
POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Master of Science in

Computer Engineering

TAILORED BOOK: A DISTRIBUTED

PLATFORM FOR AUTHORING AUGMENTED

COMMUNICATION BOOKS WITH

LANGUAGE CORPORA-REFERENCED

ANNOTATIONS

Supervisor: Prof. Thimoty Barbieri

Master Graduation Thesis by: Alexey Khlebtsov

Student Id. number: 751892

Academic Year 2011/12

2

POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Corso di Laurea Specialistica in

Ingegneria Informatica

LIBRO SU MISURA: UNA PIATTAFORMA

DISTRIBUITA PER LA CREAZIONE DI LIBRI

CON COMUNICAZIONE AUMENTATIVA

UTILIZZANDO ANNOTAZIONI BASATE SU

CORPORA LINGUISTICI

Relatore: Prof. Thimoty Barbieri

Tesi di laurea di: Alexey Khlebtsov

Matr: 751892

Anno Accademico 2011/12

3

Abstract

This project is an endeavor to facilitate the development of communication and language for

children with complex disabilities by means of tailored books. The tailored book or “su misura”

book[10] is the well-known tool invented in Italy used to help children at a very early stage in all

situations where there is at least the slightest doubt of possible difficulties in the future development

of communication.

The process of tailored books’ production is not easy and time-consuming, because there is no

specifically adapted software available for this purpose. In this project I would like to propose a

system that allows the creation, modification, visualization and distribution of such books.

The system is composed of the desktop and mobile applications that are called “Tailored Book

Editor” and “Tailored Book Reader” accordingly. “Tailored Book Editor” is responsible for the

creation, editing, and publication of such books. “Tailored Book Reader” is responsible for

visualization of tailored books created by “Tailored Book Editor” application.

“Tailored Book Editor” takes as input a .txt file and a set of tagged images and produces a

tailored book. The “Tailored Book Editor” contains also “Image Tagger” module which allows

tagging images with the reference to lexical database.

The creation of a tailored book is carried out from a text file that is then tagged using the POS

tagger for assigning the part of speech to each word. The couple of the word and its part of speech

is then sent to the lexical database WordNet that is used to find all synonyms for each couple. These

synonyms or in other words tags are then assigned to each word of initial text file for further image

assignment. The difference between text tagging and image tagging is that the image tagging

requires supervision while the text tagging is done automatically. The design and implementation of

such system are described below in this project.

Sommario

Questo progetto è un tentativo di facilitare lo sviluppo della comunicazione e del linguaggio

per bambini con disabilità complesse per mezzo di libri su misura. Il libro su misura [10] è il ben

noto strumento inventato in Italia che viene utilizzato per aiutare i bambini in una fase molto

precoce in tutte le situazioni in cui c’è almeno il minimo dubbio di difficoltà nello sviluppo futuro

della comunicazione.

Il processo di produzione di libri su misura non è facile e richiede tempo, perché non c’è

alcun software specificamente adattato per questo scopo. In questo progetto vorrei proporre un

sistema che permette la creazione, la modifica, la visualizzazione e la distribuzione di tali libri.

Il sistema è composto dalle applicazioni desktop e mobile che si chiamano rispettivamente

“Tailored Book Editor” e “Tailored Book Reader“. “Tailored Book Editor” è responsabile per la

creazione, la modifica e la distribuzione di tali libri. “Tailored Book Reader“ è responsabile per la

visualizzazione di libri su misura creati da applicazione “Tailored Book Editor”.

“Tailored Book Editor” prende come input un file .txt e un set di immagini marcate e

produce un libro su misura. “Tailored Book Editor” contiene anche “Image Tagger”, un modulo che

permette di etichettare le immagini, con il riferimento al database lessicale.

La creazione del libro su misura viene effettuata da un file di testo che poi viene etichettato

con POS tagger per assegnare le parti del discorso ad ogni parola. La coppia della parola e la sua

parte del discorso viene poi inviata al database lessicale WordNet, che viene utilizzato per trovare

tutti sinonimi di ogni coppia. Questi sinonimi - o in altre parole i tag - vengono quindi assegnati a

ogni parola del file di testo iniziale per ulteriore l’assegnazione delle immagine. La differenza tra il

tagging dei testi e il tagging dell’immagine è che l’annotazione delle immagine richiede la

supervisione, mentre l’annotazione dei testi è fatto automaticamente. La progettazione e

l’attuazione di tale sistema è descritto di seguito in questo progetto.

4

Index

I. Background ... 6

1. Context ... 6

1.1. What is AAC? ... 6

1.2. Children with special needs - who are they? ... 6

1.3. Speech processing ... 6

1.4. Tailored books or books “Su Misura” ... 8

1.5. The translation of text into figures .. 9

1.6. Many figures or a few figures? ... 9

1.7. The parts of speech .. 11

1.8. Framing ... 12

2. Technologies .. 12

2.1. Classification of ACC Systems ... 12

2.2. Speech-generating devices .. 14

2.3. Barriers to effective use of technology for students with disabilities 14

2.4. AAC and acceptance ... 14

2.5. Emergence of mobile devices ... 15

II. Motivation and Goals .. 15

III. Design and Implementation ... 16

1. Overview of the system .. 16

2. “Tailored Book Editor” .. 17

2.1 “Tailored Book Editor” front-end .. 17

2.1.1. “Tailored Book Creator” features .. 17

2.1.2. “Tailored Book Editor” main interface features .. 18

2.1.3. “Image Tagger” features .. 19

2.1.4. Selection of Java GUI .. 20

2.3. “Tailored Book Editor” back-end ... 21

2.3.1. WordNet ... 22

2.3.2. Java APIs for WordNet .. 23

2.3.3. Part-of-speech tagging .. 24

2.3.4. JDOM ... 26

2.3.5. Sanselan .. 26

2.3.6. Gson ... 27

2.3.7. RDF .. 27

2.3.8. Metadata and XMP... 27

2.3.9. Dublin Core Schema .. 28

2.4. Text processing ... 30

5

2.5. Files Formats ... 34

2.6. “Tailored Book Editor” class diagram .. 36

2.7. “Tailored Book Editor” implemented classes ... 38

2.8. “Tailored Book Editor” screens .. 40

3. “Tailored Book Reader” ... 46

3.1. “Tailored Book Reader” front-end .. 46

3.1.1. “Menu” screen features and layout .. 46

3.1.2. “Info” screen features and layout ... 47

3.1.3. “Download Books” and “My Books” screen features and layouts 47

3.1.5. “Book” screen features and layout ... 48

3.2. “Tailored Book Reader” back-end .. 50

3.2.1. Activity workflow .. 50

3.2.2. “Tailored Book Reader” configuration file .. 51

3.2.3. “Tailored Book Reader” class diagram .. 53

3.2.4. “Tailored Book Reader” implemented classes ... 54

3.3. “Tailored Book Reader” screens ... 56

4. System usage workflow ... 58

IV. Evaluation .. 60

V. Conclusions and Future Work ... 64

VI Methods description .. 66

1. “Tailored Book Editor” methods .. 66

2. “Tailored Book Reader” methods .. 69

VII. Figures and tables index ... 74

VIII. Bibliography .. 77

6

I. Background
1. Context

1.1. What is AAC?

For most people, communication involves the spoken language. However, for some, the

ability to hear speech or to speak is compromised. There are children who cannot use speech

because they have difficulty moving the required muscles, developmental disabilities, or hearing

impairments. For these children particular speech communication strategies, called augmentative

and alternative communication (AAC) systems, may be useful. AAC systems can augment existing

communication skills or provide an alternative to speech [1].

The use of the AAC was initially limited to children with severe mobility problems and

normal cognitive development, however over the years it has been gradually extended to many

different disabilities affecting intentional communication (autistic disorder), the expressive

components of language and motor skills (cerebral palsy, spinal muscular atrophy, muscular

dystrophy), language comprehension (some dysphasia) or more often with mixed components

(Angelman syndrome, Down syndrome and other genetic syndromes, mental retardation, severe

dysphasia, progressive neurological diseases, etc.)[2].

For some students with autism, cerebral palsy, Down syndrome, and other disabilities, speech

may not fulfill all of their communication needs. For these students with complex communication

needs (CCN), the use of Augmentative and Alternative Communication (AAC) can have important

benefits [3].

There is a wide range of AAC techniques available, including:

• Picture, symbol, alphabet, and word boards

• Signs and gestures

• Speech-generating devices (including specialized computer systems)

The use of AAC systems can support participation for students at any age in a wide range of

academic and social activities [3].

1.2. Children with special needs - who are they?

Over the past 20 years, the number of students with disabilities has been steadily increasing at

a faster rate than both the general population and school enrollment [4]. Children who use AAC

have needs similar to the needs of other students in the classroom. They require educational

programs that are rigorous and relevant and that promote positive relationships [3].

There is a fair quota of children with different types of disability that temporarily or

permanently have serious problems of linguistic communication within surrounded environment.

The ability to establish a form of communication, and then get in touch with others is essential to

the relational and cognitive development as well as to ensure the acquisition of a social role in the

life. Epidemiological data shows an area of substantial need [5]. About 2% of the Italian

populations before 18 are disabled, and at least one quarter of them has communication disorders,

transient or permanent, for a total of at least 50,000 children and teenagers [6].

1.3. Speech processing

The timely interventions of AAC can play an important role in preventing both further

symbolic and cognitive impoverishment and the appearance of minor psychiatric disorders.

For Children and adolescents with complex communication disabilities it is necessary to

enhance the existing communication strategies through Augmentative and Alternative

Communication, in order to bypass the communication deficit and reactivate interactions and

development. Symbol or photo systems may be used, digital recorders that may “lend” the voice

7

when necessary, assistive technology, or systems that allow functional reading and writing for

people that have not reached alphabetical access or cannot use a pen. The system has to be

multimodal in nature, flexible and sized for each individual; it has to follow the changing needs of

the child due to growth and actively involve family and life context, according to a participated

model.

Almost all children with speech and language difficulties have associated literacy problems.

However, school-age children whose speech difficulties persist beyond 5 years of age are most at

risk for associated difficulties in reading, spelling and sometimes maths. Let’s first consider the

nature of persisting speech difficulties with reference to a simple psycholinguistic model of speech

processing (see Figure 1).

Figure 1 Psycholinguistic model of speech processing

Figure 1 illustrates that we receive spoken information through the ear (input). The

information is then processed as it goes up the left hand side of the model and is stored at the top in

a word store (lexical representations). When we want to speak we can access stored information and

program it for speaking on the right hand side of the model (output). Some children with speech

difficulties have difficulties with speech input (e.g. differentiating between similar sounding

words); others have imprecise or “fuzzy” storage of words which makes it difficult to access them

(as in word finding difficulties) or to program a clear production of them because of missing

elements in the word store; while others have a difficulty pronouncing speech at an articulatory

output level (on the right hand side of the model) even though they know the words involved

perfectly well. Children with persisting difficulties, however, may well have pervasive problems

which involve all of these aspects of speech processing: input, representations and output. Where

this is the case they may also have language difficulties (comprehension and/or expression).

The speech processing system, as illustrated above, is not only the basis for speech and

language development but also the foundation for literacy development; “written language” being

an extension of 'spoken language'. For example, if a child has delayed understanding of spoken

language he will find it very hard to access meaning from the printed word even though he may be

able to decode the letters perfectly well. Sometimes, children with comprehension or “semantic-

pragmatic” difficulties are described as “hyperlexic”; this term indicates that a child can read print

mechanically better than they can understand it. Other children, particularly those with persisting

speech difficulties, have a problem with the mechanics of reading and are more likely to be

described as “dyslexic” or as having ‘specific’ reading and spelling problems. This suggests a

problem at one or more levels in the speech processing system depicted above.

In summary, children’s speech difficulties arise from problems at one or more points in their

underlying speech processing system. This system is the foundation for their written language as

well as their spoken language skills. If this foundation is unstable, additional support will be needed

to enable a child to use the strengths he has to develop phonological awareness skill and letter

knowledge. This is tough but not insurmountable [7].

8

1.4. Tailored books or books “Su Misura”

An AAC system is a kind of “ongoing immediate decoder” between the child’s language and

our own, and vice versa. The systems of symbols or images can be used to overcome the

communication deficit and reactivate and enhance interactions and development.

In this system every framed figure is composed of the image or symbol, and the word it

represents written above or below, to make it understandable to the communication partner (see

Figure 2).

Figure 2 Text in symbols

This is not only a rehabilitation technique, but also may be applied to build a flexible system

tailored to each person and put in place in all contexts; since the communication is a fundamental

right of the individual, and for each of us it is necessary and essential in every moment, and not just

in the therapy room.

These interventions are very popular abroad, particularly in English-speaking countries that

have always been very attentive to the issue of the rights and quality of life, but still very present in

Italy. Also due to cultural lack of communication in situations of disability, there is an unfortunate

persistence of prejudices that interfere with the success of interventions (for example, the fantasy

that the use of AAC tools prevents the structuring of a verbal language rather than facilitate it).

A fair chunk of small users simultaneously presents a number of problem areas that require

continuous interaction of different professional specialties (child psychiatrist, psychologist, speech

therapist, psychomotor system developmental therapist, physical therapist, professional educator,

information technology, etc.) in a global, complex and detailed context.

After a lot of debate, the literature has now agreed that there are no minimum prerequisites

needed in the children (so there is no a low cognitive level, or severity, or age below which it is not

advisable to start), there are instead the minimum specifications of rehabilitation services and the

environment that are essential [8-9]. In the context in which the child psychiatry or rehabilitation

services are missing or do not have professional training in augmentative communication, it is very

difficult to put in place a system of CAA since the local technical support are missing in the school

and family.

Also it is not enough to have the best and most refined technical assessment or the best

rehabilitation service to succeed the interventions. Since the role of the environment has a lot to do

with it, so the intervention must permeate all stages of a child’s life: active collaboration at school,

family, etc.

There are two areas of particular importance in AAC intervention: the initial communication

and the constant updating of vocabulary and in both areas the active role of the living environment

is absolutely crucial. The pediatrician’s knowledge is important to adequately support the ongoing

interventions from outside, and in the case of the initial communication it also have to raise

awareness among children’s families in the direction of the interaction procedures that facilitate the

development of communication and language.

The basic facility which is recommended to use is called “tailored” books [10], which are

helpful at very early stage (in the first or second year at most) in all situations where there is at least

the slightest doubt of possible difficulties in the future development of communication.

A customized book or “tailored” book is a book “on measure for a specific child”. It is a

particularly important tool for children with complex disabilities, who without specific attentions

and adaptations would not be able to have access to the book-sharing. Through the experience of

making tailored books for individual children, it has become possible to create group “laboratories”

9

in partnership between parents, teachers and health professionals and then to organize a specific

dedicated section of the town library, to act on participation barriers in the community [11].

The production of tailored books or books “su misura” is specific for each child and is very

burdensome in terms of time for families and professionals.

The presence of tailored books in public libraries and nursery schools also could go to support

two other populations, whose access to the book is generally limited: children with language

disorders and children of migrants. The translation of the text into symbols which are present in the

tailored books allows children with disabilities following much better the text, improving greatly

the attention and language comprehension, as well for the children who have no cognitive problem

but, for example, have a disorder of language development [13].

1.5. The translation of text into figures

The text is the part that requires major adaptations, both the structure of sentences, which

must be simplified without losing its liveliness and content, and in the subsequent translation of the

text into figures. In some cases it is then necessary to change the number of pages, their consistency

and assembly. The first books for a child with complex disabilities cannot be built entirely at his

measure, and consequently require the working together with parents, teachers and practitioners,

that through special training workshops can learn how to create customized books.

A personalized or tailored book is a book built from scratch for a single child on a specific

topic that has for him a high motivational engagement (a significant event in a positive or negative:

a holiday, a celebration, an event, or otherwise in a shelter hospital).

 It can also be very short, very few pages, and it is generally the book which a very small

child with disabilities or with special difficulties (with autism, with difficulties in language

comprehension or mental retardation among moderate and severe) should be able to grab for the

first time.

In the construction of the book it is important to pay attention to the correctness of the

translation of the text into figures: all text should be written in figures, in black and white or in

color, squared, respecting the structure of the sentences. The completeness of the text in figures,

along with the modeling of the adult allows the children to follow better the story they are listening,

supporting language comprehension and attention.

It is also possible to increase gradually the level of richness of sentences and complexity of

the used figures, adding functors (small parts of speech that modulate the words) and

morphosyntactic elements as the child’s attention to the nuances of speech increases.

1.6. Many figures or a few figures?

At first the text of the books should contain a few figures in order not to confuse the children

with too many not yet known ones. It is like trying to use only a few words with young children

who are starting to listen to the language. Also it was realized that using a few figures may

complicate things instead of simplifying them for those children who listen to parent’s reading [39].

If there are only a few figures and you do not understand the words you hear, you are in the

same situation of a person who can neither understand nor read Russian, and sees and hears the

following phrase (see Figure 3):

Я не могу петь рыдала

Figure 3 Many figures or a few figures, example 1

10

It might mean anything that concerns Spillo: e.g. it is happy or sad, it is fine or sick, it is

hungry or ate too much, and it goes out or comes back, etc. (see Figure 4)

 не могу петь рыдала

Figure 4 Many figures or a few figures, example 2

Even the addition of the subject does not improve the situation. Me and Spillo. Are we friends

or enemies? Do we do something together or we do not want to do something together? (See Figure

5)

 не рыдала

Figure 5 Many figures or a few figures, example 3

Right now it seems a bit better, with the addition of the verb, but there are still many doubts.

Spillo is a bird, maybe he will sing or I will sing for Spillo. (See Figure 6)

 рыдала

Figure 6 Many symbols or a few symbols, example 4

The missing part was an essential piece which changes the meaning of the phrase completely:

I cannot sing. (See Figure 7)

Figure 7 Many figures or a few figures, example 5

Here, finally, the whole sentence. I cannot sing cried Spillo. The sight of figures helps a lot to

who do not understand Russian.

11

Especially the children with communication disorders can find it hard to decipher the nuances

of language. Also it is really helpful to read aloud to children and indicate the figures while reading.

