterization 

As demonstrated by R.W.Bass in 1991 [8], a systematic parameterization exists 
under two assumptions:  
If  𝑓:𝛺 → 𝑅𝑛 ∈ 𝐶1(𝛺) and 𝑓(0) = 0, then 𝐴(𝒙) = ∫ �𝜕𝑓

𝜕𝒙
�1

0 𝒙=𝜆𝒙
𝑑𝜆 where λ is a 

dummy variable used only for integration purpose. 
Indeed, using the function 𝑓(𝜆):𝑅 → 𝑅𝑛 ≜ 𝑓(𝜆𝒙) one can notice that  

 𝑓(𝒙) = 𝑓(1) = 𝑓(0) + �
𝑑𝑓(𝜆)
𝑑𝜆

1

0
𝑑𝜆  

But 𝑓(0) = 0 and by composition: 𝑑�̃�(𝜆)
𝑑𝜆

= ��𝜕𝑓
𝜕𝑥
�
𝑥=𝜆𝑥

� 𝒙 it is clear that: 

 𝑓(𝒙) = � �𝜕𝑓
𝜕𝒙
�
𝑥=𝜆𝑥

1

0
𝑑𝜆 𝒙 = 𝐴(𝒙)𝒙  
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But such a parameterization is not so much convenient, taking in account than 
an integration process is required to evaluate the SDC matrices, so rising the 
computation time dramatically, because this procedure does not obviously 
provide a closed from of the matrix. The following will present an alternative 
systematic procedure to obtain the parameterization, developed for this study. 

3.2 Parameterization process 

The main idea behind the developed method lays on the fact that the SDRE 
control method is a suboptimal control, so an approximation of the governing 
equations does not mean an obvious loss of performances. To refresh the minds 
on this point, the previous section set the assumption of a negligible derivative of 
the SDC matrices: a good approximation of the equations can totally be a better 
assumption, creating a lower divergence from optimality. 
Then, the governing equations can be approximated as a system easily factorable 
and quick to compute online: an expansion of the equations in a polynomial 
expression. 

3.2.1 Taylor expansion of a multivariate function 

Different processes can be used to obtain such a polynomial. For a numerical 
model, a polynomial interpolation would be a good choice, but when a symbolic 
form of the equations is available a Taylor expansion can be performed 
efficiently. Indeed, the Taylor’s theorem for a multivariate function [9] shows 
that, for 𝑓:𝛺 → 𝑅𝑛 ∈ 𝐶𝑘+1(𝛺), if [𝒂,𝒂 + 𝒙] ⊂ 𝛺: 

 

𝑓(𝒂 + 𝒙) = �
1
𝑝!𝐷𝒙

𝑝𝑓(𝒂)
𝑘

𝑝=0

+ � 𝐷𝒙𝑘+1𝑓(𝒂 + 𝑠𝒙) 
(1 − 𝑠)
𝑘!

𝑘

𝑑𝑠
1

0
 

with   𝐷𝑥
𝑝𝑓(𝒂) = � 𝑝!

𝛼!
𝜕𝑝𝑓
𝜕𝒙𝛼

(𝒂)𝒙𝛼
|𝛼|=𝑝

,  

(3.1) 

where 𝛼 is a multi-index notation. One can prove that the integral rest is 
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negligible compare to ‖𝑥‖𝑘 [10], giving the so called Taylor-Young formula. 
Then, applying the Taylor-Young formula in a neighborhood of zero for a 
function respecting 𝑓(0) = 0, a Taylor expansion can be computed at an order 
up to 𝑘 if  𝑓 ∈ 𝐶𝑘(𝛺), giving the following polynomial expression 

 𝑓(𝒙) = �  
 

𝑘

𝑝=0
� 1

𝛼!
𝜕𝑝𝑓
𝜕𝒙𝛼

(0)𝒙𝛼
|𝛼|=𝑝

+ 𝑂(‖𝒙‖𝑘)  (3.2) 

Thus, it appears that the regularity properties of the studied equations are 
defining the level of precision achievable with this method. When the SDC 
factorization proposed in the introduction was applicable and exact for 𝑓 ∈
𝐶1(𝛺), the Taylor expansion gives an approximation where the precision for 
such a class of system is not assured, since at an order 1, the divergence between 
the function and the polynomial is high. 
On the other hand, the simplicity for the obtained expression, easily factorable is 
a better alternative for functions quite regular, that is to say 𝑓 ∈ 𝐶𝑘(𝛺) with k 
sufficiently high, when the rest is negligible. Indeed, the Taylor expansion 
process is something really well known, and a lot of efficient algorithm are 
available, for example in MATLAB thanks to the function: 

𝑡𝑎𝑦𝑙𝑜𝑟(𝑓𝑢𝑛. , 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡). 
One can notice that the application of the Taylor’s Theorem with integral rest for 
𝑘 = 0 is exactly method given in the introduction of this section. 

3.2.2 Sensibility analysis 

A general NQR problem was considered so far. From now, by matter of 
simplicity and regarding the direct application considered for this study, the 
governing equations will be supposed to depend only on the state, and being 
linear in term of control. Then, the matrix B is reduced to a constant expression 
that will not need any processing. Now the attention is focalized on the dynamics 
part. 
The precision of the Taylor expansion of the dynamics needs to be evaluated. 
This is not an easy problem for a MIMO system and can’t be totally systematic 
since the parameters and plots of main interests are totally depending on the 
system under study, and need a human judgment. But the method proposed by 
this study suggests and gives some tools to evaluate this precision:  
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- the computation of the relative and absolute error between the expansion 

and the real dynamics on different surfaces parameterized by two or 
three variables, for different expansion orders.  

- the computation of the relative and absolute error on the whole control 
domain thanks to a Monte-Carlo simulation. 

The plots of those errors according to relevant parameters can give an idea of the 
precision and help to make a decision about the required order or the validation 
of the obtained expansion. 

3.2.3 Horner scheme 

By performing a Taylor expansion for each equation of the system, a vector of 
polynomials is obtained. It is now required to factorize this vector according to 
the different variables in order to produce a matrix of factors. The chosen option 
is to use a Horner scheme, since this factorization method aims to optimize the 
computation time by reducing the number of multiplications and additions 
required to evaluate a polynomial. Indeed, for a univariate polynomial, the 
Horner scheme is the following transformation: 

 𝑃(𝑥) = �𝑎𝑖𝑥𝑖
𝑘

𝑖=0

 
 
→𝐻(𝑃) = 𝑎0 + 𝑥�𝑎1 + 𝑥(𝑎2 + ⋯ . +𝑥(𝑎𝑛−1 + 𝑎𝑛𝑥) … ))� (3.3) 

Then the evaluation of the polynomial is resumed to a list of affine functions that 
can be computed quickly: 

 

𝑏𝑛 = 𝑎𝑛  
𝑏𝑛−1 = 𝑎𝑛−1 + 𝑏𝑛𝑥 

⋮ 
𝑏0 = 𝑎0 + 𝑏1𝑥 

(3.4) 

where 𝑏0 is the value of the polynomial in x. The computation process is made of 
𝑛 multiplication and 𝑛 additions, which is the minimum amount of operations 
required for the evaluation of an n-order polynomial [13]. 
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Getting back to the definition of a SDRE systematic parameterization method, 
the space of variables is larger than one. Thus the Horner scheme needs to be 
adapted. The process considered is a partial multivariate Horner scheme, 
expressing the polynomials as: 

