

POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Master of Science in
Computer Engineering

VISUAL FEATURE EXTRACTION
ON LOW-POWER SENSOR NODES

Supervisor: Prof. Marco Tagliasacchi
Assistant Supervisor: Engr. Alessandro Redondi

Master Graduation Thesis by: Luca Baroffio
Student Id. number: 765434

Academic Year 2011/2012

POLITECNICO DI MILANO
Scuola di Ingegneria dell’Informazione

POLO TERRITORIALE DI COMO

Corso di Laurea Magistrale in
Ingegneria Informatica

VISUAL FEATURE EXTRACTION
ON LOW-POWER SENSOR NODES

Relatore: Prof. Marco Tagliasacchi
Correlatore: Ing. Alessandro Redondi

Tesi di laurea di: Luca Baroffio
Matricola: 765434

Anno Accademico 2011/2012

Abstract

The innovative and forerunner vision about a pervasive Internet of Things in
a not too distant future needs some efficient algorithms to provide some low-
power nodes of the network with an improved ability to sense data and extract
semantic information from the environment. This work aims at adapting a
visual feature extraction algorithm to such a scenario and at evaluating the
results in terms of performance and efficiency. A survey of the literature
about visual feature extraction algorithms and sensor networks with compu-
tational efficiency as a key requirement will introduce the choice of SURF as
a reference implementation. The development of the algorithm on a sensor
node is followed step by step, introducing any issues arising during each stage
of the process and their solutions. An exhaustive performance evaluation is
then presented, including both a quantitative analysis and some qualitative
comments about the results.

Sommario

La visione innovativa di una Internet degli Oggetti in un futuro non molto
distante necessita di algoritmi efficienti che permettano ai nodi della rete a
basso consumo di rilevare dati dall’ambiente e ricavarne informazione. Que-
sto lavoro ha l’obiettivo di adattare un algoritmo per l’estrazione di visual
features a questo scenario e di valutarne i risultati in termini di prestazioni
ed efficienza. Una indagine accurata della letteratura riguardo all’estrazione
di visual features e alle reti di sensori, con l’efficienza computazionale come
requisito principale, farà da introduzione alla scelta di SURF come imple-
mentazione di riferimento. Lo sviluppo dell’algoritmo su un nodo sensore è
seguito passo dopo passo e le eventuali problematiche sorte nelle diverse fasi
del processo sono presentate, insieme alle soluzioni adottate. Infine, gli esiti
di una esauriente analisi delle prestazioni saranno riportati, includendo dati
quantitativi e alcuni commenti sui risultati ottenuti.

Acknowledgements

Foremost, I would like to express my gratitude to my advisor Prof. Marco
Tagliasacchi for his willingness and for the continuous support offered dur-
ing the preparation of my thesis. This has been a challenging yet rewarding
experience and I am really thankful for the opportunity to work on such an
interesting topic.

Besides my advisor, I would like to thank my assistant advisor Alessandro
Redondi for the support throughout the whole thesis preparation period and
especially on resolving the many issues I had to face.

My sincere thanks also goes to Prof. Matteo Cesana for giving me the
opportunity to work at the ANTLab and for his cordiality.

I am indebted to my many student colleagues who constituted a stimu-
lating and fun environment in which to learn and grow.

Lastly, but most importantly, I would like to thank my extended family
who always believed in me and made all this possible, and Flavia, my personal
and beloved motivator to get the best out of me.

Contents

Introduction 1
Glossary . 4

1 Review of the State of the Art 7
1.1 Wireless Multimedia Sensor Networks 7

1.1.1 Sensors . 8
1.1.2 Microprocessors and memory 9
1.1.3 Network performance objective and features 10
1.1.4 Network protocols . 11
1.1.5 Intel Imote2 . 11

1.2 Visual features extraction algorithms 13
1.2.1 Harris corner detector 13
1.2.2 SIFT . 14
1.2.3 SURF . 17
1.2.4 FAST . 20
1.2.5 BRIEF . 24
1.2.6 BRISK . 25

2 Local features extraction on a sensor node 29
2.1 TinyOS . 30
2.2 From a high-level algorithm to a nesC implementation of SURF 31

3 Implementation details 35
3.1 Storing variables in the SDRAM 35
3.2 Test image initialization . 36

Contents

3.3 Box filtering . 37
3.4 SURF-128 . 38
3.5 Sending features via the serial communication channel 40

4 Performance evaluation 43
4.1 Detector . 44
4.2 Descriptor . 45
4.3 Processing time . 53
4.4 Memory . 55

5 Conclusion and future work 59

Bibliography 61

List of Figures

1.1 WSN architecture . 8
1.2 A sensor board and its connections with the mainboard 9
1.3 Top view of an Intel Imote2 12
1.4 SIFT: DOG scale-space building 16
1.5 SIFT: DOG scale-space, finding maxima and minima 17
1.6 SIFT: descriptor and local gradients 18
1.7 SURF: approximation for Gaussian second order derivatives

filters . 19
1.8 SURF: Haar wavelet filters for the descriptor 20
1.9 SURF: dominant orientation estimation 21
1.10 SURF: descriptor vector and local gradients 21
1.11 FAST segment test corner detection in an image patch. The

highlighted squares are the pixels used in the corner detection. 23
1.12 BRIEF approaches for the sampling of tests locations. 25
1.13 BRISK: scale-space keypoint detection and interpolation . . . 26
1.14 BRISK: sampling pattern made up of N=60 points 27

4.1 Image dataset for performace evaluation 43
4.2 The overlap error of two elliptical regions 46
4.3 Affine regions and overlap error 46
4.4 Repeatability - Graffiti and Wall datasets 47
4.5 Repeatability - Bikes and Trees datasets 48
4.6 Repeatability - UBC and Leuven datasets 49
4.7 Matching score - Graffiti and Wall datasets 50

List of Figures

4.8 Matching score - Bikes and Trees datasets 51
4.9 Matching score - UBC and Leuven datasets 52
4.10 Average processing time percentage for each task of the algo-

rithm . 55
4.11 Processing Time vs. number of keypoints - detection 56
4.12 Processing Time vs. number of keypoints - descriptor 56

List of Tables

1.1 Microprocessor comparison . 9

4.1 Processing time, Bikes and Graffiti datasets 54
4.2 Processing time, Leuven and Trees datasets 54
4.3 Processing time, UBC and Wall datasets 54

Introduction

Over the last few years a large body of research has focused on visual data
analysis to accomplish high-level tasks. Images or videos are often acquired
in digital format by sampling and quantizing the lightfield on a fixed set of
locations. In most cases image analysis is only the last part of the chain:
firstly image acquisition is performed (e.g. using a digital camera), then a
compressed representation of such image is stored and transmitted to a cen-
tral node for the processing. Such paradigm has been successfully employed
over many years for a wide range of visual analysis tasks and applications.
In recent years, however, the advent of new technologies such as Internet of
Things and the continuous improvement of computing devices (in terms of
computational power, miniaturization, power requirements, etc.) is leading
to a new scenario in which battery-operated sensing nodes are empowered
with sight and capable of carrying out visual analysis tasks without resorting
to a central unit. Such sensing devices should have the ability to acquire vi-
sual data from the environment, to process this data extracting information,
to communicate with other nodes over a network. In particular, the ability
to interact with other devices could be further exploited delegating some of
the computational burden to communicating nodes.

Taking into account these requirements, Wireless Multimedia Sensor Net-
works seems to be an adequate solution. This technology provides a set of
nodes equipped with several different sensors and able to communicate thanks
to an ad-hoc network protocol. This topic will be further investigated in sec-
tion 1.1.

The paradigm in which network nodes will be not only responsible for data

1

acquisition but also for task processing will try to imitate the human visual
system, where stimuli are captured by the eyes, the raw data is analyzed
by the brain and then some key concepts are extracted and “stored” into
our memory. Moreover, this process has been demonstrated to have a very
low energy expenditure and to be very efficient (duration of a few hundreds
milliseconds).

The computer vision counterpart of human visual concepts are visual
features, i.e. some interest points within the image with a particular “de-
scription” that allows a feature to be compared with the other ones. An
interest point can be defined as follows:

• it has a clear, preferably mathematically well-founded, definition;

• it has a well-defined position in image space;

• the image structure around the interest point is rich in terms of local in-
formation contents allowing for an high descriptiveness and simplifying
further processing;

• it is stable under local and global perturbations in the image domain,
including perspective transformations as well as illumination/bright-
ness variations, such that the interest points can be reliably computed
with high degree of reproducibility;

• optionally, an interest point should include an attribute of scale, to
allows similar keypoints obtained from different scales (i.e. under dif-
ferent levels of zoom) to be effectively compared.

Such visual features are obtained by coupling a detector that identifies the
interest points and a descriptor that provides an effective characterization.
The third requirement is key for an effectual descriptor to be built: several
different methods have been proposed to provide a well-defined characteriza-
tion of the interest point based on its local content (e.g. color information,
local gradient, dominant orientation, etc.). A detailed overview of some of
the most important algorithms for keypoints detection and description is
proposed in section 1.2.