With the text entirely in figures, the process of reading and indicating figures becomes incredibly

natural. It is enough to see it only once as it should be done, and adults and peers are able to do it

spontaneously [12].

1.7. The parts of speech

Initially every little part of speech should not be represented by a figures right away, because

people who are at the beginning of learning a language focus mainly on the meaning and do not pay

attention to the nuances and parts of speech.

At the beginning the phrase should be formed by the key elements necessary to understand its

meaning (see Figure 8):

Figure 8 The parts of speech, example 1

Then gradually, the complexity can be increased by introducing the subject. (See Figure 9)

Figure 9 The parts of speech, example 2

Afterwards the possessive can be separated. (See Figure 10)

Figure 10 The parts of speech, example 3

Then the article and the plural can be added as a separate symbol. (See Figure 11)

Figure 11 The parts of speech, example 4

12

And finally, the tense of the verb can be highlighted.

The introduction of morphosyntactic elements in writing symbols supports the language

comprehension of children, while exposure to over-simplified language and low morphosyntactic

elements cannot fully master the language [13].

1.8. Framing

The framing is an important element as well. The presence of the external frame in fact

defines the unit of meaning that binds the written word and symbol together, facilitating the

assignment of meaning. It is especially important for children who have difficulty in understanding

the language. Here is the same text in symbols with (see Figure 12) and without (see Figure 13)

external frame [13].

Figure 12 The text in figures with external frame

Figure 13 The unframed text in figures

2. Technologies

2.1. Classification of ACC Systems

Advances in computer technology have led to the creation of specialized devices called

augmentative and alternative communication (AAC) devices, which help make it possible for

individuals with no speech, or individuals with poor speech, to overcome their communication

problems.

Augmentative devices are designed to support or enhance the speaking capability of a person.

Alternative devices, on the other hand, replace speech as a means of communication. There are a

variety of electronic AAC devices on the market, ranging from very low tech to very high tech, and

ranging in price from a few hundred dollars to several thousand dollars. Some devices are

“dedicated”, that is, their only purpose is to provide a means of communication. Other devices have

been designed to work in conjunction with a computer that plays multiple roles (such as word

processing or calculations). In addition, existing computers can now be modified for use as an AAC

device through the addition of special communication software and hardware. These modifications

are often less expensive and more flexible than many custom-built AAC devices [14].

AAC systems vary in terms of their portability, complexity, input method, vocabulary

representation format, and means of output delivery. Selecting an appropriate system must be tied

to the needs and capabilities of the student. For example, students with physical or mental

disabilities who cannot use a standard keyboard can use alternative input devices, such as touch-

sensitive pads, selection switches, or optical pointing devices.

For students who have difficulty with vocabulary, AAC systems have been developed to

allow communication through word selection devices or even devices using pictures and graphics.

13

To assist students with disabilities in delivering a message, various speech and print output devices

have been developed.

Today, many communication devices incorporate either synthetic or digital speech output.

Synthetic speech is artificially generated by the computer, while digital speech is an actual

recording of human speech stored in the memory of the device. Written output can be provided by

printers that are built into the communication device or attached externally, but this option is

cumbersome because of the large amount of paper required. As a result, some devices use liquid

crystal displays (LCDs) to show students’ messages––some displaying a single line of text at a

time, some displaying multiple lines of text, and some using both the LCD and speech output

together. AC systems are categorized in several ways (Heller 2004). Below is common

terminology:

No technology (no tech): These AAC systems involve only the individual’s body. Some

systems involve formalized languages, such as American Sign Language (ASL). A simpler system

may involve gestures unique to a particular child that the caregiver understands (for example, when

a child touches her cheek to ask for a hug).

Low technology (low tech): Low-tech systems are nonelectronic but involve materials outside

the child’s body. They include non-electronic communication boards and graphic symbols. The

technology involved in the use of these tools can be either pointing-based (i.e., individual points to

a symbol in order to communicate) or exchange-based (i.e., individual hands over a graphic symbol

in exchange for an object or activity delivered by the communication partner). The popularity of an

exchange-based approach, the so-called Picture Exchange Communication System (PECS), led to

further increased acceptance of low-tech AAC approaches with the population.

High technology (high tech): The application of high-tech special-purpose AAC hardware and

software emerged for adoption. These tools were used primarily for expressive communication

purposes. They use an integrated circuit and were developed for the special needs population [15].

High-tech systems include the use of electronic communication boards and/or computerized speech

synthesizers. Electronic communication boards have a display of communicative messages using

photographs, line drawings, phrases, words, or letters. The message is activated by touch or laser

beam to produce a printout or synthesized/digitized speech.

As the use of AAC for persons with disabilities became more widespread, it expanded beyond

simply its traditional use for expressive communication alone, and was used to augment

comprehension and to provide organization of time and sequences.

Despite these advances, the AAC systems described above are often expensive, cumbersome,

and time-consuming to program and personalize. Often, they serve to stigmatize the user. These

barriers may prevent many individuals from using their systems on a regular basis.

More recently, however, the relatively expensive, dedicated hardware platforms and software

programs have been subject to competition from less costly, consumer-level tools developed for the

general market. For some individuals, communication needs can be met by using consumer-level

hardware (e.g., personal laptop computer, tablet computer) to run special-purpose software designed

to support communication. The examples of consumer-level hardware running special-purpose

software include personal laptop computers with Speaking Dynamically Pro®, tablet computers

running Clickit! and personal laptops with Pogo Boards.

For others, special-purpose software is not necessary, and communication needs can be met

through a combination of consumer-level hardware and general-purpose software. Examples of

consumer-level hardware running general-purpose software include tablet computers running

Microsoft Word and personal desktop or laptop computers running Microsoft Powerpoint to present

dynamic displays.

Low-cost, widely available peripheral devices (e.g., cameras, camcorders, DVD players) offer

even more opportunities for AAC users to create, edit, store and present content in ways that do not

rely on expensive, dedicated tools. Thus, relatively affordable, consumer-level hardware, software

and peripherals now afford opportunities for greater flexibility in selection and design of AAC

systems for users with disabilities [15].

14

2.2. Speech-generating devices

There are many varieties of AAC devices available as communication supports. The

availability of “speech” from a device is often very motivating to a student with disabilities, and is

especially useful for communicating in a group or with partners who are not familiar with other

methods of AAC. These devices typically contain both pre-programmed vocabulary as well as

vocabulary important to that particular student (e.g., names of family members, the vocabulary

needed for school activities, etc.) that has been programmed into the device by an adult who knows

the student well. Some devices speak the programmed vocabulary aloud using synthesized speech,

while others make use of “digitized” speech or short recordings of human voices.

Pictures, symbols, letters, and words can be represented and organized in many different ways

according to the user.

Students also can operate AAC devices in a number of ways. In addition to touching a

keyboard or screen, students can use their eyes to control a device with “eye-tracking” technology.

They can also use switches to scan pictures, words, and letters on an AAC device or a computer.

An occupational therapist can help identify the most effective way in which people with severe

physical disabilities can operate AAC technology.

2.3. Barriers to effective use of technology for students with disabilities

Many technologies previously described are readily available for use by individuals with

different types of disabilities and are already providing many students with special needs an

opportunity to be educated alongside their nondisabled peers.

However, several barriers inhibit more widespread use of these applications and devices,

especially inadequate teacher training and cost.

Lack of adequate teacher training has an especially strong impact on students with disabilities

because technology is often a critical component in planning and implementing an educational

program for these students.

In addition, use of technology for multimedia projects, for example, can be very motivating

for students with disabilities. But classroom teachers must have a deep understanding of what they

are trying to accomplish and how technology can help them achieve their goals [16]. Thus, to meet

the needs of students with disabilities within regular classrooms, all teachers, both those in regular

education and those in special education programs, need training in how technology can be used,

and the technical skills to carry out a plan of action [17].

The cost of the technology needed to help students with disabilities participate in regular

classroom settings, especially the computer systems needed for students with more severe

disabilities, is also a serious consideration for all schools. Such systems often must be tailor-made

for each student and can be quite expensive, costing tens of thousands of dollars.

2.4. AAC and acceptance

There is little published information about why individuals with disabilities accept, reject, or

abandon AAC strategies. There is some evidence that psychosocial factors may influence outcomes.

Individuals with disorders may experience frustration, depression, denial and loss of autonomy [18].

Some people may find it difficult to accept that their natural speech has not returned [19] and may

feel anxious about communicating in public [20]. Others may feel that AAC methods are too

effortful to use or that their partners do not encourage AAC methods. In a case report, Lasker and

Bedrosian [21] found that a person with disability was reluctant to use a device in public because he

felt ashamed about his communication and feared that people would think he was abnormal. Fox

and Sohlberg [22] found that people were more motivated to use AAC strategies when they

conversed about personally relevant social roles.

15

Speech pathologists in medical settings often train individuals to use low-technology

communication aids to help them communicate basic needs and make choices. Interventions may

deemphasize other equally important communicate functions, such as social closeness and opinions.

This type of clinical decision making may inadvertently foster rejection of AAC devices and cause

feelings of isolation and partner dependence.

2.5. Emergence of mobile devices

With the current widespread availability of general-purpose portable hardware (e.g. Apple

iPhone, Google Android) running specialized AAC applications, new opportunities now exist for

AAC users. In fact, the adoption of the new portable hardware and software may suggest a

significant paradigm shift in AAC.

Not only the devices themselves have become smaller and multi‐functional, but the number of

communication Apps and tablet platforms is increasing more rapidly than AAC hardware or

software ever did. Up to now there are hundreds or more Apps that can meet the needs of

individuals with disabilities.

Mobile touch screen devices cost much less, are readily available, and what is more important

for children is that they are socially acceptable. Mobile technologies offer a broad spectrum of

communication options as well as other functions.

As a more affordable addition or alternative to PC‐based AAC devices, mobile devices

provide a much larger market of consumers who can afford AAC technologies, compared to users

who may have relied on third party funding. Some families no longer need to wait for lengthy

insurance reviews, denials and appeals to determine eligibility. And like the shift to PCs before,

mobile devices offer a universe of non‐AAC applications such books, photos, games, movies,

music, the Internet, and educational and personal productivity software, among others.

 Many of the apps designed for these devices (e.g., Proloquo2go, MyTalk) may serve as full

AAC systems, similar in many ways to the specialized systems described above, while others (e.g.

Steps, First-Then, MyChoiceBoard, PicCalendar) may also provide support for the organization and

enhance the efficiency of simple functions such as choice-making. Apps are often easily obtainable,

affordable, customizable, and user-friendly [22].

II. Motivation and Goals

The goal of the project is to assist the development of communication and language for

children with complex disabilities by means of tailored books.

Unfortunately, there are some difficulties with the creation and distribution of such books:

1. So far, to create tailored books, the standard office applications, which are not

specifically adapted for this purpose, have been used. As a result, the process of tailored

book creation is hard and time-consuming.

2. There are also no interactive applications for their visualization, because tailored books

are available in hard copy, which in turn complicates and slows down the learning

process.

Thus, the relevance of my thesis is in detailed examination of the above issues, the

development and implementation of software solutions for these problems, which in turn facilitates

and accelerates the education process for children with disabilities.

In the project I set the main objective to design, develop and implement a system that allows

the creation, modification, visualization and distribution of tailored books.

The main objective can be split in the following sub objectives:

16

1. Design and implementation of a specialized desktop application to simplify the process

of creating, editing, and distribution of such books.

2. Design and implementation of an interactive mobile application to visualize such books

on smartphones and tablets with OS Android.

This system should kill two birds with one stone, because firstly it facilitates the creation

process which by-turn attracts more and more people to the creation of such books and therefore

attracts attention and the public interests to children with special needs; secondly, for the

visualization of tailored books mobile devices such as smartphone and tablet are used to make the

book interesting and entertaining. The app is also capable to read books aloud or pronounce selected

words using synthesized speech, which is often very motivating to a student with disabilities.

Moreover mobile devices are socially acceptable and widely available in all sectors of society

including people with special needs. Mobile devices with Apps are increasing more rapidly than

specialized AAC systems and being readily adopted by people with disabilities, because of the

affordability and the accessibility.

This work appeals to families of very young children, individuals with special needs who may

not traditionally have thought about AAC.

III. Design and Implementation

1. Overview of the system

The proposed system is capable of creating, editing, visualizing and distributing of tailored

books. In the Figure 14 the overview of the system is depicted.

The system is composed of two parts implemented by me in this project: a desktop

application and a mobile application. The desktop application is called “Tailored Book Editor” and

is devoted to the creation, revision and export of tailored books. The published or exported tailored

book consists of the book itself in the JSON format and the folder with the images associated with

this book.

The “Tailored Book Editor” aggregates two modules implemented by me; one is called

“Tailored Book Creator” and another one is called “Image Tagger”. The “Tailored Book Creator” is

responsible for creating tailored books. It uses dialogs (pop up windows) to collect information

about the new book and leads the user through the process of tailored book creation. The “Tailored

Book Editor” uses the text file of a book as input. The text is then tagged using the Stanford POS

tagger for assigning the parts of speech to each word. The Stanford POS tagger integrated in this

project will be described in detail in the section “Tailored Book Editor” back-end. The couples of

the word and its part of speech are then sent to the lexical database WordNet, for retrieving all

synonyms for each couple. The detailed description of the utilized interface to the WordNet and the

lexical database itself will be given in the section “Tailored Book Editor” back-end. The synonyms,

or in other words tags, are then assigned to each word of initial text file for further image

assignment. In order to create a tailored book from the text the “Tailored Book Creator” requires the

tagged images. Here comes the “Image Tagger” by means of which the images can be tagged with

the reference to the WordNet.

The “Tailored Book Reader” is a mobile application dedicated to visualizing tailored books

created by the “Tailored Book Editor”. The “Tailored Book Reader” is able to download tailored

books from the server and save them on the SD card of the mobile device if it is available or in the

built-in storage. The books can be put directly on the SD card and be read by the “Tailored Book

reader”.

The design and implementation details of the system are described below in this chapter.

17

“Tailored

Book Editor”

Image tagger

Tailored

Book Creator
OR

Images Tagged images

Tagged images

Text Tailored Book

Server

OR

Mobile Device

“Tailored Book

Reader”

SD card

Tailored

Book

Computer

Tailored

Book

Tailored

Book

Figure 14 Overview of the system

2. “Tailored Book Editor”

2.1 “Tailored Book Editor” front-end

2.1.1. “Tailored Book Creator” features

A tailored book creator dialogs are responsible for creating a new book. The first dialog

displays when the user goes to the main menu: File → New Book and it requires the user to insert

information about a new book. Its functionality is encapsulated within the BookDetails class. The

functionality of other dialogs: for selecting book .txt file and setting the directory for a “trained” file

for Stanford POS tagger and setting the directory for images for further assignment is encapsulated

within the Editor class. The description of BookDetails and Editor classes will be given below in

the “Tailored Book Editor” back-end section. The “trained” file has the extension “.tagger” and is

used for the part of speech tagging. The detailed description of this file will be provided below in

the “Tailored Book Editor” back-end section.

The tailored book creator dialogs allow the user inserting a title and an author of the book and

a logo. The logo will be displayed in the “Tailored Book Reader” application on the “Download

Books”, “My Books” screens. The detailed description of these screens will be given in the

“Tailored Book Reader” front-end section.

The “Tailored Book Editor” is in charge of checking the correctness of inserted symbols using

the regular expressions. After clicking on the «Create» button another dialog appears which allows

selecting .txt file of the future tailored book for further processing. After selecting the .txt file

another dialog appears for selection of the “trained” file for a Stanford POS tagger. This dialog is

shown only once before the creation of a first tailored book, and then the “trained” file is saved and

becomes the default option. The next dialog that allows setting the image source directory is

prompted. The image source directory is used during tailored book creation when for every figure

the appropriate image is assigned. The assignment is occurred if there is a match of tags between

image and the item. Below in the section called System usage workflow I tell in detail about Image

source directory. In the Figure 15 a mockup of a tailored book creator dialog is shown.

18

Figure 15 Mockup of the “Tailored Book Creator” dialog

2.1.2. “Tailored Book Editor” main interface features

After the book is automatically created and the images are assigned a new tab with the name

of the book is added to the tabbed pane. A mockup of the “Tailored Book Editor” interface shown

in the Figure 16 is designed for revising a book. The main screen of the “Tailored Book Editor” is

composed of four parts: Main Panel, Control Panel, Zoom Panel and Progress Panel. On the Main

Panel the tabbed pane is placed. The Control Panel is grouped in two sub panels: Tags and Controls

panels. The book editor functionality is encapsulated within the Editor class. The description of the

Editor class will be given below in the “Tailored Book Editor” back-end section.

The progress panel of the “Tailored Book Editor” displays the progress of tailored book

creation. A tabbed pane allows placing more than one book and switch between them. On the

tabbed pane the tailored book figures or items are displayed (white squares with image and text). I

implemented the functionality to edit tailored books by joining or splitting these figures. So the

tabbed pane allows selecting one or more figures. When one tailored book figure is selected the

Tags sub panel of the Control Panel displays the tags associated with the figure. A button «Save» of

this sub panel allows modifying the tags assigned during automatic tailored book creation and it

provides the great flexibility for tailored book revision. When two or more figures are selected the

«Join» button of the Controls Panel becomes active and permits combining selected items into one

item. When the figure content is composed of two or more words and this figure is selected, the

«Split» button becomes active and permits splitting the item. This gives the freedom for

customizing a tailored book. In other words, it is up to the user to decide if he wants, for example,

prepositions and articles to be inside the figure with the corresponding noun or that every part of

speech has its own figure.

A zoom panel that is placed bellow of the Tabbed Panel allows zooming in/out tailored book

figures, what in turn facilitates the book revision.

