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Abstract

This work concerns the study of the modeling of the sampled signal af-
ter the receiver matched filter with transmission over a Wiener Phase
noise channel.
In the literature regarding phase noise (for example in [BMS12, DMR00,
AB11, MAV+11]) is usually considered a symbol-time model for the
sampled signal, whose discrete-time phase noise after the receive fil-
tering is considered to be a Wiener process; this is done by assuming
that one has slow phase variation in one time symbol.
The contribution of this thesis is the study of the difference between
the symbol-time model used in the literature, which in this thesis work
will be called Symbol-spaced Phase Noise Model (SPNM), and the
model (called Complete Model) for the sampled signal after the receive
filter obtained by considering the continuous-time signals and mathe-
matically deriving the expression for the signal at the sampler. Limits
of validity of the SPNM will be proved; moreover the features of the
phase noise of the Complete Model which differ from the features of
the SPNM will be pointed out.
This document is organized as follows: after an introductory chapter
about the notations used, the symbol-time model (SPNM) is presented
together with an application found in the literature [AB11] where car-
rier recovery with Pilot Aided Transmission is performed for a chan-
nel that as a Symbol-spaced Phase Noise Model. In Chapter 3 the
continuous-time signal at the input of the receiver is considered; the
continuous-time signal at the sampler, obtained after matched filtering
of the received signal affected by Wiener Phase Noise, is then derived.
A mismatch between the Complete Model obtained by sampling the
continuous-time signal and the SPNM is found.
In Chapter 4 the power of this mismatch is studied with simulations,
with a particular emphasis on the phase noise of the Completed Model:
indeed it is observed that the receive filtering introduces memory in the
phase process.
The results of Chapter 4 arise the need to extend to the Complete
Model the derivations done in [BMS12] for the SPNM. Therefore in
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Chapter 5 some changes and integrations to [BMS12] are proposed in
order to compute the capacity bounds with a symbol-spaced model
that is different from the SPNM; in particular it has a phase noise with
innovation process with memory greater than one.



Sommario

Questo lavoro si occupa dello studio della modellazione del segnale cam-
pionato dopo il filtro adattato al ricevitore, nel caso in cui la trasmis-
sione avviene su un canale soggetto a rumore di fase di Wiener.
Quando si studia il rumore di fase in letteratura (per esempio in [BMS12,
DMR00, AB11, MAV+11]) si considera spesso un modello a tempo di
simbolo per il segnale campionato, il cui rumore di fase tempo-discreto
dopo il filtraggio è considerato essere un processo di Wiener, a patto
di ammettere variazioni di fase lente durante un tempo di simbolo.
Il contributo di questo lavoro di tesi è di studiare la differenza tra il
modello usato in letteratura a tempo di simbolo, che in questo docu-
mento chiameremo Symbol-spaced Phase Noise Model (SPNM), e il
modello (chiamato completo) del segnale campionato dopo il filtro in
ricezione ottenuto considerando tutti i segnali tempo-continui al rice-
vitore e derivando matematicamente l’espressione del segnale al cam-
pionatore. Verranno proposti anche dei limiti sotto i quali il modello
SPNM è valido e evidenziate le caratteristiche del rumore di fase del
modello completo che si discostano dal SPNM.
Questo documento si articola come segue: dopo aver introdotto le
notazioni, il modello a tempo di simbolo (SPNM) viene presentato
nel capitolo 2 insieme a un esempio trovato in letteratura [AB11] in
cui si effettua il recupero di portante con trasmissione di simboli pi-
lota servendosi di questo modello. Nel capitolo 3 è considerato il se-
gnale tempo-continuo all’ingresso del ricevitore; viene quindi illustrata
la derivazione del segnale tempo-continuo al campionatore inserendo
prima un rumore di fase di Wiener e poi filtrando il segnale per il filtro
adattato. Si osserva quindi uno scostamento tra il modello completo
ottenuto campionando questo segnale tempo-continuo e il SPNM.
Nel capitolo 4, grazie a simulazioni, si studia la potenza di questo
scostamento e in particolare le caratteristiche del rumore di fase del
modello completo: si può notare che il il processo di fase presenta
memoria introdotta dal filtro in ricezione. Le considerazioni che sca-
turiscono dall’osservazione dei risultati nel capitolo 4 fanno sorgere la
necessità di estendere al modello completo il lavoro svolto in [BMS12]
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per il SPNM). Quindi nel capitolo 5 viene ripreso [BMS12], a cui ven-
gono proposti i cambiamenti e le integrazioni necessarie per calcolare i
limiti della capacità con un modello a tempo di simbolo che, diversa-
mente da quanto proposto nell’articolo, ha rumore di fase con memoria
maggiore di uno.
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Chapter 1

Introduction on notations

In this chapter we report some notations that will be often encountered
in this work. Additional notation may be introduced and explained
within each chapter.

The imaginary unit is denoted with j =
√
−1. Given a complex num-

ber w, we denote its real and imaginary part as ℜ{w} and ℑ{w},
respectively, and its argument with

arg(w) = ∠(w) = arctan
ℑ{w}
ℜ{w} .

The complex conjugate of w is denoted with w⋆. The complex conju-
gate of the inverse of w is indicated with

w−⋆ =
1

w⋆
.

Given a discrete random variable x we denote its expected value with
E{x}.

