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Abstract

Cognitive development concerns the evolution of human mental capabilities,
through experience earned during life; however, the way human beings de-
velop new goals and behaviors during their lifetime is not completely under-
stood. Many researches have been done in order to realize agents that could
develop autonomously through experience, interacting with the environment
and adapting to it. Different approaches in robotics aim to realize this kind
of agents, from behavior-based robotics to developmental robotics. An im-
portant feature needed to accomplish this objective is the self-generation
of motivations and goals, as well as the development of complex behaviors
consistent with them.
The objective of this thesis is to realize a bio-inspired cognitive architecture,
based on an amygdala-thalamo-cortical model, capable of autonomously de-
velop new goals and behaviors. This cognitive architecture has been im-
plemented and tested using a humanoid robot. Experimental results show
the main features of the architecture: the development of new goals starting
from hard-coded ones, and the generation of complex movements consistent
with those goals. Despite the architecture is still under development, good
experimental results demonstrate that it is a good starting point in order to
develop a more complex and effective system.
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Estratto in lingua italiana

Nel corso della sua vita, dall’infanzia fino all’età adulta, l’essere umano
sviluppa le proprie capacità mentali attraverso un processo detto sviluppo
cognitivo, che riguarda il modo in cui una persona percepisce il mondo at-
torno a se, come pensa, e come comprende il mondo attraverso l’interazione
di fattori genetici ed acquisiti. Un aspetto fondamentale nello sviluppo co-
gnitivo di una persona è la generazione autonoma di nuovi comportamenti
ed obiettivi, il che permette all’individuo di adattarsi alle diverse situazioni
che deve affrontare ogni giorno. Come gli esseri umani siano in grado di svi-
luppare autonomamente questi nuovi obiettivi nel corso della loro esistenza
non è completamente noto. La robotica, per realizzare agenti in grado di
interagire in modo efficace con gli esseri umani e integrarli nella loro vita,
si deve interessare dei processi interni al cervello umano che permettono lo
sviluppo cognitivo dell’individuo, così come delle modalità alla base della
generazione di nuovi obiettivi e comportamenti.
Scopo della nostra tesi è creare un modello robotico bio-ispirato basato sui
processi interni al cervello umano, che permetta all’agente di sviluppare au-
tonomamente nuovi obiettivi, nonché nuovi comportamenti che siano coe-
renti con questi obiettivi.

Esistono già diversi approcci nel campo della robotica per risolvere il
problema dell’adattabilità e sviluppo autonomo delle motivazioni in un ro-
bot. La robotica “behavior-based” permette all’agente di adattare il proprio
comportamento ai cambiamenti nell’ambiente, al fine di raggiungere i propri
scopi. In questo approccio, gli obiettivi sono preimpostati nel robot, e non
è possibile svilupparne di nuovi. La robotica epigenetica studia lo sviluppo
cognitivo nei sistemi naturali e artificiali allo scopo di adattarsi all’ambiente
e sviluppare autonomamente nuove motivazioni ed obiettivi che non erano
previsti in fase di progettazione. A differenza di questi approcci, il sistema
qui presentato si propone di investigare quel livello cognitivo intermedio che
permette agli esseri umani di essere consapevoli dell’ambiente circostante, e
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quindi di interagire con esso per la maggior parte delle operazioni di base
dell’organismo.
Questa capacità è una condizione essenziale per consentire al robot di adat-
tarsi nella vita quotidiana dell’essere umano: un robot deve essere in grado
non solo di agire in modo coerente ai cambiamenti nell’ambiente circostante,
ma anche di sviluppare obiettivi che possono emergere dalla situazione in
cui si trova, in modo da interagire efficacemente con le persone con cui essa
verrebbe in contatto. Tale robot arriverà anche a sviluppare una personali-
tà unica, a seconda delle esperienze che hanno contribuito alla creazione dei
suoi nuovi obiettivi e comportamenti. Queste caratteristiche renderebbo il
robot ideale per applicazioni complesse come quelle dell’intrattenimento, sia
nel privato che nel pubblico, permettendo alla robotica di entrare in campi
di applicazione di attività comuni.

Il sistema che presentiamo consente ad un agente di sviluppare nuovi
obiettivi, oltre a quelli già presenti, e di adeguare il proprio comportamen-
to a questi obiettivi. Questo sistema si ispira alla meccanica del cervello
umano, in particolare alla comunicazione di tre diverse aree del cervello: la
corteccia cerebrale, il talamo e l’amigdala. L’interazione di queste tre aree
è un elemento chiave per lo sviluppo cognitivo umano (ovvero lo sviluppo
delle capacità intellettuali), ed è quindi considerato come un buon punto
di riferimento per l’attuazione del nostro sistema. Su questa base è stata
creata l’Architettura Intenzionale: si tratta di una rete di unità elementari,
chiamate Moduli Intenzionali, che consente lo sviluppo di nuovi obiettivi.
In aggiunta ai Moduli Intenzionali nella rete è presente anche un Modulo
Filogenetico, il quale contiene gli obiettivi preimpostati, cioè gli “istinti in-
nati” dell’agente. Questo modulo esegue le stesse funzioni dell’amigdala nei
sistemi biologici. Attraverso l’azione del Modulo Filogenetico, più lo stato
corrente del robot incontra gli obiettivi già fissati, maggiore è l’intensità del
segnale in uscita dal modulo.
Ogni Modulo Intenzionale è composto da due moduli: il Modulo di Ca-
tegorizzazione e il Modulo Ontogenetico. Il Modulo di Categorizzazione
rappresenta la corteccia cerebrale del nostro sistema, e il suo ruolo è quello
di restituire un vettore che rappresenti l’attivazione neurale della corteccia
in risposta allo stato d’input.
Il Modulo Ontogenetico è la base dello sviluppo di nuovi obiettivi; riceve il
vettore di attivazioni neurali dal Modulo di Categorizzazione, e impiega una
funzione di apprendimento Hebbiano per sviluppare nuovi obiettivi. Una
volta che la sua elaborazione è conclusa, restituisce un segnale che indica se
lo stato corrente è conforme ai nuovi obiettivi.



Il Modulo Intenzionale analizza i segnali provenienti dai moduli Filogenetico
e Ontogenetico, restituendo il più rilevante dei due, e restituendo anche il
vettore di attivazione neurale calcolato dal Modulo di Categorizzazione.
Pertanto, il flusso di esecuzione dell’Architettura Intenzionale inizia quando
l’input sensoriale viene filtrato e quindi inviato alla rete di Moduli Inten-
zionali, la quale elabora le informazioni ricevute; ciascun modulo restituisce
un vettore contenente informazioni sullo stato dell’ambiente, e un segnale
che indica quanto lo stato effettivo soddisfi gli obiettivi attuali. La rete può
essere composta da più strati, ognuno contenente diversi Moduli Intenzio-
nali, che possono essere collegati tra loro in modo diretto o retroazionato.
L’uso di diversi livelli di Moduli Intenzionali permette all’utente di astrarre
lo stato del sistema dall’ingresso sensoriale originale.
Il vettore di attivazioni neurali e il segnale calcolato dall’Architectura Inten-
zionale vengono poi utilizzati dal Sistema Motorio per generare movimenti
che possano essere coerenti con gli obiettivi dell’agente. Ogni movimento è
formato da una serie di componenti elementari, chiamati primitive motorie,
che sono alla base del movimento sia umano sia animale: esse rappresentano
le attivazioni muscolari nel tempo, e la loro composizione (cioè la sinergia
muscolare) porta alla realizzazione di movimenti complessi. Per ottenere
questo risultato anche nel sistema qui proposto, le informazioni provenienti
dall’Architectura Intenzionale sono utilizzate per adattare il comportamento
dell’agente ai nuovi obiettivi e alle nuove situazioni: ogni Comportamento
Dinamico analizza i dati di ingresso per suggerire all’agente il miglior movi-
mento da applicare a quella specifica situazione, ovvero, quale azione porterà
alla realizzazione dei suoi obiettivi, siano essi innati o acquisiti. Il Compor-
tamento Dinamico restituisce un insieme di attivazioni muscolari (cioè una
composizione di primitive motorie), ognuna riferita a ciascun giunto dell’a-
gente collegato al comportamento specifico. Queste attivazioni muscolari
vengono poi utilizzate dall’agente per eseguire il movimento corretto.

L’Architettura Intenzionale si occupa quindi dello sviluppo cognitivo del
robot, con l’analisi dell’input e la generazione di nuovi obiettivi, mentre il
Sistema Motorio consente al robot di muoversi e intraprendere azioni al fine
di raggiungere tali obiettivi.

Il sistema presentato è stato testato con due esperimenti, che ci per-
mettono di verificare l’abilità dell’architettura di sviluppare nuovi goal così
come la capacità di adattare il proprio comportamento ai suoi obiettivi.
In un primo esperimento l’Architettura Intenzionale è composta da una sem-
plice rete con un singolo Modulo Intenzionale; l’agente (NAO, un robot



umanoide prodotto dalla Aldebaran Robotics) impara un nuovo obiettivo a
partire da uno preimpostato: a partire da un istinto innato relativo a figure
con colori saturi, l’agente è in grado di sviluppare autonomamente un inte-
resse per la forma delle figure.
In un secondo esperimento, invece, vengono testate le capacità motorie. Que-
sta volta la rete ha due livelli e tre Moduli Intenzionali, e il robot NAO si
muove per massimizzare il valore del segnale rilevante proveniente dall’Archi-
tettura Intenzionale. Inoltre i movimenti sono generati dalla combinazione
lineare delle primitive motorie.
Questi risultati sperimentali dimostrano l’efficacia del sistema, e hanno for-
nito alcuni suggerimenti su possibili miglioramenti e sviluppi futuri del pro-
getto. L’architettura ha dimostrato di imparare nuovi obiettivi, nonché di
agire in modo intelligente per soddisfare questi obiettivi. Tuttavia, il sistema
è ancora in fase di sviluppo e molti miglioramenti potrebbero essere appor-
tati, dalla capacità di sviluppare obiettivi e comportamenti più complessi,
al miglioramento dell’implementazione per ottenere prestazioni più eleva-
te. Oltre ai miglioramenti del sistema, sarà interessante l’implementazione
dell’architettura in diversi agenti, per studiare l’interazione e il possibile svi-
luppo di obiettivi di gruppo.

I contributi principali di questo lavoro sono:

• la progettazione e realizzazione di un’architettura cognitiva basata su
un modello amigdala-talamo-corticale;

• il test dell’architettura stessa, sperimentando la funzionalità di genera-
zione di obiettivi dell’architettura replicando un esperimento eseguito
con una precedente implementazione di un singolo Modulo Intenzio-
nale;

• l’estensione dell’architettura cognitiva con l’implementazione del Si-
stema Motorio, che consente la creazione di movimenti tramite la
composizione lineare delle primitive motorie.

Questa tesi è strutturata come segue.
Nel capitolo 2 presentiamo lo stato dell’arte, con vari riferimenti riguardanti
l’aspetto biologico relativo al nostro sistema, e quindi diverse applicazioni
tecniche in cui questi concetti sono stati utilizzati.
Nel capitolo 3 si discute l’Architettura Cognitiva, composta dall’Architettu-
ra Intenzionale e dal Sistema Motorio. In primo luogo l’Architettura Inten-
zionale è descritta con tutte le sue componenti: il Modulo Intenzionale e il
Modulo Filogenetico. Per ognuna di queste parti forniamo una descrizione



dettagliata delle sue funzionalità. Dopodichè mostriamo il funzionamen-
to del Sistema Motorio con i Comportamenti Dinamici, e mostriamo come
l’output dell’Architettura Intenzionale sia utilizzato per la generazione di un
movimento che possa essere coerente con gli obiettivi dell’agente, mediante
composizione di primitive motorie.
Nel capitolo 4 viene descritto il progetto IDRA - Intentional Distributed
Robotic Architecture, ovvero l’implementazione dell’architettura cognitiva
descritta nel capitolo 3. Viene fornita una descrizione tecnica del program-
ma, così come le linee guida per l’utilizzo del software.
Nel capitolo 5 sono descritti i test sperimentali e i risultati ottenuti dal si-
stema presentato. Vengono presentati due esperimenti, ciascuno a prova
delle caratteristiche principali dell’architettura: sviluppo di nuovi obiettivi
e generazione di movimenti.
Il capitolo 6 contiene le conclusioni e gli sviluppi futuri: riassumiamo i no-
stri obiettivi, le nostre valutazioni dei risultati ottenuti e i possibili sviluppi
futuri del progetto.
In appendice A vi presentiamo alcuni estratti del codice di IDRA, con una
breve descrizione.
In appendice B mostriamo la libreria che abbiamo implementato per l’ese-
cuzione dell’algoritmo Independent Component Analysis (ICA), nonché una
breve descrizione teorica dell’algoritmo.
In appendice C mostriamo la libreria che abbiamo implementato per l’ese-
cuzione dell’algoritmo K-Means per la clusterizzazione, nonché una breve
descrizione teorica dell’algoritmo.
In appendice D presentiamo brevemente il progetto Behavior Simulation, un
software che abbiamo sviluppato per testare le funzionalità dei comporta-
menti dinamici prima della loro implementazione nel Sistema Motorio.
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Chapter 1

Introduction

“A good question is, of course, the key by which infinite answers can be
educed.”

Isaac Asimov, Foundation’s Edge

During their life, from childhood through adolescence to adulthood, hu-
mans develop their mental capabilities: this process is called cognitive de-
velopment, and concerns how a person perceives, thinks, and gains under-
standing of his or her world through the interaction of genetic and learned
factors [1]. A fundamental aspect in the cognitive development of a per-
son is the autonomous generation of new goals and behaviors, which allows
the individual to adapt to the various situations he faces every day. How
humans can develop autonomously new goals during their existence is not
completely understood. In order to realize agents capable to interact in an
effective way with humans and integrate in their life, robotics should study
the processes of human brain which allow the cognitive development of the
individual, as well as the modalities underlying the generation of new goals
and behaviors.
Our thesis gives a contribution to the achievement of this objective: its
purpose is to create a bio-inspired robotic model based on human brain pro-
cesses, that must be able to allow the agent to autonomously develop new
goals as well as new behaviors that could be consistent with these goals.

There are different approaches in robotics to the problem of adapta-
tion and self-development of motivations. Behavior-based robotics allow
the agent to adapt its behavior to changes in the environment, in order
to accomplish its goals [2]. In this approach goals are hard-coded into the
robot, which cannot develop new ones. Developmental robotics (also called
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“epigenetic robotics”) aims at modeling the development of cognition in nat-
ural and artificial systems [3]. Developmental robotics leads to the cognitive
development of the agent, making it able to adapt to the environment and
autonomously develop new motivations and goals, that were not present
at design time. Unlike these approaches, the system we propose addresses
an intermediate level of cognition that allows mammals and humans to be
aware of the surrounding environment and then interact with it for most
basic tasks.
This capability is an essential precondition to enable the robot to fit into the
human’s everyday life. A robot must be able not just to act in a consistent
manner to the changes in the surrounding environment, but also to develop
goals that can emerge from the situation in which it is located, in order to
interact effectively with people with whom it would come into contact. Such
robot would also develop a unique personality, depending on the experiences
that contributed to the creation of its new goals and behaviors. These fea-
tures would make it the perfect robot for advanced applications in the world
of entertainment, either at home and not, pushing robotics beyond common
application fields.

We present a system that allows the robot to develop new objectives,
in addition to the hard-coded ones, and to adapt its own behavior to these
objectives. This system is inspired by the mechanics of the human brain, in
particular the communication of three different areas of the brain: the cere-
bral cortex, thalamus and amygdala. The interaction of these three areas
is a key element in human cognitive development (i.e. the development of
intellectual abilities), and it is therefore regarded as a good reference point
for the implementation of our system [4, 5]. On this basis the Intentional
Architecture has been created: it is a network of elementary units, called
Intentional Modules, that enables the development of new goals. In addi-
tion to Intentional Modules in the network is also present a Phylogenetic
Module, containing the hard-coded objectives, i.e. the “innate instincts” of
the agent; this module performs the functions of the amygdala in biologi-
cal systems. Through the action of the Phylogenetic Module, the more the
current state of the robot meets the objectives already set, the higher is the
signal coming out from the module.
Each Intentional Module consists of two internal modules: the Categoriza-
tion Module, and the Ontogenetic Module. The Categorization Module is
the cerebral cortex of our system, and its role is to return a vector that
represents the neural activation of the cortex in response to the input state
provided.
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The Ontogenetic Module is the basis of the development of new objectives;
it receives the vector of neural activations from the Categorization Module,
and employs a Hebbian learning function to develop new goals. After its
processing is done, it returns a signal indicating whether the current state
meets the new goals defined.
The Intentional Module analyzes signals from the Phylogenetic and Onto-
genetic Modules, returning the most relevant of the two, and returning also
the vector of neural activation computed by the Categorization Module.
Therefore, the Intentional Architecture execution flow starts when the sen-
sory input is filtered and then sent to the Intentional Modules network,
which processes the received information; each module returns an vector
containing information about the state of the environment, and a signal
indicating how much the actual state is satisfying the actual goals. The
network can be composed by several layers, each one containing several In-
tentional Modules, that can be connected to each other in straightforward
or feedback mode. The use of different levels of Intentional Modules allows
the user to abstract from the raw sensory input.
The vector of neural activations and the signal computed by the Intentional
Architecture are then used by a Motor System to generate movements that
can be consistent with the goals of the agent. Each movement is meant
to be formed by a series of elementary components called motor primitives,
which are on the basis of animal and human motion alike: they represent the
muscles activations over time, and their composition (i.e. muscular synergy)
leads to the execution of complex movements [6, 7, 8, 9, 10]. In order to ob-
tain this result also in the system we propose, the informations coming from
the Intentional Architecture are used to adapt the behavior of the agent to
the new goals and situations: each Dynamic Behavior analyzes the input
data to suggest to the agent the best movement to apply to that specific
situation, that is, which action will lead to the fulfillment of its goals, either
learned or innate. The Dynamic Behavior returns a set of muscle activations
(namely a composition of motor primitives), each one referring to each joint
of the agent connected to that specific Behavior. These muscle activations
are then used by the agent to perform the correct movement.
The Intentional Architecture therefore is concerning with the cognitive de-
velopment of the robot, by input analysis and the generation of new goals,
while the Motor System allow the robot to move and take actions in order
to accomplish these goals.

