
POLITECNICO DI MILANO

Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Master of Science in

Computer Engineering

An Empirical Weight Update

approach for NonLinear Active

Noise Control

Supervisor: Prof. Luigi PIRODDI

Master Graduation Thesis by: Emanuele SPIRITI matr. 750316

Simone MORICI matr. 754596

Academic Year 2011/12

POLITECNICO DI MILANO

Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Corso di Laurea Specialistica in

Ingegneria Informatica

An Empirical Weight Update

approach for NonLinear Active

Noise Control

Relatore: Prof. Luigi PIRODDI

Tesi di Laurea di: Emanuele SPIRITI matr. 750316

Simone MORICI matr. 754596

Anno Accademico 2011/12

iii

SOMMARIO: Spesso, nei problemi di Controllo Attivo del Rumore (ANC),

ci si imbatte in non-linearità come la saturazione e la distorsione dei microfoni

e degli altoparlanti. Per affrontare questo tipo di problema devono essere

impiegati dei filtri non-lineari insieme ad un algoritmo adattivo capace di ag-

giornarne i parametri. Il Controllo Attivo Non-lineare del Rumore (NANC)

è particolarmente complicato se il cammino secondario è non-lineare, poiché

in questo caso il meccanismo di update degli algoritmi di tipo Least Mean

Squares (LMS) deve tener conto del gradiente del cammino secondario con

ricorsioni computazionalmente pesanti. In questa tesi è proposto un metodo

più semplice e computazionalmente meno esigente che evita il calcolo del gra-

diente dell’errore e si basa su valutazioni dirette della funzione di costo. Il

metodo proposto può anche essere utilizzato per affrontare il problema della

selezione della struttura del modello, un altro punto cruciale per la riduzione

dei tempi di calcolo. Sono riportate alcune simulazioni che mostrano l’efficacia

dell’algoritmo.

ABSTRACT: Nonlinear effects, such as saturation and distortion of mi-

crophones and loudspeakers, are often experienced in complex Active Noise

Control (ANC) problem settings. A nonlinear control filter must be employed

to adequately address these issues, together with an ad hoc adaptive algo-

rithm to tune its parameters. The nonlinear ANC (NANC) problem is par-

ticularly involved if the secondary path is nonlinear, since in that case the

controller weight update mechanism of Least Mean Squares (LMS)-type al-

gorithms must account for the secondary path gradient with computationally

heavy recursions. A simpler and computationally less demanding approach is

here proposed that avoids the use of the error gradient and relies on direct cost

function evaluations. The proposed method can also tackle the model structure

selection problem, which is crucial to reduce the on-line computational effort.

Some simulations are reported to show the effectiveness of the algorithm.

Ringraziamenti

A conclusione del percorso di studi da noi intrapreso circa cinque anni fa

vorremmo ringraziare tutti quelli che ci hanno sostenuto. Desideriamo innanz-

itutto ringraziare il Prof. Luigi Piroddi per la sua disponibilità, competenza e

professionalità con le quali ci ha sempre invogliato a migliorarci. In particolare:

Ringrazio i miei genitori, Roberto e Vittoria, che mi hanno sempre

sostenuto sia moralmente sia economicamente in questi anni, grazie per i vostri

consigli, per le vostre critiche che mi hanno fatto crescere. Grazie a mio fratello

Francesco e sua moglie Valentina per i momenti di svago che mi hanno saputo

regalare e a tutti i miei parenti per aver creduto sempre in me. Grazie a Edo,

Maura, Martina, Andrea, Ricky, Silvia, Elena, Christian, Elio e Roby per aver

saputo rallegrare le mie giornate anche nei giorni più grigi. Grazie a Vale,

Luca e Lucio che mi hanno adottato per diversi mesi. Grazie a Caddo per

l’aiuto e il suo delirio. Grazie ad Angelica che riesce sempre a farmi sorridere.

Ringrazio tutti i compagni di viaggio con i quali ho condiviso le gioie e i dolori

dell’università. Grazie a Simone, compagno di studi e amico con cui ho avuto il

piacere di concludere questa mia esperienza. Un ringraziamento a tutti coloro

che non ho citato e che mi hanno sopportato in questi anni. Infine, un grazie

a me stesso.

Como, 19 Settembre 2012

Emanuele Spiriti

vi

Ringrazio tutta la mia famiglia per avermi sostenuto lungo tutto il percorso

di studi, tutti i miei amici per i loro preziosi consigli e per il loro supporto in

uno dei momenti più difficili della mia vita. Un grazie a Roberto che ha riletto

parte delle bozze, fornendo preziosi consigli per poterne migliorare la stesura.

Un caloroso saluto va a tutti i compagni che ho conosciuto, dei quali riserverò

un ricordo speciale che mi accompagnerà per il resto della mia esistenza. In

particolare, ringrazio Emanuele, amico e studente instancabile, con cui ho

condiviso ogni giornata di lavoro degli studi magistrali.

Como, 19 Settembre 2012

Simone Morici

Contents

1 Introduction 1

1.1 Introduction . 1

2 ANC And NANC Overview 5

2.1 History of ANC . 5

2.2 ANC Overview . 7

2.2.1 Mathematical Aspects 7

2.2.2 The Secondary Path Implications 11

2.2.3 The FxLMS Variant . 12

2.3 NANC Overview . 13

2.3.1 NANC With Linear Secondary Path 14

2.3.2 NANC With Nonlinear Secondary Path 17

3 The Empirical Gradient Approach 29

3.1 Introduction . 29

3.2 Empirical Weight Update (EWU) 30

3.2.1 Complexity Optimizations 33

3.2.2 Step size update policy 40

3.3 EWU with uniform linear combination (UEWU) 41

3.4 Considerations about the instantaneous error 46

3.5 Convergence solutions . 47

3.5.1 EWU step size doubling 48

3.5.2 2-stages EWU . 49

3.5.3 2S-EWU-SSD . 51

4 Model Selection 55

4.1 Introduction . 55

viii CONTENTS

4.1.1 NARX model identification algorithms 56

4.1.2 Conclusions . 58

4.2 EWU selection . 59

5 Tests 63

5.1 Introduction . 63

5.2 Convergence Tests . 63

5.2.1 Test 1 . 64

5.2.2 Test 2 . 64

5.2.3 Test 3 . 66

5.2.4 Test 4 . 70

5.2.5 Conclusions on Convergence Tests 71

5.3 Robustness Tests . 71

5.3.1 Test 5 . 71

5.3.2 Test 6 . 75

5.4 Model Selection Tests . 77

5.4.1 Model Selection Tests 1 and 2 78

5.4.2 Zhou DeBrunner Test 80

5.4.3 WU Saturation Test . 81

5.4.4 SU saturation test . 85

5.4.5 SW saturation test . 89

6 Complexity Analysis and Evaluation of Performance 99

6.1 Introduction . 99

6.2 EWU analysis . 99

6.3 Measured Execution Times . 110

7 Conclusions and Future Work 119

A Notes on the Matlab Implementation of the Algorithm 121

A.1 Introduction . 121

A.2 NARX Representation . 121

A.3 Gradient Implementation . 122

Bibliography 123

List of Figures 127

Chapter 1

Introduction

1.1 Introduction

Noise reduction is important in order to improve the quality of life and to

prevent hearing loss, therefore more and more severe thresholds have been

defined through new regulations and laws. In particular, Active Noise Con-

trol (ANC) (see, e.g. [10]) concerns the attenuation of acoustic noise using

secondary acoustic sources and exploiting the principle of destructive interfer-

ence. Adaptive feedforward schemes are more often used since sound trans-

mission involves delays and time-varying dynamics, which makes the feedback

control design more difficult. An adaptive digital filter is employed as con-

troller, which processes the input reference signal (correlated with the acoustic

noise), to produce the driving signal for the secondary acoustic source. The

filter parameters (or weights) are tuned based on the residual noise measured

by the error microphone. The weight update rule is the core of the feedfor-

ward ANC scheme, and is typically a simple gradient-based method of the

Least Mean Squares (LMS) family, such as the Filtered-x Least Mean Squares

(FxLMS) and the Filtered-u LMS (FuLMS) algorithms [10]. The described

system is typically subject to various sources of nonlinearity, such as distor-

tion or saturation on the involved microphones, amplifiers, loudspeakers [23].

The noise signal may itself present nonlinear characteristics [16]. For these

reasons several nonlinear ANC (NANC) methods have been recently intro-

duced in the literature, based on different nonlinear model structures of the

2 CHAPTER 1. INTRODUCTION

control filter. Adaptive algorithms of the LMS family can be extended to

several of those filter types, in the simplifying assumption that the secondary

path (SP) dynamics is linear (see e.g. [26, 11]). The linearity of the secondary

path together with the special structure of the control filter allows in fact a

commutation of the secondary path with the linear portion of the control filter

(containing the weights) as in the FxLMS scheme. In the more general case

where the secondary path is nonlinear, this commutation is no longer feasible

and the adaptation process remains unavoidably indirect, in that the desired

filter output signal is not accessible. As a result, the gradient of the cost

function with respect to the weights depends on the input-output gradient of

the secondary path through complex recursions, as explained e.g. in [30] and

in [18]. Accordingly, the resulting gradient-based adaptation algorithms are

more complex (see e.g. [18]). As noted in [18], the indirect structure of the

adaptation process is also a complication for model structure selection, since

the available algorithms [4] for on-line model selection are based on a direct

identification setting. In practice, this task is essential since the model size

(in terms of number of weights) is often huge, to provide the model with the

necessary descriptive flexibility, to the detriment of the computational cost

which should be kept as low as possible for on-line operation. Notice also that

model overparametrization is a well known cause of several undesired effects in

identification problems, such as overfitting, parameter fluctuation, poor model

generalization capabilities, local minima, and even model instability (see, e.g.,

[1], [20]). Besides that, model selection may be necessary to track structural

variations of the nonlinear dynamics of the system.

To circumvent these problems a non-gradient-based error minimization al-

gorithm is developed in this work for the adaptation of general nonlinear con-

trol filters, inspired by Stochastic Approximation (SA) methods. These are

optimization algorithms that operate without directly exploiting the gradient

of the loss function, but using only measurements of the function itself. These

algorithms can be advantageous in ANC since they can operate without the

knowledge of the secondary path dynamics, which is required for gradient

calculation only. Unfortunately, in order to obtain reliable measurements of

the loss function, a transient time must be allowed after each parameter per-

turbation is effected, with a consequent increase in the convergence time, and

1.1. INTRODUCTION 3

a temporary performance loss may also be experienced.

In this thesis, an SA method is employed to address the NANC problem

with a different purpose than avoiding the use of a SP model. Rather, the

gradient-free optimization feature is exploited to circumvent the costly re-

cursions required to account for the SP input-output gradient in the general

NANC adaptation schemes. The estimated SP model is exploited to perform

a virtual backward reconstruction of the effects of a given parameter perturba-

tion, accelerating the process convergence. This also allows in particular the

parallel adaptation of multiple filter instances, subject to different perturba-

tions, a property which can be used both for plain weight update and model

selection purposes. Accordingly, an algorithm is here proposed that uses local

information obtained by multiple evaluations of the loss function to establish

a convenient update direction in the parameter space.

The thesis is organized as follows. An overview of the most important

aspects of Active Noise Control and its nonlinear variant are presented in

chapter 2. Chapter 3 is dedicated to the description and the formal definition

of the proposed Empirical Weight Update (EWU) algorithm, while its usage

for model selection purposes is described in chapter 4. Chapter 5 reports all

the tests performed to stress and evaluate the algorithm accuracy. A per-

formance analysis of the Empirical Weight Update is performed in 6, using

both analytical and experimental arguments. Some conclusions are reported

in chapter 7.

Chapter 2

ANC And NANC Overview

2.1 History of ANC

In the past the noise reduction problem was addressed only with passive tech-

niques, based on combining different absorbing materials in order to reduce

the unwanted interference. The main issues related to this approach are:

• the lower the frequency to be canceled, the thicker the absorbing material

is required to be. This is a critical issue on small and moving objects

such as cars, boats or planes because of the weight, dimension and cost

of the absorbing material.

• usually the frequency limit above which passive techniques work well is

around 1kHz (see [8])

As a consequence, active techniques, that work particularly well for low fre-

quencies, were developed; usually they are combined with passive ones in order

to cancel the disturbances on the whole audible spectrum. Active techniques

rely on the generation of a suitable in-phase interfering signal. This concept

was introduced (see figure 2.1) in the first Active Noise Control patent, regis-

tered by Paul Lueg in 1936. In the section labelled fig.1 the scheme adopts

a microphone for the detection of the interference name it s1, an electronic

system named V that accounts for the generation of a suitable interfering

signal named s2 which must be reproduced by the speaker denoted by the

6 CHAPTER 2. ANC AND NANC OVERVIEW

Figure 2.1: First page of Paul Lueg’s patent

2.2. ANC OVERVIEW 7

letter L. The scheme is similar to the ones adopted nowadays for controlling

the interference of plane waves in ducts if V is interpreted as a digital filter.

The main difficulties in the practical implementation of this scheme were due

to the filter V and only with the advent of inexpensive digital signal processors

it was possible to build the first practical application, relying upon the work

done by Kido and Ross in the second half of seventies. In [29] the authors were

the first to define an adaptive noise canceling scheme. This led to design an

appropriate filter V which was able to cope with time varying interferences.

2.2 ANC Overview

Active Noise Control represents a group of algorithms and schemes with the

goal of reducing an unwanted noise in a specific environment, based on ac-

tive control methods and adaptive algorithms. A sensor is used to measure

the interference and the collected signal is then processed by a DSP which

implements an algorithm for the adaptation of the filter coefficients. This pro-

duces an output used for driving a speaker that is in charge of producing the

appropriate cancelling interference in the acoustical domain. The two main

scheme categories are ”feedforward ANC” (figure 2.3) and ”feedback ANC”

(figure 2.4), the choice between the two schemes depending the application.

The main difference between the two schemes is the signal used to update the

filter coefficients. In the feedforward approach the reference signal is measured

with a microphone or a sensor, depending on the frequency content of the

noise, and the information is sent to the adaptation algorithm along with the

measured error. The updating of the coefficients is then performed based on

these two signals. In the feedback scheme only the measured error is used

to update the filter coefficients. The latter approach is useful when it is not

physically possible to measure the reference signal. Its main drawback is that

it works well only with narrowband noise [15].

2.2.1 Mathematical Aspects

It is useful to take figure 2.5 as a reference scheme where:

8 CHAPTER 2. ANC AND NANC OVERVIEW

Figure 2.2: General ANC scheme: d(n) is the desired response (the noise

filtered by the primary path), x(n) the noise reference signal, y(n) the filter

output and e(n) the error

Figure 2.3: General feedforward ANC scheme

Figure 2.4: Feedback ANC general scheme

2.2. ANC OVERVIEW 9

Figure 2.5: ANC reference scheme

• x(n) is the noise

• P is the primary path transfer function which accounts for the modifi-

cations of the interference until it reaches the summing junction

• C is the controller filter

• y(n) is the controller output

• S is the secondary path transfer function

• y′(k) is the secondary path output signal used to drive the speaker

• e(n) is the error signal used to adapt the filter coefficients of the controller

In the most straightforward implementation of an ANC scheme the controller

is an adaptive Finite Impulse Response (FIR) filter defined as:

y(n) =
L−1∑
l=0

wlx(n− l) = w(n)Tx(n)

where:

• x(n) = [x(n)x(n− 1) · · · x(n−L+ 1)]T is the vector containing the last

L samples of the reference input signal

• w = [w0(n)w1(n) · · ·wL−1(n)]T is the vector of the coefficients of the

adaptive filter

• L is the length of the filter

10 CHAPTER 2. ANC AND NANC OVERVIEW

The goal of ANC is to adapt the weights w(n) in order to minimize e(n) =

d(n)− y(n) = d(n)−w(n)x(n). More specifically the cost function

J(n) = E[e2(n)] = E[(d(n)−wT (n)x(n))2]

is typically employed. Thanks to the assumption that w(n) is a deterministic

sequence, it can be rewritten as:

J(n) = E[e2(n)] = E[d2(n)]− 2pTw(n) +wT (n)Rw(n)

where:

• ∂J(n)
∂w(n)

= −2p +Rw(n) is the gradient of the cost function with respect

to w

• p is the correlation between the input signal x and the reference signal d

• R is the autocorrelation matrix of x

• ∂2J(n)
∂w(n)2

is the Hessian matrix

The Wiener Filtering solution can be adopted, but, since the statistics of the

signals are usually unknown, only iterative methods can be employed in prac-

tice. Moreover, in complex cases the matrices involved in the Wiener solution

are really big and this can lead to a significant increase in the computational

load. Many iterative methods are based on the Newton-Raphson algorithm,

which defines the coefficient update rule as follows:

w(n+ 1) = w(n) +
(∂2J(n)

∂w(n)2

)−1 ∂J(n)

∂w(n)

In order to reduce the complexity, the steepest descent algorithm was de-

rived from the Newton-Rapshon. Since the main computational problems are

generated by the inversion of the autocorrelation matrix R, the Hessian is

replaced by a variable µ; the convergence of the weight vector is maintained,

but it is also slowed down and the gradient still relies on p and R.

The problem of dealing with the statistics of the signals was solved by

Widrow in 1970 with the Least Mean Square algorithm (LMS from now on),

2.2. ANC OVERVIEW 11

which uses the instantaneous squared error to approximate the mean square

error: Ĵ(n) = e2(n). The expression of the gradient becomes

∂Ĵ(n)

∂w(n)
= 2

∂e(n)

∂w(n)
e(n) = −2x(n)e(n)

and consequently the weight update is finally defined as

w(n+ 1) = w(n) + µx(n)e(n).

As in the previous algorithms the convergence is ensured, but small oscilla-

tions around the optimal value of the coefficients are expected, due to the

approximations involved. The greater the gain µ, the more this phenomenon

is emphasized, with the advantage of a faster speed of convergence and the

risk of compromising the stability of the algorithm. The resulting error, with

respect to the Wiener-Hopf optimum, is often named Excess Mean Square

Error and is described in [10].