Although sensing nodes performance is constantly getting better, they
are not designed to carry out the intensive processing load needed by some

2

visual feature extraction algorithms. Their limitations in terms of low power
consumption, production costs and computational power are to be taken into
account while developing the algorithm. A tradeoff between computational
performance (in terms of time, required memory and resources, etc.) and
operating efficiency (evaluated with different metrics such as repeatability,
precision, recall, etc.) is to be found. A detailed analysis of the problem of
extracting visual features on a sensor node is presented in Chapter 2 along
with the methodology followed during the development of the algorithm.

Then some details about the implementation and the adopted solutions
are introduced in Chapter 3 and accompanied by some code snippets.

Finally in Chapter 4, some ad-hoc metrics to evaluate the implemented
application are defined and presented; the performance of the algorithms is
investigated and compared to other approaches and the results are shown.

3

Glossary

• W(M)SN: Wireless (Multimedia) Sensor Network

• SURF: Speeded Up Robust Feature

• SIFT: Scale-invariant Feature Transform

• FAST: Features from Accelerated Segment Test

• BRISK: Binary Robust Invariant Scalable Keypoints

• BRIEF: Binary Robust Independent Elementary Features

• DARPA: Defense Advanced Research Projects Agency

• MEMS: MicroElectroMechanical Systems

• WINS: Wireless Integrated Network Sensors

• WPAN: Wireless Personal Area Network

• WLAN: Wireless Local Area Network

• QoS: Quality of Service

• MIPS: Million Instructions Per Second

• RISC: Reduced Instruction Set Computer

• ROM: Read-Only Memory

• RAM: Random-Access Memory

• SDRAM: Synchronous Dynamic Random-Access Memory

• ISO/OSI: International Organization for Standardization/Open Sys-
tems Interconnection

• DoG: Difference of Gaussians

• PC: Personal Computer

4

• TOSSIM: TinyOS SIMulator

• GLOH: Gradient Location and Orientation Histogram

5

Chapter 1
Review of the State of the Art

1.1 Wireless Multimedia Sensor Networks

A Wireless Multimedia Sensor Network consists of a set of spatially dis-
tributed autonomous sensors (a.k.a. sensor network nodes or motes) capa-
ble of monitoring physical or environmental conditions and of cooperatively
transmitting their data through the network[26]. The forerunner of this kind
of technology dates back to the late 70’s, when DARPA sponsored the devel-
opment of Distributed Sensor Nets for military purposes[6]. The introduction
of MEMS components in the 90’s allows the development of a new generation
of low-power yet efficient sensor networks such as WINS[1].

A WSN is composed by a set of nodes, from a few ones up to hun-
dreds or even thousands. Each node consists of several parts, usually a radio
transceiver unit, a microcontroller and a source of energy (battery, solar
power). The sensing capabilities are provided by modular boards that can
contain several different sensors.

The applications of such technologies are really diversified[3]:

• Area monitoring (surveillance, intrusion detection, hazard detection,
..);

• Air monitoring (athmosphering monitoring, gas concentration, pollu-
tion, ..);

• Hazards monitoring (landslide, fire, ..)

7

8 Chapter 1. Review of the State of the Art

Figure 1.1: WSN architecture[3]

• Localization (people or vehicle tracking and monitoring, ..);

• Machine health monitoring (machinery working conditions, data log-
ging, ..);

1.1.1 Sensors

Sensors are organized into multi-purpose boards (see Figure 1.2) that can be
connected with the mainboard. They can be classified into analog and digital
sensors depending on the type of the output signal. The former category
needs a dedicated analog-to-digital converter for the data to be managed,
stored or transmitted1. Some popular sensors are[6]:

• camera;

• light sensor (IR, ultraviolet, ..);

• magnetic sensor;

• microphone;

1The ADC introduces a new kind of problems about the minimum sampling rate and
therefore transmission rate for a signal to be correctly represented.

Wireless Multimedia Sensor Networks 9

Figure 1.2: a sensor board and its connections with the mainboard[?].

• accelerometer;

• thermometer;

• humidity sensor;

• pressure sensor;

• touch sensor.

The transmission of the data from the sensors to the mainboard can be
controlled by different interfaces (Serial Peripheral Interface I2C, Serial, ..).

1.1.2 Microprocessors and memory

In the mainboard design phase MIPS, amount of ROM and RAM are taken
into account, as well as power consumption, cost, size and many other vari-
ables. Here is a quick overview of some of the most popular microprocessors
for the nodes[23]:

Atmel AVR ATmega 128 TI MSP430 Intel PXA271 XScale
8 bit RISC 16 bit RISC @ 8MHz 32 bit RISC @ 13-416 MHz
32 registers 16 registers 16 registers
4kB RAM 10kB RAM 256kB SRAM

128kB Flash 48kB Flash 32MB Flash
4kB EEPROM 16kB EEPROM 32MB SDRAM
up to 20 MIPS up to 16 MIPS -

< 10mA @ 5 MIPS < 2mA @ 5MIPS < 50mA @ 104MHz[27]

Table 1.1: microprocessor comparison

10 Chapter 1. Review of the State of the Art

1.1.3 Network performance objective and features

• Low power consumption:

– WSNs typically require an average power consumption signifi-
cantly lower than the one of existing wireless network implemen-
tations (e.g. Bluetooth). This is a key requirement, especially in
a large network where frequent battery replacements could be re-
ally impractical. Also in industrial equipment long-lasting battery
could be needed to respect the usual maintenance schedule;

• Low cost:

– For several applications the need for a large number of nodes
made the low cost of a single mote a key requirement. To meet
the objective, expensive components are to be avoided while self-
configuration and self-maintenance are to be provided to minimize
support expenses;

• Network types:

– The optimal network topology may vary depending on many vari-
ables, such as the area to be covered, the allowed network power
(also depending on government regulations), the battery life. In
this sense the support of many types of network without large
working overhead is a critical factor;

• Network security:

– Some of the applications of the technology require a high level
of security. Besides encryption, also authentication and integrity
checking play fundamental roles, not allowing a message to be
falsified or maliciously introduced into the network;

• Data throughput:

– WSNs have a limited data throughput compared to other WPANs
and WLANs. Also considering the network overhead, this results
in a low efficiency, no matter the chosen design;

Wireless Multimedia Sensor Networks 11

• Message latency:

– WSNs have a really varying Quality of Service (QoS) and do not
support isochronous or synchronous communication. Moreover,
the real-time stream of video or even voice is too expensive. There-
fore message latency is a very relaxed requirement in comparison
to that of other WPANs.

1.1.4 Network protocols

The requirements listed above lead to strict constraints on network protocols
to be adopted in WSNs. Short-range wireless technology represents a cor-
nerstone due to the low power budget of each node. Several institutions are
involved in the development of ad-hoc protocols for WSNs. IEEE 802.15.4[25]
is a key for the Media Access Control and the Physical ISO/OSI layers, of-
fering a solid foundation, while some different technologies such as ZigBee,
WirelessHART an MiWi extend that standard by offering an implementation
of the upper layers, not defined in IEEE 802.15.4.

1.1.5 Intel Imote2

The Intel Imote2 is an advanced wireless sensor node platform. It is built
around the low power PXA271 XScale CPU and also integrates a 802.15.4
compliant radio. The design is modular and stackable with interface con-
nectors for expansion boards on both the top and bottom sides. A battery
board supplying system power can be connected to either side[5].

Hardware Features[24]

• PXA271 XScale Processor

– Core Frequency: 13/104/208/312/416 MHz

– 256 KB SRAM

– 32 MB SDRAM

– 32 MB Flash

• Zigbee (IEEE 802.15.4) Radio (TI CC2420)

12 Chapter 1. Review of the State of the Art

• Mini-USB Client (slave)

– RS232 console over USB

– power

• I-Mote2 Basic Sensor connector (31+ 21 pin connector)

• Indicators: Tri-color status LED, power LED, battery charger LED,
console LED

• Switches: on/off slider, Hard reset, Soft reset, User programmable
switch

Figure 1.3: top view of an Intel Imote2.

Visual features extraction algorithms 13

1.2 Visual features extraction algorithms

1.2.1 Harris corner detector

This approach for combined corner and edge detection was introduced by
Harris and Stephens[11] in 1988. The key principle is the assumption that,
at the location of a corner, the image intensity is widely variable along several
directions. Starting from this tenet, let’s consider an image patch I(u, v) and
its counterpart I(u + x, v + y), shifted by (x, y). Then the sum of squared
differences is defined a

S(x, y) =
X

u

X

v

w(u, v) (I(u+ x, v + y)� I(u, v))2

The shifted patch can be approximated by the following Taylor’s expan-
sion:

I(u+ x, v + y) t I(u, v) + I
x

(u, v) x+ I
y

(u, v) y

where I
x

and I
y

represents the first order partial derivatives in the x and
y directions respectively. Then, substituting I(u + x, v + y), S(x, y) can be
rewritten as

S(x, y) =
X

u

X

v

w(u, v) (I(u+ x, v + y)� I(u, v))2 =

=

X

u

X

v

w(u, v) (I(u, v) + I
x

(u, v) x+ I
y

(u, v) y � I(u, v))2 =

=

X

u

X

v

w(u, v) (I
x

(u, v) x+ I
y

(u, v) y)2

This can be written as S(x, y) =
�
x y

�
H

✓
x

y

◆
, where

H =

X

u

X

v

w(u, v)

I2
x

I
x

I
y

I
x

I
y

I2
y

!