 

𝐻(𝑃) = 𝑥1𝑞𝑥1(𝑥1, … , 𝑥𝑛) + 𝑥2𝑞𝑥2(𝑥2, … , 𝑥𝑛) + ⋯+ 𝑥𝑛𝑞𝑥𝑛(𝑥𝑛) + 𝑎0 

𝑞𝑥𝑖(𝑥𝑖  
→𝑛) = 𝑎𝑖1(𝑥𝑖+1

 
→𝑛) + 𝑥𝑖 �𝑎𝑖2(𝑥𝑖+1

 
→𝑛) + 𝑥𝑖 �𝑎𝑖3(𝑥𝑖+1

 
→𝑛) + ⋯�� 

(3.5) 

With 𝑥1, … , 𝑥𝑛  being the variables ordered by factorization position: 𝑃 is firstly 
factorized by 𝑥1 to obtain an expression with the form 𝑥1𝑞1 + 𝑟1, where 𝑞1 is the 
quotient having a Horner structure for 𝑥1, and 𝑟1 the rest, function of the 
variables 𝑥2, … ,𝑥𝑛. The next step is to factorize 𝑟1 by 𝑥2 and so on, arriving at the 
end to the expression (3.5). 
 
This process is applied to the whole set of equations and the quotients are 
gathered in a factor matrix, the SDC parameterization: 

 𝐴(𝑥1, … , 𝑥𝑛) = �
𝑞1,𝑥1 ⋯ 𝑞1,𝑥𝑛
⋮ ⋱ ⋮

𝑞𝑛,𝑥1 ⋯ 𝑞𝑛,𝑥𝑛

� (3.6) 

The matrix obtained is clearly not unique [11], since the order of factorization is 
determinant: for example, the factorization of the expression 𝑥𝑦(𝑥 + 𝑦) will give 
[𝑥(𝑥𝑦 + 𝑦^2) 0] according to [𝑥 𝑦], or [0 𝑦(𝑥^2 + 𝑥𝑦)] according to [𝑦 𝑥]. 
 
The space of the possible combinations has a cardinal of (𝑛!)𝑛, 𝑛 being the size 
of the state vector. It is also important to notice that this matrix is ordered to be 
multiplied by the vector (𝑥1, … , 𝑥𝑛), which is the factorization sequence. If 
required, this sequence can be permuted to recover the original state vector, 
which means to reorder the matrix A as well. 
 
 
 
 
 



 
20 3.Systematic parameterization 
 

The denomination “partial multivariate” lays on the fact that each coefficient of 
the factor matrix as a Horner-like structure for a single variable. A multivariable 
scheme would imply to have all the coefficients 𝑎𝑗𝑖(𝑥𝑖+1, … , 𝑥𝑛) with a Horner-
like structure for all the variables. This process being longer and not so relevant 
for a systematic parameterization method, a partial multivariate scheme has been 
preferred. 
 
 
A procedure creating the factor matrices for all the possible factorization 
sequences has been developed in MATLAB, in order to propose a selection 
method proposed in the following. 

3.2.4 Parameterization selection 

The final step is to define the criterion to select the good parameterization. A 
systematic way to choose the SDC parameterization is to evaluate the 
controllability of the system thanks to the state dependant controllability ( resp. 
observability) matrix 𝑀𝑐 = [𝐵 𝐴(𝑥)𝐵(𝑥,𝑢) 𝐴(𝑥)2𝐵(𝑥,𝑢) …𝐴𝑛−1(𝑥)𝐵(𝑥, 𝑢)], 
by computing its determinant, 𝑑𝑒𝑡(𝑀𝑐). For a MIMO system, this matrix is a 
non square matrix for which the determinant is not defined, even if the 
controllability is still assured by having 𝑟𝑎𝑛𝑘(𝑀𝑐) = 𝑛. In this case 
�𝑑𝑒𝑡(𝑀𝑐

𝑡 .𝑀𝑐) can be evaluated [5]. This is the criterion used in this study, the 
best parameterization being the one maximizing this value. 
Concerning the evaluation of this criterion, a Monte-Carlo simulation is 
processed to have an idea of the model’s global behavior on the control domain, 
for each factorization sequence. An optimal criterion would be the maximization 
of the controllability, but this notion is not that evident on a multidimensional 
domain. Thus several parameters are considered: 

- the minimum and maximum values, 
- the mean value 
- the variance 

Those are as much parameters that an engineer can consider to make a choice 
concerning the factorization sequence. 
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3.2.5 Parameterization validation 

The last step of the procedure is to check if the accuracy of the approximation is 
relevant compare to the sub-optimality assumption inherent to the SDRE control 
method. The derivative of the parameterization is required, and can be compared 
to the derivatives of the real equations. The following expression is computed on 
the control domain thanks to a Monte-Carlo simulation: 

 

𝑑𝐴(𝒙) = ��𝑥𝑖 �
𝜕𝐴1→𝑛,𝑖 
𝜕𝒙

(𝒙)�
𝑡𝑘

𝑖=1

� 

with 
𝜕𝐴1→𝑛,𝑖 
𝜕𝒙 =

⎣
⎢
⎢
⎢
⎡
𝜕𝐴1,𝑖 
𝜕𝑥1

⋯
𝜕𝐴1,𝑖 
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝐴𝑛,𝑖 
𝜕𝑥1

⋯
𝜕𝐴𝑛,𝑖 
𝜕𝑥𝑛 ⎦

⎥
⎥
⎥
⎤

 

(3.7) 

If this function is negligible in front of ‖𝐴(𝒙)‖, then the control quality provided 
by the SDRE controller are good. If the absolute error between the modeled 
system and the real equations has the same order of magnitude, then the 
approximation is totally justified and the controller can reach the same close-to-
optimality performances than an exact SDC parameterization. 

3.3 Developed method summary 

Now that the main considerations and steps performed by the systematic method 
are set, it is possible to present the algorithms used in the codes developed for 
this study. It is important to know that those codes have been designed for 
governing equations being dependant only on the state, the control part being 
linear and depending only on the command. Indeed the output given at the end 
of the process is an SDC matrix 𝐴(𝒙), the matrix B being inserted by the user. 
This is due to the planned application. But the process can be easily upgraded to 
compute 𝐵(𝒙,𝑢) from a function 𝑔(𝒙,𝑢). 
The process begins by the insertion of the governing equations and the state 
vector inside the code, the regularity of the equations being tested previously. It is 
also required to insert the domain on which the accuracy will be tested, 
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containing at least the domain of control. Finally, a first order of expansion needs 
to be assessed. 
 
From that, the codes after running are providing the Taylor expansion and the 
errors, in Cartesian and spherical. 
Once the analysis is performed by the controller designer and validated, the 
Horner schemes comparison can be run. The code is constructing the 
parameterization for a predefined set of possible factorization sequences, by 
default all the possibilities. 
 