2.2.2 The Secondary Path Implications

Accounting only for the primary path is usually not sufficient in a feedforward

scheme, since some additional elements are required such as a D/A converter,

a reconstruction filter and a power amplifier. Moreover, the acoustic path from

the speaker to the summing junction and the transfer function of the speaker

must be accounted for as well. Since the signal output of the the primary and

secondary paths are summed in the acoustical domain and measured by an er-

ror microphone, their transfer functions must be taken into account. The path

between the summing junction and the microphone and at least an antialiasing

filter and a A/D converter must be considered in a real scenario.

It is common to group together all the above mentioned elements in a filter

named S(z) which works as in figure 2.6. The z-transform of the error is

defined as:

E(z) = [P (z)−W (z)S(z)]X(z)

As a consequence, the optimal filter coefficients are obtained as:

Wopt(z) =
P (z)

S(z)

12 CHAPTER 2. ANC AND NANC OVERVIEW

Figure 2.6: Secondary path simplified reference scheme

The most straightforward solution to account for the presence of the sec-

ondary path would be to calculate an inverse of the filter S(z) and insert it

between W (z) and S(z), but as explained in [10], this is possible only if S(z)

is minimum phase, which is generally not true in the acoustical context. One

must also take into account that, even if it is possible to obtain a good estimate

of the filter, the secondary path may also be sometimes time variant.

2.2.3 The FxLMS Variant

To take properly the secondary path into account in the LMS, in 1981 Widrow

and Burgess derived independently the FxLMS algorithm, bypassing the prob-

lem of the inversion of S(z) stated above. Their idea was to make a filter Ŝ(z)

approximate S(z) and use it to filter the reference signal, in order to have a

consistent weight update. The adopted scheme is represented in 2.7.

Since the standard LMS weight update formula is given by

w(n+ 1) = w(n)− µ∂e
T (n)

w(n)
e(n)

and, as we can see in figure 2.7, the error is defined as

e(n) = d(n)− y′(n) = d(n)− s(n) ∗ y(n) = d(n)− s(n) ∗ [wT (n)x(n)]

2.3. NANC OVERVIEW 13

Figure 2.7: FxLMS reference scheme

the error gradient can be obtained as

∂e(n)

∂w(n)
= −s(n) ∗ x(n) = −x′(n)

as a direct consequence of the previous two formulas. The name Filtered X

Least Mean Squares comes straightly from the fact that the input signal is

filtered by an estimate of the secondary path. When this scheme is adopted

the filter can tolerate errors in the estimation of Ŝ(z) if the phase difference

between Ŝ(z) and S(z) is below 90 degrees, provided the gain is sufficiently

small [10].

2.3 NANC Overview

In many cases linear algorithms are able to reach good noise attenuation in

practice, because the linear approximation is sufficiently accurate, but when

nonlinearities become non negligible, a new suitable class of models and algo-

rithms must be used. Such methods are collectively denoted Nonlinear ANC

(NANC) methods.

Nonlinearities arise when:

14 CHAPTER 2. ANC AND NANC OVERVIEW

• The noise possesses chaotic features [16];

• Hardware components of the ANC system saturate or operate out of

their linear dynamic range [12];

• High noise pressure levels cause the primary path to be nonlinear and

generate distortions at the canceling point [26];

• The electronics and the speaker excite harmonics related to the frequen-

cies of interest [23];

• Components of the ANC system suffer of aging and corrosion [11].

NANC algorithms are also used when the secondary path is not minimum phase

and cannot be inverted [3, 25]. The ability of a filter to represent nonlinearities

can lead to the installation of cheaper hardware that has a small linear dynamic

range.

2.3.1 NANC With Linear Secondary Path

Several types of filters can be used in a NANC scenario, such as the Volterra

expansion described in [25, 26], which is defined as

y(n) =
L∑

m1=0

w1(m1;n)x(n−m1)+
L∑

m1=0

L∑
m2=m1

w2(m1,m2;n)x(n−m1)x(n−m2)

where x(n) and y(n) are the input and output signals and w1 and w2 are

two time varying coefficients. As explained in [18] the usage of this particular

FIR-type filter can cause several problems:

• It is not possible to model systems with a complex static behavior, since

the nonlinear FIR filter structure admits only one static point for a given

constant input value;

• The model limits the possibility of representing more complex nonlinear-

ities than the second order ones, due to the excessive number of param-

eters that would be required;

2.3. NANC OVERVIEW 15

• A FIR filter requires usually a bigger number of parameters L than an

Infinite Impulse Response (IIR) filter. This leads to a poor parameter

estimation accuracy that can have an impact on the model robustness. In

fact, it is possible to have many redundant terms and the system can show

wrong correlation between the input signal and the model parameters.

Other unwanted effects may also arise due to this overparametrization

issue [1, 20]

The main advantage of this model is represented by the fact that it allows the

usage of the FxLMS algorithm with small modifications, because the second

order Volterra filter can be represented through a linear model like

y(n) = w(n)Tx(n)

where

w(n) = [w1(0;n)w1(1;n) . . . w1(L− 1;n)w2(0, 0;n)w2(0, 1, n)

. . . w2(L− 1, L− 1;n)]T

and

x(n) = [x(n)x(n− 1) ... x(n− L+ 1)x2(n)x(n)x(n− 1) . . . x2(n− L+ 1)].

This kind of representation, along with the assumption of a linear secondary

path, allows the usage of the the standard FxLMS formula for the weight

update

w(n+ 1) = w(n) + µx′(n)e(n)

This control scheme is commonly denoted Volterra FxLMS (VFxLMS).

A different way to approach the problem is represented by the FLANN

(Functional-Link Artificial Neural Network) structure. The input vector x(n)

is mapped into a new signal x′(n) through nonlinear functions, in order to

increase the ability of the system to represent non linearities and subsequently

the FxLMS algorithm can still be applied with minor modifications. There

are various algorithms that are based on this kind of linear filters, that mainly

differ for the strategy adopted for the mapping function:

• the Filtered-s LMS algorithm described in [5] uses trigonometric func-

tional expansion. In [7, 6] a filter-bank featured scheme that implements

16 CHAPTER 2. ANC AND NANC OVERVIEW

the Filtered-s LMS in the frequency domain is also proposed, in order to

reduce the complexity

• in [22] piecewise linear expansion is presented

The method proposed by Sicuranza and Carini [22] works with both Volterra

filters and FLANN structures.

Kuo and Wu proposed in [11] another adaptation of the FxLMS for the

nonlinear case. They rely on a different family of filters named Adaptive

Output Error Bilinear Filters, which can be represented as:

y(n) =
L∑
i=0

ai(n)x(n− i) +
L∑
j=1

bj(n)y(n− j) +
L∑
i=0

L∑
j=1

ci,j(n)x(n− i)y(n− j)

where:

• y is the output signal of the controller

• x is the input signal, sensed by the reference microphone

• ai, bj and ci,j are the adaptive coefficients corresponding to the FIR

part, the IIR part and the second order input-output part of the filter

respectively

Following a similar procedure adopted for the VFxLMS, it is possible to rewrite

the model structure as

w(n) = [a0(n) . . . aL(n) b0(n) . . . bL(n) c0,1(n) . . . cL,L(n)]T

x(n) = [x(n) . . . x(n−L) y(n−1) . . . y(n−L)x(n)y(n−1) . . . x(n−L)y(n−L)]T

and filter element-wise the signal x with the secondary path S(z) to obtain

the signal x′ required by the FxLMS algorithm. The main advantage is that

they are Infinite Impulse Response filters and thus are able to represent more

complex nonlinearities than the Volterra ones, using less coefficients. The

main drawbacks of Volterra filters related to the overparametrization issue are

solved, but, as explained by the authors of the paper, the filter can become

unstable if the algorithm is not carefully designed. Another drawback is rep-

resented by the fact that the error function is nonlinear with respect to the

2.3. NANC OVERVIEW 17

coefficient values and thus the adaptation algorithm can be trapped in a local

minimum. In the literature it is common to refer to this particular scheme as

BFxLMS, which stands for Bilinear FxLMS.

2.3.2 NANC With Nonlinear Secondary Path

All the algorithms presented until now assume a linear secondary path. The

main assumption of all the FxLMS based algorithm presented so far is that

the linear SP can be swapped with the controller which is linear in the pa-

rameters so that its output can be interpreted as a linear regression. When

nonlinearities appear in the SP, more complex algorithms must be used, since

the swapping does not generally apply. Snyder and Tanaka in [23] defined a

control structure based on MLANNs (Multiple Link Artificial Neural Network)

filters. They are used both for the controller and the SP path but in the second

case the coefficients are fixed and never adapted. The authors show that the

algorithm is an extension of the FxLMS for the non linear case and that the

structure of the filter is an extension of a neural network. The authors show

that the predictability of the results is the main problem concerning the usage

of a neural network, thus, as they proposed, more work must be done in this

direction before put aside the FxLMS based algorithms.

In [30] Zhou and DeBrunner proposed a method based on the so called

virtual secondary path, which can work as a standard FxLMS if the SP is

linear, but it is capable of generalizing the concept also to nonlinear SPs. The

controller accounts for nonlinearities following the concept of linear function

expansion already used in [5, 22]. Moreover it is worth to mention that the

proposed method subsumes both the VFxLMS ([26]) and the FsLMS ([5]),

being able to reduce the computational complexity of the latter.

In order to increase the representation capabilities of nonlinearities, the

NARX (Nonlinear AutoRegressive models with eXogenous variables) model

structure was proposed in [13].

The NARX model is a recursive input-output relationship that is defined

as

y(n) = f(y(n− 1), · · · , y(n− L), x(n), · · · , x(n− L))

18 CHAPTER 2. ANC AND NANC OVERVIEW

where f(·) is a function that meshes up different lagged input and outputs;

x(·) and y(·) are respectively the input and the output signals and L is the

maximum lag admitted in the structure. f(·) can be formally defined in differ-

ent ways, such as neural networks and wavelet networks, but one of the most

common is the polynomial one:

l∑
m=0

m∑
p=0

L∑
n1=1

· · ·
L∑

nm=0

cp,m−p(n1, · · · , nm)×
p∏
i=1

y(n− ni)
m∏

i=p+1

x(n− ni) (2.1)

where l is the maximum degree of the polynomial expansion and

cp,m−p(n1, · · · , nm) are constant parameters. Looking at formula 2.1 is

easy to notice that subsumes both the Volterra and the Bilinear models.

Again the output y(n) can be interpreted as a linear regression:

y(n) = ϕ(n)Tθ

where ϕ(n) is the regressor vector and θ is the correspondent vector of the

associated coefficients. It introduces new regressors with respect to Volterra

and Bilinear models, therefore, in order to retain only the regressors that

better describe the filter, a model structure selection algorithm should be used

to reduce greatly the coefficients that must be adapted and consequently the

overall complexity. Most of the literature for the model structure selection

has been developed for NARX and many algorithms, such as FROE (Forward-

Regression Orthogonal Estimator) [2], SEMP (Simulation Error Minimization

With Pruning) [20] and FRA (Fast Recursive Algorithm) [14] rely on it.

An adaptation law suitable for NARX models is the so called Nonlinear

Filtered-Gradient Least Mean Squares (NFGLMS) [18]. One of the main as-

sumptions of the FxLMS is that the SP can be swapped with the controller,

but since this operation can not be done with of nonlinear SPs, Napoli and

Piroddi tried to solve the problem using the recursive calculation of the error

gradient. The NFGLMS faces the NANC problem by performing an indirect

model identification, which implies the control structure estimation by off-line

processing (discussed later in chapter 4).

Since the NFGLMS is taken as a benchmark in this work, an exhaustive

explanation is provided next. Let’s consider a system like the one pictured

in figure 2.5, assuming a deterministic polynomial NARX structure described

2.3. NANC OVERVIEW 19

formula (2.1) for both the SP and controller. The goal is to minimize the

output error of an NANC system, with both the primary and the secondary

paths. Being nonlinear, the update equation used by NFGLMS is based on

the steepest descent algorithm and is derived as follows:

θ(n+ 1) = θ(n)− µ

2

(∂e(n)2

∂θ

∣∣∣
θ(n)

)T
θ(n+ 1) = θ(n)− µ

(∂e(n)

∂θ

∣∣∣
θ(n)

)T
e(n)

θ(n+ 1) = θ(n) + µ
(∂y′(n)

∂θ

∣∣∣
θ(n)

)T
e(n)

where θ is the coefficient vector. The gradient ∂y′(n)
∂θ

is iteratively computed

by means of the nonlinear filter:

∂y′(n)

∂θ

∣∣∣
θ(n)

=
M∑
j=0

∂y′(n)

∂y(n− j)
yθ(n− j) (2.2)

where M is the memory of the secondary path (here j starts from 0 while in

the algorithm found in paper [18] starts from 1). Formula (2.2) is obtained

through Feintuch’s assumption, which neglects the recursion based on old out-

put gradients, with the goal to reduce the computational burden. In fact the

correct filter should be:

∂y′(n)

∂θ

∣∣∣
θ(n)

=
M∑
j=1

∂y′(n)

∂y′(n− j)
y′θ(n− j) +

M∑
j=0

∂y′(n)

∂y(n− j)
yθ(n− j) (2.3)

The same reasoning is done to compute yθ(n), that in its simplified form looks

like:

yθ(n) =

p̄∏
i=1

y(n− n̄i)
m∏

i=p̄+1

x(n− n̄i) (2.4)

while it should be calculated as:

yθ(n) =
M∑
j=1

∂y(n)

∂y(n− j)
yθ(n− j) +

p̄∏
i=1

y(n− n̄i)
m∏

i=p̄+1

x(n− n̄i). (2.5)

if Feintuch’s assumption is not considered.

As we can read in [18], the adaptation equation structured so far includes

gradient filtering of the controller output with respect to its weights. From this

observation comes the name Nonlinear Filtered-Gradient LMS (NFGLMS).

20 CHAPTER 2. ANC AND NANC OVERVIEW

In order to evaluate the consequences of Feintuch’s assumption, we consid-

ered three different configurations, always keeping the recursion based on the

old output gradients in (2.3):

• Maintain the equation (2.4) together with (2.2) (standard NFGLMS);

• Preserve all the recursive terms in yθ(n) using formula (2.5), in order to

obtain the correct gradient and, (2.2) to calculate the controller output

(name it Full-Gradient);

• Hold only a fixed number M̄ of recursive terms, in order to achieve an

hybrid setup between the full yθ(n) gradient and the simplified one de-

scribed by formula (2.4) (name it Half-Gradient). The following equation

(2.6) shows the approach to calculate progressive Feintuch’s approxima-

tions, where 0 ≤ M̄ ≤M

yθ(n) =
M̄∑
j=1

∂y(n)

∂y(n− j)
yθ(n− j) +

p̄∏
i=1

y(n− n̄i)
m∏

i=p̄+1

x(n− n̄i). (2.6)

A test was performed to verify the behavior of the NFGLMS with the

modifications previously described. The chosen test is very simple, so that we

have an overwhelming probability that differences in performance should not

be attributed to the complexity of the model. Let’s take a linear controller

and a second order SP like:

y(n) = ay(n− 1) + bx(n) (2.7a)

y′(n) = αy′(n− 1) + βy(n) + γy(n− 1)y(n) (2.7b)

The primary path is the exact product of the SP and an ideal controller with

a = 0.4 and b = 0.2, while α, β and γ are 0.1, 0.3 and 0.2 respectively.

As we can see in the MSE chart reported in figure 2.8, the three algorithms

have similar performances but the approximations in the NFGLMS, and the

consequent loss of information, are nevertheless noticeable, even if the test

is set up with starting coefficients of the controller near the ideal ones. On

the other hand, when the coefficient a moves away from its correct value, a

significant improvement in the performance is experienced, both with Half-

Feintuch and the Full-Gradient approaches with respect to the NFGLMS, by

2.3. NANC OVERVIEW 21

Figure 2.8: The three algorithms running with starting parameters a = 0.25

and b = 0.1, red = NFGLMS, blue = Half-Gradient approach, green = Full-

Gradient

Figure 2.9: 80000 samples, a = 1.5, b = 0.2, red=NFGLMS, blue = Half-

Feintuch approach, green = Full-Gradient

22 CHAPTER 2. ANC AND NANC OVERVIEW

approximately 10 − 20 dB. As we can see from figures 2.8 and 2.9, the more

the gradient is approximated the more time is needed to reach convergence as

a diverges from its optimal value. These results are in line with theory: in

fact the more the gradient approximations, the least reactive the performance.

In any case, it is worth noticing that the NFGLMS requires less calculations,

while maintaing a comparable behavior.

Another class of algorithms that can be used in the presence of nonlinear-

ities, even in the secondary path, is represented by the one that relies on a

stochastic approach. These algorithms try to achieve the best attenuation find-

ing a suitable controller coefficient update based on experience, hence avoiding

the direct computation of the gradient. The theoretically obtainable advan-

tages are:

• lower complexity

• easy adaptation to secondary path variations

• applicability evening the case of unknown secondary path

The main drawback is represented by the fact that convergence is often slower

than with gradient methods. Stochastic methods can be grouped in two cat-

egories: those which try to estimate the gradient from successive observations

like the SPSA [31] and those, like the PSO [21], which look only to the outcomes

for updating the coefficients.

Stochastic Approximation (SA) methods try to solve the problem of mini-

mizing the loss function, without directly exploiting the gradient information,

which is approximated from subsequent measurements of the function itself.

Their main advantage is that they do not require any type of information about

the functional relationship between the parameters and the loss function to be

minimized [24]. In the ANC field this means that they do not necessarily

require an estimate of the secondary path. They can also achieve a compu-

tational advantage, although the lower speed of convergence with respect to

gradient based ones should be considered.

Spall in [24] lists at least three factors that can give SA algorithms a po-

tential advantage:

2.3. NANC OVERVIEW 23

1. Gradient-based methods need a reliable knowledge of the input/output

relationships, while SA methods can work with poor or even without

system models;

2. The total cost to achieve convergence must consider also the computa-

tional cost for each iteration (typically lower in SA methods);

3. Convergence rates are based on asymptotic theory and may not be rep-

resentative with finite samples.

The simplest method based on this approach is the Finite Difference Stochastic

Approximation (FDSA) proposed by Kiefler and Wolfowitz in [9]. It adds a

perturbation to one controller coefficient at a time and measures the outcome.

An estimate of the gradient is then obtained by subtracting the outcomes and

dividing the result by an interval equal to two times the applied perturbation.