19

Figure 16 Mockup of the “Tailored Book Editor” interface

2.1.3. “Image Tagger” features

An Image Tagger is the module of the “Tailored Book Editor” that is used for preparing

images, which the tailored book creator uses for the image assignment. To start the image tagging

process the user should go to the main menu: File → New Image Tagger. On the Figure 17 the

“Image Tagger” interface is shown. After clicking on menu item the dialog will appear. This dialog

permits the user selecting the appropriate images. The user can open one or more images with .jpg

extension. When the images are chosen a new tab is added to the tabbed pane. The “Tailored Book

Editor” uses the same tabbed pane for displaying tailored books and image taggers together. The

common tabbed pane allows placing and using more than one Image Tagger.

The Image Tagger functionality is encapsulated within the Editor class. The description of

this class will be given below in the “Tailored Book Editor” back-end section.

The most important point implemented by me for the “Image Tagger” is the synchronization

between images and the book figures. The synchronization is done in both directions. The following

example should clarify this concept. For example, if a tag of an image is changed by the “Image

Tagger”, the image will be automatically reassigned to the appropriate book figure at the moment

when the user switches to the tailored book tab (direction: image → tailored book). And on the

contrary, if the user changes a tag of a figure, automatically assigned during the tailored book

creation, the appropriate image that has the same tag will be assigned to this figure (direction:

tailored book→ image).

When the image is selected the Tags sub panel of the Image Tagger displays tags, assigned to

the image, or an empty text view if the image has not been tagged yet. A button «Save» of the Tags

sub panel allows writing tags to the image metadata. After clicking the «Save» button the assigned

tags will appear in the figure under the image. The inserted tags can be also seen in the default OS

tool that allows displaying properties of the image. The Image Tagger is also compatible with

images tagged using the default OS tool and is able to recognize the tags. That means that the

images can be tagged using external default OS tool and that the “Tailored Book Editor” is able to

20

use the images tagged by the external image taggers. The Image tagger developed by me has a

reference to the WordNet. In the Tag panel, when the comma is typed after the written tag, a list

view with synonyms appears if there is an association with the tag (word form) in WordNet

database. The Tags panel as well displays the parts of speech available for the inserted tag. By

clicking on one of the parts of speech radio buttons the list view gets updated with appropriate

content. By clicking on the one of the suggested tags, it will be inserted into the Tags text view.

A Zoom Panel allows zooming in/out image figures similar to zooming book figures.

Figure 17 “Image Tagger” interface

2.1.4. Selection of Java GUI

When developing a Java program it is important to select the appropriate Java Graphical User

Interface (GUI) components. There are two basic sets of components that can be used to create user

interface. These two groups of components are called the Abstract Window Toolkit (AWT) and

Swing. Both of these groups of components are part of the Java Foundation Classes (JFC). In

general, AWT components are appropriate for simple applet development or development that

targets a specific platform (i.e. the Java program will run on only one platform). For most any other

Java GUI development Swing components should be used [40]. In this project Swing components

are chosen, since the desktop application should run on different operating systems.

21

2.3. “Tailored Book Editor” back-end

Tailored Book

Editor

“trained” file

Stanford POS Tagger

 RiTa API

WordNet

Gson

Sanselan

Tailored Book Creater

Image tagger

JDOM

Figure 18 The “Tailored Book Editor” back-end design

The “Tailored Book Editor” aggregates several third-party Java libraries. In the Figure 18 the

back-end design is shown. As you can see that “Tailored Book Editor” implemented by me contains

two antecedent modules “Image tagger” and “Tailored Book Creator”, which were also

implemented by me in this project. Each of these modules utilizes the libraries implemented by

third party developers.

The “Image Tagger” uses Sanselan and JDOM Java libraries. The Sanselan is an open source

library that is used in this project for reading (writing) an image metadata from (to) the JPEG

image. This metadata contains the tags, which user assigns to the image using “Image Tagger”. The

metadata is encoded in XML like format that “Image tagger” module should be able to parse and

modify. Here comes the JDOM open source library, which allows accessing, modifying and

outputting XML data.

The “Tailored Book Creator” utilizes Gson and Stanford POS Tagger Java libraries. Gson is

used in this project for serializing the object of the class Book and transmitting it between a server

and the “Tailored Book Reader” mobile application developed by me. Also JSON format is used for

saving serialized objects. All the exchange file formats defined by me utilize this library. All file

formats used in the project are described in detail below in the section Files Formats.

 Both modules utilize the WordNet lexical database of the English language where nouns,

verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets). In order to

access the database the RiTa interface is used. This interface allows retrieving all the synonyms

from the database associated with the word. For finding all synonyms for the given word the

WordNet requires two arguments: the word itself and its part of speech. I have already mentioned in

the section “Tailored Book Editor” front-end that the “Image tagger” is capable of suggesting the

synonyms for the typed word but it requires the user to select the part of speech using radio buttons.

So the “Image tagger” finds all synsets for all parts of speech and displays them to the user and it is

up to user to choose what part of speech he wants. On the contrary, the “Tailored Book Creator” is

22

able to find all synonyms for each word of the text itself without interference of the user, because it

utilizes the Stanford POS Tagger library. The Stanford POS Tagger is a Java library that for each

word of the text finds its part of speech (noun, verb, adjective, etc.).

The detailed descriptions of the most important libraries are provided below.

2.3.1. WordNet

WordNet is a large lexical database of English. Nouns, verbs, adjectives and adverbs are

grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are

interlinked by means of conceptual-semantic and lexical relations. WordNet is also freely and

publicly available for download. WordNet’s structure makes it a useful tool for computational

linguistics and natural language processing.

WordNet superficially resembles a thesaurus, in that it groups words together based on their

meanings. However, there are some important distinctions.

First, WordNet interlinks not just word forms - strings of letters - but specific senses of words.

As a result, words that are found in close proximity to one another in the network are semantically

disambiguated.

Second, WordNet labels the semantic relations among words, whereas the grouping of words

in a thesaurus does not follow any explicit pattern other than meaning similarity [35].

Structure

The main relation among words in WordNet is synonymy, as between the words shut and

close or car and automobile. Synonyms - words that denote the same concept and are

interchangeable in many contexts - are grouped into unordered sets (synsets). Each of WordNet’s

117 000 synsets is linked to other synsets by means of a small number of “conceptual relations.”

Additionally, a synset contains a brief definition (“gloss”) and, in most cases, one or more short

sentences illustrating the use of the synset members. Word forms with several distinct meanings are

represented in as many distinct synsets. Thus, each form-meaning pair in WordNet is unique [35].

Relations

The most frequently encoded relation among synsets is the super-subordinate relation (also

called hyperonymy, hyponymy or ISA relation). It links more general synsets like {furniture,

piece_of_furniture} to increasingly specific ones like {bed} and {bunkbed}. Thus, WordNet states

that the category furniture includes bed, which in turn includes bunkbed; conversely, concepts like

bed and bunkbed make up the category furniture. All noun hierarchies ultimately go up the root

node {entity}. Hyponymy relation is transitive: if an armchair is a kind of chair, and if a chair is a

kind of furniture, then an armchair is a kind of furniture. WordNet distinguishes among Types

(common nouns) and Instances (specific persons, countries and geographic entities). Thus, armchair

is a type of chair, Barack Obama is an instance of a president. Instances are always leaf (terminal)

nodes in their hierarchies.

Meronymy, the part-whole relation holds between synsets like {chair} and {back, backrest},

{seat} and {leg}. Parts are inherited from their superordinates: if a chair has legs, then an armchair

has legs as well. Parts are not inherited “upward” as they may be characteristic only of specific

kinds of things rather than the class as a whole: chairs and kinds of chairs have legs, but not all

kinds of furniture have legs.

Verb synsets are arranged into hierarchies as well; verbs towards the bottom of the trees

(troponyms) express increasingly specific manners characterizing an event, as in {communicate}-

{talk}-{whisper}. The specific manner expressed depends on the semantic field; volume (as in the

example above) is just one dimension along which verbs can be elaborated. Others are speed

(move-jog-run) or intensity of emotion (like-love-idolize). Verbs describing events that necessarily

23

and unidirectionally entail one another are linked: {buy}-{pay}, {succeed}-{try}, {show}-{see},

etc.

Adjectives are organized in terms of antonymy. Pairs of “direct” antonyms like wet-dry and

young-old reflect the strong semantic contract of their members. Each of these polar adjectives in

turn is linked to a number of “semantically similar” ones: dry is linked to parched, arid, dessicated

and bone-dry and wet to soggy, waterlogged, etc. Semantically similar adjectives are “indirect

antonyms” of the contral member of the opposite pole. Relational adjectives (“pertainyms”) point to

the nouns they are derived from (criminal-crime). There are only few adverbs in WordNet (hardly,

mostly, really, etc.) as the majority of English adverbs are straightforwardly derived from adjectives

via morphological affixation (surprisingly, strangely, etc.) [35].

Cross-POS relations

The majority of the WordNet’s relations connect words from the same part of speech (POS).

Thus, WordNet really consists of four sub-nets, one each for nouns, verbs, adjectives and adverbs,

with few cross-POS pointers. Cross-POS relations include the “morphosemantic” links that hold

among semantically similar words sharing a stem with the same meaning: observe (verb), observant

(adjective) observation, observatory (nouns). In many of the noun-verb pairs the semantic role of

the noun with respect to the verb has been specified: {sleeper, sleeping_car} is the LOCATION for

{sleep} and {painter} is the AGENT of {paint}, while {painting, picture} is its RESULT [35].

Applications

WordNet has been used for a number of different purposes in information systems, including

word sense disambiguation, information retrieval, automatic text classification, automatic text

summarization, and even automatic crossword puzzle generation.

A project at Brown University started by Jeff Stibel, James A. Anderson, Steve Reiss and

others called Applied Cognition Lab created a disambiguator using WordNet in 1998 [O. Malik.

How google is that?. Forbes, 10.04.1999]. The project later morphed into a company called Simpli,

which is now owned by ValueClick. George Miller joined the Company as a member of the

Advisory Board. Simpli built an Internet search engine that utilized a knowledge base principally

based on WordNet to disambiguate and expand keywords and synsets to help retrieve information

online. WordNet was expanded upon to add increased dimensionality, such as intentionality, people

and colloquial terminology more relevant to Internet search (i.e., blogging, ecommerce). Neural

network algorithms searched the expanded WordNet for related terms to disambiguate search

keywords (Java, in the sense of coffee) and expand the search synset (Coffee, Drink, Joe) to

improve search engine results. [P. J. Hane. Beyond Keyword Searching - Oingo and Simpli.com

Introduce Meaning-Based Searching. InfoToday, Posted On December 20, 1999.] Before the

company was acquired, it performed searches across search engines such as Google, Yahoo!,

Ask.com and others.

Another prominent example of the use of WordNet is to determine the similarity between

words. Various algorithms have been proposed, and these include considering the distance between

the conceptual categories of words, as well as considering the hierarchical structure of the WordNet

ontology [36].

2.3.2. Java APIs for WordNet

JAWS

The Java API for WordNet Searching (JAWS) is a high-performance interface that provides

Java applications with the ability to retrieve data from the WordNet database. It is a simple and fast

API written entirely in Java and is compatible with both the 2.1 and 3.0 versions of the WordNet

24

database files and can be used with Java 1.4 and later. The JAWS was created and is maintained by

Brett Spell, who is currently an adjunct member of the faculty in the Computer Science and

Engineering (CSE) department at Southern Methodist University.

JWNL

Java WordNet Library (JWNL) is an API for accessing WordNet in multiple formats, as well

as relationship discovery and morphological processing. It's compatible with WordNet versions 2.0

to 3.0, and is a full Java implementation that allows developers to use more easily Java for building

NLP applications. JWNL is released under the BSD License, and is used by many commercial

applications [35].

RiTa WordNet API

RiTa WordNet is a friendly WordNet interface that allows Java applications to retrieve data

from the WordNet database. This Java API written entirely in Java comes with WordNet dictionary

itself so that there is no need to install WordNet, thereby RiTa WordNet API requires only adding

two JAR files to Eclipse build path: ritaWN.jar and supportWN.jar. The advantage of using RiTa

WordNet API over other APIs such as JAWS or JWNL (Java WordNet Library) is that the final

program can be launched on any device without WordNet Database being installed, so that the

process of final product deployment is considerably simplified. Since this API perfectly fits the

project it was chosen. This software is covered under the GPL.

2.3.3. Part-of-speech tagging

A Part-Of-Speech Tagger (POS Tagger) is a piece of software that reads text in some

language and assigns parts of speech (noun, verb, adjective, etc.) to each word. The tagger is

licensed under the GNU General Public License (v2 or later)

Part-of-speech tagging is harder than just having a list of words and their parts of speech,

because some words can represent more than one part of speech at different times, and because

some parts of speech are complex or unspoken. This is not rare in natural languages (as opposed to

many artificial languages), a large percentage of word-forms are ambiguous. For example, even

"dogs", which is usually thought of as just a plural noun, can also be a verb:

 The sailor dogs the barmaid.

Performing grammatical tagging will indicate that "dogs" is a verb, and not the more common

plural noun, since one of the words must be the main verb, and the noun reading is less likely

following "sailor" (sailor !→ dogs). Semantic analysis can then extrapolate that "sailor" and

"barmaid" implicate "dogs" as 1) in the nautical context (sailor→<verb>←barmaid) and 2) an

action applied to the object "barmaid" ([subject] dogs→barmaid). In this context, "dogs" is a

nautical term meaning "fastens (a watertight barmaid) securely; applies a dog to".

"Dogged", on the other hand, can be either an adjective or a past-tense verb. Just which parts

of speech a word can represent varies greatly.

Trained linguists can identify the grammatical parts of speech to various fine degrees

depending on the tagging system. Schools commonly teach that there are 9 parts of speech in

English: noun, verb, article, adjective, preposition, pronoun, adverb, conjunction, and interjection.

However, there are clearly many more categories and sub-categories. For nouns, plural, possessive,

and singular forms can be distinguished. In many languages words are also marked for their "case"

(role as subject, object, etc.), grammatical gender, and so on; while verbs are marked for tense,

aspect, and other things.

In part-of-speech tagging by computer, it is typical to distinguish from 50 to 150 separate

parts of speech for English, for example, NN for singular common nouns, NNS for plural common

nouns, NP for singular proper nouns (see the POS tags used in the Brown Corpus). Work on

25

stochastic methods for tagging Koine Greek (DeRose 1990) has used over 1,000 parts of speech,

and found that about as many words were ambiguous there as in English [22].

The Stanford POS Tagger lets “tag” the words in the string. That is, for each word, the

“tagger” gets whether it’s a noun, a verb, etc. and then assigns the result to the word. For example

for the following string: “Once upon a time” the result will be: Once/RB upon/IN a/DT time/NN.

There is a tag assigned to each word is added after slash. Below the table with description of tagsets

used for Stanford POS Tagger is shown.

Penn Treebank Tagset

Tag Description

CC
Coordinating conjunction

Example: and,but,or...

CD Cardinal Number

DT Determiner

EX Existential there

FW Foreign Word

IN Preposision or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List Item Marker

MD
Modal

Example: can, could, might, may...

NN Noun, singular or mass

NNP Proper Noun, singular

NNPS Proper Noun, plural

NNS Noun, plural

PDT
Predeterminer

Example: all, both ... when they precede an article

POS
Possessive Ending

Example: Nouns ending in 's

PRP
Personal Pronoun

Example: I, me, you, he...

PRP$
Possessive Pronoun

Example: my, your, mine, yours...

RB
Adverb

Most words that end in -ly as well as degree words like quite, too and very

RBR
Adverb, comparative

Adverbs with the comparative ending -er, with a strictly comparative meaning.

RBS Adverb, superlative

RP Particle

SYM
Symbol

Should be used for mathematical, scientific or technical symbols

TO to

UH
Interjection

Example: uh, well, yes, my...

VB
Verb, base form

subsumes imperatives, infinitives and subjunctives

VBD
Verb, past tense

includes the conditional form of the verb to be

26

VBG Verb, gerund or persent participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT
Wh-determiner

Example: which, and that when it is used as a relative pronoun

WP
Wh-pronoun

Example: what, who, whom...

WP$ Possessive wh-pronoun

WRB
Wh-adverb

Example: how, where why

Table 1 Penn Treebank Tagset

Punctuation Tags Description

$
Dollar

Example: $ -$ --$ A$ C$ HK$ M$ NZ$ S$ U.S.$ US$

''
Closing quotation mark

Example: ' ''

(
Opening parenthesis

Example: ([{

)
Closing parenthesis

Example:)] }

, Comma

.
Sentence terminator

Example: . ! ?

:
Colon or ellipsis

Example: : ; ...

``
Opening quotation mark

Example: ` ``

Table 2 Punctuation Tagset

In order to do this, the tagger has to load a “trained” file that contains the necessary

information for the tagger to tag the string. This “trained” file is called a model and has the

extension “.tagger”. There are several trained models provided by the Stanford NLP group for

different languages.

2.3.4. JDOM

JDOM is a Java library that provides a complete, Java-based solution for accessing,

manipulating, and outputting XML data from Java code.

JDOM is available under an Apache-style open source license, with the acknowledgment

clause removed. This license enables developers to use JDOM in creating new products without

requiring them to release their own products as open source.

2.3.5. Sanselan

Sanselan is a pure Java library, which reads and writes a variety of image formats, including

fast parsing of image info (size, color space, etc.) and metadata. This project is Open Source and

available under the ASF (Apache) License.

27

2.3.6. Gson

Gson (also known as Google Gson) is a Java library that is used to convert Java Objects into

their JSON representation. It can also be used to convert a JSON string to an equivalent Java object.

Gson is an open-source project and available under Apache License 2.0 [41].

Features:

 Gson can handle collections, generic types and nested classes (including inner classes,

this cannot be done by default though)

 When deserializing, Gson is navigating the type tree of the object, which is being

deserialized. This results in ignoring extra fields present in the JSON input.

 The user is allowed to write a custom serializer and/or deserializer, so that he can

control the whole process and even (de)serialize instances of classes which has not

accessible source code.

 The user has the possibility to write an InstanceCreator which allows him to

deserialize instances of classes without defined no-args constructor.