A sequence is denoted either by {sk}, where the subscript indicates
that the sequence is indexed by k, or by a polynomial, i.e. the (bilat-
eral) z-transform of the sequence

Z{s(k)}(z) = S(z) =

∞
∑

k=−∞

s(k) z−k.

The auto-correlation of the sequence {s(k)} is denoted with {ψs(k)},
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CHAPTER 1. INTRODUCTION ON NOTATIONS

that has z-transform

Ψs(z) =
∞
∑

k=−∞

ψs(k) z
−k

=
∞
∑

k=−∞

z−k

∞
∑

i=−∞

s⋆(i) · s(i+ k)

= S(z) · S⋆(z−⋆),

when
∞
∑

i=−∞

|s(i)|2 <∞.

If {s(k)} is a stationary random sequence then the z-transform of the
auto-correlation is

Ψs(z) =
∞
∑

k=−∞

z−k

∞
∑

i=−∞

E{s⋆(i) · s(i+ k)}.

The inverse z-transform of S(z) is denoted with

Z−1{S(z)}(k) = {s(k)}.

We denote with

[S(z)]−i
−j =

j
∑

k=i

s(k) z−k

the sum of the monomials of S(z) with degree between −j and −i. If
we want to consider the i-th element of a sequence {sk} we write si and
the notation for {si, si+1, ..., sk−1, sk} will be ski .

Matrices and vectors are reported in boldface and, unless otherwise
stated, a vector is assumed to be a column vector.

We denote that a variable X is Gaussian distributed with mean µ
and variance σ2 with

X ∼ N(µ, σ2).
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Chapter 2

Carrier Recovery in presence

of Phase Noise

In this chapter we recall some basic concepts of an used model in digital
communications with multiplicative noise: the Symbol-spaced Phase
Noise Model (SPNM). We also propose some of the analysis consid-
ered in [AB11] for determining the optimal Carrier Recovery filter in
order to estimate the phase after the receive filter and the sampler in
a communication system, under the assumptions of the SPNM.

2.1 First Order Wiener Process

In the literature of digital communications, a trusted model to study
the performance of carrier recovery is the SPNM [MAV+11]:

yk = xke
jθk + wk, (2.1)

where {xk} is the sequence of modulated symbols with unitary average
power and {wk} is a zero mean complex additive white Gaussian noise
(AWGN) sequence with variance σ2

w = 1
SNR

. The time-varying phase
noise {θk} is usually modeled as a first order Wiener process

θk+1 = θk + σPNνk, (2.2)

where σPN is a constant and {νk} is a sequence of real independent
and identically distributed Gaussian random variable with zero mean
and unitary variance. In many papers is underlined that the standard
deviation of the innovation term σPN must not be too high or the
SPNM could be not valid anymore [MD97]. For small σPN the spectrum
of the continuous-time complex exponential ejθ(t) affected by random
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phase walk, from which is generated the sampled phase noise sequence
ejθk , is the Lorentzian function [DMR00]

Lθ(f) =
4σ2

PNT

σ4
PN + 16π2f 2T 2

, (2.3)

where T is the symbol interval. The Lorentzian function is parametrized
by its Half-Width Half-Maximum(HWHM) frequency

fHWHM =
σ2
PN

4πT
(2.4)

In this way the model defined in (2.1) and (2.2) describes the channel
by only two parameters: SNR and the standard deviation σPN of the
innovation in the phase noise process. In [MAV+11] some experiments
have been done in order to validate this model for the phase in lightwave
WDM transmissions. As is well known, the performance of coherent
detection is susceptible to phase noise [MD97]. In the wireless context
scenario, phase noise is introduced by local oscillators used for up-
conversion and down-conversion. In the optical scenario laser’s phase
noise is usually described as a Wiener process [FV88], and the Wiener
model has been recently proposed in [MAV+11] also for the phase noise
accumulated during nonlinear propagation, at least for the cases stud-
ied in that paper. Recent papers [Tay09, PHN09, LCY+11] address
the problem of coherent demodulation in the presence of Wiener phase
noise. In [AN09] this model is used in order to compute the Bit Error
Rate (BER) of different modulations in optical transmissions impaired
by Laser Phase Noise.

2.2 Carrier Recovery

In Digital Communications the task of Carrier Recovery is to track the
phase sequence {θk} of (2.1) and (2.2). This is achieved with different
approaches: the most common are Blind techniques and Pilot-Aided
techniques. Blind techniques try to estimate the carrier phase {θk}
without knowing the transmitted symbols; they usually exploit the
knowledge of the statistical properties of the signal, the transmitted
constellation, or both. Pilot-Aided techniques use the informations
used in the Blind ones, but also they insert in the random pattern
of transmitted symbols some Pilot sequences of symbols known both
at the transmitter and at the receiver. Then the receiver uses the
information given by this knowledge to estimate the phase. These
techniques reduces the information rate. but are more robust than
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other techniques when the phase noise is high.
In [AB11] is proposed a way to recover the phase noise impairment of
the SPNM with a Pilot-Aided Transmission. In the paper is shown
how to recover the phase with the assumption of having independency
between the transmitted data, the phase noise and the additive noise;
let the pilot rate be M−1, meaning that one pilot symbol is inserted
after M − 1 payload symbols periodically, so the transmitted Pilot
Sequence, with unitary power, is

B(z) =
∑

k

a(kM)z−kM (2.5)