This is the standard definition of gradient as a vector of partial derivatives,

each one computed with the difference quotients method. Analytically the i-th

component of the approximated gradient is represented by:

gni(θn) =
J(θn + cnei)− J(θn − cnei)

2cn
(2.8)

where:

• J is the loss function

• θk is the coefficient vector

• ei is a zero-vector with a one in the i-th position

• ck is the magnitude of the perturbation

This algorithm requires at least a number of measures of the output equal to

twice the number of coefficients nc, because two perturbations (negative and

positive) are applied for each coefficient.

A smarter stochastic algorithm described by Spall in [24] is the SPSA

(Simultaneous Perturbation Stochastic Approximation). With the aim of im-

proving the performance, the perturbation is applied simultaneously to the

entire set of coefficients with a randomly chosen magnitude. The number of

24 CHAPTER 2. ANC AND NANC OVERVIEW

required measurements reduces from 2nc to 2. The resulting approximation of

the gradient becomes:

gni(θn) =
J(θn + cnδn)− J(θn − cnδn)

2cnδni
(2.9)

where δn is the perturbation vector, while all the other parameters retain the

previous meaning. To reach convergence, a careful choice of the elements of

vector δn is in order. A common solution ([24, 31]) is to consider all the δni as

symmetric Bernoulli distribution. Both for the FDSA and SPSA the update

rule is:

θn+1 = θn − angn (2.10)

In the results shown in [24] it is possible to see that SPSA reaches convergence

faster than FDSA, but it follows a much longer adaptation path. This is

explained by the fact that the Finite Difference Stochastic Approximation

algorithm tries to follow at each step the direction towards the best coefficients

while the SPSA, through the reduction of collected data, often does not follow

the locally steepest descent path.

One ANC application of SPSA was operated in [31] by Zhou, Zhang, Li,

and Gan both for linear and nonlinear secondary paths. The model of the SP

is assumed to be unknown and the objective to reduce a periodic noise. A

feedback ANC configuration was chosen. The controller is defined as

u(n) = cc1cos(ω1n) + cs1sin(ω1n) + cc2cos(ω2n) + cs2sin(ω2n)

where u(n) is the output of the controller, while ω1 and ω2 are the frequencies

of the canceling signal chosen to match the frequency content of the noise

signal. The weight vector is consequently defined as

w = [cc1 c
s
1 c

c
2 c

s
2]

Simultaneous perturbations are added and subtracted to the coefficient vector

and the output error of the ANC system is collected for a predefined number of

steps defined by the variable λ. The error (loss) function used in the gradient

estimate was:

J(y(n)) =
1

2

λ∑
n=1

e2(n) (2.11)

2.3. NANC OVERVIEW 25

The results described in [31] show that the algorithm is capable of good re-

sults in terms of attenuation but the performance is strongly affected by the

differences between the frequencies of the sinusoids that made up the controller

and the frequency components of the noise. In fact only the magnitude of the

canceling signal is adapted by the SPSA and a modification of the algorithm

is required to account also for the adaptation of the frequency. It is important

to notice that as in gradient methods, the algorithm is sensible to spikes since

the magnitude of the correction terms is proportional to the error measured by

the microphone. Since the magnitude of the correction term is not bounded,

stability is not guaranteed.

Another algorithm that is useful in the presence of a nonlinear secondary

path is the PSO. Particle Swarm Optimization stochastic algorithm is ”based

on the premise that social sharing of information among members of a species

offers and evolutionary advantage” [19]. It is based on the social behavior

reflected in flock of birds and unlike the algorithms presented so far is a part

of global optimization algorithm. This type of algorithms as well as Genetic

Algorithms [27] cannot be directly used in ANC systems because they depend

on a set of errors and not on an instantaneous outcome of the error sensor. In

fact PSO was introduced for batch applications where all the data is known

in advance. A scheme for online ANC adaptation is proposed by Rout, Das,

and Panda in [21]. The PSO relies on positioning the particles, represented by

the adaptive filters, in the coefficients field. This is equivalent to say that each

filter is initialized with different coefficient values. Each particle is described

by its position and velocity that are modified at each update with respect

to the particles that led to the best performances. Particles virtually ”talk”

to each other and the information of the best position is shared. The above

cited PSO application for ANC exploits this characteristic to find the best

controller configuration. Each particle represents a specific configuration in the

parameters of the controller’s dynamic filter. The algorithm can be explained

as follows:

1. initialize a matrix W with as many columns as the number of particles

P and as many rows as the order of the controller filter N with random

26 CHAPTER 2. ANC AND NANC OVERVIEW

values in the range [0,1] and a zero matrix V with the same dimensions:

W =

w1

1 w2
1 · · · wP1

w1
2 w2

2 · · · wP2
...

... · · · ...

w1
N w2

N · · · wPN

2. select the i -th particle (filter) and compute the output error

3. repeat step 2 M − 1 times and compute the MSE of the collected errors,

where M represents how many samples are collected for each particle

4. increase i and repeat step 2 and 3 until i = P then go to step 5

5. update W and V with the following rules:

Vi(n) = σVi(n− 1) + r1(Wpbesti −Wi(n))

+r2(Wgbest −Wi(n))

Wi(n) = Wi(n− 1) + Vi(n)

where Wpbesti is the position of the i -th particle that led to its personal

lowest MSE, while Wgbest represents the best coefficient vector among

all the Wpbesti . Parameter σ is the so called inertia coefficient that pre-

vents the update of V from being a pure integrator, analogously to the

leakage factor sometimes used in LMS-type algorithms. r1 and r2 are

two random values taken randomly in the range [0,1].

6. repeat from step 2 to step 6 until convergence is achieved.

The block scheme of the algorithm is represented in figure 2.10. The main

advantage of this particular method is that no estimates of the secondary path

are used in the update of the algorithm. This theoretically means that the PSO

is not affected by errors in the approximation of the secondary path. It is worth

mentioning that the real SP can change due to temperature variations [15]

and since online estimation is difficult, this can represent a great improvement

with respect to the algorithm presented so far. Another advantage is that it

generally avoids to be trapped in local minima since it is a global optimization

method. In fact particles are initially spread around in the coefficients space

2.3. NANC OVERVIEW 27

Figure 2.10: PSO-based ANC block scheme

at random. Moreover, it is not sensible to spikes in the primary signal because

the value of the error is not directly part of the coefficients update and it can

be easily adapted to work with on line variations of the secondary and primary

path by reinitializing the particle matrices when the variation is detected.

The main disadvantage of the approach described so far is that the speed

of convergence is low. The update comes only after the whole set of filters

correspondent to the particles has been tested. Furthermore for each filter we

must collect the error for M steps, where M is a sufficiently large value in

order to measure a ”clean” error (usually at least double with respect to the

length of the filters, which is equal to N). In fact, previous filter values should

not affect the error, since it depends from the memory of the controller and

the secondary path. Subsequently, one has to correctly adjust M as well as the

order of the controller and the number of particles taken into consideration.

This tuning is not easy due to the unawareness of the secondary path, thus all

the setup parameters need to be found empirically.

Chapter 3

The Empirical Gradient

Approach

3.1 Introduction

As we have seen in the previous chapters, gradient methods suffers from the

problem of explicit computation of the partial derivatives. In fact, it is quite

challenging to find an automatic and efficient procedure to calculate them.

Moreover, the complexity of the gradient computation is directly proportional

to the order of the controller and of the secondary path. On the other hand,

stochastic methods are too slow in convergence to be compared with the above

mentioned methods given that each update requires a significant number of

steps.

All the stochastic methods seen so far are model-free. This means that

they do not rely at all on secondary path estimates. This could be a winning

approach if the SP is difficult to be estimated or if it varies strongly in time.

In all the other situations there is no reason why the SP estimate should

not be somehow used to improve both speed of convergence and performance.

Starting from an approach similar to FDSA, we use the secondary path esti-

mate to compute in parallel the errors coming from different configurations of

the controller. Though, this adds complexity with respect to the stochastic

method, but it also increases the speed of convergence. A careful tuning of

the algorithm parameters allows to improve both performance, execution time

30 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

and sometimes stability. The method is explained in detail in the rest of the

chapter.

3.2 Empirical Weight Update (EWU)

In this section we introduce The Empirical Weight Update or EWU. The

name comes from the fact that the update of the controller coefficients is

done by empirically testing various configurations. This choice comes from

the idea of using the estimate of the secondary path to try different controller

filters at the same time. In this way we can benefit in speed, even if the

introduction of an SP estimate may also introduce some approximation error.

For this reason we choose not to compute any estimate of the gradient but to

empirically move the controller filter parameters in the coefficients field. We

test a number of configurations equal to twice the coefficients number as in

FDSA [9], but simultaneously. As in PSO [21] the algorithm discriminates

the best direction on the error output, but at each decision step, only one

error is a real output measured, while the others are virtually computed just

considering their instantaneous values. Theoretically, the method moves each

coefficient on its axis and chooses the best direction in which to proceed. Then,

all the chosen directions are linearly combined and the controller’s weights are

updated.

The idea behind EWU (whose block scheme is depicted in figure 3.1) is to

discriminate which is the best direction by looking at the instantaneous errors

produced by different filters. In order to set up the algorithm, we have input-

output delay of the SP. This parameter defines the minimum number of steps

necessary to propagate the effect of a single input on y′ and consequently the

effect of a perturbation on the controller coefficient. Accordingly, EWU has

to wait for that number of steps to try simultaneously different configurations

thus finding the best instantaneous solution. If, for example, the secondary

path includes y(n), EWU can suddenly compute the virtual errors coming out

from all the considered filters. Otherwise, if we do not have y(n) but y(n− k)

EWU has to wait for k steps in order to measure the first effect of the coefficient

changes.

3.2. EMPIRICAL WEIGHT UPDATE (EWU) 31

Figure 3.1: EWU block scheme

To introduce the idea, we will explain the update procedure of the algorithm

and, to have a concrete example, we will take the two-coefficients case (W =[
w1 w2

]T
) with a secondary path including y(n), without forgetting that

EWU can be extended to any number of coefficients. At each iteration the

algorithm performs the following tasks:

1. it computes the output y(n) of the controller

y(n) = W TΦ(n)

where Φ and W are respectively the regressor and the coefficient vectors

of the controller

2. it collects the error e0(n) coming from the current configuration

e0(n) = d(n)− y′(n)

where y′(n) is the secondary path output and d(n) is the signal which

has to be attenuated

3. it computes the output of the secondary path estimate ŷ′(n) without

perturbations on the controller coefficients

ŷ′(n) = ΘTΓ(n)

32 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

where Γ and Θ are respectively the regressor vector and the coefficient

vector of the SP estimate

4. for each coefficient it computes the virtual errors corresponding to the

two possible directions on its axis, vi+ and vi− , moving with a step-size

µ. Let’s define:

vi± = nc elements zero-vector with a ± µ in the i-th position

where nc is the number of coefficients of the controller. Hence, in the

case taken into consideration, we have four directions:

v1+ =
[

+µ 0
]
v1− =

[
−µ 0

]
v2+ =

[
0 +µ

]
v2− =

[
0 −µ

]
In this way v1+ and v1− are associated to w1, while v2+ and v2− to w2. The

virtual errors are obtained by reconstructing the primary path output d

starting from the result of the previous steps:

d̂(n) = e0(n)− ŷ′(n)

yi±(n) = (W + vi±)TΦ(n)

ŷ′i±(n) = ΘTΓi±(n)

êi±(n) = d̂(n)− ŷ′i±(n)

where êi± are the errors referred to the i-th coefficient with respect to

the positive or negative direction and Γi± is the regressors’ vector of the

SP using yi±(n) instead of y(n)

5. for each coefficient it chooses the direction vimin that leads to the mini-

mum error

vimin = vj where j ∈ {0, i+, i−} such that êj = min ({e0, êi+ , êi−})

êimin = min ({e0, êi+ , êi−})

6. it moves the coefficients accordingly to a linear combination of the se-

lected directions scaling them with a factor qi:

W = W +
nc∑
i=0

qivimin

3.2. EMPIRICAL WEIGHT UPDATE (EWU) 33

qi =
(e2

0 − ê2
imin)√∑nc

j=1(e2
0 − ê2

jmin)2

In this way:
nc∑
i=1

q2
i = 1

For example if the selected directions are v1+ and v2+

q1 =
(e2

0 − ê2
1+)√∑2

j=1(e2
0 − ê2

jmin)2

q2 =
(e2

0 − ê2
2−)√∑2

j=1(e2
0 − ê2

jmin)2

W = W + q1 · v1+ + q2 · v2+

The algorithm ends when perturbations do not lead to smaller errors for

a predefined number of steps. EWU tries to implement instantaneously what

is described in figure 3.2, 3.3 and 3.4 but without the exact knowledge of the

error in every probed direction.

The Empirical Weight Update method reaches convergence earlier than the

PSO and SPSA, thanks to the virtualization of the perturbation system. An-

other good feature of this algorithm is that the update of each single coefficient

is not proportional to the magnitude of the error but only to the step-size; this

makes EWU particularly resistant to error spikes. However, as is, EWU is still

computationally too complex to be compared with NFGLMS. In fact, for each

step it needs a number of convolutions proportional to 4*nc (2*nc to propagate

every single perturbation through the controller and 2*nc to do the same with

the SP estimate).

3.2.1 Complexity Optimizations

The steps of EWU are computationally heavy because of the multiple convolu-

tions involved in the calculations, but we can reduce this load by exploiting the

relations between the initial position of the coefficients in the coefficients field

34 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

Figure 3.2: perturbations on the coefficients w1. In green the smallest error.

3.2. EMPIRICAL WEIGHT UPDATE (EWU) 35

Figure 3.3: perturbations on the coefficients w2. In green the smallest error.

36 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

Figure 3.4: linear combinations between the best directions.

3.2. EMPIRICAL WEIGHT UPDATE (EWU) 37

Algorithm 1 EWU algorithm

Φ,Γ . controller and SP regressors matrices

Γ̂ . SP estimate regressor matrix

W,Θ . controller and SP coefficient vectors

nc ← length(W)

for i = 1 : nc do

vi+ ← zeros(nc, 1);

vi− ← zeros(nc, 1);

vi+(i)← µ; . positive direction on the i-th coefficient axes

vi−(i)← −µ; . negative direction on the i-th coefficient axes

end for

for all n do

y(n)← W · Φ(n) . controller output

y′(n)← Θ · Γ(n) . SP output

ŷ′(n)← Θ · Γ̂(n) . SP estimate output

e0(n)← d− y′(n)

d̂(n)← e0 + ŷ′(n) . Primary Path estimate output

for i = 1 : nc do

yi±(n)← (W + vi±) · Φ(n) . controller outputs associated to vi±

Γ̂i±(n) . SP estimate regressor matrices with yi±(n) in place of y(n)

ŷ′i±(n)← Θ · Γ̂i±(n) . SP outputs associated to vi±

êi±(n)← d̂− ŷ′i±(n)

êimin(n)← min ({e0, êi+ , êi−})
if êimin(k) = e0 then

vimin ← zeros(nc, 1)

else if êimin(n) = êi+ then

vimin ← vi+

else if êimin(n) = êi− then

vimin ← vi−

end if

Di ← e2
0 − ê2

imin . Improvement associated to the smallest error

end for

for i = 1 : nc do

qi ← Di√
sum (D2)

W ← W + qi · vimin

end for

end for

38 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

and the other possible positions. This is what happens to y(n) if we perturb

a single coefficient i on a controller with n parameters:

yi(n) = (W + µ∆i)Φ(n) = WΦ(n) + µ∆iΦ(n) = y(n) + µ∆iΦ(n)

where W is the coefficient vector, Φ is the regressors vector and ∆i denotes

a vector of nc elements with a one in the i-th place and zeros elsewhere. For

this reason we can write:

yi(n) = y(n) + µδiφi (3.1)

where δi and φi are the i-th component of ∆i and Φi. Now, looking at the SP

output we can say that:

y′(n) = ΘΓ(n) (3.2)

where Θ is the coefficient vector of the SP and Γ is the regressors vector.

Moreover

n−m = k

where m is the smallest delay on y in the secondary path. This means that a

perturbation of the coefficients taking place at k will show its effect after m

steps. Now, let’s define:

Ω0 = {all the regressors in Γ not containing y(k)}
Ω1 =

{
all the regressors in Γ containing y1(k)

y1(k)

}
Ω2 =

{
all the regressors in Γ containing y2(k)

y2(k)

}
...

Ωj =
{

all the regressors in Γ containing yj(k)
yj(k)

}
and:

Σ0 =
∑

ΘΩ0Ω0

Σ1 =
∑

ΘΩ1Ω1

Σ2 =
∑

ΘΩ2Ω2

...

Σj =
∑

ΘΩj
Ωj

Where all the ΘΩj
are the sets of the coefficients associated with each Ωj.