From a specific factorization sequence, it defines a dummy vector, for 
example (𝑥1, 𝑥2, 𝑥3) = (𝑣𝑎𝑟3,𝑣𝑎𝑟1,𝑣𝑎𝑟2), and the equations are rewritten as a 
function of the new dummy variables and the factorization is processed for each 
equation starting by the first variable up to the last one: 

 

𝑟𝑖0 = 𝑇𝑖(𝑥1, … , 𝑥𝑛) 

𝑓𝑜𝑟 𝑗 = 1. . 𝑛 ∶       𝑟𝑖𝑗(𝑥𝑗+1, … , 𝑥𝑛) = 𝑟𝑖𝑗−1�𝑥𝑗 = 0, … ,𝑥𝑛�                                    

𝑞𝑖𝑗(𝑥𝑗 , … 𝑥𝑛) = ℎ𝑜𝑟𝑛𝑒𝑟(
𝑟𝑖𝑗−1 − 𝑟𝑖𝑗

𝑥𝑗
) 

(3.8) 

Each 𝑞𝑖𝑗 is placed in the matrix 𝐴 at the right position according to the 
factorization sequence: using the previous example,  
𝑞11(𝑥1, … ) = 𝑞11(𝑣𝑎𝑟3, … ) = 𝐴13. Once the matrix A is computed, the dummy 
variables are replaced by the original state vector, and the statement 𝐴(𝒙)𝒙 = 𝑇 
is checked, assuring to have a correct parameterization. Then the controllability 
values are computed and stored in vectors where one line represents one 
factorization sequence. When all the sequences are tested, the controllability 
performances can be compared and the designer can make a choice regarding 
the project requirement. 
 
The systematic parameterization method is summarized in the following 
diagram, for which the colors represent the systematic steps and the designer 
interventions:  
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Figure 1: systematic parameterization method mind map 

This is the structure of the codes developed on MATLAB, The Horner box being 
the main step of the parameterization, the next diagram is representing its 
algorithm implemented for this part of the method: 
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Figure 2: Horner scheme algorithm 

To conclude, the codes are producing from a set of equations and the definition 
of the control domain some plots and values that lead the designer to the choice 
of a specific parameterization for which the expression can be exported to be 
implemented in an SDRE solver. Obviously the selection process implies to make 
some decision from the designer and can’t be systematic without the risk to lose 
an important phenomenon, but the elements needed to make this choice are 
produced systematically. 
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Chapter 4 

Relative dynamics 

This section presents the steps to obtain the relative dynamics equations from 
the standard celestial mechanics, using the Cartesian coordinates. Considering 
the framework of a rendezvous and docking maneuver, the relative dynamics 
gives a set of equations describing the movement of the approaching body, the 
pursuer, relatively to a second one, the target to dock to, when both are orbiting 
round a third body, the main attractor. The gravitational interactions between 
the pursuer and the target as considered as negligible compare to the main 
attractor gravity field, and then the resulting orbits are Keplerian. This section 
will follow the approach to the relative dynamics problem developed by 
H.Schaub, J.L.Junkins in [1]. 

4.1 Reference frame 

In order to develop the relative dynamics, it is firstly required to introduce an 
adequate reference frame. The target is identified by its position through the 
vector 𝑹(𝑡), while the pursier position is denoted by 𝒓(𝑡). To obtain the relative 
equations in a simple form, the target’s Local-Vertical Local Horizontal (LVLH) 
reference frame, known as the Hill frame and denoted O in the following, is used: 

 
Figure 3: Hill reference frame 
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defined as 𝑂 = (𝐶𝑡  , 𝒊 , 𝒋 ,𝒌) where: 
 - Ct is the center of mass of the target body 

- i is opposed to Nadir 
- j is oriented according to the target tangential speed 
- k is perpendicular to the orbit  

This reference frame is obtained from the Attractor centered reference frame, 
noted I in the following and considered as inertial, by the following relation: 

𝑅𝐼𝑂 = �
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0
−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1
��

1 0 0
0 𝑐𝑜𝑠 𝑖 𝑠𝑖𝑛 𝑖
0 −𝑠𝑖𝑛 𝑖 𝑐𝑜𝑠 𝑖

��
𝑐𝑜𝑠 𝛺 𝑠𝑖𝑛 𝛺 0
−𝑠𝑖𝑛𝛺 𝑐𝑜𝑠 𝛺 0

0 0 1
� (4.1) 

where 𝛺 is the right ascension, i the inclination and 𝜃 is the true anomaly of the 
target’s orbit. 
The set of Cartesian parameter 𝝆(𝑡) = (𝑥(𝑡),𝑦(𝑡), 𝑧(𝑡)) is describing the 
relative position of the pursuer in the rotating Hill reference frame, (𝑥,𝑦)  
representing the motion in the target’s orbital plan. 

4.2 Relative dynamics equations 

Considering the target and assuming no perturbation, so only subject to the 
gravity field generated by the main attractor, its equations of motion in the Hill 
frame are simply given by: 

 �̈� = ��̈� − 𝑅𝜃2̇�𝑹� = −
µ
𝑅2 𝑹

� (4.2) 

with µ being the gravitational parameter of the attractor, the first equality falling 
from the definition of the angular velocity vector of the Hill frame O relatively to 
inertial frame I: 

 𝝎𝐼
𝑂 = �̇�𝒌 (4.3) 

Now considering the pursuer, from geometrical consideration the position 
relatively to the main attractor can be rewrite as: 

 𝒓 = 𝑹 + 𝝆 = (𝑅 + 𝑥)𝒊 + 𝑦𝒋 + 𝑧𝒌 (4.4) 
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and then the equations of motions in the Hill frame for the pursuer are given by: 

 �̈� = −
µ
𝑟3
�
𝑅 + 𝑥
𝑦
𝑧

� (4.5) 

Those equations are just the general celestial dynamics equations, expressed in 
the Hill reference frame, used as a base to obtain the relative equations. 
On the other hand, using equation (4.3) and (4.4), the second derivative of the 
pursuer position can also be expressed as: 

 
�̈� = ���̈� + �̈�� − 2�̇��̇� − �̈�𝑦 − �̇�2(𝑅 + 𝑥)� 𝒊

+ ��̈� + 2�̇���̇� + �̇�� + �̈�(𝑅 + 𝑥) − �̇�2𝑦�𝒋
+ �̈�𝒌 

(4.6) 

Then, using the fact that the orbit angular momentum 𝒉 = 𝑅2�̇�𝒌 is constant for 
a Keplerian motion, its first derivative shows: 

 
ℎ̇ = 2𝑅�̇�𝑓̇ + 𝑅2𝑓̈ = 0 

 
⇒   �̈� = −

2�̇�
𝑅 �̇� 

(4.7) 

Now, introducing the expression of the target radius acceleration found in (4.2) 
and the equation (4.7) in the set of equations (4.6), the pursuer acceleration 
vector is reduced to: 

 
�̈� = ��̈� − 2�̇�(�̇� − 𝑦

�̇�
𝑅) − 𝑥�̇�2 −

µ
𝑅2� 𝒊

+ ��̈� + 2�̇� ��̇� − 𝑥
�̇�
𝑅� − �̇�2𝑦� 𝒋 + �̈�𝒌 

(4.8) 

Finally, equating (4.5) and (4.8), the exact non linear equations of the non 
perturbed relative dynamics can be expressed thanks to the system of equations: 

 

�̈� = 2�̇�(�̇� − 𝑦
�̇�
𝑅) + 𝑥�̇�2 +

µ
𝑅2 −

µ
𝑟3 (𝑅 + 𝑥) 

�̈� = −2�̇� ��̇� − 𝑥
�̇�
𝑅� + �̇�2𝑦 −

µ
𝑟3 𝑦 

�̈� = −
µ
𝑟3 𝑧 

(4.9) 
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4.3 Case of circular orbits 

Assuming that we are facing a circular orbit for the target, those equations can be 
simplified. Indeed, having a constant radius implies: 