Gson is highly customizable, you can specify:

 Compact/pretty printing (whether you want compact or readable output)

 How to handle null object fields - by default they are not present in the output

 Rules of what fields are intended to be excluded from (de)serialization

 How to convert Java field names

2.3.7. RDF

The Resource Description Framework (RDF) is a flexible technology, capable of addressing a

wide variety of problems. RDF's purpose is to provide a means of recording data in a machine-

understandable format, allowing for more efficient and sophisticated data interchange, searching,

cataloging, navigation, classification, and so on. It forms the cornerstone of the W3C effort to create

the Semantic Web, but its use isn't restricted to this specific effort.

RDF can be integrated into the architecture of a tool from the ground up, or RDF and

RDF/XML can be incorporated into their existing applications. Adobe, a major player in the

publications and graphics business, takes the second way. Its RDF/XML strategy is known as

Extensible Metadata Platform. According to the Adobe XMP web site, other major players have

agreed to support the XMP framework, including companies such as Microsoft [42].

2.3.8. Metadata and XMP

Metadata is any data that helps to describe the content or characteristics of a file. Some basic

metadata can be seen and edited through the File Info or Document Properties box found in many

software applications and some operating systems.

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you to

embed data about a file, known as metadata, into the file itself. With XMP, Adobe has taken the

"heavy lifting" out of metadata integration, offering content creators an easy way to embed

meaningful information about their projects and providing industry partners with standards-based

building blocks to develop optimized workflow solutions.

With an XMP-enabled application, information about a project can be captured during the

content-creation process and embedded within the file and into a content-management system.

Meaningful descriptions and titles, searchable keywords, and up-to-date author and copyright

28

information can be captured in a format that is easily understood by you as well as by software

applications, hardware devices, and even file formats.

Best of all, as other workgroup members modify files and assets, XMP-encoded metadata can

be edited and updated in real time during the normal course of the workflow [43].

By providing a standard, W3C-compliant way of tagging files with metadata across products

from Adobe and other vendors, XMP is a powerful solution enabler. As an open-source technology,

it is freely available to developers, which means that the user community benefits from the

innovations contributed by developers worldwide. Furthermore, XMP is extensible, meaning that it

can accommodate existing metadata schemas; therefore, systems don't need to be rebuilt from

scratch. A growing number of third-party applications already support XMP.

XMP was first published around September 2001. It stores the RDF in the APP1 chunk of

JPEG and it adds a magic string ("W5M0MpCehiHzreSzNTczkc9d") at the start of the RDF to help

distinguish XMP from other things that might be present in the JPEG file. XMP embedding is also

defined for other formats than JPEG, such as TIFF and PDF. Adobe recommends the Dublin Core

schema and offers additional schemas for recording version history, image manipulations, etc [37].

An important consideration with these embedded techniques is that there is no adverse impact

on the file, nothing that impacts on the visibility of a JPEG or a PNG graphic or prevents an HTML

file from loading into a browser [44].

2.3.9. Dublin Core Schema

Dublin Core [37] is an initiative to create a digital "library card catalog" for the Web. Dublin

Core is made up of metadata elements (data that describes data) that offer expanded cataloging

information and improved document indexing for search engine programs.

The two most common forms of Dublin Core are Simple Dublin Core and Qualified Dublin

Core. Simple Dublin Core expresses elements as attribute-value pairs using just the base metadata

elements from the Dublin Core Metadata Element Set. Qualified Dublin Core increases the

specificity of metadata by adding information about encoding schemes, enumerated lists of values,

or other processing clues. While enabling searches to be more specific, qualifiers are also more

complex and can pose challenges to interoperability. In other words, Simple Dublin Core gives

basic information. However, if more information is required, The Qualified Dublin Core schema

can be used.

Below there is an interpretation of the Simple Dublin Core properties, applied to a photo.

Title

 a short description of the photo. Example: help

Subject

 a set of keywords to describe the photo. Example: help, assist, aid

Description

 a longer description of the photo. Example: help

creator

 the photographer, as a URL that can be further described with other schemas.

Publisher

 the person or institution making the photo available, often the same as the creator.

Contributor

 a person who contributed in some way, e.g., the person who digitized the photo; may be a

 URL or a name.

Date

 the date and time the photo was taken, conforming to ISO format. The year is

 required, everything else can be omitted. The default time zone is UTC.

Type

29

 always "image"

Format

 how the resource is presented. Always "image/jpeg"

identifier

 a number for the photo that is meaningful to the publisher. This is not the URL of the

 photo and it does not have to be globally unique.

Source

 where the content originally derived from

Language

 in what language the content is written

Relation

 identifies a series: the event or topic for a series of photographs. Can be a URL or a

 string.

Coverage

 the location shown on the photo. Example: Como

Rights

 copyright statement, or the URL for one.

Table 3 Interpretation of the Simple Dublin Core properties, applied to photo material

In this project only the subject property defined by the Dublin Core Schema is used. The other

properties can be added to the image but are ignored by the “Image tagger” module.

Below a metadata written in the .jpg image is shown. “Image tagger” is capable to write key

words in the image.

Figure 19 Metadata of .jpg file

30

The key words or image tags can be also seen from the properties of the image (See Figure 20).

Figure 20 Image details in OS Windows

2.4. Text processing

In this section the process of creation items from the text is described. Every framed item or

figure is composed of the image and the word it represents written below.

Figure 21 Example of framed item or figure

1) Let’s take the text of the famous Brothers Grimm’s fairy tale Little Red Riding Hood and

consider it as the initial text. All excess spaces are removed from the text.

Once upon a time in the middle of a thick forest stood a small cottage, the home of a pretty

little girl…

2) After applying Stanford POS tagging the parts-of-speech tags were added to every text

item:

Once/RB upon/IN a/DT time/NN in/IN the/DT middle/NN of/IN a/DT thick/JJ forest/NN

stood/VBD a/DT small/JJ cottage/NN ,/, the/DT home/NN of/IN a/DT pretty/RB little/JJ girl/NN

3) For facilitating extraction of the words themselves and parts-of-speech tags the text is split

in the array list:

Once/RB

upon/IN

a/DT

time/NN

31

in/IN

the/DT

middle/NN

of/IN

a/DT

thick/JJ

forest/NN

stood/VBD

a/DT

small/JJ

cottage/NN

,/,

the/DT

home/NN

of/IN

a/DT

pretty/RB

little/JJ

girl/NN

4. Then each item of the array list is split in two parts: word and tag.

Word Tag

Once RB

upon IN

a DT

time NN

in IN

the DT

middle NN

of IN

a DT

thick JJ

forest NN

stood VBD

a DT

small JJ

cottage NN

, ,

the DT

home NN

of IN

a DT

pretty RB

little JJ

girl NN

Table 4 word and tag table representing array list

5. Since Stanford POS tagger output tagsets are more detailed than input tagsets of WordNet

we need to convert parts-of-speech tagsets of Stanford POS tagger into WordNet parts-of-speech.

32

Valid WordNet parts-of-speech include (noun="n", verb="v", adj="a", and adverb="r"). These can

be specified either as literals or using the String constants:

RiWordnet.NOUN

RiWordnet.VERB

RiWordnet.ADJ

RiWordnet.ADV

RiWordnet.NOUN RiWordnet.VERB RiWordnet.ADJ RiWordnet.ADV

NN, NNP, NNPS,

NNS, PDT

VB, VBD, VBG,

VBN, VBP, VBZ,

MD

JJ, JJR, JJS RB, RBR, RBS

Table 5 Conversion of tags of POS tagger to WordNet tags

All the rest parts-of-speech tags of Stanford POS tagger which are not included in the table

(e.g. punctuation, preposition tags) won’t be sent to WordNet.

6. Each word with recognized in the previous step part of speech is then sent to WordNet in

order to get all Synsets of the word. When the Synsets are found the object of class Item is going to

be constructed. The class Item has the constructor with the three following fields:

Item item = new Item (synonyms, word, tag);

Where the first argument: synonyms are the Synsets found in the WordNet, the second

argument: word is the word itself and the third one: tag is the parts-of-speech tag of a Stanford POS

tagger. If there are no found Synsets for the particular word, the word itself takes place of the first

parameter of the constructor.

For those words with parts-of-speech tags of Stanford POS tagger (PRP, PRP$, DT, IN, CD,

TO and so on) which were not matched to Wordnet parts-of-speech (RiWordnet.NOUN,

RiWordnet.VERB, RiWordnet.ADJ, RiWordnet.ADV) the procedure of construction of items is

similar to the words which are not found in the Wordnet. In other words the word itself will take the

first parameter of the item constructor.

During the item construction the instance variable position is calculated based on the third

argument of the Item constructor. The type of position is enum, whose fields consist of a fixed set

of constants: PREFIX, INFIX and POSTFIX.

The calculation of the position is based on the following logic: all the prepositions, articles,

and personal pronouns usually take place in front of the word therefore these items will get position

set as PREFIX. All punctuation like comma, semicolon, colon, point, question mark and so on are

usually placed after the word and so the position will be set as POSTFIX. Noun, verb, adverb and

adjective will get the INFIX position.

The assignment of parts of speech to the position (PREFIX, INFIX, POSTFIX) is predefined

and is considered to be the default option in this project. In the future release of the “Tailored Book

Editor” this will not be the case and users will get the right to modify the default option and decide

if they want to have prepositions, articles, pronouns and etc. to be together in one item with other

parts of speech or to be separated in two items. In the Table 6 the default assignment of parts of

speech to the position is shown.

Word Tag Position

Once RB INFIX

upon IN PREFIX

a DT PREFIX

time NN INFIX

33

in IN PREFIX

the DT PREFIX

middle NN INFIX

of IN PREFIX

a DT PREFIX

thick JJ INFIX

forest NN INFIX

stood VBD INFIX

a DT PREFIX

small JJ INFIX

cottage NN INFIX

, , POSTFIX

the DT PREFIX

home NN INFIX

of IN PREFIX

a DT PREFIX

pretty RB INFIX

little JJ INFIX

girl NN INFIX

Table 6 Position assignment

 7. All the created in the previous step items are collected to an array list. The array list is

then processed based on the following rule. If the item has the position PREFIX its word is added to

the next item and the item with position PREFIX is removed from the list. If the item has the

position POSTFIX its word is added to the previous item and the POSTFIX item is then removed

from the list. As the result we get the reduced list of items with the position INFIX.

Table 7 Processing of the positions

8. Then the images from the specified source directory are loaded. The image load is done

recursively; therefore it is enough to specify the top folder. The array list of objects of class

MyImage is created. The constructor of MyImage class has the following arguments:

MyImage img=new MyImage(name, tags, filePath);

Where the argument: name is the name of the image, the argument tags are the tags manually

assigned to the image using Image Tagger and the parameter: filePath is the path to the image file.

Word Tag Position

Once RB INFIX

upon a time NN INFIX

in the middle NN INFIX

of a thick JJ INFIX

Forest NN INFIX

Stood VBD INFIX

a small JJ INFIX

cottage , NN INFIX

the home NN INFIX

of a pretty RB INFIX

Little JJ INFIX

Girl NN INFIX

34

 Afterwards for each item the image is assigned to the item if there is the match among the

tags of the item and the image. These items are then visualized in figures (See Figure 22 Result of

text processing).

Figure 22 Result of the text processing

2.5. Files Formats

Image format:

The “Tailored Book Editor” supports only JPEG images, this is due to the fact that JPEG

format is widely used and permits to read/write image Metadata.

“Tailored Book Editor” Settings format

The “Tailored Book Editor” saves the settings information in the file called defaults.khl. The

content of this file is encoded in a JSON format. The JSON format is used for serializing an object

of a class Defaults. The structure of the defaults.khl file is shown in the Figure 23. The Defaults

class contains three properties: current directory, current image directory path and current tagger

path. The “Tailored Book Editor” creates this file or updates it every time when the user closes the

application. The currentDirectory property of the class Defaults contains the latest directory opened

by the user during working with the “Tailored Book Editor”. The currentImageDirectoryPath

property contains the path selected by the user for an image source directory; for the directory that

application will use for the image assignment. So the system requires selecting the image source

directory only once and then stores it and uses as default option. The directory then can be change

manually by going to the main menu Project → Image source directory. Also it is possible to

change the directory directly in the defaults.khl file but it is not recommended. The

currentTaggerPath property contains the path to the .tagger file used by the Stanford POS tagger.

Similar to the image source directory, the system requires to set this file only ones and then does not

bother the user.

Figure 23 Structure of default.khl file

Exchange Book Format

The “Tailored Book Editor” publishes the book in the format .khl and folder with JPEG

images. The content of the book file .khl is encoded in a JSON format. The JSON format is used for

35

serializing the object of the class Book and transmitting it between a server and the Book Reader

application. The example of the published Little Red Riding Hood book is shown below.

Files published by the “Tailored Book Editor” are the following: the tailored book itself called

Little_Red_Riding_Hood.khl and a folder called Little_Red_Riding_Hood with assigned images.

The structure of Little_Red_Riding_Hood.khl file is shown in the Figure 24 below:

Figure 24 Structure of Little_Red_Riding_Hood.khl file

The folder Little_Red_Riding_Hood contains the images: cappello_di_Pasqua.jpg, tempo.jpg,

cuore.jpg, grasso.jpg etc.

“Tailored Book Editor” Save Book Format

The Book Editor is able to open and save books in the format .bookkhl. The content of the file

is encoded in the JSON format. The JSON format is used here for serializing the object of class

BookSaveFormat that extends Book.

Structure of Little_Red_Riding_Hood.bookkhl file:

Figure 25 Structure of Little_Red_Riding_Hood.bookkhl file

36

“Tailored Book Editor” Input Format

An input file loaded in the “Tailored Book Editor” must be in .txt format. After processing

the text file a tailored book is created and then can be both saved for further editing in the format

.bookkhl and published in .khl format.

Server Side Index File Format

 A tailored book published by the “Tailored Book Editor’ can be either uploaded on the

server or put directly on SD card of the mobile device. On the server side there is an index file

called books.khl. It can be seen from the URL: http://tbreader.is-great.net/BOOKS/books.khl

This file book.khl is accessed by the “Tailored Book Reader” application when the user goes

to the “Download Books” screen. The data of this file is encoded in JSON format. The file

books.khl contains the titles and authors of all available books for download on the server and has

the following structure:

Figure 26 Structure of books.khl file

The structure of this file reminds a tailored book .khl file with the exception of some

differences. The first difference is that books.khl file contains an array of books in format .khl, and

the second one is that the .khl files are used without book content (“text” field is an empty array).

2.6. “Tailored Book Editor” class diagram

For the “Tailored Book Editor” I designed and implemented the following classes: Editor,

Tagger, DirectoryReader, Book, Item, BookItem, BookSaveFormat, MyImage, BookDetails,

ImageFilter, MyFilter, TaggerFilter, TextFileFilter, BookFileFilter, PicViewRenderer,

ButtonTabComponent, RadioButton.

In the Figure 27 the “Tailored Book Editor” class diagram is shown. Since the system utilizes

a variety of file types both standard .txt, .jpg, .tagger and defined by me: .khl, .bookkhl there is a

need for accepting a suitable file type at every step during the process of tailored books creation.

When the system asks the user to locate a file it makes use of the instance of an appropriate

class: ImageFilter, MyFilter, TaggerFilter, TextFileFilter, BookFileFilter in order to eliminate a

possibility to select the wrong file by hiding all the files that don’t correspond to the required type.

All the properties and methods of these classes are shown in the Figure 29.

The object of the Item class represents a figure (See Figure 21 Example of a framed item or a

figure) in the “Tailored Book Editor” application. The Item class contains the following properties:

imageName, imagePath, tags, type, word. The imageName and imagePath stores the name and the

http://tbreader.is-great.net/BOOKS/books.khl

37

path of the image assigned to the figure. The tags property contains an array of tags found in the

WordNet database for a word stored in the word property. The type property contains the word type

(tag) assigned by the Stanford POS tagger (See Table 1 Penn Treebank Tagset). The Item class

contains all the information necessary for visualization of the figure and assignment of an

appropriate image to it. The most important method of the Item class is called assignImage. This

method takes as an argument an array of objects belonging to MyImage Class. The instance of the

MyImage class represents a figure of the “Image Tagger” module. The MyImage class contains the

property tags similar to the Item class. These tags are assigned by the user when he tags the image

using the “Image Tagger”. So previously mentioned method (assignImage) takes the array of

MyImage objects and tries to find the intersection between tags of the Item class instance and tags

of the MyImage class instances. Once found the method assigns the name and the path of the found

image to the Item class properties (imageName, imagePath).

An instance of the Book class corresponds to a published tailored book. Just that instance will

be encoded in JSON format and exported with the extension .khl for further usage in the “Tailored

Book Reader” application. The main properties of this class are: title – title of the book, author –

author of the book, text – content of the book. In the Figure 28 all properties and methods of the

Book class are shown. The content of the book represents an array of the BookItem instances. An

instance of the BookItem class corresponds to a figure of the “Tailored Book Reader”. In the

BookItem class two properties are defined: imageName and word. The imageName property is a

name of the image associated with the figure and the word is a text (contains one or more words)

inside the figure.

The BookSaveFormat class extends Book class and was introduced to enable saving a tailored

book for further editing. The difference between that class and the Book class is that the content of

a tailored book is stored in the array that contains the instances of Item and BookItem classes

respectively. Since an instance of the Item class allows storing all the information about the figure

and not only the image name and the word, an instance of the BookSaveFormat after the

serialization and saving with the extension .bookkhl can be read by the “Tailored Book Editor”.

The DirectoryReader class is responsible for finding all the images under the given directory.

The most important method of this class is called Process. This is a recursive method that is able to

find all the images in the selected directory and all its sub directories. This is greatly facilitates the

image source directory setting. Once done, the “Tailored Book Editor” scans all the beneath

directories for the images that will be then used for image assignment during a process of tailored

book creation.

The Tagger class allows initiating the Stanford POS Tagger and performs a part of speech

tagging of a given string.

The BookDetails class extends JDialog class and represents a dialog which appears when the

user intends to create a new tailored book (See Figure 15 Mockup of the “Tailored Book Creator”

dialog). This dialog is responsible for checking the correctness of the user input and notifying users

about missing fields and wrong characters. The verification of the user input is implemented using

regular expressions.

