

Politecnico Di Milano
Facoltà di Ingegneria dell’Informazione

POLO REGIONALE DI COMO

Master of Science in Computer Engineering

Automated Fault Detection Tool – Interface Application

Supervisor: Prof. Fabio Salice

Master Graduation Thesis by: Iqbal, Azhar

Student Id. Number: 736418

AFDIA – AFD Tool Interface Application Page 1

Table of Contents

 Abstract (In English) .. 3

 Sommario (In Italian) ... 4

 Acknowledgment ... 5

 List of figures.. 6

 List of Tables .. 7

1. Introduction .. 8

 What is AFD Tool .. 8

 What is AFDIA (Automated Fault Detection – Interface Application) .. 9

2. AFD Tool .. 10

 Introduction ... 10

 Finite Stat Machine Representation of AFD Tool ... 12

 AFD Tool Methods, Input/output Mechanism ... 17

3. AFDIA – Interface Application .. 23

 Application Architecture, importance and functional detail 24

 Tool/Technologies Used .. 29

 DB Schemas ... 32

 AFDDB, Tables & usage details .. 33

 AFDDB –Test Administrator, Tables & usage details ... 36

4. UML Diagrams & websites Structures ... 38

 Overview .. 38

 AFDIA - Component Diagram ... 40

 System Level Use Case Diagram .. 42

 Detail Level Use Case Diagram .. 44

 UC[Descriptive] : Upload a CTM Model .. 45

 UC[Descriptive] : Selected an Existing uploaded Model .. 46

 UC[Descriptive] : View All Tests ... 47

 UC[Descriptive] : View All Strategies.. 48

 UC[Descriptive] : View All Components ... 49

 UC[Descriptive] : Send Tests for Evidence Insertion by Administrator 49

 UC[Descriptive] : View Inserted Evidences .. 50

 UC[Descriptive] : Remove/Clean Evidences ... 51

AFDIA – AFD Tool Interface Application Page 2

 UC[Descriptive] : View History of Performed Tests ... 52

 UC[Descriptive] : View All Pending Sessions .. 52

 UC[Descriptive] : Add Evidences .. 53

5. AFDIA Implementation Detail ... 55

 Overview .. 55

 AFDOnline .. 55

 Index.aspx .. 55

 UploadModel.aspx .. 56

 AvailableBNEModels.aspx ... 57

 Test.aspx .. 59

 Component.aspx ... 60

 Strategy.aspx ... 61

 AddEvidence.aspx .. 62

 Remove_CleanEvidence.aspx .. 64

6. Deployment .. 66

 Deployment of AFDOnline(Website) ... 66

 Deployment of AFD Webserver & Test Administrator(Website) 71

7. Appendix A : Code .. 73

 Project: AFD WebServer .. 73

 Project: AFDIA Test Administrator .. 77

 Project: AFDIAOnline ... 88

8. References ... 130

AFDIA – AFD Tool Interface Application Page 3

ABSTRACT

AFD (Automated Fault Detection Tool) Testing tool in existing state is a command-based,

mono – interface, with absence of results and history management of the performed tests.

SUT (system under test) is a board consiste of multiple electronic components. A set of

Tests executed on board and derived their results. To start testing procedure a CTM

(component tests matrix) is strictly required. In more compact spectrum, AFD Tool is a .dll

file contains a dozen of method which encapsulate the core logic for performing the

Testing. The thesis work’s purpose is to create an application which should be web-based,

concurrent, interactive, effective and efficient storage mechanism of performed tests in a

fashionable and effective way, much commonly in a relational database. The challenging

parts of this work are: to use the .dll (unmanaged code) in managed code like C#, managing

the input/output of .dll methods which all are based on Text files, Managing the outputs

files’ format, which are always specific formatted text files and need to be parsed on an

individual pattern, stimulation of the incremental iteration of the testing and design the

meaningful and appealing interfaces.

 The approach for the implementation, we use the standard and convenient development

environment like .net in our case. Upon the successful implementation of the web interface

named as AFDIA (Automated Fault Detection Tool – Interface Application), it will be really

easy and user-friendly to perform testing, view the result in rich GUI-based interface,

explore the history of the performed tests and save the resulted data into relational

database format, which is a standard approach to save information in meaningful, relational

oriented and for fast extraction of stored data. In conclusion, AFDIA will help the tester to

view the results of Tests in rich GUI format, storage of the result data for viewing history

purposes and overall will be benefited to reduce the time consumption, cost and effort

instead which we invest in case of command-based system.

AFDIA – AFD Tool Interface Application Page 4

sommario

Lo strumento di test AFD (Automated Fault Detection Tool) allo stato attuale è uno

strumento a riga di commando, mono-interfaccia, con assenza di gestione dei risultati e

dello storico dei test eseguiti. SUT (sistema in prova) è un consiglio consiste di molteplici

componenti elettronici. Una serie di test eseguiti a bordo e loro derivati risultati. Per avviare

la procedura di verifica di un marchio comunitario (componente della matrice test) è

strettamente necessario. Dal punto di vista software, AFD è un file .dll che contiene una

dozzina di metodi che incapsulano la logica di base per eseguire il test. Lo scopo della tesi è

realizzare una applicazione web-based, concorrente, interattivo ed efficiente per gestire,

eseguire e salvare il risultato dei test eseguiti in un modo semplice e distribuito, facendo

uso di un database relazionale. Le parti significative di questo lavoro sono: utilizzo in modo

adeguato la .dll attraverso un applicativo realizzato in C#, gestione dell’input/output dei

metodi della .dll (il meccanismo di comunicazione è basato su file di testo), gestione del

formato dei file di output (sempre file di testo specificamente formattati e che hanno

bisogno di essere interpretati su uno schema individuale), gestione del meccanismo di

scelta incrementale del test, e progettazione di interfacce significative e si facile uso e

comprensione .

Come strumento per l’implementazione, è stato utilizzato l’ambiente di sviluppo .net.

Attraverso l’implementazione dell’interfaccia web - chiamata AFDIA (Automated Fault

Detection Tool – Interface Application)- l’esecuzione e la gestione dei test è semplificata e di

facile utilizzo così come risulta semplice avere un riscontro sullo stato della analisi sugli

apparati; in particolare, vedere i risultati (interfaccia basata su una GUI), esplorare la storia

dei test eseguiti e salvare i dati risultanti. In conclusione, AFDIA aiuta l’ingegnere che si

occupa dei test a vedere e analizzare i risultati del test, immagazzinare i dati risultanti allo

scopo di vedere lo storico. AFDIA, inoltre, riduce tempo, costo e sforzo nella operazione di

analisi degli apparati rispetto al caso dell’attuale sistema a riga di comando.

AFDIA – AFD Tool Interface Application Page 5

ACKNOELEDGEMENT

I am thankful from the core of my heart to Prof. Fabio Salice for his continuous
Support, supervision and guidance that helped me to learn the basics of Research and

development.

And also thanks to Luca Amati, who’s effortless and rigorous guidelines and help make it

possible to achieve the desired results.

AFDIA – AFD Tool Interface Application Page 6

List of Figures:

Figure 2.1: Multi-Layered AFD Tool architecture…………………………………………………………..11
Figure 2.2: Finite Stat Machine Model of the AFD Application………………………………………12
Figure 2.3: Add Evidence Process (AFD Server and Test DB)………………………………………...15
Figure 3.1: AFDIA Component and Communicative Architecture………………………………..…24

Figure 3.2: AFDOnline Communicative Architecture with AFD Tool Dll……………………….…27

Figure 3.3: AFDOnline used Technologies/Tools…………………………………………………………...30

Figure 3.4: AFDIA Test Administrator used Technologies/Tools…………………………………….31

Figure 3.5: AFDIA WebServer used Technologies/Tools………………………………………………..32

Figure 3.6: AFDDB schema…………………………………………………………………………………………….34

Figure 3.7: schema Database AFDDBAdministrator………………………………………………………37

Figure 4.1: Three complementary views or set of UML diagrams………………….……………….39

Figure 4.2 Elements of Functional View………………………………………………………….…………....40
Figure 4.3: Component Diagram AFDIA………………………………………………………………………....42
Figure 4.4: System Level Use Case Diagram of AFDIA……………………………………………………..43
Figure 4.5: Detail Level Use Case Diagram of AFDIA……………………………………………………..…45
Figure 5.1: webpage Index.aspx………………………………………………………………………………..……56

Figure 5.2: webpage UploadModel.aspx……………………………………………………………………...…57

Figure 5.3: webpage AvailableBNEModels.aspx………………………………………………………….....59

Figure 5.4: webpage Test.aspx…………………………………………………………………………………….….60

Figure 5.5: webpage Component.aspx………………………………………………….……………………...…61

Figure 5.6: webpage Strategy.aspx…………………………………………………………………………….…...62

Figure 5.7: webpage AddEvidence.aspx……………………………………………………………………….....64

Figure 5.8: webpage Remove_CleanEvidence.aspx………………………………………………………….66

Figure 6.1: inetpub/wwwroot/FoldersForDeployment.…………………………………………………….66

Figure 6.2: Run VS as administrator………………………………………………………………………………….67

Figure 6.3: Project on Local Disk……………………………………………………………………………………….67

Figure 6.4: Publish WebSite……………………………………………………………………………………………..68

Figure 6.5: Publish Web Profile………………………………………………………………………………………..68

Figure 6.6: Published Web Content………………………………………………………………………………….69

Figure 6.7: IIS Manager…………………………………………………………………………………………………….69

Figure 6.8: IIS Manager- Add New Web Site……………………………………………………………………..70

Figure 6.8: IIS Manager- Configure Added WebSite………………………………………………………….70

Figure 6.9: IIS Manager- Configure Test Administrator WebSite...………………………………….…71

Figure 6.10: IIS Manager- Configure AFD Webserver WebSite…………………………………………..72

AFDIA – AFD Tool Interface Application Page 7

List of Tables:

Table 3.2: Scheme table Dbo.Model……………………………………………………………………………..34

Table 3.3: Scheme table Dbo.TestResult……………………………………………………………………….34

Table 3.4: Scheme table Dbo.Sesion………………………………………………………………………..……35

Table 3.5: Scheme table Dbo.Component……………………………………………………………….…….35

Table 3.6: Scheme table Dbo.TestResult………………………………………………………………..….….36

Table 3.7: Scheme table Dbo.TestEvidences………………………………………………………………...37

AFDIA – AFD Tool Interface Application Page 8

INTRODUCTION

In the present thesis, we are working on developing a richly interactive web based user
interface for the AFD Tool. AFD (Automated Fault Detection) Tool is an automatic tool for
the identification of a failure in a complex system. The Tool exploits a general purpose
mathematical methodology based on Bayes Belief Network. The AFD Tool implemented for
Cisco, targets as system under analysis a digital board for networking applications.

What is AFD Tool?
The Automatic Fault Detective Tool is an automatic tool for the identification of a failure in
a complex system. The Tool exploits a general purpose mathematical methodology based
on Bayes Belief Network. The AFD Tool implemented for Cisco targets as system under
analysis a digital board for networking applications. AFD Tool is currently workable trough
dos-based Command line instructions; output of all provided operations is Observable in
text file format. There is no GUI (Graphical User Interface) for the Tester to interact with the
Tool conveniently and effectively. There is a strong absence to manage the test results for
further exploration and for the history purposes. These are the major pitfalls or frankly
speaking the major weaknesses of the Tool. By more summarizing, it is valid to say that it is
a code Library which contains the logic of derived mathematical equations used for Fault
detection of complex Cisco systems, and this specific researched and implemented logic is
invoke able by simple programming functions or methods under a programming paradigm.
The programming environment selected for the implementation of this research was Linux,
and programming language was Linux-C. The complete functionality of the AFD Tool as
today is available in total around a dozen C language traditional methods. Whereas the
detail of each method, its pre and post conditions, that’s all will be described in a dedicated
session of this document.

As in the above paragraph provided information is a rapid glimpse about the current status
of the AFD Tool. And now this is pretty easy to figure out the purpose and need of
developing a solid Presentation layer upon these existing code libraries (.a or .dll). This
presentation layer should be responsible to overcome all these pitfalls or discrepancies
which have been identified in the current state of the Tool. In more detail description that
would be fantastic to classify the solid functional components of the Presentation Layer. So
in this regards we have to divide our PL (presentation logic) into different components. In
the following text we are going to see the different main purposed components and how
they communicate each other to achieve the final Goal of this work.

AFDIA – AFD Tool Interface Application Page 9

What is AFDIA?

Before going further, let’s rename our “Presentation Layer” of the AFD Tool with a more
meaningful name, can be called AFDT-IA (Automated Fault Detection Interface Application),
so from now on we will always use this purposed name for all references. Back to main
stream discussion, AFDT-IA implementation is composed of the following main functional
components:

1- AFDT-IA Domain: component responsible for Database transactions during one
testing session of the Tool. The more detailed description of this component can be
seen in a separate dedicated segment.

2- AFDT-IA Parser: component responsible for text file parsing. As to call the underlying
.Dll methods, there is always need to prepare a text-based input file before calling
any specific library method and there is also need to parse the resulted text-based
file, which contains the output of the specific called methods. This output can
contains Errors, warnings or normal expected output results. The more detailed
description of this component can be seen in a separate dedicated segment.

3- AFDT-IA Presentation: component responsible for:

 Preparing Web Pages contain business logic and communicating with
other components of the AFDT-IA to cope up with the final results.

 Call the .Dll methods that is most important and vital task, that is
encompasses within the Presentation block, the reason is we have
Business logic in the same component. So to call these functional is all
about a sequence. The more detailed description of this component can
be seen in a separate dedicated segment.

4- AFDT_IA Test: component responsible for Unit Testing of implemented business
logic, test the wrapper method which can confirm the validity of the Library methods
of the tools. More openly saying, this component is not for deploying, but just to test
the major Code snippets.

The ultimate result of the activity is, to come up with an autonomous, effective and efficient
Interface of the AFD Tool. Which is web-based, multi-threaded, user friendly, save test
results in relational databases and enrich with rich graphical presentation of the output
result.

AFDIA – AFD Tool Interface Application Page 10

AFD TOOL

This Chapter is solely dedicated to AFD Tool. It describes the general overview of the tool,

its functionalities and some schematic insight. The Automatic Fault Detective Tool is an

automatic tool for the identification of a failure in a complex system. The Tool exploits a

general purpose mathematical methodology based on Bayes Belief Network. The AFD Tool

implemented for Cisco targets as system under analysis a digital board for networking

applications.

The system is described with a high-level simplified model as a group of Components. Those
items represent an abstraction of the real electronic components contained in the board.
Components are the nodes of a topological graph, where edges represent an abstraction of
the interconnections implemented in the board. The set of all Components contained in a
system is referred to as Component Set.

On every system it is possible to run a set of diagnostic operations. Those operations are
grouped and they are executed together in a sequential fashion. Each group of operations
(and not the single ones) is called Test and it is uniquely identified by a name. For each
system a defined group of Tests is available, and it is referred to as Available Test Set (ATS).
The expert reduces the complexity of the analysis be selecting a subset of Tests among the
available ones, and they are the only tests that can be executed by the test operator. This
subset is referred to as Used Test Set (UTS). For each Test, the expert (test designer) defines
a specific expected result. The Test is considered failed when the expected results differ
from the effective results obtained by running the operations on the system under analysis.
The Test is passed otherwise.

Each pair (Component, Test) is related to a Coverage level, representing the degree at which
a Test is able to detect a failure on a Component. Coverage are extracted by a coarse label
set, namely High (H), Medium (M), Low (L), none (-). The first label describes a relation
when a test stimulates largely a component; on the other hand, when the relation is absent
there is no stimulation at the entire Component when the Test is run. The information of
the coverage levels is summarized in the so called Component-Test Matrix (CTM).

This matrix has dimensions |C| X |T|, where |C| X |T| represents the cardinalities of the
component and Test Sets. This matrix is automatically transformed into an equivalent Bayes
Belief Network (BBN). All Components and Tests are mapped into the BBN as nodes
representing a Boolean random variable, associated to a probability value. For Component
nodes, probability range 0 to 1 represents a component that is faulty or non-faulty (the
higher the probability node value, the higher the probability of the Component to be faulty-
free). For Test nodes, probability range 0 to 1 represents a test that is going to fail or to pass
(the higher the probability node value, the higher the probability of the Test to pass).

AFDIA – AFD Tool Interface Application Page 11

The BBN is exploited by a numerical engine to extract the probability of a Component to be
faulty or not. The Components are sorted in an ascending order and the Components with
the lower probability to be faulty-free are referred to as Faulty Candidates. The Bayes Belief
Network updates those probabilities values inserting new information about the outcome
of new Tests that the test operator decides to run. The AFD Tool contains an Artificial
Intelligence engine that is able to sort, at any moment, the tests in UTS that have not been
executed yet. A metric function is used to identify the most Significant, among them to be
executed first. As it is shown in this picture 1.1, this approach is designed to reduce test
session’s execution time and improve the failure diagnosis process efficiency.

All faults are observable: this means that whenever a failure occurs in a Product, the
misbehavior affects the results of (some) operations and in the Test Set at least one Test
fails. For each system, a subset of the UTS is run entirely on the system to detect the
presence of a failure. This set of tests is referred to as Initial Test Set (ITS).Entirely means
that all tests contained in the ITS are executed as the first step for the analysis of a board.
Initial Test Set is defined ad-hoc by the Test Designer or it is automatically extracted from
the system description by an extension of the AFD Tool.

The Tool has been implemented on a multi-layered class hierarchy (Figure 0.1). Only the
highest layer is available to interface with, in order to implement the User Interface.

Figure 2.1: Multi-Layered AFD Tool architecture

AFDIA – AFD Tool Interface Application Page 12

FSM (Finite Stat Machine) AFD Tool

Now, it is time to see the functionalities those should be implemented through the AFDIA in
order to comply with the actual core requirements. This can be best explained by a Finite
stat machine below.

Note: we will use the same FSM Model to describe our AFDIA in detail and see the mapping
of each stat into Application User interfaces.

Figure 2.2: Finite Stat Machine Model of the AFD Application

Here we are going to explain each stat description in bullets.

AFDIA – AFD Tool Interface Application Page 13

2.1 Initialization:

The initialization stat is composed of three steps that need to be completed sequentially in

order to reach the Idle Stat of the FSM.

2.1 .1 Connection

The AFD Server is always up and considered to be working correct when AFDIA starts. AFDIA

try to connect with the AFD Server and quit immediately when AFD Server is not available

due to any reason. AFDIA in return must inform the user about the specific error trough an

explicit message and prevent any further operation.

2.1 .2 File Loading

AFDIA has to inform AFD Server Application about the required files required to initialize

the AFD Tool. In particular AFDIA must transmit CTM Model file to AFD Server, if this is not

available yet. Without the posting of this Model file you cannot proceed further with your

testing and this stat will be considered as incomplete. For file loading there is two main

mechanisms one is user would upload a new CTM Model from his computer and transfer it

to the server trough AFDIA, the second is user will choose a model from the existing

available models on the server.

2.1 .3 Database Connections

The AFD Server is supposed to query the Database containing the information of the test
sequences that can be executed on the board under test. This connection is to be correctly
activated before exiting the Initialization state; otherwise, an error message is to be
returned and the application is to be close. During the Initialization phase, the database will
be queried to retrieve the unique ID of current session. A new session entry is to be added
to the Database.

2.1 .4 AFD Wrapper Method(s) Initialization

Once the connection to the AFD Server is open, source files are available, database test
connection is active, now it is possible to call the AFD Wrapper Initialization methods. They
can return a no-error code, and the application moves to the Query (idle) state. Other
operations related to the implementation details could (must) be performed here before
making the application operative. Otherwise, specific error code (and messages) must be
logged and the application must quit, signaling an explicit error message to the User.

AFDIA – AFD Tool Interface Application Page 14

2.2 Query

Query state is the idle state of the FSM. This state can be reached from the initialization

state; it can also be reached from the Add, Explore and clear operations stated in the FSM,

and representing the real interaction from the User and AFD Tool.

2.2 .1 Test Visualization

AFDIA trough the AFD Server can query the AFD Wrapper method to get the information of
the Test nodes. Particularly user is able verify in a table-based or equivalent form, the list of
tests for which the outcome passed/failed known. The user should be able to visualize the
static reference information (test name and test ID) and dynamic state-specific information
(test outcome). The user should be able to sort the information in multiple ways.

Initialization Test set Visualization: The AFD Wrapper will contain a method used to obtain
a list of tests that the operator is required to execute in any case at the beginning of a test
session. This method returns a list of tests that depend only on the source file containing
the CTM, and it is to be called once (repeated calls will return exactly the same values). The
visualization of this list is to be similar with the visualization of the other tests.
It is up to the implementer to decide how to organize the visualization of this information in
the AFD User Interface.

2.2 .2 Component Visualization

AFDIA trough the AFD Server can query the AFD Wrapper method to get the information of
the Component nodes. Particularly user is able verify in a table-based or equivalent form,
the list of components contained in the system under analysis. The user should be able to
visualize the reference information (component name and component ID) and dynamic
state-specific information (faulty candidate probability) and to sort information in multiple
ways. The user should be able to sort the information in multiple ways.

2.2 .3 Strategy Visualization

AFD Server should recognize as strategies all tests not performed yet, or groups of them. A
strategy identify a test or a group of tests that the AFD Tool suggests to the user (test
operator) in order to shorten test session time and to increase the efficiency of the fault
localization. In a preliminary phase, and in the current implemented version of the AFD
Wrapper, only single tests can be seen as strategies. They can be accessed with specific
query methods available in the AFD Wrapper.

The user should be able to visualize all possible strategies, in a compact fashion (strategy
name, strategy ID) or in an extended fashion (list of tests composing the strategy, numeric

AFDIA – AFD Tool Interface Application Page 15

values of the metric used to sort the strategy efficiency). The table-based visualization is
mandatory but other strategies are also possible. The user should be able to shorten the
visualized list of strategies in an efficient way, in order to concentrate only on the most
promising ones.

2.3 Add Evidences

The user will be presented with a list of available tests. On this list, all tests that have not
been executed yet will be available for selection, and a unique “Execute” command should
be issued. The selection mode definition is not constrained. A proposed mechanism is an
exclusive check-box, for instance Select Initial Test Set and Select Strategy. In the latter
case, the user should be able to pick up a specific strategy on a list or a combo-box.

Test Execution: The procedure to be followed in order to execute tests is shown in Figure
2.3. The test database contains the outcome of all available tests. A future implementation
will execute the test and will insert the test outcome into the database only on-demand, i.e.
when a test execution is required. For a prototype version, this operation is not required.
Thus the AFD Server will query the test database to obtain the outcome of the execution of
the required test or of the required group of tests. Once the query result is available, the
AFD Server will call the specific methods of the AFD Wrapper in order to synchronize the
AFD Tool application with the new information.