The presented system has been tested with two main experiments, which
let us verify the goals development skills as well as the ability to adapt its
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behavior to its goals.
In a first experiment the Intentional Architecture is put under test. With a
simple network of a single Intentional Module, the agent (a NAO robot, a
humanoid robot produced by Aldebaran Robotics) learns a new goal from
a hard-coded one: starting from an innate instinct related to figures with
high-saturated colors, the agent autonomously develops an interest to a par-
ticular shape of the figures.
In a second experiment instead, the motor capabilities are tested. This time
the network has two layers and three Intentional Modules, and NAO robot
moves to maximize the relevant signal coming form the Intentional Architec-
ture; furthermore, movements are generated by linear combination of motor
primitives.
These experimental results show the efficacy of the system, and they pro-
vided several clues about possible improvements and future developments
of the project. The architecture has proven to learn new goals, as well to
act in a smart way to satisfy these goals. However the system is still un-
der development and a lot of improvements could be made, starting from
the capability to develop more complex goals and behaviors, to technical
improvements in order to obtain better performances. In addition to im-
provements of the system, it will be of interest the implementation of the
architecture on several different agents, in order to study their interaction
and the possible development of team goals.

The main contributions of this work are:

• the design and implementation of a Cognitive Architecture based on
an amygdala-thalamo-cortical model;

• the validation of the architecture itself, by testing the goals genera-
tion feature of the architecture with the replication of an experiment
performed with an early implementation of the Intentional Module
structure;

• the extension of the Cognitive Architecture with the implementation
of a Motor System, which allow the creation of movements by linear
composition of motor primitives.

This thesis is structured as follows.
In chapter 2 we present the state of the art, with various references concern-
ing the biological aspect related to our system, and then different technical
applications where these concepts have been used.
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In chapter 3 we discuss the Cognitive Architecture, composed by the Inten-
tional Architecture and the Motor System. First the Intentional Architec-
ture is described with all of its components: the Intentional Module and
the Phylogenetic Module. For each one of these parts we provide a detailed
description of its functionalities. Then we show the functioning of the Motor
System with dynamic behaviors, illustrating how the output of the Inten-
tional Architecture is converted for the generation of a movement that could
be consistent with the goals of the agent, by means of composition of motor
primitives.
In chapter 4 we describe the Intentional Distributed Robotic Architecture
(IDRA) project, the implementation of the Cognitive Architecture described
in chapter 3. A technical description of the program is provided, as well as
the guidelines to use the software.
In chapter 5 we describe the experimental activities and results obtained
by the presented system. Two experiments are described, each testing the
main features of the architecture: goals development and complex move-
ments generation.
Chapter 6 contains the conclusions and future development: we summarize
our goals, our evaluations of these results and possible future developments
of the project.
In appendix A we present some code excerpts of IDRA, with a brief descrip-
tion.
In appendix B we show the library that we implemented for the execution
of the Independent Component Analysis (ICA) algorithm, as well as a brief
theoretical description of the algorithm.
In appendix C we show the library that we implemented for the execution of
the K-Means clustering algorithm, as well as a brief theoretical description
of the algorithm.
In appendix D we briefly show the Behavior Simulation project, a software
we developed to test the functionalities of Dynamic Behaviors before their
implementation in the Motor System.
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Chapter 2

State of the art

“Artificial Intelligence is whatever hasn’t been done yet.”

Larry Tesler

2.1 The Amygdala-Thalamo-Cortical model

Several studies have shown the importance of the amygdala-talamo-cortical
model in the cognitive development [11, 12].

The cortex is the external part of the brain; it is divided in several sec-
tors (primary visual cortex, posterior parietal cortex, primary motor cortex,
etc.), and it receives signals from the sensory organs. Although most of
the sectors of the cortex receive input from a specific source, different stud-
ies have proven that different areas can properly react to different stimuli
sources [5]. Therefore the whole cortex is composed from the same kind of
cells, and it is able to respond, store and adapt to different kind of stimuli.
Moreover, the generic mechanism used by the cortex is what allows the hu-
man beings to adapt to problems that did not exist in nature, and to learn
how to deal with them.
The main difference between an usual computer system and the brain, and
the reason why the latter is more efficient at solving some kind of problems
- e.g. ball catching, face recognition, etc. - lies in the fact that the brain
does not compute everytime for this kind of problems. Instead, the cortex
has been proven to act as a memory bank, and the brain use to compare the
incoming data with memories from past situation, in order to find analogies,
patterns, and invariant representations, and act accordingly [4]. Moreover,
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it has been proven how the cortex stores these patterns in sequences, and
how sequences can be recalled in an auto-associative fashion, thus creating
the so-called stream of thoughts.

Figure 2.1: The brain areas of interest.

The thalamus is the largest component of the diencephalon, one of the
most internal regions of the brain. It is the primary site of relay for all
of the sensory pathways, except olfaction, on their way to the cortex. The
thalamus plays a central role for the mammals in the development of new
motivations and goals, as well in the choice of what goal to pursue. The
thalamus is “a central, convergent, compact miniature map of the cortex”
[13]. The thalamus is partitioned into about fifty segments, which do not
communicate directly with each other. Instead, each one is in synchronized
projection to a specific segment of the cortex, and it is receiving a projection
from the same segment. Therefore, while the cortex is concerned with data
processing, storing and distribution, the thalamus determines which goals
have to be pursued [14]. Furthermore, each pair of cortex and thalamus
sections seem to be intensively communicating. The cortex is believed to be
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the main memory storage allowing consciousness and cognition, while the
thalamus would determine how incoming stimuli are relevant with respect
to actual goals and to the developing of new goals. Thanks to the thalamo-
cortical model the brain is able both to learn how to achieve goals and which
goals have to be pursued.

The amygdala is an almond-shaped group of nuclei located deep within
the medial temporal lobes of the brain of complex vertebrates. It seems to
be heavily connected to the cortex area; it is involved in the generation of
somatosensory response on the basis both of innate and previously developed
goals, and of sensory informations [15]. In particular, the amygdala seems
to be an essential part in social and environment cognition in order to guide
social behaviors.
The amygdala has a key role in the recognition of the emotions and in the
generation of an adequate response. Evidence shows that this response is
independent from the test subject [16]. Thus one of the principal tasks of the
amygdala is to generate new goals taking advantage of hardwired criteria.

2.2 The movement generation via motor primi-
tives

The cerebellum is supposed to have functionalities and structures similar to
the classical perceptron pattern of a classification device. The cerebellum
has an extended network of various types of neurons, giving different abili-
ties including motor learning and motor coordination, thanks in particular
to the Purkinje response cells, which can learn fast and that are able to
easily distinguish patterns [17].
Other studies have shown the importance of the basal ganglia in the mo-
tor generation of the movement [18]. Basal ganglia and cerebellum seem
to create two different sets of loop circuits with the cortex, both dedicated
to different features of motor learning; both are independent and in differ-
ent coordinates. Furthermore, there has been recently proposed a functional
dissociation between the basal ganglia and the cerebellum: the former is im-
plicated in optimal control of movements, that is optimization of costs and
rewards obtained by the execution of a specific movement, and the latter
seems to be able to predict the sensory consequences of a specific movement
through the use of internal models [19].
The spinal cord is the lower caudal part of the nervous system; it receives
and processes sensory information from the various parts of the body, and



10 Chapter 2. State of the art

controls the movement of the muscles and the joints of the main parts of the
body [11]. It acts as a bridge between the body and the mind: it receives
electrical signals input from the peripheral nervous system, and sends them
to the central nervous system. In the same way, receives signals from the
neurons in the cerebellum and the cortex and processes them before sending
instructions to the specific muscles.
Additional studies show how the cortex is involved in motor generation, in
particular the cortico-striatal circuit [20].

Several studies have shown how complex movements are generated from
the combination of a limited number of waveform modules, which are inde-
pendent from the considered muscle, its speed, and its gravitational load;
these slighting varying modules control the active muscles in order to pro-
duce kinematic changes [21]. These studies have found how just five com-
ponents can account for 90% of the muscles activations.
It was suggested that the nervous system do not need to generate all the mus-
cles activity patterns, but to generate only a few basic patterns and combine
them accordingly, to generate a specific muscle activation, through modula-
tion of phasic component and magnitude of these primitives [22]. Different
muscles performing different tasks showed different changes in patterns ac-
tivities. This model can be represented by an oscillator that produces the
output frequency basing on the input signal, a set of nonlinear functions
that shape the oscillator output into the set of patterns, and a weighting
functions for the generation of the muscle activity pattern [23].

Figure 2.2: Motor primitives combination

A motor primitive is a specific neuronal network, found in the spinal
cord, that generates a specific motor output by sending a definite signal to
muscles for activations [24]; each primitive has a basic activation pattern (in
function of time), with different weights and distributions for each muscle;
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thus, the muscular activity during movement is determined by few basic
patterns, independent from locomotion mode, direction or speed [25].

The Dynamic Movement Primitives - that is, a formulation of movement
primitives via autonomous nonlinear differential equations - have been suc-
cessfully used in a series of robotic applications, and they can be employed
with supervised learning and reinforcement learning techniques in order to
optimize trajectory and energy criteria [26]. Various application involved
skill learning from supervised learning on a robot, or biped walking from
imitation of an human, or the generation of rhythmic movement patterns
using a nonlinear oscillator control [27].
However, we separate ourselves from this kind of experiments, which use
learning methods commonly applicable to task-based robots; we will in fact
use motor primitives in motivation-based robots, as we will see in the next
chapters.

2.3 An intermediate level of cognition

The amygdala-thalamo-cortical model we addressed so far is the basis of the
biological inspiration of the first part of our architecture. In this part we
do not focus on high-level motor skills, nor on high level of reasoning and
planning. We will instead focus on an intermediate level of cognition that
allows mammals and humans to be aware of the surrounding environment
and then interact with it for most basic behaviors.
Consciousness has been already suggested to be a product of an intermedi-
ate level of cognition [28]. The awareness of the surrounding environment is
supposed to be not a direct product of sensations and other sense-data, the
“phenomenological mind”, nor a product of a high level conceptual thoughts,
the “computational mind”, but to be a product from several intermediate
levels of representation [29].
This middle level has some interesting features related to consciousness: it
underlines how we can interpret the surrounding environment and react to
this awareness without the need for high-level conceptualizations nor com-
plex motor controls, therefore solving the grounding problem of a semantic
interpretation of a formal symbol system that is intrinsic to the system itself
[30]. In particular, as we will see in the next chapters, we will deal primar-
ily with the categorical representation, that are described as “learned and
innate feature detectors that pick out the invariant features of object and
event categories from their sensory projections”.



12 Chapter 2. State of the art

Most robots - and their related intelligence - are designed with a specific
task or a set of tasks. Some robots are equipped with some sort of skills that
allow them to interact with the environment and in particular with humans.
Most of these robots have a selection of preset behaviors that allow them
to tune their actions according to past experience; they are reactive to their
surroundings in order to reach their goals [2].
Some of these robots are not just able to tune their behaviors to the situa-
tion: they are also able to act on their own. While the behavior-based robots
explore the environment in order to optimize their actions for reaching a pre-
defined goal, these kind of robots must be able to explore the environment
in order to find new goals on their own. They must be curious to explore
their environment, and once explored, they must be able to do something
new according to their abilities as well as to their experience. We call this
kind motivational-based robotics [31], also known as epigenetic robotics, or
developmental robotics [3].
Behaviors-based robots make use of motivations as well, but these are fixed,
hardwired at design time; on the contrary, developmental robots must be
able to perform actions following goals that were not present at design time.
To make a comparison with human beings, the need for food is a hardwired
criteria, and even a child will try to obtain it in the ways his known behav-
iors allow him to. At first he will scream until his mother will feed him;
eventually he will learn to reach cutlery with his arm in order to bring food
to his mouth.



Chapter 3

Cognitive Architecture

“They learn to speak, write, and do arithmetic. They have a phenomenal
memory. If one read them the Encyclopedia Britannica they could repeat
everything back in order, but they never think up anything original. They’d
make fine university professors.”

Karel Čapek, R.U.R.

3.1 Intentional Architecture: cognitive develop-
ment

Cognitive development is the construction of thought processes, including re-
membering, problem solving, and decision making, from childhood through
adolescence to adulthood. It refers to how a person perceives, thinks, and
gains understanding of his or her world through the interaction of genetic
and learned factors. Among the areas of cognitive development we can find
information processing, intelligence, reasoning, language development, and
memory [1].

The Intentional Architecture deals with the cognitive development of
the agent, analyzing inputs and allowing it to develop new goals. The ar-
chitecture is basically a net of linked modules, simulating connections and
interactions between the three cerebral areas which allows the cognitive de-
velopment in humans: the cerebral cortex, the thalamus and the amygdala.
The modules composing the net are the Phylogenetic Module (amygdala)
and the Intentional Module, which in turn is composed by the Categoriza-
tion Module (cerebral cortex) and the Ontogenetic Module (thalamus). The
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Intentional Architecture is composed by one Phylogenetic Module and sev-
eral layers of Intentional Modules. Intentional Modules are linked in various
ways, also with feedback connections, while the Phylogenetic Module broad-
casts its signal to all the Intentional Modules, without receiving data back
by them. This kind of structure can simulate the interaction of the three
areas in human brain: different areas of thalamus can communicate with
some respective areas of the cerebral cortex, which collects all the informa-
tion coming from the thalamus, but different areas of the thalamus cannot
communicate between them. The amygdala sends its information both to
the thalamus and the cerebral cortex (Figure 3.1).
The input of the net is composed by various sensor types (video, audio,
tactile, etc.), elaborated by some filters and sent to the Intentional Modules
of the first layer. The output of the net is composed by a vector, repre-
senting the neural activation generated by sensory input, and by a signal,
representing how much the actual input satisfies both hard-coded goals and
new developed goals.
Thanks to the net of Intentional Modules, the Intentional Architecture can
autonomously develop new goals (through the Ontogenetic Module) start-
ing from hard-coded ones (provided by the Phylogenetic Module), which
represent the “innate instincts” of the agent.

Figure 3.1: From the brain to our architecture

3.1.1 Input processing: sensory integration

Sensory integration is the neurological process that organizes sensation from
a person’s own body and the environment, thus making it possible to use the
body effectively within the environment. Specifically, it deals with how the
brain processes multiple sensory modality inputs into usable functional out-
puts. For some time it has been believed that inputs from different sensory
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organs are processed in different areas of the brain [32]. The communi-
cation within and among these specialized areas of the brain is known as
functional integration [33, 34, 35]. Newer researches had shown that these
different regions of the brain may not be solely responsible for just one sen-
sory modality, but they could use multiple inputs to perceive what the body
senses about its environment. Sensory integration is necessary for almost
every activity that we perform since the combination of multiple sensory
inputs is essential for us to comprehend our surroundings.

The input of the Intentional Architecture comes from several sensors of
the agent. Just like the information that are sent to our brain, the inputs
of the agent are processed to give the architecture the same type of data
and to perform sensory integration. In this way, the architecture does not
depend on the type of input, while every kind of sensory information (video,
audio, tactile, etc.) can be processed by the architecture in the same way.
Furthermore, the Intentional Architecture can perform sensory integration
by sending multiple sensory data to the same Intentional Module.
The data coming from every sensor is converted into arrays of different size
and enclosed in a standard structure; every block of information is then sent
to the first layer of Intentional Module to start the computation (Figure 3.2).

Figure 3.2: Sensory integration in our architecture
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3.1.2 Phylogenetic Module: innate instincts

In biology, phylogenetics is the study of evolutionary relation among groups
of organisms, which is discovered through molecular sequencing data and
morphological data matrices. The result of phylogenetic studies is the evo-
lutionary history of taxonomic groups: their phylogeny.
Phylogenetic processes contribute to the adaptation of an organism behav-
iors to the environment through the production of instincts [36]. An Instinct
is the inherent inclination of a living organism toward a particular behavior,
i.e. an impulse or powerful motivation from a subconscious source. The part
of the brain that is associated with these types of reactions is the amygdala
[37]. Different parts of the brain receive different signals and make them
consciously known. The auditory cortex, for example, is responsible for
hearing. The amygdala has its own set of “receivers” for sensory intake, and
can retrieve information from the environment and take a decision about
what to do, before a person could consciously think about it [38].