The ButtonTabComponent extends JPanel class and was developed to be used as tab

component in the “Tailored Book Editor” application. This component displays an icon in every tab

(the icon of the book if user works with the tailored book and the icon of the image if the user

utilizes “Image Tagger” module) and a close button. Also a tab for the “Image Tagger” contains the

name of the folder where the image(s) is(are) located. A tab with a tailored book contains the title of

the book.

In order to display the book figures in a grid layout I used the grid component for Java Swing

[38] available under Apache License 2.0. I designed the PicViewRenderer that implements the

interface GridCellRenderer. The PictureViewRenderer displays a figure with the instance of class

Item and MyImage in the “Tailored Book Editor” and “Image Tagger” respectively.

38

Figure 27 The “Tailored Book Editor” Class diagram

The RadioButton class that extends JRadioButton was implemented. This class is used to

display the radio buttons with the parts of speech found in the WordNet database for a given word

in the “Image Tagger”. The item (part of speech) can be selected or deselected and depending on

the selection the JList component is updated with the appropriate suggested synonyms.

The Editor class is the core class of the “Tailored Book Editor” and embraces all the

functionality of the desktop application previously described. All the properties and methods of this

class are shown in the Figure 30.

2.7. “Tailored Book Editor” implemented classes

Figure 28 The “Tailored Book Editor”, implemented classes: Item, Book, BookSaveFormat,

ButtonTabComponent, BookItem

39

Figure 29 The “Tailored Book Editor” Implemented classes: TaggerFilter, ImageFilter,

BookFileFilter, MyFilter, TextFileFilter

Figure 30 The “Tailored Book Editor” Implemented classes Editor, MyImage, RadioButton

40

Figure 31 The “Tailored Book Editor” Implemented classes: PicViewRendere, BookDetails,

DirectoryReader, Tagger

2.8. “Tailored Book Editor” screens

In the Figure 32 a screenshot of a dialog for a tailored book creation implemented by me for

the “Tailored Book Editor” application is shown. This is the first dialog that appears to the user

when he starts creating a tailored book. In this window the user should fill in two obligatory fields:

title and author of the book. Also the system requires a logo of the book to be chosen; this logo will

be displayed in the list of books in the “Tailored Book Reader” application.

Figure 32 A screenshot of the “Tailored Book Creator” dialog

In the Figure 33 a screenshot of the next dialog for a .txt file selection implemented by me for

the “Tailored Book Editor” application is shown. This dialog allows only picking the files in the

text format.

41

Figure 33 A screenshot of a dialog for .txt file selection

In the Figure 34 a screenshot of a dialog for a .tagger file selection is shown. This dialog was

implemented by me for the “Tailored Book Editor” application. This dialog accepts only the files in

the .tagger format.

Figure 34 A screenshot of a dialog for .tagger file selection

A screenshot of a dialog for selecting the image directory is shown in the Figure 35. This

dialog was implemented by me for the “Tailored Book Editor” application and it allows only the

selection of images in JPEG format.

42

Figure 35 A screenshot of a dialog for the image directory selection

A screenshot of the “Tailored Book Editor’ interface developed and implemented by me is

shown in the Figure 36. In this screenshot you can see a selected figure (green frame). In the

Control Panel you can see the tags associated with this figure. Inside of this figure there is a text

which is composed of two words. Since the number of words in the figure is more than one, a

button “Split” of the Control Panel is active. Therefore the figure can be split into two figures.

Figure 36 A screenshot of the “Tailored Book Editor” interface; single selection of the figure

for further split

43

In the Figure 37 you can see the same interface of the “Tailored Book Editor” that was shown

in the Figure 36 but in this case the previously selected figure has been already split into two

figures. After splitting the system assigns the tags for each item. For example the figure “his big”

has the tags: large, big; and after splitting we get one figure “his” with tag his and the second figure

“big” with tags: large, big. In the Figure 37 you can see that when more than two figures are

selected the “Join” button of the Control Panel becomes active. This button allows joining the

figures into the single figure. In this case the tag of the first figure is assigned to the newly

combined figure. The tag can be easily changed using the Control Panel of the “Tailored Book

Editor” application.

In the Figure 38 a project menu of the “Tailored Book Editor” is shown. Using this menu the

user can set the image source directory and publish the currently opened tailored book.

In the Figure 39 a main menu of the “Tailored Book Editor” is shown. Using this menu the

user can open the new image tagger; start the process of new book creation; open and save the

tailored book.

In the Figure 40 a screenshot of the “Image Tagger” interface is shown. In this screenshot you

can see the grid of images the user opened for further tagging. The selected image (green frame) has

been already tagged by the user with the tags: help, assist, aid.

In the Figure 41 a screenshot of the “Image Tagger” interface created by me is shown. As you

can see an image with the plane is selected. In the Control Panel the user has typed the tag plane

and when he has put a comma the panel has been expanded. Now the Control Panel contains the

suggestion list of tags and above it there are three radio buttons with parts of speech available for

the word the user typed. The list of suggested words is taken from the WordNet database. This

functionality was designed and implemented by me in this project.

Figure 37 A screenshot of the “Tailored Book Editor” interface; two figures selection for

further join

44

Figure 38 A screenshot of the “Tailored Book Editor” interface; Project menu

Figure 39 A screenshot of the “Tailored Book Editor” interface; File menu

45

Figure 40 A screenshot of the “Image Tagger” interface

Figure 41 A screenshot of the “Image Tagger” interface; Suggestion list

46

3. “Tailored Book Reader”

3.1. “Tailored Book Reader” front-end

3.1.1. “Menu” screen features and layout

A “Menu” screen serves as the main navigation screen in the application. This is the first

screen shown to the user when the app starts and requires the user to choose where to go next. Its

functionality is encapsulated within the ViewPagerMenuActivity class. The description of this class

will be given below in the “Tailored Book Reader” back-end section. This screen should allow user

to choose “Download Books”, “My Books” or “Info” screens. The Figure 42 shows a mockup of

the main menu screen.

A layout of the “Main” screen contains the following elements: a LinearLayout, a TextView

and a ListView. The LinearLayout is a view group that aligns all children in a single direction,

vertically or horizontally. In our case the orientation of the LinearLayout is vertical and it occupies

the whole screen. The vertical orientation of the LinearLayout means that all other elements or

childs added to this layout are placed in vertical order, one after another, from top to bottom.

The first added element is the TextView that serves as a header of the screen. It displays the

screen name: “Menu”. The second element added to the LinearLayout is called the ListView. The

ListView displays a list of items in a vertically scrolling list.

The “Menu” screen and the described below “Download Books” and “My Books” screens

have the uniform layout. The layout for all three screens is shown in the Figure 43.

Figure 42 Mockup of the “Menu”

screen

LinearLayout (Vertical Orientation)

TextView (Header text)

ListView

Figure 43 Layout design for “Menu”,

“Download Books” and “My Books” screens

47

3.1.2. “Info” screen features and layout

An “Info” screen explains the user what the “Tailored Book Reader” application is about and

how to use it. Its functionality is encapsulated within the ViewPagerInfoActivity class. The

description of this class will be given below in the “Tailored Book Reader” back-end section. This

screen displays to the user a text about the application and enables the user to scroll up and down

through the text. Figure 44 shows a mockup of the “Info” screen.

A layout of “Info” screen is very similar to the layout described above for “Menu” screen.

The only difference is that the ListView element is replaced by the TextView one. The first

TextView like in previous case serves as a header; while the second TextView is used to display the

content of the info page.

Figure 44 Mockup of the “Info” screen

LinearLayout (Vertical Orientation)

TextView (Header text)

TextView (Info text)

Figure 45 Layout design for “Info”

screen

3.1.3. “Download Books” and “My Books” screen features and layouts

A “Download Books” screen displays a list of tailored books available for download on the

server side. Its functionality is encapsulated within the ViewPagerDownloadActivity class. The

description of this class will be given below in the “Tailored Book Reader” back-end section. When

this screen is accessed by the user the “Tailored Book Reader” tries to connect to the server and

loads the content of the index file called books.khl, which contains the information about the book

currently located on the server. The list row contains a tailored book title and logo. By clicking on a

row the user can download an appropriate book. This screen also displays the current download

status using a progress dialog which shows the name of the book being downloaded and the number

of images that has been downloaded so far over the total number. The “Tailored Book Reader”

downloads a tailored book with extension .khl and all images associated with the book and saves

48

them all on SD card of the mobile device. Figure 46 shows a mockup of the Download Books

screen.

A “My Books” screen shows all the books available on the user device. Its functionality is

encapsulated within the ViewPagerMyBooksActivity class. The description of this class will be

given below in the “Tailored Book Reader” back-end section. The “Tailored Book Reader” reads

tailored book from the SD card of the mobile device and displays their titles and logos as a list.

Since all the books downloaded from the server side are saved on the SD card, this list displays all

tailored books: both books put on the SD card by user and downloaded from the server. When the

user selects an appropriate book the consecutive activity responsible for book visualization is

loaded. At this moment the “Tailored Book Reader” is responsible for preparation of the selected

book for further visualization on the “Book” screen. Figure 47 shows a mockup of the “My Books”

screen.

The layouts of both “Download Books” and “My Books” screens are the same as a layout of

the “Menu” screen. The description of the “Menu” screen layout was written before in the section

Menu Screen Features and Layout. The layout itself is depicted in the Figure 43 Layout design for

“Menu”, “Download Books” and “My Books” screens.

Figure 46 Mockup of the “Download

Books” screen

Figure 47 Mockup of the “My Books”

screen

3.1.5. “Book” screen features and layout

A “Book” screen is the most important screen of the “Tailored Book Reader” application,

because this screen displays the content of the selected tailored book and user will spend most of

the time on this screen while reading, listening to the book or practicing the pronunciation. The

functionality of this screen is encapsulated within the ViewPagerActivity class. The description of

this class will be given below in the “Tailored Book Reader” back-end section.

49

The “Tailored Book Reader” loads tailored books from the SD card and displays them to the

user. Android OS provides a feature (from Android 1.6) called Text-to-Speech. It is capable of

synthesizing a speech from text for an immediate playback. I implemented the TextToSpeech

listener and “The Tailored Book Editor” can pronounce the words inside the figure on click using

TTS. The “Book” screen contains the options menu with two menu items: study and normal mode.

The user can reveal the options menu panel by pressing the Menu button. The study and normal

modes are the modes of reading the page aloud using TTS technology. The both modes have been

implemented by me. The normal mode reads the current page of the book aloud with the normal

speed observing punctuation. The study mode reads the current page at a slow pace and highlights

the figure of the current word being spoken. The implemented “Book” screen navigation enables

user to go first/last page and next/previous using buttons in the footer. Also the user can use swipe

gesture to go to next/previous page. Figure 48 shows a mockup of the “Book” screen.

A “Book” screen layout contains the following elements: three RelativeLayouts, a

ViewPager, two ImageButtons, two Buttons and two TextViews. The Figure 49 shows the layout

design for “Book” screen. IB stands for the ImageButton and B for the Button.

The first RelativeLayout occupies the whole screen. The RelativeLayout allows specifying

how child views are positioned relative to each other. On top of it there are other two

RelativeLayouts. The second relative layout contains a text view and a view pager; the third one -

image buttons, a text view and buttons. The TextView of the RalativeLayout serves as a header of

the screen. The second element is the ViewPager. The View Pager is a layout manager that allows

the user to flip left and right through pages of data. In other words The ViewPager is responsible for

visualizing other layouts organized in pages and enables the user to go through the pages by

horizontal swiping. The third relative layout is dedicated to a navigation bar. Two image buttons

represent controls for loading first or last page of the ViewPager and two normal buttons are used to

go to next or previous pages. The text view of third relative layout is used to display current page of

the ViewPager.

Figure 48 Mockup of the “Book” screen

Relative layout

Relative layout

Relative layout

TextView (Header text)

ViewPager

IBIB BBTextView

Figure 49 Layout design for “Book”

screen

50

In the Figure 50 a layout design for a Box item is shown. The Box item layout represents a

figure or a tailored book item. This is the layout for a custom component called Box, specially

developed for a tailored book. The Box item is composed of two LenearLayouts, TextView and

ImageView. Box items are displayed on the ViewPager Layout Page.

LinearLayout (Merge)

LinearLayout

 (Vertical Orientation)

ImageButon

TextView

Figure 50 Layout design for Box item

3.2. “Tailored Book Reader” back-end

3.2.1. Activity workflow

An Activity is an application component that provides a screen with which users can interact

in order to do something (e.g. clicking a menu item to go to another activity). “Tailored Book

Reader” application is composed of five activities that are bound to each other:

ViewPagerMenuActivity, ViewPagerInfoActivity, ViewPagerMyBooksActivity,

ViewPagerDownloadActivity, ViewPagerActivity.

Each activity is given a window in which to draw its user interface: ViewPagerMenuActivity

represents the main menu screen; ViewPagerInfoActivity represents the info screen;

ViewPagerMyBooksActivity represents the user downloaded books screen;

ViewPagerDownloadActivity represents the books available on the server; ViewPagerActivity

represents the book screen. The activity workflow is shown on the Figure 51.

Typically, one activity in an application is specified as the “main” activity, which is presented

to the user when launching the application for the first time. As you can see from the activity

workflow, ViewPagerMenuActivity is considered to be main activity. From the main activity you

can go to the Download Books screen, My Books screen and Info screen by clicking the appropriate

menu item. When the action is performed the corresponding activity is launched.

ViewPagerMyBooksActivity allows launching ViewPagerActivity or coming back to the main

Menu using Back button of the device. ViewPagerActivity is launched by selecting the appropriate

book from the list of available book previously downloaded from ViewPagerDownloadActivity or

the books manually placed on SD card of the device.

Each time a new activity starts, the previous activity is stopped, but the system preserves the

activity in a stack (the “back stack”). The back stack uses the basic “last in, first out” stack

mechanism, so, when the user is done with the current activity and presses the Back button, it is

popped from the stack and the previous activity resumes.

51

ViewPagerMyBooksActivity

ViewPagerDownloadActivity

ViewPagerActivity

ViewPagerInfoActivity

ViewPagerMenuActivity

Figure 51 The “Tailored Book Reader” activity workflow

3.2.2. “Tailored Book Reader” configuration file

Activities are defined in a central configuration file of the “Tailored Book Reader” mobile

application. This file is called AndroidManifest.xml. In the manifest file an Intent filter is used to

designate an activity as the primary entry point of the application (See Figure 52).

Among activities, the manifest file also declares which permissions the application must have

in order to access protected parts of the API and interact with other applications; the minimum level

of the Android API that the application requires; application name and icon; interface theme and

other fields. For “Tailored Book Reader” the following permissions were set: INTERNET and

WRITE_EXTERNAL_STORAGE. The user is in charge of granting the permission to an

application that requests it. For the normal functioning of the application the user should grant these

permissions. The INTERNET permission allows the application to connect the internet for

52

downloading books available online. The WRITE_EXTERNAL_STORAGE permission is used to

save the books downloaded from the internet to the SD card of the user mobile device.

Figure 52 The central configuration file of the “Tailored Book Reader” application

API Level is an integer value that uniquely identifies the framework API revision offered by a

version of the Android platform. For “Tailored Book Reader” the minimum SDK version is set to

10, which means that the application will run on all devices starting from the Android 2.3.3.

Deciding which platform to target is a trade-off between new features and the device coverage. For

example newer versions of Android have more features, but targeting an older version allows more

devices (including older devices) to use the application. With API 10 the application covers 84,2%

of the devices distributed on the market (See table 27).

Version Codename API Distribution

1.5 Cupcake 3 0.1%

1.6 Donut 4 0.3%

2.1 Eclair 7 3.1%

2.2 Froyo 8 12%

2.3 - 2.3.2
Gingerbread

9 0.3%

2.3.3 - 2.3.7 10 53.9%

3.1
Honeycomb

12 0.4%

3.2 13 1.4%

4.0.3 - 4.0.4 Ice Cream Sandwich 15 25.8%

4.1 Jelly Bean 16 2.7%

Table 8 Current Device Distribution in November 1, 2012

The Android platform provides a large collection of styles and themes that can be use in the

applications. The reference of all available styles is in the R.style class. For “Tailored Book Editor”

53

application the ThemeBlackNoTitleBar theme is applied (See Figure 52 The central configuration

file of the “Tailored Book Reader” application): "@android:style/Theme.Black.NoTitleBar".

3.2.3. “Tailored Book Reader” class diagram

As was mentioned before the ViewPager is a layout manager that allows the user swiping left

and right through pages of data. The ViewPager needs a data adapter to determine and load the

appropriate content for each page the user swipes to. The MyPagerAdapter extends the

PagerAdapter class, and implements several key methods.

Firstly, the size of the paging range should be defined. In our case, the number of pages

depends on the screen size and they are calculated during runtime while the book is being prepared

to display on the screen. Thereby on the devices with different screen sizes the number of pages will

be different.

Secondly, the instantiateItem() method should be implemented. This method inflates the

appropriate layout resource file, depending on the user’s swipe position. The farthest page to the left

is in position 0, the next page to the right is position 1, and so on. The instantiateItem() method uses

the LayoutInflater service to inflate the specific layout and add it to the collection used by the

ViewPager. During this method the custom GUI elements called Boxes (designed and implemented

by me) are added to the inflated layout. The number of Boxes per page is calculated during

initialization of MyPagerAdapter.

The last important method that should be implement is the destroyItem() method, which

removes the specific layout from the collection used by the ViewPager when it is no longer being

displayed.

The initial position of the pager by default is set to 0 (the first page). In order to change the

page the user can use the swipe left right gesture, moreover the navigation system is implemented,

which allows to go to last/first and next/previous page. The corresponding buttons of the control

system use the ViewPager method called setCurrentItem() to change the page programmatically.

Book class contains all information about the book and the book content. The properties of

the Book class are shown on Figure 57.