Figure 2.3: Add Evidence Process (AFD Server and Test DB)

AFDIA – AFD Tool Interface Application Page 16

The AFD Tool will return to the Query idle state when the add evidence operations have
been completed.

2.4 Explore Strategies
In order to decide the optimal test sequencing for diagnosis, the AFD Tool provides the user
with an automatic exploration methodology. This exploration ration maximizes the residual
information that can be obtained by each test (or by a group of tests) that have not been
executed yet. This information is transformed in a Strategy ranking that is proposed to the
user according to 2.2.3. The user should be able to select an exploration method of the
remaining tests, which will produce a set of possible Strategies. Those exploration methods
are, for instance, select next test method, select next 2-tests method, select next k-tests
method, at the moment of writing, only the first exploration policy is available.
The user will be able to explore the possible Strategy set starting from the Query state. This
exploration will be executed with the specific methods available in the AFD Wrapper. This
operation can be executed an undetermined number of times but the result would not
change until Add or Remove states have not been successfully traversed at least once.

The execution of the Exploration operation does not affect the content of the test database.
The execution of this exploration could be implemented in an automatic policy after any
Add or Remove operation, or it could be demanded to the user with an explicit call. The AFD
Tool will return to the Query idle state when the explore strategy operations have been
completed.

2.5 Remove/Clean Evidences
The AFD Server provides the user with a mechanism to remove the outcome of a test or a
group of tests previously inserted. This possibility is required for usability but it has to be
strictly regulated for (back-ward) compatibility reasons. In particular, two situations could
occur in a typical remove/clear scenario.

Specific Evidence Removal: Given the visualization mode described in 2.2.1, the user will be
able to remove the insertion of the outcome evidence relative to a test or a specific group
of tests. The AFD Server will be responsible for updating the test database content,
modified with insertion procedure described in 2.3, in order to keep the consistency of the
test database.
Complete evidence removal: Given the visualization mode described in 2.2.1, the user will
be able to remove the insertion of any available outcome evidence. The AFD Server will be
responsible for updating the test database content, modified with insertion procedure
described in 2.3, in order to keep the consistency of the test database.

AFDIA – AFD Tool Interface Application Page 17

AFD Tool Wrapper Methods & their Utilization

The interaction of the AFDIA with the AFD Tool is performed using a set of functions. Those
functions represent the states of the AFD Tool, as depicted in the Finite State Machine of
the AFD Tool.

Introduction: we recall quickly the four important states of the FSM of AFD Tool:

1. Initialization: the CTM Model loaded, along with the components and test lists, all
probabilities are cleared and set to initial values, all tests outcomes are cleared and
set to value UNKOWN.

2. Strategies exploration: Tests to be executed are evaluated by the AFD Tool and ranked.
Different policies of exploration are available like single, Multiple and K-Step. A list of
possible tests to be executed and an evaluation matric returned.

3. Test Outcome insertion and Removal: When new tests are executed and their outcomes
(PASS or FAIL) become available, they are fed to the system. If this is necessary test
outcomes previously inserted can be also removed. With these operations,
components and test probabilities are updated.

4. Finalization the system model is unloaded, all structures are cleared. The tool is ready
for another initialization (or to be closed).

Usually, the user application starts a test session with step 1. Then steps 2 and 3 are
repeated alternatively, executing the tests selected by step 2 with external equipment and
passing the PASS/FAIL outcome returned by such external equipment to AFD in step 3. All
test sessions are concluded with step 4.

AFDIA – AFD Tool Interface Application Page 18

AFD Tool Methods (Input/output mechanism)

Passing Parameter: Each function requires a text file containing its input parameters. If
the function name is XYZ (), then the input file name must be XYZ_input.txt. These input
files should be in C:/TempAFDTool, if these files do not exist, then code could crash. Default
locations for these files are hard coded in AFD_common.h as AFD_TEXTFILES_PATH macro.
This default path is changeable but in case of change a compilation is needed of the project,
because at the end we are using .Dll, which is a compiled file, so this information must be
noted into the Dll. If input file are absent, the function will not raise an exception. A specific
error will be reported in the output _le, with a specific error code (see later).

Then the function will return without performing any further operation, nor raising any
exception. Do note that if the output _le cannot be created, a message is sent to STDERR;
also in this case, the function will return without performing any further operation, nor
raising any exception. All parameters must be written in the input file as a comma-
separated list of strings. A comma is required also after the last parameter. This list of string
must be written in the first line of the file.

Example: parameter1, parameter2, parameter3... parameter Last, {EOF}

Where {EOF} represents the End Of File character, all parameters are strictly ordered, as
specified for each function. It is up to the user application to ensure that the content of the
input file is correct. If a function requires no input, the file is still required; otherwise an
error will be reported. However, the file is simply opened and closed, but its content is not
read.

Return value: Each function generates a text file containing its output. If the function

name is XYZ (), the output file name must be XYZ_output.txt. The output file is always

overwritten and its previous or existing content will be discarded. These input files should

be in C:/TempAFDTool, if these files do not exist, then code could crash. Default locations

for these files are hard coded in AFD_common.h as AFD_TEXTFILES_PATH macro.

The output file is always created, before trying to access the input file. Thus, the output file
will contain an error if the input file cannot be created. In this case, the function will return
without performing any further operation, nor raising any exception. Do note that if the
output file cannot be created, a message is sent to STDERR; also in this case, the function
will return without performing any further operation, nor raising any exception.

AFDIA – AFD Tool Interface Application Page 19

Output files are arranged in two lines:

 The first line will contain a positive integer value representing the error code. Error
codes are reported in AFD common.h. When a function returns with no error, the
AFD ERROR NONE code (value 0) is returned. Otherwise, a positive value will report
another specific error condition.

 The second line (or more) will contain the output of the function, and its formatting
depends on the specific called function. In any case, all values are returned as
comma-separated values list.

 Initialization

Void AFD_BBN_Library_Init (), this function is the first function be called to initialize the
Library. It loads the system model (BNE file), and reset all evidences (test outcomes). It is
used also to re-initialize the AFD Tool but, in this case, a call to AFD BBN Finalize () is
required first.

Input: The function requires a single parameter, which is the name of the BNE model to be

loaded. An error occurs if input file is missing in the default path, cannot open file or BNE

model file contains a non-valid or ill-formatted model.

Output: The function only returns error code and, in case, the error message associated

with the error.

Void AFD_BBN_Library_getSize (), this function is used to retrieve the dimension of the
loaded model, for example the number of components and tests.

Input: The function requires no input.

Output: The function only returns error code and, in case, the error message associated

with the error. If there is no error, the function returns two-element list of strings,

containing the number of components and the number of tests.

AFDIA – AFD Tool Interface Application Page 20

 Get Probabilities Methods

Void AFD_BBN_Library_getComponents_All (), this function returns a list containing all
information about the components of the system.

Input: The function requires no input.

Output: The function returns the error code and, in case, the error message associated with
the error. If no error occurred, the function returns a list of strings: the first element of the
list is an integer, containing the number of components (CNUM) information returned;
then, for each component, three values are listed: the component name, the component a-
priori probability indicated in the BNE model, the component probability (this last values
can be retrieved also using AFD BBN Library getComponents Fast ()). All information is
ordered according to components indices (from 0 to CNUM-1). The total number of values
contained in this list is 1+3*CNUM.

Void AFD_BBN_Library_getComponents_Fast (), this function returns a list containing only
probabilities about the components of the system.

Input: The function requires no input.

Output: The function returns the error code and, in case, the error message associated with
the error. If no error occurred, the function returns a list of strings: the first element of the
list is an integer, containing the number of components (CNUM) probabilities returned; the
following values are double, containing the probabilities ordered according to components
indices (from 0 to CNUM-1). The total number of values contained in this list is 1+CNUM.

Void AFD_BBN_Library_getTests_All (), this function returns a list containing all
information about the tests of the system.

Input: The function requires no input.

Output: The function returns the error code and, in case, the error message associated with
the error. If no error occurred, the function returns a list of strings: the first element of the
list is an integer, containing the number of tests (TNUM) information returned; then, for
each test, three values are listed: the test name, the test status (Pass, Fail & Unknown), the
test probability.

AFDIA – AFD Tool Interface Application Page 21

Void AFD_BBN_Library_getTests_Fast (), this function returns a list containing only
probabilities about the tests of the system.

Input: The function requires no input.

Output: The function returns the error code and, in case, the error message associated with
the error. If no error occurred, the function returns a list of strings: the first element of the
list is an integer, containing the number of tests (TNUM) probabilities returned; the
following values are double, containing the probabilities ordered according to tests indices
(from 0 to TNUM-1).The total number of values contained in this list is 1+TNUM.

 Add/Remove Evidences Methods

Void AFD_BBN_Library_addEvidences () this function is used to insert the evidence of a
newly executed test. Test status is changed from UNKNOWN to PASS or FAIL. If a test was
already in PASS or FAIL status, new evidences will overwrite old ones.

Input: This function requires the list of evidences, comma-separated. All Evidences about

Pass will follow this pattern P:0, P:3,P:7, whereas all evidences about Fail will follow this

pattern F:0,F:5,F:9. Both Pass and Fail evidences can be mixed and there is no restricting

order of recording these evidences.

Output: The function returns the error code and, in case, the error message associated with the
error.

Void AFD_BBN_Library_removeEvidences () this function is used to remove the evidence of
a test previously inserted Test Status is changed from PASS or FAIL to Unknown status.

Input: This function requires the list (comma-separated) of test indices whose evidence is to

be removed, comma-separated. For example

1,2,5,0,
Will remove evidences of tests 0,1,2,5 (no ordering is important).

Output: The function returns the error code and, in case, the error message associated with the
error.

AFDIA – AFD Tool Interface Application Page 22

 Explore Strategies

Void AFD_BBN_Library_getStrategies_All (), this function evaluates all possible strategies
(list of tests) to be executed, and it ranks optimal strategies according to a quantitative
metric (higher value, better quality). The strategy can be evaluated using different policies:
a list of implemented policies is indicated in AFD Strategies.h (enum type AFD STRATEGY
TYPE).

Input: A single element list is required, containing an integer. An error occurs if none or
more elements are passed in this list. The integer MUST be a valid code, representing an
implemented strategy (enum type AFD STRATEGY TYPE). It is an error to pass AFD
STRATEGY NONE, corresponding to the value 0. The number of tests (TSNUM) contained in
each strategy depends on the exploration policy selected.

Output: The function returns the error code and, in case, the error message associated with
the error. If no error occurs, the function returns a list comma-separated list. The first value
of the list is an integer, containing the number of strategies (SNUM) elaborated and
returned. Then, each strategy contains a list of TSNUM test indices, followed by the quality
metric value (double). Eventually, the returned list will contain 1+SNUM*(TSNUM+1)

 Finalize AFD Tool

Void AFD_BBN_Library_Finalize (), This function is to be called when the library is no more
required, or the AFD Tool is to be re-initialized with another call to AFD BBN Library Init(),
since it frees dynamically allocated structures and re-initializes their contents

Input: The function requires no input.

Output: The function only returns error code and, in case, the error message associated

with the error.

AFDIA – AFD Tool Interface Application Page 23

AFDIA – Interface Application

This chapter is titled with the name of our actual implemented project; the content of this

chapter will start with a brief introductive overview of AFDIA, then Architecture of AFDIA its

importance and functional detail, Tool and technologies have used for the development and

finishing with the DB schemas with its thorough detail.

Overview: AFDIA is a web based, concurrent, interactive, user friendly and with the

capability of managing the history of performed tests in the database. It can be seen as a

Presentation Layer upon the AFD Tool. It communicates with the AFD Tool’s Dll methods,

invokes their programming modules, parsed their resulted files, and stored the performed

tests results in relation database. In all it is a website application which provides all the

features described above.

AFDIA architecturally divided into three parts, in the bullets below you can find an abstract

overview of these major components

 AFDOnline: this website titled with AFDOnline, which contains a number of

interactive web pages with which Test Engineer can interact. Examples include

uploading a CTM Model, View All Tests, View All Components, and Remove

Evidences etc.

 Test Administrator: this website titled with AFDIA - TestAdministrator, demonstrate

some very useful functionalities. In fact when a Test Engineer request to Test

Administrator (a role who record the evidences) for evidence insertion which he/she

noted from the Cisco Hardware Test machines. So in that case the entire request

from AFDOnline came to AFDIA – TestAdministrator. This application is physically

located on a separate place as the Test Administrator can be and more likely is on a

far located place. I would like to explain this usage by a real life example. Let’s say

our Test Engineer is working in Milano, he uploads a CTM Model trough the

AFDOnline, and now he sent request to Test Administrator to know the outcomes of

specific tests. Promptly In that case, he is sending some requests to AFDIA –

TestAdministrator website. Where all the requests will be entertained.

AFDIA – AFD Tool Interface Application Page 24

 AFDIA Web Server: this website titled with AFDIA - WebServices, contains few web

Methods, which used by both AFDOnline application and AFDIA – TestAdministrator

to share the data and consistency purposes.

AFDIA Architecture, its importance and functional detail: purpose of this segment is

to go into the deep overview of AFDIA’s Architecture its important and functional detail.

Figure 3.1: AFDIA Component and Communicative Architecture

AFDIA – AFD Tool Interface Application Page 25

Architectural Roles: There is the complete list of architectural rules those you can notice in

the figure above 3.1, detail explanation of each role that how a particular role is playing to

achieve the overall process’s objective. Here is the abstract list:

 AFDOnline

 Test Administrator

 AFD WebServer

 Tester

 Test Administrator

AFDOnline: AFDOnline is a Web Based Application implemented via dotNet framework.

AFDOnline – Application Server is a web server which contained all the business Logic code,

Database access code and would host our web site for the users outside from internet

world. AFDOnline has its own Data Store, which is named as AFDBD. This database contains

all the information about performed tests, all components, strategies, all uploaded models

and available boards.

AFDOnline, is the same application from where we access AFDTool Dll methods, which we

described in the AFDTool chapter. These are around ten methods implemented in C, and

dispose all the functionality of AFD Tool. As we know C Dll are unmanaged Code. And our

.Net framework runs under Managed environment, so we have to find how we can call

AFDTool methods (unmanaged Code) from our .Net Application AFDOnline (Managed

environment). Follow this link to understand difference between Managed and Unmanaged

code and how to call unmanaged code from Managed environment like .Net

http://msdn.microsoft.com/en-us/library/ms973872.aspx. Although in the figure 3.1, you

can see abstract view of the AFDOnline component like this:

Categorically, here you cannot see AFDTool (C Dll) as a separate functional component. So

just for the clear and mature understanding I am pasting another picture below which gives

you a complete thorough view of real existing calling mechanism.

http://msdn.microsoft.com/en-us/library/ms973872.aspx

AFDIA – AFD Tool Interface Application Page 26

Figure 3.2: AFDOnline Communicative Architecture with AFD Tool Dll

Picture above giving you sense that AFDOnline – Application Server is utilizing some other

functional components and this is AFDTool Dll which contain definition of all provided

methods.

As we have encountered two main important aspects of AFDOnline, first host AFDOnline

web Application by which users can access the web application over internet and second is

communication with the AFD Tool Dll on every request when user demand it to view.

Last interaction of AFDOnline is with AFD WebServer (a web Application that expose web

Services for Evidence Insertion management, and to keep Communication Asynchronous

between AFDOnline and Test Administrator). In Live application utilization, there is one

web page interface (called AddEvidence.aspx) which demonstrate to user all the tests

whose results are yet not known. User can select some tests and sent these tests to Test

Administrator (a role in testing process, who add results of performed tests) to know their

current status by calling some Web Services exposed by AFD WebServer.

Test Administrator: Test Administrator in real, is a role in Cisco Testing Process. This block

represent another web application, named as like its user’s role just for viable visibility of its

functionality. This application is also a web application implemented via dotNet framework

and its contains few web pages. Its main interaction is with AFD WebServer application for

consuming some of its exposed web services.

To understand quickly the Role of Test Administrator, we should start from the AFDOnline

web site application. Assume we start AFDOnline application, upload a new CTM Model,

view all tests, components etc. and then we navigate to AddEvidences.aspx Page. This page

AFDIA – AFD Tool Interface Application Page 27

is dedicated to send tests request to another application from where a Test Administrator

will add his evidences by exploring the result from Hardware Testers machines. This

application is called Test Administrator web app. For recording the tests result, Test

Administrator will call the web services exposed by AFD Web Server. AFD WebServer (is a

web Application that expose web Services for Evidence Insertion management, and to keep

Communication Asynchronous between AFDOnline and Test Administrator).

One important thing to notice that, Test Administrator has no Local Data Store. its reason is

obvious that all the requested tests is stored in the Data Store of AFD WebServer. So when

Administrator will login to the Test Administration application, the Test Administrator app

will call the web Service to Load all the tests requested till last moment. Administrator will

add the evidences and then app will send these results to the AFD WebServer using web

service. And AFDOnline application can be updated its test results by utilizing the web

service method.

In nutshell, from architectural point of view this block contain an web app that would be

utilized by Administrator to record the test evidences explored from the Hardware tester

machine. This app has no local data store, no any communication with AFD Tool Dll and for

test result management just use web Services exposed by AFD WebServer.

AFD WebServer: AFD WebServer is a web application which exposed few web services or

web methods that would be utilized by AFDOnline and Test Administrator web apps. This

application is represented as a bridge between AFDOnline and Test Administrator. Its main

interaction is with both these two apps. This app is implemented via dotNet as others two.

It has not any web interface because this application will be used just by other apps to

manage the Test Evidence insertions. So technically it should exposed something

communicable by other web apps.

For a comprehensive understanding and to feel the true need of AFD WebServer, lets

sketch a scenario of overall flow. User start AFDOnline application, upload a new CTM

Model or select an existing one, view all tests, view components and perform as available

commands user want. Then navigate to AddEvidences.aspx Page. This page is dedicated to

send tests request to another application from where a Test Administrator will add his

evidences by exploring the result from Hardware Testers machines. This application is called

Test Administrator web app. For recording the tests result, Test Administrator will call the

web services exposed by AFD Web Server. So here it lies in the communication between

two apps.

AFDIA – AFD Tool Interface Application Page 28

In nutshell, this is a bridge between AFDOnline and Test Administrator. It has its own

Database store, it communicate with other apps trough web services mechanism and it has

not any interaction with AFD Tool Dll.

Tester: This is tester (a human not any machine or system), who is responsible for

performing testing. Tester is the most important part of Cisco testing process. His task is to

interact with the AFDOnline completely. Tester can utilize all of the available features.

Tester does not know about the other applications taking part in the testing process, for

him AFDOnline web site is the whole testing world.

Let’s take an example to be more familiar with tasks of Tester. Tester would run the

AFDOnline, upload a new CTM model from local machine or select an already existing CTM

model. Tester view all Testing results, view components and may perform a series of steps.

Tester may request to send tests with unknown results to Test Administrator. Than upon

results arrivals, tester can view it. This is the usual phenomena of being a Tester in AFDIA.

Test Administrator: Test Administrator (a human not any machine or web System) have

the same functional status as Tester had. Test Administrator is the person within Cisco who

would record the evidences of requested tests (requested from Tester trough AFDOnline)

after exploring the results from Hardware testing machine. Test Administrator and Tester

are not obligatory to be at same office geographically.

Let’s take an example to be more familiar with tasks of Test Administrator. Test

Administrator would run the Test Administrator web app, Test Administrator may record

evidences for all tests (with unknown results) sent by the Tester for evidence insertion.

Test Administrator must record all these evidences or results by exploring the hardware

testing machines. Than upon sending results to Tester successfully its role would be totally

scoped.

AFDIA – AFD Tool Interface Application Page 29

Tools/Technologies Used in Development

The scope of this segment will put light upon Tool/Technologies used in the development

phase of AFDIA – Interface application. It is important part of the chapter because here you

can find Tools, Technologies and methodologies which has been used to implement the

architecture described in the previous portion of the same chapter. Commenting in this

segment would be at abstract level, we will address at the level of architectural components

(AFDOnline, AFD WebServer and Test Administrator): Example can be like which kind of

Database management system we are using in AFDOnline, how we query the data, by using

simple SQL statement or any specified feature enriched ORM (Object Relational Mapper)

and how we manage the Database access layer in the application layered architecture.

So, it is one dive deep into each web application taking part in the testing process to

complete the overall objective of the system. The explanation method that can be more

intuitive is that we would see each major block of the figure 3.1, comment it with used

technologies respectively. We have three major building blocks.

 AFDOnline

 Test Administrator

 AFD WebServer

AFDOnline: let’s take a quick review of block diagram given below.

Figure 3.3: AFDOnline used Technologies/Tools

AFDIA – AFD Tool Interface Application Page 30

DBMS: MS SQL Server 2008 is being used as a DBMS.

Data Access Technology: Linq to SQL(ORM - Object Relational Framework) is used for Data

Manipulation and data creation. It is a Microsoft provided framework for managing

database efficiently and effectively with less effort and low-cost.

Database Logic: for database logic, AFDOnline used Linq (Language intergraded Query). Linq

is an Data Source independent query language, it is an ideal language who don’t care about

the target data source it can be relational database, XMLs, Entities and a long range of list.

Business Logic: C# being selected for writing business logic.

Presentation Logic: ASP.net, HTML, JavaScript and Jquery are used for generating

presentation logic.

Test Administrator: let’s take a quick review of block diagram given below.

Figure 3.4: AFDIA Test Administrator used Technologies/Tools

DBMS: There is no database in this application, so no need any DBMS. As Test Administrator

web application utilize web services to communicate its completed tasks.

Data Access Technology: None.

Database Logic: None.

Business Logic: C# being selected for writing business logic.

Presentation Logic: ASP.net, HTML, JavaScript and Jquery are used for generating

presentation logic.

AFDIA – AFD Tool Interface Application Page 31

AFD WebServer: let’s take a quick review of block diagram given below.

Figure 3.5: AFDIA WebServer used Technologies/Tools

DBMS: MS SQL Server 2008 is being used as a DBMS.

Data Access Technology: Linq to SQL(ORM - Object Relational Framework) is used for Data

Manipulation and data creation. It is a Microsoft provided framework for managing

database efficiently and effectively with less effort and low-cost.

Database Logic: for database logic, AFDOnline used Linq (Language intergraded Query). Linq

is an Data Source independent query language, it is an ideal language who don’t care about

the target data source it can be relational database, XMLs, Entities and a long range of list.

Business Logic: C# being selected for writing business logic.

Presentation Logic: None because this project just expose web services used by other web

applications.