We implemented instincts in the system as hard-coded goals, in the Phy-
logenetic Module. this module contains embedded information and criteria
in order to permit the bootstrap of the system. Phylogenetic Module tells
the agent what is relevant according to its hard-coded instinctive functions.
The input of this module comes from sensors; each sensory information is
then processed by instinctive functions; each function processes only a cer-
tain input type, according to the instincts associated to that specific type
(e.g. input from video sensors is processed only by instinctive functions re-
lated to video input). The output of this module is the phylogenetic signal,
which tells how much the incoming stimulus is important according to the
a priori stored criteria. The more considerable the stimulus, the higher the
generated phylogenetic signal (for our purposes, as we will see in the next
chapters, this value will always be normalized between zero and one).

3.1.3 Intentional Module: neuroplasticity

Plasticity, or neuroplasticity, is the lifelong ability of the brain to reorganize
neural pathways based on new experiences.
Neuroplasticity can occur in different levels, ranging from cellular changes
(e.g. during learning) to large-scale changes involved in cortical remap-
ping (e.g. as consequence of response to injury). As we learn, we acquire
new knowledge and skills through instruction or experience. Scientific re-
search has now demonstrated how substantial changes can occur in the low-
est neocortical processing areas, and how these changes can profoundly alter
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the pattern of neuronal activation in response to experience [39]. Further-
more, experience can actually change both the brain’s physical structure
(anatomy) and functional organization (physiology) [40]. Neuroplasticity
has replaced the formerly-held position that the brain is a physiologically
static organ, and explores how and in which ways the brain changes through-
out life into adulthood [39]. In order to learn or memorize a fact or skill,
there must be persistent functional changes in the brain, and these changes
represent the new knowledge. The ability of the brain to change with learn-
ing is what is known as neuroplasticity.

Neuroplasticity is a fundamental feature to give an agent the ability to
learn new goals, so we designed the Intentional Architecture as a net of basic
modules which can adapt to changes in sensory inputs and connections.
The Intentional Module is the basic building block of the Intentional Archi-
tecture. This module has to be able to adapt to various sensor modalities,
as well as to combine with other instances of the same kind in some simple
way. The Intentional Module can easily adapt to changes in sensory input.
If we send to an Intentional Module some input from a video sensor, the In-
tentional Module will specialize to that type of input; however, if we decide
to change some connections and send to this specialized Intentional Module
a different type of input, e.g. an audio input, it will lose its specialization
in video input and gradually adapt to the new sensory input.
An Intentional Module has other important features: since it is the basic
unit of the architecture, it must be able to self-develop new goals and mo-
tivations. This feature of the Intentional Module has already been put to
test in a very simplified robotic setup, aiming at developing new motivations
and controlling the gaze of a camera towards unexpected classes of visual
stimuli [31, 41, 42].
According to what we said, we can summarize the main objectives of the
module:

• it must be able to adapt to any kind of input;

• it must be able to learn to categorize incoming stimuli;

• it must be able to use acquired categories to develop new criteria to
categorize;

• it must be able to interface smoothly with similar modules and give
rise to a hierarchical structure.

In order to satisfy all this objectives, the Intentional Module is composed
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by two simple structures: the Categorization Module, which performs cate-
gorization, and the Ontogenetic Module, which can develop new goals.
The Intentional Module works as follows. At the beginning, both the Onto-
genetic Module and the Categorization Module are empty. Incoming data,
of any type and size they are, are sent to the Categorization Module, which
has the important function of receive raw data and then to develop higher
order categories. Once the categories have been created, they are sent to the
Ontogenetic Module. This module perform Hebbian learning on incoming
data to develop new goals, and returns a signal based on how much this new
goals are satisfied. This signal is called ontogenetic signal; a high value of
ontogenetic signal corresponds to high satisfaction of the developed goals.
The Intentional Module receives as input also the signal from the Phylo-
genetic Module, and returns as output the maximum between the signal of
the Phylogenetic Module and the Ontogenetic Module. This outgoing signal
is called relevant signal; the Intentional Modules also sends as output the
categories created by the Categorization Module (Figure 3.3).

Figure 3.3: Intentional Module

Categorization Module: cognitive autonomy

Most of the actual information processing in the brain takes place in the
cerebral cortex. The cerebral cortex is divided into lobes, and each of them
has a specific function [11]. For example, there are specific areas involved
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in vision, hearing, touch, movement, and smell. Other areas are critical for
thinking and reasoning. Although many functions, such as touch, are found
in both the right and left cerebral hemispheres, some functions are found
only in one of the two cerebral hemisphere. For example, in most people,
language abilities are found in the left hemisphere. The sensory areas are
the regions that receive and process information from the senses [11]. Parts
of the cortex that receive sensory inputs from the thalamus are called pri-
mary sensory areas. One of the main feature of the cerebral cortex is the
ability to adapt to stimuli, whatever is their nature [5, 4]. Cerebral cortex
presents a high degree of cognitive autonomy, so each cortical area is capable
to compute any type of incoming data [43, 44, 45].

The Categorization Module represents the cerebral cortex of the Inten-
tional Architecture. It receives the input from sensors or from other Inten-
tional Modules and perform categorization. in order to do this operation,
the input is elaborated twice: first with Independent Component Analysis
(ICA, see Appendix B), then with a clustering algorithm such as K-Means
(see appendix C).

Independent Component Analysis allows the module to generalize the
input representation regardless to the type of incoming stimuli. In an early-
development stage, independent components are extracted from a series of
input through the ICA algorithm. After this training stage, the input is
projected in the bases space (i.e. the previously extracted independent com-
ponents), in order to reduce the dimension of the data and to get a general
representation:

W = IC × I (3.1)

WhereW is the resulting vector of weights, IC is the matrix of independent
components and I is the input vector.
This results in a vector of weights where clustering is performed, using K-
Means algorithm. Clustering is a good and simple way to get the neural code
of the information. Neural coding consists in the translation of a stimulus
into a neural activation; according to this, a net of neurons can represent
every kind of incoming information. Basing on the theory that sensory and
other information is represented within the brain by networks of neurons, it
is supposed that neurons can encode any type of informations [46]. During
clustering, each vector is assigned to an existing cluster, if the distance from
existing clusters is below a previously-set threshold, otherwise a new cluster
is created, using the newly acquired vector.
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The output of the Categorization Module is a vector containing the activa-
tions of clusters, which depend on the distances of the input data from the
center of each cluster (namely a category). This vector corresponds to the
activation of a neuron centered in each cluster:

yi = ρ(x,Ci) (3.2)

Where yi is the distance of the actual input from the center of the cluster
i, x is the input and Ci is the center of the cluster i. For our purposes, the
values are normalized between zero and one.
A new category is created by the categorization module depending on the
value of the relevant signal computed by the Intentional Module. This way,
only relevant inputs are categorized, so that the module saves only mean-
ingful information (Figure 3.4).

Figure 3.4: Categorization Module

Ontogenetic Module: goals generation

The thalamus is a structure of the brain composed by four parts, or nu-
clei, situated between cerebral cortex and midbrain. Functionalities of the
thalamus include elaboration and relay of input and motor signals to cere-
bral cortex, as well as regulation of consciousness, sleep, and alertness [47].
Furthermore, thalamus is a “miniature map” of the cerebral cortex [13]. All
thalamic nuclei, with the exception of the reticular thalamic nucleus, project
primarily to the cerebral cortex. Additionally, each portion of the thalamus
receives a reciprocal connection from the same portions of the cerebral cortex
whereby the cortex can modify thalamic functions. These connections are
more data intensive from cerebral cortex to thalamaus, while backward con-
nection going from thalamus to cortex are weaker [48]. This close connection
between thalamus and cortex and their interplay, as well as the implication
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of thalamus in consciousness, led to the idea that goals generation is indeed
spread everywhere in cerebral cortex and it is obtained by the interaction
between thalamus and cortex.

The Ontogenetic Module represents the thalamus of our system and it is
the core part of the goals development of the Intentional Module. the name
ontogenetic derives from ontogeny, namely the origin and the development of
an organism; it covers, in essence, the study of an organism lifespan, unlike
phylogeny which covers instead the evolution of the entire species of an
organism. Just like in the brain thalamus and cerebral cortex present strong
connections, Ontogenetic Module is closely connected to the Categorization
Module. It uses the categories computed by the Categorization Module and
a Hebbian learning function to develop new goals.
The values of neural activations, provided by the Categorization Module,
are evaluated using a vector of weights, and the resulting ontogenetic signal
is the maximum value between the evaluated neural activations:

os = max
i

(yiwi) (3.3)

Where os is the resulting ontogenetic signal, yi is the activation of neuron
i and wi is the vector of weights associated to neuron i. Each weight is
normalized between zero and one (Figure 3.5).

Figure 3.5: Ontogenetic Module

The ontogenetic signal strongly depends from the vector of weights used
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to evaluate the input. These weights are updated at each iteration, using a
Hebbian learning function:

wi = wi + η(hsyi − (wiy2
i )) (3.4)

In this equation η is the learning rate, while hs stands for the hebbian signal,
which is a control signal coming from the Intentional Module (it could be
the relevant signal itself). A threshold is fixed, so that if a weight is beyond
or equal the threshold value, its value is always set to one. This is done to
strenghten signals that have already proven to be good enough.
The output of the Ontogenetic Module is the ontogenetic signal, whose value
represents how much the actual input state satisfies the new goals developed
through the hebbian learning process.

3.2 Motor System: movement generations

In order to accomplish its goals, the agent should be able to move and in-
teract with the environment. The problem of moving and acting in a smart
way, according not only to hard-coded goals, but also to new developed
goals, is not trivial. We suggest a solution to this problem based on Dy-
namic Behaviors (for movement evaluation) and on the concept of motor
primitives (for movement generation).
The input of this motor part comes from the Intentional Architecture, and
it is composed by a vector of neural activations and a relevant signal. The
vector, representing the state of the environment in a high level of abstrac-
tion, is clustered using K-Means algorithm. The output of the clustering
is the cluster corresponding to the current state; this information is used
with a State-Action table to choose the best movement to do, according to
the relevant signal. The movement is composed by a linear combination of
primitives, and it is sent as output to the agent. In order to execute the
movement, the agent uses the output of this motor part to compute joints
values of its actuators.

3.2.1 Motor primitives: elementary movements

In recent years different lines of evidence have led to the idea that motor ac-
tions and movements, in both vertebrates and invertebrates, are composed
of elementary building blocks, called motor primitives. Motor primitives
might be equivalent to “motor schemas”, “prototypes” or “control modules”
[49, 50, 51].
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Motor primitives could be transformed with a set of operation and combined
in different ways, according to well defined syntactic rules, in order to obtain
the entire motor repertoire of motor actions of an organism. At neuronal
level, a primitive corresponds to a neuron assembly, for example, of spinal
or cortical neurons [9, 52].
Studies on the motor system suggests that voluntary actions are composed
by movement primitives, that are bonded to each other either simultane-
ously or serially in time [6, 7, 8, 9, 10].

Following this idea, we use this concept of motor primitives to create
muscular activations that allow the agent to perform a complex movement.
A motor primitive could be seen as the activation of a muscle during time.
The higher the value of the primitive, the stronger the muscle activation,
which will bring to a faster execution of the movement. Activating different
muscles in time, a complex movement can be performed. We implement
primitives as Gaussian functions delayed in time:

p = e
−(x−c)2

2σ2 (3.5)

Where c is the center of the muscular activation of the primitive p. We
chose the bell-shaped profiles of Gaussian function for primitives according
to biological evidences: when humans move their limbs from one position
to another they generally change joint angles in a smooth manner, such
that angular velocity follows a symmetrical, bell-shaped profile [53]. To
generate a complex movement, primitives are linearly combined, producing
a muscular sinergy:

m =
∑
i

wipi (3.6)

Each weight w is initially randomly generated during movement generation,
thus creating a a random complex movement to be performed (See Figure
2.2).

3.2.2 Dynamic Behaviors: complex movements

In human brain motor cortex is involved in planning, control and execu-
tion of movements. Motor cortex is composed by several parts, each one
contributing in generation of movements; however, the main contributor to
generating neural impulses to pass down to the spinal cord and control the
execution of movement is the primary motor cortex. Scientific evidence sug-
gests that each neuron in the primary motor cortex contributes to the force
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in a muscle: the more activity in the motor cortex neuron, the more muscle
force [54]. Furthermore, the primary motor cortex is somatotopically orga-
nized, which means that stimulation of a specific part of the primary motor
cortex elicits a response from a specific body region (Figure 3.6).

Figure 3.6: The Somatosensory Cortex and the Motor Cortex

According to the fundamental role of the motor cortex in movement
generation, the approach to this task should be similar to the one used for
categorization; more precisely, we need a neural code of information like
the one computed by the categorization module. Following this idea, the
first step in order to perform a movement is clustering (Figure 3.7), like
in Categorization Module. Clustering is performed by K-Means algorithm
(see Appendix C), the same used in the Intentional Module. However, in
this case we don’t need to create new categories, so clusters are defined in
a previous training phase. We need the cluster representing the current
state, namely the part of the primary motor cortex that is stimulated by
the current state. This approach respects the idea that the same neural
activation produces the same muscular response.

Movement generation is not the only goal to be accomplished; we need
something able to select the best movement according to the current state
of the environment, depending on the goals we want to satisfy. Dynamic
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Figure 3.7: An example of clustering

Behaviors allow the agent to perform the best movement, given the state of
the environment and the relevant signal coming from the Intentional Archi-
tecture, as well as the ability to learn the best movement to execute in an
unknown situation. The relevant signal depends on the ontogenetic signal,
coming from the thalamus of the system, and the phylogenetic signal, com-
puted by the amygdala of the system; its use in the motor development of
the agent is based on scientific evidences, confirming the fundamental role
of the basal ganglia, a group of nuclei in the brain containing the amygdala,
and of the thalamus in the process of motor learning [20]. Moreover, studies
on monkeys prove that lesions on the thalamus seriously impair their motor
learning capabilities [55].
Each Dynamic Behavior is composed by a list of actuators of the agent that
have to be moved in order to satisfy a goal. If we want the agent to look to
a ball, for example, we can create a Behavior linked to the actuators which
control head yaw and pitch angles. The Dynamic Behavior selects the set
of movements to be executed from the actuators in order to get the best
relevant signal as a response from the Intentional Architecture. The com-
putation of the best movement to be performed is based on a State-Action
table (Figure 3.8); the table associates a state and a movement to a relevant



26 Chapter 3. Cognitive Architecture

signal: when the system is in a certain state and performs a movement, the
relevant signal generated by this state-performed movement combination is
stored in the table. The policy for movement selection for each input state
follow these rules:

• if there is a movement associated with a relevant signal above a defined
threshold, that movement is selected;

• otherwise, if there is a movement not performed yet, that movement
is selected;

• otherwise, if all movements have already been performed at least once,
and no one is associated with a relevant signal above a defined thresh-
old, a new random movement is added to the list.

Each movement is a set of weights to apply to primitives in order to obtain
a muscular activation. Once a movement is selected, it is used to linearly
combine primitives, and the resulting vector is sent to the agent. The agent
can use this output to compute the correct joint values and move according
to the information it has received.

Figure 3.8: The State-Action table
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IDRA software architecture

“It - could - work!”

Doctor Frankenstein, Young Frankenstein.

The project IDRA - Intentional Distributed Robotic Architecture - is the
main program reflecting the implementation of the Cognitive Architecture
model here proposed.
It was specifically designed to be as modular as possible, in order to allow
further addition of innate abilities in the Phylogenetic Module, new kinds
of sensor’s inputs, and new kinds of actuator’s behaviors. Moreover, it is
designed to be virtually able to adapt to every robot the user would like to
use it with.

The project was developed in C# using Microsoft Visual Studio 2010,
making extensive use of libraries and data standards that we specifically
developed for this project. In the current state of the work the project is
provided with C# implementation and XML config files for an Aldebaran
NAO robot, and with a dummy robot useful for preliminary testing.
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4.1 Design concepts

During the project design and development, we introduced some important
distinctions and classifications between the various kinds of data flowing in
the program, in order to represent at best the whole kind of data flowing in
a bio-inspired model.
First of all, we have the Sensor data. This is the actual data coming directly
from the sensors of the robot. Over the course of the program, the sensor
data identifies the raw untreated signals coming directly from the physical
sensors of the device: a RGB logpolar image sized with the maximum width
and height of the camera, is sensor data. They represent the electrical sig-
nals coming from the biological senses.
Then, Sensor data is passed to various filters, obtaining the Filter data.
these filters are several functions that process sensor data and extract the
desired features: a center-cropped Canny edge image, a saturation signal, a
soundwave with low frequency erased, are filtered data. They represent the
data as it arrives from the senses to the cortex.
The filtered data is then sent to the Instincts. These are the functions im-
plemented in the Phylogenetic Module, which respond to specific values of
specific types of filtered data; a high phylogenetic signal may be caused by a
high saturation signal, if the robot has an instinct for liking high saturated
images. They represent the sensory data after the preprocessing performed
by the amygdala.
Once the Intentional Architecture has produced its output, it is passed to
the movements part of the architecture; here we have the Behaviors, that is
the functions responding to specific output values of the Intentional Archi-
tecture, and ordering the robot to accomplish some kind of action; a function
responding to a certain output from the IA making the robot walk toward a
direction, is a Behavior. They represent the combination of motor patterns
that can be found in the cerebellum, the spinal cord and the motor cortex.
Finally, when we talk about Actuators, we are talking about the actual mo-
tors of the robot. Over the course of the program, the actuators receive
instructions from the Behaviors and initiate the physicals motors, the voice
reproducers, the LEDs activation, etc. They represent the actual muscles of
the body.