Multiplying the input sequence yk by the complex conjugate of the
zero-padded pilot sequence, one obtains the zero-padded sequence rep-
resented by the z-transform

L(z) =
∑

k

l(kM)z−kM (2.6)

l(kM) = ejθ(kM) + w′(kM) (2.7)

where w′(kM) is the complex AWGN that is statistically equivalent to
w(kM). The channel is then characterized by its pilot signal-to-noise
ratio

SNRp = (E{|w′(k))|2)})−1 . (2.8)

The argument of (2.6) is

φ(kM) = arg{l(kM)} = θ(kM) + n(kM) (2.9)

where n(kM) is the tangential part of the complex noise w′(kM). At
high-to-intermediate SNRp is approximated as real AWGN with zero
mean and power E{n2(kM)} = (2 · SNRp)

−1. If we define the m-th

estimate of the phase Θ̂m(z) = Hm(z) · Φ(z), where

Hm(z) =
∞
∑

k=δ

h(kM +m)z−kM−m (2.10)

In this way, the input sequence {φ(−∞), ..., φ(−M), φ(0)} is used to

get the estimate of the phase θ̂(δM +m). Note that, for δ < 0, Hm(z)
is non-causal. The cost-function to be minimized in order to find out
the formula for the filters Hm(z) is the Mean Square Error

MSEm = E{(θ(m)− θ̂(m))2} (2.11)

Since the sequence {y(k)} is cyclostationary with period M, the se-

quence {θ̂(m)} is cyclostationary also with period M as well, so we

5
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can restrict the range of m to m = 1, 2, ...,M . Now, translating the
continuous-time approach of [BS50] to a discrete-time scenario, the
minimization of the m-th MSE, one finds that the optimal m-th trans-
fer function is

Hm(z) = α2(1− P (z))[(1− P ∗(z−∗))Ψθm(z)]
−δM−m
−∞ (2.12)

where Ψθm(z) is the z-transform of the zero-padded autocorrelation ψθ

Ψθm(z) =
+∞
∑

k=−∞

ψθ(kM +m)z−kM−m . (2.13)

The transfer function 1 − P (z) in (2.12) corresponds to the causal
monic and minumum phase whitening filter obtained from the spectral
factorization

(1− P (z))α2(1− P ∗(z−∗)) =
1

Ψφ(z)
(2.14)

where

Ψφ(z) = ΨθM (z) + (2 · SNRp)
−1 (2.15)

1− P (z) = 1−
∞
∑

k=1

p(kM)z−kM (2.16)

α2 = exp

{
∫ 1

0

log(
1

Ψθ(ej2πf)
) df

}

(2.17)

These formulae hold when the following requirements are satisfied
∫ 1

0

1

Ψθ(ej2πf)
df <∞ (2.18)

∫ 1

0

log(
1

Ψθ(ej2πf)
)df > −∞ . (2.19)

The first condition implies finite power and the second guarantees
causality and rules out spectra that have zeros over a set of points
of non-null measure over the unit circle, such as bandlimited spectra.
Then, in the cited paper [AB11], the authors perform the analysis by
taking two different cases, the first with δ → ∞, that is the infinite
length filter (unconstrained), and the second with δ = 0, that is the
causal filter (constrained). Using (2.15) in (2.14), one gets the uncon-

strained filter that is used in the case of feed-forward synchronization,

Hm(z) =
Ψθm(z)

ΨθM (z) + (2 · SNRp)−1
. (2.20)

6
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If for some reasons one needs to have a feed-back implementation of the
estimation filter, δ must be greater or equal to zero. For the minimum
delay scenario, that is δ = 0, the sequence {y(−∞), ..., y(−M), y(0)}
is used to determine {θ̂(1), θ̂(2), ..., θ̂(M)}. The sub-filter HM(z) is the

one that originates the sub-sequence {θ̂(kM) from the past samples of
the noisy input phase. This is the linear predictor found in [SM08] in
the context of carrier recovery based on Phase-Locked Loop

HM(z) = P (z) . (2.21)

The last step to determine a closed form for the filter is to substi-
tute Ψθ(z) with the z-transform of the autocorrelation function of the
process θ. From (2.1) and (2.2), one can write that

Ψθ(z) =
σ2
PN

(1− z−1)(1− z)
. (2.22)

Starting from this expression of Ψθ(z), the z-spectrum of the input
sequence can be written as

Ψφ(z) =
Mσ2

PN

(1− z−M )( −zM )
+

1

2 · SNRp

, (2.23)

and the spectral factor 1− P (z) as

1− P (z) =
1− z−M

1− zφz−M
, (2.24)

where zφ = λ−
√
λ2 − 1, and λ = 1 +Mσ2

PNSNRp > 1, |zφ| < 1.
The last step is to substitute those formulas both in the unconstrained
filter and the the causal one. In the case of δ → ∞ one gets the optimal
unconstrained filter

Hm(z) = (1−zφ)
z−[m]

1− zφz−M
+(

[m]

M
+

zφ
1− zφ

)
zM−[m](1− z−M )(1− zφ)

2

(1− zφz−M )(1− zφzM )
,

(2.25)
where [m] = m(modM). For zφ → 1, the (2.25) becomes after some
rearrangements

Hm(z) ≈
zM−[m](1− zφ)

2

(1− zφz−M)(1− zφzM )
. (2.26)