AFDIA – AFD Tool Interface Application Page 32

Database Schemas

The term schema refers to the overall design of the database. It is a logical database

description and is drawn as a chart of the type of data that are used it gives the name of

entity and relationship between them e-g information display system that gives info about

arrival and departure of train and aircraft at stations. The schema will remain the same

though the values displayed in the system will change from time to time. The term

subschema refers to the same view but for the data item types and record types which are

used in a particular application or by particular user.

This AFDDB database is a significative subset of the real database available in the Cisco

testing framework the AFD Tool is going to be integrated in. This database is to be used as a

stub in order to provide a realistic user experience for the testing phase of the AFD User

Interface prototype.

In AFDIA – Interface application we have two databases AFDDB and AFDDB – Test

Administrator. The roles and importance of these Databases has been described above in

this chapter that why we created these databases. Now I will move into the detail

discussion of these dbs. I will name all the tables in each database and their need in the

specific context.

AFDIA – AFD Tool Interface Application Page 33

AFDDB: AFDDB only queried by AFDOnline. It is managed by Linq to Sql. An ORM (object

Relational Mapper) provided by Microsoft. This database has six database tables those are

relational among them. This database store the information about available Board on which

we can make tests, CTM models detail, Performed Test results, available strategies, all

components and a Session table. Figure below shows all available tables in this db.

Figure 3.6: AFDDB schema

Let’s see each database object in detail, its fields; it’s relational with other table(s) and its

Access level (read or writes).

Board: This table contains information about the board under test. This information is

irrelevant with respect to the AFD Tool. It is important because it creates a unique ID

reference (primary key) for any board that can be tested. Further- more, this ID is used as

foreign key in Model tables. Permission for this table is read-only from the point of view of

the AFDOnline. So as this table is read-only the data must be inserted by DBA or anyone

who has authority to feed this information. Board_Name is the field represents the Name

of the board and Board_Information is used to store the detail information about the

Board.

AFDIA – AFD Tool Interface Application Page 34

Model: This table contains an entry for each available CTM model (source file). Each entry is

to be associated uniquely with an entry in the board model. Also, the file path to access the

file is to be specified. Permission for this table is read-only during the execution of a testing

session of the AFD Tool. However, permission is read-write because the User Interface

should allow the user to upload a new source file into the system.

Field Name Detail

ID_Model Unique Id to identify the model in the table

ID_Board Foreign Key that refer to the Board associated with the Model

CTM_SourceFile Store the relative path of the CTM Model text file

Model_Content It contains the actual content of the CTM Model

Model_Name Represents the name of the Model file

Table 3.2: Scheme table Dbo.Model

TestResult: This table contains the information about all tests that are available in the Cisco

testing framework. This table denes a unique ID for each entry, but this is not necessary the

same as the internal ID of the AFD Tool; this ID is used as foreign key in other tables. Each

test is related to a board. Each test is identified with a string name, which should be the

same in the CTM source le. The Unique ID is the Cisco unique code to identify a specific test.

Filed Name Detail

ID_Test Unique Id to identify test in the table

ID_Model Foreign Key that refer to the Model associated with the test

Test_Name Store Name of the test

ID_Session Foreign Key that refer to the Session associated with the test

Test_InternalID It represents the internal ID of the test

Test_Outcome It store the test result

Test_Probability It store the probability value of a test range from 0 to 1

Table 3.3: Scheme table Dbo.TestResult

AFDIA – AFD Tool Interface Application Page 35

Sesion: This table contains a unique entry for each testing session. A testing session records

any valid traversal of the Initialization state of the AFD FSM (Figure 2.2). During this

traversal, the AFDOnline will insert a new entry in the table, whether the session will be

successfully opened or not. The session will be related to a source file and a (unique) time-

stamp. The returned value of the session ID field will be used to call the specific initialization

method in the AFD Wrapper to custom the output, warning and error messages the

AFDTool could return. Moreover, this session ID will be used for the database update

described for the Add evidence state. Permission for this table is read-write from the point

of view of the AFDOnline.

Filed Name Detail

ID_Session Unique Id to identify Session in the table

ID_Model Foreign Key that refer to the Model associated with the Session

Session_Date Store the timestamp of the Session

Table 3.4: Scheme table Dbo.Sesion

Component: This table contains the information about all components that are available in

the Cisco testing framework. This table denes a unique ID for each entry, but this is not

necessary the same as the internal ID of the AFD Tool. Each component is related to a

session. Each component is identified with a string name. The UniqueID is the Cisco unique

code to identify a specific test.

Filed Name Detail

ComponentID Unique Id to identify Component in the table

ComponentName Name of the Component

CompAppropProbability Represent the appropriate probability of a component

ComponentProbability This represent the actual resulted probability

ID_Session Foreign Key that refer to the Session associated with the
component testing

Table 3.5: Scheme table Dbo.Component

AFDIA – AFD Tool Interface Application Page 36

AFDDBAdministrator: AFDDBAdministrator only queried by AFDIA-WebServices. It is

managed by Linq to Sql. An ORM (object Relational Mapper) provided by Microsoft. This

database has two database tables. This database stores the information about the

requested tests that need to be resulted by Test Administrator. So, both AFDOnline and

AFDIA – TestAdministrator interact with this database trough web services. Figure below

shows all available tables in this db.

Figure 3.7: schema Database AFDDBAdministrator

TestResult: This table contains the information about all tests that are available in the Cisco

testing framework. This table denes a unique ID for each entry, but this is not necessary the

same as the internal ID of the AFD Tool; this ID is used as foreign key in other tables. Each

test is related to a board. Each test is identified with a string name, which should be the

same in the CTM source le. The UniqueID is the Cisco unique code to identify a specific test.

Filed Name Detail

ID_Test Unique Id to identify test in the table

ID_Model Foreign Key that refer to the Model associated with the test

Test_Name Store Name of the test

ID_Session Foreign Key that refer to the Session associated with the test

Test_InternalID It represents the internal ID of the test

Test_Outcome It store the test result

Test_Probability It store the probability value of a test range from 0 to 1

Table 3.6: Scheme table Dbo.TestResult

AFDIA – AFD Tool Interface Application Page 37

TestEvidence: This table contains the information about the recorded evidences by the Test

Administrator. This is the most important information from Evidence management point of

view. When test administrator would record the evidence, AFDIA – TestAdministrator will

call the web services exposed by the AFDIA – WebServer to send the evidences list. Called

web service will insert the data into the TestEvidence table. Then AFDOnline will query to

the same table for getting the result of the recently added evidence trough the web service

exposed by the AFDIA – WebServer.

Filed Name Detail

TestEvidenceId Unique Id to identify TestEvidence record in the table

Evidences Represent the recorded evidence string by the test administrator

SessionID Reference key of the Session, under which User request for the
Evidence insertion. This is the same SessionID which AFDOnline created
at the start of the testing procedure for a particular session

Table 3.7: Scheme table Dbo.TestEvidences

AFDIA – AFD Tool Interface Application Page 38

UML Diagrams & websites Structures

This chapter will cover architectural modeling and web structural aspects of the AFDIA.

Before diving into the detail, let me explain what architectural modeling meant is and what

structural meant for. In architectural modeling part: we would define some UML (unified

Modeling Language) diagrams and in web structural part: we would define IDM: Interactive

Descriptive Model of ours website pages. We can make progress in our discussion by

explaining the terms UML and IDM.

UML: unified Modeling language is a general-purpose visual modeling language that is used

to specify, visualize, construct, and document the artifacts of a software system. It captures

decisions and understanding about systems that must be constructed. The UML captures

information about the static structure and dynamic behavior of a system. The static

structure defines the kind of objects important to a system and to its implementation, as

well as the relationship among the objects. The dynamic behavior defines the history of

objects over time and communication among objects to accomplish goals.

One way to organize the UML diagrams is by using views. A view is a collection of diagrams

that describe a similar aspect of the project. I very often use a set of three distinct yet

complementary views that are called the Static View, Dynamic View, and Functional View.

Figure 11 illustrates the complementary nature of the three views and the diagrams that

make up each view.

Figure: 4.1: Three complementary views or set of UML diagrams

Functional View: In the Functional View, both the Use Case diagram and the Activity
diagram are included. The reason to keep them together is because they both model how

AFDIA – AFD Tool Interface Application Page 39

the system is supposed to work. Figure 12 shows that the Use Case diagram defines the
functions that the system must provide. The functions are expressed first as goals. But then
the goals are fleshed out in a narrative to describe what each Use Case is expected to do to
achieve each goal.

Figure: 4.2 Elements of Functional View

 The Use Case diagram describes the features that the users expect the system to
provide.

 The Activity diagram describes processes including sequential tasks, conditional
logic, and concurrency. This diagram is like a flowchart, but it has been enhanced for
use with object modeling.

Static View: The Static View includes those diagrams that provide a snapshot of the
elements of the system but don’t tell you how the elements will behave. It is very much like
a blueprint. Blueprints are comprehensive, but they only show what remains stationary,
hence the term Static View.

 The Class diagram is the primary static diagram. It is the foundation for modeling the
rules about types of objects (classes), the source for code generation, and the target
for reverse engineering.

 The Object diagram illustrates facts in the form of objects to model examples and
test data. The Object diagram can be used to test or simply to understand a class
diagram.

Dynamic View: includes the diagrams that reveal how objects interact with one another in
response to the environment. It includes the Sequence and Collaboration diagrams. Those
collectively are referred to as interaction diagrams. They are specifically designed to

AFDIA – AFD Tool Interface Application Page 40

describe how objects talk to each other. It also includes the Statechart diagram, which
shows how and why an object changes over time in response to the environment.

 For modeling object interactions, the Dynamic View includes the Sequence and
Collaboration diagrams.

 The State chart diagram provides a look at how an object reacts to external stimuli
and manages internal changes.

After a brief overview of UML, it is important to discover which diagrams among them we
are going to elaborate for ours AFDIA? The Answer is Use Case Diagram (function view),
Activity Diagram (function view), Sequence Diagram (Dynamic view) and Deployment
Diagram. The selection of these diagrams is not random but based on rational judgment of
keeping the most important aspects to be mentioned. In the following, there will be all
about the UML; describing AFDIA through diagrams.

AFDIA – Component Diagram: Component diagrams are different in terms of nature and
behavior. Component diagrams are used to model physical aspects of a system. Component
diagrams can also be described as a static implementation view of a system. Static
implementation represents the organization of the components at a particular moment. A
single component diagram cannot represent the entire system but a collection of diagrams
are used to represent the whole.

So the purpose of the component diagram can be summarized as:

 Visualize the components of a system.

 Construct executable by using forward and reverse engineering.

 Describe the organization and relationships of the components.

AFDIA – AFD Tool Interface Application Page 41

Figure 4.3: Component Diagram AFDIA

Above in picture you can see the component diagram, now I want to put little comments on
its construction. We will start from the left of AFDIA component wise. There are two UI
components AFDOnline<<UI>> and AFD-TestAdministrator<<UI>>, they both are dependent
on two application components (components that exploits the core functionality)
respectively AFDOnline<<application>> and AFD-TestAdministrator<<application>>.

AFDOnline<<application>> component further depend upon the Persistence component (a
component interact with AFDDB<<database>> component). And second dependency of
AFDOnline<<application>> component is upon AFD WebServer<<WebServices>>
component.

AFD-TestAdministrator<<application>> component further depend upon AFD
WebServer<<WebServices>> component to utilize its exposed services for complete its
some tasks.

AFD WebServer<<WebServices>> component further depend upon the Persistence
component (a component interact with AFDDB-TestAdministrator<<database>>
component).

 These all components interact with each other to complete the overall objective of the
system. And you see a boundary line around the components that depicts the whole
components as a single components that can be called as AFDIA<<component>>. And the

AFDIA – AFD Tool Interface Application Page 42

two interfaces that are available through the boundary are basically access points to these
applications and obviously you can connect via Internet browser to these access points.

Use Case Diagram:
Use Case Diagram describes the features that User expects from System to provide. Its
major concern is to describe what the system should do “not how to do”. There are two
levels of use case Diagram: system level or Abstract level use case diagram and Detail Level
use case Diagram.

Figure 4.4: System Level Use Case Diagram of AFDIA

System Level Use Case Diagram: defines abstract or high level view of overall system. In the
above figure 13: depicts the AFDIA system level use case diagram. As you can see the name
of the use case is “Perform testing on Cisco’s component”. This name itself describes the
whole story that would occur in the software application. Another term which is also very
essential to understand is Actor; actor is a user or external system with which a system
being modeled interacts. There are two types of actors Primary actors and Secondary
Actors. Primary actors are those actors who directly interact with the system and Secondary
actors are those actors who interact with the System through Primary actors. Let’s have a
look on the Primary and secondary actors in AFDIA.

Primary Actors:
Tester: is a human actor, who would interact with the system by initiating, viewing and
terminating the testing process.
Test – Administrator: is a human actor, who would interact with the system by
Adding/Removing Evidences.

AFDIA – AFD Tool Interface Application Page 43

AFDOnline website: is a system actor that is responsible to entertain all the requests
generated by the Tester. To accomplish the generated request by the Tester, AFDOnline
Website would may utilize or contact with the AFDIA – WebServices.
AFDIA – TestAdministrator website: is a system actor that is responsible to entertain all the
requests generated by the Tester- Administrator. To accomplish the generated request by
the Tester- Administrator, AFDIA – TestAdministrator website would may utilize or contact
with the AFDIA – WebServices.

Secondary Actors:
AFDIA – WebServices: is a secondary system actor that is responsible to provide the
services to two primary actors AFDOnline Website and AFDIA – TestAdministrator Website
to accomplish their tasks.
In the figure above there are two others mentioned secondary actors namely AFDDB and
AFDDB – TestAdministrator.

As the Abstract level UC diagram shows the very high level understanding of the system, it
can give us a silent idea of the system, but to know exactly in detail the role of each actor in
the system and more eventually the sequence of the story, we must have to dive into the
detail level of the use case diagram. Next, you can see a detail level use case diagram of
AFDIA in figure 14. Just an important thing to note: in detail level use case diagram all the
actors including both primary and secondary must have to be equal in numbers and same as
role compared with Abstract level UC diagram. It is wrong to add a new actor or try to
remove an existing actor at this level which appeared in Abstract level use case diagram.

AFDIA – AFD Tool Interface Application Page 44

Figure 4.5: Detail Level Use Case Diagram of AFDIA

AFDIA – AFD Tool Interface Application Page 45

Detail Level Use Case Diagram: in the depicted figure above you can have a look on the
detail level use case diagram of AFDIA. By exploring keenly you can figure out the following
points. I) the number of actors are same both in number and roles II) But the bigger use
case which we saw in case of system level UC diagram has been broken down into many
small autonomous and self-descriptive use cases, and now they are presenting almost clear
and understandable look of interaction and sequences of occurrences in the whole story of
the system.
Next, we are moving to describe our ultimate and fruitful part of the use cases descriptions.
That is description of each individual use case in the detail level use case diagram. For
example we will pick up first use case from the diagram, like 1.1 “upload a CTM Model” and
then by sequence description of each UC.

The Structure of the description will contain the following components/parts:

 Use Case name: the name of the use case.

 Brief Description: some text describes briefly the overall function of UC.

 Level: like Enterprise level UC or Corporate level UC or Unit level UC.

 Primary Actor: Actors those directly communicate with the UC.

 Stakeholders and interests: All bodies who will get benefited with the success.

 Precondition: The steps must be performed before calling the use case functionally.

 Minimal Guarantee: describe the minimal affect in the system even in case of failure
or incompletion.

 Success Guarantee: describe the overall effective occurrences in the system in case
of successful completion of the use case.

 Main Success Scenario: describe the complete success scenario steps.

 Exceptions: describe the exceptions that make cause the failure or incompletion of
the UC.

 Provided above is a template for explaining each use case by selecting from the Detail
level use case diagram. One thing is important to remember that we will use the same
name of use cases in chapter 5, which is about implementation detail of AFDIA. In our AFDIA
DL-UC Diagram we have total 11 use cases: from 1.1 to 1.9 and from 2.1 to 2.2.

 Use Case name: [1.1] Upload New CTM Model

 Brief Description: Tester will upload a new CTM Model (a text base file contains a
specified formatted meaningful data) by his/her Testing machine. If process goes
well and successful then Tester will receive a success message from the Server and
will be able to go on in the testing process. In case of any error/failure, Server will
generate an exception and let the Tester either to try another time to upload Model
or quit from the testing process.

 Level: Application Level UC.

AFDIA – AFD Tool Interface Application Page 46

 Primary Actor: There are two primary actors interacting with the UC [1.1]
I. Tester: Tester would try to upload New CTM Model on the Server.

II. AFDOnline website: is a system that let the Tester to upload file on the
server. It is a traditional web application, accessible through any standard
internet browser.

 Stakeholders and interests: Tester is one who can further progress in the testing.
Cisco, as a company will get benefited by the completion of the UC [1.1].

 Precondition:
I. Tester should have a computer.

II. Enabled with internet/intranet.
III. Must have installed Standard web Browser.
IV. Login to AFDIA.
V. Navigate to Upload New Model Web page.

 Minimal Guarantee: if Tester will fail to upload new model, he has option to retry or
can select an existing model resides on the Server.

 Success Guarantee: Upon successful uploading of Model, Tester would be able to
proceed further in the testing process.

 Main Success Scenario:
I. Tester has uploaded the CTM Model on the server.

II. Upon Successful completion of uploading, Server will allow the Tester to
move on in the Testing process.

 Exceptions:
I. Internet/Intranet is unavailable.

II. Machine is crashed or faulty.
III. Tester does not have a CTM Model locally for uploading.

 Use Case name: [1.2] Selected an existing uploaded Model

 Brief Description: Tester have the option to select an already existing uploaded
model on the server. By selecting a model, Tester would be able to proceed further
in the testing process. If there is not any available model on the server, then only one
option keep left that is Upload a new CTM model on the server for proceeding in the
testing process.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [1.2]
I. Tester: Tester would try to select an existing model on the server.

II. AFDOnline website: is a system that let the Tester to show the entire
available Model on the server. It is a traditional web application, accessible
through any standard internet browser.

 Stakeholders and interests: Tester is one who can further progress in the testing.
Cisco, as a company will get benefited by the completion of the UC [1.2].

AFDIA – AFD Tool Interface Application Page 47

 Precondition:
I. Tester should have a computer.

II. Enabled with internet/intranet.
III. Must have installed Standard web Browser.
IV. Login to AFDIA.
V. Navigate to Select an Existing Model Web page.

 Minimal Guarantee: if Tester will fail to find any existing uploaded model, he has
option to upload new CTM Model and can further proceed.

 Success Guarantee: Upon successful selection of Model, Tester would be able to
proceed further in the testing process.

 Main Success Scenario:
I. Tester has selected successfully an existing CTM Model on the server.

II. Upon Successful selection process, Server will allow the Tester to move on in
the Testing process.

 Exceptions:
I. Internet/Intranet is unavailable.

II. Machine is crashed or faulty.
III. Tester does not have a CTM Model locally for uploading and there is no model

even on the server.

 Use Case name: [1.3] View All Tests

 Brief Description: Tester would be able to see all the Tests results.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [1.3]
I. Tester: Tester would explore the Test Results.

II. AFDOnline website: is a system that let the Tester to show the entire tests
results. It is a traditional web application, accessible through any standard
internet browser.

 Stakeholders and interests: Tester is one who can further progress and navigate on
different other functionalities in the testing process. Cisco, as a company will get
benefited by the completion of the UC [1.3].

 Precondition:
I. Already selected an existing model or already uploaded a new CTM Model.

II. Navigate to the View All Test web page.

 Minimal Guarantee: Tester at least will explore the Test results as this use case is
just about to explore the result so if preconditions went well then the minimal
guarantee is actual goal of this use case.

 Success Guarantee: Upon successful completion of the use case, Tester would be
able to explore the tests and can proceed further in the testing process.

 Main Success Scenario:
I. Tester has selected an existing CTM Model on the server or uploaded a new

CTM Model.

AFDIA – AFD Tool Interface Application Page 48

II. Upon Successful selection process or upload process.
III. User would be able to explore the Tests results.

 Exceptions:
I. Internet/Intranet is unavailable.

II. Machine is crashed or faulty.
III. Tester does not have a CTM Model locally for uploading and there is no model

even on the server.

 Use Case name: [1.4] View All Strategies

 Brief Description: Tester would be able to see all the Available Test Strategies.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [1.4]
I. Tester: Tester would explore the Available Test Strategies.

II. AFDOnline website: is a system that let the Tester to show the entire
Strategies. It is a traditional web application, accessible through any standard
internet browser.

 Stakeholders and interests: Tester is one who can further progress and navigate on
different other functionalities in the testing process. Cisco, as a company will get
benefited by the completion of the UC [1.4].

 Precondition:
I. Already selected an existing model or already uploaded a new CTM Model.

II. Navigate to the View All Test Strategies web page.

 Minimal Guarantee: Tester at least will explore the Test Strategies as this use case is
just about to explore the Test strategies so if preconditions went well then the
minimal guarantee is actual goal of this use case.

 Success Guarantee: Upon successful completion of the use case, Tester would be
able to explore the all available test Strategies and can proceed further in the testing
process.

 Main Success Scenario:
I. Tester has selected an existing CTM Model on the server or uploaded a new

CTM Model.
II. Upon Successful selection process or upload process.

III. User would be able to explore the all available test Strategies.

 Exceptions:
I. Internet/Intranet is unavailable.

II. Machine is crashed or faulty.
III. Tester does not have a CTM Model locally for uploading and there is no model

even on the server.

AFDIA – AFD Tool Interface Application Page 49

 Use Case name: [1.5] View All Components

 Brief Description: Tester would be able to see all components associated with board.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [1.5]
I. Tester: Tester would explore all components.

II. AFDOnline website: is a system that let the Tester to show the entire
components list. It is a traditional web application, accessible through any
standard internet browser.

 Stakeholders and interests: Tester is one who can further progress and navigate on
different other functionalities in the testing process. Cisco, as a company will get
benefited by the completion of the UC [1.5].

 Precondition:
I. Already selected an existing model or already uploaded a new CTM Model.

II. Navigate to the View All component web page.

 Minimal Guarantee: Tester at least will explore all components as this use case is
just about to explore the result so if preconditions went well then the minimal
guarantee is actual goal of this use case.

 Success Guarantee: Upon successful completion of the use case, Tester would be
able to explore all components and can proceed further in the testing process.

 Main Success Scenario:
I. Tester has selected an existing CTM Model on the server or uploaded a new

CTM Model.
II. Upon Successful selection process or upload process.

III. User would be able to explore all components.

 Exceptions:
I. Internet/Intranet is unavailable.

II. Machine is crashed or faulty.
III. Tester does not have a CTM Model locally for uploading and there is no model

even on the server.