4.2 Software design

The architecture has been designed and implemented keeping in mind the
principles of software engineering. Its modularity allows a wide scalability,
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and easy maintenance of the code. In addition, the parts of which it is com-
posed have been designed to resemble the biological architecture, although
its structure will allow, in future, to be converted without too much diffi-
culty to a version where each module works in parallel and asynchronous
way.
In Figure 4.1 we can see the complete UML diagram of the architecture.
Squares with white background represent different projects inside the same
Visual Studio solution, while squares with dark background represent fold-
ers containing dll and XML files.
The architecture works in a straightforward way: in a normal single loop of
the working process, first of all the architecture retrieves the sensors data
from the robot; then it passes the data to the filters, and after their process-
ing, the treated data is sent to the Intentional Architecture, in particular to
the Phylogenetic Module and to the first layer of the Intentional Architec-
ture net. After the net has performed its computation, the output is sent to
the Behaviours, which determine the movement that have to be sent back
to the robot.
The IntentionalAgent class is the starting point of
our architecture; it is called by the graphic interface
at the bootstrap of the application, and it instanti-
ates both the Body and the Intentional Architecture
classes. During the running loop of the application,
the IntentionalAgent class serves as a bridge between
the other two classes, in order to exchange their data.

The Body class, as the name suggests, receives inputs
from the ‘senses’ (the robot class), transforms them
(through various filters), and sends the ‘electrical sig-
nal’ to the ‘nervous system’, which is the Intentional
Architecture. In a dual way, Body receives orders
from the ‘brain’ and sends ‘electrical signals’ to the
robot ‘muscles’. Therefore, at the start of the work-
ing loop, the Body retrieves input signals from the
specific robot class, through the RobotInterface.
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Figure 4.1: UML diagram of the architecture
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The RobotInterface interface is called by
Body when it has to instantiate the robot;
Body refers to RobotInterface whenever it
has to interact with the user-defined robot.
Thus, any new robot class implemented
by the user has to implement the interface
methods in order to work with the rest of the
architecture. In particular, RobotInterface
defines four functions for robot connection
and disconnection, for receiving its sensor
input, and for sending commands to the
actuators.

The Robots folder contains all the user-defined robots available, each one im-
plemented through a CS file. Each file describes how the application can
connect to and disconnect from the robot, how to retrieve data from each
one of its sensors, and how to send instructions to each one of its actuators.
This is beacuse most robots - commercially and not - available nowadays
use their specific functions and API in order to activate their peripherals;
this methods allow the architecture to abstract from the functioning of the
specific robot.
For example, during the testing phase, we used the Aldebaran NAO robot.
This machine uses the functions provided by the Aldebaran itself. These
functions are contained in the naoqidotnetvc90.dll library, located in the Li-
braries folder; but any other robot would need to have its proper libraries
added in this folder.
Once the Body has called the robot’s functions, it passes the untreated data
to the InputProcessing class, which contains all the filters used to process
the input from the sensors, before sending it to the Intentional Architecture.

It is divided in many subclasses, one for each type of sensor (audio, video,
proprioceptive, etc.); in particular, each subclass contains functions that
allow to encapsulate each type of sensor into a specific data format, IntArc-
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Type, which can be easily processed from the Intentional Architecture.
The IntentionalArchitecture class contains the Phylogenetic Module and the
Intentional Modules net. This class receives the filtered input and sends it
to the first layer of the net.
The PhylogeneticModule class is the Phylogenetic Module, which receives
in input the filtered sensors data, and produces as output the phylogenetic
signal. Notice that this module can receive input from different sources, and
treat each one of them in a different way, and then broadcast the relevant
signal to the whole network.

The IntentionalModule class contains a Categorization module, which stores
the various categories, and an Ontogenetic Module, which receives the cat-
egories and performs the Hebbian learning.
Notice that the IntentionalArchitecture class, as well as all its subclasses,
has a twin class in the NetTrainingLib Visual Studio project. This is a
modified version of the Intentional Architecture, and it is used for the pre-
liminary training of the IA net and of the motor part, as we will describe in
the next section. The functioning of the classes contained in this project is
completely analogous to the ones contained in the IntentionalArchitecture
project.
Once the Intentional Architecture has finished its computations, it sends the
Global Output Data and the Global Control Relevant Signal to the Output-
Synthesis class, which contains all the Behaviors classes used to generate
movements in the robot’s actuators. This class contains a list of all the
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Behaviors instantiated, each one related to a list of Actuators.

Each Behavior class contains a state-action table, that allows the Intentional
Architecture to choose the best movement that specific joints have to per-
form. Each row represents a specific state of the world, as indicated by the
Global Output Data; each column contains the weights records that have to
be applied to the motor primitives, and the class combines the primitives in
order to generate the final muscle activation signal.
The OutputSynthesis class sends the output of the Intentional Architecture
to each Behavior, which in return sends back the movements to apply to a
specific Actuator; the class sends the total list of movements to the Body
class, which in turn sends them to the Robot class, thus closing the loop.
In order to allow the user an easy config-
uration and combination of all the various
modules present in the software, several XML
config files have been designed and imple-
mented; most of them are editable through
the graphical interface, as described in Chap-
ter 4.3. The Robot folder, for example, con-
tains several XML files describing the name
of the robot, its IP address and port used
for the connection, the sensor-filter associa-
tions (which ones of the various filters has to
be applied to each sensor’s input), the filter-
instinct associations (which ones of the var-
ious instincts has to be applied to each fil-
tered input), and the behavior-actuators as-
sociations (which behaviors to use and which
actuators to be used with a specific behavior).
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The Sensors, Actuators and Behaviors folders contain several XML files, one
for each robot, and they describe a list of all the Sensors, a list of all the
Actuators, and a list of all the available Behaviors for a specific robot, re-
spectively. Notice that the lists in the Sensors and Behaviors are different
from the analogous lists that can be found in the robot XML file: the robot
could have many sensors and behaviors available, but the user can choose
which of these to use. The Robot XML file is then supposed to have two
subsets of the items in the lists contained in the Sensors and Behaviors XML
files, which instead contain the complete lists of all the possible sensors and
behaviors available.
Similarly, the Net folder contains the XML files describing all the modules
to be considered in the intentional module net (filtered sensor data, Inten-
tional Modules), and how all of this blocks are linked together.
The architecture makes use of various libraries, contained in the Libraries
folder. Some of this libraries are external or provided by third parties:
for example, we use the already cited naoqidotnetvc90.dll library, and also
Emgu and OpenCV libraries, which are used for the image elaboration, in
the InputProcessing class.

Furthermore, we make use of several custom libraries that we developed, in
order to provide different functionalities to the architecture. Among these
are the IdraCustomControls.dll library, which contains several custom con-
trols used to represent a filtered input and an Intentional Module in the
NetEditor window, in the TrainForm window, and in the Viewer window
(see Chapter 4.3 for a description of these windows); the ICAlib.dll library,
which contains various functions for the Independent Component Analysis
computation (see Appendix B for more informations about ICA and its usage
within our project); the KmeansLib.dll library, which contains various func-
tions for the K-Means clustering algorithm computation (see Appendix C
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for more informations about K-Means and its usage within our project); and
finally the SensorInput.dll library, which contains various enum variables,
i.e. Stype, which describes the sensor input type (video, audio, proprio-
ceptive, etc.), and Ftype, which describes the filters type (LogPolarRGB,
CartesianBW, etc.)
Moreover, this library contains the Sinput class, which is a generic object
containing all various types of sensors inputs, formatted in a standard way,
in order to be usable by Body regardless of the nature of the original in-
put. For example, if the Sinput’s type is the VideoInput subclass, the data
structure will be composed of three integers (width, height, number of lay-
ers), a colorspace enum (RGB, BW), and a three-dimensional byte array
(representing the image itself); if Sinput’s type is intArcInput - the input
accepted by the intentional architecture - it will be composed by an array
of floats for the data, two enums indicating the original sensor and filter
type, the sensor’s name, and a generic object for additional data. All input
from all kind of video sensor must be formatted according to this container
structure, before being passed to Body.
Finally, we have two folders where we
store all the output files of the archi-
tecture. The saveData folder contains
all the data used and generated from
the IDRA architecture, in various for-
mats: in particular it contains a bin
subfolder, a CSV (Comma Separated
Values) folder, a graph folder, and
an ICS (Independent ComponentS)
folder.
The trainData folder, instead, contains all the data used and generated from
the IDRA architecture during the training phase: in particular it contains
several subfolders, one for each trained net and one for each trained robot,
and each folder contains several BIN files containing data about the clus-
tering and the categories for each module of the net. See Chapter 4.3 for a
description of the training process.
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4.3 User interface

Starting the program, the first window appearing is the IDRA window (Fig-
ure 4.1): From here the user can see the available robot configurations (XML

Figure 4.1: The IDRA window

files located in the /IDRA/Config/Robot folder) and the available Inten-
tional Modules Network configurations (XML files located in the /IDRA/-
Config/Net folder).
For both categories, the user can select one of the existing configurations,
add a new one, edit an existing one, import, and remove.
The Bind button checks that the robot configuration and the net config-
uration selected are compatible. They are compatible only if every input
filtered signal indicated in the net config file is provided by the robot, as
indicated in the robot config file. Note that the opposite is not true: the
robot can send to the Intentional Architecture data that is not used from
the Intentional Module net (for example, data which is used only by the
Phylogenetic Module).
The info Panels show the main informations about the selected configura-
tions.
The Train button starts the TrainingSetup form. This button is disabled
until the Bind button gives a positive response.
The Finish button starts the Intentional Agent operation’s loop. This but-
ton is disabled until the training for the specific net and robot is complete.
Clicking the Add new or Edit button in the left column of the Idra window,
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the RobotEditor window appears (Figure 4.2): From here the user can select

Figure 4.2: The RobotEditor window

the robot name, choosing from the available robots (CS files located in the
/IDRA/AgentsLib/Robots folder).
Each robot has a list of physical sensors in the first column; for each sensor,
the applicable filters are listed in the second column; for each couple, the
applicable instincts are listed in the third column.
Once the user has selected the triplet of values, clicking the Add button will
add it to the actual configuration, in the bottom.
The fourth column shows the available behaviors for the selected robot; the
user can select a behavior and click the Add button to add it to the actual
configuration. Clicking the Edit button will show up the BehaviorsEditor
window (Figure 4.3): From here the user can add new behaviors or edit

Figure 4.3: The BehaviorsEditor window

existing ones, by checking the related robot’s actuators.
If the selected robot has not a sensors list already, or if the user wants to
edit the sensors list of an existing robot, clicking the Edit sensors button
will show up the EditSensors form (Figure 4.4): From here the user can see
the list of available sensors for a specific robot, and he can add new sensors,
specifying its type from the drop-down list.
If the selected robot has not an actuator list already, or if the user wants
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Figure 4.4: The EditSensors window

to edit the actuators list of an existing robot, clicking the Edit actuators
button will show up the EditActuators form (Figure 4.5): From here the

Figure 4.5: The EditActuators window

user can see the list of available actuators for a specific robot, and he can
add new actuators.
Once the user has set the IP address, port, and configuration name, he can
click Save to write the XML file and return to the IDRA main window.

Clicking the Add new or Edit button in the right column of the Idra
window, the NetEditor appears (Figure 4.6): In the left column, the user
can see a drop-down menu with all the possible filters applicable, the In-
tentional Architecture modules (Phylogenetic Module, Intentional Module,
Layer), and all the possible Behaviors applicable.
The user can drag and drop them from left to right in the desired position.
The minimum configuration provides the Filters Layer, a single empty IM
Layer, and the Behaviors Layer.
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Figure 4.6: The NetEditor window

Each IM has two drop-down menu, one for the input and one for the
output; using these menus the user can choose how to connect the various
modules in the net (Figure 4.7). The drop-down menus list an entry for

Figure 4.7: Intentional Modules in the NetEditor window

each sensor input (which is treated as a vector), an entry for each behavior
(which receives input as a scalar), and two entries for each IM (since they
have two inputs and two outputs: the category vector, and the relevant sig-
nal). These vectors and scalars can be distinguished due to the final letter
in the list’s name (V and S respectively).
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Once the user has finished configuring the net, he can save it as a XML file
choosing an appropriate name and clicking the Save button.

Clicking the Train button will show up the TrainingSetup form (Figure
4.8). This window allows the user to set a number of parameters necessary
for the testing phase. In particular, it is used to tune several data relative
to the ICA algorithm (see Appendix B), several data relative to the K-
Means algorithm (see Appendix C), and several data relative to the Motor
Primitives combination (see Chapters 3.2). It also allows to choose if the
user wants to perform the IM network training, the robot’s motor training,
or both. Clicking the OK button will show up the TrainViewer window

Figure 4.8: The trainingSetup window

(Figure 4.9). This window presents five buttons at the bottom:

• Connect to Robot: creates the connection with the robot; the other
four buttons are disabled, before the connection is estabilished.

• Play: runs the logic for an indefinite number of turns.

• One Step: runs the logic one single turn.

• Pause: stops the logic keeping memory of what it’s done, and allowing
to start again with Play or One Step.
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• Stop: stops the logic without keeping memory of what is done; clicking
Play or One Step would make the computing start all over again.

Figure 4.9: The TrainingViewer window

If you run the logic with the console instead of the GUI, the training start
automatically in Play mode.
In the main panel, the TrainingViewer presents a grid, where each column
represent an Intentional Modules layer (except the first column, where there
are listed all the filtered inputs, and the last column, where there are listed
all the behaviors).
For every filtered input, a graphical representation is given (e.g., an image
is shown as an image; an audio signal is shown as an audio wave, etc.); for
every Intentional Module, it is shown its ID, the list of all the origins of
the input signal, the list of all the destination of the output signal, and the
values of the Ontogenetic signal and Relevant signal.
Clicking on the Focus button, on the top right corner of an Intentional Mod-
ule, would show up its related Focus window, showing detailed informations
about the module. Here are displayed the number of collected samples and
their dimension, the number of extracted independent components and their
dimensions, and the number of categories (see Figure 4.10).
Once the training is complete (i.e. when all the IMs in the net will have

collected a satisfactory number of categories), the results of the training will
automatically be saved as BIN files.
Clicking the Disconnect from Robot and the Finish button will bring the
user back to the IDRA window.

The Viewer window (Figure 4.11) presents five buttons at the bottom:
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Figure 4.10: The TrainingFocus window in training mode.

• Connect to Robot: creates the connection with the robot; the other
four buttons are disabled, before the connection is established.

• Play: runs the logic for an indefinite number of turns.

• One Step: runs the logic one single turn.

• Pause: stops the logic keeping memory of what it’s done, and allowing
to start again with Play or One Step.

• Stop: stops the logic without keeping memory of what is done; clicking
Play or One Step would make the computing start all over again.

Figure 4.11: The Viewer window

If you run the logic with the console instead of the GUI, the programs start
automatically in Play mode.
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In the main panel, the Viewer presents a grid, where each column represent
an Intentional Modules layer (except the first column, where are listed all
the filtered inputs, and the last column, where are listed all the Behaviors).
For every filtered input, a graphical representation is given (e.g., an image
is shown as an image; an audio signal is shown as an audio wave, etc.);
for every Intentional Module, are shown its ID, the list of all the origins of
the input signal, the list of all the destination of the output signal, and the
values of the Ontogenetic signal and Relevant signal.
Clicking on the Focus button, on the top right corner of an Intentional Mod-
ule, would show up its related Focus window, showing detailed informations
about the module. Here are displayed a line chart of Ontogenetic, Relevant
and Phylogenetic signal, and a bar chart of the categories (see Figure 4.12).
Once the simulation is complete (i.e. clicking the PAUSE button, NOT the

Figure 4.12: The formFocus window.

stop button), the user can click some of the Save buttons. The buttons are:

• Save Data: saves the categories in a BIN file, a lightweight and easy-
to-read file format;

• Save CSV: saves the categories in a CSV - Comma Separated Values
- file, which can be easily imported in Matlab or in a spreadsheet
program for further analysis and computations.

• Save graphs: saves the graphs of the Ontogenetic and Phylogenetic
history as a JPG file, for further analysis and visualization.

• Save All: does all of the above.

Clicking the Finish button will bring the user back to the IDRA window.
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4.4 Use cases

According to what has been described in the previous Chapter, there are
some possible use cases for the program. Figure 4.13 shows the activity
diagram for a generic user that opens the program for editing several config
files, that he could use later. We can see how he navigates through the
RobotEditor and NetEditor windows, and how he can add, edit or remove
items from the various lists of components, add or remove the Sensor-Filter-
instincts triplets, or drag and drop Intentional Modules and then connect
them.

Figure 4.13: Activity Diagram 1

At the end of the editing session, the user can simply click the Finish
button, and he can find his config files in the /Config folder.

Figure 4.14 shows the same user selecting two already existing config-
urations, one for the robot and one for the network, and then perform a
training. The user can decide to train the network, train the motor part,
or both. After the training phase, the related BIN files are automatically
saved, and he can return to the main window. At this point, the user can
start the main program functions, and see through the Viewer window hot
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the Intentional Architecture performs all the various operations described
so far.

Figure 4.14: Activity Diagram 2

Once the user decides to stop the execution, he can click on the stop
button, and, if he plans to restart the execution from where it stopped, he
can save the necessary information in BIN and CSV files; otherwise, the
execution of the program is finished.