14 Chapter 1. Review of the State of the Art

Then, a corner is identified if both the eigenvalues of the matrix H are
sufficiently large, i.e. if the variation of S in all directions of the vector�
x y

�
is sufficiently large. In particular, the Harris measure quantifies

that amount of variation:

M
c

= �1�2 � k (�1 + �2)
2

1.2.2 SIFT

Scale-Invariant Feature Transform is an algorithm to detect and describe
local features in an image proposed by David Lowe[14] in 1999. It aims at
identifying locations in image scale space that are invariant with respect to
translation, scaling, and rotation, and are minimally affected by noise and
small distortions.

Detector

For the detection phase, a scale space is built by applying Gaussian fil-
ters with increasing variance to the image2. Then the couples of Gaussian-
smoothed adjacent images are subtracted to obtain the Difference of Gaus-
sians (see Figure 1.4):

D(x, y,) = (G(x, y, k)G(x, y,)) ⇤ I(x, y)

G(x, y,) =
1

2⇡�2
e
�(x

2

+y

2

)

/2�

2

D(x, y, �) is an approximation of the Laplacian of Gaussian L(x, y,), defined
as

2|52 L(x, y,)| = 2|tr[H(x, y,)]| = 2|L
xx

(x, y,) + L
yy

(x, y,)|

where L
xx

and L
yy

represent the convolution of the Gaussian second order
derivative along the x and y directions with the image.

Once such scale-space is built, key locations are selected in correspondence

2Scale space is divided into octaves. For each octave the image is convolved with
Gaussian kernels and downsampled by a factor of two to provide the DoG images in a
“pyramidal” form.

Visual features extraction algorithms 15

with its local minima and maxima. For this step to be carried out, each pixel
is compared with the neighboring ones in the 3D scale-space (see Figure 1.5).

The location of each keypoint is then refined by fitting a 3D quadratic
function to the points and then finding the interpolated location of the max-
imum. This approach uses the Taylor expansion up to the quadratic terms
of the scale space function D(x, y, �):

D(x) = D +

@DT

@x
x +

1

2

xT

@2D

@x2
x

where D and its derivatives are evaluated at the sample point and x =

(x, y,)T is the offset from this point. The location of the extremum, x̂, is
determined by taking the derivative of this function with respect to x and
setting it to zero, giving

x̂ = �@2D�1

@x2

@D

@x
This method also allows for unstable extrema (i.e. the ones with a low
contrast value) to be discarded.

The DoG approach results in a strong response along the edges: poorly
defined peak will have a strong response along a principal curvature but a
weak one along its perpendicular. The keypoints in these locations should
be rejected for stability reasons. For doing this, let’s consider

H =

"
D

xx

D
xy

D
xy

D
yy

#

and let ↵ be the smallest eigenvalue and � be the largest one. Then, the
ratio between the two eigenvalues will be a key to discern corner responses
from edge ones.

Descriptor

The first step for the description phase is to assign an orientation to each
keypoint, to achieve invariance against image rotation. The scale of the
keypoint is used to select the proper Gaussian-smoothed image L(x, y), i.e.
the one with the closest value of �.

Then for each pixel of a patch around the key location, magnitude and

16 Chapter 1. Review of the State of the Art

Figure 1.4: scale-space is built by means of Difference of Gaussians.

orientation values are computed starting from L(x, y) :

m(x, y) =
p

(L(x+ 1, y)L(x1, y))2 + (L(x, y + 1)L(x, y1))2

(x, y) = tan�1L(x, y + 1)L(x, y1)

L(x+ 1, y)L(x1, y)

Each couple of values is added to an histogram: the orientation is used
to select the proper bin while the magnitude provides a weighting factor.
The maximum of the histogram, after an interpolation process to increase
accuracy, will represent the keypoint orientation3.

A descriptor based on the local properties of the image is to be built and
represented in coordinates relative to the estimated orientation, achieving ro-
tation invariance. Gradient magnitudes and orientations are sampled around

3if more than one maximum is found, n interest points with different orientations,
where n is the number of maxima, are created.

Visual features extraction algorithms 17

Figure 1.5: maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel (marked with X) to its 26 neighbors in 3x3 regions at the current
and adjacent scales (marked with circles).

the keypoint location and then weighted with a Gaussian circular windows to
give the less emphasis to samples that are the more distant from the keypoint
location. The gradient values will then fill some orientation histograms that,
after being normalized to unitary length, will represent the descriptor vector
(see Figure 1.6).

1.2.3 SURF

Speeded Up Robust Feature is a local feature detector and descriptor intro-
duced by Herbert Bay et al.[2] in 2006. Partly inspired by SIFT, the standard
version of SURF is several times faster than SIFT and claimed by its authors
to be robust against different image transformations.

Detector

SURF detector is based on an approximation of the Hessian-matrix

18 Chapter 1. Review of the State of the Art

Figure 1.6: On the left, the gradient magnitude and orientation computed at each
image sample point in a region around the keypoint location and by a Gaussian window
(the blue circle). These samples are then accumulated into orientation histograms, as
shown on the right, with the length of each arrow corresponding to the sum of the
gradient magnitudes near that direction within the region. This figure shows a 2x2
SIFT descriptor array computed from an 8x8 set of samples, whereas the experiments
in this paper use 4x4 SIFT descriptors computed from a 16x16 sample array.

H(x, �) =

"
L
xx

L
xy

L
xy

L
yy

#

For a fast and efficient computation, it exploits boxlets4 and defines integral
images as

I⌃(x) =

ixX

i=0

jyX

j=0

I(i, j)

In particular, the samples of the discretized Gaussian kernel are rounded
to the nearest integer to provide a boxfilter as in Figure 1.7. This filters
are convolved with the image and the approximated Hessian determinant is
computed:

det(H
approx

) = D
xx

D
yy

(wD
xy

)

2

w =

|L
xy

(1.2)|
F

|D
yy

(9)|
F

|L
yy

(1.2)|
F

|D
xy

(9)|
F

= 0.912... ' 0.9

4boxlets is an algorithm that allows fast convolution with discretized versions of the
filters.

Visual features extraction algorithms 19

Figure 1.7: Left to right: the (discretised and cropped) Gaussian second order partial
derivative in y- (Lyy) and xy-direction (Lxy), respectively; our approximation for the
second order Gaussian partial derivative in y- (Dyy) and xy-direction (Dxy). The grey
regions are equal to zero.

where |...|
F

is the Frobenius norm and w a constant.
As in SIFT, to achieve zoom invariance the keypoints are to be found in

a scale-space. Due to the usage of integral images and boxfilters, there is
no need to downsample the images, instead the dimension of the boxfilter
is iteratively increased. Once the scale-space representation is built, inter-
est points are localized with a non-maximum suppression algorithm5. The
position and the scale of the keypoints are then refined through an efficient
interpolation method.

Descriptor

Similarly to SIFT, SURF descriptor represents the distribution of the inten-
sity content within the interest point neighborhood. First of all, we have to
extract a key orientation for each interest point: the Haar wavelet (see figure
1.8) responses in x and y direction within a radius of 6 times the identified
scale are calculated. These responses are then Gaussian weighted depend-
ing on their distance to the interest point, giving less importance to farther
samples. Then the sum of all responses within a sliding window of size ⇡

3 is
calculated and each window represented by a sum vector: the longest one
will be chosen as the orientation of the interest point (see Figure 1.9).

The first step for the extraction of a descriptor vector is to select a square
patch of side length 20s oriented along the estimated direction. The region
is then split into 4 x 4 subregions and then, for each one, 5 x 5 regularly
spaced Haar wavelet responses d

x

(in x direction) and d
y

(in y direction) are

5For every pixel a 3x3x3 neighborhood is explored and the samples whose value is below
the local maximum are set to zero.

20 Chapter 1. Review of the State of the Art

Figure 1.8: Haar wavelet filters to compute the responses in (left) and direction
(right). The dark parts have the weight -1 and the light parts +1.

computed (see Figure 1.10). Also in this case a Gaussian window is applied
to give less emphasis to outer responses.

Then dx and dy are used to extract four parameters that represent the
underlying intensity structure:

•
P

d
x

;

•
P

d
y

;

•
P

|d
x

|;

•
P

|d
y

|;

Concatenating these results for all the 4 x 4 subregions and after a normal-
ization, a descriptor vector of length 64 is obtained.

1.2.4 FAST

Features from Accelerated Segment Test is a corner detector algorithm pro-
posed by Edward Rosten and Tom Drummond[20, 21] in 2005. The main
advantage of FAST corner detector is its computational efficiency.

Detector

The FAST detector consider a circle of 16 pixels around the corner candidate
p. The keypoint is accepted if there exists a sequence of n contiguous pixels,
belonging to the circle, whose values are greater or lesser than p by a given
threshold. FAST sets the parameter n to 12; this choice allows to introduce
an efficient method to test the candidate corners: at first only the four pixels
at positions 1, 5, 9 and 13 (the four compass directions) are examined (see

Visual features extraction algorithms 21

Figure 1.9: dominant orientation estimation is carried on using a sliding window (in
grey) and calculating the sum of responses within such window (the red vector).

Figure 1.10: the building of SURF descriptor vector. The patch is split into 4 x 4
subregions, Haar wavelet responses are computed and the four descriptive parameters
are obtained by summation.