 Use Case name: [1.6] send Tests for Evidence Insertion by Administrator

 Brief Description: Tester will send tests to the Administrator for the Evidences
insertion as the test administrator is the actor who will insert evidence.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [1.6]
I. Tester: Tester will send tests for the evidence insertion.

II. AFDOnline website: is a system that let the Tester to send the tests for
evidence insertion with the help of a web page. It is a traditional web
application, accessible through any standard internet browser.

 Stakeholders and interests: Tester is one who can further progress and navigate on
different other functionalities in the testing process. Cisco, as a company will get
benefited by the completion of the UC [1.6].

 Precondition:

AFDIA – AFD Tool Interface Application Page 50

I. Already selected an existing model or already uploaded a new CTM Model.
II. Navigate to the Add Evidence web page.

III. Tester will send tests to whom, he want to see the inserted evidences by
the test administrator.

 Success Guarantee: Upon successful sending of the tests for evidence insertion,
Tester would be able to see the inserted evidence by the administrator.

 Main Success Scenario:
IV. Tester has selected an existing CTM Model on the server or uploaded a new

CTM Model.
V. Upon Successful selection process or upload process.

VI. Tester would select tests for evidence insertion and send them to
administrator.

 Exceptions:
IV. Internet/Intranet is unavailable.
V. Machine is crashed or faulty.

VI. Tester does not have a CTM Model locally for uploading and there is no model
even on the server.

 Use Case name: [1.7] View Inserted Evidences

 Brief Description: Tester would explore the test results, recorded by the test
administrator. For tester these results are read-only.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [1.7]
III. Tester: Tester will explore the recorded tests results.
IV. AFDOnline website: is a system that let the Tester to view the test results. It

is a traditional web application, accessible through any standard internet
browser.

 Stakeholders and interests: Tester is one who can further progress and navigate on
different other functionalities in the testing process. Cisco, as a company will get
benefited by the completion of the UC [1.7].

 Precondition:
III. Already selected an existing model or already uploaded a new CTM Model.
IV. Navigate to the Add Evidence web page.
IV. Tester will explore the results inserted by the test administrator.

 Success Guarantee: Upon successful sending of the tests exploration, Tester would
be able to keep going to perform other successive operations.

 Main Success Scenario:
VII. Tester has selected an existing CTM Model on the server or uploaded a new

CTM Model.
VIII. Upon Successful selection process or upload process.

AFDIA – AFD Tool Interface Application Page 51

IX. Tester would explore the test results returned by the test administrator after
processing.

 Exceptions:
VII. Internet/Intranet is unavailable.

VIII. Machine is crashed or faulty.
IX. Tester does not have a CTM Model locally for uploading and there is no model

even on the server.

 Use Case name: [1.8] Remove/Clean Evidences

 Brief Description: Tester would remove or clean the inserted evidences, which was
recorded by the test administrator.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [1.8]
V. Tester: Tester will Remove or clean the evidences.

VI. AFDOnline website: is a system that let the Tester to Remove/clean the
recorded evidences. It is a traditional web application, accessible through any
standard internet browser.

 Stakeholders and interests: Tester is one who can further progress and navigate on
different other functionalities in the testing process. Cisco, as a company will get
benefited by the completion of the UC [1.8].

 Precondition:
V. Already selected an existing model or already uploaded a new CTM Model.

VI. Navigate to the Remove Evidence web page.
V. Tester will Remove/clean results inserted by the test administrator.

 Success Guarantee: Upon successful Removal of tests results, Tester would be able
to keep going to perform other successive operations.

 Main Success Scenario:
X. Tester has selected an existing CTM Model on the server or uploaded a new

CTM Model.
XI. Upon Successful selection process or upload process.

XII. Tester would remove the test results inserted by the test administrator.

 Exceptions:
X. Internet/Intranet is unavailable.

XI. Machine is crashed or faulty.
XII. Tester does not have a CTM Model locally for uploading and there is no model

even on the server.

AFDIA – AFD Tool Interface Application Page 52

 Use Case name: [1.9] View History of Performed Tests

 Brief Description: Tester would traverse the performed tests, all the information
should be available in the database for the history purposes and Tester can view it,
as history of performed tests.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [1.9]
VII. Tester: Tester who can watch the history of performed tests.

VIII. AFDOnline website: is a system that let the Tester to traverse the performed
tests history. It is a traditional web application, accessible through any
standard internet browser.

 Stakeholders and interests: Tester is one who can further progress and navigate on
different other functionalities in the testing process. Cisco, as a company will get
benefited by the completion of the UC [1.9].

 Precondition:
VII. Already selected an existing model or already uploaded a new CTM Model.

VIII. Already performed all the necessary operation that results could be kept in
the database for the further pointing from history management point of
view.

 Success Guarantee: Upon successful viewing of the history, Tester would be able to
keep going to perform other successive operations.

 Main Success Scenario:
XIII. Tester will choose a session ID from a provided web page where all the

session Id will be listed in a grid (all the sessions that has been performed in
past)

XIV. Tester would choose one session id and continue to view all of its stored
results

 Exceptions:
XIII. Internet/Intranet is unavailable.
XIV. Machine is crashed or faulty.
XV. There is nothing store in the history of testing database, so you are the first

one to perform operations.

 Use Case name: [2.1] View All Pending Sessions

 Brief Description: Test Administrator will see all the pending requests sent by the
Tester for the evidence insertion. Test Administrator would choose any session id
and proceed for the evidence recorded. After selection a session id, system will
transfer to administrator to a new web page, where administrator can insert the
evidences.

AFDIA – AFD Tool Interface Application Page 53

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [2.1]
IX. Test - Administrator: Test Administrator will see and select any sent Session id

for the evidence insertion.
X. AFD - TestAdministrator: is a system that let the Administrator to add

evidences. It is a traditional web application, accessible through any standard
internet browser.

 Stakeholders and interests: Administrator is one who can further progress and
navigate on different other functionalities in the testing process. Cisco, as a company
will get benefited by the completion of the UC [2.1].

 Precondition:
IX. Tester will send session id for the evidence insertion by the administrator

 Success Guarantee: Upon selecting a session Id, Administrator will add/recorded the
test results.

 Main Success Scenario:
XV. Administrator will choose a session ID from a provided web page where all

the session Id will be listed in a grid (all the sessions that has been performed
in past)

XVI. Administrator will be moved to evidences insertion page.

 Exceptions:
XVI. Internet/Intranet is unavailable.

XVII. Machine is crashed or faulty.

 Use Case name: [2.2] Add Evidences

 Brief Description: Test Administrator will record the test results.

 Level: Application Level UC.

 Primary Actor: There are two primary actors interacting with the UC [2.1]
XI. Test - Administrator: Test Administrator would add results by select any sent

Session id for the evidence insertion.
XII. AFD - TestAdministrator: is a system that let the Administrator to add

evidences. It is a traditional web application, accessible through any standard
internet browser.

 Stakeholders and interests: Administrator is one who can further progress and
navigate on different other functionalities in the testing process. Cisco, as a company
will get benefited by the completion of the UC [2.1].

 Precondition:
X. Administrator will choose any sent session id for the evidence insertion.

AFDIA – AFD Tool Interface Application Page 54

 Success Guarantee: Upon selecting a session Id, Administrator will add/recorded the
test results.

 Main Success Scenario:
XVII. Administrator will choose a session ID from a provided web page where all

the session Id will be listed in a grid (all the sessions that has been performed
in past)

XVIII. Administrator will add the concrete results by the exploring the hardware
machine results.

 Exceptions:
XVIII. Internet/Intranet is unavailable.

XIX. Machine is crashed or faulty.

AFDIA – AFD Tool Interface Application Page 55

AFDIA Implementation Detail

Overview: the purpose of this chapter is to put insight into the implementation detail of

each web page of all three applications AFDOnline, AFDIA WebServer and

TestAdministrator. The detail will include the following information about all the pages in all

three applications: Page Name, Page Main Functionality, Possible Movements to/from

other pages, Interaction with the AFD Database (Table Name), Interaction with the Dll

(Wrapper Method Name) and Detail Description of the Page.

AFDOnline

Page Name: Index.aspx

Page Main Functionality:

 This is the first page while running the AFD tool, the content of this page includes two Links

button, which allows user to move on two successive pages.

Possible Movements to/from other pages: AvailableBNEModels.aspx, UploadModel.aspx

Interaction with the AFD Database (Table Name(s)): None

Interaction with the Dll (Wrapper Method Name): None

Screen Shot:

Figure 5.1: webpage Index.aspx

AFDIA – AFD Tool Interface Application Page 56

Detail Description of the Page: this page as shown above have two links “Update New

Model” and “Choose an Existing Model”, these links will allows the user to choose a CTM

Model. User will be transfer to an appropriate page as he will choose an option for

providing Model to the AFD Tool.

By considering the (FSM Model of AFD Tool: Figure 2.2), if we explore the Initialization state

of the Tool, we can say that we are performing second sub-state (File Uploading) with this

page. Let me be clear that this page will not complete the File uploading completely as we

will move on to two other pages optionally to complete the CTM Model uploading.

Interaction with the DB while navigating on this Page is nothing; this is more formally just a

page to choose a way to proceed with the selecting a CTM Model.

Interaction with the DLL wrapper methods is also nothing, because we can call

AFD_BBN_Library_Init () method after the successful uploading or selection of a Model, as

on this page we are just dealing to choose a way to refer a model.

Page Name: UploadModel.aspx

Page Main Functionality:

 This Page will be used to upload a new Model into the AFD Server from the local

system.

After the successful uploading of the Model, we will call the AFD_BBL_Library_Init () to

complete the Initialization state of the AFD Tool.

Possible Movements to/from other pages: AvailableBNEModels.aspx, Test.aspx

Interaction with the AFD Database (Table Name(s)): dbo.Session------dbo.Test open point

Interaction with the Dll (Wrapper Method Name): AFD_BBL_Library_Init ()

 Screen Shot:

Figure 5.2: webpage UploadModel.aspx

AFDIA – AFD Tool Interface Application Page 57

Detail Description of the Page: this page will be appear after the first traverse from the

index.aspx page when user have selected an option to upload a new CTM model instead of

an existing one onto the AFD Server’s available Models list, button with the text “Scegli file”

will be shown up with a File Dialog box to let the user to locate a .bne file from the user’s

system.

After the file selection, Upload button’s action will serialized the selected Model (a file with

.bne extension) and upload it onto the AFD Server.

By uploading the file, the Interface Application immediately opens AFD DB Connection, with

the completion of activity. Let’s recall the Initialization State of the FSM Model of the AFD

Application. (Ref: FSM Model of AFD Tool – AFD Tool GUI Specs – page 6 Fig: 1.2)

At this state of the Interface Application , we have already connect to the AFD Tool, we

done with CTM Model selection and Uploading and DB connection is open and alive for the

further transactions. These were three activities to complete the initialization state, and we

are done with these by Leaving that Page (UploadModel.aspx).

In Addition, AFDIA will assign a “Unique session Id” to track history of testing of each

specific user. AFDIA will insert a new record in the session table of the AFDDB.

Page Name: AvailableBNEModels.aspx

Page Main Functionality:

 This Page will be used to select an existing Model already reside onto the AFD Server.

After the successful selection of the Model, we will call the AFD_BBL_Library_Init () to

complete the Initialization state of the AFD Tool.

Possible Movements to/from other pages: UploadModel.aspx, Test.aspx

Interaction with the AFD Database (Table Name(s)): dbo.Model, dbo.session

Interaction with the Dll (Wrapper Method Name): AFD_BBL_Library_Init ()

AFDIA – AFD Tool Interface Application Page 58

Screen Shot:

Figure 5.3: webpage AvailableBNEModels.aspx

Detail Description of the Page: this page will be appearing after the first traverse from the

index.aspx page when user have selected an option to choose an existing CTM model.

This Page contains a Grid which shows all available .bne Models on the AFD Server, AFDIA

will query to AFDDB to bring all available .bne models on the AFD Server and then bind the

result to the Grid control. user would select any available model by clicking onto a Row [the

decision that, whether this page should contain a Button, that let the tool to proceed after

the Row selection OR just By the Clicking upon the Row application should Proceed] in any

way, Application will get the information of the selected Model and call the

AFD_BBN_Library_Init () wrapper method. Before calling the wrapper method, AFDIA will

query on the Model table, get the CTM source file from the AFDDB and Parser component

of AFDIA will be invoked to write data in the input text file.

Let’s recall the Initialization State of the FSM Model of the AFD Application. (Ref: FSM

Model of AFD Tool – AFD Tool GUI Specs – page 6 Fig: 1.2)

At this state of the Interface Application, we have already connected to the AFD Tool, we

done with CTM Model selection, Uploading and DB connection is open and alive for the

further transactions. These were three activities to complete the initialization state, and we

are done with these by Leaving that Page (AvailableBNEModels.aspx).In Addition, AFDIA will

assign a “Unique session Id” to track history of testing of each specific user. AFDIA will insert

a new record in the session table of the AFDDB.

AFDIA – AFD Tool Interface Application Page 59

Page Name: Test.aspx

Page Main Functionality:

 This Page will be used to make a query to AFD Server for fetching list of Tests.

After receiving the list of tests, AFDIA will present all this information in a Grid, where

user can explore these tests by applying sorting etc.

Possible Movements to/from other pages: Component.aspx, Strategy.aspx, History.aspx

Interaction with the AFD Database (Table Name(s)): None?

Interaction with the Dll (Wrapper Method Name): AFD_BBN_Library_getTests_All ()

Screen Shot:

Figure 5.4: webpage Test.aspx

Detail Description of the Page: AFDIA will reach this page, after completing the

Initialization state. On the Page Load method, AFDIA will call a Wrapper Method

AFD_BBN_Library_getTests_All ().

The output of this method will result an AFD_BBN_Library_getTests_All_output.txt text file

which contain the list of strings: test name, test status and test probability. AFDIA will parse

the output file and present it into the Grid, showing above in a picture.

There is group box name Trash parameters: contain two textboxes, Pass trash and failure

trash; these two values will be used to set the trash value to differentiate among test. The

entered values will be used to sort the test probability. Therefore entered value must be

less than 1. Another group box named Information and status, contain a read-only text box,

AFDIA – AFD Tool Interface Application Page 60

which shows the latest step performed information. That is more concern about the history

of the testing session.

Page Name: Component.aspx

Page Main Functionality:

 This Page will be used to make a query to AFD Server for fetching information of

component Nodes. After receiving the list of component nodes, AFDIA will present all

this information in a Grid, where user can explore these components by applying

sorting in multiple ways etc.

Possible Movements to/from other pages: Test.aspx, Strategy.aspx, History.aspx

Interaction with the AFD Database (Table Name(s)): None

Interaction with the Dll (Wrapper Method Name): AFD_BBN_Library_Components_All ()

Screen shot:

Figure 5.5: webpage Component.aspx

Detail Description of the Page: AFDIA will reach this page, after completing the

Initialization state. On the Page Load method, AFDIA will call a Wrapper Method

AFD_BBN_Library_Components_All ().

The output of this method will result an AFD_BBN_Library_Components_All () _output.txt

text file which contain the list of strings: component name, component a-priori probability

AFDIA – AFD Tool Interface Application Page 61

and component probability retrieved from wrapper method. AFDIA will parse the output file

and present it into the Grid, showing above in a picture.

There is group box name Trash parameters: contain two textboxes, Pass trash and failure

trash; these two values will be used to set the trash value to differentiate among

components. The entered values will be used to sort the component probability. Therefore

entered value must be less than 1. The differentiation can be managed by different Row

Colors. Group box named with Graphical Visualization, let the user to choose the type of

chart to see the components and their probabilities. The type of charts can be add/deleted

as suggested by the supervisor.

Another group box named Information and status, contain a read-only text box, which

shows the latest step performed information. That is more concern about the history of the

testing session.

Page Name: Strategy.aspx

Page Main Functionality:

 This Page will be used to make a query to AFD Server for fetching all possible

strategies (set of tests) to be executed. After receiving the list of component nodes,

AFDIA will present all this information in a Grid, where user can explore these

strategies by applying sorting in multiple ways etc.

Possible Movements to/from other pages: Test.aspx, Components.aspx, History.aspx

Interaction with the AFD Database (Table Name(s)): None?

Interaction with the Dll (Wrapper Method Name): AFD_BBN_Library_getStrategies_All ()

Screen shot:

Figure 5.6: webpage Strategy.aspx

AFDIA – AFD Tool Interface Application Page 62

Detail Description of the Page: AFDIA will reach this page, after completing the

Initialization state. On the Page Load method, AFDIA will call a Wrapper Method

AFD_BBN_Library_getStrategies_All ().

The output of this method will result an AFD_BBN_Library_getStrategies_All () _output.txt

text file which contain the list of tests and its ranked optimal strategies. AFDIA will parse the

output file and present it into the Grid, showing above in a picture. Group box named with

select Strategy, Currently as AFD Tool provide only single test strategy, so we can go on only

with single test. But in implementation, other two options are also available, which can be

modified upon supervisor instructions.

User can select a specific strategy from the Grid, by single click on the Row and the Click on

“ADD” button in the group box.

Page Name: AddEvidence.aspx

Page Main Functionality:

User will visit this Page, to send the sessions id for evidences insertions. Than AFDOnline will

call the web service exposed by the AFD WebServer and send the selected session ids to

the AFD database. Then upon the successful calling the web service, these session ids will

be saved into a database table from where this information will be used by AFDIA Test

Administrator web application for evidence insertion.

Possible Movements to/from other pages: Remove_CleanEvidence.aspx,Test.aspx,

Components.aspx, History.aspx and strategies.aspx

Interaction with the AFD Database (Table Name(s)): dbo.Test, dbo.Sesion

Interaction with the Dll (Wrapper Method Name):

AFD_BBN_Library_addEvidences (), AFD_BBN_Library_getTests_All ().

AFDIA – AFD Tool Interface Application Page 63

Screen shot:

Figure 5.7: webpage AddEvidence.aspx

Detail Description of the Page:

This Page will present all sessions Id in the left grid which you can see above in the

picture. And the grid on the right will be empty upon arrival on this page. And that will

be populated when you click on the any selected session id. All the sessions id will be

presented in the Grid only and only if its corresponding tests results had been inserted

by the test administrator.

1) When the user will traverse to this page. On this arrival AFDOnline immediately call a

web services exposed by the AFD WebServer, this web service will notify my

AFDOnline that followings are the session ids against them Test Administrator has

record the results.

2) AFDOnline will map all these session ids to the Grid, you can see above in the picture

on the left.

3) Tester can select any of the following session id.

4) Upon selection of a particular session id, AFDOnline will query the test table in the

database and return and map all the test results on the grid right to the session id’s

grid.

AFDIA – AFD Tool Interface Application Page 64

Tester can select and see all the session ids corresponding results by just double clicking on

the session id in the grid.

Page Name: Remove_CleanEvidence.aspx

Page Main Functionality:

User will visit this Page, to Remove/Clean evidences. Than AFDIA will call the method

AFD_BBN_Library_removeEvidences () to remove the evidences when user will click on the

Remove button, provided on the interface. A Refresh of all visualization contents is

required. For this AFDIA will call the AFD_BBN_Library_Finalize ().

 Possible Movements to/from other pages: Remove_CleanEvidence.aspx, Test.aspx,

Components.aspx, History.aspx

Interaction with the AFD Database (Table Name(s)): dbo.Test

Interaction with the Dll (Wrapper Method Name):

AFD_BBN_Library_removeEvidences (), AFD_BBN_Library_Finalize ()

Screen Shot:

Figure 5.8: webpage Remove_CleanEvidence.aspx

Detail Description of the Page: this page is reserve to remove/clean evidences by

calling the wrapper method. When user will come on this page, AFDIA will query test

table to retrieve all tests. And then present in the grid. User can select one or more

than one test to perform this operation.

AFDIA – AFD Tool Interface Application Page 65

When user will click on the Remove button after selection, an input file will be

prepared by the parser component of the AFDIA. Then a call is performed to the

wrapper method to remove the evidences and synchronize the AFD tool with the DB.

AFDIA – AFD Tool Interface Application Page 66

Deployment

Software deployment is all of the activities that make a software system available for use. A

newly created program may work fine on your computer, but that doesn’t mean it is really

ready for others to use. There are many extra program features you probably hadn’t

needed for you, but ought to provide if the program will be used by others. So it is

necessary to put all our web applications on a web server that public them for users. We are

deploying AFDOnline, AFD Webserver and Test Administrator on IIS (Internet Information

Services), IIS is a web server developed by Microsoft. After deployment on IIS every web

application being assigned unique URL (Unified Resource Locator) addresses for accessing

trough internet/Intranet.

As we have not any formal web server to deploy. Let’s assume localhost as web server. But

later, it can be a formal dedicated Server. Here is complete procedure (in bullets) of

deployment on IIS.

Deployment of AFDOnline (Website)

 Create c:\inetpub\wwwroot, if not exist

 Create three folders in c:\inetpub\wwwroot namely AFDOnline, Test Administrator

and AFD Webserver. We created three because we need to publish all three

solutions.

Figure 6.1: inetpub/wwwroot/FoldersForDeployment

AFDIA – AFD Tool Interface Application Page 67

 Open Visual Studio 2010 as Administrator

Figure 6.2: Run VS as administrator

 Open project locating on local disk’s path

Figure 6.3: Project on Local Disk

AFDIA – AFD Tool Interface Application Page 68

 Right click on the project which you want to publish, will appear a pop up containing

multiple options. There should be one option called “Publish”

Figure 6.4: Publish WebSite

 Following window will appear, select Publish method as “FileSystem” and set the

target location where you want published site. In our case it is

C:\inetpub\wwwroot\AFDOnline. After these setting click on the Publish button.

Figure 6.5: Publish Web Profile

AFDIA – AFD Tool Interface Application Page 69

 Upon successful publishing, notice on the specified path we have our published web

site.

Figure 6.6: Published Web Content

 At this point we are ready to put our published site on IIS Web Server. To do this first

step is to open IIS Manager which reside Control Panel/Administrative Tools/Internet

Information Services (IIS) Manager. By opening, following window would appear.

Figure 6.7: IIS Manager

AFDIA – AFD Tool Interface Application Page 70

 In Connections pane (at extreme left) of the IIS manager console there is one virtual

server, by expanding it we would see one folder called Web Sites. All web sites those

needs to publish over IIS must present here. We will add a new web site called

AFDOnline and associate the published site which produced by VS 2010.

Adding new web site:

Figure 6.8: IIS Manager- Add New Web Site

Associate Published site (published by VS 2010) with the newly added Site:

Figure 6.8: IIS Manager- Configure Added WebSite

AFDIA – AFD Tool Interface Application Page 71

That’s it about publishing AFDOnline on IIS Server, now this server can be access by calling

www.AFDOnline.com only on Local host.