Chapter 5

Experimental results

Marvin: “I am at a rough estimate thirty billion times more intelligent than
you. Let me give you an example. Think of a number, any number.”
Zem: “Er, five.”
Marvin: “Wrong. You see?”

The Hitchhiker’s Guide to the Galaxy

The Cognitive Architecture has been tested with various experiments,
in order to prove its main features: goals generation and smart movements
with Dynamic Behaviors. In the first experiment, we demonstrate how the
agent is able to learn the shape of an object, starting from an instinct related
to the color saturation of what it can see; in the second experiment, it moves
according to the relevant signal coming from the architecture, learning to
perform the movements that maximize this signal.

5.1 Experiment one: learning of new goals

One of the main features of the Intentional Architecture is its capability to
develop new goals, starting from hard-coded ones. To test the efficacy of
this feature, we have performed a simple experiment, with a basic network
composed of a single Intentional Module, and with the input coming from
a camera; the agent should be able to extract information about the color
saturation of the image, according to a hard-wired instinct, and then learn
the shape of the observed figure, thus developing a new interest for that
particular shape. This simple experiment is similar to the one performed
in [31], where the employed agent was a two degree of freedom robotic
camera. Although the experiment is similar, it is a good starting point to
test the goals generation feature of the Intentional Architecture in a simple
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environment, as well as a way to validate it. Moreover, we used an agent
far more complex compared to the previous one; in addition the previous
experiment was performed with a single IM implementation, while this was
the first time we performed the test with the full surrounding architecture.

5.1.1 Objectives

One of the main objectives of this architecture is to develop an agent who
can completely change the way in which it relates with the environment
through the experience that he receives from changes in the environment
itself. The architecture presents a clear-cut distinction between the goals
already present in the Phylogenetic Module and the ones that are generated
in the Ontogenetic Module. The former are hard-coded, while the latter
could be completely different according to the interactions of the agent with
the world. This is strictly related to what happens in nature, where the
former correspond to the animal’s instincts, and the latter to its personality
and how it evolves through the course of its life.
To prove this ability, a simple experiment has been set up, with a basic
architecture endowed with a single innate ability, i.e. the “attraction” to
colored objects; the test consists in showing how a new interest, i.e. the
“attraction” to specific shapes, could show up without the need to hard-
code it.

5.1.2 Settings

The experiment has been done using a NAO robot, a humanoid robot pro-
duced by Aldebaran Robotics. It is a complex robot, presenting 21 degrees
of freedom and numerous sensors including two cameras, a sonar, bumpers,
microphones, etc. During this experiment we have used only one sensor,
the frontal camera, namely CameraTop, and two actuators controlling head
movement, namely HeadPitch and HeadYaw (Figure 5.1).

The architecture runs on a Windows PC with the following technical
specifications:

• Processor: Intel Core i7 920;

• Video Card: Nvidia GeForce GTS 250;

• Memory: 4 GB DDR3 Ram;

• Hard-drive: 1 TB 7200 rpm;
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Figure 5.1: The Aldebaran Robotics NAO robot.

The test environment is limited to two board presenting different geo-
metrical figures with different colors (Figure 5.2). The first board presents
a series of black, colorless shapes, among which there is the shape of a black
star. The second board presents some shapes of stars, painted in highly
saturated colors. These boards are put on a wall in front of the NAO robot,
at an adequate distance to allow the camera to see the entire board while
moving.

Figure 5.2: The two boards used in test one.

During this test we used a 0.6 threshold for the creation of new categories,
a 0.6 threshold for determining the correlation of a signal to a category, a 128
limit for the number of clusters and number of categories, a 0.8 threshold
and a 0.1 learning rate for Hebbian learning. These parameters allowed us
to obtain a good rate in the memorization of categories and in learning from
them.
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5.1.3 Network of Intentional Modules

The network tested in this experiment is the simplest one. It is composed
by only one layer including a single Intentional Module, and it receives as
input just the video signal coming from the frontal camera.
This input is filtered in three different ways:

• logPolarBW filter: retrieves an RGB image from camera and returns
the same image in log-polar coordinates, in a single channel color space;

• logPolarSat filter: retrieves an RGB image from camera and converts
it in HSV (Hue Saturation Value) space, then returns the saturation
channel extracted from the image in log-polar coordinates.

• cartesianRGB filter: retrieves an RGB image from camera and re-
turns the same image in Cartesian coordinates in a three-channel color
space. This input it is not actually used by the architecture: it is sent
to the Viewer window (see Chapter 4.3), and it is useful in testing
environments, for letting humans to easily understand what the robot
is looking at, in every specific moment.

The Intentional Module receives as input the data from the logPolarBW fil-
ter in array form, while the data from the logPolarSat filter is received from
the Phylogenetic Module. The phylogenetic signal here represents the per-
centage of high-saturated pixels in the image. The output of the Intentional
Architecture is the output of the single Intentional Module composing the
net (Figure 5.3).

Figure 5.3: The architecture used in test one.

Since the experiment is related only to the development of new goals
and the Intentional Architecture, we did not use the motor implementation
to move the robot. Instead, in order to get better data from the test, move-
ments are randomly generated, using a uniform distribution for the angle
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and a bell-shaped Gaussian function for the amplitude of the movement.
The probability function of the amplitude is:

p(r, λ) = e−λr2∫ rmax
−rmax e

−λρ2dρ
(5.1)

where r is a random variable and λ is the relevant signal output from the
Intentional Module. We translated these mathematical functions in code as:

28 randomValue = new Random();
29

30 double cnst1 = 0.05;
31 double cnst2 = 15;
32 double cnst3 = 0.5;
33 delta = cnst3 / (iaSignal * cnst2 + 2);
34

35 double amp = Math.Sqrt(-2.0 * Math.Log(randomValue.NextDouble()*(1 -
cnst1) + cnst1)) * Math.Sin(2.0*Math.PI*randomValue.NextDouble());

36 double angle = randomValue.NextDouble() * 2 * Math.PI;
37 float randomHeadYaw = (float)(delta * Math.Cos(angle) * amp);
38 float randomHeadPitch = (float)(delta * Math.Sin(angle) * amp);
39

40 float[] headTurning = new float[2];
41 headTurning[0] = oldHeadYaw + randomHeadYaw;
42 headTurning[1] = oldHeadPitch + randomHeadPitch;

As we can see, the variance of the Gaussian function depends on the rel-
evant signal computed by the Intentional Architecture: an high value of the
relevant signal produce a small variance, thus making a narrow bell-shape;
as opposite, a low value of relevant signal produce a big variance making
a large bell-shape. According to this, when the NAO robot is interested in
what it sees, the movement of the head is small, while non attractive images
lead to wide head movements.

Figure 5.4: From Gaussian values to head rotation.
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Training of the net

In order to project input in the basis space, independent components must
be extracted through ICA algorithm. Since the net is composed by one single
Intentional Module receiving a video input, ICA is executed on images com-
ing from the camera. Parameters used for extract independent components
are:

• number of sample: 2000;

• max number of iteration: 200;

• convergence threshold: 10−5;

• max number of independent components: 32;

• eigenvalue threshold: 10−4.

Since the Motor System is not used in this test, the training is limited to
the extraction of independent components.

5.1.4 Test execution and results

The experiment produced good results in the goal generation task.
In the first part of the experiment, the board is composed only by black col-
ored geometrical figures (including a star-shaped figure). The interest of the
NAO robot is more or less equal for every part of the board (Figure 5.5a).
Figure 5.5b shows a chart of the points the agent is looking at. We can
see how it aimlessly points at every part of its visual field, since he cannot
find anything interesting. Figure 5.5c shows a line graph of the phylogenetic
signal (red) and ontogenetic signal (blue); of course in this first phase they
are always set to zero.

After some steps, the board is changed with a new one, showing only
star-shaped figures with high-saturated colors. Now the interest of the NAO
robot is focusing on the three star-shaped figures areas (Figure 5.6a).

Figure 5.6b demonstrates how the gazes of the agent are now focused
around the objects of interests, that is the colored shapes (it is just bad luck
if it scarcely looked at the red star, since it is always moving in a random
direction; more steps in this phase would have shown how it was going to
focus on the three stars equally). Figure 5.6c shows how the phylogenetic
signal (red line) rapidly increases when it finds something interesting. We
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Figure 5.5: The first test, part one.

Figure 5.6: The first test, part two.
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can also see how the red line is soon followed by an increase in the value
of the blue line; this indicates how the Ontogenetic Module is starting to
analyze the stored categories, and therefore it is starting to develop interest
in the shapes of the objects that it can see.

Phylogenetic signal is high when the camera is focusing on colored fig-
ures, making the Intentional Module developing new categories. Through
the Hebbian learning function, the Ontogenetic Module uses these developed
categories in order to develop a new goals. The ontogenetic signal increases
as the learning process is running.
After some categories have been developed, the board is switched again with
the first one. Unlike before, the interest of the NAO robot is now focused
on the star-shaped figure, which is black colored, meaning that the learning
process of the Ontogentic Module has developed a new interest in the shape
of the figure, which goes in addition with the previous interest for its color
(Figure 5.7).

Figure 5.7: The first test, part three.

Figure 5.7b Demonstrates how the gazes of the agent are now focused
around the objects of interests, that is the star shape, which was basically
ignored in phase 1. Figure 5.7c shows how the phylogenetic signal (red line)
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turns back to zero, since it cannot see anything interesting according to
innate criteria. The blue line, instead, is showing high values, just like in
phase 2. This is because the Intentional Module learned to be interested in
the shapes of the objects that the robot can see.

This result confirms the capability of the intentional architecture of de-
veloping new goals that can be different from hard-coded ones.

5.2 Experiment two: learning of new movements

In the previous experiment we tested the ability of the architecture to de-
velop new goals; in this second experiment, we test the ability of the archi-
tecture to learn new movements, according to its predefined behaviors.

5.2.1 Objectives

One of the main limitations of the first experiment is that it relegates the
agent to a passive role, in its ability to learn from experience. The Gaus-
sian movement of the head is a basilar solution in order to have a visual
representation of the interest of the agent in what it can see: we could have
obtained the same results holding the head still and manually showing some
figure in front of the camera.
Once the agent has learned from the experience, we need it to be able to
take some course of actions in order to interact with the environment, and
so change its own perceptions towards a more satisfying condition.
The objective of the experiment is to test the Behavior and OutputSynthe-
sis parts of the architecture, in particular its movement generation features.
Starting from a simple hard-coded instinct, i.e. the “attraction” to colored
object, and the ability to move only one of its arms, the robot learns which
movements would allow him to see a colored object and then how to increase
its reward signal.

5.2.2 Settings

The experiment is conduced using the same NAO robot we used in the pre-
vious experiment. During this experiment we have used only one sensor,
the frontal camera, namely CameraTop, and four actuators controlling the
movement of the right arm: RShoulderPitch, RShoulderRoll, RElbowRoll,
RElbowYaw (Figure 5.8).
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Figure 5.8: The NAO robot and its beloved heart.

The test has been performed on the same previous PC.
The test environment did not require anything more than the robot itself,
a colored object, and a white background (to avoid the presence of other
colored objects).

During this test we used a 0.5 threshold for the creation of new cate-
gories, a 0.28 threshold for the K-means algorithm, a 0.3 threshold for the
minimum distance between centroids of clusters, a 1000 limit for number
of points per cluster, a 10 limit for the number of clusters and number of
categories, a 0.8 threshold and a 0.1 learning rate for Hebbian learning, a
0.8 threshold for the choice of the best possible movement in the Behaviors.
For the motor primitives part, we have used 5 Gaussians as primitives, each
one with a 6.7 standard deviation and a mean value calculated in order to
equally distribute the functions on a scale from 0 to 100.
With respect to the previous experiment, we drastically reduced the num-
ber of categories and clusters; this because in the first experiment the head
pointing was largely random, and therefore what the agent could see was
continuously changing. In the second experiment, instead, the head was
fixed, therefore the head kept looking at the same point, unless the arm it-
self did not pass in front of the camera, thus with scarce chances to create a
decent number of categories. Instead, with regard to the arm, it has a very
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limited input dimension (4, as much as the number of considered joints),
especially with respect to the video input (we used a 160x120 image, thus
the video input had a dimension of 19200 pixels). Limiting the number of
categories allowed us to have a decent representation of the scarcely chang-
ing environment in which we put the robot.
What we said does not mean, of course, that the system could not work
with a higher categories limit; nevertheless, the creation of a high number of
meaningful categories and clusters would require considerably longer train-
ing times, which is beyond the scope of this thesis. As most of the offline
training algorithms used nowadays, ICA and K-Means require a solid input
signals base, in order to obtain good analysis data; and these basis require
long times for the acquisition, and even longer times for the computation.
Anyway, even if in a limited scale, our test showed the desired results, as we
will show in Section 5.2.4.

5.2.3 Network of Intentional Modules

The network in the second experiment is slightly more complex than the
network we used in test one.
First of all, we have two input signals, filtered in four different ways:

• logPolarBW filter: retrieves an RGB image from camera and returns
the same image in log-polar coordinates, in a single channel color space;

• logPolarSat filter: retrieves an RGB image from camera and converts
it in HSV (Hue Saturation Value) space, then returns the saturation
channel extracted from the image in log-polar coordinates.

• cartesianRGB filter: retrieves an RGB image from camera and returns
the same image in Cartesian coordinates in a three-channel color space
This input it is not actually used from the architecture: it is sent
to the Viewer window (see Chapter 4.3), and it is useful in testing
environments, for letting humans to easily understand what the robot
is looking at, in every specific moment.

• rightArmPosition filter: retrieves the proprioceptive informations about
the four joints of the right arms: that is, it returns a vector containing
the joints angles values expressed in radians.

Then, we have an Intentional Architecture composed by two layers; the
first layer contains two Intentional Modules. The first Intentional Module is
similar to the one we have seen in the first experiment: it receives logpolar
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gray images and records the shapes of the objects. The second intentional
module, instead, receives the proprioceptive data about the position of the
right arm.
Both these modules send their output vector and relevant signals to a third
module, situated in layer 2. This module’s output therefore represents the
state of the known world: it combines the information about what it can see
(how the world looks like), and where its arm is (what can it do to modify
the world).
The Phylogenetic Module, like before, receives the logPolarSat filtered in-
put, and then broadcast its signal to all the net. Therefore, if the robot is in
a state where he can see colored objects, the third Intentional Module will
have a high outgoing relevant signal (Figure 5.9).

Figure 5.9: The architecture used in test two.

Training of the net

In order to project input in the basis space, independent components must
be extracted through ICA algorithm. In this second test, the net is composed
by two layers of Intentional Modules receiving different type of information:
Intentional Modules of first layer receives video and proprioceptive infor-
mation, while the Intentional Module of the second layer receive as input
the output of first layer. According to this, the first Intentional Module
computes ICA on video images, the second one on joints values of right arm
(RShoulderPitch, RShoulderRoll, RElbowRoll, RElbowYaw) and the third
Intentional Module computes ICA on the combined output of the others.
Parameters used for extract independent components are:
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• number of sample: 2000;

• max number of iteration: 200;

• convergence threshold: 10−5;

• max number of independent components: 32;

• eigenvalue threshold: 10−4.

Once the net is trained, clusters for the Motor System should be computed.
While the net is running, samples of the output are collected, then K-Means
algorithm is executed to create clusters (see Appendix C). Parameters used
for creation of the clusters are:

• number of sample: 2000;

• number of clusters: 100;.

5.2.4 Test execution and results

The experiment starts with the robot in a random position. When the pro-
gram begins its execution, the NAO robot is free to move its right arm
according to activation profiles received from the Motor System. At the
beginning, the State-Action table is empty, and movements are chosen and
executed randomly. After a number of steps, the table starts filling, as ex-
plained in chapter 3.2, and movements begin to be coherent with the max-
imization of the relevant signal received from the architecture. When the
table contains a good number of entries, movements start to be frequently
repeated, and we can observe that the same positions are reached, cycli-
cally: several positions of the arms (rows in the State-Action table) know
the reference to a movement (column in the State-Action table) that bring
the hand to a position with a high relevant signal; several positions with a
high relevant signal know many movements, but none of them brings the
hand to a position with a high relevant signal. Therefore we observe the
robot starting from a random position, going towards a good position (one
with an high relevant signal), and then going towards a random position,
and so on. The results of the experiment is shown in Figures 5.10 and 5.11:

Figure 5.10 shows the positions reached by right hand during a thousand
iterations, in a three-dimensional space, from three points of view: front, side
and top. The frame of reference is centered in the body of the robot, and we
can notice the spherical displacements of the positions reachable from the
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Figure 5.10: The hand positions in test two.

end effector of the NAO robot. More important, we can see the creation of
some clusters, which represents the various positions cyclically reached by
the robot.
In Figure 5.11, we can see the positions clusters manifesting the higher rele-
vant signals, colored in red. For each cluster, we report a 3D representation
of the NAO robot, showing its position, and what it can see through its top
camera. We can notice how in the three pictures the ball is roughly at the
center of its visual field.