Hence, y′(k) can be expressed as:

y′(n) = Σ0 + Σ1y(k) + Σ2y
2(k) + · · ·+ Σny

n(k) (3.3)

3.2. EMPIRICAL WEIGHT UPDATE (EWU) 39

The y′i associated to a perturbation i is, remembering 3.1:

y′i(n) = Σ0+Σ1(y(k)+µδiφi)+Σ2(y(k)+µδiφi)
2+· · ·+Σn(y(k)+µδiφi)

n (3.4)

If we add and remove Σ1y(k), Σ2y
2(k), · · · and Σny

n(k) from equation 3.4

the result will be as follows:

y′i(n) = Σ0 + Σ1((y(k) + µδiφi) + y(k)− y(k))+

+Σ2((y(k) + µδiφi)
2 + y2(k)− y2(k))+

+ · · ·+

+Σn((y(k) + µδiφi)
n + yn(k)− yn(k))

(3.5)

In this formula we can recognize equation 3.3, so:

y′i(n) = y′(n) + Σ1((y(k) + µδiφi)− y(k))+

+Σ2((y(k) + µδiφi)
2 − y2(k))+

+ · · ·+

+Σn((y(k) + µδiφi)
n − yn(k))

(3.6)

For example if we have a SP designed as follows:

y′(n) = ay′(k−2)+by′(k−1)y2(k)+cy(k−1)y2(k)+dy′(k−1)y(k−1)+ey(k)

we can define:
Ω0 = {y′(k − 2), y′(k − 1)y(k − 1)}

Ω1 = {1}
Ω2 = {y′(k − 1), y(k − 1)}

and
Σ0 = ay′(k − 2) + dy′(k − 1)y(k − 1)

Σ1 = e

Σ2 = by′(k − 1) + cy(k − 1)

From equation 3.6:

y′i(n) = y′(n) + e((y(k) + µδiφi)− y(k))+

+(by′(k − 1) + cy(k − 1))((y(k) + µδiφi)
2 − y2(k))

Exploiting this relationship is particularly convenient with a linear SP. In

this case, we can compute y′ as a convolution of y with the impulse response

40 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

of the SP. If the SP is nonlinear this cannot be done, but if we take a look

at equation 3.4, it can be seen that Σ0 is the same of that in equation 3.3;

this means that we have to compute it only once for all the perturbations,

thus achieving a considerable saving even in this case. Hence, we have only to

compute the terms containing y(k). For example if we have a SP designed as

follows:

y′(n) = ay′(n−2)+by′(n−1)y2(k)+cy(n−1)y2(k)+dy′(n−1)y(n−1)+ey(k)

we can define:
Ω0 = {y′(n− 2), y′(n− 1)y(n− 1)}

Ω1 = {1}
Ω2 = {y′(n− 1), y(n− 1)}

and
Σ0 = ay′(n− 2) + dy′(n− 1)y(n− 1)

Σ1 = e

Σ2 = by′(n− 1) + cy(n− 1)

y′i(n) = Σ0 + e(y(k) + µδiφi)+

+(by′(n− 1) + cy(n− 1))(y(k) + µδiφi)
2

This approach to the problem needs a preliminary stage where a data

structure is created to handle all the matrices taking part in the algorithm, but

it considerably reduces the number of multiplications and additions involved

in each step. As a matter of fact we will see that, thanks to this optimization,

EWU can compete with NFGLMS in terms of computational time for each

iteration.

3.2.2 Step size update policy

The performance of EWU is limited if we choose a fixed gain. This the lat-

ter avoids the achievement of convergence of the controller coefficients that

keep on fluctuating around the optimum value. Accordingly the algorithm

can be modified by introducing a suitable adaption of the step size, with the

possibility to choose between two different policies. A first policy assumes

a single step-size for all the involved coefficients, and reduces (e.g. by half)

it when all the probed directions do not lead to a lower error. Otherwise,

3.3. EWU WITH UNIFORM LINEAR COMBINATION (UEWU) 41

a vector of independent gains can be built, each one associated to a specific

coefficient. In this case the step size reduction is operated only when the

two directions associated to a coefficient do not lower the outcome. This last

approach gives the algorithm a more granular control over the parameters,

consequently improving the accuracy. Moreover, the additional computational

burden is negligible if compared to the additional degrees of freedom that are

gained. Each iteration of the algorithm operates as follows:

1. it computes the output y(n) of the controller

2. it collects the error e0(n) coming from the current configuration

3. it computes the output of the secondary path estimate ŷ′(n) without

perturbations on the controller coefficients

4. for each coefficient i it computes the virtual errors corresponding to the

two possible directions on its axis, moving with a step-size µi.

vi± = nc elements zero-vector with a ± µi in the i-th position

5. for each coefficient it chooses the direction that leads to the minimum

error. If no perturbation leads to an improvement, it reduces the step

size correspondent to the coefficient (e.g. by having it):

if e0 = min ({e0, êi+ , êi−}) then µi =
µi
2

6. it moves the coefficients accordingly to a linear combination of the two

optimal orthogonal directions.

in this variant the algorithm ends when all the elements of the step-size vector

are close to zero. In the following we will consider the EWU version with the

halving of the step size.

3.3 EWU with uniform linear combination

(UEWU)

An element that could lead to an increase in the complexity of each iteration of

EWU is the computation of the linear combination coefficients. In the previous

42 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

Table 3.1: Table representing execution times for each one of the shown tests

repetition Uniform combination time Weighted combination time

1 0.458443 seconds 0.490062 seconds

2 0.445222 seconds 0.495592 seconds

3 0.453671 seconds 0.508008 seconds

described versions of the algorithm the calculations include divisions. As we

know, division is a complex operation (computationally speaking) and here is

repeated nc − 1 times, where nc is the number of coefficients of the controller.

In order to speed up the algorithm, we can assume that all the coefficients of

the linear combination are equal to one, instead of obtaining them from the

divisions explained above:

qi = 1∀i

Obviously this choice ends up to be less accurate, as we can see in figure 3.5, 3.6

and 3.7. These three graphs represent the MSE (in dB) of the system with the

two discussed types of combination. They are obtained by feeding the systems

with the same three input sets and running the algorithm for 1000 iterations.

Notice that the uniform linear combination EWU (from now on UEWU) does

not reach the performance of the standard algorithm. Looking at the execution

time (table 3.1) we can see that there is an actual time reduction earned by

avoiding the computation of the combination coefficients. However this is

negligible with respect to the loss in performance.

We can better understand the gap between the two methods by looking

at figures 3.8 and 3.9. These represent the update path of one coefficient in

the first 115 steps for both the methods. It is clear that UEWU leads to a

rougher updating path that delays the convergence. A weighted combination

is also important because it protects the algorithm from approximation errors.

In fact the smaller is the advantage in taking one direction, the smaller will it

be weighted in the linear combination.

3.3. EWU WITH UNIFORM LINEAR COMBINATION (UEWU) 43

Figure 3.5: EWU MSE(red) and UEWU (violet) 1/3

Figure 3.6: EWU MSE(red) and UEWU (violet) 2/3

44 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

Figure 3.7: EWU MSE(red) and UEWU (violet) 3/3

Figure 3.8: coefficient update path using EWU with uniform linear combina-

tion

3.3. EWU WITH UNIFORM LINEAR COMBINATION (UEWU) 45

Figure 3.9: coefficient update path using EWU with weighted linear combina-

tion

46 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

3.4 Considerations about the instantaneous

error

Even if EWU reaches good attenuation results the instantaneous error is not an

efficient discriminant because, as already observed for stochastic algorithms,

the computation of the error at each iteration and for each direction, is affected

by the previous outputs. In fact, if we look at figure 3.8, 3.9 and 3.10 we can

notice that NFGLMS follows a well defined direction in the update of the

coefficients, while the EWU and UEWU coefficients paths are more chaotic.

In some cases the impact of this approximation is so strong that UEWU can

not even converge to the correct parameters values. This is the case of figure

3.11, where the coefficient is not able to reach the convergence value of 0.2.

This is caused by subsequent wrong evaluations of the virtual errors. These

mislead the algorithm that begins halving the steps size, reducing it to zero

before the coefficients reach the convergence value.

Figure 3.10: NFGLMS coefficient update-path

The most natural solution would be to compute, in parallel, the errors of all

the considered directions, for a number of steps at least equal to the memory

3.5. CONVERGENCE SOLUTIONS 47

Figure 3.11: UEWU coefficient update-path. The convergence value should be

0.2 .

of the secondary path. This solution is impractical because it does not scale

properly as the complexity of the model increases, which is one of the main

targets of EWU.

3.5 Convergence solutions

As previously shown, UEWU sometimes does not reach convergence or has a

consistent bias in the parameters. This is caused by the use of the instanta-

neous error as a discriminant to find the best directions that, in some cases,

can lead us to a wrong evaluation or can stop the coefficients evolution before

proper convergence. In the following sub-sections we will list some possible so-

lutions to this problem. These try to help the algorithm to reach convergence

without affecting too much the general complexity.

48 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

3.5.1 EWU step size doubling

An element which we can act upon is the step size. Until now EWU halves

the step size when it does not find, in the contour of the current starting coef-

ficient, a better position. This, together with the problem analyzed previously

regarding the instantaneous error, could take rapidly the step size to zero even

if the best coefficient is not found, so an alternative rule was introduced. If a

given direction is chosen more than n times consecutively the corresponding

step size is doubled (EWU-SSD). To prevent the algorithm from divergence a

clipping threshold for the step size is set up. The additional complexity for

this solution is almost negligible. EWU-SSD behaves as follows:

1. it computes the output y(n) of the controller

2. it collects the error e0(n) coming from the current configuration

3. it computes the output of the secondary path estimate ŷ′(n) without

perturbations on the controller coefficients

4. for each coefficient it computes the virtual errors corresponding to the

two possible directions on its axis, moving with a predefined step-size µ

5. for each coefficient it chooses the direction that leads to the minimum

error. If no perturbation leads to an improvement, it halves the step size

correspondent to the coefficient. If the positive (or negative) direction

is selected consecutively more than a predefined number n of times it

doubles the correspondent step size.

6. it moves the coefficients accordingly to a linear combination of the opti-

mal orthogonal directions.

7. it repeats the previous step until the error is under a chosen threshold.

EWU-SSD adds an important feature to EWU that rewards the trend of

a particular coefficient to go in a specific direction and avoids the algorithm

to stop in non optimal configurations. The coefficient path shown in figure

3.11, for example, becomes, with this improvement, the one in figure 3.12.

Comparing the two pictures we can see clearly that the step size doubling helps

3.5. CONVERGENCE SOLUTIONS 49

the algorithm to move from a stalemate caused by the decrease in amplitude

of the step size. The two figures refer to tests done using UEWU, where the

problem is more evident. In fact even if the step size doubling improves the

performance of EWU too, we can not see clearly from the figures where it

begins to work because the step size is weighted by the linear combination

coefficients.

Figure 3.12: UEWU-SSD update-path of one coefficient. The convergence

value would be 0.2 .

3.5.2 2-stages EWU

We said that the instantaneous error is not a good discriminator because it is

affected by the previous steps, which could be wrong. The maximum between

the settling time of the secondary path and the settling time of the controller

Mmax determines the number of steps that influence the error at each instant.

In order to obtain a clean error we have to wait at least Mmax steps after

every single perturbation. In order to use this clean error as a discriminant

one has to keep in memory, at each of these Mmax steps, the yi and y′i for

50 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

each simple direction, performing a number of convolutions equal to twice the

number of coefficients. Computationally speaking, this is quite heavy, so it is

better to use this concept only when it is strictly necessary. At this purpose

we can set up a 2-stages algorithm (2S-EWU). The first stage is a simple EWU

but when the step sizes of all the coefficients are under a predefined threshold

the updating process stops and the algorithm enters in a new stage. Here it

uses the knowledge of the previous Mmax steps collecting, for each iteration,

the virtual error of every single direction, on every coefficient axis, in parallel,

without affecting the real output of the system. At the end of these Mmax

steps, the MSEs relative to each direction are compared with the one relative

to the real output (where all the coefficient are maintained unaltered) and

the coefficients are updated consequently as in the standard EWU. The linear

combination coefficients qi become:

MSEi =
1

Mmax

n∑
j=n−Mmax

e2
i (j)

qi =
(MSE2

0 − ˆMSE
2

imin)√∑nc

j=1(MSE2
0 − ˆMSE

2

jmin)2

Moreover, if some direction is chosen, its correspondent step-size is scaled up

by a predefined factor. The Mmax steps are not effective steps because they

are computed in parallel to the system, hence while the latter continues to run

with the last parametrization. The algorithm works as follows:

1. it computes the output y(n) of the controller and send it out

2. it collects the error e0(n) coming from the current configuration

3. it computes the output of the secondary path estimate ŷ′(n) without

perturbations on the controller coefficients

4. for each coefficient i it computes the virtual errors corresponding to the

two possible directions on its axis, moving with a step-size µi.

5. for each coefficient it chooses the direction that leads to the minimum

error. If the position without perturbation is chosen it halves the step

size correspondent to the coefficient

3.5. CONVERGENCE SOLUTIONS 51

6. it moves the coefficients accordingly to a linear combination of the opti-

mal orthogonal directions

7. it repeats the previous step until all the step sizes are over a predefined

threshold, otherwise it goes to the following step

8. it uses the lastMmax samples of dhat to simulate the effect of the perturba-

tions in each direction computing the correspondent MSEi. Meanwhile

the system continues to run with the last configuration

9. if one direction leads to an improvement it updates the correspondent

coefficient and the correspondent step-size

µi = µi ∗ c

where c is a predefined value.

10. it goes to 7 until the error is over a predefined threshold

This algorithm improves performances of both EWU and UEWU but, as

in the previous case it is more evident in the latter. Figure 3.13 shows the

UEWU and 2S-UEWU MSE. We can see how the 2-stages algorithm follows

the standard version until a certain point. Then, when the step-sizes goes to

zero, it reacts and the second stage verifies the convergence. In figure 3.14

we can see the path of the coefficient involved in the process which has to be

compared with the one in figure 3.11.

This variant of EWU is particularly efficient if the system has a non-

minimum phase SP. In fact, in the latter case, it is more convenient to evaluate

every single direction for more than one step, because it can happen that the

instantaneous effect of a perturbation is not a good index of its rightness.

Hence, we can set the threshold equal to the initial step-size and run EWU

always

3.5.3 2S-EWU-SSD

The last two optimizations are not mutually incompatible because they work

on different parts of the algorithm. Hence we can arrange a new algorithm

52 CHAPTER 3. THE EMPIRICAL GRADIENT APPROACH

Figure 3.13: 2S-UEWU and UEWU MSE

Figure 3.14: 2S-UEWU update-path of one coefficient. It reaches convergence

at 0.2.

3.5. CONVERGENCE SOLUTIONS 53

which takes all the advantages of the two. We call it 2S-EWU-SSD. Its steps

are the following:

1. it computes the output y(n) of the controller and send it out

2. it collects the error e0(n) coming from the current configuration

3. it computes the output of the secondary path estimate ŷ′(n) without

perturbations on the controller coefficients

4. for each coefficient it computes the virtual errors corresponding to the

two possible directions on its axis, moving with a predefined step-size µ

5. for each coefficient it chooses the direction that leads to the minimum

error. If the position without perturbation is chosen, it halves the step

size correspondent to the coefficient. If the positive (or negative) direc-

tion is selected consecutively more than a predefined number of times n

it doubles the correspondent step size.

6. it repeats the previous step until all the step sizes are over a predefined

threshold, otherwise it goes to the following step

7. it uses the lastMmax samples of dhat to simulate the effect of the perturba-

tions in each direction computing the correspondent MSEi. Meanwhile

the system continues to run with the last configuration

8. if one direction leads to an improvement it updates the correspondent

coefficient and the correspondent step-size where c is a predefined value.

9. it goes to 7 until the error is over a predefined threshold

Chapter 4

Model Selection

4.1 Introduction

As has been pointed out in Chapter 2 the choice of the model structure is crit-

ical to describe accurately the nonlinearities that are present in the system. In

particular, high order filters have to be used for this purpose, but they require

a high computational complexity. Moreover, filters like Volterra and Bilinear

often include redundant regressors. For all these reasons the problem of model

structure identification is critical when we deal with nonlinear systems.

There are many ways to describe the nonlinearities, as wavelets, neural

networks and fuzzy models [17], but the most common is the polynomial ex-

pansion that leads to a model which is linear in the parameters. This feature

allows to use algorithms available for linear systems also for nonlinear systems.

The application of these techniques introduces problems due to the number of

terms included in the model and to the reliability of the estimate parameters

[20]. In fact they usually cannot describe the real behavior of the system. From

these considerations comes the need to accurately detect the model structure

that describes nonlinearities with the minimum number of regressors. Unfor-

tunately the problem of model selection has to deal with several implications.

Traditional techniques select terms trying to fit as much as possible the identi-

fication data (this is called predictive approach). However, when dealing with

nonlinearities there is no relationship between the predictive model and the

simulated one [28]. Typical solutions to this problems rely on cross-validation

56 CHAPTER 4. MODEL SELECTION

or on a-priori information about the system, even though they are not always

available. These are some of the reasons that make the problem of model

selection still an open research issue.

4.1.1 NARX model identification algorithms

Let’s from now on consider a particular family of nonlinear models called Non-

linear AutoRegressive models with eXogenous inputs (NARX)(section 2.3.2).

As we have already explained the number of terms of a NARX model grows

rapidly as the order and the degree of the nonlinearity grows. Trying to es-

timate the parameters of the complete structure is, hence, not possible if the

model is too complex. In fact, the high number of terms leads to a non-reliable

parameter estimation. Several studies have shown that models containing a

limited number of regressors can describe accurately nonlinearities provided

that these are the most significant [28]. So, what is required to the selection

algorithm is a way to evaluate the importance of a regressor in a particular

model and and a way to compute the associated parameter.

There are many methods that combine these two needs in a single optimiza-

tion problem. One of those is the Forward-Regression Orthogonal Estimator

(FROE) [2]. The FROE increments the model structure at each step until it

reaches a specified accuracy. Here the parameters estimation is done through

orthogonal least squares (OLS) while the evaluation of a proposed model is

left to the error reduction ratio criterion (ERR). The orthogonalization pro-

cess separates the computation of additional parameters from the ones already

present in the model, so each candidate regressor can be evaluated singularly

with:

[ERR]i =
ĝ2
i

∑N
n=1 w

2
i (n)∑N

n=1 y
2(n)

where wi is the i-th auxiliary orthogonal regressor, ĝi the corresponding pa-

rameter [2] and y(n) is the output of the system at step n. [ERR]i is nothing

but an index of similarity between the output and the single regressor weighted

with its parameter. Hence, the candidate regressor associated to the highest

[ERR]i is added to the model. Once the regressor is found, a new parameters

estimation is done for the non-orthogonal model.

4.1. INTRODUCTION 57

One of the main problem of this approach lies in the error reduction ration

[20]. In fact the value associated to one specific regressor varies depending

on the order in which the regressor itself is considered giving it more or less

importance in the model. This dependency makes the FROE to fail in find-

ing the best subset of regressors within a given model family. A solution to

this problem can be found in [20]. The Simulation Error Minimization with

Pruning algorithm (SEMP) adds a new mechanism in the selection process

called pruning and a new regressor selection criterion. Pruning is an iteration

step coming immediately after the addition of a new regressor. This phase

selects the worst regressor, that is the one that, if removed, will determine the

minimum increment of the squared simulation error. If the increased square

simulation error is still better than the one referring to the previous iteration

the regressor is eliminated from the model and the pruning phase is repeated

to verify if it is possible to remove other terms. The idea behind pruning is

that given two models with the same performance, the smaller is to be pre-

ferred. On the other hand the Simulation Reduction Error criterion denotes

the decrease in MSSE (mean square simulation error) obtained by the inclusion

of a regressor in the model normalized with the output variance:

[SRE]j =
MSSE(Mi)−MSSE(Mi+1)

1
2

∑N
n=1 y

2(n)

where Mi is the model at the i-th iteration and Mi+1 is the model at the

subsequent iteration, with the inclusion of the j-th regressor. Thanks to this

two new features the SEMP can extract the optimal model for the system

with respect to the simulation data [20]. In fact, pruning assures the removal

of useless regressors, while the SRE guarantees the correct selection of the

regressors. The main drawback of this approach is its computational complex-

ity. In fact, while in linear system SEMP can filter the input in the frequency

domain, in the nonlinear case (that is the one taken into consideration) the

cycle computation must be explicit for each new candidate regressor and for

each regressor in the pruning phase.