Deployment of AFD Webserver & Test Administrator (Website)

 As the publishing and deployment procedure are same in the case of AFD Webserver

and Test Administrator. So, I will not repeat this work. But would like present a final

look of all published sites on IIS.

Test Administrator deployment:

Figure 6.9: IIS Manager- Configure Test Administrator WebSite

http://www.afdonline.com/

AFDIA – AFD Tool Interface Application Page 72

AFD Webserver deployment:

Figure 6.10: IIS Manager- Configure AFD Webserver WebSite

AFDIA – AFD Tool Interface Application Page 73

Code

Project: AFD WebServer

Interface of web Service: scAddEvidence:
using System;

using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;
using Doamin;

namespace AddEvidenceWedService
{
 // NOTE: You can use the "Rename" command on the "Refactor" menu to change the interface name "IService1" in both
code and config file together.
 [ServiceContract]
 public interface scAddEvidence
 {

 [OperationContract]
 string GetTestStatus(string sessionID);

 [OperationContract]
 void SendTestToAdministrator(List<dcAddEvidence> tests);

 [OperationContract]
 List<string> GetListofSessiosIDs();

 [OperationContract]
 List<TestResult> GetListOfTestsBySessionID(string sessionID);

 [OperationContract]
 void AddEvidenceIntoDB(string sessionID, string evidenceString);

 }

Data Transfer object of web Service: dcAddEvidence:

 // Use a data contract as illustrated in the sample below to add composite types to service operations.
 [DataContract]
 public class dcAddEvidence
 {

 private int _TestID;
 [DataMember]
 public int TestID
 {
 get { return _TestID; }

AFDIA – AFD Tool Interface Application Page 74

 set { _TestID = value; } }
 private string _TestOutCome;
 [DataMember]
 public string TestOutCome
 {
 get { return _TestOutCome; }
 set { _TestOutCome = value; }
 }

 private string _TestProbability;
 [DataMember]
 public string TestProbability
 {
 get { return _TestProbability; }
 set { _TestProbability = value; }
 }

 private string _TetstName;
 [DataMember]
 public string TetstName
 {
 get { return _TetstName; }
 set { _TetstName = value; }
 }

 private string _ModelID;
 [DataMember]
 public string ModelID
 {
 get { return _ModelID; }
 set { _ModelID = value; }
 }

 private string _SessionID;
 [DataMember]
 public string SessionID
 {
 get { return _SessionID; }
 set { _SessionID = value; }
 }

 private string _TestInternalID;
 [DataMember]
 public string TetsInternalID
 {
 get { return _TestInternalID; }
 set { _TestInternalID = value; }
 }
 }

}

AFDIA – AFD Tool Interface Application Page 75

Service Implementation class, implements scAddEvidence: AddEvidenceServiceImplentation

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;
using System.Data.Linq;
using Doamin;

namespace AddEvidenceWedService
{
 // NOTE: You can use the "Rename" command on the "Refactor" menu to change the class name "Service1" in code, svc
and config file together.
 public class AddEvidenceServiceImplementation : scAddEvidence
 {
 private AFDDBAdministratorDataContext _AfdDataContext;
 private AFDDBAdministratorDataContext AfdDataContext
 {
 get
 {
 return _AfdDataContext;
 }
 set
 {
 _AfdDataContext = value;
 }
 }

 public AddEvidenceServiceImplementation()
 {
 _AfdDataContext = new AFDDBAdministratorDataContext();

 }

 #region public bool SendTestToAdministrator(List<dcAddEvidence> tests)

 public void SendTestToAdministrator(List<dcAddEvidence> testsDetail)
 {

 for (int i = 0; i < testsDetail.ToList().Count; i++)
 {

 if (testsDetail[i] != null)
 {

 var item = new TestResult();

 item.ID_Model = testsDetail[i].ModelID;
 item.ID_Session = testsDetail[i].SessionID;
 item.ID_Test = testsDetail[i].TestID;
 item.Test_InternalID = testsDetail[i].TetsInternalID;
 item.Test_Name = testsDetail[i].TetstName;
 item.Test_OutCome = testsDetail[i].TestOutCome;

AFDIA – AFD Tool Interface Application Page 76

 item.Test_Probability = testsDetail[i].TestProbability;

 _AfdDataContext.TestResults.InsertOnSubmit(item);
 }

 }

 _AfdDataContext.SubmitChanges();

 }
 #endregion

 #region public List<string> GetListofSessiosIDs()
 public List<string> GetListofSessiosIDs()
 {
 return AfdDataContext.TestResults.Select(p => p.ID_Session).Distinct().ToList();
 }

 #endregion

 #region public List<TestResult> GetListOfTestsBySessionID(string sessionID)
 public List<TestResult> GetListOfTestsBySessionID(string sessionID)
 {
 return AfdDataContext.TestResults.Where(i => i.ID_Session == sessionID).ToList();

 }

 #endregion

 #region public void AddEvidenceIntoDB(string sessionID, string evidenceString)

 public void AddEvidenceIntoDB(string sessionID, string evidenceString)
 {

 if (AfdDataContext.TestEvidences.Where(i => i.SessionID == sessionID).Count() > 0)
 {
 // update the existing record
 TestEvidence testEvidence = AfdDataContext.TestEvidences.Single(i => i.SessionID == sessionID);
 testEvidence.Evidences = evidenceString;

 }
 else
 {
 // Register the new one
 TestEvidence item = new TestEvidence();
 item.SessionID = sessionID;
 item.Evidences = evidenceString;
 AfdDataContext.TestEvidences.InsertOnSubmit(item);
 }

 AfdDataContext.SubmitChanges();
 }

 #endregion

 #region public string GetTestStatus(string sessionID)

 public string GetTestStatus(string sessionID)

AFDIA – AFD Tool Interface Application Page 77

 {
 return AfdDataContext.TestEvidences.Where(i => i.SessionID == sessionID).Select(i => i.Evidences).SingleOrDefault();
 }

 #endregion
 }
}

Project: AFDIA Test Administrator

Web Page: AllPendingTests.aspx [Markup]
<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="AddEvidences.aspx.cs" Inherits="TestSite._Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

 <link rel="Stylesheet" href ="DataTables/css/demo_table.css" type ="text/css" />
 <script type ="text/javascript" src="DataTables/js/jquery.js"></script>
 <script type ="text/javascript" src="DataTables/js/jquery.dataTables.js"></script>

 <script type ="text/javascript" language ="javascript">

 var FileInputString = "";

 $(document).ready(function () {

 $('#tblTests').dataTable({
 "oLanguage": { "oView": "" },
 "iDisplyLength": 10,
 "aaSorting": [[0, "asc"]]
 });
 });

 $('#tblTests tbody tr').click(function () {
 alert('e');
 });

 function buttonupdateTestStatuses() {

 var tab = document.getElementById("tblTests"); // table with id tbl1
 var elems = tab.getElementsByTagName("input");
 var len = elems.length/3;

 for (var i = 0; i < len; i++)
 {

 var rbPass = "radiobuttonPass_" + i;
 var rbFail = "radiobuttonFail_" + i;

AFDIA – AFD Tool Interface Application Page 78

 var rbUnknown = "radiobuttonUnknown_" + i;

 var objrbPassID = document.getElementById(rbPass.toString());
 var objrbFailID = document.getElementById(rbFail.toString());
 var objrbUnknownID = document.getElementById(rbUnknown.toString());

 if (objrbPassID.checked) {

 var testIDKey = "testid_ " + i;
 var objtestID = document.getElementById(testIDKey.toString());
 FileInputString += "P:" + objtestID.innerHTML.toString().trim() + ",";

 var HiddenValue = document.getElementById("<%= hiddenFieldFileData.ClientID %>");
 HiddenValue.value = FileInputString;

 }
 else if (objrbFailID.checked) {

 var testIDKey = "testid_ " + i;
 var objtestID = document.getElementById(testIDKey.toString());
 FileInputString += "F:" + objtestID.innerHTML.toString().trim() + ",";

 var HiddenValue = document.getElementById("<%= hiddenFieldFileData.ClientID %>");
 HiddenValue.value = FileInputString;
 }
 else if (objrbUnknownID.checked) {

 var testIDKey = "testid_ " + i;
 var objtestID = document.getElementById(testIDKey.toString());
 FileInputString += "Unknown:" + objtestID.innerHTML.toString().trim() + ",";

 var HiddenValue = document.getElementById("<%= hiddenFieldFileData.ClientID %>");
 HiddenValue.value = FileInputString;
 }

 }

 if (confirm('Press OK! if You are sure about your Evidences selection, upon successful inserttion the control will transfer
to Page: View_Pending_Session_List '))
 {
 return true;
 }
 else {
 // reset the FileintputString in case, when user select "NO" from the confirmation popUp
 // this is because Either Yes OR No, in both cases, this variable has been papulated
 // SO, it must be Cleaned when user select NO
 FileInputString = "";
 return false;
 }
 }

 </script>

AFDIA – AFD Tool Interface Application Page 79

</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 Add Evidences </div>

 <div style = " width : 100%">

 <div style = " margin-left :50px; width:179px; float :left;">
 <asp:LinkButton ID="linkbuttonViewTests" runat="server" onclick="linkbuttonViewTests_Click"
 >View Pending Sessions List</asp:LinkButton>
 </div>

 </div>

 <div style =" margin-top:100px; ">

 <div style = " border: thin solid #FFFFFF; margin-left :200px; float:left ; margin-top :25px; height:auto; width:650px;
text-align :center;" >

 <asp:Repeater ID="repeaterTests" runat ="server">

 <HeaderTemplate>
 <table id="tblTests" cellpadding ="0" width ="650" cellspacing ="0" border ="0" class = "disply">
 <thead>
 <tr>
 <th style =" width:80px;" >Session ID</th>
 <th style =" width:50px;" >Test ID</th>
 <th style =" width:100px;" >Test Name</th>
 <th style =" width:100px;" >Test Approp Probability</th>
 <th >Test Probability</th>
 <th style =" width:80px;">Pass </th>
 <th style =" width:80px;">Fail </th>
 <th style =" width:80px;">Unknown </th>
 </tr>
 </thead>
 <tbody>
 </HeaderTemplate>

 <ItemTemplate>
 <tr>

 <td> <%# Eval("ID_Session")%> </td>
 <td id="testid_ <%# Eval("Test_InternalID")%>" > <%# Eval("Test_InternalID")%> </td>
 <td id="testname_ <%# Eval("Test_InternalID")%>"> <%# Eval("Test_Name")%></td>
 <td id="testoutcome_ <%# Eval("Test_InternalID")%>"> <%# Eval("Test_OutCome")%> </td>
 <td id="testProbability_ <%# Eval("Test_InternalID")%>"> <%# Eval("Test_Probability")%></td>
 <td ><input id= "radiobuttonPass_<%# Eval("Test_InternalID")%>" type="radio" name = "radiobutton_<%#
Eval("Test_InternalID")%>" ></td>
 <td ><input id= "radiobuttonFail_<%# Eval("Test_InternalID")%>" type="radio" name ="radiobutton_<%#
Eval("Test_InternalID")%>" ></td>

AFDIA – AFD Tool Interface Application Page 80

 <td ><input id= "radiobuttonUnknown_<%# Eval("Test_InternalID")%>" type="radio" name = "radiobutton_<%#
Eval("Test_InternalID")%>" ></td>
 </tr>
 </ItemTemplate>

 <FooterTemplate>
 </tbody>
 </table>
 </FooterTemplate>

 </asp:Repeater>

 </div>

 </div>

 <div style =" margin-left:640px;">
 <asp:button id ="buttonupdateTestStatuses" runat ="server" Text ="update Tests Status"
 OnClientClick = "return buttonupdateTestStatuses();" width="130"
 onclick="buttonupdateTestStatuses_Click" />
 </div>

 <div style =" margin-left:200px; width :500px;">
 <asp:Label ID="labelMessage" runat ="server" ForeColor ="White" Font-Size ="Large" ></asp:Label>
 </div>

 <div id="hiddenFieldDiv" style = " display :none;" >
 <asp:HiddenField ID="hiddenFieldFileData" Value = "" runat="server" />
 </div>

 </div>

</asp:Content>

Web Page: AllPendingTests.aspx.cs [Code-Behind]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using TestSite.AFDIAWebServiceReference;

namespace TestSite
{
 public partial class AllPendingTests : System.Web.UI.Page
 {

 protected void Page_Load(object sender, EventArgs e)
 {
 binGrdifromDBData();
 }

private void binGrdifromDBData()

AFDIA – AFD Tool Interface Application Page 81

 {

 /*call wcf service for get the list of all Sessions ID*/
 scAddEvidenceClient client = new scAddEvidenceClient();
 client.Open();
 var list = client.GetListofSessiosIDs();
 client.Close();

 /* bind that list with the DataGrid */
 List<bindableList> bdablelist = new List<bindableList>(list.Length);
 if (list.Length != 0)
 {

 for (int i = 0; i < list.Length; i++)
 {
 var item = new bindableList();

 item.ID_Session = list[i];
 bdablelist.Add(item);
 }

 repeaterAllBNEModels.DataSource = bdablelist;
 repeaterAllBNEModels.DataBind();
 }
 else
 {

 repeaterAllBNEModels.DataSource = bdablelist;
 repeaterAllBNEModels.DataBind();
 }

 }

 protected void linkbuttonViewTests_Click(object sender, EventArgs e)
 {

 }

 protected void linkbuttonViewAllPendingChanges_Click(object sender, EventArgs e)
 {
 Server.Transfer("AllPendingTests.aspx");
 }

 }

 class bindableList {

 private string _sessionid;
 public string ID_Session
 {
 get { return _sessionid; }
 set { _sessionid = value; }
 }
 }
}

AFDIA – AFD Tool Interface Application Page 82

Web Page: AddEvidences.aspx [Markup]
<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="AddEvidences.aspx.cs" Inherits="TestSite._Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

 <link rel="Stylesheet" href ="DataTables/css/demo_table.css" type ="text/css" />
 <script type ="text/javascript" src="DataTables/js/jquery.js"></script>
 <script type ="text/javascript" src="DataTables/js/jquery.dataTables.js"></script>

 <script type ="text/javascript" language ="javascript">

 var FileInputString = "";

 $(document).ready(function () {

 $('#tblTests').dataTable({
 "oLanguage": { "oView": "" },
 "iDisplyLength": 10,
 "aaSorting": [[0, "asc"]]
 });
 });

 $('#tblTests tbody tr').click(function () {
 alert('e');
 });

 function buttonupdateTestStatuses() {

 var tab = document.getElementById("tblTests"); // table with id tbl1
 var elems = tab.getElementsByTagName("input");
 var len = elems.length/3;

 for (var i = 0; i < len; i++)
 {

 var rbPass = "radiobuttonPass_" + i;
 var rbFail = "radiobuttonFail_" + i;
 var rbUnknown = "radiobuttonUnknown_" + i;

 var objrbPassID = document.getElementById(rbPass.toString());
 var objrbFailID = document.getElementById(rbFail.toString());
 var objrbUnknownID = document.getElementById(rbUnknown.toString());

 if (objrbPassID.checked) {

AFDIA – AFD Tool Interface Application Page 83

 var testIDKey = "testid_ " + i;
 var objtestID = document.getElementById(testIDKey.toString());
 FileInputString += "P:" + objtestID.innerHTML.toString().trim() + ",";

 var HiddenValue = document.getElementById("<%= hiddenFieldFileData.ClientID %>");
 HiddenValue.value = FileInputString;

 }
 else if (objrbFailID.checked) {

 var testIDKey = "testid_ " + i;
 var objtestID = document.getElementById(testIDKey.toString());
 FileInputString += "F:" + objtestID.innerHTML.toString().trim() + ",";

 var HiddenValue = document.getElementById("<%= hiddenFieldFileData.ClientID %>");
 HiddenValue.value = FileInputString;
 }
 else if (objrbUnknownID.checked) {

 var testIDKey = "testid_ " + i;
 var objtestID = document.getElementById(testIDKey.toString());
 FileInputString += "Unknown:" + objtestID.innerHTML.toString().trim() + ",";

 var HiddenValue = document.getElementById("<%= hiddenFieldFileData.ClientID %>");
 HiddenValue.value = FileInputString;
 }

 }

 if (confirm('Press OK! if You are sure about your Evidences selection, upon successful inserttion the control will transfer
to Page: View_Pending_Session_List '))
 {
 return true;
 }
 else {
 // reset the FileintputString in case, when user select "NO" from the confirmation popUp
 // this is because Either Yes OR No, in both cases, this variable has been papulated
 // SO, it must be Cleaned when user select NO
 FileInputString = "";
 return false;
 }
 }

 </script>

</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 Add Evidences </div>

 <div style = " width : 100%">

 <div style = " margin-left :50px; width:179px; float :left;">

AFDIA – AFD Tool Interface Application Page 84

 <asp:LinkButton ID="linkbuttonViewTests" runat="server" onclick="linkbuttonViewTests_Click"
 >View Pending Sessions List</asp:LinkButton>
 </div>

 </div>

 <div style =" margin-top:100px; ">

 <div style = " border: thin solid #FFFFFF; margin-left :200px; float:left ; margin-top :25px; height:auto; width:650px;
text-align :center;" >

 <asp:Repeater ID="repeaterTests" runat ="server">

 <HeaderTemplate>
 <table id="tblTests" cellpadding ="0" width ="650" cellspacing ="0" border ="0" class = "disply">
 <thead>
 <tr>
 <th style =" width:80px;" >Session ID</th>
 <th style =" width:50px;" >Test ID</th>
 <th style =" width:100px;" >Test Name</th>
 <th style =" width:100px;" >Test Approp Probability</th>
 <th >Test Probability</th>
 <th style =" width:80px;">Pass </th>
 <th style =" width:80px;">Fail </th>
 <th style =" width:80px;">Unknown </th>
 </tr>
 </thead>
 <tbody>
 </HeaderTemplate>

 <ItemTemplate>
 <tr>

 <td> <%# Eval("ID_Session")%> </td>
 <td id="testid_ <%# Eval("Test_InternalID")%>" > <%# Eval("Test_InternalID")%> </td>
 <td id="testname_ <%# Eval("Test_InternalID")%>"> <%# Eval("Test_Name")%></td>
 <td id="testoutcome_ <%# Eval("Test_InternalID")%>"> <%# Eval("Test_OutCome")%> </td>
 <td id="testProbability_ <%# Eval("Test_InternalID")%>"> <%# Eval("Test_Probability")%></td>
 <td ><input id= "radiobuttonPass_<%# Eval("Test_InternalID")%>" type="radio" name = "radiobutton_<%#
Eval("Test_InternalID")%>" ></td>
 <td ><input id= "radiobuttonFail_<%# Eval("Test_InternalID")%>" type="radio" name ="radiobutton_<%#
Eval("Test_InternalID")%>" ></td>
 <td ><input id= "radiobuttonUnknown_<%# Eval("Test_InternalID")%>" type="radio" name = "radiobutton_<%#
Eval("Test_InternalID")%>" ></td>
 </tr>
 </ItemTemplate>

 <FooterTemplate>
 </tbody>
 </table>
 </FooterTemplate>

 </asp:Repeater>

AFDIA – AFD Tool Interface Application Page 85

 </div>

 </div>

 <div style =" margin-left:640px;">
 <asp:button id ="buttonupdateTestStatuses" runat ="server" Text ="update Tests Status"
 OnClientClick = "return buttonupdateTestStatuses();" width="130"
 onclick="buttonupdateTestStatuses_Click" />
 </div>

 <div style =" margin-left:200px; width :500px;">
 <asp:Label ID="labelMessage" runat ="server" ForeColor ="White" Font-Size ="Large" ></asp:Label>
 </div>

 <div id="hiddenFieldDiv" style = " display :none;" >
 <asp:HiddenField ID="hiddenFieldFileData" Value = "" runat="server" />
 </div>

 </div>

</asp:Content>

Web Page: AddEvidences.aspx.cs [Code-behind]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using TestSite.AFDIAWebServiceReference;

namespace TestSite
{
 public partial class _Default : System.Web.UI.Page
 {

 string selectedSessionId = "";

 protected void Page_Load(object sender, EventArgs e)
 {

 if (Request["SelectedSessionID"] != null)
 selectedSessionId = Request["SelectedSessionID"].ToString();
 bindDatawithGridfromDB();
 }

 private void bindDatawithGridfromDB()
 {
 /*call wcf service for get the list of all Sessions ID*/
 scAddEvidenceClient client = new scAddEvidenceClient();
 client.Open();
 var list = client.GetListOfTestsBySessionID(selectedSessionId);
 client.Close();

AFDIA – AFD Tool Interface Application Page 86

 /* bind that list with the DataGrid */
 List<TestBindableEntity> testBindAbleEntity = new List<TestBindableEntity>();

 for (int i = 0; i < list.ToList().Count; i++)
 {
 var item = new TestBindableEntity();
 item.ID_Test = list[i].ID_Test.ToString();
 item.Test_Name = list[i].Test_Name;
 item.Test_OutCome = list[i].Test_OutCome;
 item.Test_Probability = list[i].Test_Probability;
 item.ID_Session = list[i].ID_Session;
 item.Test_InternalID = list[i].Test_InternalID;

 testBindAbleEntity.Add(item);
 }

 repeaterTests.DataSource = testBindAbleEntity;
 repeaterTests.DataBind();

 }

 protected void linkbuttonViewTests_Click(object sender, EventArgs e)
 {
 Server.Transfer("AllPendingTests.aspx");
 }

 protected void buttonupdateTestStatuses_Click(object sender, EventArgs e)
 {

 try
 {
 /*call wcf service for set the evidence into the DB*/
 scAddEvidenceClient client = new scAddEvidenceClient();
 client.Open();
 client.AddEvidenceIntoDB(selectedSessionId, hiddenFieldFileData.Value.ToString());
 client.Close();

 Server.Transfer("AllPendingTests.aspx");
 labelMessage.Text = "Evidences has been updated in the Database! For Add More Evidence Please go to All Pending
tests page.";
 }
 catch (Exception exp)
 {
 }

 }
 }

class TestBindableEntity
 {

AFDIA – AFD Tool Interface Application Page 87

 private string _SessionID;
 public string ID_Session
 {
 get { return _SessionID; }
 set { _SessionID = value; }
 }

 private string _TestID;
 public string ID_Test
 {
 get { return _TestID; }
 set { _TestID = value; }
 }

 private string _TestName;
 public string Test_Name
 {
 get { return _TestName; }
 set { _TestName = value; }
 }

 private string _TestOutCome;
 public string Test_OutCome
 {
 get { return _TestOutCome; }
 set { _TestOutCome = value; }
 }

 private string _TestProbability;
 public string Test_Probability
 {
 get { return _TestProbability; }
 set { _TestProbability = value; }
 }

 private string _Test_InternalID;
 public string Test_InternalID
 {
 get { return _Test_InternalID; }
 set { _Test_InternalID = value; }
 }