In the case of causal filtering, the optimal m-th subfilter with delay
δ = 0 is

Hm(z) = (1− zφ)
z−m

1− zφz−M
. (2.27)
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2.3 Summary

In this chapter we have presented the Symbol-spaced Phase Noise
Model. The derivation of the model is given in the first section. In
the other section it is shown how to build a Carrier Recovery System
in order to have an estimate of the Phase Noise impairment of the
SPNM, exploiting the information given by the Pilot Symbols. It is
worth emphasizing that all the mathematical consideration of the sec-
tion 2.2 come from the assumption that the signal after the receive
filter and the sampler is of the form (2.1).
As we saw, in the literature the SPNM is considered valid when the
phase varies slowly. Problems on the validity of the model may arise
when the phase has fast variations. So one can ask if the SPNM is still
a usable model for digital communications when the the standard devi-
ation of the innovation of the phase noise σPN is big. A more accurate
analysis of the SPNM in these cases will be done in the next chapters
of this document.

8



Chapter 3

Symbol-spaced Phase Noise

Model: mathematical proof

of the Model Mismatching

In this chapter we deepen in the Symbol-spaced Phase Noise Model and
we investigate, with mathematical derivations, its validity for digital
communications. The model of the received filtered and sampled sig-
nal of a continuous-time transmission with Wiener phase noise is first
derived. Then the model obtained is compared with the SPNM. In the
last subsection the two models are compared using a frequency-domain
approach and simulations.

3.1 Derivation of the received sampled continuous-

time signal

In digital communication systems the oscillators demodulates the sig-
nal from radio-frequency to a baseband signal before any receiver pro-
cessing; therefore the phase noise impairment due to the noise in the
oscillators affects the signal before the receive matched filter. Let the
continuous-time signal at the input of the receive system be

r(t) = s(t) + w(t) (3.1)

s(t) =
∑

k

akh(t−KT )ej2πfct , (3.2)

where {ak} is the sequence of modulated symbols, h(t) is the square-
root Raised Cosine Transmit Filter with roll-off factor α with group
delay Dg = 0, and w(t) is a zero mean complex additive white Gaussian
noise (AWGN) sequence with variance σ2

w. Those filters are shaped in

9
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a way which satisfies the Nyquist Criterion [Pro01]:
∫ ∞

−∞

h(τ − iT )h∗(τ − iT )dτ = 1 , and

∫ ∞

−∞

h(τ − kT )h∗(τ − iT )dτ = 0 , i 6= k . (3.3)

Then the signal r(t) is demodulated through the optical oscillator, that
have a phase β(t) = 2πfct − φ(t); in this way it introduces a multi-
plicative phase noise φ(t) in the baseband signal

rb(t) =
∑

k

akh(t−KT )ejφ(t) + w(t)ejφ(t) , (3.4)

where φ(t) is the continuous-time Wiener process

φ(t) = σ

∫ t

−∞

n(t) , (3.5)

where, n(t) is a zero mean and unitary power Gaussian process and σ
a constant.
Without loss of generality we can substitute w′(t) = w(t)ejφ(t), that has
the same statistical properties of w(t). The signal rb(t) is then filtered
by the filter h∗(−t), matched to the transmit filter, in order to obtain

y(t) =
∑

k

ak

∫ ∞

−∞

h(τ − kT )h∗(τ − t)ejφ(τ)dτ + n(t) , (3.6)

where
n(t) = w′(t) ∗ h∗(−t) . (3.7)

By sampling the signal at time instants t = iT one obtains the sequence

yi =
∑

k

ak

∫ ∞

−∞

h(τ − kT )h∗(τ − iT )ejφ(τ)dτ + n(iT ) . (3.8)

Note that, for h(t) satisfying the Nyquist criterion, n(iT ) is white and
Gaussian with Power Spectral Density (PSD) N0 and then, by isolating
the term i = k, the (3.8) becomes

yi = ai

∫ ∞

−∞

h(τ − iT )h∗(τ − iT )ejφ(τ)dτ

+
∑

k 6=i

ak

∫ ∞

−∞

h(τ − kT )h∗(τ − iT )ejφ(τ)dτ + ni . (3.9)
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It is important to point out that when the phase noise is a constant,
without loss of generality we can assume φ = 0, obtaining the Nyquist
Criterion:

yi = ai

∫ ∞

−∞

h(τ − iT )h∗(τ − iT )dτ

+
∑

k 6=i

ak

∫ ∞

−∞

h(τ − kT )h∗(τ − iT )dτ + ni

= ai + ni .

When the phase noise φ(t) is not a constant the integral in (3.8) does
not satisfy the Nyquist criterion anymore: in particular

∫ ∞

−∞

h(τ − iT )h∗(τ − iT )ejφ(τ)dτ = ρie
j(φ(iT )+χi) 6= 1 · ejφ(iT ) , and

∫ ∞

−∞

h(τ − kT )h∗(τ − iT )ejφ(τ)dτ 6= 0 , i 6= k . (3.10)

However when φ(t) has small variations within the span of the filters
h(t) it can be shown that

ρi = 1 + ǫρi ≈ 1 , and χi ≈ 0. (3.11)

Substituting (3.11) in (3.10), and using it in (3.9), we obtain

yi = aie
jφ(iT ) · (1 + ǫρi)e

jχi

+
∑

k 6=i

ak

∫ ∞

−∞

h(τ − kT )h∗(τ − iT )ejφ(τ)dτ + ni . (3.12)