A less accurate but faster selection algorithm is represented by the Fast

Recursive Algorithm (FRA) [14]. Unlike OLS this does not require matrix

decomposition. FRA uses a particular formula to both select new terms and

to compute the parameters of the model. This is the net contribution δEt+1

58 CHAPTER 4. MODEL SELECTION

of each term to the cost function:

δEt+1 =
yTφt+1 −

∑k
j=1(aj,yaj,t+1/aj,j)

2

(φt+1)Tφt+1

∑t
j=1(a2

j,t+1/aj,j)

with t = 0, 1, · · · , nt + 1 and nt equal to the total number of candidate

model terms. φi = [φi(x(1)), · · · , φi(x(N))] are the regressors evaluated for

each input, y = [y(1), · · · , y(N)], N is the length of the dataset and the terms

in the summations are defined as:

at,i = (φ
(t−1)
k)Tφ

(t−1)
i

at,y = (φ
(t−1)
k)Ty

with i = t, ..., n and t = 1, 2, ..., nt. The calculation of the net contribution of

each candidate regressor relies on the summation of the contributions of each

selected regressor in relation to the current candidate. All the computed δEt+1

are added to the updated cost function, starting from the squared error:

E0 = yTy

Once the best model is selected, its parameters are computed as:

θ̂j =
aj,t −

∑
j+1 tθ̂iaj,i

aj,j

with j = t, t− 1, ..., 1.

All the methods seen so far, in the presence of the SP, foresee a preliminary

step to retrieve the controller output. In fact, when the secondary path is

assumed, only the input of the system and its output are known. Since, at the

beginning of the selection, the controller model is unknown, it is only possible

to derive y from y′. When the SP is known and linear, this process consists

in the inversion of the filter. Obviously, to be inverted, the SP filter must

be minimum-phase, but there are also other techniques used to approximate

S−1(z). When the filter is unknown, an adaptive algorithm based on the LMS

method, is used to provide the inverse.

4.1.2 Conclusions

Model selection is an important practice to lower computational complexity

reducing the number of regressors. All the presented approaches to the problem

4.2. EWU SELECTION 59

are intended to be used offline because they need a dataset containing all the

inputs and outputs in a specific period of time. They are able to achieve a

good (in some cases optimal) selection but cannot deal with a changing in the

system that could ask for a controller model update. Moreover in presence of

a Nonlinear SP (NSP) the controller output estimation could be difficult to

achieve. In the next section we will propose a new method of model selection

that can get over these problems.

4.2 EWU selection

EWU selection is a pseudo-online model selection method. The term pseudo

indicates that the selection of the model is not performed affecting the real

output of the system but virtually. This was done not to degrade the perfor-

mance of the attenuating algorithm and to always use a tested configuration.

The overall method is made possible by deriving the primary path output d(n)

from the output error:

d̂(n) = ŷ′(n) + e(n)

with ŷ′(n) representing the SP estimate output and e(n) the output of the

system. Obviously an SP estimate is assumed to be known. Periodically the

collected d̂(n) are used to perform selection, adding or removing regressors to

the controller model. As we have already said, selection is done virtually not to

affect online performance with wrong models. The selection stage works, more

or less, like the previously cited SEMP. In fact, it is composed by a phase

where new regressors are added to the model and a pruning phase. Here,

parameters estimation is done by means of EWU while the discrimination of

the best configuration is made by comparing the MSE J :

J(Φ, n) =
1

N

N∑
i=0

e2
Φ(n− i)

where N is the test block length, that is the number of steps on which the

different configurations are tested (i.e. the number of d̂(n) given to the selector)

and Φ and eΦ represent respectively the set of regressors of the evaluated

model and its output error. The whole process is constituted by four different

components: the main line, the adder, the pruner and the tester. The main line

60 CHAPTER 4. MODEL SELECTION

deals with the real system: it updates the coefficients of the controller model

with a EWU (or one of its variants) and propagates the output to attenuate

the noise. The adder, as its name suggests, adds regressors to the model and

tests if some configuration can bring advantages. The pruner, that is always

used after the adder, removes non significant regressors from the model. The

tester is a component that deals with the realignment on the main line of the

model, found in the adder-pruner. The last three components represent the

selection algorithm and they run in parallel with respect to the main line.

EWU selection algorithm works as follows:

1. the main line continues to run the EWU algorithm independently from

the others but collecting, at each step, the primary path estimate d̂(n)

The controller model of the main line is represented by the set of regres-

sors Φcurrent

2. when there is a sufficient number of d̂ samples, or when a new model has

been already selected, the adder machine is invoked

3. the adder runs in parallel a number of EWU equals to the number of

available regressors Φout. This number depends on the current model

Φcurrent and on the selected order and memory for the NARX controller

model. Hence, for each parallel EWU we have a set of regressors Φi
in:

Φout = { set of all possible regressors} \ Φcurrent

φiout ∈ Φout

Φi
in = Φ ∪ φiout

These EWU are fed with the last N d̂ collected by the main line until

that moment. When they have finished their process all the J(Φi
in, n)

are computed and the set of regressors Φbest
in , that took to the smallest

MSE, is selected. At this point if the advantage is significative (i.e. over

a predefined threshold) with respect to J(Φcurrent, n) the selected set

becomes a candidate set Φbest to be inserted in the main line, so:

Φbest = Φbest
in

Φout = Φout \ {Φbest}

4.2. EWU SELECTION 61

If the number of regressors is < 3 then the selection algorithm jumps to

the tester, otherwise we enter in the pruning stage

4. the pruner has the same structure of the adder but the number of EWU

to be tested is now equal to the number of regressors minus one. This is

because it tests on the same d̂ the following sets of regressors:

Φi
p = Φbest \ {φipruned}

φipruned ∈ Φbest \ {last inserted regressor}

where each Φi
p is a set of regressor to be tested and φipruned is the re-

gressor removed from the current candidate set Φbest. The pruning stage

continues like the adder comparing the resulting J(Φi
p, n) with J(Φ, n).

If some of them is smaller, the pruning is confirmed:

Φbest = Φbest
p

Φout = Φout ∪ {φbestpruned}

The pruning stage is repeated until it is possible to remove regressors

maintaining an advantage and until the number of regressors is > 3.

When one of the two previous conditions is not satisfied the algorithm

goes on to the testing stage

5. the testing phase does nothing but to run a EWU with the last N d̂

collected by the main in the time of execution of the adder-pruner ma-

chine. This stage is meant to realign the coefficients W associated to the

regressors in order to obtain immediately a discrete level of attenuation

on the main line. After this stage, the model is updated and a new

adding phase is launched

Φcurrent = Φbest

J(Φcurrent, n) = J(Φbest, n)

6. the algorithm ends when the error output drops below a specified thresh-

old

62 CHAPTER 4. MODEL SELECTION

Obviously the smaller is the test time the lower is the complexity, on the

other hand if N is too small there is no time for the parallel EWUs, in the

adding and pruning phase, to reach convergence. In order to obtain a good

result with the least computational effort, this trade-off must be taken care-

fully into consideration. Nevertheless the computational complexity of EWU

selection remains high. In chapter 5 we will see if this complexity is rewarded

with a good model selection.

Chapter 5

Tests

5.1 Introduction

We will now show the performance of the proposed method through Matlab

simulations. A bunch of different tests are used in order to show the behavior of

the EWU in different scenarios. In particular we will compare the results of the

2S-EWU-SSD with the NFGLMS, the VFXLMS and the BFxLMS methods.

Stochastic methods are too slow in convergence to be compared with the two

previously mentioned algorithms, even if they reach good attenuation result.

The listed results are obtained setting the best step size for each algorithm.

5.2 Convergence Tests

In order to demonstrate the convergence capability of EWU we set up three

tests with ascending complexity in the transfer function. In these tests EWU is

fed with the right controller model and the convergence value of each coefficient

is known. We will compare the obtained results with the outcomes of the same

systems using NFGLMS. For each test we will look at the system output, the

Normalized Mean Squared Error (NMSE) and the coefficients update paths.

The NMSE is computed at each step as:

NMSE(n) = 10log10

(∑n
i=1 e

2(i)/n

σ2
d

)
(5.1)

64 CHAPTER 5. TESTS

where σ2
d is the power of the primary noise at the canceling point and e is the

outcome of the system.

5.2.1 Test 1

The first test assumes a linear controller and a second order SP:

y(k) = ay(k − 1) + bx(k) (5.2a)

y′(k) = αy′(k − 1) + βy(k) + γy(k − 1)y(k) (5.2b)

The primary path is the exact product of the SP and an ideal controller with

a = 0.4 and b = 0.2. α, β and γ are respectively 0.1, 0.3 and 0.2. The input

signal is a zero mean white noise.

The charts in figure 5.1 show that both the algorithms are able to find

the perfect coefficients, which are a = 0.4 and b = 0.2 and both achieve good

attenuation results, as we can see in figure 5.2. On the other hand, we can see

that EWU reaches coefficient convergence more rapidly than NFGLMS even

if in a more chaotic way (especially regarding first coefficient). This can be

also noticed looking at the NMSEs (figure 5.3) of both the algorithm observing

that the one correspondent to EWU is smaller.

5.2.2 Test 2

The second test adds complexity to the secondary path, always assuming a

linear controller:

y′(n) = αy′(n− 1)y(n− 2) + βy(n) + γy′(n− 1)y(n) + δy′(n− 1)y(n)2 (5.3a)

y(k) = ay(k − 1) + bx(k) (5.3b)

The primary path is the exact product of the SP and an ideal controller with

a = 0.4 and b = 0.2. α, β, γ and δ are respectively 0.1, 0.3, 0.2 and 0.2. The

input signal is again a zero mean white noise.

Again EWU can reach convergence and exhibits a good speed of conver-

gence compared to NFGLMS. The update paths (figure 5.4) of EWU are still

more chaotic than NFGLMS but this does not influence the output, as it is

5.2. CONVERGENCE TESTS 65

Figure 5.1: coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 1

Figure 5.2: output of the system without ANC(blue), with NFGLMS (green)

and with EWU(red) relative to test 1

66 CHAPTER 5. TESTS

Figure 5.3: NMSE of NFGLMS(green) and EWU(red) relative to test 1

shown in figure 5.5. The NMSEs, in figure 5.6, confirm the better performance

of EWU with respect to the gradient method.

5.2.3 Test 3

The third test adds complexity to the controller, assuming the same secondary

path of the previous test:

y′(n) = αy′(n− 1)y(n− 2) + βy(n) + γy′(n− 1)y(n) + δy′(n− 1)y(n)2 (5.4a)

y(n) = ax(n)2 + by(n− 1)x(n− 1) + cx(n) (5.4b)

The primary path is the exact product of the SP and an ideal controller with

a = 0.4, b = 0.2 and c = 0.3. α, β, γ and δ are respectively 0.1, 0.3, 0.2 and

0.2. The input signal is again a zero mean white noise.

The results of this test tell that, even if the NMSEs (figure 5.9) are similar,

the EWU is able to reach convergence before the NFGLMS (figure 5.7). The

outcomes of the two systems are quite similar, but NFGLMS exhibits some

noise (figure 5.8).

5.2. CONVERGENCE TESTS 67

Figure 5.4: coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 2

Figure 5.5: output of the system without ANC(blue), with NFGLMS (green)

and with EWU(red) relative to test 2

68 CHAPTER 5. TESTS

Figure 5.6: NMSE of NFGLMS(green) and EWU(red) relative to test 2

Figure 5.7: coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 3

5.2. CONVERGENCE TESTS 69

Figure 5.8: output of the system without ANC(blue), with NFGLMS (green)

and with EWU(red) relative to test 3

70 CHAPTER 5. TESTS

Figure 5.9: NMSE of NFGLMS(green) and EWU(red) relative to test 3

5.2.4 Test 4

The fourth test comprises a model with the same secondary path of test 3 and

a more complex controller. Again, the primary path is the exact product of

the SP and the ideal controller which is designed as follows:

y(n) = ay(n− 5) + bx(n− 4) + cx(n− 1) + dx(n− 8)y(n− 3)+

+ex(n− 3)y(n− 8) + fy(n− 4)y(n− 6) + gx(n− 6)x(n− 8)+

+hx(n− 1)y(n− 8)

(5.5)

The optimal parameters are a = 0.4, b = 0.2, c = 0.3, d = 0.1, e = 0.5,

f = 0.3, g = 0.4 e h = 0.2.

This test is explicitly designed to see the behavior of the EWU and the

NFGLMS with a high the number of regressors. Both the algorithms reach,

once again, convergence, but EWU seems to catch sooner the optimal values

(figures 5.10 and 5.11). This is true especially for the sixth coefficient. Remem-

bering that the best step-size is chosen for each algorithm, we can see from

figure 5.12 that NFGLMS takes more than 3500 steps to reach convergence

5.3. ROBUSTNESS TESTS 71

Figure 5.10: 1-4 coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 4

while EWU catches the right value after about 800 steps. This difference

cause some uncertainty in the early outputs of NFGLMS (figure 5.13) but the

NMSEs (figure 5.14) are comparable.

5.2.5 Conclusions on Convergence Tests

5.3 Robustness Tests

This section will test EWU on particular robustness features.

5.3.1 Test 5

This test is designed to observe the behavior of the algorithm in case of an

incorrect controller model structure. We will feed the EWU with a wrong

72 CHAPTER 5. TESTS

Figure 5.11: 5-8 coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 4

5.3. ROBUSTNESS TESTS 73

Figure 5.12: 6th coefficient update path for NFGLMS(top-green) and 2S-

EWU-SSD(bottom-red) relative to test 4

74 CHAPTER 5. TESTS

Figure 5.13: output of the system without ANC(blue), with NFGLMS (green)

and with EWU(red) relative to test 4

5.3. ROBUSTNESS TESTS 75

Figure 5.14: NMSE of NFGLMS(green) and EWU(red) relative to test 4

controller model, different from the ideal one used to build the primary path.

The latter is equal to the one of test 3. On the other hand, the controller

model fed to the EWU is the same as that of test 1.

As we can see in figure 5.16 both the algorithms reach a good attenuation.

Though, the performances are way worse than in the previous cases where the

exact model was chosen. The NFGLMS and the EWU react in the same way

to the structural insufficiency by tuning the coefficients in the same direction

(figure 5.15) showing a certain correlation between the two updating methods.

5.3.2 Test 6

This test uses the same SP and controller model of test 4. The primary path,

fed with a zero mean random signal, is again the exact product of the secondary

path and the controller but with coefficients equal to: a = 0.4, b = 0.2, c = 2,

d = 0.1, e = 0.5, f = 0.3, g = 0.4 and h = 0.2. The resulting output signal

exhibits spikes (figure 5.17). This can be dangerous for the correct tuning of

76 CHAPTER 5. TESTS

Figure 5.15: coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 5

Figure 5.16: output of the system without ANC(blue), with NFGLMS (green)

and with EWU(red) relative to test 5

5.4. MODEL SELECTION TESTS 77

Figure 5.17: output of the system without ANC(blue), with NFGLMS (green)

and with EWU(red) relative to test 6

NFGLMS step size. In fact if we use a relatively high µ NFGLMS is not able to

update correctly the coefficients and the algorithm fails due to computational

problems. On the other hand EWU is not affected at all by spikes and it

reaches convergence without any problem. To prevent NFGLMS from failure

we have to lower its step size but this affects its performance as shown in figure

5.18.

5.4 Model Selection Tests

This section will face the model selection problem. First, we will test the

proposed method with simple systems in order to demonstrate that it can

reach the right model. Later we will consider tests found in [30] and [18] and

we will compare the results with BFxLMS and VFxLMS.

78 CHAPTER 5. TESTS

Figure 5.18: NMSE of NFGLMS(green) and EWU(red) relative to test 6

Table 5.1: optimal model test 1

Regressor Coefficients

y(n-1) 0.4

x(n) 0.2

5.4.1 Model Selection Tests 1 and 2

Test 1 has the same configuration of the test described in 5.2.1. The optimal

controller model is known to be the one in the table 5.1.

As we can see from table 5.2, EWU selection finds all the optimal regressors

plus one. This redundant regressors comes from the fact that usually the

more regressors you have the more you attenuate, but we can also see that its

contribute is limited by a small coefficient.

Test 2 is again done with the knowledge of the best controller model. This

time the system is configured as in the test reported in chapter 5.2.3 and the

5.4. MODEL SELECTION TESTS 79

Table 5.2: EWU selection model test 1

Regressor Coefficients on the main line

y(n− 1) 0.4

x(n) 0.2

x(n− 2)y(n− 2) 0.014

Table 5.3: optimal model Test 2

Regressor Coefficients

x2(n) 0.4

x(n− 1)y(n− 1) 0.2

x(n) 0.3

best controller is presented in table 5.3.

The algorithm adds, again, one more regressor to the model but its con-

tribute is reduced by small coefficients on the main line. The found regressors

are the ones in table 5.4.

Considering this first two tests, we can say that the EWU selection is able

to reconstruct almost perfectly the model of the controller. Though, in these

cases the estimated secondary path equals the real one and, consequently, d̂

equals d.