 }

}

AFDIA – AFD Tool Interface Application Page 88

Project: AFDIAOnline

Web Page: Index.aspx [Markup]

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="Index.aspx.cs" Inherits="AFDPresentation._Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

 <script type ="text/javascript" language ="javascript" >

 function linkbuttonUploadNewModel_OnClientClick() {

 alert("I am in linkbuttonUploadNewModel_OnClientClick Event");
 return false;

 }

 function linkbuttonChooseExistingModel_OnClientClick() {

 alert("I am in linkbuttonChooseExistingModel_OnClientClick Event");
 return false;
 }

 </script>
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 Configure Model (.BNE)</div>

 <div style = " margin-top :100px; height:100px; width:100%;">

 <div style =" margin-left :100px; width:500px; ">
 <asp:LinkButton ID="linkbuttonUploadNewModel" ForeColor ="White"

 Font-Underline="false" runat="server"
 onclick="linkbuttonUploadNewModel_Click" > Upload New Model</asp:LinkButton>

 </div>

 <div style =" margin-left :100px; width:500px; margin-top:20px; ">
 <asp:LinkButton ID="linkbuttonChooseExistingModel" ForeColor ="White"
 OnClientClick="linkbuttonChooseExistingModel_OnClientClick"
 Font-Underline="false" runat="server"
 onclick="linkbuttonChooseExistingModel_Click"> Choose an Existing Model</asp:LinkButton>

 </div>
 </div>
 </div>
</asp:Content>

Web Page: Index.aspx.cs [Code-behind]

AFDIA – AFD Tool Interface Application Page 89

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace AFDPresentation
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Session["HistoryFlag"] = "false";
 }

 protected void linkbuttonUploadNewModel_Click(object sender, EventArgs e)
 {

 Response.Redirect("UploadModel.aspx");

 }

 protected void linkbuttonChooseExistingModel_Click(object sender, EventArgs e)
 {

 Response.Redirect("AvailableBNEModels.aspx");

 }
 }
}

Web Page: UploadModel.aspx [Markup]
<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="UploadModel.aspx.cs" Inherits="AFDPresentation.UploadModel" %>

<%@ Register Assembly="EeekSoft.Web.PopupWin" Namespace="EeekSoft.Web" TagPrefix="cc1" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

 <link href="Styles/StyleSheet.css" type="text/css" rel="Stylesheet" />

<script type = "text/javascript" language = "javascript" >

 function ShowPopup() {
 alert("Upon Successful upload of the CTM Model, Tool will be transfered to Test Pages! ");
 }

</script>
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

AFDIA – AFD Tool Interface Application Page 90

 <div style = " color :White; width:100%; text-align: center; ">
 Upload New Model (.BNE) </div>

 <div style = " margin-left:910px; height:34px; width:50px;">
 <asp:ImageButton ID="imageButtonHelpPopUp" runat="server" Height = "50px"
 Width = "50px" ImageUrl="~/Resorces/Images/help-Cir.jpg"
 onclick="imageButtonHelpPopUp_Click" />
 </div>

 <div style = " margin-top :100px; height:34px; width:100%;">

 <div id="uploadFileLabel" style =" margin-left:100px; width:250px; margin-top:2px; float :left; " dir="rtl" >
 <asp:Label ID="labelUploadModel" runat="server" ForeColor ="White" Text=": Locate Model inside your
Disk"></asp:Label>
 </div>

 <div id="divUploadFileControl" style =" margin-left:5px; width:250px; float :left; " >
 <asp:FileUpload ID="fileUploadBNEModel" Width ="200" runat="server" ForeColor ="White" />
 </div>

 </div>

 <div id="divButtonUpload" style =" margin-left:500px; width:80px; " >
 <asp:Button ID="buttonUploadModel" runat ="server" Width="80" Text ="Upload"
 onclick="buttonUploadModel_Click" />
 </div>
 <div id="div" style =" margin-left:200px; width:500px; " >
 <asp:Label ID="LabelFileUploadstatus" runat="server"></asp:Label>
 </div>

 <div id="div1" style =" margin-left:500px; width:80px; " >
 <asp:Button ID="buttonInitilize" Visible = "false" runat ="server" Width="80" Text ="Init" OnClientClick =
"ShowPopup()" onclick="buttonInitilize_Click"
 />
 </div>

 <div>
 <cc1:PopupWin id="popupWin" runat="server" visible="False"
 colorstyle="Blue" width="300px" height="150px" DragDrop ="true" DockMode ="BottomRight"
 windowscroll="False" windowsize="300, 200" style="top: 0px; left: 0px" />
 </div>

 </div>
</asp:Content>

Web Page: UploadModel.aspx.cs [Code-behind]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Data.Linq;

AFDIA – AFD Tool Interface Application Page 91

using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.IO;
using Domain;
using AFDPresentation.Dlls;
using Parser;

namespace AFDPresentation
{
 public partial class UploadModel : System.Web.UI.Page
 {

 private AFDOnlineDBDataContext _AfdDataContext;
 private AFDOnlineDBDataContext AfdDataContext
 {
 get
 {
 return _AfdDataContext;
 }
 set
 {
 _AfdDataContext = value;
 }
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 setupPopUp();
 }

 }

 public UploadModel()
 {
 _AfdDataContext = new AFDOnlineDBDataContext();
 }

 protected void buttonUploadModel_Click(object sender, EventArgs e)
 {
 if (fileUploadBNEModel.HasFile)
 {
 try
 {
 string filename = Path.GetFileName(fileUploadBNEModel.FileName);
 fileUploadBNEModel.SaveAs(Server.MapPath("~/UploadedModels/" + filename));
 LabelFileUploadstatus.Text = "Upload Status: File Uploaded! Please Press Init button Below to Initliza the
AFDTool";

 Model newModel = new Model();

 var modelRecords = from models in AfdDataContext.Models select models;

AFDIA – AFD Tool Interface Application Page 92

 if (modelRecords.Count() > 0)
 {
 var previouscount = (from moels in AfdDataContext.Models select moels.ID_Model).Count();
 var currentcount = previouscount + 1000;
 currentcount = currentcount + 1;
 newModel.ID_Model = "Mod_" + Convert.ToString(currentcount);
 newModel.ID_Board = (from bords in AfdDataContext.Boards
 select bords.ID_Board).First().ToString() ;
 newModel.CTM_SourceFile = "~/UploadedModels/" + filename;
 }

 else
 {
 newModel.ID_Model = "Mod_1001";
 newModel.ID_Board = (from bords in AfdDataContext.Boards
 select bords.ID_Board).First().ToString() ;
 newModel.CTM_SourceFile = "~/UploadedModels/" + filename;

 }

 var filepath =
"C:\\MyDisk\\Data\\thesis\\AFDOnline_Develop\\AFDOnline\\AFDPresentation\\UploadedModels\\"+ filename;

 newModel.Model_Content = "";//ReadContentFromUploadedFile(filepath);
 newModel.Model_Name = filename;
 AfdDataContext.Models.InsertOnSubmit(newModel);

 // Insert a new record into a Session Table and Save the session Id in ASP.Net Seesion variable for others
references

 Sesion newSession = new Sesion();

 var sessionRecords = from sessions in AfdDataContext.Sesions select sessions;

 if (sessionRecords.Count() > 0)
 {
 var previouscount = (from sessions in AfdDataContext.Sesions select sessions.ID_Session).Count();
 var currentcount = previouscount + 1;

 newSession.ID_Session = "Session_" + Convert.ToString(currentcount);
 newSession.ID_Model = newModel.ID_Model;
 newSession.Session_Date = DateTime.Now;
 }

 else
 {
 newSession.ID_Session = "Session_1";
 newSession.ID_Model = newModel.ID_Model;
 newSession.Session_Date = DateTime.Now;

 }

 // save Seesion Id and Model Id into Seesion Variables

AFDIA – AFD Tool Interface Application Page 93

 Session["SessionID"] = newSession.ID_Session;
 Session["ModelID"] = newModel.ID_Model;

 // submit changes to the Server
 AfdDataContext.Sesions.InsertOnSubmit(newSession);

 // Submit Chages into the DataBase
 AfdDataContext.SubmitChanges();

 //MoveFileToCDrive(newModel.Model_Content, filename);
 //SetFilePathIntoInitFile(filename);
 buttonInitilize.Visible = true;
 }
 catch (Exception ex)
 {
 LabelFileUploadstatus.Text = "Upload Status: File Cannot be Uploaded: The Following Exception Occur" +
ex.Message;
 }
 }
 }

 private void SetFilePathIntoInitFile(string filename)
 {

 TextWriter tsw = new StreamWriter(@"C:\TempAFDTool\AFD_BBN_Library_Init_input.txt");
 tsw.Flush();
 tsw.WriteLine("C:\\TempAFDTool\\Model\\" + filename + ",");
 tsw.Close();
 }

 private void MoveFileToCDrive(string fileModelContent, string fileName)
 {

 StreamWriter sw;
 sw = File.CreateText("C:\\TempAFDTool\\Model\\" + fileName);
 sw.WriteLine(fileModelContent.Trim());
 sw.Close();

 }

 protected void buttonInitilize_Click(object sender, EventArgs e)
 {

 UnsafeNativeMethods.AFD_BBN_Library_Init();
 var parser = new fileParser("C:\\TempAFDTool\\AFD_BBN_Library_Init_output.txt");
 var outDto = parser.ParseInitOutFile();

 if (!outDto.result)
 {
 LabelFileUploadstatus.Text = outDto.ErrorMessage;
 }
 else
 {
 Server.Transfer("Test.aspx");

AFDIA – AFD Tool Interface Application Page 94

 }

 }

 private string ReadContentFromUploadedFile(string filPath)
 {

 var fileContent = "";

 try
 {

 // Create an instance of StreamReader to read from a file.
 // The using statement also closes the StreamReader.
 using (StreamReader sr = new StreamReader(filPath))
 {
 String line;
 // Read and display lines from the file until the end of
 // the file is reached.
 while ((line = sr.ReadLine()) != null)
 {
 fileContent = fileContent + line;
 }
 }

 }
 catch (Exception exp)
 {
 LabelFileUploadstatus.Text = "Opps! System Counter Problem while Reading Content of CTM Model file!";
 }

 return fileContent;
 }

 protected void imageButtonHelpPopUp_Click(object sender, ImageClickEventArgs e)
 {
 setupPopUp();
 }

 private void setupPopUp()
 {
 popupWin.ActionType = EeekSoft.Web.PopupAction.MessageWindow;

 //Set popup and window texts
 popupWin.Title = "Instructions for Instilization";
 popupWin.Message = "</br></br></br>You are At Initilization Phase of AFD Tool...Click Me To know More!!!";
 popupWin.Text = " </br> - Upload a CTM Model </br> - Upon Successful upload, Init Button will be Visible </br> -
Press Init Button </br> - it will Initilize AFD Tool";

 //Change color style
 popupWin.ColorStyle = EeekSoft.Web.PopupColorStyle.Blue;

 //' Change timing
 popupWin.HideAfter = 20000;
 popupWin.ShowAfter = 500;

AFDIA – AFD Tool Interface Application Page 95

 //Show popup (after page is loaded)
 popupWin.Visible = true;
 }
 }
}

Web Page: Test.aspx [Markup]

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="Test.aspx.cs" Inherits="AFDPresentation.Test" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

<link rel="Stylesheet" href ="DataTables/css/demo_table.css" type ="text/css" />
 <script type ="text/javascript" src="DataTables/js/jquery.js"></script>
 <script type ="text/javascript" src="DataTables/js/jquery.dataTables.js"></script>

 <script type ="text/javascript">

 $(document).ready(function () {

 $('#tblAllTests').dataTable({
 "oLanguage": { "oView": "Select a Model(.BNE)" },
 "iDisplyLength": 10,
 "aaSorting": [[0, "asc"]],

 "sAjaxSource": "../../JsonDataFiles/jdTest.txt"

 });
 });

 </script>
 <style type="text/css">
 .style3
 {
 color: #FFFFFF;
 }
 </style>
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 Available Tests </div>

 <div style = " width : 100%">
 <div style = " margin-left :50px; width:100px; float:left;">
 <asp:LinkButton ID="linkbuttonViewStrategies" runat="server"
 onclick="linkbuttonViewStrategies_Click">View Strategies</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonViewComponents" runat="server"
 onclick="linkbuttonViewComponents_Click">View Components</asp:LinkButton>
 </div>

AFDIA – AFD Tool Interface Application Page 96

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonaddEvidence" runat="server" onclick="linkbuttonaddEvidence_Click"
 >Add Evidence</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbuttonRemoveEvidence" runat="server" onclick="linkbuttonRemoveEvidence_Click"
 >Clean/Remove Evidence</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbuttonViewHistory" runat="server" onclick="linkbuttonViewHistory_Click"
 >Test History</asp:LinkButton>
 </div>
 </div>

 <div style =" margin-top:100px; ">

 <div style = " border: thin solid #FFFFFF; margin-left :100px; float:left ; height:auto; width:500px; text-align :center;"
>

 <table id="tblAllTests" width ="490" cellpadding ="0" cellspacing ="0" border ="0" class = "disply">
 <thead>
 <tr>
 <th >TestID</th>

 <th style =" width:100px;" >Test OutCome</th>
 <th >Test Probability</th>
 </tr>
 </thead>
 <tbody>

 <tr>
 <td></td>

 <td> </td>
 <td> </td>
 </tr>

 </tbody>
 </table>

 </div>

 <div style =" float:left; height: 313px; ">
 <div style = " border: thin solid #FFFFFF; margin-left :10px; height:150px; width:300px; text-align :center;" >

AFDIA – AFD Tool Interface Application Page 97

 <div style =" width:300px; border-bottom-style: solid; border-bottom-width: thin; border-bottom-color:
#FFFFFF;"
 class="style3">
 Trash Parameters</div>

 <div style =" width:300px; margin-top :10px; ">
 <div style="width: 100px; margin-top:5px; float: left;">
 <asp:Label ID="Label1" runat="server" Text="Pass Trash:" Width="69px"></asp:Label>
 </div>
 <div style=" margin-top:5px; width: 168px; float:left; ">
 <asp:TextBox ID="textboxPassTrash" runat="server" Width="150px" ></asp:TextBox></div>
 </div>

 <div style =" margin-top:15px; ">
 <div style="float: left; width: 100px; float:left; ">
 <asp:Label ID="Label2" runat="server" Text="Failure Trash"></asp:Label></div>
 <div style=" width: 168px; float:left; ">
 <asp:TextBox ID="textboxFailureTrash" runat="server" Width="150px"></asp:TextBox></div>

 </div>

 <div id="divButtonApply" style =" margin-left :170px; margin-top :10px;">
 <asp:Button ID="buttonApplyTrash" Text ="Apply" runat ="server" />

 </div>

 </div>

 <div style = " border: thin solid #FFFFFF; margin-left :10px; margin-top :5px; height:50px; width:300px; text-align
:center;" >

 <div style =" width:300px; border-bottom-style: solid; border-bottom-width: thin; border-bottom-color: #FFFFFF;"
 class="style3">
 Information & Status </div>

 <div style=" width: 150px; margin-top:2px; float:left; ">
 <asp:Label ID="labelLatestStepPerformed" ForeColor ="White" runat ="server" Text ="Latest Step
Performed" ></asp:Label>
 </div>

 <div style=" width: 100px; margin-top:2px; float:left; ">
 <asp:TextBox ID="textboxLatestStepPerformed" ReadOnly ="true" runat ="server" Width =
"129px"></asp:TextBox>
 </div>

 </div>
 </div>

 </div>

 </div>
</asp:Content>

AFDIA – AFD Tool Interface Application Page 98

Web Page: Test.aspx.cs [Code-behind]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using AFDPresentation.Dlls;
using Parser;
using Domain;
using Domain.Entities;
using System.IO;
using AFDPresentation.AddEvidenceService;

namespace AFDPresentation
{
 public partial class Test : System.Web.UI.Page
 {
 private AFDOnlineDBDataContext _AfdDataContext;
 private AFDOnlineDBDataContext AfdDataContext
 {
 get
 {
 return _AfdDataContext;
 }
 set
 {
 _AfdDataContext = value;
 }
 }

 public Test()
 {
 _AfdDataContext = new AFDOnlineDBDataContext();
 }

 String SessionID = "";
 protected void Page_Load(object sender, EventArgs e)
 {

 if (!IsPostBack)
 {
 if (Session["HistoryFlag"].ToString() == "true")
 {
 SessionID = Session["SessionID"].ToString();
 GetDataFromDBAndBind();
 }
 else if (Request["modelID"] != null)
 {
 var selectedModelID = Request["modelID"].ToString();
 CallWrapperMethod(selectedModelID);
 }
 else
 {
 CallWrapperMethod();
 }
 }

AFDIA – AFD Tool Interface Application Page 99

 }

 private void GetDataFromDBAndBind()
 {

 var results = (from tests in AfdDataContext.TestResults
 where tests.ID_Session == SessionID
 select tests).ToList();

 List<TestOutcome> list = new List<TestOutcome>(results.Count);

 for (int i = 0; i < results.Count; i++)
 {
 TestOutcome item = new TestOutcome();
 item.RowID = i.ToString();
 item.TestID = results[i].ID_Test.ToString() ;
 item.TestName = results[i].Test_Name;
 item.TestOutCome = results[i].Test_OutCome;
 item.TestProbability = results[i].Test_Probability;

 list.Add(item);

 }

 FillJson(list);

 }

 private void CallWrapperMethod(string modelID)
 {
 //SetFilePathOfCTmModelIntoInitFile((from models in AfdDataContext.Models where models.ID_Model == modelID
select models.Model_Name).ToString());

 UnsafeNativeMethods.AFD_BBN_Library_Init();

 UnsafeNativeMethods.AFD_BBN_Library_getTests_All();
 var parser = new fileParser("C:\\TempAFDTool\\AFD_BBN_Library_getTests_All_output.txt");
 var result = parser.parseTest();

 FillJson(result);
 InsertDataIntoDB(result);

 }
 private void CallWrapperMethod()
 {

 UnsafeNativeMethods.AFD_BBN_Library_getTests_All();
 var parser = new fileParser("C:\\TempAFDTool\\AFD_BBN_Library_getTests_All_output.txt");
 var result = parser.parseTest();

AFDIA – AFD Tool Interface Application Page 100

 FillJson(result);
 InsertDataIntoDB(result);

 }

 private void SetFilePathOfCTmModelIntoInitFile(string modelFileName)
 {
 TextWriter tsw = new StreamWriter(@"C:\TempAFDTool\AFD_BBN_Library_Init_input.txt");
 tsw.Flush();
 tsw.WriteLine("C:/TempAFDTool/Model/".Replace('/','\\') + modelFileName + ",");
 tsw.Close();
 }

 private void FillJson(List<Domain.Entities.TestOutcome> result)
 {
 string dataString = "";

 for (int i = 0; i < result.Count; i++)
 {
 var TestID = "\"" + result[i].TestID + "\" ";

 var testoutcome = "\"" + result[i].TestOutCome + "\" ";
 var testProbabality = "\"" + result[i].TestProbability + "\" ";
 dataString += "[" + TestID + "," + testoutcome + "," + testProbabality + "],";

 }

 String line;
 using (StreamReader sr = new
StreamReader("D:\\MyDisk\\Data\\thesis\\AFDOnline_Develop\\AFDOnline\\AFDPresentation\\JsonDataFiles\\jtdata.txt"))
 {
 line = sr.ReadToEnd();
 sr.Close();
 }

 string res = line.Replace("{0}", result.Count.ToString()).Replace("{1}", result.Count.ToString());
 string finaldata = res.Replace("{2}", dataString.Remove(dataString.Length - 1));

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter("D:\\MyDisk\\Data\\thesis\\AFDOnline_Develop\\AFDOnline\\AFDPresentation\\JsonDataFiles\\jdT
est.txt"))
 {
 file.WriteLine(finaldata);
 file.Close();
 }

 }

 private void InsertDataIntoDB(List<TestOutcome> result)
 {
 // insert data into Test Table

 // declare data contract for sending to web server
 dcAddEvidence[] listTest = new dcAddEvidence[result.ToList().Count];

AFDIA – AFD Tool Interface Application Page 101

 Domain.TestResult test;
 for (int i = 0; i < result.Count; i++)
 {
 test = new Domain.TestResult();
 test.Test_InternalID = i.ToString();
 test.ID_Session = Session["SessionID"].ToString();
 test.ID_Model = Session["ModelID"].ToString();
 test.Test_Name = result[i].TestName;
 test.Test_OutCome = result[i].TestOutCome;
 test.Test_Probability = result[i].TestProbability;

 listTest[i] = new dcAddEvidence();
 listTest[i].TetsInternalID = i.ToString();
 listTest[i].SessionID = Session["SessionID"].ToString();
 listTest[i].ModelID = Session["ModelID"].ToString();
 listTest[i].TetstName = result[i].TestName;
 listTest[i].TestOutCome = result[i].TestOutCome;
 listTest[i].TestProbability = result[i].TestProbability;
 listTest[i].TestID = i;

 AfdDataContext.TestResults.InsertOnSubmit(test);

 }

 AfdDataContext.SubmitChanges();

 // send all the Test output data to Test Admininstrtor

 scAddEvidenceClient client = new scAddEvidenceClient();
 client.Open();
 client.SendTestToAdministrator(listTest);

 client.Close();

 }

 protected void linkbuttonViewStrategies_Click(object sender, EventArgs e)
 {
 Server.Transfer("Strategy.aspx");
 }

 protected void linkbuttonViewComponents_Click(object sender, EventArgs e)
 {
 Server.Transfer("ComponentView.aspx");
 }

 protected void linkbuttonaddEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("AddEvidence.aspx");
 }

AFDIA – AFD Tool Interface Application Page 102

 protected void linkbuttonRemoveEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("Remove_CleanEvidence.aspx");
 }

 protected void linkbuttonViewHistory_Click(object sender, EventArgs e)
 {
 Server.Transfer("History.aspx");
 }

 }
}

Web Page: Strategy.aspx [Markup]
<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="Strategy.aspx.cs" Inherits="AFDPresentation.Strategy" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

<link rel="Stylesheet" href ="DataTables/css/demo_table.css" type ="text/css" />
 <script type ="text/javascript" src="DataTables/js/jquery.js"></script>
 <script type ="text/javascript" src="DataTables/js/jquery.dataTables.js"></script>

 <script type ="text/javascript">

 $(document).ready(function () {

 $('#tblStrategies').dataTable({
 "oLanguage": { "oView": "Select a Model(.BNE)" },
 "iDisplyLength": 10,
 "aaSorting": [[0, "asc"]],
 "sAjaxSource": "../../JsonDataFiles/jdStrategies.txt"
 });
 });