For real-world mobile applications, the default look and feel of the Android ListView is not

very attractive. It only renders a simple String in every ListView row using the internal TextView

control. For this application, I'd like to create an interface that is more graphically rich and visually

pleasing to the user. The ListView is very powerful control and with the help of custom item

layouts, it can be customized. This Book class is also used to create a custom ArrayAdapter and to

bind the objects with the ListView. The values of book title and book author of the Book class

properties are displayed on the ListView. A custom ArrayAdapter called BooksAdapter inherits the

Android ArrayAdapter class and overrides the getView method. The constructor of the

BooksAdapter class takes three parameters. The first parameter is the Context and we can pass the

reference of the activity in which we will use the BooksAdapter class. The

ViewPagerMyBooksActivity and the ViewPagerDownloadActivity use the BooksAdapter class.

The second parameter is the resource id of the layout file that is used for displaying each ListView

item. I pass the resource id of the layout row.xml for this parameter. The third parameter is an array

of Book class objects that will be used by the Adapter to display data. The BooksAdapter class

getView method is overridden. This method is called for every item in the ListView to create views

with their properties. The getView method is also using a temporary holder class called BookHolder

that is declared inside the BooksAdapter class. This class will be used to cache two TextViews so

they can be reused for every row in the ListView and this provides a great performance

improvement when recycling the same two views with different properties and there is no need to

find TextViews for every ListView item.

The MenuAdapter also extends the ArrayAdapter class and its implementation is similar to

the BooksAdapter class. The MenuRow class represents menu item and has title and image

properties. This MenuRow class is used to create a custom MenuAdapter and to bind the objects

54

(array of MenuRow objects) with the ListView. A temporary holder class called MenuHolder

declared inside the MenuAdapter class is similar to the BookHolder class.

Both the ImageFileFilter and the BookFileFilter implement the Java FileFilter interface. The

ImageFileFilter class matches filenames that end with image file extensions .jpg and .JPG. The key

thing about implementing a FileFilter is that a method “Accept” should be implemented. This

method returns true for JPEG files and false otherwise. By analogy the BookFileFilter filters all

files except tailored book .khl file.

Figure 53 The “Tailored Book Reader” Class diagram

3.2.4. “Tailored Book Reader” implemented classes

Figure 54 The “Tailored Book Reader”, implemented classes: MenuAdapter, BookAdapter

55

Figure 55 The“Tailored Book Reader” implemented classes: MyPagerAdapter,

ViewPagerActivity, ViewPagerDownloadActivity

Figure 56 The “Tailored Book Reader”, implemented classes: ViewPagerMyBooksActivity,

BookItem, ManuRow, ViewPagerInfoActivity, BookFileFilter, ViewPageMenuActivity,

ImageFileFilter

Figure 57 The “Tailored Book Reader”, implemented classes Box, Book

56

3.3. “Tailored Book Reader” screens

In the Figure 58 the main menu screenshot of the “Tailored Book Reader” mobile application

is shown. From the main menu the user can go to the following screens: “Download Books” to see

the list of books available on the server and download them; “My Books” to see the list of

downloaded books; and “Info” to read about the application.

In the Figure 59 the “Download Books” screen is shown. In this screen you can see the list off

books available for download. The user should click on the appropriate book to start downloading.

When the book is downloaded it can be found in the “My Books” section accessible from the main

menu.

In the Figure 60 a screenshot of the “My Books” screen of the “Tailored Book Reader”

mobile application is shown. This list of my books contains both tailored books downloaded from

the server and ones put on the SD card by the user.

Figure 61 shows the screenshot of the “Tailored Book Reader” “Info” screen. This screen is

introduced in order to give some information about tailored books and this mobile application.

In the Figure 62 two screenshots of the “Book” screen are shown. On the left screenshot you

can see the interface of the most important screen of this application. The “Book” screen displays

the content of a tailored book. On the top part of the screen a title of the book is placed; on the

bottom part there is a navigation bar. The middle part occupies the content of the book. On the right

screenshot you can see the “Book” screen with the options menu, which contains two menu items:

study and normal mode. The options menu panel can be revealed by pressing the Menu button.

Figure 58 A screenshot of the “Tailored

Book Reader” mobile application; “Menu”

screen

Figure 59 A screenshot of the “Tailored

Book Reader” mobile application;

“Downloaded Books” screen

57

Figure 60 A screenshot of the “Tailored

Book Reader” mobile application; “My

Books” screen

Figure 61 A screenshot of the “Tailored

Book Reader” mobile application; “Info”

screen

Figure 62 A screenshots of the “Tailored Book Reader” mobile application; “Book” screens

58

4. System usage workflow

As has been previously mentioned the designed system is composed of the desktop and mobile

applications called “Tailored Book Editor” and “Tailored Book Reader” accordingly. Below on the

Figure 63 the system usage workflow is shown for both applications correspondingly.

As you can see, in the first activity diagram that represents “Tailored Book Editor” after

running the application the user can go two ways depending on the specified condition (Images are

ready?).

If the images are available and tagged the user can go to the next paragraph, which describes

the procedure of tailored book creation. Here instead I’d like to give some comments related to the

procedure of image tagging. As has been said earlier in the project the necessary requirement for

creation tailored book is the availability of images, because the book is in some sense the

combination of text and images. Any images in format JPEG can be used. I’d like to stress it again

that the system works only with this format since it supports writing and reading image metadata, in

which the tags, assigned to the image, are stored. The “Tailored Book Editor” supports image

tagging, for this reason the special module was developed. To start the image tagging the user

should go to the main menu, placed on the top bar of the application and click File → New Image

Tagger. After clicking, a new file picker is popped up. The file picker allows selecting one or

several images. When the images are tagged using the “Image Tagger” the user can set the image

source directory. From this directory the “Tailored Book Editor” takes images that then will be

assigned to the items. In order to set the image source directory you should go to main menu item

Project → Set image source directory. It is not obligatory to set it explicitly, because before the

procedure of image assignment during tailored book creation, the system will ask to set the image

source directory if it was not done beforehand.

After the image source directory is set the user should prepare the .txt file using standard text

editing tool e.g. Notepad. This text file should contain the text of the future tailored book.

When the text file is ready the user can start creating the tailored book by clicking on main

menu item File → New Book. After clicking the system will display the dialog with the following

fields: book title, book author and book logo. Note in order to proceed to next step all required

information should be inserted. The system should warn you if some fields are empty or id there is

some unaccepted symbols. The system accepts numbers and digits. When there are no warnings in

the input field, click the button “Create Book”. After clicking “Create Book” the system will

launch file picker which should be used to locate the previously created .txt file. This file picker

accepts only files with .txt extension. Then the system will prompt the picker to select the POS

tagger if it has not set before. This file is provided with the application. After locating the file the

system will start automatic creation of tailored book. When the book is created the user can start

editing the tailored depending on his/her needs. When the book is ready, it can be published by

clicking on main menu Project→Publish. The system will pop up the destination picker. The

published book is composed of two files: the tailored book itself in the format .khl and the folder of

supported images.

The second Activity diagram shows the procedure of tailored book setup for “Tailored Book

Reader” application. Firstly the tailored book produced by the “Tailored Book Editor” can be

loaded to the server or put directly to the SD card root directory.

On the server side there is an index file called books.khl. It can be seen from the URL:

http://tbreader.is-great.net/BOOKS/books.khl

In order to make book downloadable from the server the two steps should be taken:

1) Download the book .khl with the folder of images on the server

2) Modify the books.khl file

The structure of the books.khl file was explained before in the Files Formats section.

In order to add a new tailored book to the books.khl file the content of the tailored book .khl

file should be copied and pasted in the books.khl file after the existing book and then you should

replace the content of “text” field with the square brackets.

http://tbreader.is-great.net/BOOKS/books.khl

59

When these steps are done, you should launch the “Tailored Book Reader” and from the main

menu go to the “Download books” screen. The application will load the list of available books from

the server. To download the book you should click on appropriate one. The application will load

.khl file at first and then all the images. During download the progress dialog is shown. After

successful download the book will be placed on the SD card.

To access the book from the SD card the user should go from main menu to “My Books”

Screen. On this screen the list of all available on the SD card books are displayed. To start reading

the book you should click on the appropriate book.

Images are ready

(tagged)?

File → New

image tagger

Run Editor

Select

Images

Tag Images

.txt file with the book is

prepared?

File → New
Book Creator

Select .txt file

Prepare .txt

file

Set image

source directory

Insert book

title, author

and logo

Tailored-Book

creation

Revise and

edit book

Publish Book

Output:

1) File with extension .khl

2) Folder with used images

Input:

Book in .txt format

Input:

JPG Images

Select .tagger file

Input:

1) File with extension .khl

2) Folder with used images

Load book from the

server?

Put files on

the server

Add the book to

index file books.khl

Run Reader

Go from Menu to

Download Books

Select the book and wait

while download is complete

Put files on

SD card

Go from Menu to

My Books

Select the Book

from the list

Figure 63 System usage workflow

60

IV. Evaluation

In order to evaluate the users’ satisfaction, the Goal Attainment Scale Method is adopted.

Before explaining the basics of this method I’d like to tell a bit about the testing conditions. For the

evaluation phase the two tailored books were created using the desktop application called “Tailored

Book Editor” developed by me in this project. The books are called “Little Red Riding Hood” and

“The Lion and the Mouse” respectively. These tailored books were placed on the server side. The

mobile application “Tailored Book Reader” developed by me in this project was installed on the

Samsung Galaxy S II device and given for testing to a girl and a boy at the age of 6 and 8

respectively.

Goal attainment scaling or GAS is a method of scoring the extent to which patient’s

individual goals are achieved in the course of intervention. In effect, each patient has their own

outcome measure but this is scored in a standardized way as to allow statistical analysis.

Traditional standardized measures include a standard set of tasks (items) each rated on a standard

level. In GAS, tasks are individually identified to suit the patient, and the levels are individually set

around their current and expected levels of performance.

An important feature of GAS is the “a priori” establishment of criteria for a “successful”

outcome in that individual, which is agreed with the patient and family before intervention starts so

that everyone has a realistic expectation of what is likely to be achieved, and agrees that this would

be worth striving for. Each goal is rated on a 5-point scale, with the degree of attainment captured

for each goal area:

 If the patient achieves the expected level, this is scored at 0.

 If they achieve a better than expected outcome this is scored at: +1 (somewhat better) or

+2 (much better)

 If they achieve a worse than expected outcome this is scored at: -1 (somewhat worse) or

-2 (much worse)

Goals may be weighted to take account of the relative importance of the goal to the

individual, and/or the anticipated difficulty of achieving it.

Overall Goal Attainment Scores are calculated by applying a formula:

where:

wi - the weight assigned to the i
th

goal (if equal weights, wi = 1)

xi - the numerical value achieved (between –2 and + 2)

ρ - the expected correlation of the goal scales

For practical purposes, according to Kirusek and Sherman, ρ most commonly approximates

to 0.3, so the equation simplifies to:

In effect, therefore the composite GAS (the sum of the attainment levels x the relative

weights for each goal) is transformed into a standardized measure or T score with a mean of 50 and

standard deviation of 10. If goals are set in an unbiased fashion to that results exceed and fall short

of expectations in roughly equal proportions, over a sufficiently large number of patients, one

would expect a normal distribution of scores and the GAS thus performs at interval level.

61

Calculation of Goal Attainment Scoring

The GAS method was a tested on two children with the following characteristics: the smart

and brilliant girl at the age of 6 that attends the English lessons at primary school; and the good 8

years old boy diagnosed with Asperger syndrome, attention problems, difficulties in reading and

writing and without knowledge of English.

To each child the developed “Tailored Book Reader” mobile application was given, after

some time they were interviewed to collect the results and experiences. The goals and attainment

score levels were defined in the following table:

Goals: Attainment score levels:

Most

unfavorable

treatment

outcome

thought

likely

Less than

expected

success

Expected level

of success

More than

expected

success

Best

anticipated

success

-2 -1 0 1 2

1. A child is able

to navigate

through the

application

A child

doesn’t

understand

how to use

the app and

how to

navigate

within it

 A child partly

understands

what app is

needed for and

how to

navigate it

A child

understands the

app and knows

how to use it

A child fully

understands

the app and

knows how

to use it

A child

understands

the complete

structure of the

app and knows

where to go to

get what he

needs

2. A child is able

to select an

appropriate

book and

launch it

A child is not

able to select

an

appropriate

book and

launch it

A child is not

able to choose

a book

without any

help

A child is able

to choose a

book with some

assistance

A child is

able to

choose a

book himself

A child is able

to choose

books himself

3. A child is able

to download

new books

A child is not

able to

download

new books

A child is able

to download

new books but

doesn’t know

how to launch

it

A child is able

to download

new books and

knows where it

was saved to

launch it

A child

downloaded

many books

and launched

them

A child is

interested in

downloading

new books and

reading them

4. A child is able

to turn over

the pages

using scroll

mode

A child is

unable to go

through the

book using

scroll mode

A child cannot

go to the

next/previous

page without

the help

A child is able

to page the

book using

scroll mode

A child is

able to page

the book

using scroll

mode without

any help

A child pages

the book easily

using scroll

mode and

understands at

what page he

is and how to

go to next

page or go

back

62

5. A child is able

to turn over

the pages

using

next/previous

buttons

A child is

unable to go

through the

book using

buttons

A child cannot

go to the

next/previous

page without

the help

A child is able

to page the

book using

buttons

A child is

able to page

the book

using buttons

without any

help

A child pages

the book easily

using the

buttons and

understands at

what page he

is and how to

go to next

page or go

back

6. A child is able

to click on the

item of the

book and

repeat aloud

the word being

pronounced

A child is not

able to do it at

all

A child is only

able to select

the word he

wants to be

pronounced

 A child is able

to select the

word and repeat

it within at least

three attempts.

A child is

very involved

in selecting

the words

and repeating

them.

 A child is

interested in

this exercise

and became

very fluent in

repeating the

words.

7. A child is able

to turn on/off

normal/study

modes of

reading the

book

A child

doesn’t

understand

how to switch

between two

modes

A child

changes the

modes

unwillingly

and is not

interested

 A child

understands

how to switch

between the

modes and how

to stop

pronunciation

of the words

and can do it

with some help

A child is

able to switch

between

different

modes

without any

help

A child is able

to choose his

favorite mode

of reading the

book and to

switch easily

between

different

modes

8. A child

follows the

highlighted

items of the

book while

being spoken

aloud (study

mode)

A child is not

able to follow

the words

It is very hard

for a child to

follow the

words

A child is able

to follow the

words but

sometimes he is

lost or confused

A child can

follow the

words and

seems very

concentrated

A child

follows the

words with

ease and he is

very interested

in an exercise

9. A child is able

to follow the

words while

being spoken

aloud (normal

mode)

A child is not

able to follow

the words

It is very hard

for a child to

follow the

words

A child is able

to follow the

words but

sometimes he is

lost or confused

A child can

follow the

words and

seems very

concentrated

A child

follows the

words with

ease and he is

very interested

in an exercise

10. A child is able

to read the

book aloud

and understand

the content

without it

being spoken

A child is not

able to read

the book

himself

It’s very

difficult for a

child to read

the book

himself and

understand it

A child is able

to read the book

aloud himself

and partly

understand the

content

A child is

able to read

the book and

understand

the content

completely

A child is able

to read the

book himself

with interest

without any

assistance

Table 9 The goals and attainment score levels

In the first column of the table the goals are stated, the rest columns show attainment score

levels achieved by the children. The expected level of success with the value equals to 0 is

considered to be an expected outcome of the application usage.

63

A weight was assigned to each goal using the table below. Weight is the product of

importance and difficulty. Importance and difficulty is rated on a 4 point scale:

Importance Difficulty

0 - not at all (important) 0 - not at all (difficult)

1 - a little (important) 1 - a little (difficult)

2 - moderately (important) 2 - moderately (difficult)

3 - very (important) 3 - very (difficult)

Table 10 Importance and difficulty scale

If the goal is “not at all” important it will not be selected and if “not at all” difficult it has

presumably already been achieved. If a weighting system is not used, a value of “1” is simply

applied to weight in the Overall Goal Attainment Scores formula. In the table below the calculated

weight is shown for each goal. The weighting and attainment score levels achieved by two children

are shown in the table below.

Table 11 The weighting and attainment score levels achieved by two children

I child Overall Goal Attainment Scores:

II child Overall Goal Attainment Scores:

Goals: Importance Difficulty Weight
Attainment score levels

I child II child

1 3 3 9 2 2

2 2 1 2 1 1

3 1 1 1 0 0

4 2 1 2 2 2

5 2 1 2 -1 -1

6 3 3 9 1 0

7 2 1 2 -1 -1

8 3 2 6 0 0

9 2 3 6 -1 -2

10 1 3 3 -1 -2

64

The overall data can be considered positive because all the children reached the maximum

goal attainment level (+2) for two goals and the positive goal attainment levels (0, +1, +2) for 6 of

10 goals. The overall Goal Attainment Scores for the first and the second child are 57.5 and 50.8

respectively.

The range of GAS scores calculated using the expected correlation of the goal scales (ρ)

approximated to 0.3 goes from 18.54 to 81.46. The low bound is calculated assuming that for all the

goals a child scores the most unfavorable goal attainment levels (-2). The upper bound is calculated

assuming that for all the goals a child scores the most fortunate goal attainment levels (+2). When

the attainment score levels for all goals are assumed to be zero we get the expected results equals

50. Thereby for these two children, GAS confirms better than expected result.

Also from the provided feedback we found out that the children have a poor interest in

reading books in English and they want books in Italian presumably due to a weak level of English

language skills.

The second reason for the lack of strong interest is supposedly limited physical access to the

tested application “Tailored Book Reader”. This may be because they had very little training. In our

experiment the application was installed on a single device that was given to the children for the

limited time.

As well the children were not very interested in reading due to competing interests around.

The latest supposition is based on the fact that at the time of testing the multiple distracting factors

were activated such as TV, computer games, board games, music, etc., which favors the creation of

the situation mostly close to the reality.

Since the small Italian users on which the system was tested have a strong will to read books

in Italian the support of the Italian language will be added in the future release.