22 Chapter 1. Review of the State of the Art

Figure 1.11). If p is a corner, then at least 3 of those pixels should satisfy the
test criterion (be greater or lesser than p by a given amount). Examining only
four pixels with this method most of the candidates can be efficiently dis-
carded; for the ones that pass this first selection, also the remaining samples
on the circle are checked in order to ensure the presence of a true positive.

Machine learning - FAST

The optimization presented above is valid only if n is set to 12, but some
tests revealed that the choice n = 9 is a better one. Machine learning can be
exploited to make the algorithm more efficient also in this case. Provided a
training set of images6, the full algorithm is run to identify which of the 16
pixels on the circle are the most important to decide whether a candidate is
a corner.

For each location on the circle x 2 {1..16} the pixel at that position
relative to p (denoted by px) can have one of three states:

S
p!x

=

8
><

>:

d, I
p!x

 I
p

� t (darker)

s, I
p

� t < I
p!x

< I
p

+ t (similar)

b, I
p

+ t I
p!x

(brighter)

Choosing an x and computing S
p!x

for all p 2 P (the set of all pixels in
all training images) partitions P into three subsets, P

d

, P
s

, P
b

, where each p

is assigned to P
S

p!x

.
Let K

p

be a boolean variable which is true if p is a corner and false
otherwise. The entropy of K for the set P is:

H(P) = (c+ c̄) log2(c+ c̄)� c log2 c� c̄ log2 c̄

c = |{p|K
p

is true}| number of corners

c̄ = |{p|K
p

is false}| number of non corners

and for each x the information gain corresponds to

I
g

x

= H(P)H(P
d

)H(P
s

)H(P
b

)

6preferably belonging to a particular application domain.

Visual features extraction algorithms 23

Figure 1.11: FAST segment test corner detection in an image patch. The highlighted
squares are the pixels used in the corner detection.

The higher the information gain, the more the point x is important for the
classification process. Having selected the x which yields the most informa-
tion, the process is applied recursively on all three subsets P

x,d

, P
x,s

, P
x,b

and
so on and so forth until the entropy of each subset reaches zero.

Exploiting entropy and information gain a decision tree to successfully
classify the training data can be generated. Finally, some code generators can
build the code to efficiently classify the test data in form of nested if-then-else
statements.

Descriptor

Once the keypoints are detected, non-maximal suppression can be used to
eliminate the ones that are in the neighborhood of a more defined interest
point7. As for the descriptor, this type of corner detection naturally suggests
using the pixel intensities from the 16 pixel circle as a feature vector, along
with a further element describing the type of keypoint (positive if the pixels
are greater than the center, negative if they are less than the center).

7e.g. a keypoint with n = n1 situated in the neighborhood of another one with n = n2

and n2 > n1 should be eliminated.

24 Chapter 1. Review of the State of the Art

1.2.5 BRIEF

Binary Robust Independent Elementary Features is a feature point descriptor
algorithm introduced by Calonder et al.[4] in 2010. It only provides a binary
string to describe each keypoint but should rely on a detector to identify
the interest points. The key idea is that the image patches could be effec-
tively classified on the basis of a relatively small number of pairwise intensity
comparisons. A test on patch p of size SŒS is defined as follows:

(p; x, y) :=

8
<

:
1 if p(x) < p(y)

0 otherwise

where p(x) is the pixel intensity in a smoothed version of p at x = (u, v)T .
Choosing a set of n

d

(x, y)-location pairs defines a set of binary tests. We
take our BRIEF descriptor to be the n

d

-dimensional bitstring

f
n

d

(p) ,
X

1in

d

2

i1
(p; x

i

, y
i

)

Several strategies for the choice of the test locations have been tested (see
Figure 1.12):

I. (X, Y) ⇠ i.i.d. Uniform(�S

2 ,
S

2): the (x
i

, y
i

) locations are evenly dis-
tributed over the patch.

II. (X, Y) ⇠ i.i.d. Gaussian(0, 1
25S

2
): the tests are sampled from an

isotropic Gaussian distribution.

III. X ⇠ i.i.d. Gaussian(0, 1
25S

2
) , Y ⇠ i.i.d. Gaussian(x

i

, 1
100S

2
): x

i

is
sampled from a Gaussian centered around the origin while y

i

is sampled
from another Gaussian centered on x

i

.

IV. The (x
i

, y
i

) are randomly sampled from discrete locations of a coarse
polar grid.

V. 8i : x
i

= (0, 0)T and y
i

takes all possible values on a coarse polar grid
containing n

d

points.

The best solution seems to be the sampling of the positions from an isotropic
Gaussian distribution with a variance �2

=

1
25S

2, where S is the length of

Visual features extraction algorithms 25

the sides of the image patch.

Figure 1.12: BRIEF approaches for the sampling of tests locations.

1.2.6 BRISK

Binary Robust Invariant Scalable Keypoints is a framework for efficient fea-
ture detection and description introduced by Leutenegger et al.[12] in 2011.

Detector

The key idea is to apply a FAST-like detector in a scale-space with the aim
of achieving invariance to scale. Such scale-space is built as a pyramid of
different layers, each one with a progressive half-sampling of the original
image. Once the structure is built, FAST8 is applied on each layer to obtain
the score s of each point. Then non-maximal suppression is exploited to

8FAST 9-16 mask is employed in BRISK: the criterion for a candidate to be chosen as
a keypoint is the presence of at least 9 adjacent samples (belonging to the 16-point circle)
whose values are lower or greater than the reference one by a given threshold T.

26 Chapter 1. Review of the State of the Art

retrieve keypoints in the scale-space. For an interest point to be selected its
FAST score s should be a local maxima with respect to both the 8 neighboring
samples belonging to the same scale layer and the remaining neighboring
samples belonging to adjacent layers (see Figure 1.13). Finally, a quadratic
function is fit to the keypoint to refine its location and its scale.

Figure 1.13: BRISK detector: a keypoint is identified at octave by analyzing the
8 neighboring saliency scores in as well as in the corresponding scores-patches in the
immediately-neighboring layers. Then the sub-pixel location of the keypoint is refined
with interpolation and the scale value is obtained fitting a 1-D quadratic function and
finding its maximum.

Descriptor

Similarly to BRIEF the descriptor consists of a binary string representing
results of simple brightness comparisons. BRISK descriptor exploits a partic-
ular pattern used for sampling the neighborhood of a keypoint. The pattern

Visual features extraction algorithms 27

defines N locations equally spaced on circles concentric with the keypoint
(see Figure 1.14). In order to avoid aliasing and to give less emphasis to
distant samples, a Gaussian smoothing with a standard deviation � propor-
tional to the distance from the center of the interest point is applied. Once
the sampling locations and the smoothing have been defined, then the com-
parisons are exploited both to assign the orientation of the interest point and
the descriptor vector. In particular, the comparisons between long-distance
pairings are used to estimate the key orientation of the interest points while
the ones between short-distance pairings contribute to the generation of the
descriptor vector.

Figure 1.14: The BRISK sampling pattern with N = 60 points: the small circles denote
the sampling locations while the bigger dashed ones are drawn at a radius corresponding
to the standard deviation of the Gaussian kernel used to smooth the intensity values at
the sampling points.

Chapter 2
Local features extraction on a sensor

node

Sensing nodes have a particular architecture with peculiar features that
should be taken into account in the development of a visual features ex-
traction algorithm. Since they are designed with low power consumption
as a main goal and they are commonly battery powered, the available com-
putational power is limited. Therefore, the algorithm should be as efficient
as possible to meet the requirements of such devices, with a possibly low
computational complexity. Moreover, memory poses a strict constraint on
the data structures to be employed: the storage of an image with double
precision for each pixel, for example, is quite expensive in terms of on-board
memory1. Considering the most common types of motes on the market, such
as for example MicaZ, Mica2, TelosB, the memory requirements of our algo-
rithm could not be met, since the amount of available RAM is in the order of
hundreds of kilobytes. Then the Intel Imote2 node seems to be an adequate
solution to meet both the memory and computational power requirements,
featuring a 32 MB on-board SDRAM and a quite fast microprocessor with
an up to 416 MHz clock frequency.

The traditional approaches for corner detection, starting from the one in-
troduced by Harris & Stephens, are computational-intensive algorithms also

1Considering a 512x512 image and a 64-bit double precision data type to describe each
pixel, the amount of memory required to store such data structure is equal to 2 megabytes.

29

30 Chapter 2. Local features extraction on a sensor node

for modern computing architectures. Then, more and more efficient algo-
rithms inspired by the previous approaches have been introduced over the
years. SIFT is a vastly and successfully employed method for this purpose,
but still has a quite high computational cost for sensing nodes. SURF in-
troduces several approximations to SIFT, such as the use of boxlets and
integral images, trying to reduce the complexity of corner detection yet re-
taining good performance. Moreover, several different implementations have
been released over the years together with the source code, and a compre-
hensive literature about algorithm development, implementation choices and
performance evaluation have been published. This detailed background pro-
vides a solid foundation on which to develop a brand new implementation of
the SURF algorithm for sensing nodes.