 </script>
 <style type="text/css">
 .style3
 {
 color: #FFFFFF;
 }
 </style>
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 Strategies </div>

 <div style = " width : 100%">
 <div style = " margin-left :50px; width:100px; float:left;">
 <asp:LinkButton ID="linkbuttonViewTest" runat="server" onclick="linkbuttonViewTest_Click"
 >View Tests</asp:LinkButton>
 </div>

AFDIA – AFD Tool Interface Application Page 103

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonViewComponents" runat="server" onclick="linkbuttonViewComponents_Click"
 >View Components</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonaddEvidence" runat="server" onclick="linkbuttonaddEvidence_Click"
 >Add Evidence</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbuttonRemoveEvidence" runat="server" onclick="linkbuttonRemoveEvidence_Click"
 >Clean/Remove Evidence</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbuttonViewHistory" runat="server" onclick="linkbuttonViewHistory_Click"
 >Test History</asp:LinkButton>
 </div>
 </div>

 <div style = " border: thin solid #FFFFFF; margin-left :100px; margin-top :100px; float:left ; height:auto; width:500px; text-
align :center;" >

 <table id="tblStrategies" width ="490" cellpadding ="0" cellspacing ="0" border ="0" class = "disply">
 <thead>
 <tr>
 <th style =" width:50px;">TSNum</th>
 <th style =" width:200px;" >Quality Metric Value</th>

 </tr>
 </thead>
 <tbody>

 <tr>
 <td> </td>
 <td> </td>

 </tr>

 </tbody>
 </table>

 </div>

AFDIA – AFD Tool Interface Application Page 104

 <div style = " float :left; border: thin solid #FFFFFF; margin-left :10px; margin-top :100px; height:150px; width:300px;
text-align :center;" >

 <div style =" width:300px; border-bottom-style: solid; border-bottom-width: thin; border-bottom-color: #FFFFFF;"
 class="style3">
 Select Strategy </div>

 <div style =" width:300px; margin-top :10px; ">
 <div style="width: 100px; margin-top:5px; float: left;">
 <asp:Label ID="Label1" runat="server" ForeColor ="White" Text="Strategies:"
Width="69px"></asp:Label>
 </div>
 <div style=" margin-top:5px; width: 168px; float:left; ">
 <asp:DropDownList ID="dropdownlistStrategies" runat="server" Width="168px">

 <asp:ListItem Value ="Single">Single</asp:ListItem>
 <asp:ListItem Value ="Double">Double</asp:ListItem>
 <asp:ListItem Value ="K-Step">K-Step</asp:ListItem>

 </asp:DropDownList>
 </div>

 </div>

 <div id="divButtonApply" style =" margin-left :2px; margin-top :100px; text-align:left; ">
 <asp:Button ID="buttonAddStrategy" Text ="Add" Width = "50" runat ="server" />

 </div>
 </div>
</asp:Content>

Web Page: Strategy.aspx.cs [Code-behind]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Domain.Entities;
using AFDPresentation.Dlls;
using Parser;
using System.IO;
using Domain;

namespace AFDPresentation
{
 public partial class Strategy : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 CallWrapperMethod();
 }

 private void CallWrapperMethod()
 {
 UnsafeNativeMethods.AFD_BBN_Library_getStrategies_All();
 var parser = new fileParser("C:\\TempAFDTool\\AFD_BBN_Library_getStrategies_All_output.txt");
 var result = parser.parseStrategy();

AFDIA – AFD Tool Interface Application Page 105

 string dataString = "";

 for (int i = 0; i < result.Count; i++)
 {
 var Tsum = "\"" + result[i].TSNum + "\" ";
 var qualityMatric = "\"" + result[i].QualityMatric + "\" ";

 dataString += "[" + Tsum + "," + qualityMatric + "],";

 }

 String line;
 using (StreamReader sr = new
StreamReader("C:\\MyDisk\\Data\\thesis\\AFDOnline_Develop\\AFDOnline\\AFDPresentation\\JsonDataFiles\\jtdata.txt"))
 {
 line = sr.ReadToEnd();
 sr.Close();
 }

 string res = line.Replace("{0}", result.Count.ToString()).Replace("{1}", result.Count.ToString());
 string finaldata = res.Replace("{2}", dataString.Remove(dataString.Length - 1));

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter("C:\\MyDisk\\Data\\thesis\\AFDOnline_Develop\\AFDOnline\\AFDPresentation\\JsonDataFiles\\jdSt
rategies.txt"))
 {
 file.WriteLine(finaldata);
 file.Close();
 }

 AFDOnlineDBDataContext dc = new AFDOnlineDBDataContext();

 StrategyList strategy;

 for (int i = 0; i < result.Count; i++)
 {
 strategy = new StrategyList();
 strategy.TSNum = result[i].TSNum ;
 strategy.ID_Session = Session["SessionID"].ToString ();
 strategy.QualityMatric = result[i].QualityMatric ;

 dc.StrategyLists.InsertOnSubmit(strategy);

 }

 dc.SubmitChanges();

 }

 protected void linkbuttonViewTest_Click(object sender, EventArgs e)
 {
 Server.Transfer("Test.aspx");
 }

AFDIA – AFD Tool Interface Application Page 106

 protected void linkbuttonViewComponents_Click(object sender, EventArgs e)
 {
 Server.Transfer("ComponentView.aspx");
 }

 protected void linkbuttonaddEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("AddEvidence.aspx");
 }

 protected void linkbuttonRemoveEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("Remove_CleanEvidence.aspx");
 }

 protected void linkbuttonViewHistory_Click(object sender, EventArgs e)
 {
 Server.Transfer("History.aspx");
 }

 }
}

Web Page: Remove_CleanEvidenc.aspx [Markup]

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="Remove_CleanEvidence.aspx.cs" Inherits="AFDPresentation.Remove_CleanEvidence" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

 <link rel="Stylesheet" href ="DataTables/css/demo_table.css" type ="text/css" />
 <script type ="text/javascript" src="DataTables/js/jquery.js"></script>
 <script type ="text/javascript" src="DataTables/js/jquery.dataTables.js"></script>

 <script type ="text/javascript">

 var FileInputString = "";

 $(document).ready(function () {

 $('#tblTests').dataTable({
 "oLanguage": { "oView": "Select a Tests" },
 "iDisplyLength": 10,
 "aaSorting": [[0, "asc"]]
 });
 });

 function onClientClick_Remove() {

 var tab = document.getElementById("tblTests"); // table with id tbl1
 var elems = tab.getElementsByTagName("input");
 var len = elems.length;

AFDIA – AFD Tool Interface Application Page 107

 for (var i = 0; i < len; i++) {

 var chkBoxId = "testCheckbox_" + i;
 var objTestCheckBoxID = document.getElementById(chkBoxId.toString());

 if (objTestCheckBoxID.checked.toString() == "true") {

 var testIDKey = "testid_ " + i;
 var testResultOutComeKey = "testoutcome_ " + i;

 var objtestResultOutCome = document.getElementById(testResultOutComeKey.toString());

 var objtestID = document.getElementById(testIDKey.toString());

 var res = objtestResultOutCome.innerHTML.toString();

 if (res == "PASS") {
 FileInputString += objtestID.innerHTML.toString().trim() + ",";
 }
 else {
 FileInputString += objtestID.innerHTML.toString().trim() + ",";
 }

 var HiddenValue = document.getElementById("<%= hiddenFieldFileData.ClientID %>");
 HiddenValue.value = FileInputString;

 }

 }

 return true;
 }

 </script>
 </asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 Remove/Clean Evidence(s) </div>

 <div style = " width : 100%">

 <div style = " margin-left :50px; width:88px; float :left;">
 <asp:LinkButton ID="linkbuttonViewTests" runat="server" onclick="linkbuttonViewTests_Click"
 >View Tests</asp:LinkButton>
 </div>

AFDIA – AFD Tool Interface Application Page 108

 <div style = " margin-left :5px; width:100px; float:left;">
 <asp:LinkButton ID="linkbuttonViewStrategies" runat="server" onclick="linkbuttonViewStrategies_Click"
 >View Strategies</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonViewComponents" runat="server" onclick="linkbuttonViewComponents_Click"
 >View Components</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbuttonAddEvidence" runat="server" onclick="linkbuttonAddEvidence_Click"
 >Add Evidence</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbuttonViewHistory" runat="server" onclick="linkbuttonViewHistory_Click"
 >Test History</asp:LinkButton>
 </div>
 </div>

 <div style =" margin-top:100px; ">

 <div style = " border: thin solid #FFFFFF; margin-left :200px; float:left ; margin-top :25px; height:auto; width:500px;
text-align :center;" >

 <asp:Repeater ID="repeaterTests" runat ="server">

 <HeaderTemplate>
 <table id="tblTests" cellpadding ="0" width ="490" cellspacing ="0" border ="0" class = "disply">
 <thead>
 <tr>
 <th style =" width:50px;" >Test ID</th>
 <th style =" width:100px;" >Test Name</th>
 <th style =" width:100px;" >Test Approp Probability</th>
 <th >Test Probability</th>
 <th ><input type="checkbox" name="selected_test" id='checkboxTestSelectionHeader'> </th>
 </tr>
 </thead>
 <tbody>
 </HeaderTemplate>

 <ItemTemplate>
 <tr>
 <td id="testid_ <%# Eval("RowID")%>" > <%# Eval("TestID")%> </td>
 <td id="testname_ <%# Eval("RowID")%>"> <%# Eval("TestName")%></td>
 <td id="testoutcome_ <%# Eval("RowID")%>"> <%# Eval("TestOutCome")%> </td>
 <td id="testProbability_ <%# Eval("RowID")%>"> <%# Eval("TestProbability")%></td>
 <td ><input id= "testCheckbox_<%# Eval("RowID")%>" type="checkbox" name="selected_test" ></td>
 </tr>
 </ItemTemplate>

AFDIA – AFD Tool Interface Application Page 109

 <FooterTemplate>
 </tbody>
 </table>
 </FooterTemplate>

 </asp:Repeater>

 </div>

 </div>

 <div style =" margin-left:640px; width:50px; ">
 <asp:Button ID="buttonRemove" runat="server" Text="Remove"
 onclick="buttonRemove_Click" OnClientClick = "javascript:onClientClick_Remove();"/>
 </div>

 <div id="hiddenFieldDiv" style = " display :none;" >
 <asp:HiddenField ID="hiddenFieldFileData" Value = "" runat="server" />
 </div>
 </div>
</asp:Content>

Web Page: Remove_CleanEvidence.aspx.cs [Code-behind]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Domain.Entities;
using AFDPresentation.Dlls;
using Parser;

namespace AFDPresentation
{
 public partial class Remove_CleanEvidence : System.Web.UI.Page
 {
 string hiddenFiledContent = "";
 protected void Page_Load(object sender, EventArgs e)
 {
 if (IsPostBack)
 {
 hiddenFiledContent = hiddenFieldFileData.Value;

 }
 BindGrid();
 }

 private void BindGrid()
 {

 UnsafeNativeMethods.AFD_BBN_Library_getTests_All();
 var parser = new fileParser("C:\\TempAFDTool\\AFD_BBN_Library_getTests_All_output.txt");
 var result = parser.parseTest();

AFDIA – AFD Tool Interface Application Page 110

 repeaterTests.DataSource = result.ToList();
 repeaterTests.DataBind();

 }

 protected void linkbuttonViewTests_Click(object sender, EventArgs e)
 {
 Server.Transfer("Test.aspx");
 }

 protected void linkbuttonViewStrategies_Click(object sender, EventArgs e)
 {
 Server.Transfer("Strategy.aspx");
 }

 protected void linkbuttonViewComponents_Click(object sender, EventArgs e)
 {
 Server.Transfer("ComponentView.aspx");
 }

 protected void linkbuttonAddEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("AddEvidence.aspx");
 }

 protected void linkbuttonViewHistory_Click(object sender, EventArgs e)
 {
 Server.Transfer("History.aspx");
 }

 protected void buttonRemove_Click(object sender, EventArgs e)
 {
 // Write the string to a file.
 System.IO.StreamWriter file = new
System.IO.StreamWriter("C:\\TempAFDTool\\AFD_BBN_Library_RemoveEvidences_input.txt");
 file.WriteLine(hiddenFiledContent);
 file.Close();

 // call the AFD_LIBERARY.DLL
 //UnsafeNativeMethods.AFD_BBN_Library_removeEvidences();

 }
 }
}

Web Page: History.aspx.aspx [Markup]
<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="History.aspx.cs" Inherits="AFDPresentation.History" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

<link rel="Stylesheet" href ="DataTables/css/demo_table.css" type ="text/css" />
 <script type ="text/javascript" src="DataTables/js/jquery.js"></script>
 <script type ="text/javascript" src="DataTables/js/jquery.dataTables.js"></script>

 <script type ="text/javascript">

AFDIA – AFD Tool Interface Application Page 111

 $(document).ready(function () {

 $('#tblHistory').dataTable({
 "oLanguage": { "oView": "Select a Model(.BNE)" },
 "iDisplyLength": 10,
 "aaSorting": [[0, "asc"]],

 });
 });

 function showHistory(obj) {

 var HiddenValue = document.getElementById("<%= hiddenFieldFileData.ClientID %>");
 HiddenValue.value = obj.ch.toString();

 var answer = confirm ("Do you want to explore the Test Session with SessionID = [" + HiddenValue.value + "]");

 if (answer.toString() == "true")
 {

 __doPostBack();
 }

 }

 </script>
 <style type="text/css">
 .style3
 {
 color: #FFFFFF;
 }
 </style>
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 History </div>

 <div style = " width : 100%">
 <div style = " margin-left :50px; width:100px; float:left;">
 <asp:LinkButton ID="linkbuttonViewStrategies" runat="server"
 onclick="linkbuttonViewStrategies_Click">View Strategies</asp:LinkButton>
 </div>

 <div style = " margin-left :50px; width:100px; float:left;">
 <asp:LinkButton ID="linkbuttonViewTest" runat="server" onclick="linkbuttonViewTest_Click"
 >View Tests</asp:LinkButton>
 </div>

AFDIA – AFD Tool Interface Application Page 112

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonViewComponents" runat="server"
 onclick="linkbuttonViewComponents_Click">View Components</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonaddEvidence" runat="server" onclick="linkbuttonaddEvidence_Click"
 >Add Evidence</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbutton1" runat="server" onclick="linkbuttonRemoveEvidence_Click"
 >Clean/Remove Evidence</asp:LinkButton>
 </div>
 </div>

 <div style = " margin-top :100px;">

 <div style = " border: thin solid #FFFFFF; margin-left :200px; float:left ; margin-top :25px; height:auto; width:500px;
text-align :center;" >

 <asp:Repeater ID="repeaterHistory" runat ="server">

 <HeaderTemplate>
 <table id="tblHistory" cellpadding ="0" width ="490" cellspacing ="0" border ="0" class = "disply">
 <thead>
 <tr>
 <th style =" width:50px;" >Session ID</th>
 <th style =" width:100px;" >Model ID</th>
 <th style =" width:100px;" >Time Stamp </th>
 </tr>
 </thead>
 <tbody>
 </HeaderTemplate>

 <ItemTemplate>
 <tr onclick = "javascript:showHistory(this)"; char ="<%# Eval("SessionID")%>" >
 <td> <%# Eval("SessionID")%> </td>
 <td> <%# Eval("ModelID")%></td>
 <td> <%# Eval("SessionDateTime")%> </td>

 </tr>
 </ItemTemplate>

 <FooterTemplate>
 </tbody>
 </table>
 </FooterTemplate>

AFDIA – AFD Tool Interface Application Page 113

 </asp:Repeater>

 </div>

 </div>

 <div id="hiddenFieldDiv" style = " display :none;" >
 <asp:HiddenField ID="hiddenFieldFileData" Value = "" runat="server" />
 </div>

 </div>
</asp:Content>

Web Page: History.aspx.aspx.cs [Code-behind]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Domain.Entities;
using Domain;
using System.IO;
using AFDPresentation.Dlls;
using Parser;

namespace AFDPresentation
{
 public partial class History : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 if (IsPostBack)
 {
 Session["SessionID"] = hiddenFieldFileData.Value;
 Session["HistoryFlag"] = "true";
 Server.Transfer("Test.aspx");
 }
 bindGrid();

 }

 private void bindGrid()
 {
 AFDOnlineDBDataContext dc = new AFDOnlineDBDataContext();

 var sessionList = (from sessionlist in dc.Sesions select sessionlist).ToList() ;

 List<EntityHistory> listHistory = new List<EntityHistory>(sessionList.Count);

 for (int i = 0; i < sessionList.Count; i++)
 {
 EntityHistory en = new EntityHistory();
 en.RowId = i.ToString();
 en.SessionID = sessionList[i].ID_Session;
 en.ModelID = sessionList[i].ID_Model;
 en.SessionDateTime = sessionList[i].Session_Date.ToString();

AFDIA – AFD Tool Interface Application Page 114

 listHistory.Add(en);
 }

 repeaterHistory.DataSource = listHistory;
 repeaterHistory.DataBind();

 }

 protected void linkbuttonViewTest_Click(object sender, EventArgs e)
 {
 Server.Transfer("Test.aspx");
 }

 protected void linkbuttonViewStrategies_Click(object sender, EventArgs e)
 {
 Server.Transfer("Strategy.aspx");
 }

 protected void linkbuttonViewComponents_Click(object sender, EventArgs e)
 {
 Server.Transfer("ComponentView.aspx");
 }

 protected void linkbuttonaddEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("AddEvidence.aspx");
 }

 protected void linkbuttonRemoveEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("Remove_CleanEvidence.aspx");
 }

 }
}

Web Page: ComponentView.aspx.aspx [Markup]
<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="ComponentView.aspx.cs" Inherits="AFDPresentation.ComponentView" %>

<%@ Register Assembly="System.Web.DataVisualization, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"
 Namespace="System.Web.UI.DataVisualization.Charting" TagPrefix="asp" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

 <link rel="Stylesheet" href ="DataTables/css/demo_table.css" type ="text/css" />
 <link rel="Stylesheet" href="Styles/StyleSheetMenu.css" type = "text/css" />
 <script type ="text/javascript" src="DataTables/js/jquery.js"></script>
 <script type ="text/javascript" src="DataTables/js/jquery.dataTables.js"></script>

 <script type ="text/javascript">

 $(document).ready(function () {

 $('#tblComponents').dataTable({
 "oLanguage": { "oView": "Select a Model(.BNE)" },

AFDIA – AFD Tool Interface Application Page 115

 "iDisplyLength": 10,
 "aaSorting": [[0, "asc"]],
 "sAjaxSource": "../../JsonDataFiles/jdComponents.txt"
 });
 });

 function OnClientClick_linkCloseChart() {

 document.getElementbyid('divChartComponent').style.visibility = 'hidden';
 }

 function ShowBarChart() {

 window.open("Charts.htm","Component Probability Chart", "width=500,height=500,toolbar=no,resizable=no")

 }
 </script>
 <style type="text/css">
 .style3
 {
 color: #FFFFFF;
 }
 </style>
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div id="divPage"
 style =" height:600px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 Components </div>

 <div style = " width : 100%">
 <div style = " margin-left :50px; width:100px; float:left;">
 <asp:LinkButton ID="linkbuttonViewTest" runat="server" onclick="linkbuttonViewTest_Click"
 >View Tests</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonViewStrategies" runat="server" onclick="linkbuttonViewStrategies_Click"
 >View Strategies</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:115px; float :left;">
 <asp:LinkButton ID="linkbuttonaddEvidence" runat="server" onclick="linkbuttonaddEvidence_Click"
 >Add Evidence</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbuttonRemoveEvidence" runat="server" onclick="linkbuttonRemoveEvidence_Click"
 >Clean/Remove Evidence</asp:LinkButton>
 </div>

 <div style = " margin-left :5px; width:152px; float :left;">
 <asp:LinkButton ID="linkbuttonViewHistory" runat="server" onclick="linkbuttonViewHistory_Click"
 >Test History</asp:LinkButton>
 </div>
 </div>

AFDIA – AFD Tool Interface Application Page 116

 <div style =" margin-top:100px; ">

 <div style = " border: thin solid #FFFFFF; margin-left :50px; float:left ; height:auto; width:500px; text-align :left;" >

 <table id="tblComponents" cellpadding ="0" width ="490" cellspacing ="0" border ="0" class = "disply">
 <thead>
 <tr>

 <th style =" width:200px; text-align:left; " >Component Name</th>
 <th style =" width:50px;" >Component Approp Probability</th>
 <th style =" width:50px;">Component Probability</th>
 </tr>
 </thead>
 <tbody>

 <tr>

 <td> </td>
 <td> </td>
 <td> </td>
 </tr>

 </tbody>
 </table>

 </div>
 <div style =" float:left; ">
 <div style = " border: thin solid #FFFFFF; margin-left :10px; height:150px; width:300px; text-align :center;" >

 <div style =" width:300px; border-bottom-style: solid; border-bottom-width: thin; border-bottom-color: #FFFFFF;"
 class="style3">
 Trash Parameters</div>

 <div style =" width:300px; margin-top :10px; ">
 <div style="width: 100px; margin-top:5px; float: left;">
 <asp:Label ID="Label1" runat="server" ForeColor ="White" Text="Pass Trash :"
Width="69px"></asp:Label>
 </div>
 <div style=" margin-top:5px; width: 168px; float:left; ">
 <asp:TextBox ID="textboxPassTrash" runat="server" Width="150px" ></asp:TextBox></div>
 </div>

 <div style =" margin-top:15px; ">
 <div style="float: left; width: 100px; float:left; ">
 <asp:Label ID="Label2" runat="server" ForeColor ="White" Text="Failure Trash :"></asp:Label></div>
 <div style=" width: 168px; float:left; ">
 <asp:TextBox ID="textboxFailureTrash" runat="server" Width="150px"></asp:TextBox></div>

AFDIA – AFD Tool Interface Application Page 117

 </div>

 <div id="divButtonApply" style =" margin-left :170px; margin-top :10px;">
 <asp:Button ID="buttonApplyTrash" Text ="Apply" runat ="server" />

 </div>

 </div>

 <div style = " border: thin solid #FFFFFF; margin-left :10px; margin-top :5px; height:125px; width:300px; text-align
:center;" >

 <div style =" width:300px; border-bottom-style: solid; border-bottom-width: thin; border-bottom-color: #FFFFFF;"
 class="style3">
 Graphical Visualization</div>

 <div style=" width: 100px; margin-top:2px; ">
 <asp:LinkButton ID="linkbuttonViewBarChart" ForeColor ="White"
 Text ="View Bar Chart" runat ="server" onclick="linkbuttonViewBarChart_Click"
></asp:LinkButton></div>