Figure 5.11: The most relevant hand positions in test two.
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The implemented Motor System is extremely simple, with obvious lim-
itations: the movements that maximize the relevant signal are performed
only if the state is known, and if the State-Action table has the correspond-
ing entry. According to this, the table requires a lot of entries to produce
an effective movement selection system.
Furthermore, the motor training has been run for a relatively short period
of time, compared to the long training times usually employed for train-
ing algorithms such as ICA or K-means clustering. As a consequence, the
State-Action table presented a rather limited extension, in comparison with
the high dimension of the input representing all the possible states of the
environment. In particular, the limited number of columns and the static
environment (nothing changes except for the position of the arm), causes
the robot to execute always the same movements, whence the clustering:
from any positions, a movement can bring the arm to a very limited set of
positions in the three-dimensional space. This is worsened by the static envi-
ronment: every movement always produces approximately the same move-
ment, thus once the robot found a movement with a high relevant signal
associated, he will never feel the need to explore new possibilities. Even
more, although the brain has been proven to have an associative memory
of sequences of patterns [4], the system here presented has no memory of
previous actions: each action is “atomic” and totally unrelated to others.
Therefore, the system is not able to “concatenate” two or more actions in
order to reach a goal that is impossible to reach from a specific position in
a single move.
Despite these limitations, our results are perfectly coherent with the ob-
jective of the experiment: the robot moves accordingly to the linear com-
bination of primitives, and it is able to learn what movements has to be
performed to go from a known state to a state with a high reward in the
form of a high relevant signal. In addition to this, the experiment led to the
creation of a sensorimotor map through the cognitive architecture. For all
these reason, the implemented Motor System is an excellent starting point
for the development of an effective and complex system which allows the
agent to move in a smart way according to its goals.
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Chapter 6

Future development and
conclusions

“For now, we assume that self-evolving robots will learn to mimic human
traits, including, eventually, humor. And so, I can’t wait to hear the first
joke that one robot tells to another robot.”

Lance Morrow

6.1 Conclusions

The aim of this thesis is the creation of a bio-inspired software architecture
based on the processes that take place in the human brain, based on an
amygdala-thalamo-cortical model; this architecture must be able to learn
new goals, as well as to learn new actions that could let it achieve such
goals.
The architecture has been successfully designed and implemented as shown
in Chapter 4. Its modularity will permit to add new functionalities at ease;
the already present functionalities demonstrate how the architecture is able
to receive input from the agent’s sensors, elaborate them according to pre-
defined goals, store the information about objects of relevance, and then
develop new goals starting from its memory of the past experiences. Our
first experiment, for example, has shown how the architecture is able to
process what it can see according to a single criteria, and then develop an
interest in some specific features of what it can see, interest that was not
present at design time.
Moreover the architecture has been extended, and it is now able to employ
different actuators of the robot’s body, as well as to learn the best action
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to perform in a given situation, in order to interact with the environment
and then to obtain the highest reward possible from its actions. Our second
experiment has shown how the agent is able to keep memory of the past
situations where it had found itself at, and act accordingly to the achieve-
ment of its goals, whether innate or acquired. Once the position of its arm
is registered, and once the agent learned the correct movement to perform
in order to bring the object in front of its face, it is able to execute the
right movement every time its arm is found in that particular position. Be-
sides this, the intrinsic dynamicity of the architecture allows the agent to
acknowledge the changings in the environment that are independent from its
own actions, and then recalibrate the goodness of its actions for a particular
situation.
The ability of developing new goals have been successfully tested, and it
is working correctly as long as the agent receives sufficient stimuli for its
basilar instincts; the simple addition of new instincts would let the agent to
learn from many different aspects of the surrounding world.
The ability of developing new behaviors has been tested, and the results are
satisfying. The motor part is correctly analyzing the situation of the world,
and it is able to determine the best movement for any given situation. Yet,
during the test the State-Action table has reached a limited dimension, due
to the shortness of the training period itself, and this is a great limitation
for the ability of the robot to cover the whole extent of its capabilities, since
the robot was not able to test the whole extent of the environment states,
and thus limiting its actions to a restricted pool.
Anyway, the architecture is well able to achieve the goals that we had set,
and therefore this is an excellent starting point for future developments,
that would improve the performances and precision of the implementation
described here.

6.2 Future development

Despite the cognitive architecture we proposed in this thesis obtained good
experimental results, it is still at a preliminary stage of development, since
it is based on new ideas and concepts, and it was raised from scratch during
the course of this project thesis. Therefore, a lot of improvements could be
implemented to further develop this new architecture, and they are planned
for the future.



6.2. Future development 65

6.2.1 Multiple-layer dynamic network

Ideally, the Intentional Architecture has the ability to develop new com-
plex goals, and make mental associations in order to learn new concepts.
To reach this objective, a lot of improvements have to be done on the in-
tentional architecture, from input processing to the network of Intentional
Modules itself.

At present, the Intentional Architecture receives inputs from a few types
of sensors and filters (video and proprioceptive). The use of different types
of input (e.g. audio, tactile, sonar, etc.) and their integration could led to
a better representation of the environment, giving more information to the
computation of new categories. These inputs are processed by a network
composed by only two layers: the first one receives inputs from sensors and
the second one, composed by one module, computes the data from the first
layer and elaborates the output of the entire Intentional Architecture. al-
though this network is enough for the generation of new goals, it is one of the
simplest that could be done. A more complex network, composed by more
than two layers, should be implemented to test the idea that an increasing
number of Intentional Modules leads to better performances (Figure 6.1).
Lots of research should be spent to study the correct way to connect Inten-
tional Modules, making them communicate in a smart and efficient way.
Another important features to be made is the adaptability of the network of
Intentional Modules. The network should be dynamic: new modules have
to be created at run time if needed, as well as existing modules have to be
deleted once they are obsolete. According to this, we need to study when to
create new modules and when to destroy existing ones, basing our research
on the dynamics of the brain.
An Intentional Architecture with all these feature could be a good candi-
dates to reach our complex goal.

6.2.2 Improvements in data abstraction

Abstraction from raw input data must be done in order to get generality, as
well as adaptability to unknown situations. To obtain this feature, we imple-
mented the Independent Component Analysis algorithm (ICA, see appendix
B). This is a statistical-based algorithm, and it needs a lot of samples to
extract the independent components. According to this, a time-expensive
training phase has to be done to allow the system to extract its features:
thousands of samples must be collected, before the algorithm can compute
its output. As a future development, the system need to be able to get ab-
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Figure 6.1: An ideal complex network of intentional modules

straction from raw input data while it is running, without having to wait for
the computation of independent components. To obtain this result, a new
way to abstract from inputs should be studied. New algorithms should be
tested to compare results and verify which one leads to better performances.
An ICA online algorithm could also be studied and implemented.

6.2.3 Hierarchical movements and behaviors learning

An improvement of the Intentional Architecture is certainly a fundamen-
tal requirement to obtain better results; the development of new goals and
concepts, however, is totally useless without a motor system able to satisfy
these new goals in an optimal way.

As we have shown, the motor system is able to generate movements by
linear combination of motor primitives, as well as to use these movements
to satisfy new and pre-defined goals. The concept of motor primitives could
be improved, with more research on this topic and on the way they are used
by our motor system. Movements could be created hierarchically, using the
combination of motor primitives to generate a set of movements, and then
combining this new set of “first order movement” to generate a more com-
plex set of movements. This way, some tasks could be accomplished in a
simple and automatic way, without complex computations.
The choice of the best movement to perform is as important as the movement
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generation itself. At this time, this task is executed by the State-Action table
of dynamic behaviors; but this is a very simple system, too much dependent
from a satisfactory training phase. An improvement to the State-Action
table can be the implementation of a neural network. By using a neural
network, a behaviors should be able to predict the best movement also in
an unknown state.
The agent is able to develop new movements for a specific behavior, but it
is not able to create new behaviors, or to mix behaviors abilities using, for
example, different combinations of actuators. A fixed number of behaviors
is a significant limit to the motor system, which is unable to evolve the same
way as the rest of the Intentional Architecture. In a future development, the
list of behaviors needs to be dynamic: the agent should generate not only
new goals, but also new complex behaviors in order to better satisfy these
goals.

6.2.4 Distributed computation

By a technical point of view, the implementation of the architecture re-
quires a low-end hardware to be executed with good performances. How-
ever, aforementioned improvements to the cognitive architecture requires
certainly more computational power in order to be executed with the same
performances.

One way to get more computational power is making the architecture
distributed. Current implementation acts in a synchronous way, without
taking advantage of threading. An intentional module that receives inputs
from other modules need to wait until their data are ready. This causes a
significant performance loss.
As self-explained by its name, the IDRA project is meant to be distributed,
so the list of first future improvements includes the implementation of a
distributed and asynchronous version of the architecture in a thread-like
structure. In the far future, it would be possible to consider to implement a
version of the architecture that may be spread on more computers, thus tak-
ing advantage of more memory and computing power. Such version should
be totally asynchronous.
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6.2.5 Multiple agents

The cognitive architecture has been tested only with NAO, a humanoid robot
produced by Aldebaran Robotics. Nevertheless, one of the main features of
the cognitive architecture is generality. The architecture should work the
same way with all kinds of agents, whether real or virtual, humanoids or not.

According to this, the cognitive architecture needs to be tested with
different types of agents. In future, different robots implementation will be
put under test, to see the efficacy of the system with any robotic or virtual
agent. Implementation of the cognitive architecture in a virtual agent could
be of interest to test the application of the system in the field of videogames,
aiming at the creation of a realistic and autonomous character.
It would also be interesting to experiment with the interaction between
multiple agents. New goals and behaviors could emerge by the interaction
among multiple robots, leading to group behaviors, with agents cooperating
to satisfy a common goal.
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Appendix A

IDRA code excerpts

In this chapter we present the code of IDRA implementation. About four-
teen thousand lines of codes has been written, so we decided to describe
only the main classes and functions of the implemented software.

A.1 Intentional Agent

IntentionalAgent class is the “engine” of the system, connecting each mod-
ule: it manages the execution of the program, as well as the flow of data
between the various parts of the system.
We present the main functions of the class: the Init() function, which per-
forms the initialization of the modules, and the loop() function, that manages
the execution flow of the program.

167 /// <summary>
168 /// Function initializing the variables and starting the connection with the

robot.
169 /// </summary>
170 public void init()
171 {
172 Console.WriteLine("Initializing␣the␣application.");
173

174 //Useful for saving in CSV format: set the decimal separator from "," to
"."

175 System.Globalization.CultureInfo customCulture =
176 (System.Globalization.CultureInfo)System.Threading.Thread.CurrentThread.

CurrentCulture.Clone();
177 customCulture.NumberFormat.NumberDecimalSeparator = ".";
178 System.Threading.Thread.CurrentThread.CurrentCulture = customCulture;
179

180 //Prepare table for net configuration
181 layersList = new Hashtable();
182 linkVecList = new Hashtable();
183 linkSigList = new Hashtable();
184 behavioursToActuators = new Dictionary<string, string[]>();
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185

186 //Create Intentional Architecture
187 IA = new IntentionalArchitecture();
188 tIA = new TrainIntentionalArchitecture();
189

190 //Create body
191 body = new Body();
192

193 //Get filters and instincts list
194 filtersName = body.getFiltersNames();
195 instinctsName = IA.getInstinctList();
196 }

256 /// <summary>
257 /// Main running loop.
258 /// Each loop receives data from sensors and sends them to the intentional

architecture,
259 /// and then receives instructions from the intentional architecture and

sends them to actuators.
260 /// </summary>
261 /// <returns>true if success, false otherwise</returns>
262 public bool loop()
263 {
264 //Receives data from sensors.
265 iaInput = body.runSensors();
266 if (!isTrainingNetMode)
267 {
268 Console.WriteLine("Starting␣step...");
269 //Sends input data to intentional architecture.
270 IA.IAinput = iaInput;
271 //Calculate the output of the intentional architecture
272 IA.computeIAsignal();
273 //Get the output signal
274 iaOutput = IA.IAsignal;
275 //Get the output state
276 iaState = IA.IAstate;
277 //Send data to actuators
278 body.runActuators(iaState, iaOutput, false);
279 }
280 else
281 {
282 //Sends input data to intentional architecture.
283 tIA.IAinput = iaInput;
284 //Calculate the output of the intentional architecture
285 tIA.computeIAsignal();
286 //Get the output signal
287 iaOutput = tIA.IAsignal;
288 //Get the output state
289 iaState = tIA.IAstate;
290 //Send data to actuators
291 body.runActuators(iaState, iaOutput, tIA.IsTraining);
292 }
293

294 //Check if the motor training is runnig.
295 this.trainMotor = body.getTrainingStatus();
296
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297 //Send data to actuators
298 Console.WriteLine("Step␣has␣ended...");
299 return true;
300 }

A.2 Intentional Architecture

The IntentionalArchitecture class manages the network of Intentional Mod-
ules, allowing their communication and computing the output of the net.
We present the code that performs these operations, respectively with the
createIMNet(...) function and the computeIAsignal() function.

269 /// Create the net of Intentional Modules
270 /// </summary>
271 /// <param name="layersList">Hashtable containing the list of layers and IM

for each layer</param>
272 /// <param name="linkVecList">Hashtable containing the list of all vector

links</param>
273 /// <param name="linkSigList">Hashtable containing the list of all signal

links</param>
274 /// <param name="netFileName">Name of the net</param>
275 public void createIMNet(Hashtable layersList, Hashtable linkVecList,
276 Hashtable linkSigList, string netFileName)
277 {
278 ims = new Hashtable();
279 ArrayList vectorSenderList = new ArrayList();
280 ArrayList controlSenderList = new ArrayList();
281 foreach (string s in layersList.Keys)
282 {
283 if (s.Contains("Layer"))
284 {
285 foreach (string name in ((ArrayList)layersList[s]))
286 {
287 vectorSenderList.Clear();
288 foreach (string link in linkVecList.Keys)
289 if (((string[])linkVecList[link])[1].Contains(name))
290 {
291 vectorSenderList.Add(((string[])linkVecList[link])[0]);
292 }
293 controlSenderList.Clear();
294 foreach (string link in linkSigList.Keys)
295 if (((string[])linkSigList[link])[1].Contains(name))
296 {
297 controlSenderList.Add(((string[])linkSigList[link])[0])

;
298 }
299 ims.Add(name, new IntentionalModule(name, vectorSenderList,
300 controlSenderList, loadICS(netFileName, name)));
301 }
302 }
303 }
304 //Set the name of the last IM in the net to get the correct output
305 int max = -1;
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306 foreach (string imName in ims.Keys)
307 {
308 int layerNumber = Convert.ToInt16(imName.Split(’.’)[1]);
309 if (layerNumber > max)
310 {
311 lastImName = imName;
312 max = layerNumber;
313 }
314 }
315

316

317 //Set the vector links between IM using the delegate method
318 foreach (string link in linkVecList.Keys)
319 {
320 string sorg = ((string[])linkVecList[link])[0];
321 string dest = ((string[])linkVecList[link])[1];
322 if (sorg.Contains("IM") && dest.Contains("IM"))
323 ((IntentionalModule)ims[sorg]).InputDelegate +=
324 new vectorInputDelegate(((IntentionalModule)ims[dest]).getVectorInput);
325 }
326

327 //Set the control links between IM using the delegate method
328 foreach (string link in linkSigList.Keys)
329 {
330 string sorg = ((string[])linkSigList[link])[0];
331 string dest = ((string[])linkSigList[link])[1];
332 if (sorg.Contains("IM") && dest.Contains("IM"))
333 ((IntentionalModule)ims[sorg]).ControlDelegate +=
334 new ControlSignalDelegate(((IntentionalModule)ims[dest]).getControlInput);
335 }
336 }

102 /// <summary>
103 /// Compute the output of the Intentional Architecture
104 /// </summary>
105 public void computeIAsignal()
106 {
107 //Computes phylogenetic signal.
108 phyMod.computePhySignal(iaData);
109

110 //Sends phylogenetic signal to all the intentional module.
111 foreach (string imName in ims.Keys)
112 ((IntentionalModule)ims[imName]).PhySignal = phyMod.PhySignal;
113

114 //Pass the new data from sensors to IM
115 foreach (string imName in ims.Keys)
116 ((IntentionalModule)ims[imName]).getVectorInput(iaData, "Filter");
117

118 //Send the correct output
119 iaSignal = ((IntentionalModule)ims[lastImName]).RelevantSignal;
120 iaState = ((IntentionalModule)ims[lastImName]).Output.OfType<float>().

ToArray();
121

122 //Prepare the data to be displayed
123 moduleValues.Clear();
124 foreach (string imName in ims.Keys)
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125 {
126 IntentionalModule im = (IntentionalModule)ims[imName];
127 float[] temp = new float[130];
128 for (int i = 0; i < temp.Length; i++)
129 temp[i] = -1;
130 temp[0] = im.getOnthogeneticSignal();
131 temp[1] = im.RelevantSignal;
132 im.getCategoriesCorrelation().CopyTo(temp, 2);
133 moduleValues.Add(imName, temp);
134 }
135 }

A.2.1 Categorization

The process of categorization is one of the most important part of the ar-
chitecture: creation of new goals depends on the neural activation of cat-
egories. Categorization is performed in CategorizationModule class, using
the categorize() function.

159 /// <summary>
160 /// Creates new categories
161 /// </summary>
162 public void categorize()
163 {
164 List<Cluster> clusters = new List<Cluster>();
165

166 //Categorize only relevant and different information
167 if (catMemory.Count < maxNumOfCluster &&
168 relevantSignal > relevantSignalThreshold)
169 {
170 //Get the input data in single format
171 float[] temp = new float[input.Count];
172 for (int i = 0; i < input.Count; i++)
173 {
174 temp[i] = Convert.ToSingle(input[i]);
175 }
176

177 //Create a point and perform clustering
178 Point p = new Point(temp);
179 clusters = kmeans.DoKMeans(p);
180

181 catMemory.Clear();
182 foreach (Cluster c in clusters)
183 {
184 ArrayList tempArr = new ArrayList(c.Centroid.PointData);
185 catMemory.Add(tempArr);
186 }
187 }
188 }
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A.2.2 Hebbian Learning

Goals generation is managed by the OntogeneticModule class. Hebbian
learning is at the base of the goals development process, and it is imple-
mented with the hebbianLearning() function.