If we define

ISIi =
∑

k 6=i

ak

∫ ∞

−∞

h(τ − kT )h∗(τ − iT )ejφ(τ)dτ (3.13)

since ISIi (Inter-Symbol Interference) is due to the symbols ak, with
k 6= i, we can finally write the Complete Model of the sampled and
filtered received signal

yi = aie
jφ(iT ) · (1 + ǫρi)e

jχi + ISIi + ni . (3.14)

Writing the filtered and sampled received sequence {yi} in this way,
one can easily compare it with the Symbol-spaced Phase Noise Model.
First of all, one can observe that the additive Gaussian noise sequence
{ni} is the same of the SPNM. Considering the signal part, (3.14)

11
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shows that an ISI term appears. Moreover it can be pointed out that
there is a perturbation, both in the phase and in the magnitude of
the transmitted symbol. Both this phenomena can be explained by
observing that in the integrals in (3.10) there is a phase term ruled by
the Wiener process φ(t), that is not constant in the integrals’ domains
(−∞,+∞).
A mismatch between the SPNM and the sequence {yi}, that is the
Complete Model (3.14), after the sampler and the receive filter has been
found out. In particular the SPNM seems to be an approximation of the
Complete Model. In the next section we will focus on this mismatch.

3.2 Complete Model Features

This section consists in two subsections: first the difference between
the SPNM and the filtered and sampled receive sequence {yi} of (3.14)
impaired by Wiener Phase Noise is considered. Then a condition in
order to have agreement between the sequence {yi} and the SPNM is
derived. Then a demonstration of the Model Mismatch in the frequency
domain is shown.

3.2.1 Difference between the SPNM and the filtered and

sampled received signal

As it is shown in (3.14), the sequence {yi} of the Mismatched Model
is different from the SPNM in (2.1). The aim of this subsection is to
find a condition that makes the Complete Model be equivalent to the
SPNM.
Previously we said that the perturbation of the current symbol ai and
the ISI term are due to the non-constant nature of the phase term
φ(t). To be more precise one could say that, in order to remove this
two impairments, φ(t) must be a constant when the product h(τ −
kT )h∗(τ − iT ) assumes values not equal to zero or approximatively not
close to zero.
Let us define the Slow Phase Variation Condition (SPVC): SPVC holds
if the phase term φ(t) can be considered as a constant equal to φ(iT )
when the product h(τ −kT )h∗(τ − iT ) has not negligible values. If this

12
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condition holds, the equations in (3.10) can be rewritten as:
∫ ∞

−∞

h(τ − iT )h∗(τ − iT )ejφ(τ)dτ

= ejφ(iT ) ·
∫ ∞

−∞

h(τ − iT )h∗(τ − iT ) = ejφ(iT ), and

∫ ∞

−∞

h(τ − kT )h∗(τ − iT )ejφ(iT )dτ

= ejφ(iT ) ·
∫ ∞

−∞

h(τ − kT )h∗(τ − iT ) = 0, i 6= k. (3.15)

Substituting (3.15) in (3.9), instead of the Mismatched Model, one
obtains

yi = aie
jφ(iT ) + ni . (3.16)

Since a continuous-time Wiener process φ(t) sampled at time instants
t = iT , is a discrete-time Wiener process (see Appendix A) with in-
novation variance σ2 = σ2T , we can define the discrete-time sequence
φi = φ(iT ), in order to obtain

yi = aie
jφi + ni , (3.17)

that is the SPNM, with θi = φi.
In this subsection the proof that the Symbol-spaced Phase Noise Model
is an approximation of the Mismatched Model has been given. In Chap-
ter 4, dedicated to simulations, we will try to measure some parameters
of this mismatching.

3.2.2 Model Mismatch in the Frequency-Domain

The mismatch between the SPNM and the sequence {yi} in the (3.14),
could be also observed from a frequency domain point of view.
As we have seen in this chapter, the AWGN noise does not have dif-
ference between the two models. Accordingly, in this subsection the
additive noise w(t) is not considered in order to have simpler mathe-
matical formulae. Let us recall equation (3.4),

r̄b(t) =
∑

k

akh(t−KT )ejφ(t) = sb(t) · ejφ(t) , (3.18)

where w(t) = 0, and sb(t) is the baseband demodulated s(t). If we take
the Fourier Transform of r̄b(t), under the hypothesis of independent
and identically distributed ai, we obtain

R̄b(f) = σ2
aH(f) ∗ Lφ(f) , (3.19)
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where Lφ(f) is the one from (2.3). The multiplication by the complex
exponential phase noise in the time domain becomes a convolution in
the frequency domain due to the duality of the Fourier Transform.
When the phase noise process φ(t) is slow compared to the band of the
signal, φ((i+1)T )−φ(iT ) ≪ π/2, the effect of this convolution is neg-
ligible since (3.19) becomes the convolution of σ2

aH(f) with a function
that is similar to an impulse in the frequency domain. If the bandwidth
of the phase noise increases and becomes comparable with the band-
width of the signal, the convolution produces a spectral broadening of
the signal in respect to its original spectrum. To clarify the idea, here
there are some figures as an anticipation of the Chapter 4 (dedicated to
the simulations). Simulations on the spectra of the signals sb(t), φ(t)
and r̄b(t) are computed.
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Figure 3.1: Simulated Spectrum of the Signal sb(t) =
∑

k akh(t − KT ) at
the input of the receiver
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Figure 3.2: Simulated Spectrum of the complex exponential Phase Noise
ejφ(t) ruled by the Wiener Process φ(t) with different values for σPN
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Figure 3.3: Simulated Spectrum of the received signal impaired by the Laser
Phase Noise r̄b(t) =