 <div style =" width:300px; margin-top :5px;">
 <div style =" width:91px; float:left;">
 <asp:Label ID="labelShowTitle" runat ="server" Text = "Show me First " ForeColor ="White" ></asp:Label>
 </div>

 <div style =" float:left; width:50px;">
 <asp:TextBox ID="textboxNumberOfElements" runat ="server" Width = "50" ></asp:TextBox>
 </div>

 <div style =" width:50px; float:left;">
 <asp:Label ID="labelElements" runat ="server" Text = "Element" ForeColor ="White" ></asp:Label>
 </div>

 </div>

 </br>

 <div style =" width:300px; margin-top :5px; margin-left:2px; ">

 <div style =" width:50px; float :left;">
 <asp:TextBox ID="textboxProbLessGreaterThan" runat ="server" Width = "50px" ></asp:TextBox>
 </div>

 <div style =" width:124px; float:left;">
 <asp:Label ID="labelProbability" runat ="server" Text = "<= Probability <=" ForeColor ="White"
></asp:Label>
 </div>

 <div style =" float:left; width:50px;">
 <asp:TextBox ID="textboxprobLessthan" runat ="server" Width = "50px" ></asp:TextBox>
 </div>

AFDIA – AFD Tool Interface Application Page 118

 </div>

 </div>

 <div style = " border: thin solid #FFFFFF; margin-left :10px; margin-top :5px; height:50px; width:300px; text-align
:center;" >

 <div style =" width:300px; border-bottom-style: solid; border-bottom-width: thin; border-bottom-color: #FFFFFF;"
 class="style3">
 Information & Status </div>

 <div style=" width: 150px; margin-top:2px; float:left; ">
 <asp:Label ID="labelLatestStepPerformed" ForeColor ="White" runat ="server" Text ="Latest Step
Performed" ></asp:Label>
 </div>

 <div style=" width: 100px; margin-top:2px; float:left; ">
 <asp:TextBox ID="textboxLatestStepPerformed" ReadOnly ="true" runat ="server" Width =
"129px"></asp:TextBox>
 </div>

 </div>
 </div>

 </div>

 </div>

 <%--Chart Area--%>
 <div id="divChartComponent" style = "width:100%; height :550px; background-color :lightblue; ">

 <div style =" width :100px;">
 <div style =" margin-left:850px; width: 75px;">
 <asp:LinkButton ID="linkCloseChart" Visible = "false" OnClientClick ="OnClientClick_linkCloseChart()"
runat="server">Close Graph</asp:LinkButton>
 </div>
 </div>

 <div style =" width :100%; height :550px;">

 <asp:Chart ID="Chart1" runat="server" Visible = "false" BorderlineColor="Black"
 BorderlineDashStyle="Solid" BackColor="#B6D6EC" BackGradientStyle="TopBottom"
 BackSecondaryColor="White" Height="550px" Width="960px">

 <Titles>
 <asp:Title Name="Title1" Text="Component-Probability Chart"
 Alignment="TopCenter" Font="Verdana, 12pt, style=Bold">
 </asp:Title>
 </Titles>

 <Series>

AFDIA – AFD Tool Interface Application Page 119

 <asp:Series Name="Series1" CustomProperties="DrawingStyle=Cylinder,
 MaxPixelPointWidth=50" ShadowOffset="2" IsValueShownAsLabel="True">
 </asp:Series>
 </Series>

 <ChartAreas>
 <asp:ChartArea Name="ChartArea1" BackGradientStyle="TopBottom"
 BackSecondaryColor="#B6D6EC" BorderDashStyle="Solid" BorderWidth="2">
 <AxisX>

 <LabelStyle Angle="-90" />
 <MajorGrid Enabled="False" />
 </AxisX>
 </asp:ChartArea>
 </ChartAreas>

 </asp:Chart>

 </div>

 </div>

</asp:Content>

Web Page: ComponentView.aspx.aspx.cs [Code-behind]
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Domain.Entities;
using AFDPresentation.Dlls;
using Parser;
using System.IO;
using Domain;

namespace AFDPresentation
{
 public partial class ComponentView : System.Web.UI.Page
 {
 string SessionID = "";

 List<ComponentOutcome> ResultGlobalVariable = new List<ComponentOutcome> ();

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 if (Session["HistoryFlag"].ToString() == "true")
 {
 SessionID = Session["SessionID"].ToString();
 GetDataFromDBAndBind();
 }

AFDIA – AFD Tool Interface Application Page 120

 else
 CallWrapperMethod();
 }

 }

 private void CallWrapperMethod()
 {
 UnsafeNativeMethods.AFD_BBN_Library_getComponents_All();
 var parser = new fileParser("C:\\TempAFDTool\\AFD_BBN_Library_getComponents_All_output.txt");
 var result = parser.parseComponent();
 // put data into Global Variable for Graph use
 ResultGlobalVariable = result;

 FillJson(result);
 InsertDataIntoDB(result);

 }

 private void GetDataFromDBAndBind()
 {

 AFDOnlineDBDataContext dc = new AFDOnlineDBDataContext();

 var results = (from components in dc.Compnents
 where components.ID_Session == SessionID
 select components).ToList();

 List<ComponentOutcome> list = new List<ComponentOutcome>(results.Count);

 for (int i = 0; i < results.Count; i++)
 {
 ComponentOutcome item = new ComponentOutcome ();
 item.ComponentName = results[i].ComponentName;
 item.CompAppropProbability = results[i].CompAppropProbability;
 item.ComponentProbability = results[i].ComponentProbability;

 list.Add(item);

 }

 FillJson(list);

 }

 private void FillJson(List<ComponentOutcome> result)
 {
 string dataString = "";

 for (int i = 0; i < result.Count; i++)
 {
 var comname = "\"" + result[i].ComponentName + "\" ";
 var comAprob = "\"" + result[i].CompAppropProbability + "\" ";
 var compProb = "\"" + result[i].ComponentProbability + "\" ";

AFDIA – AFD Tool Interface Application Page 121

 dataString += "[" + comname + "," + comAprob + "," + compProb + "],";

 }

 String line;
 using (StreamReader sr = new
StreamReader("C:\\MyDisk\\Data\\thesis\\AFDOnline_Develop\\AFDOnline\\AFDPresentation\\JsonDataFiles\\jtdata.txt"))
 {
 line = sr.ReadToEnd();
 sr.Close();
 }

 string res = line.Replace("{0}", result.Count.ToString()).Replace("{1}", result.Count.ToString());
 string finaldata = res.Replace("{2}", dataString.Remove(dataString.Length - 1));

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter("C:\\MyDisk\\Data\\thesis\\AFDOnline_Develop\\AFDOnline\\AFDPresentation\\JsonDataFiles\\jdC
omponents.txt"))
 {
 file.WriteLine(finaldata);
 file.Close();
 }
 }

 private void InsertDataIntoDB(List<ComponentOutcome> result)
 {

 AFDOnlineDBDataContext dc = new AFDOnlineDBDataContext();

 for (int i = 0; i < result.Count; i++)
 {
 var component = new Compnent();
 component.ComponentName = result[i].ComponentName;
 component.ID_Session = Session["SessionID"].ToString();
 component.CompAppropProbability = result[i].CompAppropProbability;
 component.ComponentProbability = result[i].ComponentProbability;

 dc.Compnents.InsertOnSubmit(component);

 }

 dc.SubmitChanges();
 }

 protected void linkbuttonViewTest_Click(object sender, EventArgs e)
 {
 Server.Transfer("Test.aspx");
 }

 protected void linkbuttonViewStrategies_Click(object sender, EventArgs e)
 {

AFDIA – AFD Tool Interface Application Page 122

 Server.Transfer("Strategy.aspx");
 }

 protected void linkbuttonaddEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("AddEvidence.aspx");
 }

 protected void linkbuttonRemoveEvidence_Click(object sender, EventArgs e)
 {
 Server.Transfer("Remove_CleanEvidence.aspx");
 }

 protected void linkbuttonViewHistory_Click(object sender, EventArgs e)
 {
 Server.Transfer("History.aspx");
 }

 protected void linkbuttonViewBarChart_Click(object sender, EventArgs e)
 {
 Chart1.Visible = true;
 linkCloseChart.Visible = true;
 AFDOnlineDBDataContext dc = new AFDOnlineDBDataContext();

 var FirstXRecord = textboxNumberOfElements.Text;
 var probLessthan = textboxprobLessthan.Text;
 var probGreaterthan = textboxProbLessGreaterThan.Text;

 var listOfComponents = new List<Compnent>();

 if (SessionID == "")
 {
 if (FirstXRecord != "" && probLessthan != "" && probGreaterthan != "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == Session["SessionID"].ToString() &&
 Convert.ToDouble(i.ComponentProbability) <= Convert.ToDouble(probLessthan) &&
Convert.ToDouble(i.ComponentProbability) >=
Convert.ToDouble(probGreaterthan)).Take(Convert.ToInt16(FirstXRecord)).ToList();
 }
 else if (FirstXRecord != "" && probLessthan == "" && probGreaterthan != "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == Session["SessionID"].ToString() &&
 Convert.ToDouble(i.ComponentProbability) >=
Convert.ToDouble(probGreaterthan)).Take(Convert.ToInt16(FirstXRecord)).ToList();
 }
 else if (FirstXRecord != "" && probLessthan != "" && probGreaterthan == "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == Session["SessionID"].ToString() &&
 Convert.ToDouble(i.ComponentProbability) <=
Convert.ToDouble(probLessthan)).Take(Convert.ToInt16(FirstXRecord)).ToList();
 }
 else if (FirstXRecord != "" && probLessthan == "" && probGreaterthan == "")
 {

AFDIA – AFD Tool Interface Application Page 123

 listOfComponents = dc.Compnents.Where(i => i.ID_Session ==
Session["SessionID"]).Take(Convert.ToInt16(FirstXRecord)).ToList();
 }

 if (FirstXRecord == "" && probLessthan != "" && probGreaterthan != "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == Session["SessionID"].ToString() &&
 Convert.ToDouble(i.ComponentProbability) <= Convert.ToDouble(probLessthan) &&
Convert.ToDouble(i.ComponentProbability) >= Convert.ToDouble(probGreaterthan)).ToList();
 }
 else if (FirstXRecord == "" && probLessthan == "" && probGreaterthan != "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == Session["SessionID"].ToString() &&
 Convert.ToDouble(i.ComponentProbability) >= Convert.ToDouble(probGreaterthan)).ToList();
 }
 else if (FirstXRecord == "" && probLessthan != "" && probGreaterthan == "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == Session["SessionID"].ToString() &&
 Convert.ToDouble(i.ComponentProbability) <= Convert.ToDouble(probLessthan)).ToList();
 }
 else if (FirstXRecord == "" && probLessthan == "" && probGreaterthan == "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == Session["SessionID"].ToString()).ToList();
 }

 Chart1.Series["Series1"].Points.DataBindXY((from components in listOfComponents select
components.ComponentName).ToList() , "ComponentName", (from components in listOfComponents select
components.ComponentProbability).ToList() , "ComponentProbability");
 }
 else
 {
 if (FirstXRecord != "" && probLessthan != "" && probGreaterthan != "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == SessionID &&
 Convert.ToDouble(i.ComponentProbability) <= Convert.ToDouble(probLessthan) &&
Convert.ToDouble(i.ComponentProbability) >=
Convert.ToDouble(probGreaterthan)).Take(Convert.ToInt16(FirstXRecord)).ToList();
 }
 else if (FirstXRecord != "" && probLessthan == "" && probGreaterthan != "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == SessionID &&
 Convert.ToDouble(i.ComponentProbability) >=
Convert.ToDouble(probGreaterthan)).Take(Convert.ToInt16(FirstXRecord)).ToList();
 }
 else if (FirstXRecord != "" && probLessthan != "" && probGreaterthan == "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == SessionID &&
 Convert.ToDouble(i.ComponentProbability) <=
Convert.ToDouble(probLessthan)).Take(Convert.ToInt16(FirstXRecord)).ToList();
 }
 else if (FirstXRecord != "" && probLessthan == "" && probGreaterthan == "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == SessionID).ToList();
 }

 if (FirstXRecord == "" && probLessthan != "" && probGreaterthan != "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == SessionID &&

AFDIA – AFD Tool Interface Application Page 124

 Convert.ToDouble(i.ComponentProbability) <= Convert.ToDouble(probLessthan) &&
Convert.ToDouble(i.ComponentProbability) >= Convert.ToDouble(probGreaterthan)).ToList();
 }
 else if (FirstXRecord == "" && probLessthan == "" && probGreaterthan != "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == SessionID &&
 Convert.ToDouble(i.ComponentProbability) >= Convert.ToDouble(probGreaterthan)).ToList();
 }
 else if (FirstXRecord == "" && probLessthan != "" && probGreaterthan == "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == SessionID &&
 Convert.ToDouble(i.ComponentProbability) <= Convert.ToDouble(probLessthan)).ToList();
 }
 else if (FirstXRecord == "" && probLessthan == "" && probGreaterthan == "")
 {
 listOfComponents = dc.Compnents.Where(i => i.ID_Session == SessionID).ToList();
 }

 Chart1.Series["Series1"].Points.DataBindXY(from components in listOfComponents select
components.ComponentName, "ComponentName", from components in listOfComponents select
components.ComponentProbability, "ComponentProbability");
 }
 Chart1.ChartAreas["ChartArea1"].AxisX.Interval = 1;

 }

 protected void linkbuttonViewPieChart_Click(object sender, EventArgs e)
 {

 }

 protected void linkbuttonViewLineChart_Click(object sender, EventArgs e)
 {

 }

 protected void Menu1_MenuItemClick(object sender, MenuEventArgs e)
 {

 }

 //private List<ComponentOutcome> GetDataList()
 //{

 // List<ComponentOutcome> list = new List<ComponentOutcome>(results.Count);

 // for (int i = 0; i < ResultGlobalVariable.Count; i++)
 // {
 // ComponentOutcome item = new ComponentOutcome ();
 // item.ComponentName = results[i].ComponentName;
 // item.CompAppropProbability = results[i].CompAppropProbability;
 // item.ComponentProbability = results[i].ComponentProbability;

 // list.Add(item);

 // }
 //}

AFDIA – AFD Tool Interface Application Page 125

 }
}

Web Page: AvailableBNEModels.aspx.aspx [Markup]
<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true"
 CodeBehind="AvailableBNEModels.aspx.cs" Inherits="AFDPresentation.AvailableBNEModels" %>
<%@ Register Assembly="EeekSoft.Web.PopupWin" Namespace="EeekSoft.Web" TagPrefix="cc1" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">

 <link rel="Stylesheet" href ="DataTables/css/demo_table.css" type ="text/css" />
 <script type ="text/javascript" src="DataTables/js/jquery.js"></script>
 <script type ="text/javascript" src="DataTables/js/jquery.dataTables.js"></script>

 <script type ="text/javascript">

 $(document).ready(function () {

 $('#tblAllBNEModels').dataTable({
 "oLanguage": { "oView": "Select a Model(.BNE)" },
 "iDisplyLength": 50,
 "aaSorting": [[0, "asc"]]
 });
 });

 $('#tblAllBNEModels tbody tr').click(function () {
 alert('e');
 });

 function RowClick(obj) {

 obj.style.backgroundColor = "white";
 window.location.replace('Test.aspx?modelID=' + obj.id.toString());

 }

 </script>
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div id="divPage" style =" height:650px; width :100%; background-color :lightblue; ">

 <div style = " color :White; width:100%; text-align: center; ">
 Available Models (.BNE)</div>

 <div style = " width : 100%">
 <div style = " margin-left :50px; width:168px; float:left;">
 <asp:LinkButton ID="linkbuttonUploadNewModel" runat="server" Visible = "false"
onclick="linkbuttonUploadNewModel_Click"
 >Upload a New (CTM)Model</asp:LinkButton>
 </div>
 </div>
 <div style = " margin-left:910px; width:50px;">
 <asp:ImageButton ID="imageButtonHelpPopUp" runat="server" Height = "50px"

AFDIA – AFD Tool Interface Application Page 126

 Width = "50px" ImageUrl="~/Resorces/Images/help-Cir.jpg" onclick="imageButtonHelpPopUp_Click"
 />
 </div>

 <div style = " border: thin solid #FFFFFF; margin-left :200px; margin-top :100px; height:auto; width:600px; " >

 <asp:Repeater ID="repeaterAllBNEModels" runat ="server">

 <HeaderTemplate>
 <table id="tblAllBNEModels" width ="490" cellpadding ="0" cellspacing ="0" border ="0" class = "disply">
 <thead>
 <tr>
 <th style =" width :80px;">Model ID</th>
 <th style =" width :400px;">Board ID</th>
 <th style =" width :400px;">CTM SourceFile</th>
 </tr>
 </thead>
 <tbody>
 </HeaderTemplate>

 <ItemTemplate>
 <tr id = "<%# Eval("ID_Model")%> " ondblclick ="RowClick(this)">
 <td> <%# Eval("ID_Model")%> </td>
 <td> <%# Eval("ID_Board")%></td>
 <td> <%# Eval("CTM_SourceFile")%></td>
 </tr>
 </ItemTemplate>

 <FooterTemplate>
 </tbody>
 </table>
 </FooterTemplate>

 </asp:Repeater>

 </div>

 <div style = " margin-left : 725px; width :100px;">
 <asp:Button ID="buttonInitilize" runat="server" Text="Init" Width = "80"
 onclick="buttonInitilize_Click"/>
 </div>

 <div style = " margin-left : 200px; width :600px; ">
 <asp:Label ID="labelStatus" runat="server" Font-Bold = "true" Font-Underline = "true" Width = "600" />
 </div>

 <div>
 <cc1:PopupWin id="popupWin" runat="server" visible="False"
 colorstyle="Blue" width="300px" height="150px" DragDrop ="true" DockMode ="BottomRight"
 windowscroll="False" windowsize="300, 200" style="top: 0px; left: 0px" />
 </div>

AFDIA – AFD Tool Interface Application Page 127

 </div>
 </div>
</asp:Content>

Web Page: AvailableBNEModels.aspx.aspx.cs [Code-behind]
using System;
using System.Collections.Generic;
using System.Data.Linq;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Domain.Entities;
using Domain;
using System.IO;
using AFDPresentation.Dlls;
using Parser;

namespace AFDPresentation
{
 public partial class AvailableBNEModels : System.Web.UI.Page
 {

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 BindGrid();
 }

 }

 private void BindGrid()
 {

 AFDOnlineDBDataContext dc = new AFDOnlineDBDataContext();
 var result = (from models in dc.Models select models).ToList();
 if (result.Count == 0)
 {
 setupPopUp();
 linkbuttonUploadNewModel.Visible = true;

 }
 else
 {

 repeaterAllBNEModels.DataSource = result;
 repeaterAllBNEModels.DataBind();
 }

 }

 protected void buttonInitilize_Click(object sender, EventArgs e)
 {

AFDIA – AFD Tool Interface Application Page 128

 //write the Input
 // Compose a string that consists of three lines.
 string path = @"C:\TempAFDTool\Model\net_x.txt,";

 // Write the string to a file.
 System.IO.StreamWriter file = new System.IO.StreamWriter("C:\\TempAFDTool\\AFD_BBN_Library_Init_input.txt");
 file.WriteLine(path);
 file.Close();

 // call the Wrapper Method
 UnsafeNativeMethods.AFD_BBN_Library_Init();

 // explore the Output file
 var parser = new fileParser("C:\\TempAFDTool\\AFD_BBN_Library_Init_output.txt");
 var outDto = parser.ParseInitOutFile();

 if (!outDto.result)
 {
 labelStatus.Text = outDto.ErrorMessage;
 }
 else
 {
 Server.Transfer("Test.aspx");
 }
 }

 protected void imageButtonHelpPopUp_Click(object sender, ImageClickEventArgs e)
 {
 setupPopUp();
 }

 private void setupPopUp() {
 popupWin.ActionType = EeekSoft.Web.PopupAction.MessageWindow;

 //Set popup and window texts
 popupWin.Title = "Informative Message";
 popupWin.Message = "</br></br></br>Oops! There are NO existing CTM Model on the Server, To Proceed futher,
Click here ";
 popupWin.Text = " </br> - There are no uploaded Model on the Server, you on Continue with the AFDTool by
Uploading a New CTM Model </br></br></br> - For Uploding a New Model, click on the Upload New Model Button on the
ToolBar </br> ";

 //Change color style
 popupWin.ColorStyle = EeekSoft.Web.PopupColorStyle.Blue;

 //' Change timing
 popupWin.HideAfter = 20000;
 popupWin.ShowAfter = 500;

 //Show popup (after page is loaded)
 popupWin.Visible = true;
 }
 protected void linkbuttonUploadNewModel_Click(object sender, EventArgs e)
 {
 Server.Transfer("UploadModel.aspx");
 }
 }
}

AFDIA – AFD Tool Interface Application Page 129

References

 Calling an unmanaged dll from .NET

http://blogs.msdn.com/b/jonathanswift/archive/2006/10/02/780637.aspx

 Flot Graphs http://people.iola.dk/olau/flot/examples/

 Data Tables (JQuery) http://datatables.net/

 JQuery Syntax http://www.w3schools.com/jquery/jquery_syntax.asp

 Bayesian network http://en.wikipedia.org/wiki/Bayesian_network ,

http://www.dsto.defence.gov.au/publications/2424/DSTO-TN-0403.pdf

 Windows Communication Foundation (WCF) http://msdn.microsoft.com/en-

us/library/dd456779.aspx

 Linq to SQL http://www.simple-talk.com/dotnet/.net-framework/designing-a-data-access-

layer-in-linq-to-sql/

 Deployment of web site http://www.codeproject.com/Articles/32210/Deployment-of-a-

Website-on-IIS

 Asp.net; understanding and practicle implementation

http://www.w3schools.com/aspnet/default.asp

http://blogs.msdn.com/b/jonathanswift/archive/2006/10/02/780637.aspx
http://people.iola.dk/olau/flot/examples/
http://datatables.net/
http://www.w3schools.com/jquery/jquery_syntax.asp
http://en.wikipedia.org/wiki/Bayesian_network
http://www.dsto.defence.gov.au/publications/2424/DSTO-TN-0403.pdf
http://msdn.microsoft.com/en-us/library/dd456779.aspx
http://msdn.microsoft.com/en-us/library/dd456779.aspx
http://www.simple-talk.com/dotnet/.net-framework/designing-a-data-access-layer-in-linq-to-sql/
http://www.simple-talk.com/dotnet/.net-framework/designing-a-data-access-layer-in-linq-to-sql/
http://www.codeproject.com/Articles/32210/Deployment-of-a-Website-on-IIS
http://www.codeproject.com/Articles/32210/Deployment-of-a-Website-on-IIS
http://www.w3schools.com/aspnet/default.asp