 
�̈� = �̇� = 0  

�̈� − 𝑅𝜃2̇ = 𝑅𝜔2 = −
µ
𝑅2 

 

with �̇� = 𝑐𝑠𝑡 = 𝜔, which reduce the relative dynamics equations to the 
following system:  

 

�̈� = 2𝜔�̇� + 𝜔2(𝑅 + 𝑥) −
µ
𝑟3 (𝑅 + 𝑥) 

�̈� = −2𝜔�̇� + 𝜔2𝑦 −
µ
𝑟3 𝑦 

�̈� = −
µ
𝑟3 𝑧 

(4.10) 

This last system of equations is the exact non linear non perturbed relative 
dynamics, assuming a circular orbit for the target. 
To give a more general aspect to those equations, an adimensionalization can be 
performed, scaling distances by R and times by 1

𝜔
 as suggested in [2]. The 

resulting system is: 

 

�̈� = 2�̇� − (1 + 𝑥)(
1
𝑟3 − 1) 

�̈� = −2�̇� − 𝑦(
1
𝑟3 − 1) 

�̈� = −
1
𝑟3 𝑧 

(4.11) 

This set of equations will be the one considered for the development of this 
study: The acceleration of the pursuer relatively to the target can be obtained by 
solving this system, proceeding a scaling after to recover the dimensions. For a 
matter of simplicity, this set will be called ‘relative dynamics equations’ in the 
following.  
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Chapter 5 

Rendezvous  procedures 

Refueling, crew renewal or space captures are as much space operations needing 
a safe approach between two vehicles to assure their contact. Those operations 
are the so called rendezvous and docking/berthing procedures. No unique 
method exists for the design of such an operation, several strategies can be 
considered. Each mission has its specific rendezvous profile. This section will not 
go in detail concerning those strategies, but will give general considerations of 
the rendezvous problem.  

5.1 The rendezvous phases 

In general, five different phases are required to achieve the contact between two 
vehicles. Firstly an adequate launch is required. By defining an opportune launch 
window and operating some corrective maneuvers in the early phase of the 
ascension, a preliminary orbit can be reached by achieving an inclination and 
right ascension inside the required margins, near from the target’s orbit one. 

 
Figure 4: the initial orbit 
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A lower orbit is chosen in general, having a smaller ∆𝑣 required. But in some 
case the opposite can be preferred, changing the whole approach strategy. 
 
Secondly, from this orbit slightly different from the target’s one, the time to be in 
phase with the target can be controlled by successive apogee or perigee rising. 

 
Figure 5: Phasing 

Those two first phases, performed with an Earth-centered traditional celestial 
mechanics approach, are bringing the pursuer into an entry gate, at a distance 
from the target going from few thousands of kilometers to hundreds of 
kilometers. 

The next phases are properly the rendezvous phase, starting the operations in the 
relative dynamics framework. An appropriate reference frame would be used, 
analog to the target’s LVLH frame: 

- R-bar, on the Earth’s center-Target’s center of mass direction 
- V-bar, according to the target’s velocity vector 
- H-bar, according to the momentum  

The far rendezvous phase allows going from the entry gate to a close vicinity 
point and reach a final state vector compatible with a close approach, and this 
according to the mission timeline projected. It can start when the distance with 
the target is sufficiently small to have the communication of the relative position 
between both vehicles. Several strategies can be used for this maneuver, some are 
presented on Fig.6. A positioning accuracy going from 100m to 10m is generally 
projected during the requirement definition.  
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Figure 6: Far rendezvous phase 

The closed rendezvous phase starts at this end point. With few impulses, the 
pursuer will be brought to the final corridor (the closing) going to the capture 
point (the final approach). At this time, all the out-of-plane or in-plane errors 
had been corrected and the mission timeline is synchronized. The impulses just 
aim to reduce the in-plane distance to the target. Even if the relative positioning 
is the main parameter, a ground station is constantly monitoring several 
parameters, for safety reasons. When the acquisition of the final corridor is done, 
position, speed, attitude and angular rates are compatible with the final 
maneuver for contact. If not, the control system can’t be enabled, as well for 
safety reasons, to avoid collisions. This phase can start at few kilometers, the 
strategy depending on the initial distance. The Fig.7 is proposing five different 
strategies, with different pros and cons, the selection process being done 
according to the mission requirement and the target vehicle configuration. 

 
Figure 7: Close rendezvous phase 
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The final approach is generally a straight or quasi straight trajectory for the 
acquisition of the entry corridor, to safety cone of half angle round 10-15°. 

 
Figure 8: Final approach 

Finally, the mating is the structural process assuring the contact between the two 
vehicles, or a capture can be performed if the target/pursuer is having a berthing 
system. Last tests and validations are performed to close the rendezvous 
procedure. 
All the phases briefly presented before are summarized in Fig.9: 
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Figure 9: Rendezvous missions' phases 

5.2 Reference rendezvous trajectory 

As explained before, there are several strategies to perform a rendezvous, 
depending on the mission requirement and the target/pursuer configuration. 
During this study, the target is on a LEO trajectory, at 400km of height. The 
launch and phasing are supposed already performed, letting the pursuer with the 
following state vector: 

 𝑋0 =

⎩
⎪
⎨

⎪
⎧

1.02
3500

0.1
−1,74
1,44

−5,96.10−5⎭
⎪
⎬

⎪
⎫

 (m, m/s)  
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From this point, the far and close range rendezvous can be performed, with an 
H-bar and two V-bar maneuvers that are computed to reach the final acquisition 
corridor, at 11m from the target. A straight maneuver is then necessary for the 
final approach. Those maneuvers are computed as Hohmann transfers. The final 
trajectory is the following: 

 
Figure 10: Reference trajectory in YZ plan 

 
Figure 11: Reference trajectory in XY plan 

The reference trajectory is composed of a vector indicating the position 
according to the timeline, and a vector giving the velocity computed to perform 
the Hohmann transfers. The solver is also taking in account some attitude 
control maneuvers (not studied for this work), giving a timeline with seven steps, 
representing a phase during almost 4800 seconds, so 1h20. 
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Chapter 6 

Problem modeling 

The considerations presented so far give the framework of a real case operational 
problem: apply a certain control method to follow a pre-defined trajectory 
between two vehicles subjected to a main attractor’s gravity field. To set the final 
control problem, the system performing this mission, the pursuer, needs to be 
defined: 
The pursuer is a spacecraft considered as a punctual constant mass, not subjected 
to perturbations, having a set of thrusters providing a linear control capability. 
Being a punctual mass, no torques can be applied, then the attitude problem is 
not considered, and in this case the linear control capability is obvious. 
If torques were present, the problem could still be decoupled in attitude and 
position, by performing an attitude correction before each positioning impulsion 
to align the thrusters to the main target’s LVLH axis, imposing just a timeline 
sufficiently flexible to add those attitude control maneuvers. 
The pursuer’s behavior in term of relative dynamics is known, described by the 
set (4.11). Adding the control forces, the following NQR problem is obtained: 

 

𝑿 =

⎩
⎪
⎨

⎪
⎧
𝑥
𝑦
𝑧
𝑢
𝑣
𝑤⎭
⎪
⎬

⎪
⎫

;𝑼 = �
𝑢𝑥
𝑢𝑦
𝑢𝑧
� ;  𝐽(𝑿𝟎,𝑼) =

1
2
� (𝑿𝑡𝑄𝑿+ 𝑼𝑡𝑅𝑼)𝑑𝑡
∞

0
 

�̇� = 𝑓(𝑿) + 𝑔(𝑼) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑢
𝑣
𝑤

2𝑣 − (1 + 𝑥)(
1
𝑟3 − 1)

−2𝑢 − 𝑦(
1
𝑟3
− 1)

−
1
𝑟3 𝑧 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

+

⎩
⎪
⎨

⎪
⎧

0
0
0
𝑢𝑥
𝑢𝑦
𝑢𝑧⎭
⎪
⎬

⎪
⎫

 

(6.1) 
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To implement a systematic SDRE controller in order to control this system, it is 
necessary to check the compatibility of this problem with the conditions 
presented at the beginning of this study.  