2.1 TinyOS

TinyOS is an open source, embedded operating system designed for low-
power wireless devices, such as those used in sensor networks[13]. TinyOS
started as a collaboration between the University of California, Berkeley,
Intel Research and Crossbow Technology, and has since grown to be an
international consortium, the TinyOS Alliance. It is written in the nesC
programming language, a component-based and event-driven dialect of the
C programming language, tailored around the requirements of WSNs. The
event-based approach supports the concurrency intensive operations required
by sensor networks with minimal hardware requirements, not allowing a sin-
gle task to block the entire system and promoting a fair use of resources.

TinyOS provides not only the basic operating system but also a set of
interfaces and components that can be easily integrated and exploited while
developing applications for motes, that have to be written in nesC. Each
Component is described by both its interface, containing commands and
events, and its internal implementation. Commands are requests made to
lower level components, while Event Handlers are invoked to deal with hard-
ware events (at lower levels they are directly linked to hardware interrupts).
Tasks are responsible for the execution of code and instructions and they
can call commands, signal events and put other tasks in the Scheduler, that
manages the execution of tasks according to a FIFO policy. A TinyOS appli-

From a high-level algorithm to a nesC implementation of SURF 31

cation is the union of a configuration file, describing the used components and
the links between them, and a module, providing the implementation as a
sequence of instructions or tasks that makes use of the declared components.

TOSSIM, a TinyOS motes simulator is provided to ease the development
of TinyOS applications, that can be tested and debugged directly on a PC
before being installed on the nodes.

2.2 From a high-level algorithm to a nesC
implementation of SURF

As a starting point for the implementation of a brand new version of the
SURF algorithm, an analysis of the open-source releases has taken place. In
particular, two candidate versions of the algorithm have been investigated
and compared in terms of implementative choices, performance, documenta-
tion:

• OpenSURF[7] is a dedicated library implementing the SURF algorithm.
Originally written in C++, has also been ported in matlab and in Java;

• Pan-o-matic 0.9.4[19] is a tool for computing interest point correspon-
dences between images released as a plugin for the panorama photo
stitcher application Hugin. It contains an open source C++ implemen-
tation of SURF.

Some detailed analyses and comparison of the performance of different SURF
implementations are well documented in literature. In particular, [10] shows
that the Pan-o-matic version outperforms the OpenSURF counterpart in
terms of repeatability, precision and recall, achieving results that are similar
to the original SURF ones.

So Pan-o-matic was an obvious choice as a trace to follow in the devel-
opment of the brand new implementation. For simplicity, an upright version
of the SURF algorithm has been chosen, providing keypoints that are not
invariant with respect to rotation.

From C++ to a plain C implementation
The first step towards a nesC version is a porting from the object-oriented

32 Chapter 2. Local features extraction on a sensor node

C++ implementation to a plain C one. References to external libraries have
to be avoided, since the final version of the algorithm could not rely on such
external resources.

Some tools guarantee an automatic compilation of C++ code into the C
counterpart, but the resulting code is not user-friendly nor maintainable, so
that kind of solutions does not meet the requirements. The object-oriented
implementation has been manually analyzed, the instructions have been pro-
gressively inspected and translated to the target language. With some reverse
engineering the C++ objects are mapped to simpler C data types and the
relative functions are modified to accept such data structures as input pa-
rameters. The final result is a purely sequential code, easier to be translated
to the nesC programming language.

Memory is also an important aspect to deal with; its usage and the allo-
cation method are to be kept into account while developing the application.
The Pan-o-matic SURF implementation makes use of dynamic memory allo-
cation for the instantiation of some big data structures needed by the algo-
rithm. In nesC every data structure employed at runtime has to be declared
before executing any command and, although some primitives for dynamic
memory allocation (e.g. malloc(), dealloc(), etc.) are implemented, they are
not fully supported nor safe.

For these reasons, as regards the C prototype, dynamic memory allocation
is to be avoided and some big data structures are instead declared as global
variables at the beginning of the code. The original implementation receives
the image path as a input parameter; in nesC it is not possible to store
that data in a file system. Then the C prototype includes a header file that
contains a test image data structure in the form of a bidimensional array of
integers describing the image pixel map.

Towards a nesC implementation
The nesC and C programming languages are strictly related: their syntaxes

are nearly identical, as the semantic of their instructions. Moreover, the plain
C prototype offers an implementation that is in some way much closer to the
target with respect to the original one.

As a first step for this second porting, every variable declaration has
to be moved at global scope. Doing this, care must be taken in managing

From a high-level algorithm to a nesC implementation of SURF 33

duplicated variable names: as an example, in C a variable can be declared in
the scope of a loop and is accessible only for the loop instructions. If another
variable with the same name but possibly another type is declared after the
loop, no problems arise. Since in nesC variables are at global scope, the same
scenario would represents a problem, and some variable renaming could be
required.

The code needs also to be reorganized in a set of tasks that represents
the flow of the algorithm. Such tasks are then sequentially called after the
boot and the initialization of the system.

The nesC code is then built, tested and debugged with TOSSIM. The
simulator implements the main features of a mote and it is really useful
for the testing process, providing a way more user-friendly interface than
the motes themselves. In particular, the debugging process is eased, since
some debug instructions can be trivially nested inside to code to observe the
value of variables or the general behavior of the application. Then, with
TOSSIM, a first debug session takes place directly on a PC without the need
of installing the application on a mote. The identified problems in the porting
of the algorithm can be easily solved within this stage.

Once the code is working in the simulation environment, the following
steps consist in the installation over a mote and in a second debug session
to solve any potential problem arising at this stage. TOSSIM is a useful
tool but it by no means offers a complete coverage in terms of simulation
of motes features. For example, regarding memory, TOSSIM does not pose
tight limits about the amount of available RAM, while Intel Imote2 amount of
primary memory is not sufficient to satisfy the needs of the algorithm. Then,
the largest data structures are to be stored in the SDRAM thanks to some
ad-hoc primitives. Unfortunately, a given amount of memory can be reserved
in that sector but it is not possible to directly store a variable by assignment.
The usage of multidimensional data structures is then discouraged, since it
is not possible to define that data types in the SDRAM sector nor to assign
the content of such structures.

To solve this problem, the algorithm is modified to operate on monodi-
mensional array instead of using multidimensional ones and the data struc-
tures are modified accordingly. For doing this, multidimensional arrays are
sequentially scanned as a raster and stored in a simple arrays. Indexes are

34 Chapter 2. Local features extraction on a sensor node

then modified according to a particular transformation to guarantee that the
right field is accessed.

The resulting code is finally compiled and installed on the mote via a
debugging board and using serial communication. Unlike in TOSSIM, debug
is a difficult task and the values of the variables cannot be directly inspected.
In fact, it is not possible to print information on the standard output or on
some log files. The data has to be transmitted in form of messages over a
serial communication channel to the PC and then it can be suitably received,
managed and stored. For doing this, a simple java application has been
implemented to manage the messages received via the serial communication
port and to print the results in some log files.

Chapter 3
Implementation details

3.1 Storing variables in the SDRAM

Some large variables should be necessarily stored in the SDRAM section. For
doing that, a header file called “sdram.h” is introduced and the employed data
structures are to be declared according to a particular syntax. In particular
some flags, interpreted by the compiler, discern the variables that are to be
stored in a particular memory section. Then, an address to each variable
is defined to be later recalled from the main file, where a pointer to that
SDRAM address is assigned to a local variable’s one.

1 #ifndef _SDRAM_H_
2 #define _SDRAM_H_
3

4

5 #define VGA_SIZE_RGB (25600) //im_r∗im_c
6 #define II_SIZE_RGB (25921) // (im_r+1)∗(im_c+1)
7 #define ASH_SIZE (128000) //_maxscales∗im_r∗im_c
8 #define KP_SIZE (2620) //max_kp∗131
9

10 uint32_t base_f [VGA_SIZE_RGB] __attribute__ ((section (".sdram"))) ;
11 double ima_f [VGA_SIZE_RGB] __attribute__ ((section (".sdram"))) ;
12 double ii_f [II_SIZE_RGB] __attribute__ ((section (".sdram"))) ;
13 double aSH_f [ASH_SIZE] __attribute__ ((section (".sdram"))) ;
14 double kp_f [KP_SIZE] __attribute__ ((section (".sdram"))) ;
15

35

36 Chapter 3. Implementation details

16 #define BASE_FRAME_ADDRESS base_f
17 #define IMA_FRAME_ADDRESS ima_f
18 #define II_FRAME_ADDRESS ii_f
19 #define ASH_FRAME_ADDRESS aSH_f
20 #define KEYPOINTS_FRAME_ADDRESS kp_f
21

22 #endif //_SDRAM_H_

Listing 3.1: an excerpt of “sdram.h”

1 #include "sdram.h"
2

3 implementation {
4

5 uint8_t ∗Ima = (void ∗) BASE_FRAME_ADDRESS ;
6 double ∗B = (void ∗) IMA_FRAME_ADDRESS ;
7 double ∗_ii = (void ∗) II_FRAME_ADDRESS ;
8 double ∗aSH=(void ∗) ASH_FRAME_ADDRESS ;
9 double ∗keypoints=(void ∗) KEYPOINTS_FRAME_ADDRESS ;

10

11 . . .