∑

k akh(t −KT )ejφ(t) compared with the spectrum of
the receive matched filter h∗(−t)
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In Figure 3.1 the spectrum of the received signal |H(f)|2 without phase
noise is reported. In Figure 3.2 is reported the spectrum of the complex
exponential phase noise. It can be noted that the spectrum becomes
wider with increasing values of σPN . Then, as one can observe from
Figure 3.3, the received signal spectrum R̄b(f) impaired by phase noise
is not matched with the receive filter spectrum |H(f)|2 obtained with
σPN = 0. This leads to the same Model Mismatch of the Section
3.2.1, seen in a frequency domain approach: a filter at the receiver not
matched with the transmitter violates the Nyquist Criterion, producing
ISI; the random perturbation on the actual symbol ai is due to the fact
that the complex exponential Phase Noise is a random variable and
not a deterministic process.

3.3 Summary

In this chapter we have shown a model mismatch between the Symbol-
spaced Phase Noise Model and the received sampled sequence {yi}
impaired by Wiener Phase Noise. This Mismatch could be proved both
in the time and in the frequency domain. Moreover a condition for the
Phase Noise process φ(t) is pointed out in order to obtain the SPNM
from the Complete Model of the sampled and filtered signal (3.14).
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Chapter 4

Simulations

In this chapter the simulation setup used in the thesis is given, to-
gether with the conclusions these simulations suggest. Since the aim
of this thesis is not to investigate the impact of the AWGN, that has
no mismatch in the two models, when it is not specified differently the
additive noise is omitted from the simulations. In this way one can ob-
serve better the impairments due only to the phase noise. It is worth
noting that there is no fear of strange phenomena of cross-talking of the
noises, since we saw that in both models the AWGN remains additive
with the same statistical properties. Considering the transmit and the
receive filters h(t) and h∗(−t), both will be Square-root Raised Cosine
Filters, unless otherwise specified.

The first section of this chapter explains how the continuous-time
signals are handled in the simulations by up-sampling the signals in
the channel. Since the Model Mismatch arises different issues, the re-
maining part of the chapter is divided into many sections: simulation
of signal spectra, computation of the Mean Square Error (MSE) due
to the Model Mismatch, pointing out the features of the phase noise
impairment after the sampler. The sections dealing with simulation
will be divided in three steps: aim and setup of the simulation, results
and conclusions.

4.1 Up-Sampled Signal Model

As we saw in the last chapter, if we analyze the signals in the continuous-
time domain, we discover that the SPNM is not always valid. However,
to run simulations that allow to investigate this phenomena we cannot
use continuous-time processes, since a calculator cannot process them.
The trick one can do to avoid this problem is to process oversampled
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signals at rate higher than the symbol frequency. Let’s define the Up-
Sampling Factor USF of our simulations as

USF =
fsampling

fsymbol

, (4.1)

where fsampling is the sampling frequency and fsymbol = (Tsymbol)
−1 =

(Ts)
−1 is the symbol rate. In this way one can sample the continuous

time signal at the input of the receiver (3.4) to obtain

rb

(

n
Ts
M

)

=
∑

k

akh

(

n
Ts
M

−KT

)

· ejφ(nTs

M
) + w′

(

n
Ts
M

)

rb,n =
∑

k

akhn−kM · ejφm + w′
m , (4.2)

where the discrete-time processes of the second row in (4.2) is the
continuous-time processes of the first row sampled at time t = nTs

M
.

By setting the USF to values greater than 10 one begins to separate
the replica in the spectrum enough to say that the continuous-time
phenomenon is well simulated [PM92, AMR11]. Then, the remaining
thing to do is to sample also the receive filter h∗(−t) at t = nTs/M ,
filter the received signal with the up-sampled filter and down-sample
the obtained sequence; in this way one gets yi = y′nM , that is the same
of (3.8).
Notice that if one wants to up-samples a discrete-time Wiener pro-
cess {θi} with innovation variance σ2

PN by a factor M , a discrete-time
Wiener process {θUP

n } with innovation variance σ2
UP = σ2

PN/M is ob-
tained. A similar effect happens for the AWGN: if the white-sequence
{ni} with variance σ2

n is up-sampled by a factor M , the variance of the
new sequence {nUP

n } must be σn
2
UP = σ2

n ·M , in order to have the same
values of the Power Spectral Density of the noise, since up-sampling a
signal widens the frequency domain without aliasing.
In this section we have seen how continuous-time signals can be simu-
lated in the next sections. When it is not specified, the Up-Sampling
Factor of the simulation will be M = 20.