6.1 Systematic SDRE conditions compliancy 

The first condition implies a dynamics that is sufficiently regular on the control 
domain. From the dynamics expression, it can be seen that the point (−1,0,0) is 
a singularity, due to the fact that 𝑟 = 0. But this point is the coordinate of the 
main attractor, so out of the domain physically used. By derivation of those 
equations, a new set depending on 1

𝑟3
, 1
𝑟5

 and polynomials in 𝑥,𝑦, 𝑧 is found. 
Then the relative dynamics is clearly 𝐶∞(𝑅3 {−1,0,0⁄ }). Obviously, the effective 
domain where the control will be used is far away smaller, since the far 
rendezvous range starts at few kilometers from the target. From this fact, it 
appears that the choice for the order of the Taylor expansion order is not limited. 

The second condition, zero being an equilibrium point, is as well respected. This 
is obvious for the two last equations, the first one going to zero since 𝑟 = 1 in 
zero. 

The third condition is independent from the system, being a condition on the 
weight matrices. So the compliance to this condition is up to the designer and 
will be discussed later, during the presentation of the simulations. 

The last condition is the most difficult to measure. Firstly, it requires defining a 
SDC parameterization of the state equations given in (6.1), which respects 
(𝐴(𝑥),𝐵(𝑥,𝑢)) being controllable and (𝐶,𝐴(𝑥)) being observable. As explained 
in methodology for the systematic SDRE control, this aspect is the criterion to 
select the parameterization among the 𝑛𝑛 possibilities, so it is checked during the 
automatic process. 

By matching the above mentioned conditions, the relative dynamics control 
problem is totally compatible with the systematic SDRE method considered in 
this study. The following will be dedicated to the SDC parameterization the will 
be implemented in the SDRE solver. 
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6.2 Exact SDC Parameterization 

To have a better approach to measure the accuracy and the good behavior of the 
systematic method, a comparison with a parameterization representing the real 
equations is important. For this specific problem, an exact SDC parameterization 
can be found. Indeed, taking the dynamic equations, one can find: 
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It appears that a term in the fourth equation shows no evident factorization. But 
using some identities falling from the Newton’s binomial theorem: 

 

1
𝑟3 − 1 =

1 − 𝑟3

𝑟3 = −
(𝑟 − 1)(𝑟2 + 𝑟 + 1)

𝑟3 = −
(𝑟2 − 1)(𝑟2 + 𝑟 + 1)

𝑟3(𝑟 + 1)  

= −�(2 + 𝑥)𝑥 + 𝑦𝑦 + 𝑧𝑧�
(𝑟2 + 𝑟 + 1)
𝑟3(𝑟 + 1)  

(6.2) 

This is a common SDC parameterization admitted for the relative dynamics, the 
one initially used in the SDRE solver in which the systematic model will be 
tested. Its expression is given by: 
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 (6.3) 

This expression is quite heavy, multiplying and dividing polynomials in r. 
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6.3 Systematic SDC parameterization 

It is now sufficient to introduce the equations written in (6.1) in the code 
developed for the systematic SDRE to obtain a matrix of polynomial. But before 
to talk about the parameterization, let’s focus on the accuracy of the expansion. 
This study was done with the standard MATLAB order for Taylor, 4, the main 
variables restricted generally to the triplet (x,y,z). The first aim is to understand 
the general limits before to check for the compatibility with the rendezvous 
trajectory described before. 

6.3.1 Accuracy on specific plans 

The first approach considered was to evaluate the absolute error 𝑅𝑎 = �𝑇𝑓𝑖 − 𝑓𝑖� 

and the relative error 𝑅𝑟 = �
𝑇𝑓𝑖−𝑓𝑖
𝑓𝑖

�, on a uniform mesh for a set of two variables, 

the others being set to 0. This was applied only to the 3 last equations 𝑓4,𝑓5 and 
𝑓6  (representing the accelerations 𝑎𝑥,𝑎𝑦 , 𝑎𝑧), since the others are totally linear. 
The color scale in the following diagrams is limited to 0.1, where a black area 
means an error higher than 10%. Thus, by identifying those black areas, the 
accuracy limits can be easily understood. 
Firstly, for the XY plan (𝑧 = 0), the errors concerning 𝑎𝑥 and 𝑎𝑦 are plotted on 
Fig.12 (Relative on the left, absolute on the right). In this case,  𝑎𝑧 and 𝑇𝑎𝑥 are 
both equal to zero on the whole plane, making any plot useless.  

 
Figure 12.a: ax errors on XY plan (left: relative, right: absolute) 
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Figure 12b: ay errors on XY plan (left: relative, right: absolute) 

The first interesting point is the presence of those black triangles on the relative 
error diagrams. They are due to the singularities of the relative error, when the 
real acceleration 𝑓𝑖 is going to zero. Indeed, the absolute error does not show any 
singularities in those areas, which shows that the approximation is not going to 
extreme values. This phenomenon can also be described analytically: 

 

1
𝑟3 − 1 = 0 

 
⇔  𝑟3 = 1  

 
⇔−2𝑥 = 𝑥2 + 𝑦2 = 𝜌2 

𝑥 = −
𝜌2

2 ; 𝑦 = ±�𝜌2 −
𝜌4

4  

tan 𝜃 =
𝑦
𝑥 = ± �

4
𝜌2 − 1 

(6.4) 

where 𝜌 is the distance from the target and 𝜃 the angle with R-bar. This result 
shows the existence of curves where accelerations are null, being areas of 
singularity for the relative error if the Taylor expansion is not exactly zero. And 
this is related to the order of the expansion: indeed the number of poles is 
limited for a polynomial expression, when the real function is continuously equal 
to zero on the curves described by (6.4). The Taylor expansion can’t fit those 
curves, creating a bad precision in the neighborhood: those triangle shapes. But 
this concern the relative error, the absolute error stays framed and small. 
Except those limited areas, the relative error is small in a long range. Restraining 
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the domain to 𝜌 ≤ 0.1 will assure a good accuracy everywhere, smaller than 2%.  
This sphere is containing the trajectory to follow, since this radius represents 
10% of the distance between the target and the main attractor, far away more 
than a far rendezvous maneuver maximum distance. In this case the accuracy is 
sufficient even if the approach angle is the continuity of the black curves. 
Concerning the XZ plan the results are similar for 𝑎𝑥. However 𝑎𝑧 is not 
subjected to theses singularities depicted before, since the annulations of 𝑎𝑧 are 
happening only when z=0, cancelling as well the Taylor expansion. Since 𝑦 = 0 
on this plan, 𝑎𝑦 is null on the whole mesh. 
Finally, for the YZ plan, the three accelerations are not null, since 𝑥 = 0 doesn’t 
imply 𝑎𝑥 = 0. But 𝑥 = 0 is also implying that 𝑟3 = 1 is impossible, so the lines 
previously described aren’t present. It will be noted that 𝑎𝑦 is still having the 
worst accuracy (10% of error reached at 𝜌 ≤ 0.28). 