I would like to draw attention to the fact that all the materials used for the test has been

created by me using the desktop and mobile applications (“Tailored Book Editor” and “Tailored

Book Reader” respectively) designed and implemented in this project; which, in turn, based on the

synergy effect increases the absolute value of the obtained results.

V. Conclusions and Future Work

The diffusion of mobile technologies has greatly changed the state of affairs for individuals

with AAC. Touch screen smartphones, tablets, powerful mobile processors, reasonable price and

user‐friendly interfaces are now widely available to all sectors of society. Mobile technologies are

also being readily adopted by people with disabilities and there is no doubt that technology has the

potential to free many children from their disability in a way that allows them to achieve their true

potential.

In this project a system for the creation, modification, visualization and distribution of

tailored books was designed and implemented. This system helps to improve reading skills and

development of communication for children with special needs, who are not able to read the

standard books without its specific modification, adaptation and interactive presentation.

As a result the following objectives have been achieved:

1. Design and implementation of a specialized desktop application to simplify the process

of creating, editing, and distribution of tailored books.

2. Design and implementation of an interactive mobile application to visualize tailored

books on smartphones and tablets with OS Android.

The desktop application “Tailored Book Editor” designed and implemented by me in this

project helps to achieve the objective number one. The application “Tailored Book Editor” has the

following characteristics:

65

 loads text from .txt file and construct the tailored book automatically using WordNet

database

 assigns automatically the images to the words if there is a match of tags

 allows assigning manually the image to the word

 allows editing the generated tailored book (e.g. join or split items, change tags of

book items or images to achieve appropriate result)

 allows tagging images with reference to WordNet database

 allows saving and opening the tailored book for further editing

 allows publishing the book to the selected directory on the hard disk

 synchronization between tabs of books and images(e.g. if image tag is changed the

image assigned to the book item is updated)

 remembers user preferences (e.g. last selected path, image source directory, .tagger

file)

The mobile application “Tailored Book Reader” designed and implemented by me in this

project helps to achieve the goal number two. The application “Tailored Book Reader” has the

following characteristics:

 reads books from SD card

 downloads books (file with extension .khl and folder with images) from the server

 pronounce words aloud on click with TTS

 read the whole page with TTS (normal mode)

 highlighting the word while being spoken (study mode)

 navigation: first/last page button, next/previous button, next/previous page with a

scroll gesture

As all systems have some limitations the developed system is not an exception. Below I’d

like to mention the directions of further improvements.

For “Tailored Book Editor” the essential extension will be a module for creating tailored

books in Italian, Russian and German languages. Another main concept is to create a community

between people who produce tailored books and people who want to read them. For this reason the

module which allows automatic publication of tailored books on the server to share with others

should be introduced. On the server part the system that manages all the books uploaded by the

users and allows searching an appropriate book should be designed.

Another important improvement for “Tailored Book Editor” is to add the possibility to set the

custom options before tailored book creation, e.g. to allow the users to decide if they want to have

prepositions, articles, pronouns and etc. to be together in one figure with other parts of speech or to

be separated in two figures.

For “Tailored Book Reader” I’d like to offer the extra functionality to the user. For example it’s

worth adding a possibility to set the number of figures to be displayed on the screen. So far the

number of displayed figures is calculated depending on the dimensions of the screen. Also it would

be useful to add a possibility to set the size of the figure and the font. Also as a complement to the

future community a possibility to rank the book (from 1 to 5 stars) in the section «My Books»

and «Download Books» should be added. The vote will be used to calculate the mean rank for the

book on the server. Also user should be able to share books stored on the SD card with others.

Below I list some features for organisation of books I plan to add in the future release for “Tailored

Book Reader” application:

 sorting books both in the «My Books» and «Download Books» sections

 possibility to organize the books by drag and drop in the section «My Books»

 possibility to mark the book as favourite in the «My Books» section; all the favourite books

will be placed on the top of the list

66

 possibility to remove book from the section «My Books»

The developed system can also be used outside of the ACC context for example for learning

foreign languages.

VI Methods description

1. “Tailored Book Editor” methods

class Editor extends JFrame

Method Description

public String [] getTags(String filePath) Returns a string array of tags obtained from the

image, using Sanselan library for reading image

metadata and JDOM library for accessing and

parsing XML data.

public void initializeSuggestionList() Initializes suggestion list of similar tags for

Image Tagger

public void updatePartOfSpeechPanel(String[]

pos)

Updates panel with suggestion list when the part

of speech control (radio button) is changed

public Editor() Constructs a new frame that is initially invisible

public ArrayList<Item>

addPunctuation(ArrayList<Item> items)

Returns ArrayList of items which is usually

smaller than the initial ArrayList if it contains

punctuation symbols. Idea: If the item tag of the

initial array of items is punctuation symbol, its

value is added to previous item and then the

item is removed from the ArrayList.

private void loadGrid(ArrayList<MyImage>

newImageList, final JGrid grid)

Initialization of the grid for Image Tagger

private ArrayList<MyImage> chooseDirectory() Image picker which allows choosing images for

Image Tagger. This method create instance of

JFileChooser with the filter ImageFilter and

returns the list of selected image paths.

private String chooseTxtFile(FileFilter filter) Txt file picker for choosing book text for further

processing.

private void saveBook() Shows save dialog which assist to save Tailored

Book which can be opened then by Editor.

private BookSaveFormat

createBookSaveFormat()

Converts Tailored Books to special format for

further saving on the hard disk

private Book createBook() Shows book creation dialogs and then generates

Tailored Book.

private void gatherImages(JFileChooser fc,

Book book)

Outputs all the images used in Tailored Book in

the separate folder for further export in Reader

private void publishBook() Outputs Tailored Book with the folder of

images.

private ArrayList<MyImage>

setImageSourceDirectory(boolean setDefault)

Returns ArrayList of MyImage instances which

is created from all the images under selected

directory

public void assignment(ArrayList<Item>

itemsList)

Assigns image to the item from ArrayList if

there is tags intersection

public void updateGridListAndModelList(String Synchronization between Image Tagger and

67

name, MyImage im) Book Editor

public ArrayList<Item> processTextFile(String

tagged, boolean postfixSufixProcess)

Part of Speech Tagging and finding synonyms

in WordNet database. Returns array of items

ready for visualization in the grid

private void loadBookGrid(ArrayList<Item>

newItemList, final JGrid grid)

Initialization of the grid for Book Editor

Table 12 The “Tailored Book Editor”, methods description of Editor class

class RadioButton extends JRadioButton

public String getPartOfSpeech() Returns part of speech.

public void setPartOfSpeech(String partOfSpeech) Sets part of speech.

public RadioButton(String string, boolean b, String

partOfSpeech)

Constructs radio button.

Table 13 The “Tailored Book Editor”, methods description of RadioButton class

public class Book

public Book() Create Tailored Book without title,

author, text and logo.

public Book(String title, String author,

ArrayList<BookItem> text, String logo)

Constructs Tailored Book with title,

author, text and logo.

Table 14 The “Tailored Book Editor”, methods description of Book class

public class BookDetails extends JDialog

public BookDetails() Constructs book details Dialog which is used to insert title,

author and select book logo.

private ImageIcon

normalizeImage(Image src)

Change size of the image in order to fit allotted space.

Table 15 The “Tailored Book Editor”, methods description of BookDetails class

public class BookFileFilter extends FileFilter

public boolean accept(File pathname) Whether the given file is accepted by this

filter. Accept files with format .bookkhl

public String getDescription() The description of this filter.

Table 16 The “Tailored Book Editor”, methods description of BookFileFilter class

public class BookItem

public BookItem(String word, String

imageName)

Constructs book item. Book items represent text

of Tailored Book.

Table 17 The “Tailored Book Editor”, methods description of BookItem class

public class BookSaveFormat extends Book

public BookSaveFormat(String title, String

author, ArrayList<Item> text, String logo)

Constructs the book in the format the suitable

for saving and opening the book later with the

Editor.

Table 18 The “Tailored Book Editor”, methods description of BookSaveFormat class

public class ButtonTabComponent extends JPanel

public ButtonTabComponent(boolean bookTab, int index) Constructs custom tab at position

index

public ButtonTabComponent() Constructs custom tab

Table 19 The “Tailored Book Editor”, methods description of ButtonTabComponent class

68

private class TabButton extends JButton implements ActionListener

public TabButton() Creates a tab button.

protected void paintComponent(Graphics g) Paint the cross on the tab.

Table 20 The “Tailored Book Editor”, methods description of TabButton class

public class ComboBoxRenderer extends JTextArea implements ListCellRenderer<Object>

public ComboBoxRenderer() Constructs ComboBoxRenderer

public Component getListCellRendererComponent(JList<?>

list, Object value, int index, boolean isSelected, boolean

cellHasFocus)

Return a component that has been

configured to display the specified

value.

Table 21 The “Tailored Book Editor”, methods description of ComboBoxRenderer class

public class DirectoryReader

public DirectoryReader(File aFile) Construct DirectoryReader

private void Process(File aFile) Recursively examine all image files and

add it to ArrayList

public ArrayList<File> getAllFiles() Returns all image files as ArrayList

Table 22 The “Tailored Book Editor”, methods description of DirectoryReader class

public class ImageFilter extends FileFilter

public boolean accept(File pathname) Whether the given file is accepted by this

filter. Accept files with format .jpg

public String getDescription() The description of this filter.

Table 23 The “Tailored Book Editor”, methods description of ImageFilter class

public class Item

public Item(String[] tags, String word, String type) Constructs Item with tags, word and

part of speech type.

public Item() Constructs empty Item.

public String[] getTags() Returns array of tags.

public void setTags(String[] tags) Sets array of tags.

public String getWord() Returns word of the Item.

public void setWord(String word) Sets word of the Item.

public String getType() Returns part of speech type.

public void setType(String type) Sets part of speech type.

public void assignImage(ArrayList<MyImage> images) Assigns image to Item

public static Set<String> getIntersection (Set<String> x,

Set<String> y)

Returns intersection of two sets

public String getImageName() Returns assigned image name

public void setImageName(String imageName) Sets image name

public void setImagePath(String imagePath) Sets image path

public String getImagePath() Returns image path

Table 24 The “Tailored Book Editor”, methods description of Item class

public class MyFilter implements FileFilter

public boolean accept(File pathname) Whether the given file is accepted by this

filter. Accept files with format .jpg

Table 25 The “Tailored Book Editor”, methods description of MyFilter class

69

public class MyImage

public MyImage(String name, String[] tags, String path) Constructs MyImage with name, tags

and path.

 public String[] getTags() Returns tags.

public void setTags(String[] tags) Set Tags.

public String getName() Returns name.

public void setName(String name) Sets name.

public void loadImage() Loads image as BufferedImage.

private byte[] imageToByteData(BufferedImage image) Transforms BufferedImage to bytes.

public String getPath() Returns image path

public void setPath(String path) Sets image path

public String getImage() Returns image in bytes

public String getExtension() Returns image extension

Table 26 The “Tailored Book Editor”, methods description of MyImage class

public class PicViewerRenderer extends JComponent implements GridCellRenderer

public PicViewerRenderer(ArrayList<MyImage> allImages) Constructs PicViewerRenderer

with all images

public PicViewerRenderer() Constructs PicViewerRenderer

public Component getGridCellRendererComponent(JGrid grid,

Object value, int index, boolean isSelected, boolean

cellHasFocus)

Initialize grid cell with

appropriate text and image

protected void paintComponent(Graphics g) Draw grid cell

Table 27 The “Tailored Book Editor”, methods description of PicViewerRenderer class

public class Tagger

public Tagger(String path) Constructs Tagger with tagger path

public String tagString(String st) Returns POS tagged string

Table 28 The “Tailored Book Editor”, methods description of Tagger class

public class TaggerFilter extends FileFilter

public boolean accept(File pathname) Whether the given file is accepted by this

filter. Accept files with format .tagger

public String getDescription() The description of this filter.

Table 29 The “Tailored Book Editor”, methods description of TaggerFilter class

public class TextFileFilter extends FileFilte

public boolean accept(File pathname) Whether the given file is accepted by this

filter. Accept files with format .txt

public String getDescription() The description of this filter.

Table 30 The “Tailored Book Editor”, methods description of TextFileFilter class

2. “Tailored Book Reader” methods

public class Book

public Book() Create Tailored Book without title,

author, text and logo.

public Book(String title, String author,

ArrayList<BookItem> text, String logo)

Constructs Tailored Book with title,

author, text and logo.

Table 31 The “Tailored Book Reader”, methods description of Book class

70

public class BookItem

public BookItem(String word, String

imageName)

Constructs book item. Book items represent

text of Tailored Book.

Table 32 The “Tailored Book Reader”, methods description of BookItem class

public class BooksAdapter extends ArrayAdapter<Book>

public BooksAdapter(Context context, int

layoutResourceId, ArrayList<Book>

downloadedBooks)

Constructs BooksAdapter which is used

for list of books visualization

 public View getView(int position, View

convertView, ViewGroup parent)

Returns view of every book with title

and logo

Table 33 The “Tailored Book Reader”, methods description of BooksAdapter class

public class Box extends LinearLayout

public Box(Context context) Constructs Box

public Box(Context context, AttributeSet attrs) Constructs Box with atributes

private void setupViewItems() Initializes instances of ImageButton

and TextView

public void setObserver(BoxObserver boxObserver) Sets BoxObserver

public void resetColor() Sets box color to white color

public void setColor() Highlights box with green color

public void setTextContent(String text) Set text of the box

public String getText() Returns text of the box to play TTS

public void setImageContent(String bookTitle,String

name)

Sets image of the box

Table 34 The “Tailored Book Reader”, methods description of Box class

class MenuRow

MenuRow(String title, Drawable image) Constructs menu row with text and icon

Table 35 The “Tailored Book Reader”, methods description of MenuRow class

public class MenuAdapter extends ArrayAdapter<MenuRow>

public MenuAdapter(Context context, int

layoutResourceId, ArrayList<MenuRow>

menuRows)

Constructs MenuAdapter which is used

for main menu visualization.

public View getView(int position, View

convertView, ViewGroup parent)

Returns view of every menu item with

title and logo

Table 36 The “Tailored Book Reader”, methods description of MenuAdapter class

public class MyPagerAdapter extends PagerAdapter

public MyPagerAdapter(Activity activity, Book book) Constructs MyPagerAdapter

with book

public int getTotalNumberOfPages() Returns number of pages for

book visualization. Number of

pages depends on device screen

size.

public String textToSpeakOnPage(int page) Returns string to play TTS. The

string is formed by

concatenation of all words from

71

boxes on the current page.

public void textToSpeakOnPageStudyModeStart(boolean

value)

Starts to play TTS in study

mode by highlighting every box

from which the word is being

pronounced

private int dpToPx(int dp) Converts density-independent

pixels to actual pixels on the

screen

public void setObserver(TheObserver observer) Sets observer TheObserver

public void highlightBoxWithId(int id, int curentPage) Highlights box with the green

color while playing TTS in

study mode or when the box is

pressed.

public Object instantiateItem(View collection, int position) Creates and adds new box item

to the layout. The length of the

item depends on the length of

the word in the box.

public void setPrimaryItem(ViewGroup container, int

position, Object object)

Called to inform the adapter of

which item is currently

considered to be the "primary",

that is the one show to the user

as the current page.

public void destroyItem(View arg0, int arg1, Object arg2) Remove a page for the given

position. The adapter is

responsible for removing the

view from its container,

although it only must ensure

this is done by the time it

returns from

finishUpdate(ViewGroup).

public void finishUpdate(View arg0) Called when a change in the

shown pages has been

completed.

public boolean isViewFromObject(View arg0, Object arg1) Determines whether a page

View is associated with a

specific key object as returned

by instantiateItem(ViewGroup,

int). This method is required for

a MyPagerAdapter to function

properly.

public void restoreState(Parcelable arg0, ClassLoader arg1) Restore any instance state

associated with this adapter and

its pages that was previously

saved by saveState().

public Parcelable saveState() Save any instance state

associated with this adapter and

its pages that should be restored

if the current UI state needs to

be reconstructed.

public void startUpdate(View arg0) Called when a change in the

shown pages is going to start

72

being made.

Table 37 The “Tailored Book Reader”, methods description of MyPagerAdapter class

public interface BoxObserver

void callback(String word) Calls the method callback(String word, int id)

of the instance of class TheObserver to sent

text to speak.

Table 38 The “Tailored Book Reader”, methods description of BoxObserver interface

public interface TheObserver

void callback(String word, int id) Calls method speakOut to pronounce the

word of the box with id.

void stopTTS() Terminates TTS.

void initIndicator() Initializes page indicator.

Table 39 The “Tailored Book Reader”, methods description of TheObserver interface

public class ViewPagerActivity extends Activity implements

TextToSpeech.OnInitListener

public Book loadFromJson(Activity activity) Returns Book item from Json

public void onCreate(Bundle savedInstanceState) Called when the activity is first

created. View creation, header and

footer setup.

protected void onPostCreate(Bundle savedInstanceState) Called when activity start-up is

complete (after onStart() and

onRestoreInstanceState(Bundle)

have been called).

protected void onStart() Called when the activity is

becoming visible to the user.

MyPagerAdapter and TTS

initialization.

public void loadPager(Book book) Creates new instance of

MyPagerAdapter.

protected void speakOut(String word, int id) Pronounce the word of the box.

public void onInit(int status) OnUtteranceCompletedListener is

implemented which is used to know

when the TTS finishes

pronunciation of the word.

public void onDestroy() Shutdowns TTS

public boolean onCreateOptionsMenu(Menu menu) Initialize the contents of the

Activity's standard options menu.

Menu options: speak in normal

mode and speak in study mode.

public boolean onPrepareOptionsMenu (Menu menu) Prepare the Screen's standard

options menu to be displayed. This

is called right before the menu is

shown, every time it is shown. This

method is used to enable/disable

items. For example when the study

mode is on, normal mode is disabled

until study mode is stoped.

public boolean onOptionsItemSelected(MenuItem item) This hook is called whenever an

73

item in your options menu is

selected. Activates one of two

modes study or normal.

public void NextPage() Loads next page of the book

public void PreviousPage() Loads previous page of the book

public void FistPage() Loads first page of the book

public void LastPage() Loads last page of the book

Table 40 The “Tailored Book Reader”, methods description of ViewPagerActivity class

public class ViewPagerDownloadActivity extends Activity

public void loadIndex() Loads index of books available on the

server side and displays it.

public void loadBook(String bookTitle) Load book from the server

public void loadImages(ArrayList<String> images) Load all images associates with the

book.

public void onCreate(Bundle savedInstanceState) View creation, header and footer

setup.