4.2 Spectral Broadening

In this section the simulation done to produce the results of the Sub-
section 3.2.2 are described. The aim of this section is to compute the
spectrum of the signals sb(t) and r̄b(t) of the (3.18). In order to compute
the desired spectra, one must generate the transmitted constellation,
the filters and set the parameters of the channel, like the variance of
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Figure 4.1: Block Diagram of the Spectral Broadening Analysis simulation

the Wiener Process.
Following the block diagram in Figure 4.1, in this set of simulations
the parameters are

ak ∈ QPSK Modulation, E|ak|2 = 1, (4.3)

hn = Square-root Raised Cosine Filter, roll-off = 0.25, (4.4)

φn = φn−1 + σφνn , νn ∼ N(0, 1), (4.5)

σ2
φ =

σ2
PN

M
. (4.6)

Observe that the choice of the modulation ak does is not have relevant
in our result if the sequence is i.i.d. since if we admit independence the
spectrum of the sequence {ak} is white. σPN is the standard deviation
of the innovation term of the phase noise at each symbol. Then the
simulation is setup in with a Matlab script that follows the idea of the
block diagram shown in Figure 4.1. The results and the comments of
these simulation are in section 3.3.

4.3 Phase Noise after the Sampler

Recalling the Complete Model in (3.14), would be interesting to empha-
size the difference between the received signal and the Symbol-spaced
Phase Noise Model. With simulations it is easy to generate the se-
quence (3.14) without the additive noise. Now, if we ignore the intro-
duced perturbation in the absolute value in respect to the SPNM, one
can write that

yi = aie
jθi , (4.7)
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Figure 4.2: Block Diagram of the Phase Noise after the Sampler simulation

where {θi} is a new Phase Noise sequence that takes into account both
the phase part of the ISI and ejχi of (3.14). Now, if one can find
some limits under which the sequence {θi} is a Wiener Process and the
magnitude perturbation of the symbol is lower than the angle one, the
SPNM can be validated. The aim of this section is to simulate {θi}
and to point out when it can be considered a Wiener Process.

4.3.1 Simulation of the Frequency Noise Error

As we have seen above, the aim of this section is to understand if the
Phase Noise after the Sampler is still a Wiener Process. First of all
we must extract the sequence {θi} by simulations. In order to proof
that the Phase Noise is a Wiener Process, one must proof that the
sequence {νi} = {θi − θi−1} is White and Gaussian. Following the
block diagram in Figure 4.2, one takes the received yi and multiplies
it by a∗i in order to obtain zi = |ai|2ejθi that does not depend of the
angle of the transmitted data. Another step must be done in order to
extract this “Discrete-Time Frequency Noise” (DTFN): if one takes
z∗i−1 and multiply it by zi, obtains di = |ai|2ejνi, then if the angle of di
is taken one have obtained νi. Intuitively this sequence has zero mean,
but to be more precise in the following will be considered the zero mean
sequence {νi −E[νi]}.
As we have seen before, in the next subsections we must find out if the
sequence {νi} is White and Gaussian.

4.3.2 Proof of Gaussianity and Whiteness: setup

The index used to proof the Gaussianity of the DTFN is the Kurtosis
of the sequence {νi}

Kν =
E[ν4i ]

(E[ν2i ])
2
. (4.8)
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As it is known from statistics the Kurtosis of a Gaussian variable is
3, and the more that variable is distributed like a Gaussian function,
closer to 3 is its Kurtosis.
The indicator considered to test the whiteness of the sequence is the
Normalized Pearson Coefficient (NPC) at different time step p

ρp =
Cov[νi, νi−p]

V ar[νi]
. (4.9)

The NPCs are the cross-correlation terms at time p, normalized by the
variance. So we can say that the sequence is white if the NPCs are
zero, or almost white if they are very close to zero.
The simulation parameters are set as follows:

ak ∈ constant, QPSK Modulation, 16-QAM, E|ak|2 = 1, (4.10)

hn = Square-root Raised Cosine Filter, α = roll-off (4.11)

α = (0, 0.1, 0.2, 0.3, 0.4, 0.5),

φn = φn−1 + σφνn , νn ∼ N(0, 1), (4.12)

σ2
φ =

σ2
PN

M
. (4.13)

In these simulations we are using different modulation formats. This is
because we guess that we will observe different behavior of the sequence
{θi} with the choice of the constellation transmitted since that sequence
depends also on an ISI term. Same thing is about the choice of different
roll-off factors: since the tails of the filters decay faster if the roll-off is
higher, the ISI term contribution will be lower at higher roll-off.

4.3.3 Proof of Gaussianity: results

Simulations are ran with different transmitted constellations: constant,
QPSK, 16-QAM. The Kurtosis of the DTFN is plotted versus σPN in
different figures for each constellation for different values of the roll-off
parameter of the raised cosine filters.
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Figure 4.3: Kurtosis of the DTFN versus σPN with different roll-offs. Trans-
mitted constellation: Constant
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Figure 4.4: Kurtosis of the DTFN versus σPN with different roll-offs. Trans-
mitted constellation: QPSK
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Figure 4.5: Kurtosis of the DTFN versus σPN with different roll-offs. Trans-
mitted constellation: 16-QAM
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We can observe in the Figures 4.3, 4.4 and 4.5 that the kurtosis of
the DTFN is close to 3 in all simulations. In particular with roll-off
α ≥ 0.3 the kurtosis is always close to 3 in all cases. Since the tails of
a raised cosine filter are higher with lower roll-offs, one can note that if
α < 0.3 sometimes the kurtosis assumes value greater than 3 and this
phenomenon is greater with phase and amplitude modulations (QPSK,
QAM). One can also note that when σPN assumes values greater than
a threshold the simulations become meaningless. This is because, when
σPN is too high, we can have phase variations greater than π in one
symbol-time and this introduces alias in the phase process since the
phase is wrapped modulo 2π. From this simulations we can assume
that this threshold is σPN ≈ 0.3.