 

 
Figure 13: ax(up) and az(bottom) error on XZ plan 
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Figure 14: ax(up), ay(center) and az(bottom) error on YZ plan 



 
42 6.Problem modeling 
 

To conclude, the accuracy is actually pretty good on the main Cartesian plans, 
the relative error reaches 10% only for large distances from the origin, and can be 
restricted to 2% for a maximum distance 𝜌 = 0.1, since the loss of accuracy near 
to the zero acceleration points is reduced. Now the accuracy should be studied 
considering 3D surfaces even if the same kind of results can be expected. 
 
 For that, a change of coordinates is necessary; the spherical coordinates being 
convenient to test all the points at a given distance 𝜌. 

6.3.2 Accuracy in 3D 

The passage to spherical coordinates for different 𝜌 gives a good idea of the error 
on whole domain. By defining a mesh on phi and theta, the transformation: 

 
𝑥 = 𝜌 cosφ sin𝜗 
𝑦 = 𝜌 sin𝜑 sin𝜗 
𝑧 = 𝜌 cos 𝜗 

(6.5) 

the errors in spherical coordinates are obtained. This time the analysis will only 
consider the relative error. The color code used before remains the same. 
 
These diagrams present the ax acceleration results for three cases: 𝜌 = 0.1;  𝜌 =
0.2 and 𝜌 = 0.3. The black curves previously depicted are visible in 3D, creating 
a kind of corona having an angle 𝜃 with the x axis (6.4). 
 
This angle is depending on the distance, as well as the error magnitude. It can be 
seen that in general the error is constant for a given solid angle round the x axis, 
having the coordinates phi=0 or 180 and theta=90. For low radius, 𝜃 is round 90° 
or 270°, so near to the approach angle. Fortunately, 𝜌 = 0.1 shows a low error at 
those angles. 
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Figure 15: ax spherical relative error 

The same analysis can be performed for the ay acceleration. They have exactly 
the same characteristics, but with a worse impact. This is due to the frequent 
annulations of ay, implying a larger number of poles than ax. The expansion 
order being the same for both, the Taylor of ay is fitting less, since can’t be 
annulated sufficiently. But for the radius previously presented, the error is 
negligible. 
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Figure 16: ay spherical relative error 

Finally for az, it is found that the error is far away less a problem, which can be 
explained with the same consideration than for ay: az is going to zero only when 
z=0, which traduces a low number of poles, so a better expansion. 
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Figure 17: az spherical error 

This analysis is confirming the accuracy expectation that can be guessed from 
the study on the Cartesian plans. The corona depicted is giving the first limit for 
the expansion. In any case at a distance of 0.1, the approximation is really good.  

 

To have an easier 3D representation, the following picture plots a sphere of 
radius 𝜌 augmented by the ay relative error (worst case), for the same three 
different 𝜌. 
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Figure 18: 3D relative error 

The symmetry of revolution is easily seen, as well as the dependence of the error 
on the solid angle with the x axis and the distance from the target. 

6.3.3 Velocity influence 

Only the influence of the triplet (x,y,z) has been tested. The part depending on 
(u,v,w) is largely simpler, since linear and uncoupled. In order to measure the 
effect of a non zero velocity on the previous diagrams, the worst case is 
considered, that is to say ay on the XY and YZ plans for u and ax on XY for v. 
Here the max distance is set to 𝜌=0.4. 

 

For the first one, the velocity u is obviously changing the lines ay=0, since 𝑟3 =
1 is not anymore the solving equation but 2𝑢 = −𝑦 � 1

𝑟3
− 1�. As explained 

before those lines are the main areas of loss of accuracy, then their displacement 
is the key point. Considering five cases, u= 0 ; 0.05 ; 0.1 ; 0.5 ; 1, the following 
diagram is showing that 
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Figure 19: Influence of the velocity u on ay on XY plan (up left to right bottom) 

theses curves are rotated and actually providing a better accuracy, the black areas 
starting being like folded on themselves. It appears that the influence of u is more 
a benefit. It is as well true for ay on YZ (here u=1): a better accuracy is obtained. 
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Figure 20: Influence of the velocity u on ay on YZ plan 

Finally, for the variable v, so concerning only the ax acceleration, considered here 
on the XY plan, the black areas are not anymore rotated but more translated. 
Indeed for v= -1, -0.5, 1, the accuracy is not so much changed. 

 
Figure 21: Influence of the velocity v on ax 

All those diagrams are just confirming that the key of the problem is more 
concerning the position than the velocities. The accuracy is still really good, 
especially for a 𝜌 lower than 0.1. 
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6.3.4 Influence of the order 

A last parameter can be evaluated: the influence of the expansion order. The 
previous study was performed for the standard MATLAB Taylor order, 4. Now, 
considering the previous worst case on the XY plan, having an order changing 
from 2 to 6: 

 
Figure 22: Influence of the order on ay on XY 

It appears that the order 2 is quite inaccurate. The order 3 can be considered 
since the near 0 area is still sufficiently large before to reach more than 10%, but 
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an order 4 will be preferred since the area lower than few percent is far away 
larger. As expected, a higher order is giving a better accuracy. On the YZ plan, 
results are totally similar, but with an odd dependency: only odd orders are 
different. 

 
Figure 23: Influence of the order on ay on YZ 

6.3.5 Conclusion on the accuracy 

The accuracy analysis is giving good results, showing that the Taylor expansion 
at a low order, 3 or 4; might be sufficient, as well as for the relative dynamics 
equations. It reaches a low relative error (few %) for distances to the target up to 
0.1 times the distance with the main attractor, which is a really far in general. 
Besides it has been shown that the accuracy is really depending on the number of 
poles and their distances. A large number of poles require a higher order, but if 
they are near, the area having a low accuracy is quite restricted. 
 
The methods developed to test the accuracy showed their relevancy since the 
obtained results can be correlated with the analytical form of the equations. 
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6.3.6 Controllability 

Now that the Taylor part is checked, the parameterization choice can be 
discussed. As said, the chosen criterion is an adapted form of the controllability 
matrix determinant: �det(𝑀𝑐

′ .𝑀𝑐) since 𝑀𝑐  is not a squared matrix. As 
explained before, the number of factorization sequences is equal to (𝑛!)𝑛. 
According to the relative dynamics equations, this number would be really high, 
round 1017. But it is obvious that the factorization order for the triplet (u,v,w) has 
no impact since it is a fully linear part, having a unique factorization form. Then 
the sequences can be reduced to (x,y,z), so only 216 the possibilities. 
The computation of the controllability is performed on the domain 𝜌 ≤ 0.25 
(spherical coordinates) with speeds ≤ 0.8. The same Sobol set is used to 
compute the values on the whole considered window. 