99 /// <summary>
100 /// Hebbian learning function. This function ensures that whenever a certain

level
101 /// of correlation (defined by thresholdFixing) is established,
102 /// the system stops looking for a positive correlation
103 /// and that signal is definitely assumed to be relevant. (=1.0)
104 /// </summary>
105 public void hebbianLearning()
106 {
107 for (int i = 0; i < weights.Count; i++)
108 {
109 if ((float)weights[i] > thresholdFixing)
110 {
111 weights[i] = 1.0f;
112 }
113 else
114 {
115 float j = (float)(input[i]);
116 weights[i] = (float)weights[i] + learningRate *
117 (hebbianSignal * j - ((float)weights[i]) * j * j);
118 }
119 }
120 }

A.3 Motor System

Movements are generated through combination of motor primitives and the
best movement to perform is selected according to a predefined policy, aim-
ing at maximizing the relevant signal. These operations are executed by two
classes: OutputSynthesis class and Behaviour class.
In OutputSynthesis class there is the getMovement(...) function, which com-
pute the activation profiles that are sent to the agent.

73 /// <summary>
74 /// Get the activation profiles of joint values to generate the robot’s

movement.
75 /// </summary>
76 /// <param name="state">Current state of the environment</param>
77 /// <param name="relSig">Relevant signal associated to the current state.</

param>
78 /// <param name="isNetTrainingMode">true if system is in net training mode, false

otherwise</param>
79 /// <returns>List of joint values for the actuators</returns>
80 public Dictionary<string, float[]> getMovement(float[] state, float relSig,

bool isNetTrainingMode)
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81 {
82 float[,] weights;
83 bool[] BehaviorsTrainingStatus = new bool[behaviourList.Count];
84 Dictionary<string, float[]> movements = new Dictionary<string, float[]>();
85

86 //Get the cluster corresponding to the current state
87 int pointCluster = km.getPointClusterId(new Point(state));
88

89 foreach (Behaviour behavior in behaviourList)
90 {
91 //IF the net is not training, get a value from behavior
92 //ELSE generate a random value
93 if (!isNetTrainingMode)
94 weights = behavior.getBehaviourMovements(pointCluster, relSig,

counter);
95 else
96 {
97 Console.WriteLine("Training␣mode,␣generating␣random␣weights");
98 weights = generateRandomWeights(behavioursToActuators[behavior.

Name].Length,
99 primitives.GetLength(0));

100 }
101

102 //IF there is a good movement to perform, combines primitives to get
the joint values

103 //ELSE add a new random movement and try it
104 if (weights != null)
105 {
106 Console.WriteLine("Movement␣OK.");
107 }
108 else
109 {
110 Console.WriteLine("No␣good␣movements␣in␣the␣list,␣adding␣a␣new␣one

");
111

112 behavior.addMovement(generateRandomWeights(behavioursToActuators[
behavior.Name].Length,

113 primitives.GetLength(0)));
114 weights = behavior.getBehaviourMovements(pointCluster, relSig,

counter);
115 }
116

117 //Generate a movement by linear combbination of primitives with weights
118 generateMovement(behavior, weights, ref movements);
119

120 if (!isNetTrainingMode)
121 BehaviorsTrainingStatus[behaviourList.IndexOf(behavior)] =

behavior.Training;
122 }
123

124 if (!isNetTrainingMode)
125 {
126 if (!BehaviorsTrainingStatus.Contains(true))
127 this.isTrainingMotorMode = false;
128 }
129
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130 this.counter++;
131

132 //Return the activation profiles of movements
133 return movements;
134 }

The choice of the best movement is done in Behaviour class, using the
getBehaviourMovements(...) function, which returns the weights to be used in
the linear combination of motor primitives.

93 /// <summary>
94 /// Gets movement from a behaviour
95 /// </summary>
96 /// <param name="inputState">The state coming from the intentional

architecture.</param>
97 /// <param name="relevantSignal">The relevant signal coming from the

intentional architecture.</param>
98 /// <param name="counter">counter of iterations</param>
99 /// <returns>A vector of weights for linear combination of primitives</

returns>
100 public float[,] getBehaviourMovements(int inputState, float relevantSignal,

int counter)
101 {
102 //Useful stuff
103 float rs = relevantSignal;
104 //float[] inSt = inputState;
105 int index;
106 float[,] movement;
107

108 //int key = computeHash(inSt);
109 Console.WriteLine("Current␣state␣cluster:␣{0}", inputState);
110

111 if (!bootStrapDone && tableInput.Keys.Count == 0)
112 return bootStrap(inputState);
113

114 //IF the state is not in the table, add it to that.
115 Console.WriteLine("Checking␣if␣its␣a␣known␣state...");
116

117 if (!tableInput.ContainsKey(inputState))
118 {
119 addState(inputState);
120 Console.WriteLine("Unknown␣state.");
121 }
122 else
123 {
124 Console.WriteLine("Alredy␣known␣state.");
125 }
126

127 //Update the values of the table.
128 //IMPORTANT: we need to update the values of the PREVIOUS state,
129 //based on the values of the CURRENT relevant signal,
130 //which depends from the LAST action performed.
131 updateTable(tMinusOneState, inputState, performedActionIndex, rs);
132

133 //Compute the index of the movement to be performed
134 index = getMovementIndex(inputState);
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135

136 //IF index is -1, it is necessary to create a new movement (and test it)
137 if (index < 0)
138 {
139 Console.WriteLine("No␣suitable␣movement␣found");
140

141 return null;
142 }
143

144 //Get the array of weights corresponding to the selected movement
145 movement = movements.ElementAt(index);
146

147 //Current state = next previous state.
148 //Current index = last performed action index at next step.
149 tMinusOneState = inputState;
150 performedActionIndex = index;
151

152 tableDimsCounter.Add(new int[] { tableInput.Keys.Count, movements.Count
});//0,0

153 if (counter > this.thresholdTrain && isTrainingMotorMode)
154 {
155 saveTable();
156 saveCSV();
157 this.isTrainingMotorMode = false;
158 }
159

160 return movement;
161 }

A.4 Robot Interface and NAO robot

One of the main features of the implementation is its generality and adapt-
ability to every type of agent. RobotInterface class gives an interface which
allows to use the software with any agent.

10 /// <summary>
11 /// Interface defining the various methods called by Body,
12 /// and that have to be implemented in the Robot agent.
13 /// </summary>
14 /// <author>Burrafato Marco</author>
15 /// <author>Florio Luca</author>
16 /// <author>Franchi Alessio Mauro</author>
17 public interface RobotInterface
18 {
19

20 /// <summary>
21 /// Returns the input of a generic Sensor in an array format.
22 /// </summary>
23 /// <param name="sensorName">The name of the sensor.</param>
24 /// <returns>The sensor’s input signal</returns>
25 Sinput getSensorInput(String sensorName);
26

27 /// <summary>
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28 /// Sets the value for a specific actuator.
29 /// </summary>
30 /// <param name="actuatorsActivations">List of actuators and activation

values</param>
31 /// <returns>1 if success, 0 if failure</returns>
32 bool setActuatorOutput(Dictionary<string, float[]> actuatorsActivations);
33

34 /// <summary>
35 /// Close the connection to the robot.
36 /// </summary>
37 /// <returns>True if the connection is closed, false otherwise.</returns>
38 bool disconnectFromRobot();
39

40 /// <summary>
41 /// Creates a connection between the software and the robot.
42 /// </summary>
43 /// <param name="ipAddress">Ip Address of the robot.</param>
44 /// <param name="port">Connection port of robot.</param>
45 /// <returns>True if connection estabilished, false otherwise.</returns>
46 bool connectToRobot(string ipAddress, int port);

The following is the implementation of the interface for a NAO robot.

54 /// <summary>
55 /// Returns the input of a generic Sensor in an array format.
56 /// </summary>
57 /// <param name="sensorName">The name of the sensor.</param>
58 /// <returns>The sensor’s input signal.</returns>
59 public Sinput getSensorInput(String sensorName)
60 {
61 Sinput result;
62 switch (sensorName)
63 {
64 case "CameraTop":
65 videoProxy.setParam(18, 0);
66 //Get the image from the Nao robot;
67 img = (ArrayList)videoProxy.getImageRemote(videoProxyID);
68 result = formatImage(img);
69 break;
70 case "CameraBottom":
71 videoProxy.setParam(18, 1);
72 //Get the image from the Nao robot;
73 img = (ArrayList)videoProxy.getImageRemote(videoProxyID);
74 result = formatImage(img);
75 break;
76 case "HeadYaw":
77 float[] yaw = new float[1];
78 yaw[0] = motionProxy.getAngles("HeadYaw", false)[0];
79 result = new Sinput(yaw);
80 break;
81 case "HeadPitch":
82 float[] pitch = new float[1];
83 pitch[0] = motionProxy.getAngles("HeadPitch", false)[0];
84 result = new Sinput(pitch);
85 break;
86 case "RightArm":
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87 string[] joints = new string[] { "RShoulderPitch", "RShoulderRoll"
,

88 "RElbowYaw", "RElbowRoll" };
89 float[] values = motionProxy.getAngles(joints, false).ToArray();
90 Dictionary<string, float> jointValues = new Dictionary<string,

float>();
91 jointValues.Add("RShoulderPitch", values[0]);
92 jointValues.Add("RShoulderRoll", values[1]);
93 jointValues.Add("RElbowYaw", values[2]);
94 jointValues.Add("RElbowRoll", values[3]);
95 result = new Sinput(jointValues);
96 break;
97 case "US␣Sensor␣2"://TODO: add other types of sensors
98 case "US␣Sensor␣4":
99 case "MicroFront":

100 result = new Sinput();
101 break;
102 default:
103 result = new Sinput();
104 break;
105 }
106 return result;
107 }

138 /// <summary>
139 /// Sets the value of a specific actuator.
140 /// </summary>
141 /// <param name="actuatorsActivations">Actuators and corresponding

activations</param>
142 /// <returns>1 if success, 0 if failure</returns>
143 public bool setActuatorOutput(Dictionary<string, float[]>

actuatorsActivations)
144 {
145 bool result = true;//TODO
146 //List<String> joints;
147 //List<float> angles;
148

149 //Movememt quantum
150 float quantum = 0.05f;
151 //Take one value on two
152 int size = 25;
153 //Array of angles to interpolate
154 float[] listOfAngles;
155 //Interval time to perform interpolation
156 float[] listOfTimes;
157 //Names of joints
158 List<string> names = new List<string>();
159 //List of angles for each joint
160 List<float[]> values = new List<float[]>();
161 //List of times for each joints
162 List<float[]> times = new List<float[]>();
163 //Flag for agonist muscle movement
164 int agonist;
165

166 try
167 {
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168 //We do this for each actuator
169 foreach (string name in actuatorsActivations.Keys)
170 {
171

172 //Initialization of variables
173 names.Add(name);
174 float time = 0.0f;
175 float vel = 0.0f;
176 listOfTimes = new float[size];
177 listOfAngles = new float[size];
178

179 //IF the value of activation is negative, its not an agonist
180 if (actuatorsActivations[name][5] < 0)
181 agonist = -1;
182 else
183 agonist = 1;
184

185 //Compute time for interpolation
186 for (int i = 0; i < listOfAngles.Length; i++)
187 {
188 //IF an activation is under 0.1, we set minimum velocity to 0.1
189 if (Math.Abs(actuatorsActivations[name][i *
190 (actuatorsActivations[name].Length / size)]) < 0.1f)
191 vel = 0.1f;
192 else
193 vel = Math.Abs(actuatorsActivations[name][i *
194 (actuatorsActivations[name].Length / size)]);
195

196 float tempMovement = agonist * quantum * (i + 1);
197 float tempPosition = motionProxy.getAngles(name, true)[0];
198

199 //Populate list of angles
200 listOfAngles[i] = agonist * quantum * (i + 1);
201

202 //Time = space/speed (4 is a scale value, otherwise times will
be too high)

203 time += (quantum / vel) / 4;
204

205 //Populate list of times
206 listOfTimes[i] = time;
207 }
208

209 //Add angles and times to lists
210 values.Add(listOfAngles);
211 times.Add(listOfTimes);
212 }
213

214 //Perform movement
215 motionProxy.angleInterpolation(names, values, times, false);
216

217 Console.WriteLine("Movement␣done");
218 }
219 catch
220 {
221 Console.WriteLine("Error␣in␣Movement!");
222 result = false;
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223 }
224

225 return result;
226 }

272 /// <summary>
273 /// Close the connection to the robot.
274 /// </summary>
275 /// <returns>True if the connection is closed, false otherwise.</returns>
276 public bool disconnectFromRobot()
277 {
278 try
279 {
280 videoProxy.unsubscribe("GVM_nao");
281 }
282 catch
283 {
284 Console.WriteLine("Error␣in␣closing␣connection!");
285 return false;
286 }
287 Console.WriteLine("Connection␣closed!");
288

289 //save data in csv
290 saveCSV();
291

292 return true;
293

294 }

228 /// <summary>
229 /// Creates a connection between the software and the robot.
230 /// </summary>
231 /// <param name="ipAddress">Ip Address of the robot.</param>
232 /// <param name="port">Connection port of robot.</param>
233 /// <returns>True if connection estabilished, false otherwise.</returns>
234 public bool connectToRobot(string ipAddress, int port)
235 {
236 Console.WriteLine("Trying␣to␣connect␣to␣robot...");
237 try
238 {
239 motionProxy = new MotionProxy(ipAddress, port);
240 behaviourProxy = new BehaviorManagerProxy(ipAddress, port);
241 poseProxy = new RobotPoseProxy(ipAddress, port);
242 textToSpeechProxy = new TextToSpeechProxy(ipAddress, port);
243 videoProxy = new VideoDeviceProxy(ipAddress, port);
244 touchProxy = new SensorsProxy(ipAddress, port);
245 memoryProxy = new MemoryProxy(ipAddress, port);
246 audioProxy = new AudioDeviceProxy(ipAddress, port);
247 }
248 catch
249 {
250 Console.WriteLine("Cannot␣connect␣to␣NAO!");
251 return false;
252 }
253

254 if (!subscribe()) return false;
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255

256 Console.WriteLine("Everything␣connected!");
257 return true;
258 }
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The Independent Component Analysis - ICA - is an algorithm designed to
recover a set of independent signals from a set of the same signals mixed
togheter. It is based on the assumption that every signal can be recon-
structed basing on the combination a set of predefined signals, the indepen-
dent components precisely [56, 57]. ICA is often used when there are two
or more mixed signals in input and we want to know their original form,
separating them from each other.

Figure B.1 shows an example of four different functioning signals mixed
and reconstructed using our C# implementation of the ICA algorithm. Fig-
ure B.1a shows four basic signals that we used to obtain a normal noisy
signal. The signals we used for testing are:

1//a sinusoid
2functionsToReturn[0, (int)i] = (double)Math.Sin(i/2);
3//a funny curve
4functionsToReturn[1, (int)i] = (double)Math.Pow((((i % 23) - 11) / 9), 5);
5//a saw tooth
6functionsToReturn[2, (int)i] = (float)(((i % 27) - 13) / 9);
7//an impulsive noise
8functionsToReturn[3, (int)i] = (float)(random.Next(0, 1) * 2 - 1) * Math.Log(((

double)random.Next(1, 10)) / 10);

Figure B.1b shows four signals obtained from the four signals in figure
B.1a with a weighted sum using random weights. These signals represent
the normal mixed signals that could come as a sensory input and originate
from different sources. Figure B.1c shows four different signals identified by
the ICA algorithm, starting just from the signals shown in B.1b. As we can
see the algorithm is able to isolate the independent components present in
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Figure B.1: ICA signals: (a) original signals; (b) mixed signals; (c) independent com-
ponents; (d) reconstructed signals
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the noisy input, and they indeed correspond to the four original signals that
we mixed.
As explained in the next section, the independent components are obtained
from the incoming signals applying a determined weights matrix. Using the
inverse process we can re-obtain the original signals. Figure B.1d shows the
incoming signals reconstructed using the independent components and the
specific weight matrix we used before.
As we can see from Figure B.1c, however, the algorithm is not able to identify
the correct amplitude of the independent component: while in Figure B.1a,
for example the sinusoid amplitude is between -1 and +1, the amplitude of
the corresponding independent component is between -1,4 and +1,4.
This is a known ambiguity of ICA [56], and it is due to the fact that, being
both S and A unkwnown in Eq. B.2, any multiplier applied to si could be
nullified by applying the same divisor to ai.
For this reason, in our implementation of the Intentional Architecture we
normalize the values of the independent components before applying them
to the incoming input; that is, we assume each independent component has
a variance E(s2

i ) = 1. Note that this leaves the ambiguity of the sign: we
could have still the si signal multiplied by -1.

B.1 Principles of ICA functioning

Each incoming signal Xi can be viewed as a linear combination of predefined
independent components:

Xi =
N∑
j=0

aijSj (B.1)

where Sj is an independent component signal, and aij is a specific weight
to apply to a component in order to obtain the incoming signal. The sistem
can be described as

X = AS (B.2)

where each row of X is a signal Xi; each row of S is an independent com-
ponent signal Si; and A is an nxn mixing matrix that generates X from S.
The goal of ICA is to find S and A given X.