Table 5.4: EWU selection model Test 2

Regressor Coefficients on the main line

x2(n) 0.4

x(n− 1)y(n− 1) 0.2

x(n) 0.3

y(n− 2)y(n− 4) −10−6

80 CHAPTER 5. TESTS

Table 5.5: Controller regressors for Zhou DeBrunner test

regressors coefficients on the main line

1 x(n) 0.9162

2 x(n− 1) 0.4281

3 x(n− 3) 0.3789

4 x(n− 4) -0.0864

5 x(n)x(n− 1) -0.2574

6 x(n)x(n− 2) 0.6310

7 x(n)x(n− 5) -0.1718

8 x(n)y(n− 3) 0.7190

9 x(n− 1)y(n− 1) 0.1083

10 x(n− 4)y(n− 1) -0.0344

5.4.2 Zhou DeBrunner Test

This test is taken from [30]. It consists of a system with a non-linear primary

path and secondary path described by the following equations:

d(n) = x(n) + x(n− 1) + x(n− 2) + x(n− 3)+

+x(n)d(n− 1) + x(n)d(n− 2) + x(n)d(n− 3)

y′(n) = y(n) + y(n− 1) + y(n− 2) + y(n)y′(n− 1) + y(n)y′(n− 2)

The input signal is a zero mean white noise.

Running the EWU selection procedure with test-time equal to 500 on a

second order NARX with memory equal to 8 we obtain the controller model in

table 5.5 and the output shown in figure 5.20. The firsts 500 samples are not

attenuated because the system starts with an empty model but this problem

can be easily solved using as starting point a standard FIR filter. The selection

is done supposing a computation time of 50 steps. This delay is also useful to

assure the selection to be general because it introduces in the update process

50 new samples. In figure 5.19 we can see which regressors took part in the

selection procedure along 3000 steps.

Now we can use the selected model with 2S-EWU-SSD and compare the re-

sults with a VFxLMS with order and memory equal to 2 and 8 and a NFGLMS

5.4. MODEL SELECTION TESTS 81

Figure 5.19: Selection history relative to DeBrunner test

used with the full second order NARX which selection was run upon. From fig-

ure 5.21 and 5.22 we can see that VFxLMS can barely reach the performance

of the selected controller applied to 2S-EWU-SSD. Moreover, the NFGLMS

performance shows that even if the number of the selected regressors (8) is

more than an order of magnitude lower than the one of the full model (170)

the EWU can still reach the same attenuation in the same time.

5.4.3 WU Saturation Test

The previously described tests consider only polynomial nonlinearities of an

ANC system. In the next three tests we will introduce a different type of

nonlinearity: saturation of the microphone. The input signal is the same in

the three tests and is the sum of three sine waves at the normalized frequencies

of 0.02, 0.04, and 0.08 with sampling frequency set at 8000Hz. The primary

82 CHAPTER 5. TESTS

Figure 5.20: System output of EWU Selection relative to DeBrunner test

Figure 5.21: NMSE plot of NFGLMS, 2-Stage EWU SSD and VFxLMS relative

to DeBrunner test

5.4. MODEL SELECTION TESTS 83

Figure 5.22: System outputs of NFGLMS, 2-Stage EWU SSD and VFxLMS

relative to DeBrunner test

84 CHAPTER 5. TESTS

Table 5.6: Controller regressors for WU saturation test

regressors coefficients on the main line

1 x(n− 1) 0.2686

2 x(n− 3) 0.6036

3 x(n− 5) 0.5735

4 y(n− 1) -0.4305

5 x(n− 11)x(n− 11) 0.0288

6 x(n− 12)y(n− 4)0.0119

path is a linear FIR filter defined as:

d(n) = 0.0179x(n) + 0.1005x(n− 1) + 0.279x(n− 2) + 0.489x(n− 3)+

+0.586x(n− 4) + 0.489x(n− 5) + 0.279x(n− 6)+

+0.1005x(n− 7) + 0.0179x(n− 8)

(5.6a)

The secondary path is a FIR filter too:

y′(n) = 0.7756y(n) + 0.5171y(n− 1)− 0.362y(n− 2); (5.6b)

The nonlinearity introduced in this test is a weak saturation of the reference

signal. It is obtained by setting a clipping threshold at 90% of the maximum

input signal value.

Running the selection algorithm with memory equal to 16 and test-time

equal to 500 we end up with the model in table 5.6 after 10000 steps. The EWU

Selection output (figure 5.23) is still not attenuated in the first 500 steps but it

suddenly reaches a good level of noise reduction. The history of the selection is

shown in figure 5.24 where we can see how regressor are included (or pruned)

to (or from) the model.

Figures 5.25 and 5.26 show the outputs of the system controlled by: an

EWU fed with the selected model structure, a VFxLMS used together with a

second order Volterra filter of memory equal to 16, a BFxLMS with a bilinear

filter of memory equal to 16, and an NFGLMS fed with the full NARX model

used in the selection. As we can see, the EWU reach convergence before

5.4. MODEL SELECTION TESTS 85

Figure 5.23: System output EWU Selection relative to WU saturation test

every other method and attenuate the error output as much as the BFxLMS

which is the best. The comparison between the NFGLMS and the EWU

outcomes shows that the selection procedure was able to identify the right

regressors, reducing their number by more than two orders of magnitude (from

594 regressors to 6), diminishing the computational effort and improving the

performance.

5.4.4 SU saturation test

In this test we hold the same configuration of the previous one but the reference

signal is considered to be affected by strong saturation; the clipping factor is

now the 50% of the maximum value. The controller regressors, selected with

the EWU Selection after 3500 steps, are listed in table 5.7. As before figure 5.28

shows the history of the selection showing the regressors selected or removed

at each step.

Even if the saturation is increased, with respect to the previous test, we

can notice that the selection method still works sufficiently well, attenuating

86 CHAPTER 5. TESTS

Figure 5.24: Selection history relative to WU selection test

Table 5.7: Controller regressors for SU saturation test

regressors coefficients on the main line

1 x(n− 1) 0.5590

2 x(n− 4) 1.2434

3 x(n− 6) 0.8345

4 x(n− 1)x(n− 13) -0.1633

5 x(n− 13)y(n− 9) 0.0965

6 y(n− 3)y(n− 13) -0.0128

5.4. MODEL SELECTION TESTS 87

Figure 5.25: System outputs of NFGLMS with a full NARX model (green),

2-Stage EWU SSD with the selected model structure (red), VFxLMS (pink)

and BFxLMS (black) with memory equal to 16 relative to WU saturation test

88 CHAPTER 5. TESTS

Figure 5.26: NMSEs of NFGLMS with a full NARX model (green), 2-Stage

EWU SSD with the selected model structure (red), VFxLMS (pink) and

BFxLMS (black) with memory equal to 16 relative to WU saturation test

5.4. MODEL SELECTION TESTS 89

Figure 5.27: System output EWU Selection relative to SU saturation test

successfully the error (figure 5.27). Now, let’s have a look at figure 5.29. Here,

the outputs of the same test, feeding the 2S-EWU-SSD with the selected model,

are shown together with the outputs of the NFGLMS, the VFxLMS and the

BFxLMS configured as in the previous test. In this picture, and in figure 5.30,

it can be appreciated that, even if the selected model has much less regressors

than a second order Volterra filter with the same memory, it reaches faster the

same level of attenuation. The performance of the NFGLMS (which runs a

full second order NARX model with memory equal to 16) confirms that the

selected model structure is a good representation of the system dynamic, in

fact the EWU output converges faster and to a lower value than the former

output.

5.4.5 SW saturation test

The last test on saturation introduces the same kind of nonlinearity even in

the error signal, retaining the strong saturation on the reference signal. The

threshold is set at 50% of the maximum error value. The controller for this

90 CHAPTER 5. TESTS

Figure 5.28: Selection history relative to SU selection test

5.4. MODEL SELECTION TESTS 91

Figure 5.29: System outputs of NFGLMS with a full NARX model (green),

2-Stage EWU SSD with the selected model structure (red), VFxLMS (pink)

and BFxLMS (black) with memory equal to 16 relative to SU saturation test

92 CHAPTER 5. TESTS

Figure 5.30: NMSEs of NFGLMS with a full NARX model (green), 2-Stage

EWU SSD with the selected model structure (red), VFxLMS (pink) and

BFxLMS (black) with memory equal to 16 relative to SU saturation test

5.4. MODEL SELECTION TESTS 93

Table 5.8: Controller regressors for SW saturation test

regressors coefficients on the main line

1 x(n− 1) 0.3920

2 x(n− 4) 0.9098

3 x(n− 2)x(n− 13) -0.0314

4 x(n− 1)y(n− 7) -0.0290

5 x(n− 2)y(n− 9) 0.0077

6 x(n− 9)y(n− 13) -0.0217

7 x(n− 11)y(n− 9) 0.0669

8 y(n− 1) 0.5564

9 y(n− 6) -0.0447

10 y(n− 1)y(n− 14) -0.0025

test (found with EWU Selection with the same configuration as the previous

tests and after 3500 steps) is designed as shown in table 5.8. As before figure

5.32 shows the history of the selection.

Despite the saturation in the error microphone, that makes the estimated

secondary path intrinsically wrong, the EWU Selection algorithm is able to

work properly and to reach a good level of attenuation (figure 5.31).

In order to evaluate the correctness of the selected controller model let’s

have a look at figure 5.33 and 5.34. Like in the previous section, we fed the 2S-

EWU-SSD with it to compare their results with the NFGLMS, the VFxLMS

and the BFxLMS. Once again the model found with the EWU Selection proves

its rightness with respect to the proposed system.

94 CHAPTER 5. TESTS

Figure 5.31: System output EWU Selection relative to SW saturation test

5.4. MODEL SELECTION TESTS 95

Figure 5.32: Selection history relative to SW selection test

96 CHAPTER 5. TESTS

Figure 5.33: System outputs of NFGLMS with a full NARX model (green),

2-Stage EWU SSD with the selected model structure (red), VFxLMS (pink)

and BFxLMS (black) with memory equal to 16 relative to SW saturation test

5.4. MODEL SELECTION TESTS 97

Figure 5.34: NMSEs of NFGLMS with a full NARX model (green), 2-Stage

EWU SSD with the selected model structure (red), VFxLMS (pink) and

BFxLMS (black) with memory equal to 16 relative to SW saturation test

Chapter 6

Complexity Analysis and

Evaluation of Performance

6.1 Introduction

This chapter reports an exhaustive analysis of the computational complexity

of the EWU and compared in particular with the NFGLMS, taken as a bench-

mark. This analysis is complemented with the execution times measured with

Matlab, collected with different runs of the scripts and different input data.

We also focus on the variance of single iteration execution times, which are

significant in real time applications, since the inherent delay in the algorithm

must be less than the lag in the primary path. It is worth noting that the

EWU variant used is the 2S-EWU-SSD described in chapter 3.5.3, which is

the one that leads to the best attenuation results.

6.2 EWU analysis

In this subsection an exhaustive analysis of the theoretical complexity of the

EWU is carried out, taking as a reference the algorithm described in chapter

3.2. The analysis counts the total number of additions and multiplications, ne-

glecting the costs of assignment instructions, cycles and variable declarations.

Before starting with the analysis, we must define the length of the vectors

100CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

that are used and the cost associated to build them. It is worth to recall that

the algorithm relies on the NARX model structure described in chapter 2.3.2

and in order to have a fair comparison between the complexity of the EWU,

the NFGLMS and other methods, we retain useful to stick with the definition

used in [17], which accounts only for second order nonlinearities. The controller

model is reported below.

y(n) =
L∑
i=0

ai(n)x(n− i) +
L∑
j=1

bj(n)y(n− j)+

L∑
i=0

L∑
j=1

ci,j(n)x(n− i)y(n− j)+

L∑
i=0

L∑
k=0

di,k(n)x(n− i)x(n− k)+

L∑
j=1

L∑
l=1

fj,ly(n− j)y(n− l)

(6.1)

For the same reasons we assume a linear secondary path. Now, it is useful to

count the number of regressors, in order to build two suitable vectors: the co-

efficient and the regressor vector, so as to calculate the output of the controller

as a linear regression. By inspection of equation (6.1) is equal to the number

of multiplications required to build the regressors vector. We now define a new

variable, called RC as

RC = L+ 1 + L+ L(L+ 1) + (L+ 1)2 + L2 =

= 3L2 + 5L+ 2

The variable represents the lengths of the two vectors involved in the linear

regression. The same reasoning should be done for the variable RSP , which is

the length of the vectors involved in the linear regression that calculates the

secondary path output estimate, but, since we assume linear secondary path,

we have that no costs are associated to build the vectors. Moreover the length

of the vectors is in the worst case equal to M+1, when we assume a FIR filter.

RSP = M + 1

The SP model can be defined as

y′(n) =
M∑
i=0

biy(n− i)

6.2. EWU ANALYSIS 101

where bi are the coefficients of the FIR filter.

We will now start, step by step, the analysis of the complexity of the EWU.

The algorithm described in 3.2 is taken into exam and the number of operations

required, considering also the optimizations described in the same chapter, are

bound to each step.

1. to compute all the regressors we need to accomplish:

multiplications = L(L+ 1) + (L+ 1)(L+ 1) + L2 = 3L2 + 3L+ 1

2. to compute the output y(n) of the controller and send it out

y(n) = W TΦ(n) (6.2)

where Φ and W are respectively the regressors’ and the coefficients’ vec-

tors of the controller, the algorithm needs:

multiplications = RC

additions = RC − 1

3. to collect the current error e0(n) at the output

e0(n) = d(n)− y′(n)

where y′(n) is the secondary path output and d(n) is the signal to be

attenuated, the total complexity amounts to:

additions = 1

4. to compute the output of the secondary path estimate ŷ′(n) without

perturbations on the controller coefficients

ŷ′(n) = ΘTΓ(n) (6.3)

where Γ and Θ are respectively the regressors and the coefficients vectors

of the SP, the total number of required instructions:

multiplications = RSP

additions = RSP − 1

102CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

5. for each coefficient it computes the virtual errors corresponding to the

two possible directions on its axis, vi+ and vi− , moving with a step-size

µ. Those direction vectors are computed at the initialization stage of

the algorithm, and are thus not to be considered part of the main cycle

complexity. Now, the algorithm calculates the virtual errors obtained

reconstructing d making use of the result of the previous step. Four main

operations are usually required, but in the case of a FIR filter for the SP

and a second order NARX model for the controller, strong complexity

simplifications can be done, following what is described in section 3.2.1.

The first instruction that we need to take into consideration is

d̂(n) = e0(n)− ŷ′(n)

which costs:

additions = 1

then we should have

yi±(n) = (W + vi±)TΦ(n)

ŷ′i±(n) = ΘTΓi±(n)

but, thanks to the optimizations involved, it is possible to calculate the

output of the virtual secondary path as:

y′i±(n) = y′(n) + a((y(n)± µiφi)− y(n))

that becomes:

y′i±(n) = y′(n)± aµiφi

where a is the coefficient associated to the regressor y(n) in the secondary

path and φi is the coefficient corresponding to the ith regressor that we

are perturbating in the controller. Since the product aµiφi is calculated

once, the operation costs a total of:

multiplications = 2RC

additions = 2RC

The last instruction of this set is

êi±(n) = d̂(n)− ŷ′i±(n)

6.2. EWU ANALYSIS 103

which has in total:

additions = 2RC

6. for each coefficient it choose the direction vimin that leads to the minimum

error

vimin = vj where j ∈ {0, i+, i−} such that êj = min ({e0, êi+ , êi−})

êimin = min ({e0, êi+ , êi−})

Although there are no additions and multiplications, in a real world

scenario this could be a potential bottleneck, because, even if we avoid

to call the min() function, which for certain languages (e.g. Matlab)

can be demanding, we have to estimate an execution time due to all

the comparisons that the processor needs to carry out. Our choice is

to reduce the calculation of the minimum between the three errors as

two subtractions, the first one between e0 and êi+ and the second one

between the result of the previous comparison and êi− . Thus, since it

has to perform this task for each controller coefficients, we can count:

additions = 2RC

(a) if the algorithm choses to not move in a particular direction, its

correspondent step size µi is halved thus leading to

multiplications = RC

(b) if the algorithm moves a particular coefficient in the same direction

for many consecutive iterations, its relative step size µi is doubled.

This costs

multiplications = RC

Note that, in a real case scenario, the step size is doubled every three

steps, where the same direction is chosen, thus the complexity here

calculated is a bit overestimated. The two options are mutually

exclusive leading to an additional load of RC in the worst case.

7. the algorithm moves the coefficients accordingly to a linear combination

of the selected directions scaling them with a factor qi:

qi =
(e2

0 − ê2
imin)√∑nc

j=1(e2
0 − ê2

jmin)2

104CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

The value e2
0 can be calculated once and the same reasoning can be done

for the values e2
kmin , thus leading to RC+1 multiplications. Furthermore,

we need to account for RC additions for the calculation and the storage of

the values e2
0−e2

kmin and additional RC multiplications for the calculation

of the square value (e2
0 − e2

kmin)2. In order to calculate the final value of

the norm of the vector q we need RC − 1 additions and 1 multiplication

for the calculation of the radix value. Since all the values needed for

the calculation of each qi are stored, RC divisions must be performed.

We chose to count them as RC multiplications. The total number of

operations required for this step is equal to:

multiplications = 3RC + 1

additions = 2RC − 1

8. to perform the update of the controller’s coefficients as

W = W + q. ∗ v

where v is a vector containing µi or −µi for each ith regressor in the

controller and .∗ represents an item by item product between two vectors,

the associated complexity is

multiplications = RC

additions = RC

It is important to note that, even if the EWU variant under analysis is the

2-Stages (2S) with Step Size Doubling (SSD), the code relative to the stage

that evaluates the perturbances for a longer time horizon than one, does not

impact on performances, since it is run in parallel to the main algorithm and

can be spread along more than one step 1.

1Note that in this stage the optimization seen so far is no longer available. The number

of the involved operations, coming from equation 6.2 and 6.3, is:

multiplication = 2Tnc(RC +RSP)

addition = 2Tnc(RC +RSP − 2)

Where T is the time horizon length.