 
Figure 24: Controllability comparison 

This diagram is presenting the controllability performances for each of the 216 
factorization sequences for the triplet (x,y,z). It is the XZ view of a 3D plot 
defined according to: 

- The x axis is referencing the identification number of the factorization 
sequences (here 1 is ((x,y,z), (x,y,z), (x,y,z)).  
- The y axis (depth) is the list of random points from the Sobol set generated 
for the Monte-carlo simulation, with 250 points. 
- The z axis is the controllability value for a given sequence at a given point. 
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Then this diagram represents a map of points, where the results for all the 
random points are projected on the same plan. This means that, for a given 
sequence, the upper point is the random point where the controllability is the 
highest, the lowest point being the random point with the lowest controllability. 
Being pretty hard to analyze, this diagram is more made to have a first idea about 
how the controllability is changing according to the selected factorization 
sequence. Firstly, it can be seen that the controllability is high, never going to less 
than 80, so far from 0: the controllability is not a matter in itself.  
It can also be seen that the diagram is periodic, with a step of 36. This means that 
the factorization order for the first acceleration is not influencing, since the 36 
first are corresponding to the sequence [x,y,z] for ax, the 36 following [x;z;y]. 
This can be explained by the presence of the factor (1 + 𝑥) which implies no 
evident factorization, so a term present for all the variables. At the opposites, 
having y (resp. z) as a factor in ay (resp. az), the fact to start the factorization by 
this variable or not will implies zero or non zero coefficients for the two others 
variables. To illustrate this, a small example can be considered: 

 
𝐻𝑜𝑟𝑛𝑒𝑟𝑦;𝑥;𝑧�𝑦 ∗ (𝑥 + 𝑦 + 𝑧)� = [0 𝑥 + 𝑦 + 𝑧 0] �

𝑥
𝑦
𝑧
� 

𝐻𝑜𝑟𝑛𝑒𝑟𝑥;𝑧;𝑦�𝑦 ∗ (𝑥 + 𝑦 + 𝑧)� = [𝑦         𝑦         𝑦] �
𝑥
𝑦
𝑧
� 

 

Then the controllability is governed by the number of zeros in the matrix. 
So, the diagram can be zoomed on only 36 sequences (180-216). 

 
Figure 25: Controllability comparison: zoom 
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It appears that the properties are different, making difficult the choice of the 
‘best’ sequence. Indeed, as shown in Fig.26 the ones showing the maximum 
controllability on the domain shows also the minimum one. The mean 
value/variance properties could be another selection criterion, but in this would 
lead to take sequences that are reaching a minimum in term of controllability, in 
a part of the domain. 

 
Figure 26: Controllability evaluation 

Then the criterion used in this application was to have the highest minimum 
controllability, and among theses the one with the highest maximum 
controllability. This leads to the selection of the factorization 211 or 213. 
For a better understanding, an analysis according to all the variables can be done. 

 
Figure 27: Controllability according to the radius 
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The plot is comparing three solutions: The maximum mean value (sequence 216, 
green squares), the maximum minimum controllability (sequence 213, blue 
dots), and the real parameterization presented previously (red crosses). Thus, the 
distance from zero is acting a lot on the mean/variance: whatever the distance, 
the sequence 216 has a line of minimums higher, and also a lower variance. 
The two others are really similar. For small distances (the rendezvous procedures 
are really small), sequence 216 offers a more constant behavior. 
According to the trajectories usually designed, and the one considered for this 
application, the approach angle is round 270°. In this situation, the variance is 
quite low, but the blue dots keep a small advantage. 

 
Figure 28: Controllability according to phi 

 
Figure 29: Controllability according to theta 



 
6.Problem modeling 55 
 

 
 
 

Concerning theta, the main angle is 90° since most of the operation is performed 
in the XY plan. The differences between the different sequences are not so 
important. It appears those theses parameterizations are more or less equivalent, 
the performances are slightly different but in any case the performances are 
relevant. 

6.3.7 Derivatives 

The derivatives are computed and compared for the selected parameterization 
and the exact parameterization. The following graph is presenting the relative 
difference between the derivative and the matrix, according to the distance from 
0. 

 
Figure 30: Derivatives evaluation according to ρ 

Thus, near to zero, the derivatives are round 0.1%, going to 10% near to 0.1. The 
accuracy of the Taylor expansion on this domain is then far away lower than the 
fact to neglect the derivatives. This shows that the systematic method is 
convenient for this kind of problem. The analysis of the derivatives repartition 
according to theta or phi is far away less evident, it seems to be no correlation 
between these variables. 
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Figure 31: Derivatives evaluation according to phi and theta 

6.4 Conclusion 

The application of the systematic method for this problem seems totally relevant, 
since the derivative assumption is creating a loss of accuracy higher than the 
Taylor expansion, but with values still correct. Thus, the SDC parameterization 
obtained is relevant and can be inserted in the SDRE simulator for the 
rendezvous control problem defined previously. The controllability is never a 
problem, even for really large distance from the center, showing a controllability 
rising. The rank of the control matrix is always at its maximum. The selection of 
the factorization sequence is not of main importance since the performances are 
globally equivalent. The main things to retain is that the SDC matrices where 
obtained automatically from the relative dynamics equation, producing a 
parameterization that is pretty accurate and which should bring to the same sub-
optimality. 
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Chapter 7 

Simulations 

The matrix A(x,y,z,u,v,w) obtained thanks to the systematic method can be 
inserted in the SDRE solver since its accuracy have been proved. For that, a patch 
to the solver was needed, updating the function computing the value of the 
matrices at each step (ABScheeresDimM.m). For that, the variables are 
adimensionalized to compute the matrix coefficients, and then the matrix is 
multiplied by 𝜔², the target’s orbit angular speed, for the coefficient factorized by 
x, y or z, and by 𝜔 for the coefficients factorized by u, v and w. Like that, the 
product 𝐴(𝑿)𝑿 is homogenous to acceleration for the dynamics part. 
On the other hand, the computation of the cost function has been added to the 
main code in order to measure the differences between the models, thanks to a 
discrete Riemann summation. 
The solver is run with the weight matrices considered during the development of 
the solver last year, that is to say: 

 
𝑄 = 𝑑𝑖𝑎𝑔6𝑥6(1𝑒 − 4) 
𝑅 = 𝑑𝑖𝑎𝑔3𝑥3(1.5) 

 

The following table is summarizing the different steps of the trajectory to follow: 

 x [m] y [m] z [m] 
Initial position -1.02 -3500 0.1 
Position at the end of hop1  -1.02 -1500 0 
Position at the end of hop2 -1.02 -800 0 
Position at the end of hop3 -1.02 -250 0 
Final position -1.02 -1 0 

Table 1: Planned trajectory 

In addition to these steps, some attitude control maneuvers are performed 
between each Hohmann transfer, implying a need in station keeping as well, that 
is why the overall trajectory is in fact composed by seven phases, four 
corresponding to displacement, three to station keeping operations. 
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7.1 Preliminary results 

The projected trajectory is followed easily, the computation is converging. The 
cost function reaches  𝐽 = 4.5639𝑒 + 14. 
Thus, with few impulses, the control manages to match the trajectory:  
 

 

 
Figure 33: Relative position 

 
Figure 34: Relative position 

Indeed the final vector, [1.02,−1, 0], is reached with a small. To have an idea of 
the trajectory in space: 

Figure 32: Control profile 
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Figure 35: Controlled trajectory 

But unfortunately, this could be expected, since a thing is hidden behind this 
problem: the extreme low values of the dynamics. Indeed, the pursuer is 
following a trajectory really near to the origin, since the target and the pursuer 
are in phase and near, implying acceleration with an order of magnitude from 
10−6 to 10−10. In fact, the effect of the relative dynamics is totally negligible 
compare to the required control accelerations for the different maneuvers. 