We can consider each signal as a random variable; we want to find a
matrix

W = A−1 (B.3)

where
S = WX (B.4)
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this indicates that each independent signal Si can be expressed as a linear
combination of the signals in X.
Note that A must be invertible for S = WX to be valid.

The ICA algorithm starts with the hypotesis that each row of S is statis-
tically independent; that is, given two components s1 and s2 the information
on the values of s1 can not give any information on the values of s2, and
vice versa.
This can be expressed by:

P (s1|s2) = P (s1) => P (s1|s2) = P (s1, s2)
P (s2) => P (s1, s2) = P (s1) ∗ P (s2)

(B.5)
where P(s1,s2) is the joint density function of s1 and s2.

Another property of independent random variables is that

E(f1(s1), f2(s2)) = E(f1(s1))E(f2(s2)) (B.6)

for any given function f1,f2.

Another, weaker form of independence is uncorrelation. Two variables
s1 and s2 are uncorrelated if their covariance is zero:

Cov(s1, s2) = E(s1 ∗ s2)− E(s1)E(s2) = 0 (B.7)

Another fundamental restriction in ICA is that the independent compo-
nent can not be Gaussian.
The Central Limit Theorem states indeed that the weihgted sum of inde-
pendent random variables tends towards a Gaussian distribution. Thus,
xi = ai1s1 + ai2s2 is closer to a gaussian distribution than s1 or s2.
This implies that we can find the combination of independent signals form-
ing X only if they do not represent a Gaussian distribution already. This
can be seen also from the Gaussian distibution graph, as shown in Figure
B.2: the density is completely simmetric, making it impossible to determine
any information about the direction of the columns in the mixing matrix A.
In order to find the independent signals, we need some way to measure the
non-gaussianity of the S matrix.
To simplify things, we manipulate the data so that we have an incoming sig-
nalX with mean equal to zero and variance equal to 1. Then, we measure its
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Figure B.2: An example of Gaussian distribution

non-gaussianity using negentropy. Negentropy is based on the information-
theoretic quantity of differential entropy. Differential entropy for a continu-
ous random vector variable y can be defined as [58, 59]:

H(y) = −
∫
f(y)logf(y) (B.8)

where ai is one of all the possible values of Y.
Negentropy J can be defined as

J(y) = H(ygauss)−H(y) (B.9)

where ygauss is a Gaussian random variable of the same covariance matrix
as y. Negentropy is always greater or equal to zero, and it is zero if and only
if y has a Gaussian distribution. Thus negentropy is a statistical optimal
estimator of non-gaussianity.
For our purpose, we will use an approximation of negentropy [60]:

J(y) ≈
p∑
i=1

ki(E(Gi(y))− E(Gi(v)))2 (B.10)

where ki are some positive constants, and v is a Gaussian variable of mean
zero and variance one - that is, it is standardized as well as y. Gi are some
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non-quadratic functions. The choice of G is crucial for robust estimators
and good approximations of negentropy; good choices are [61]:

g1(u) = tanh(a1u) , g2(u) = u e(−u2/2) (B.11)

where 1 ≤ a1 ≤ 2 is a constant, usually equals to 1.
In our work, we used the hyperbolic tangent.

B.2 The algorithm

For our purposes, we implemented in C# language the FastICA algorithm
presented by A. Hyvärinen and previously implemented in Matlab R lan-
guage [61]. This algorithm is composed of several steps:

• Preprocessing: before applying the ICA algorithm to the incoming
data X, we need to perform some actions to simplify the computation:

– Centering: we assume that each Xi input has a mean value of
zero. Thus, we subtract the mean from each row of X:

Xi = Xi − E(Xi) (B.12)

Note that this implies that also each Si will have zero mean, as
we can see from Eq. B.2.

– Covariance: we compute the covariance matrix of X, that is:

Cov(X) = E(XXT ) (B.13)

The covariance matrix will be squared and symmetric. After
this, we can compute the Singular Value Decomposition (SVD)
on the covariance matrix, in order to obtain the diagonal matrix
of eigenvalues D and the orthogonal matrix of eigenvectors E:

Cov(X) = DEDT (B.14)

– Whitening: we transform each x vector linearly so that we obtain
a new vector xw that is white, i.e. its components are not cor-
related and their variance is equal to one. This also means that
the covariance matrix of Xw is is the identity matrix:

Cov(Xw) = E(XwX
T
w ) = I (B.15)
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Whitening can be performed with:

Xw = ED−1/2ETX (B.16)

where D−1/2 = diag(d−1/2
1 , ..., d

−1/2
n ). Whitening transforms the

mixed signals X in a new matrix, Aw; the original matrix can be
obtained from Eq. B.2 and B.16 as:

Xw = ED−1/2ETAS = AwS (B.17)

The new whitened matrix Aw is orthogonal; therefore:

Cov(Xw) = E(XwX
T
w ) = AwE(SST )ATw = AwA

T
w = I (B.18)

and then whitening reduces the number of parameters we need
to estimate.

• FastICA algorithm: for each independent component that we want to
find, we define a weight vector w (notice that this implies the number
of independent components must be known a piori by the algorithm;
varying the number of IC can bring to different results. Here we as-
sumed that the number of IC is equal to the number of incoming in-
puts). The algorithm learning rule finds a direction, that is converges
to a vector w such that s = wTx maximizes the non-Gaussianity.
The main loop of the algorithm is:

1. Create a matrix of random weight values W , of the same dimen-
sions of Aw;

2. Since we have different signals, we have to define a vector wi
for each row of S; furthermore we have to ensure that different
vectors do not converge to the same maxima; that is, we need to
decorrelate each output wTi xi at every iteration.
This can be performed using the Gram-Schmidt decorrelation:

wij = wij√∑n
i=0w

2
ij

∀column j = 0, ..., n

wik = wij − (wik ∗
n∑
i=0

w2
ik) ∀column k = j + 1, ..., n

(B.19)

3. Check convergence as

minAbsCos = min(abs(diag(W TWold)));
if(1−minAbsCos < epsilon)
break; (B.20)
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where Wold is the value of W at the preceding step, and epsilon
is a predefined value.

4. Update the weights of W : we orthogonalize W with respect to
the previous components:

W = E(X G(XTW ))− E(G′(W TX))W (B.21)

and then we normalize W

W = W/||W || (B.22)

5. Go back to point 1.

6. S = WXw ;

B.3 Conclusions

The implementation of this algorithm reveals a number of interesting prop-
erties [61]:

• the convergence is cubic or, at least, quadratic, while other ICA imple-
mentations based on gradient descent have a linear convergence; thus,
the convergence here is much faster.

• In contrast to gradient based algorithms, there is no need for a step
size parameter, making the algorithm simpler.

• The method can improve its performances choosing a suitable nonlin-
ear function g. Functions shown in Eq. B.11 are good examples of
optimal functions for robustness and minimum variance.

• the algorithm is able to find any IC of any non-Gaussian distribution
using any nonlinear function G, differently from other algorithms that
need an estimate of the probability distribution and a related nonlin-
earity function.

• it has many advantages of neural networks: it is parallel, distributed,
computationally and memory inexpensive.
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K-Means is a clustering algorithm that allows the user to divide a group of
objects in K partitions on the base of their values. These attributes could
be represented as vectors, and they would form a vectorial space. The goal
of the K-Means clustering algorithm is to minimize the total variance in
clusters.
Each cluster is identified by a centroid. The algorithm is iterative:

1. create K partitions and randomly assign to each partition some points;

2. compute the centroid of each partition;

3. create a new partition assigning each point to the cluster with the
nearest centroid;

4. Compute the centroid of the new clusters;

5. repeat until convergence.

In order to use this algorithm to perform clustering for categorization, we
implemented a C# library.

C.1 KMeansLib

KmeansLib library allows the user to perform K-Means “standard”, that is
clustering on a set of points all at once, as well as “online”, that is giving to
the set of clusters one point per time and then recomputing the clusterization
with the new point. The main function is DoKMeans(List<Point> points, int

clusterCount): it perform the standard K-Means algorithm described above.
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286 /// <summary>
287 /// Compute K-Means clustering for a set of points.
288 /// </summary>
289 /// <param name="points">List of points to be clustered</param>
290 /// <param name="clusterCount">Desired number of clusters</param>
291 /// <returns>List of generated clusters</returns>
292 public List<Cluster> DoKMeans(List<Point> points, int clusterCount)
293 {
294 //divide points into equal clusters
295 List<Cluster> allClusters = new List<Cluster>();
296 List<List<Point>> allGroups = SplitList<Point>(points, clusterCount);
297

298 //Set the maximum number of clusters equal to the desired number of
clusters

299 this.maxNumClusters = clusterCount;
300

301 foreach (List<Point> group in allGroups)
302 {
303 Cluster cluster = new Cluster(group, clusterIdCounter++);
304 allClusters.Add(cluster);
305 }
306

307 //start k-means clustering
308 int movements = 1;
309 while (movements > 0)
310 {
311 movements = 0;
312

313 foreach (Cluster cluster in allClusters) //for all clusters
314 {
315 //for all points in each cluster
316 for (int pointIndex = 0; pointIndex < cluster.Count; pointIndex++)
317 {
318 Point point = cluster[pointIndex];
319

320 int nearestCluster = FindNearestCluster(allClusters, point,
true);

321 if (nearestCluster != allClusters.IndexOf(cluster)) //if point
has moved

322 {
323 if (cluster.Count > 1) //each cluster shall have minimum

one point
324 {
325 Point removedPoint = cluster.RemovePoint(pointIndex);
326 allClusters[nearestCluster].Add(removedPoint);
327 movements += 1;
328 }
329 }
330 }
331 }
332 }
333

334 this.clusters = allClusters;
335

336 return (allClusters);
337 }
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To perform online K-Means, we override this function, so that the argu-
ment is a point. The distance from each centroid is computed, and if there is
no centroid whose distance is less than a threshold, a new cluster is created.
The set of cluster is then updated according to the new topology:

221 /// <summary>
222 /// Perform KMeans clustering
223 /// </summary>
224 /// <param name="point">Point to add to clusters</param>
225 /// <returns>List containing all the clusters</returns>
226 public List<Cluster> DoKMeans(Point point)
227 {
228 Console.WriteLine("Computing␣KMeans␣clustering...");
229 List<Cluster> allClusters = clusters;
230

231 //IF there is no clusters, create the first
232 if (allClusters.Count == 0)
233 {
234 Cluster newCluster = new Cluster(point, clusterIdCounter++);
235 this.clusters.Add(newCluster);
236

237 this.pointCluster = newCluster.ID;
238 Console.WriteLine("KMeans␣clustering␣done.");
239

240 return this.clusters;
241 }
242

243 //Fiind the nearest cluster to the point
244 int nearestCluster = FindNearestCluster(this.clusters, point, false);
245 Console.WriteLine("Nearest␣cluster␣index:␣{0}", nearestCluster);
246

247

248 //IF the nearest cluster is not in distance threshold, create a new
cluster

249 //ELSE add the point to the nearest existing cluster
250 if (nearestCluster == -1)
251 {
252 Cluster newCluster = new Cluster(point, clusterIdCounter++);
253 this.clusters.Add(newCluster);
254 //Update the distribution of points accordng to the new topology of

clusters
255 this.clusters = UpdateClusters(this.clusters);
256 this.pointCluster = newCluster.ID;
257 }
258 else
259 {
260 this.pointCluster = clusters[nearestCluster].ID;
261

262 //IF the nearest cluster is not full, add the poit to it.
263 foreach (Cluster cluster in allClusters)
264 if (nearestCluster == allClusters.IndexOf(cluster) &&
265 (maxNumPoints == 0 || cluster.Count < maxNumPoints))
266 {
267 cluster.Add(point);
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268

269 //IF the cluster is full, set the flag
270 if (maxNumPoints != 0 && cluster.Count == maxNumPoints)
271 cluster.IsFull = true;
272 }
273

274 //IF the set of cluster is not fixed, update the position of points
275 if (maxNumClusters != 0 && clusters.Count == maxNumClusters)
276 this.clusters = UpdateClusters(this.clusters);
277 else
278 this.clusters = allClusters;
279 }
280

281 Console.WriteLine("KMeans␣clustering␣done.");
282

283 return (this.clusters);
284 }

We have implemented another useful function, getDistances(Point p), used
to compute the distances from a point to each centroid. This function is
used, both in the Categorization Module and in the movement generation
system, to compute the vector of neural activation.

349 /// <summary>
350 /// Get the distance of the point to each cluster.
351 /// </summary>
352 /// <param name="p">Point to be checked</param>
353 /// <returns>Distances of point p from each cluster centroid.</returns>
354 public float[] getDistances(Point p)
355 {
356 float[] distances = new float[this.clusters.Count];
357

358 for (int index = 0; index < this.clusters.Count; index++)
359 {
360 distances[index] = FindDistance(p, this.clusters[index].Centroid);
361 }
362

363 return distances;
364 }

C.2 Kmeans Simulator

In order to test the implemented K-Means library, we have realized a simple
software that uses this library to perform clustering. The program allows
the user to utilize the aforementioned functions for clustering one point at
a time, or to create a defined number of clusters from a list of points.



C.2. Kmeans Simulator 101

C.2.1 Graphical interface

In the top left corner there are the settings for the algorithm: the threshold of
distance from clusters, the maximum number of clusters and the maximum
number of points per cluster.
Under the settings for K-Means algorithm, there are commands to add a
single point at specific coordinates or to generate a random point. There is
also a list about which points can be added. Under the list, a parameter
could be set to specify the number of clusters to generate.
In the right side of the window, a graph is generated to show the computed
clusters and their centroids. Each cluster has an ID and an unique color
(Figure C.1).

Figure C.1: KmeansLib simulator

C.2.2 Program usage

At the beginning, parameters for K-means algorithm must be set. The user
can specify three parameters:

• Kmeans Threshold sets the threshold that represents the maximum
distance from the centroid of a cluster. If the distance of the point is
above this threshold, a new cluster should be created;

• Max Number of Clusters sets the maximum number of clusters to be
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Figure C.2: K-Means clustering

generated. If the limit is reached, no new cluster is generated, but new
points can be added to the nearest cluster;

• Max Number of Points sets the maximum number of points per cluster.
If the limit is reached, no new points are added to that cluster, but
the index of the nearest cluster is computed.

Once this parameters are set, the user can start performing clustering.
The user can generate a point by manually set the X and Y value of the
point, as well as by using the random generator of points. There is also
a command to generate a specified number of random points. Clustering
could be performed in two different ways: in “online mode”, where points
are added one by one, or in “standard mode” where points are added to a
list and then clustering is done on that list.
To perform clustering in standard mode, the points must be added to the
list, by checking the “Add to list” checkBox. Once the number of clusters
has been set, the “K-Means” button starts the computation of clustering.
Results are shown in the graph. Each cluster has a unique ID and color.
The centroid of each cluster is represented as a black star (Figure C.2).



Appendix D

Behavior Simulation
program documentation

Behavior Simulation is a software developed in order to study dynamic be-
haviors before their implementation in the system.
The implemented software simulates an input and a relevant signal, and
computes the correct movement through linear combination of motor prim-
itives. These primitives can be of two types: Gaussian functions or cosine
functions.

D.1 Graphical interface

The graphical interface of the software in composed by a single window. In
the top left corner there are two settings panels: the first is for primitives
settings, the second is for K-Means clustering settings. There is also a
checkbox labeled as “Nao”, that if checked allows the user to test movements
on a NAO robot. In the top right corner a chart allow to view the previously
set primitives. Under the settings panels, there is the input state panel,
which allows the user to interact with the system sending commands to
it. Next to the input state panel, there is a listbox which prints useful
information about the state of the system. In the bottom left corner we can
find the State-Action table, associating a state and a movement to a relevant
signal. In the bottom right corner there is a chart where the generated
movement is drawn as a linear combination of primitives (Figure D.1).
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Figure D.1: Graphical interface

D.2 Program usage

Primitives settings allow the user to chose the XML behavior file to load,
the shape of primitives and their number. In case of Gaussian primitives,
the sigma value could be set manually.
K-Means settings allow to chose a threshold for the maximum distance from
clusters, as well as the maximum number of clusters or the maximum number
of points per cluster (setting these parameters as zero would mean to set
them with no limits).
A checkbox labeled as “Nao”, near K-Means settings, could be check to use
a real or virtual Nao robot to perform movements.
Once the parameters are set, the initialize button starts the simulation and
prints generated primitives in the top right chart.
During the simulation, the user can send an input to the program through
the input state box. The user has to insert a five number input state (each
number has to be separated by a comma, e.g. 1,1,1,1,1) and a floating point
relevant signal associated to that state. Once the input is sent, the program
performs clustering and updates the state-movement table in the bottom
left corner. The best movement is selected, depending on state and signal,
with this policy:

• if there is a movement not tried yet, that movement is chosen;

• if there is a movement already tried, with an associated relevant signal
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higher than 0.8, that movement is chosen;

• if all the movements have been performed, but no one has an associated
relevant signal higher than 0.8, a new movement is generated and
tested.

A movement is intended as a linear combination of primitives.
After the best movement is selected, its shape is printed in the bottom right
chart. If a NAO robot is connected, the movement is also performed by the
robot (Figure D.2).

Figure D.2: Example of usage with Gaussian primitives