Listing 3.2: an excerpt of “WSN_SURFM.nC”

3.2 Test image initialization

Since the declaration of a variable larger then the mote’s primary RAM
capacity is not allowed, the test image should be stored in the SDRAM of
the node with a pixel by pixel assignment to the relative array cell at the
beginning of the execution. Unfortunately, this approach only allows for
small test images to be used, since a sufficiently large number of cell by
cell assignment via the serial communication channel prevents the node from
being programmed with the executable files.

1 Ima [0]= 161 ;
2 Ima [1]= 161 ;
3 Ima [2]= 158 ;
4 Ima [3]= 159 ;
5 Ima [4]= 163 ;

Box filtering 37

6 Ima [5]= 159 ;
7 Ima [6]= 156 ;
8 Ima [7]= 156 ;
9 Ima [8]= 150 ;

10 Ima [9]= 158 ;
11

12 . . .
13

14 Ima [25592]= 99 ;
15 Ima [25593]= 101 ;
16 Ima [25594]= 124 ;
17 Ima [25595]= 153 ;
18 Ima [25596]= 187 ;
19 Ima [25597]= 217 ;
20 Ima [25598]= 240 ;
21 Ima [25599]= 248 ;

Listing 3.3: an excerpt of “WSN_SURFM.nC”

3.3 Box filtering

The box filtering of an image requires only a few simple instructions. For
a given box-like shape, only the values at the corners of such rectangle are
retrieved from the integral image (see variables a, b, c, d in the code excerpt).
Then, the final result of the filtering is provided by simply summing and
subtracting the contributions of the boxes.

1 /∗ Calcu la te aDxy , the f i l t e r has the f o l l ow i n g shape :
2 ∗
3 ∗ + con t r i bu t i on s are to be summed ;
4 ∗ � c on t r i bu t i on s are to be subtracted .
5 ∗
6 ∗ |+++++| |�����|
7 ∗ |+ a +| |� c �|
8 ∗ |+++++| |�����|
9 ∗

10 ∗ |�����| |+++++|
11 ∗ |� d �| |+ b +|
12 ∗ |�����| |+++++|
13 ∗

38 Chapter 3. Implementation details

14 ∗/
15

16

17 a = _ii [(im_c+1)∗(_y_plus_lxy_d2+1)+aXPS+_lxy_d2+1] + . . .
18 _ii [(im_c+1)∗_y+aXPS] � . . .
19 _ii [(im_c+1)∗(_y_plus_lxy_d2+1)+aXPS] � . . .
20 _ii [(im_c+1)∗_y+aXPS+_lxy_d2+1] ;
21

22 b = _ii [(im_c+1)∗(_y+1)+aXPS+1] + . . .
23 _ii [(im_c+1)∗(_y_minus_lxy_d2)+aXPS � _lxy_d2] � . . .
24 _ii [(im_c+1)∗(_y+1)+aXPS � _lxy_d2] � . . .
25 _ii [(im_c+1)∗(_y_minus_lxy_d2)+aXPS+1] ;
26

27 c = _ii [(im_c+1)∗(_y+1)+aXPS + _lxy_d2+1] + . . .
28 _ii [(im_c+1)∗(_y_minus_lxy_d2)+aXPS] � . . .
29 _ii [(im_c+1)∗(_y+1)+aXPS] � . . .
30 _ii [(im_c+1)∗(_y_minus_lxy_d2)+aXPS + _lxy_d2+1] ;
31

32 d = _ii [(im_c+1)∗(_y_plus_lxy_d2+1)+aXPS+1] + . . .
33 _ii [(im_c+1)∗_y+aXPS � _lxy_d2] � . . .
34 _ii [(im_c+1)∗(_y_plus_lxy_d2+1)+aXPS � _lxy_d2] � . . .
35 _ii [(im_c+1)∗_y+aXPS+1] ;
36

37 aDxy = a+b�c�d ;

Listing 3.4: an excerpt of “WSN_SURFM.nC”

3.4 SURF-128

An enhanced SURF descriptor, made up of 128 entries, has been proposed by
Bay in [2] and implemented in WSN-SURF. For each keypoint, the common
SURF-64 descriptor is made up of the 4 components

8
>>>>><

>>>>>:

P
d
x

P
d
y

P
|d

x

|
P

|d
y

|

sampled on a 4x4 grid around the interest point.

SURF-128 39

In the enhanced SURF-128 descriptor, each of the 16 samples belonging
to the 4x4 grid is made up of the following eight components (replacing the
previous four ones):

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

P
d
x

for d
y

< 0

P
|d

x

| . . .
P

d
x

for d
y

� 0

P
|d

x

| . . .
P

d
y

for d
x

< 0

P
|d

y

| . . .
P

d
y

for d
x

� 0

P
|d

y

| . . .

In the code of WSN-SURF, setting the flag “_extended” to 1 the SURF-
128 descriptor is computed, otherwise the SURF-64 is chosen.

1 if (_extended) {
2 aBin_ = (aWavYR_ <= 0) ? 0 : 1 ;
3 _cmp [aBin1V_] [aBin1U_] [aBin_] += aWB1V_ ∗ aWB1U_ ∗ aWavXR_ ;
4 _cmp [aBin2V_] [aBin1U_] [aBin_] += aWB2V_ ∗ aWB1U_ ∗ aWavXR_ ;
5 _cmp [aBin1V_] [aBin2U_] [aBin_] += aWB1V_ ∗ aWB2U_ ∗ aWavXR_ ;
6 _cmp [aBin2V_] [aBin2U_] [aBin_] += aWB2V_ ∗ aWB2U_ ∗ aWavXR_ ;
7

8 aBin_ += 2 ;
9 aVal_ = fabs (aWavXR_) ;

10 _cmp [aBin1V_] [aBin1U_] [aBin_] += aWB1V_ ∗ aWB1U_ ∗ aVal_ ;
11 _cmp [aBin2V_] [aBin1U_] [aBin_] += aWB2V_ ∗ aWB1U_ ∗ aVal_ ;
12 _cmp [aBin1V_] [aBin2U_] [aBin_] += aWB1V_ ∗ aWB2U_ ∗ aVal_ ;
13 _cmp [aBin2V_] [aBin2U_] [aBin_] += aWB2V_ ∗ aWB2U_ ∗ aVal_ ;
14

15 aBin_ = (aWavXR_ <= 0) ? 4 : 5 ;
16 _cmp [aBin1V_] [aBin1U_] [aBin_] += aWB1V_ ∗ aWB1U_ ∗ aWavYR_ ;
17 _cmp [aBin2V_] [aBin1U_] [aBin_] += aWB2V_ ∗ aWB1U_ ∗ aWavYR_ ;
18 _cmp [aBin1V_] [aBin2U_] [aBin_] += aWB1V_ ∗ aWB2U_ ∗ aWavYR_ ;
19 _cmp [aBin2V_] [aBin2U_] [aBin_] += aWB2V_ ∗ aWB2U_ ∗ aWavYR_ ;
20

21 aBin_ += 2 ;
22 aVal_ = fabs (aWavYR_) ;

40 Chapter 3. Implementation details

23 _cmp [aBin1V_] [aBin1U_] [aBin_] += aWB1V_ ∗ aWB1U_ ∗ aVal_ ;
24 _cmp [aBin2V_] [aBin1U_] [aBin_] += aWB2V_ ∗ aWB1U_ ∗ aVal_ ;
25 _cmp [aBin1V_] [aBin2U_] [aBin_] += aWB1V_ ∗ aWB2U_ ∗ aVal_ ;
26 _cmp [aBin2V_] [aBin2U_] [aBin_] += aWB2V_ ∗ aWB2U_ ∗ aVal_ ;
27

28 }
29 else {
30

31 aBin_ = (aWavXR_ <= 0) ? 0 : 1 ;
32 _cmp [aBin1V_] [aBin1U_] [aBin_] += aWB1V_ ∗ aWB1U_ ∗ aWavXR_ ;
33 _cmp [aBin2V_] [aBin1U_] [aBin_] += aWB2V_ ∗ aWB1U_ ∗ aWavXR_ ;
34 _cmp [aBin1V_] [aBin2U_] [aBin_] += aWB1V_ ∗ aWB2U_ ∗ aWavXR_ ;
35 _cmp [aBin2V_] [aBin2U_] [aBin_] += aWB2V_ ∗ aWB2U_ ∗ aWavXR_ ;
36

37 aBin_ = (aWavYR_ <= 0) ? 2 : 3 ;
38 _cmp [aBin1V_] [aBin1U_] [aBin_] += aWB1V_ ∗ aWB1U_ ∗ aWavYR_ ;
39 _cmp [aBin2V_] [aBin1U_] [aBin_] += aWB2V_ ∗ aWB1U_ ∗ aWavYR_ ;
40 _cmp [aBin1V_] [aBin2U_] [aBin_] += aWB1V_ ∗ aWB2U_ ∗ aWavYR_ ;
41 _cmp [aBin2V_] [aBin2U_] [aBin_] += aWB2V_ ∗ aWB2U_ ∗ aWavYR_ ;
42 }

Listing 3.5: an excerpt of “WSN_SURFM.nC”

3.5 Sending features via the serial
communication channel

The features extracted with the algorithm can be sent to another node or
to a central unit exploiting the serial communication channel in the form of
messages. Since the communication protocol has several limitations in terms
of speed and message size, the features should be adapted and modified
to meet the requirements. In particular, the components of the keypoint
descriptor vector are quantized to 8 bits, and a whole vector does not fit the
maximum dimension of a serial message payload1. The vector is then split
up in several parts that are sent separately along with an identification field

1in TinyOS the maximum number of bytes for the payload amounts to 255. The number
of components that can be transmitted depends on the size of the data types describing
it. In this example, 31 entries consisting of an 8 bit value each accounts for 31 * 8 = 248
bytes of data to be transmitted, fitting the maximum payload size of the serial messages.