Table 41 The “Tailored Book Reader”, methods description of ViewPagerDownloadActivity

class

class ImageFileFilter implements FileFilter

public boolean accept(File pathname) Whether the given file is accepted by this

filter. Accept files with format .jpg

Table 42 The “Tailored Book Reader”, methods description of ImageFileFilter class

private class AsyncDownloadBook extends AsyncTask<Void, Void, Boolean>

private AsyncDownloadBook(DownloadType

downloadType, String urlString)

Creates a new asynchronous task.

private String getBook(String bookUrl) Returns book json string

downloaded from the server.

private Bitmap getBitmap(String bitmapUrl) Downloads logo from the server.

protected void onPreExecute() Initialization of ProgressDialog

protected Boolean doInBackground(Void... params) Perform background book

downloading and saving on SD

card.

protected void onPostExecute(Boolean result) Creates ArrayList of images found

in the book including logo for

further downloading.

Table 43 The “Tailored Book Reader”, methods description of AsyncDownloadBook class

private class AsyncDownloadImages extends AsyncTask<Void, Integer, Boolean>

private Bitmap getBitmap(String bitmapUrl) Downloads image from the server.

protected Boolean doInBackground(Void... arg0) Perform background downloading of

image and saving it on SD card.

protected void onPreExecute() Initialization of ProgressDialog

protected void onPostExecute(Boolean result) Dismiss ProgressDialog.

protected void onProgressUpdate(Integer... values) Updates ProgressDialog by

incrementing number of downloaded

images.

74

Table 44 The “Tailored Book Reader”, methods description of AsyncDownloadImages

class

public class ViewPagerInfoActivity extends Activity

public void onCreate(Bundle

savedInstanceState)

Info activity is starting.

Table 45 The “Tailored Book Reader”, methods description of ViewPagerInfoActivity class

public class ViewPagerMenuActivity extends Activity

public void onCreate(Bundle

savedInstanceState)

Main menu activity is starting.

Table 46 The “Tailored Book Reader”, methods description of ViewPagerMenuActivity

class

private class MyAsyncTask extends AsyncTask<Void, Void, Boolean>

private MyAsyncTask(Class<?> activityClass) Creates a new asynchronous task

protected void onPreExecute() Initialization of ProgressDialog

protected void onPostExecute(Boolean result) Dismiss ProgressDialog.

protected Boolean doInBackground(Void... params) Loads activity which was selected. Ex:

ViewPagerMyBooksActivity,

ViewPagerDownloadActivity,

ViewPagerInfoActivity

Table 47 The “Tailored Book Reader”, methods description of MyAsyncTask class

public class ViewPagerMyBooksActivity extends Activity

public void onCreate(Bundle

savedInstanceState)

MyBooks activity is starting. Loading list of

books from SD card.

Table 48 The “Tailored Book Reader”, methods description of ViewPagerMyBooksActivity

class

class BookFileFilter implements FileFilter

public boolean accept(File pathname) Whether the given file is accepted by this filter.

Accept files with format .khl

Table 49 The “Tailored Book Reader”, methods description of BookFileFilter class

VII. Figures and tables index

Figure 1 Psycholinguistic model of speech processing .. 7
Figure 2 Text in symbols .. 8
Figure 3 Many figures or a few figures, example 1 ... 9
Figure 4 Many figures or a few figures, example 2 ... 10

Figure 5 Many figures or a few figures, example 3 ... 10

Figure 6 Many symbols or a few symbols, example 4 ... 10

Figure 7 Many figures or a few figures, example 5 ... 10
Figure 8 The parts of speech, example 1 .. 11
Figure 9 The parts of speech, example 2 .. 11
Figure 10 The parts of speech, example 3 .. 11

Figure 11 The parts of speech, example 4 .. 11

75

Figure 12 The text in figures with external frame .. 12

Figure 13 The unframed text in figures .. 12
Figure 14 Overview of the system ... 17
Figure 15 Mockup of the “Tailored Book Creator” dialog .. 18
Figure 16 Mockup of the “Tailored Book Editor” interface .. 19
Figure 17 “Image Tagger” interface ... 20

Figure 18 The “Tailored Book Editor” back-end design ... 21
Figure 19 Metadata of .jpg file ... 29
Figure 20 Image details in OS Windows ... 30
Figure 21 Example of framed item or figure .. 30
Figure 22 Result of the text processing .. 34

Figure 23 Structure of default.khl file .. 34

Figure 24 Structure of Little_Red_Riding_Hood.khl file .. 35
Figure 25 Structure of Little_Red_Riding_Hood.bookkhl file .. 35

Figure 26 Structure of books.khl file ... 36
Figure 27 The “Tailored Book Editor” Class diagram ... 38
Figure 28 The “Tailored Book Editor”, implemented classes: Item, Book, BookSaveFormat,

ButtonTabComponent, BookItem .. 38
Figure 29 The “Tailored Book Editor” Implemented classes: TaggerFilter, ImageFilter,

BookFileFilter, MyFilter, TextFileFilter .. 39
Figure 30 The “Tailored Book Editor” Implemented classes Editor, MyImage, RadioButton 39
Figure 31 The “Tailored Book Editor” Implemented classes: PicViewRendere, BookDetails,

DirectoryReader, Tagger .. 40
Figure 32 A screenshot of the “Tailored Book Creator” dialog ... 40

Figure 33 A screenshot of a dialog for .txt file selection ... 41
Figure 34 A screenshot of a dialog for .tagger file selection ... 41

Figure 35 A screenshot of a dialog for the image directory selection .. 42
Figure 36 A screenshot of the “Tailored Book Editor” interface; single selection of the figure for

further split ... 42

Figure 37 A screenshot of the “Tailored Book Editor” interface; two figures selection for further

join .. 43

Figure 38 A screenshot of the “Tailored Book Editor” interface; Project menu 44
Figure 39 A screenshot of the “Tailored Book Editor” interface; File menu 44
Figure 40 A screenshot of the “Image Tagger” interface ... 45
Figure 41 A screenshot of the “Image Tagger” interface; Suggestion list ... 45

Figure 42 Mockup of the “Menu” screen ... 46
Figure 43 Layout design for “Menu”, “Download Books” and “My Books” screens 46

Figure 44 Mockup of the “Info” screen ... 47
Figure 45 Layout design for “Info” screen ... 47
Figure 46 Mockup of the “Download Books” screen .. 48
Figure 47 Mockup of the “My Books” screen ... 48
Figure 48 Mockup of the “Book” screen ... 49

Figure 49 Layout design for “Book” screen ... 49
Figure 50 Layout design for Box item ... 50
Figure 51 The “Tailored Book Reader” activity workflow .. 51
Figure 52 The central configuration file of the “Tailored Book Reader” application 52

Figure 53 The “Tailored Book Reader” Class diagram ... 54
Figure 54 The “Tailored Book Reader”, implemented classes: MenuAdapter, BookAdapter 54
Figure 55 The“Tailored Book Reader” implemented classes: MyPagerAdapter, ViewPagerActivity,

ViewPagerDownloadActivity .. 55

76

Figure 56 The “Tailored Book Reader”, implemented classes: ViewPagerMyBooksActivity,

BookItem, ManuRow, ViewPagerInfoActivity, BookFileFilter, ViewPageMenuActivity,

ImageFileFilter ... 55
Figure 57 The “Tailored Book Reader”, implemented classes Box, Book .. 55
Figure 58 A screenshot of the “Tailored Book Reader” mobile application; “Menu” screen 56
Figure 59 A screenshot of the “Tailored Book Reader” mobile application; “Downloaded Books”

screen .. 56
Figure 60 A screenshot of the “Tailored Book Reader” mobile application; “My Books” screen 57
Figure 61 A screenshot of the “Tailored Book Reader” mobile application; “Info” screen 57
Figure 62 A screenshots of the “Tailored Book Reader” mobile application; “Book” screens 57
Figure 63 System usage workflow ... 59

Table 1 Penn Treebank Tagset ... 26
Table 2 Punctuation Tagset .. 26

Table 3 Interpretation of the Simple Dublin Core properties, applied to photo material 29
Table 4 word and tag table representing array list ... 31
Table 5 Conversion of tags of POS tagger to WordNet tags ... 32
Table 6 Position assignment ... 33
Table 7 Processing of the positions .. 33

Table 27 Current Device Distribution in November 1, 2012 ... 52
Table 47 The goals and attainment score levels ... 62
Table 48 Importance and difficulty scale ... 63

Table 49 The weighting and attainment score levels achieved by two children 63
Table 8 The “Tailored Book Editor”, methods description of Editor class 67

Table 9 The “Tailored Book Editor”, methods description of RadioButton class 67
Table 10 The “Tailored Book Editor”, methods description of Book class 67

Table 11 The “Tailored Book Editor”, methods description of BookDetails class 67
Table 12 The “Tailored Book Editor”, methods description of BookFileFilter class 67
Table 13 The “Tailored Book Editor”, methods description of BookItem class 67

Table 14 The “Tailored Book Editor”, methods description of BookSaveFormat class 67
Table 15 The “Tailored Book Editor”, methods description of ButtonTabComponent class 67

Table 16 The “Tailored Book Editor”, methods description of TabButton class 68
Table 17 The “Tailored Book Editor”, methods description of ComboBoxRenderer class 68
Table 18 The “Tailored Book Editor”, methods description of DirectoryReader class 68
Table 19 The “Tailored Book Editor”, methods description of ImageFilter class 68

Table 20 The “Tailored Book Editor”, methods description of Item class .. 68
Table 21 The “Tailored Book Editor”, methods description of MyFilter class 68

Table 22 The “Tailored Book Editor”, methods description of MyImage class 69
Table 23 The “Tailored Book Editor”, methods description of PicViewerRenderer class 69
Table 24 The “Tailored Book Editor”, methods description of Tagger class 69
Table 25 The “Tailored Book Editor”, methods description of TaggerFilter class 69
Table 26 The “Tailored Book Editor”, methods description of TextFileFilter class 69

Table 28 The “Tailored Book Reader”, methods description of Book class 69
Table 29 The “Tailored Book Reader”, methods description of BookItem class 70
Table 30 The “Tailored Book Reader”, methods description of BooksAdapter class 70
Table 31 The “Tailored Book Reader”, methods description of Box class 70

Table 32 The “Tailored Book Reader”, methods description of MenuRow class 70
Table 33 The “Tailored Book Reader”, methods description of MenuAdapter class 70
Table 34 The “Tailored Book Reader”, methods description of MyPagerAdapter class 72

Table 35 The “Tailored Book Reader”, methods description of BoxObserver interface................... 72
Table 36 The “Tailored Book Reader”, methods description of TheObserver interface 72
Table 37 The “Tailored Book Reader”, methods description of ViewPagerActivity class 73

77

Table 38 The “Tailored Book Reader”, methods description of ViewPagerDownloadActivity class

 .. 73
Table 39 The “Tailored Book Reader”, methods description of ImageFileFilter class 73
Table 40 The “Tailored Book Reader”, methods description of AsyncDownloadBook class 73
Table 41 The “Tailored Book Reader”, methods description of AsyncDownloadImages class 74
Table 42 The “Tailored Book Reader”, methods description of ViewPagerInfoActivity class 74

Table 43 The “Tailored Book Reader”, methods description of ViewPagerMenuActivity class 74
Table 44 The “Tailored Book Reader”, methods description of MyAsyncTask class 74
Table 45 The “Tailored Book Reader”, methods description of ViewPagerMyBooksActivity class74
Table 46 The “Tailored Book Reader”, methods description of BookFileFilter class 74

VIII. Bibliography

1. Augmentative and Alternative Communication in the Early Childhood Years, July 2007

2. L’intervento di Comunicazione Aumentativa e Alternativa (CAA) in età evolutiva Quaderni

acp 2007

3. AAC Augmentative and Alternative Communication resource guide for teachers.

4. Office of Special Education Programs. To assure the free appropriate public education of all

children with disabilities: Twenty-first annual report to Congress on the implementation of the

Individuals with Disabilities Education Act, 1999. Washington, DC: OSEP, U.S. Department of

Education, April 10, 2000.

5. Matas JA, Mathy-Laikko P, Beukelman DR,Legresley K. Identifying the nonspeaking

population: a demografic study. Augmentative and Alternative Communication 1985;

6. Ministero dell’Istruzione, dell’Università e della Ricerca; Direzione Generale per i Sistemi

Informativi. Sedi, alunni, classi, dotazioni organi-che del personale della scuola statale, AS

2005/2006.

7. Children with Apraxia and Reading, Writing, and Spelling Difficulties by Joy Stackhouse,

Ph.D. 2008

8. Beukelman DR, Mirenda P. Augmentative and Alternative Communication: management of

severe communication disorders in children and adults (2nd ed). Baltimore: Paul H Brookes, 1998.

9. Schlosser RW. The efficacy of augmentative and alternative communication: Toward

evidence based practice. New York: Academic Press, 2003

10. Costantino MA, Marini M, Bergamaschi E, Lanzini L. Dal “libro su misura” alla “biblioteca

di tutti”. Quaderni acp, 2006;

11. L’intervento di Comunicazione Aumentativa e Alternativa (CAA) in età evolutiva, 2007

12. Piacevoli esperienze di letture al bambino. Centro sovrazonale di comunicazione

aumentativa Milano – Verdello

13. Libri “su misura” e “Nati per Leggere”, 2009

14. Cochran, P.S. Technology for individuals with speech and language disorders. In

Technology and exceptional individuals. 3rd ed. J.D. Lindsay, ed. Austin, TX: Pro-Ed, 2000

15. Applying Technology to Visually Support Language and Communication in Individuals

with Autism Spectrum Disorders 2011

16. White, B.Y., and Fredrickson, J.R. Inquiry, modeling, and metacognition: Making science

accessible to all students. Cognition and Instruction,1998

17. Mack, C.G., Koenig, A.J., and Ashcroft, S.C. Microcomputers and access technology in

programs for teachers of visually impaired students. Journal of Visual Impairments and Blindness,

1990 Impairment. London: Whurr; 1999.

18. Fox L, Sohlberg M.M, Fried-Oken M. Effects of conversational topic choice on outcomes of

augmentative communication intervention for adults with aphasia. Aphasiology. 2001;

78

19. Lasker J, Bedrosian J. Promoting acceptance of augmentative and alternative

communication by adults with acquired communication disorders. Augmentative Altern Commun.

2001;

20. Parr S, Byng S, Gilpin S. Talking About Aphasia. Bristol, PA: Open University Press;

1997.

21. Fox L, Sohlberg M. Meaningful communication roles. In: Beukelman D, Yorkson K,

Reichle J, eds. Augmentative Communication for Adults with Neurogenic and Neuromuscular

Disabilities. Baltimore: Paul H. Brookes; 2000

22. Wikipedia, Part-of-speech tagging, http://en.wikipedia.org/wiki/Part-of-speech_tagging

23. Mobile devices & communication apps An AAC‐RERC White Paper

24. Java Reference Library, By David Flanagan, O'Reilly, 1997

25. Java I/O, Elliotte Rusty Harold, O'Reilly, 1999

26. Java Swing, Robert Eckstein, Mare Loy and Dace Wood, O'Reilly & Associates, 1998

27. Android UI Fundamentals Develop and Design, Jason Ostrander

28. Learn Java for Android Development, Jeff Friesen, 2010

29. Android Application Development, Lauren Darcey, Shane Conder, 2010

30. Head First Android Development, Jonathan Simon, 2011

31. Android Application Development, Rick Rogers, John Lombardo, Zigurd Mednieks, and

Blake Meike, 2009, O’Reilly Media

32. Goal Attainment Scaling (GAS) in Rehabilitation. A practical guide. Herbert Dunhill Chair

of Rehabilitation, King's College London.

33. Autonomamente: Using Goal Attainment Scales to Evaluate the Impact of a Multimodal

Domotic System to Support Autonomous Life of People with Cognitive Impairment, Thimoty

Barbieri, Piero Fraternali, Antonio Bianchi, and Clarissa Tacchella, 2010

34. Goal Attainment Scaling: A General Method for Evaluating Comprehensive Community

Mental Health Programs, Thomas J. Kiresuk, Ph.D. Robert E. Sherman, M.S., 1968

35. Princeton University, What is WordNet? http://wordnet.princeton.edu/

36. Wikipedia, Wordnet, http://en.wikipedia.org/wiki/WordNet

37. Yves Lafon, Bert Bos, Describing and retrieving photos using RDF and HTTP, W3C Note

19 April 2002

38. JGrid - Grid Component for Java Swing http://code.google.com/p/jgrid/

39. Piacevoli esperienze di letture al bambino, riassunto. Centro sovrazonale di comunicazione

aumentativa, Milano Verdello

40. AWT vs Swing, Josh Fletcher, 2009

41. Google-gson, A Java library to convert JSON to Java objects and vice-versa

http://code.google.com/p/google-gson/

42. Semantic Search, Wijekoon, University of Moratuwa, 2008

http://asanga86.wordpress.com/2008/08/

43. Extensible Metadata Platform (XMP) http://www.adobe.com/products/xmp/overview.html

44. Practical resource description framework (rdf), Etutorials.org

http://etutorials.org/Misc/Practical+resource+description+framework+rdf/

http://en.wikipedia.org/wiki/Part-of-speech_tagging
http://wordnet.princeton.edu/
http://en.wikipedia.org/wiki/WordNet
http://code.google.com/p/jgrid/
http://code.google.com/p/google-gson/
http://asanga86.wordpress.com/2008/08/
http://www.adobe.com/products/xmp/overview.html
http://etutorials.org/Misc/Practical+resource+description+framework+rdf/