6.2. EWU ANALYSIS 105

The total cost of the algorithm is summarized below:

multiplications = 8RC +RSP + 1

additions = 8RC +RSP − 1

If we substitute the values RC and RSP respectively with 3L2 + 5L + 2 and

M + 1, where L and M are the maximum delays admitted in the model of the

controller and in the linear FIR filter of the secondary path, we obtain:

multiplications = 24L2
controller + 40L+M + 17

additions = 24L2
controller + 40L+M + 15

When we deal with linear SPs, the NFGLMS error gradient can be simpli-

fied as:

∇e(k) =
∂y′(k)

∂θ

∣∣∣
θ(k)

= −ŝ(k) ∗ ∂y(k)

∂θ

∣∣∣
θ(k)

that with the Feintuch’s assumption becomes:

∇e(k) = −ŝ(k) ∗ [x(n) · · · x(n− L) y(n− 1) · · · y(n− L)

x(n)y(n− 1) · · · x(n− L)y(n− L) x(n)x(n) · · ·

x(n− L)x(n− L) y(n− 1)y(n− 1) · · · y(n− L)y(n− L)]

where ŝ(k) is the impulse response of the SP. Hence, the NFGLMS complexity

can be computed distinguishing between there phases:

1. computation of the controller output y(n); it has the same number of

multiplications and additions of the EWU algorithm:

multiplications = RC

additions = RC − 1

2. computation of the error filtered gradient with respect to the weights,

which in the case of a linear SP requires M multiplications and M − 1

additions for each controller regressor, that is to say:

multiplication = RCM

additions = RC(M − 1)

106CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

Table 6.1: Table representing the number of multiplications of NFGLMS and

2S-EWU-SSD in case of a liner SP

Method Total Multiplications

NFGLMS (3L2 + 5L+ 2)(2 +M) + 1

2S-EWU-SSD 24L2
controller + 40L+M + 17

Table 6.2: Table representing the number of additions of NFGLMS and 2S-

EWU-SSD in case of a liner SP

Method Total Additions

NFGLMS (3L2 + 5L+ 2)(1 +M)− 1

2S-EWU-SSD 24L2
controller + 40L+M + 15

3. update of the controller coefficients, which in this case requires:

multiplications = RC + 1

additions = RC

Summing up the three steps, NFGLMS needs:

multiplications = RC(2 +M) + 1 =

= (3L2 + 5L+ 2)(2 +M) + 1

additions = RC(1 +M)− 1 =

= (3L2 + 5L+ 2)(1 +M)− 1

We can observe that both algorithms have a complexity that goes with the

square of the maximum lag admitted for the controller, but NFGLMS has a

third order term represented by the product of L2
controller and M . This fact

does not necessarily mean that NFGLMS is slower than 2S-EWU-SSD, but

that the SP memory has more impact on performance. A brief summary of

the complexities is shown in table 6.1 and 6.2.

If we assume to have a full second order NARX model for the SP the

variable RSP becomes

RSP = 3M2 + 5M + 2

6.2. EWU ANALYSIS 107

and the calculations previously done in step 4 need to be modified. In partic-

ular

yi±(n) = (W + vi±)TΦ(n)

ŷ′i±(n) = ΘTΓi±(n)

could be simplified into

y′i±(n) = Σ0 + Σ1(y(n− 1)± µiφi) + Σ2(y(n− 1)± µiφi)2

where:

Σ0 =
L∑
i=0

ai(n)x(n− i) +
L∑
j=2

bj(n)y(n− j)+

L∑
i=0

L∑
j=2

ci,j(n)x(n− i)y(n− j)+

L∑
i=0

L∑
k=0

di,k(n)x(n− i)x(n− k)+

L∑
j=2

L∑
l=2

fj,ly(n− j)y(n− l)

Σ1 = b1 +
L∑
i=0

ci,1x(n− i) +
L∑
j=2

fj,1y(n− j) +
L∑
l=2

f1,ly(n− j)

Σ2 = f1,1

Letting M be the maximum lag of the secondary path, the calculation of Σ0

requires

multiplications = M + 1 +M − 1

+2((M − 1)(M + 1))

+2((M + 1)(M + 1))

+2((M − 1)(M − 1))

= 6L2
secondary + 2M + 2

additions = 5 +M +M − 2

+(M − 2)M

+L2
secondary + (M − 2)2

= 3L2
secondary − 4M + 7

108CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

The calculation of the vector Σ1 requires

multiplications = 3M − 4

additions = 3M − 1

and the calculation of the value Σ2 has a null cost. Now, for each controller’s

coefficient we need to calculate µiφ1 which costs one multiplication, y(n−1)±
µiφi which costs 2 additions, (y(n−1)±µiφi)2 that adds other 2 multiplications

and an additional cost of 4 multiplications and 4 additions in order to obtain

the final values of y′i+ and y′i− . The total cost to build all the possible values

of y′i± at the current step can be summarized as:

multiplications = 6L2
secondary + 5M − 2 + 7RC

additions = 3L2
secondary + 7M + 6 + 6RC

If we consider all the calculations performed for all the remaining instructions,

when we took into account a linear FIR secondary path, the total cost of the

algorithm, when both the controller and the secondary path are full second

order NARX is obtained as:

multiplications = 39L2
controller + 9L2

secondary + 65L+ 10M + 26

additions = 42L2
controller + 6L2

secondary + 70L+ 12M + 35

In the nonlinear SP case NFGLMS algorithm cannot be simplified and it

has to use 2.4 and 2.2 to perform the update. So the phases involved in the

calculation become:

1. computation of the controller and secondary path output y(n) and y′(n)

; it has the same number of multiplication and addition of EWU:

multiplications = RC +RSP

additions = RC − 1 +RSP − 1

2. computation of ∂y′(k)
∂θ

∣∣∣
θ(k)

from 2.4 and 2.2:

multiplications = M(RC +M + 2)

additions = M(RC +M + 3)

6.2. EWU ANALYSIS 109

Table 6.3: Table representing the number of multiplications of NFGLMS and

2S-EWU-SSD in the case of a second order NARX SP

Method Total Multiplications

NFGLMS (3L2 + 5L+ 2)(M + 2)+

+4L2
secondary + 7M + 3

2S-EWU-SSD 36L2
controller + 9L2

secondary + 60L+ 10M + 24

Table 6.4: Table representing the number of additions of NFGLMS and 2S-

EWU-SSD in the case of a second order NARX SP

Method Total Additions

NFGLMS (3L2 + 5L+ 2)(M + 2)+

4L2
secondary + 8M

2S-EWU-SSD 42L2
controller + 6L2

secondary + 70L+ 12M + 35

3. update of the filter coefficients, which requires:

multiplications = RC + 1

additions = RC

Hence, the total number of operations equals:

multiplications = (3L2 + 5L+ 2)(M + 2)+

+4L2
secondary + 7M + 3

additions = (3L2 + 5L+ 2)(M + 2)+

+4L2
secondary + 8M

Table 6.3 and 6.4 summarize the complexity Even in the second order NARX

SP case we can distinguish the third order term in the NFGLMS complex-

ity. Though we cannot say that in general 2S-EWU-SSD is faster than the

previously cited algorithm, but it is clear that the SP impacts less on the com-

putation time. We also have to take into consideration that we are comparing

EWU with the NFGLMS that uses the Feintuch’s approximation. On the other

hand, if the full gradient calculation is used, the computational complexity will

110CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

surely grow. In fact all the excluded approximation recursions come back in

the calculation increasing the complexity on the third order term.

6.3 Measured Execution Times

A comprehensive analysis of the execution time is carried out in this section.

This kind of analysis is useful to check that the theoretical values of complexity,

calculated in the previous chapter, are consistent. In particular, we will inves-

tigate single cycle execution time. If it varies between the two algorithms, the

one with the lower complexity is suitable for being fed with a signal sampled

at higher rates, thus increasing noise reduction performances. We adopted the

following precautions:

• Store different random signals (realizations of the same standard uniform

distribution on the open interval (0, 1)), and use them as an input, feeding

different algorithms with the same data, rather than generating them on

the fly. This is fundamental for the repeatability of the results and for a

fair comparison;

• Limit the analysis to ten different random input signals of length 30000

samples;

• Limit the analysis to the first six tests reported in chapter 5, which are

the ones without saturations;

• tic-toc commands2 are placed in such a way that only the code that con-

stitutes the main loop is included. This is done to collect the execution

time of each cycle;

• All the execution times that are measured and stored on the hard drive.

An additional script takes care of the data analysis and plotting. This

should in principle allow the repeatability of all the measures reported,

provided the that the same input signals are used.

2A Matlab command used to retrieve the time of execution of a particular code

6.3. MEASURED EXECUTION TIMES 111

Table 6.5: Test 1, NFGLMS cycle execution statistics

mean variance

1 2.12 ∗ 10−4s 2.52 ∗ 10−10

2 2.13 ∗ 10−4s 2.27 ∗ 10−10

3 2.10 ∗ 10−4s 0.93 ∗ 10−10

4 2.12 ∗ 10−4s 2.12 ∗ 10−10

5 2.10 ∗ 10−4s 1.89 ∗ 10−10

6 2.16 ∗ 10−4s 5.78 ∗ 10−10

7 2.07 ∗ 10−4s 0.71 ∗ 10−10

8 2.18 ∗ 10−4s 5.72 ∗ 10−10

9 2.17 ∗ 10−4s 4.65 ∗ 10−10

10 2.08 ∗ 10−4s 0.73 ∗ 10−10

Table 6.6: Test 1, 2S-EWU-SSD cycle execution statistics

mean variance

1 1.42 ∗ 10−4s 4.80 ∗ 10−9

2 1.36 ∗ 10−4s 2.39 ∗ 10−10

3 1.37 ∗ 10−4s 1.64 ∗ 10−10

4 1.43 ∗ 10−4s 2.90 ∗ 10−10

5 1.38 ∗ 10−4s 1.54 ∗ 10−10

6 1.40 ∗ 10−4s 2.79 ∗ 10−10

7 1.39 ∗ 10−4s 1.80 ∗ 10−10

8 1.44 ∗ 10−4s 4.53 ∗ 10−10

9 1.40 ∗ 10−4s 2.52 ∗ 10−10

10 1.37 ∗ 10−4s 1.28 ∗ 10−10

112CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

Table 6.7: Test 2, NFGLMS cycle execution statistics

mean variance

1 3.01 ∗ 10−4s 2.55 ∗ 10−10

2 2.98 ∗ 10−4s 2.00 ∗ 10−10

3 3.02 ∗ 10−4s 2.53 ∗ 10−10

4 3.00 ∗ 10−4s 2.70 ∗ 10−10

5 2.97 ∗ 10−4s 1.21 ∗ 10−10

6 2.97 ∗ 10−4s 1.19 ∗ 10−10

7 2.99 ∗ 10−4s 1.82 ∗ 10−10

8 2.99 ∗ 10−4s 1.77 ∗ 10−10

9 2.98 ∗ 10−4s 2.16 ∗ 10−10

10 3.00 ∗ 10−4s 2.62 ∗ 10−10

In tables 6.5 and 6.6 we can appreciate the results collected for the ex-

ecution times of the main cycle of the first test. The mean value for both

algorithms doesn’t exhibit noticeable variations, when the algorithm is fed

with different white noise signals. The mean values for the EWU range

from 1.3668 ∗ 10−04s to 1.4464 ∗ 10−04s, while the NFGLMS ones range from

2.0762 ∗ 10−04 to 2.1875 ∗ 10−04 seconds, which means that the EWU performs

a bit better in this case. On the other hand the NFGLMS exhibits overall less

variance.

In the second test (see tables 6.7, 6.8), we can note that the mean values

are more or less constant along different input signals and are more or less the

same for the two algorithms. In fact, the measured mean times for the EWU

range from 3.3890∗10−04s to 3.4681∗10−04s while the range for the NFGLMS

spans from 2.9740 ∗ 10−04s to 3.0208 ∗ 10−04s. As a consequence the NFGLMS

seems to perform barely better in this case. Again, the NFGLMS exhibits less

variance.

The results of the third test show (see tables 6.9, 6.10) that mean and

variance values of the two algorithms are similar and more or less constant

when we span all the ten input signals.

6.3. MEASURED EXECUTION TIMES 113

Table 6.8: Test 2, 2S-EWU-SSD cycle execution statistics

mean variance

1 3.43 ∗ 10−4s 3.66 ∗ 10−10

2 3.45 ∗ 10−4s 3.07 ∗ 10−10

3 3.39 ∗ 10−4s 1.87 ∗ 10−10

4 3.45 ∗ 10−4s 1.94 ∗ 10−10

5 3.41 ∗ 10−4s 1.97 ∗ 10−10

6 3.45 ∗ 10−4s 2.68 ∗ 10−10

7 3.41 ∗ 10−4s 1.48 ∗ 10−10

8 3.46 ∗ 10−4s 2.49 ∗ 10−10

9 3.42 ∗ 10−4s 3.08 ∗ 10−10

10 3.41 ∗ 10−4s 3.89 ∗ 10−10

Table 6.9: Test 3, NFGLMS cycle execution statistics

mean variance

1 3.35 ∗ 10−4s 1.71 ∗ 10−10

2 3.36 ∗ 10−4s 1.86 ∗ 10−10

3 3.36 ∗ 10−4s 3.37 ∗ 10−10

4 3.46 ∗ 10−4s 1.30 ∗ 10−10

5 3.47 ∗ 10−4s 1.71 ∗ 10−10

6 3.45 ∗ 10−4s 1.60 ∗ 10−10

7 3.44 ∗ 10−4s 1.41 ∗ 10−10

8 3.47 ∗ 10−4s 1.29 ∗ 10−10

9 3.46 ∗ 10−4s 1.45 ∗ 10−10

10 3.45 ∗ 10−4s 1.81 ∗ 10−10

114CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

Table 6.10: Test 3, 2S-EWU-SSD cycle execution statistics

mean variance

1 3.65 ∗ 10−4s 1.98 ∗ 10−10

2 3.76 ∗ 10−4s 2.20 ∗ 10−10

3 1.84 ∗ 10−4s 0.84 ∗ 10−10

4 3.81 ∗ 10−4s 2.20 ∗ 10−10

5 3.80 ∗ 10−4s 2.26 ∗ 10−10

6 3.79 ∗ 10−4s 3.07 ∗ 10−10

7 3.78 ∗ 10−4s 2.58 ∗ 10−10

8 3.82 ∗ 10−4s 2.77 ∗ 10−10

9 3.88 ∗ 10−4s 2.45 ∗ 10−10

10 3.88 ∗ 10−4s 2.74 ∗ 10−10

Table 6.11: Test 4, NFGLMS cycle execution statistics

mean variance

1 5.12 ∗ 10−4s 5.10 ∗ 10−10

2 5.07 ∗ 10−4s 2.68 ∗ 10−10

3 5.13 ∗ 10−4s 2.73 ∗ 10−10

4 5.15 ∗ 10−4s 5.51 ∗ 10−10

5 5.10 ∗ 10−4s 2.66 ∗ 10−10

6 5.11 ∗ 10−4s 4.94 ∗ 10−10

7 5.09 ∗ 10−4s 2.12 ∗ 10−10

8 5.09 ∗ 10−4s 2.26 ∗ 10−10

9 5.09 ∗ 10−4s 2.15 ∗ 10−10

10 5.14 ∗ 10−4s 3.64 ∗ 10−10

6.3. MEASURED EXECUTION TIMES 115

Table 6.12: Test 4, 2S-EWU-SSD cycle execution statistics

mean variance

1 4.95 ∗ 10−4s 5.52 ∗ 10−10

2 5.11 ∗ 10−4s 8.22 ∗ 10−10

3 4.85 ∗ 10−4s 21.3 ∗ 10−10

4 4.96 ∗ 10−4s 5.94 ∗ 10−10

5 4.96 ∗ 10−4s 11.7 ∗ 10−10

6 4.98 ∗ 10−4s 12.1 ∗ 10−10

7 4.94 ∗ 10−4s 14.8 ∗ 10−10

8 4.94 ∗ 10−4s 11.1 ∗ 10−10

9 4.93 ∗ 10−4s 11.9 ∗ 10−10

10 4.94 ∗ 10−4s 18.7 ∗ 10−10

Tables 6.11 and 6.12 show the results of the test number four. It is useful

to analyze the execution mean time, as we have done so far, for all the test

cases. For the NFGLMS it ranges from 5.0742 ∗ 10−04s to 5.1515 ∗ 10−04 while

for the EWU the range spans the interval 4.8515 ∗ 10−04s - 5.1111 ∗ 10−04s. In

this case, the EWU wins by a very small margin. The EWU shows again a

bigger variance in the collected measures.

The results of test five, which is the one that uses a non optimal model for

the controller, are shown in tables 6.13 and 6.14 are quite similar to the ones

done before. The mean values range from 3.0041∗10−04s to 3.1208∗10−04s for

the NFGLMS, while for the EWU the span is 1.5748∗10−04s - 3.5919∗10−04s.

The variances are quite similar for both algorithms.

The sixth test (see tables 6.15 and 6.16) is the most complicated one and it

is the last case that we analyze. All the other tests described in 5 are referred

to saturation problems, which are not useful for the performance analysis of the

algorithms, when only the time is taken into consideration as a performance

measure. The mean execution times range from value 5.0832∗10−04s to 5.2451∗
10−04s for the NFGLMS and from 3.0262 ∗ 10−04s to 4.9766 ∗ 10−04s for the

EWU. Even if the EWU performs better from this point of view, its variances

are again greater.

116CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

Table 6.13: Test 5, NFGLMS cycle execution statistics

mean variance

1 3.12 ∗ 10−4s 1.57 ∗ 10−10

2 3.12 ∗ 10−4s 1.15 ∗ 10−10

3 3.08 ∗ 10−4s 1.09 ∗ 10−10

4 3.07 ∗ 10−4s 0.78 ∗ 10−10

5 3.07 ∗ 10−4s 0.92 ∗ 10−10

6 3.12 ∗ 10−4s 1.13 ∗ 10−10

7 3.04 ∗ 10−4s 1.90 ∗ 10−10

8 3.00 ∗ 10−4s 1.39 ∗ 10−10

9 3.03 ∗ 10−4s 1.54 ∗ 10−10

10 3.03 ∗ 10−4s 2.00 ∗ 10−10

Table 6.14: Test 5, 2S-EWU-SSD cycle execution statistics

mean variance

1 3.55 ∗ 10−4s 2.57 ∗ 10−10

2 3.59 ∗ 10−4s 2.20 ∗ 10−10

3 3.53 ∗ 10−4s 2.90 ∗ 10−10

4 3.52 ∗ 10−4s 1.88 ∗ 10−10

5 3.56 ∗ 10−4s 1.57 ∗ 10−10

6 3.45 ∗ 10−4s 3.26 ∗ 10−10

7 3.42 ∗ 10−4s 2.18 ∗ 10−10

8 1.57 ∗ 10−4s 0.55 ∗ 10−10

9 3.50 ∗ 10−4s 2.81 ∗ 10−10

10 1.63 ∗ 10−4s 0.98 ∗ 10−10

6.3. MEASURED EXECUTION TIMES 117

Table 6.15: Test 6, NFGLMS cycle execution statistics

mean variance

1 5.09 ∗ 10−4s 2.27 ∗ 10−10

2 5.09 ∗ 10−4s 1.95 ∗ 10−10

3 5.08 ∗ 10−4s 2.11 ∗ 10−10

4 5.10 ∗ 10−4s 2.93 ∗ 10−10

5 5.21 ∗ 10−4s 4.00 ∗ 10−10

6 5.17 ∗ 10−4s 4.05 ∗ 10−10

7 5.14 ∗ 10−4s 3.68 ∗ 10−10

8 5.15 ∗ 10−4s 3.38 ∗ 10−10

9 5.25 ∗ 10−4s 2.12 ∗ 10−10

10 5.22 ∗ 10−4s 3.16 ∗ 10−10

Table 6.16: Test 6, 2S-EWU-SSD cycle execution statistics

mean variance

1 3.73 ∗ 10−4s 99.1 ∗ 10−10

2 3.27 ∗ 10−4s 45.9 ∗ 10−10

3 3.84 ∗ 10−4s 97.6 ∗ 10−10

4 3.03 ∗ 10−4s 1.98 ∗ 10−10

5 4.96 ∗ 10−4s 13.3 ∗ 10−10

6 4.96 ∗ 10−4s 12.4 ∗ 10−10

7 4.98 ∗ 10−4s 10.8 ∗ 10−10

8 4.51 ∗ 10−4s 84.1 ∗ 10−10

9 4.45 ∗ 10−4s 97.0 ∗ 10−10

10 4.67 ∗ 10−4s 70.7 ∗ 10−10

118CHAPTER 6. COMPLEXITY ANALYSIS AND EVALUATIONOF PERFORMANCE

In general, we can state that the measured execution times between the two

algorithms are always comparable. Moreover, they are consistent with the com-

plexity values found in the theoretical analysis. In all the performed tests the

variance of the EWU is always bigger with respect to the NFGLMS one. This

is due to the various optimizations added to the EWU in order to build it’s best

variant called 2S-EWU-SSD. This variant, has many if cycles and therefore the

execution time changes greatly depending on which condition is satisfied and in

particular in which of the two stages is the algorithm. On the other hand, the

NFGLMS does, at each iteration, the same type of instructions, consequently

leading to more regular measures. Though the collected values are similar be-

tween the two algorithms, it is worth noticing that the main advantage of the

EWU with respect to the NFGLMS resides in its fast convergence, as showed

in chapter 5. Consequently, if a convergence threshold is defined in order to

stop the coefficients adaptation, EWU total execution time should be less the

the NFGLMS one. As a concluding remark, we can state that, looking at the

mean values of each algorithm, the distance from the speaker to the reference

microphone should not represent a problem in a real scenario. For example, if

the worst mean value among all (NFGLMS - test 6 - input 9) is considered, the

critical distance is calculated as 343[m/s] ∗ 5.25 ∗ 10−4[s] = 0.1801[m], which

is reasonable for the majority of the applications. Moreover, it is important

to note that a DSP implementation of the algorithms should further improve

the cycle execution delays measured through Matlab, hence the distance from

the noise microphone to the speaker is likely to be reduced.

Chapter 7

Conclusions and Future Work

A gradient-free optimization method was employed in a general NANC setting

to avoid the computational complexity and stability issues related to gradient-

based approaches in the case of recursive nonlinear models. Contrary to other

adaptations of SA algorithms to the ANC context previously presented in

the literature, the availability of a SP estimate has been assumed, making

it possible to evaluate the effect of a given parameter perturbation virtually,

without affecting the controller performance and improving the convergence

properties. The EWU algorithm compares favorably with competitor NANC

methods, such as the NFGLMS or the VFXLMS, both in terms of estimation

accuracy and convergence speed. An EWU-based model selection procedure

has also been developed and, as shown in chapter 5, it finds reasonable and

compact model structures. The basic version of the algorithm relies on the

instantaneous measure of the error to evaluate a given controller parametriza-

tion. A possible solution, that needs to be further investigated, is to protract

the evaluation for a longer time horizon, without computing at every step all

the filters’ outputs.

The usage of the SP estimate to recover a primary path output estimate

allows, in particular, the parallel adaptation of multiple filter instances, subject

to different perturbations. This approach to the problem can be used together

with SA methods as PSO, SPSA and FDSA. In this way they could earn in

speed of convergence and could collect all the information coming from different

parametrizations without affecting the system output.

Appendix A

Notes on the Matlab

Implementation of the

Algorithm

A.1 Introduction

In this section we will face some of the main issues tied up with the implemen-

tation in Matlab of the algorithm and methods used.

A.2 NARX Representation

To speed up the simulation process in Matlab we build a comfortable structure

for the NARX model. This structure was created to let Matlab work as much

as possible with matrices. Every model is represented by a 3-dimensional

matrix. Each layer of the matrix represent one regressor and is composed, for

a SISO system, by 2 columns, one for the input and one for the output. The

number of rows is equal to the order of the model. In every cell is stored the

delay of each term of the current regressor and -1 if the cell is not used. For

example, if we have the following NARX model

y(n) = ax(n) + bx2(n) + cx(n− 1)y(n− 2) + dy2(n− 2)

122APPENDIX A. NOTES ON THEMATLAB IMPLEMENTATIONOF THE ALGORITHM

where the order is 2 the slices representing every single regressor are:[
0 −1

−1 −1

]
︸ ︷︷ ︸

regressor 1

[
0 −1

0 −1

]
︸ ︷︷ ︸

regressor 2

[
1 2

−1 −1

]
︸ ︷︷ ︸

regressor 3

[
−1 2

−1 2

]
︸ ︷︷ ︸

regressor 4

A.3 Gradient Implementation

The computation of the gradient is one of the main issues of NFGLMS. In fact

its implementation represents the most of the computational complexity. Fol-

lowing the data structure described in the previous section, and the recursive

method described in 2.3.2, we came up with the following procedure:

for i = 0→M = memory of the SP model do

for j = 0→ns = number of SP coefficients do

out(i) ← out(i) + product of all the terms of the SP regressor but

that with the delay equals to i;

end for

end for

for i = 0→nc = number of the controller coefficients do

yTheta(k, i)←product of all the terms of the controller regressor;

end for

grad(k)← scalarProduct(out,yTheta);

Bibliography

[1] Luis Antonio Aguirre and Stephen A. Billings. Dynamical effects of over-

parametrization in nonlinear models. Physica D, 8(1-2):26–40, January

1995.

[2] S. A. Billings, S. Chen, and M. J. Korenberg. Identification of mimo

nonlinear systems using a forward-regression orthogonal estimator. Inter-

national Journal of Control, 49:2157–2189, 1989.

[3] Elias Bjarnason. Analysis of the filtered-x lms algorithm. IEEE Transac-

tions on Speech and Audio Processing, 3(6):504–514, November 1995.

[4] C. Cantelmo and L. Piroddi. Adaptive model selection for polynomial

narx models. IET Control Theory Appl., 4(12):2693–2706, 2010.

[5] Debi Prasad Das and Ganapati Panda. Active mitigation of nonlinear

noise processes using a novel filtered-s lms algorithm. IEEE Transactions

on Speech and Audio Processing, 12(3):313–322, May 2004.

[6] Debi Prasad Das, S. R. Mohopatra, A. Routray, and T. K. Basu. Filtered-

s lms algorithm for multichannel active control of nonlinear noise pro-

cesses. IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LAN-

GUAGE PROCESSING, 14(5):1875–1880, September 2006.

[7] Debi Prasad Das, Ganapati Panda, and K. D. Nayak. Development of

frequency domain block filtered-s lms (fbfslms) algorithm for active noise

control system. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,

pages 289–292, 2006.

[8] F. Alton Everest. The Master Handbook of Acoustics. McGraw-Hill, 2001.

124 BIBLIOGRAPHY

[9] Kiefler and Wolfowitz. Stochastic estimation of the maximum of a regres-

sion function. The Annals of Mathematical Statistics, 23:462–466, 1951.

[10] Sen Maw Kuo and Dennis R. Morgan. Active Noise Control Systems -

Algorithms and DPS Implementations. Wiley-Interscience, 1996.

[11] Sen Maw Kuo and Hsien-Tsai Wu. Nonlinear adaptive bilinear filters for

active noise control systems. IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS, 52(3):617– 624, March 2005.

[12] Sen Maw Kuo, Hsien-Tsai Wu, Fu-Kun Chen, and Madhu R. Gunnala.

Saturation effects in active noise control systems. IEEE TRANSAC-

TIONS ON CIRCUITS AND SYSTEMS, 51(6):1163– 1171, June 2004.

[13] I. J. Leontaritis and S. A. Billings. Input-output parametric models for

nonlinear systems—part ii: Stochastic nonlinear systems. International

Journal of Control, pages 329–344, 1985.

[14] K. Li, J.-X. Peng, and G. W. Irwin. A fast nonlinear model identification

method. IEEE Trans. Autom. Control, 50(8):1211–1216, 2005.

[15] Yutaka MAEDA and Takao YOSHIDA. An active noise control without

estimation of secondary-path an active noise control without estimation

of secondary-path–anc using simultaneous perturbation. Active99, 1999.

[16] Tetsuya Matsuura, Takehiko Hiei, Hiroyuki Itoh, and Kanikazu Torikoshi.

Active noise control by using prediction of time series with a neural net-

work. Proc. IEEE Int. Conf. Syst., Man, Cybern., 3:2070–2075, 1995.

[17] Roberto Napoli. Nonlinear active noise control with narx models. Master’s

thesis, Politecnico di Milano, 2006-2007.

[18] Roberto Napoli and Luigi Piroddi. Nonlinear active noise control with

narx models. IEEE TRANSACTIONS ON AUDIO, SPEECH, AND

LANGUAGE PROCESSING, 18(2):286–295, February 2010.

[19] R.E. Perez and K. Behdinann. Particle swarm approach for structural

design optimization. Computers and Structures, pages 1579–1588, 2007.

BIBLIOGRAPHY 125

[20] Luigi Piroddi and W. Spinelli. An identification algorithm for polyno-

mial narx models based on simulation error minimization. International

Journal of Control, 76(17):1767–1781, 2003.

[21] Nirmal Kumar Rout, Debi Prasad Das, and Ganapati Panda. Particle

swarm optimization based active noise particle swarm optimization based

active noise particle swarm optimization based active noise control algo-

rithm without secondary path identification. IEEE TRANSACTIONS ON

INSTRUMENTATION AND MEASUREMENT, 61(02), February 2012.

[22] G. L. Sicuranza and A. Carini. Piecewise-linear expansions for nonlin-

ear active noise control. Proc. IEEE Int. Conf. Acoust., Speech, Signal

Process., pages 209–212, 2006.

[23] S. D. Snyder and N. Tanaka. Active control of vibration using a neural

network. IEEE Transactions On Neural Networks, 6(4):819–828, July

1995.

[24] James C. Spall. An overview of the simultaneous perturbation method

for efficient optimization. An Overview of the Simultaneous Perturbation

Method for Efficient Optimization, 19(4):482–492, 1998.

[25] Paul Strauch and Bernard Mulgrew. Nonlinear active noise control in a

liner duct. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 46(9):

2404–2412, September 1998.

[26] Li Tan and Jean Jiang. Adaptive volterra filters for active control of

nonlinear noise processes. IEEE TRANSACTIONS ON SIGNAL PRO-

CESSING, 49(8):1667–1676, August 2001.

[27] K.S. Tang, K.F. Man, S. Kwong, and Q. He. Genetic algorithms and their

applications. IEEE SIGNAL PROCESSING MAGAZINE, pages 22–37,

November 1996.

[28] Jerome Friedman Trevor Hastie, Robert Tibshirani. The Elements of

Statistical Learning. 2 edition, 2008.

[29] Bernard Widrow, John R. Glover, and John M. McCool. Adaptive noise

cancelling: Principles and applications. Proceedings of the IEEE, 63(12):

1692–1716, 1975.

126 BIBLIOGRAPHY

[30] Dayong Zhou and Victor DeBrunner. Efficient adaptive nonlinear filters

for nonlinear active noise control. IEEE TRANSACTIONS ON CIR-

CUITS AND SYSTEMS, 54(3):669–681, March 2007.

[31] Ya-Li Zhou, Qi-Zhi Zhang, Xiao-Dong Li, and Woon-Seng Gan. On the

use of an spsa-based model-free feedback controller in active noise con-

trol for periodic disturbances in a duct. JOURNAL OF SOUND AND

VIBRATION, May 2008.

List of Figures

2.1 First page of Paul Lueg’s patent 6

2.2 General ANC scheme: d(n) is the desired response (the noise

filtered by the primary path), x(n) the noise reference signal,

y(n) the filter output and e(n) the error 8

2.3 General feedforward ANC scheme 8

2.4 Feedback ANC general scheme 8

2.5 ANC reference scheme . 9

2.6 Secondary path simplified reference scheme 12

2.7 FxLMS reference scheme . 13

2.8 The three algorithms running with starting parameters a = 0.25

and b = 0.1, red = NFGLMS, blue = Half-Gradient approach,

green = Full-Gradient . 21

2.9 80000 samples, a = 1.5, b = 0.2, red=NFGLMS, blue = Half-

Feintuch approach, green = Full-Gradient 21

2.10 PSO-based ANC block scheme 27

3.1 EWU block scheme . 31

3.2 perturbations on the coefficients w1. In green the smallest error. 34

3.3 perturbations on the coefficients w2. In green the smallest error. 35

3.4 linear combinations between the best directions. 36

3.5 EWU MSE(red) and UEWU (violet) 1/3 43

128 LIST OF FIGURES

3.6 EWU MSE(red) and UEWU (violet) 2/3 43

3.7 EWU MSE(red) and UEWU (violet) 3/3 44

3.8 coefficient update path using EWU with uniform linear combi-

nation . 44

3.9 coefficient update path using EWU with weighted linear com-

bination . 45

3.10 NFGLMS coefficient update-path 46

3.11 UEWU coefficient update-path. The convergence value should

be 0.2 . 47

3.12 UEWU-SSD update-path of one coefficient. The convergence

value would be 0.2 . 49

3.13 2S-UEWU and UEWU MSE . 52

3.14 2S-UEWU update-path of one coefficient. It reaches conver-

gence at 0.2. 52

5.1 coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 1 . 65

5.2 output of the system without ANC(blue), with NFGLMS

(green) and with EWU(red) relative to test 1 65

5.3 NMSE of NFGLMS(green) and EWU(red) relative to test 1 . . 66

5.4 coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 2 . 67

5.5 output of the system without ANC(blue), with NFGLMS

(green) and with EWU(red) relative to test 2 67

5.6 NMSE of NFGLMS(green) and EWU(red) relative to test 2 . . 68

5.7 coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 3 . 68

5.8 output of the system without ANC(blue), with NFGLMS

(green) and with EWU(red) relative to test 3 69

LIST OF FIGURES 129

5.9 NMSE of NFGLMS(green) and EWU(red) relative to test 3 . . 70

5.10 1-4 coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 4 . 71

5.11 5-8 coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 4 . 72

5.12 6th coefficient update path for NFGLMS(top-green) and 2S-

EWU-SSD(bottom-red) relative to test 4 73

5.13 output of the system without ANC(blue), with NFGLMS

(green) and with EWU(red) relative to test 4 74

5.14 NMSE of NFGLMS(green) and EWU(red) relative to test 4 . . 75

5.15 coefficients update paths for NFGLMS(left) and 2S-EWU-

SSD(right) relative to test 5 . 76

5.16 output of the system without ANC(blue), with NFGLMS

(green) and with EWU(red) relative to test 5 76

5.17 output of the system without ANC(blue), with NFGLMS

(green) and with EWU(red) relative to test 6 77

5.18 NMSE of NFGLMS(green) and EWU(red) relative to test 6 . . 78

5.19 Selection history relative to DeBrunner test 81

5.20 System output of EWU Selection relative to DeBrunner test . . 82

5.21 NMSE plot of NFGLMS, 2-Stage EWU SSD and VFxLMS rel-

ative to DeBrunner test . 82

5.22 System outputs of NFGLMS, 2-Stage EWU SSD and VFxLMS

relative to DeBrunner test . 83

5.23 System output EWU Selection relative to WU saturation test . 85

5.24 Selection history relative to WU selection test 86

5.25 System outputs of NFGLMS with a full NARX model (green),

2-Stage EWU SSD with the selected model structure (red),

VFxLMS (pink) and BFxLMS (black) with memory equal to

16 relative to WU saturation test 87

130 LIST OF FIGURES

5.26 NMSEs of NFGLMS with a full NARX model (green), 2-Stage

EWU SSD with the selected model structure (red), VFxLMS

(pink) and BFxLMS (black) with memory equal to 16 relative

to WU saturation test . 88

5.27 System output EWU Selection relative to SU saturation test . . 89

5.28 Selection history relative to SU selection test 90

5.29 System outputs of NFGLMS with a full NARX model (green),

2-Stage EWU SSD with the selected model structure (red),

VFxLMS (pink) and BFxLMS (black) with memory equal to

16 relative to SU saturation test 91

5.30 NMSEs of NFGLMS with a full NARX model (green), 2-Stage

EWU SSD with the selected model structure (red), VFxLMS

(pink) and BFxLMS (black) with memory equal to 16 relative

to SU saturation test . 92

5.31 System output EWU Selection relative to SW saturation test . . 94

5.32 Selection history relative to SW selection test 95

5.33 System outputs of NFGLMS with a full NARX model (green),

2-Stage EWU SSD with the selected model structure (red),

VFxLMS (pink) and BFxLMS (black) with memory equal to

16 relative to SW saturation test 96

5.34 NMSEs of NFGLMS with a full NARX model (green), 2-Stage

EWU SSD with the selected model structure (red), VFxLMS

(pink) and BFxLMS (black) with memory equal to 16 relative

to SW saturation test . 97