Sending features via the serial communication channel 41

that allows for an easy reconstruction of the features at the receiver.

1 test_serial_msg_t∗ rcm = (test_serial_msg_t ∗) call Packet . -
getPayload(&packet , sizeof (test_serial_msg_t)) ;

2 if (rcm == NULL) {
3 return ;
4 }
5 if (call Packet . maxPayloadLength () < sizeof (test_serial_msg_t)) {
6 return ;
7 }
8 rcm�>id = sent ;
9 rcm�>seq = seq ;

10 rcm�>aX = keypoints [sent ∗131]∗100 . 0 ;
11 rcm�>aY = keypoints [sent ∗131+1]∗100 .0 ;
12 rcm�>aS = keypoints [sent ∗131+2]∗1000 .0 ;
13

14 for (jjj=0; jjj<15; ++jjj) {
15 if (15∗ seq+jjj<iLen_) {
16

17 rcm�>cmp [jjj] = keypoints [sent∗131+3+15∗seq+jjj] ∗ 2 5 5 . 0 ;
18 }
19 else rcm�>cmp [jjj]=0 . 0 ;
20 }
21

22 if (call AMSend . send (AM_BROADCAST_ADDR , &packet , sizeof (-
test_serial_msg_t)) == SUCCESS) {

23

24 locked = TRUE ;
25 }

Listing 3.6: an excerpt of “WSN_SURFM.nC”

1 #ifndef TEST_SERIAL_H
2 #define TEST_SERIAL_H
3

4 typedef nx_struct test_serial_msg {
5 nx_uint16_t id ;
6 nx_uint8_t seq ;
7 nx_uint16_t aX ;
8 nx_uint16_t aY ;
9 nx_uint16_t aS ;

42 Chapter 3. Implementation details

10 nx_int8_t cmp [1 5] ;
11 } test_serial_msg_t ;
12

13 enum {
14 AM_TEST_SERIAL_MSG = 0x89 ,
15 } ;
16

17 #endif

Listing 3.7: an excerpt of “TestSerial.h”

Chapter 4
Performance evaluation

The performance of both the detector and the descriptor are evaluated ac-
cording to [18, 17], along with an analysis of the required processing time
and of the resource usage with respect to some key parameters. An ad-hoc
dataset is used for this purpose: six sets of images with increasing changes in
some imaging conditions are provided along with the ground-truth correspon-
dences (see Figure 4.1). For the tests, the images have been downsampled
by a factor of four to meet the requirements of the WSN-SURF application.

Figure 4.1: the dataset contains six sequences consisting of six images each with
progressively worsened imaging conditions such as viewpoint (Graffiti and Wall), blur
(Bikes and Trees), JPEG compression ratio (UBC), illumination (Leuven).

43

44 Chapter 4. Performance evaluation

4.1 Detector

The proposed metric to evaluate the performance of the detector is an ex-
tended version of the repeatability measure. Although the framework has
been thought to compare affine covariant regions, represented by a bounding
ellipse, it can also adapt to SURF features, represented by a circle of radius
proportional to the detected scale.

In particular, to compute the repeatability score for a couple of images,
each keypoint belonging to the first one (and its corresponding region) is
projected on the second one according to the provided ground-truth trans-
formation, then if the projected ellipse overlaps with another region by a
given amount, a correspondence is found. The percentage of such matches
over the number of interest points represents the score.

In details, the repeatability score is defined as

R
score

=

C(A,B)

min(n
a

, n
b

)

where C(A,B) is the number of correspondences between keypoints of image
A and B and n

i

is the number of interest points detected in image I. To
check the correspondences between couples of interest points an overlap error
is defined as

✏
S

= 1� µ
a

\ (HTµ
b

H)

µ
a

[(HTµ
b

H)

where µ
a

and µ
b

represents the two elliptical regions of the keypoints a and
b (see Figure 4.2). Typically, values below a threshold of 0.4 are assumed to
represent a correspondence (see Figure 4.3).

In Figures 4.4, 4.5 and 4.6 the repeatability values for each dataset are
presented and compared with some other features detectors:

• openSURF[7];

• FAST 9-16[20, 21];

• SIFT[14];

• MSER[15];

Descriptor 45

• Harris-affine[16];

• Hessian-affine[16].

The implementation of the SURF algorithm on a WSN achieves quite good
results in most cases, while more expensive and affine invariant approaches
definitely seems to have an edge on it for some strong viewpoint transfor-
mations, while the more computationally efficient FAST detector seems to
achieve comparable results for several datasets1.

4.2 Descriptor

As for the detector, also for the descriptor an ad-hoc metric is introduced:
the matching score represents once again the ratio of correct matches over
the total number of regions. Differently from the previous case, however, the
correspondences between the keypoints are established relying on the whole
set of values of each interest point (including the descriptor). In particular,
the process includes two steps:

• A ground truth for correct matches is created starting from the detector
evaluation, deeming correct matches the ones having an overlap error
✏
S

lower than 0.4;

• For each of the above correspondences, a match is assigned if the two
keypoints are the nearest neighbors in the descriptor space2, i.e. the
two descriptor vectors are the most similar ones. Then, the percentage
of such matches compared to the number of regions represents the
matching score.

For evaluation purposes, the interest points detected with the WSN-SURF
detector are described with several different algorithms:

• steerable filters[9];

• SIFT[14];

1unlike the other algorithms, FAST is not scale-invariant.
2the nearest neighbor is identified according to the euclidean distance between the

descriptor vectors.

46 Chapter 4. Performance evaluation

Figure 4.2: the overlap error of two elliptical regions µ
a

and µ
b

.

Figure 4.3: examples of regions projected on the corresponding ellipse with the ground
truth transformation along with the relative overlap error.

• GLOH[17];

• differential invariants[8];

• complex filters[22];

• WSN-SURF.

In Figures 4.7, 4.8 and 4.9 the matching scores for each set of images is
reported. The WSN-SURF descriptor performs very well in every scenario,
outperforming the other descriptors in several cases.

Descriptor 47

Figure 4.4: repeatability figures for Graffiti and Wall datasets, representative of
changes in viewpoint.

48 Chapter 4. Performance evaluation

Figure 4.5: repeatability figures for Bikes and Trees datasets, representative of in-
creasing blurring.

Descriptor 49

Figure 4.6: repeatability figures for UBC and Leuven datasets, representative of JPEG
compression and illumination changes, respectively.

50 Chapter 4. Performance evaluation

Figure 4.7: matching score figures for Graffiti and Wall datasets, representative of
changes in viewpoint.

Descriptor 51

Figure 4.8: matching score figures for Bikes and Trees datasets, representative of
increasing blurring.

52 Chapter 4. Performance evaluation

Figure 4.9: matching score figures for UBC and Leuven datasets, representative of
JPEG compression and illumination changes, respectively.

Processing time 53

4.3 Processing time

The processing time for the algorithm has been measured resorting to TinyOS
Timer interface. In particular, for each image the processing time is estimated
for the following operations:

• image initialization: the time needed to store the image in the SDRAM
and to convert each pixel value from int format (8 bit, 0-255 range) to
double precision format (64 bit, 0-1 range)3;

• integral image: the time needed to build an integral image (see 1.2.3
for further details) starting from the previous step;

• scale-space building: the time needed for the computation of the scale-
space layers for the first (and the most computational-intensive one)
octave. Each value of such “cube” represents an approximated Hessian
determinant for the particular location and scale;

• detection: the time needed to retrieve the interest points location and
scale with non-maximal suppression. It also includes the interpolation
process to refine the values of these three parameters;

• descriptor: the time needed to compute the descriptor vector for every
keypoint.

Please note that the whole detector chain includes both the scale-space build-
ing and the detection tasks. Here the two operations are kept separated for
a more detailed analysis.

The processing time values are reported in Tables 4.1, 4.2, 4.3.
Some notes:

• the computation of the descriptor vector is by far the most compu-
tationally intensive task (see Figure 4.10) and its execution time is
strongly dependent on the number of interest points to be described
(see Figure 4.12);

3the conversion is needed for the following steps of the algorithm.