7.2 Cost function evaluation 

This situation being known, a work on the weight matrices was performed in 
order to try to obtain a difference between the different parameterization. For 
that a comparison between three SDC matrices where tried: the exact one, the 
systematic one and one with all the dynamics parameters equals to zero. The 
following table is giving some of these results. 

Q R Jexact Jsys. J0 
~10-4 1.5 4.5639e+05 4.5639e+05 4.5639e+05 
~10-4 150 4.5718e+05 4.5718e+05 4.5718e+05 
~10-4 1.5 105 4.6309e+05 4.6309e+05 4.6309e+05 
~10-4 1.5 106 5.6634e+05 5.6634e+05 5.6634e+05 

Table 2: Cost function evaluation 
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The last value is not convenient since the error on the trajectory at the end is far 
away too high. To illustrate that, the cost function has been computed for each 
phase of the maneuver, for the first case and for 𝑅 ∝ 5.75𝑒5, with the 
corresponding position and velocity errors. 

  Parameterization 𝑒𝑥  [𝑚] 𝑒𝑣  [𝑚. 𝑠−1] Cost function (J) 

HOP1 

Syst. SDC 1,1298 2,2594 323016,1839 
Exact SDC 1,1298 2,2594 323016,1839 
Linear 1,1298 2,2594 323016,1839 
Zero-dyn 1,1298 2,2594 323014,9166 

SK1 

Syst. SDC 0,0006 0,0000 26917,6089 
Exact SDC 0,0006 0,0000 26917,6089 
Linear 0,0006 0,0000 26917,6089 
Zero_dyn 0,0006 0,0000 26917,0207 

HOP2 

Syst. SDC 0,0000 0,0000 68937,6793 
Exact SDC 0,0000 0,0000 68937,6793 
Linear 0,0000 0,0000 68937,6793 
Zero-dyn 0,0000 0,0000 68937,5000 

SK2 

Syst. SDC 0,0005 0,0000 21859,8623 
Exact SDC 0,0005 0,0000 21859,8623 
Linear 0,0005 0,0000 21859,8623 
Zero_dyn 0,0005 0,0000 21859,7654 

HOP3 

Syst. SDC 0,3309 0,6617 13969,8065 
Exact SDC 0,3309 0,6617 13969,8065 
Linear 0,3309 0,6617 13969,8065 
Zero-dyn 0,3309 0,6617 13969,7191 

SK3 

Syst. SDC 0,0005 0,0000 747,1369 
Exact SDC 0,0005 0,0000 747,1369 
Linear 0,0005 0,0000 747,1369 
Zero-dyn 0,0005 0,0000 747,1090 

Final 

Syst. SDC 0,1060 0,0002 987,2564 
Exact SDC 0,1060 0,0002 987,2564 
Linear 0,1060 0,0002 987,2564 
Zero-dyn 0,1060 0,0002 987,2424 

Table 3: errors and cost of each phase 
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As expected, the differences are not visible, except with a null dynamics, even if 
negligible. It can be seen that the final position error is near to 10 cm which is 
totally correct for a safe approach. To enlarge the difference, simulations with a 
stronger constraint on the command by raising 𝑅 were performed. The results 
are summarized in the following table: 

  Parameterization 𝑒𝑥  [𝑚] 𝑒𝑣  [𝑚. 𝑠−1] Cost function (J) 

HOP1 

Syst. SDC 8,6386 2,2539 339233,15 
Exact SDC 8,6386 2,2539 339233,15 
Linear 8,6386 2,2539 339233,20 
Zero 15,0590 2,2060 336119,15 

SK1 

Syst. SDC 162,0809 0,3487 25852,8745 
Exact SDC 162,0809 0,3487 25852,8745 
Linear 162,0802 0,3487 25852,8791 
Zero 166,8999 0,2888 25534,0439 

HOP2 

Syst. SDC 5,7009 0,0180 69579,1854 
Exact SDC 5,7009 0,0180 69579,1854 
Linear 5,7009 0,0180 69579,1669 
Zero 7,9894 0,0250 67184,5712 

SK2 

Syst. SDC 44,6089 0,0940 21616,1249 
Exact SDC 44,6089 0,0940 21616,1249 
Linear 44,6088 0,0940 21616,1260 
Zero 45,4527 0,0663 21626,9881 

HOP3 

Syst. SDC 3,2321 0,6649 14966,0864 
Exact SDC 3,2321 0,6649 14966,0864 
Linear 3,2321 0,6649 14966,0865 
Zero 4,9495 0,6451 14524,5470 

SK3 

Syst. SDC 47,8235 0,1039 740,2068 
Exact SDC 47,8235 0,1039 740,2068 
Linear 47,8235 0,1039 740,2068 
Zero 48,6322 0,0858 722,9051 

Final 

Syst. SDC 25,7948 0,0445 1189,9722 
Exact SDC 25,7948 0,0445 1189,9722 
Linear 25,7948 0,0445 1189,9720 
Zero 30,7779 0,0632 1115,1981 

Table 4: errors and cost of each phase, a second case 



 
62 7.Simulations 
 

This time the differences are easier to see, at least between the linear and the 
systematic/exact parameterization, which takes a small advantage on the cost 
function. But the gain is negligible, and for this case, the final error is to high 
(25m) to be considered as a plausible trajectory. 
 
Other values where tested by playing also on the ratio of the coefficients of Q 
(part corresponding to position, part corresponding to the velocities). But the 
most important thing to notice is that there are no differences between the 
different models for this application, no matter the SDC are, making the 
simulation quite useless. A simple linear controller would give the same 
performances, but with a constant control law. 

7.3 Simulation conclusion 

This section can’t be really more detailed since the effectiveness of the control 
resides on the fact that 𝑎𝑎𝑖𝑚𝑒𝑑 = 𝑈𝑐𝑜𝑛𝑡𝑟𝑜𝑙, since the dynamics can totally be 
neglected. Even if the computed parameterization is well inserted and the 
pursuer following the good trajectory, the computing cost added for the same 
performances than a linear controller makes the implementation of an SDRE 
controller for this trajectory a non sense. 
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Conclusions 

This study aimed to develop a systematic method able to propose a SDC 
parameterization in the framework of a SDRE control problem for any kind of 
governing equations, under some specific conditions that have been exposed. 
The relevance of this method is assured by the sub-optimality of the SDRE 
control method. The theory assuring the existence of such a method has been 
set, to be then implemented in a practical case, a rendezvous procedure. Also 
some semi-systematic codes were developed to measure the accuracy, but 
needing to make some choices on the variables of interest, and on the criteria to 
assess the good accuracy. The method is summarized in this figure already 
presented before: 

 
Unfortunately, the implementation part, in order to have a first example of the 
power of this method, revealed that the SDRE implementation for the wanted 
trajectory is a non sense since a 0 dynamics model is as efficient. The SDRE 
solver developed in a previous study is not in question and can be adapted, but 
the trajectory under test is not relevant to prove the efficiency of SDRE control 
compare to basic linear control.  
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Future developments 

The code developed for the production of the SDC matrices being systematic; it 
can be applied to another control problem. To keep the accuracy study made 
before, the rendezvous problem can be extended by adding the attitude control, 
and even the structural problem, as described by Ming Xin and Hejia Pan in 
[12]. But in this case an update of the code will be required to add the creation of 
the matrix B that will not be anymore linear, so needing to be factorized as well.  
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