54 Chapter 4. Performance evaluation

image id bikes 1 bikes 2 bikes 3 graf 1 graf 2 graf 3
image initialization 2.7 2.6 2.8 3.0 3.0 3.2

integral image 2.0 1.8 2 2.0 1.8 1.8
scale-space building 77.8 77.9 77.6 77.8 77.9 77.4

detector 14.4 13.8 13.4 15.3 15.8 14
descriptor 364.3 312.4 250.3 750.6 788.8 586.4

number of keypoints 87 76 67 180 200 143

Table 4.1: processing time values (in seconds) for the Bikes and Graffiti image se-
quences.

image id leuv 1 leuv 2 leuv 3 trees 1 trees 2 trees 3
initialization 2.9 2.7 2.5 3.1 3.1 3.1

integral image 2.1 1.9 2 1.9 2.0 2.0
scale-space building 77.3 77.8 77.7 77.4 77.4 77.4

detector 13.9 13.3 12.8 13.8 13.6 13.9
descriptor 483 314.9 108.4 462.8 413.2 552.9

number of keypoints 116 80 29 121 109 135

Table 4.2: processing time values (in seconds) for the Leuven and Trees image se-
quences.

image id ubc 1 ubc 2 ubc 3 wall 1 wall 2 wall 3
initialization 2.8 3.0 2.9 3.2 3 2.9

integral image 1.9 2.0 2.0 1.7 2.1 1.9
scale-space building 77.7 77.6 77.5 77.5 77.4 77.7

detector 13.8 13.7 13.9 12.7 12.7 13
descriptor 482.1 482.6 560.5 105.5 120 159

number of keypoints 122 121 131 20 23 37

Table 4.3: processing time values (in seconds) for the UBC and Wall image sequences.

Memory 55

Figure 4.10: average processing time percentage for each task of the algorithm. The
descriptor accounts for a rough 81% of the total execution time, while the whole
detector chain, including scale-space building and detection, results in a rough 18%.

• the time required for initialization, integral image building, scale-space
building is constant with respect to the number of keypoints, as con-
ceivable;

• the time needed for the detection stage is slightly dependent on the
number of identified interest points (see Figure 4.11);

• the single instruction of the descriptor that computes an exponential
function4 accounts for a rough 15% of the total processing time.

4.4 Memory

Regarding the memory space required by the program, it is strongly affected
by the size of the image to be analyzed. In particular, calling n the number

4such a function is used to Gaussian weight the gradient responses according to their
distance from the reference point.

56 Chapter 4. Performance evaluation

Figure 4.11: the processing time (in seconds) for the detection task versus the number
of identified keypoints. The dots represents the experimental values, while the straight
line the estimated trend.

Figure 4.12: the processing time (in seconds) for the descriptor task versus the number
of identified keypoints. The dots represents the experimental values, while the straight
line the estimated trend.

Memory 57

of pixels of the image, the algorithm requires a rough amount of n⇥9⇥64 =

576⇥ n bits for the execution.
For example, considering a grayscale 0.3 megapixel5 image, the memory

usage amounts to

M
u

t 576⇥ 0.3 = 172.8 megabits = 21.6 megabytes

5e.g. a 640⇥ 480 grayscale image.

Chapter 5
Conclusion and future work

In a scenario where a pervasive network of things is empowered with improved
sensing abilities, the efficiency of the algorithms in terms of power consump-
tion, processing time, network and memory usage is a key. The performance
evaluation of such implementation shows that the algorithm, despite being
efficient on a modern PC, shows several weakness on a mote. The hardware
features of the network nodes and the required low-power consumption pose
several limitations on the performance of the application. Moreover, TinyOS
does not provide an efficient support to computational intensive algorithms,
being in some sense network-oriented.

Therefore, although the possible applications of this implementation are
limited by its performance, this work aims at evaluating the feasibility and
at identifying the problems of such a project, providing a solid foundation
for further experiments.

As regards this implementation, some improvements could be possible:

• The use of an exponential function to smooth the contributes of local
gradients to the final descriptor vector represents a bottleneck for the
whole process. From some experimental results reported in section 4.3,
this operation accounts for a rough 15% of the total processing time. In
the reference implementations the function has been substituted with
a look-up table that samples its values at some points with a fixed
interval. This could provide a great benefit in terms of processing time
at a slightly higher cost in terms of memory occupation;

59

60 Chapter 5. Conclusion and future work

• The code is now implemented as a single task, preventing the operating
system to interleave it with other operations. For this purpose, the code
could be split into different tasks, introducing some global variables
representing the state of the algorithm1, allowing for an improved and
more fair execution flow;

• SURF has been introduced as a more efficient alternative to other com-
mon feature extraction algorithms such as SIFT. Although it is way
more efficient with respect to its predecessors, its performance in terms
of computational time is not sufficient to meet the requirements of the
possible applications. More and more efficient algorithms are being
constantly introduced as time goes by, suggesting new methods for the
detection and the description of interest points. Since the detector and
the descriptor are detachable, a possible solution could be to adopt an
hybrid approach combining different kinds of detectors and descriptors
to achieve an higher efficiency2.

• Since the programming of the nodes is carried out exploiting a serial
communication channel, only small test images have been tested. For
live-sized images to be processed, an alternative method for the pro-
gramming has to be found. A possible solution could be the use of a
digital camera, whose interface is already implemented in TinyOS, al-
lowing for the execution of the feature extraction algorithm on real-time
photos taken from that camera.

1the information about the scale and the coordinates of the point to be processed in
the next execution of the processing task.

2e.g. good results are documented with an hybrid approach consisting of FAST as a
detector along with SURF as a descriptor.

Bibliography

[1] Asada, G., Dong, M., Lin, T. S., Newberg, F., Pottie, G., and
Kaiser, W. J. Wireless integrated network sensors: Low power systems
on a chip. In Proceedings of the 24th European Solid-State Circuits

Conference (ESSCIRC ’98) (1998), pp. 9–16. WINS.

[2] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. Speeded-up
robust features (surf). Comput. Vis. Image Underst. 110, 3 (June 2008),
346–359.

[3] Callaway, E. H. Wireless Sensor Networks: Architectures and Proto-

cols. CRC Press, Inc., Boca Raton, FL, USA, 2003.

[4] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. Brief: bi-
nary robust independent elementary features. In Proceedings of the 11th

European conference on Computer vision: Part IV (Berlin, Heidelberg,
2010), ECCV’10, Springer-Verlag, pp. 778–792.

[5] Crossbow Technology, I. Intel imote2 data sheet.

[6] Decker, C. Wireless sensor network (wsn) platforms.

[7] Evans, C. Notes on the opensurf library. Tech. Rep. CSTR-09-001,
University of Bristol, January 2009.

[8] Florack, L., ter Haar Romeny, B. M., Koenderink, J. J., and
Viergever, M. A. General intensity transformations and differential
invariants. Journal of Mathematical Imaging and Vision 4, 2 (1994),
171–187.

61

[9] Freeman, W. T., and Adelson, E. H. The design and use of steer-
able filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 9 (Sept. 1991),
891–906.

[10] Gossow, D., Decker, P., and Paulus, D. Robocup 2010. Springer-
Verlag, Berlin, Heidelberg, 2011, ch. An evaluation of open source SURF
implementations, pp. 169–179.

[11] Harris, C., and Stephens, M. A combined corner and edge detector.
In Proceedings of the 4th Alvey Vision Conference (1988), pp. 147–151.

[12] Leutenegger, S., Chli, M., and Siegwart, R. Brisk: Binary
robust invariant scalable keypoints. In ICCV’11 (2011), pp. 2548–2555.

[13] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo, A.,
Gay, D., Hill, J., Welsh, M., Brewer, E., and Culler, D.
Tinyos: An operating system for sensor networks. In in Ambient Intel-

ligence (2004), Springer Verlag.

[14] Lowe, D. G. Object recognition from local scale-invariant features.
In Proceedings of the International Conference on Computer Vision-

Volume 2 - Volume 2 (Washington, DC, USA, 1999), ICCV ’99, IEEE
Computer Society, pp. 1150–.

[15] Matas, J., Chum, O., Urban, M., and Pajdla, T. Robust wide-
baseline stereo from maximally stable extremal regions. Image Vision

Comput. (2004), 761–767.

[16] Mikolajczyk, K., and Schmid, C. An affine invariant interest point
detector, 2002. Copenhagen.

[17] Mikolajczyk, K., and Schmid, C. A performance evaluation of
local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 10 (Oct.
2005), 1615–1630.

[18] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V. A
comparison of affine region detectors. Int. J. Comput. Vision 65, 1-2
(Nov. 2005), 43–72.

62

[19] Orlinski, A. Pan-o-matic.

[20] Rosten, E., and Drummond, T. Fusing points and lines for high
performance tracking. In IEEE International Conference on Computer

Vision (October 2005), vol. 2, pp. 1508–1511.

[21] Rosten, E., and Drummond, T. Machine learning for high-speed
corner detection. In European Conference on Computer Vision (May
2006), vol. 1, pp. 430–443.

[22] Schaffalitzky, F., and Zisserman, A. Multi-view matching for
unordered image sets, or "how do i organize my holiday snaps?". In
Proceedings of the 7th European Conference on Computer Vision-Part I

(London, UK, UK, 2002), ECCV ’02, Springer-Verlag, pp. 414–431.

[23] Schonwalder, J., and Harvan, M. Wireless sensor networks:
Motes, nesc, and tinyos. Jacobs University, Bremen.

[24] TinyOS. Intelmote2 support wiki.

[25] Wikipedia. Ieee 802.15.4 — Wikipedia, the free encyclopedia, 2012.
[Online; accessed 01-November-2012].

[26] Wikipedia. Wireless sensor network — Wikipedia, the free encyclope-
dia, 2012. [Online; accessed 01-November-2012].

[27] Yale. Power modes and energy consumption for the imote2 sensor node.

63