4.3.4 Proof of Whiteness: results

In this subsection the 1-step and the 2-step NPC of the DTFN are plot-
ted for different transmitted constellations versus the σPN for different
values of the roll-off of the filters.
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Figure 4.6: 1-step NPC of the DTFN versus σPN with different roll-offs.
Transmitted constellation: Constant
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Figure 4.7: 1-step NPC of the DTFN versus σPN with different roll-offs.
Transmitted constellation: QPSK
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Figure 4.8: 1-step NPC of the DTFN versus σPN with different roll-offs.
Transmitted constellation: 16-QAM
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Figure 4.9: 2-step NPC of the DTFN versus σPN with different roll-offs.
Transmitted constellation: Constant
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Figure 4.10: 2-step NPC of the DTFN versus σPN with different roll-offs.
Transmitted constellation: QPSK
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Figure 4.11: 2-step NPC of the DTFN versus σPN with different roll-offs.
Transmitted constellation: 16-QAM
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We can observe in Figures 4.6-4.8 that for all roll-offs α (with some
differences with α = 0), one have a NPC1 ≈ 0.2 with all values of
σPN , before the saturation that occurs at σPN ≈ 0.3 as in the kurtosis
simulations. In Figures 4.9-4.11 the 2-step NPC are considered. One
can note that NPC2 is almost to zero with all roll-offs and σPN . The
figures with NPCi, with i > 2, are not shown in this document, since
NPCi → 0, ∀i > 2.

4.3.5 Proof of gaussianity and Whiteness: conclusions

In this section we have found out the behavior of the kurtosis and the
Normalized Pearson Coefficient of the DTFN. Since the DTFN could
be considered Gaussian in almost all cases, we can conclude that the
main difference between a Wiener process and the phase θi of (4.7) is
the 1-step NPC of the DTFN NPC1 ≈ 0.2. This is the main difference
between the phase of the Complete Model and the SPNM: the phase
{θi} is a third-order Wiener process, since its innovation process is
not white, but has a 1-order causal by simmetry an 1-order noncausal
memory. In Section 4.4 we will try to correct this phenomenon.

4.4 Simulation of the Power of the Mismatch

As we mentioned before, there is a Mismatch between the real model,
called Mismatched Model, and the model used in the literature, the
Symbol-spaced Phase Noise Model. In this section we try to estimate
the power of this mismatch

4.4.1 Simulating the power of the mismatch

Let’s define the sequence {ξi} as

ξi = yie
−jφiM − ai , (4.14)

where yi is the simulated sampled sequence, φiM is the sampled Wiener
Phase Noise in the channel, ai the transmitted symbol. Note that the
sampled phase φiM is an artifact done in simulations to perform a sort
of carrier recovery on the received signal; however this carrier recovery
could not be present in a real system since it doesn’t know the received
phase process.
Then one can compute the power of {ξi} in order to obtain the Mean
Square Error due to the model mismatch

MSE = E[|ξi|2] . (4.15)
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Figure 4.12: Block Diagram of the MSE due to the model mismatch simu-
lation

The block diagram of the simulation is shown in Figure 4.12
The simulation parameters are set as follows:

ak ∈ constant, QPSK Modulation, 16-QAM, E|ak|2 = 1, (4.16)

hn = Square-root Raised Cosine Filter, α = roll-off (4.17)

α = (0, 0.1, 0.2, 0.3, 0.4, 0.5),

φn = φn−1 + σφνn , νn ∼ N(0, 1), (4.18)

σ2
φ =

σ2
PN

M
. (4.19)

As we have previously seen, we want to simulate with different inputs
and roll-offs: the transmitted constellations are a Constant, a QPSK
and a 16-QAM.
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Figure 4.13: Mean Square Error of the model mismatch versus σPN with
different roll-offs. Transmitted constellation: ConstantMSE

4.4.2 Simulations and results

In the Figures 4.13-4.15 the MSE of the model mismatch is plotted in
a logarithmic scale versus a logarithmic scale of the σPN with different
roll-off values in the 3 cases of transmitted data: constant, QPSK,
16-QAM.
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Figure 4.14: Mean Square Error of the model mismatch versus σPN with
different roll-offs. Transmitted constellation: QPSK
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Figure 4.15: Mean Square Error of the model mismatch versus σPN with
different roll-offs. Transmitted constellation: 16-QAM
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One should immediately note that the power of the mismatch versus
σPN has a 20 dB per decade slope. This emphasize a linear dependency
between the MSE and σ2

PN . This in the future work can lead to an
analytical formula for the power of the mismatch. It is important to
point out that the power of this mismatch is very weak: if we consider
a QPSK transmission in a strong phase-noisy channel, for example
σPN = 0.1, the power of the mismatch is MSE ≈ −20/25 dB below the
signal power. Usually a QPSK requires SNR = 5 dB in the worst cases
[Pro01]. Even in this bad case, one has the power of the mismatch 15/20
dB below the AWGN noise, so the model mismatch could be neglected
in most practical contexts and doing so one can use the SPNM to model
the received and sampled signal in digital communications impaired by
Wiener phase noise.

4.5 Measure the mismatch with a different Carrier

Recovery

As it is said in the previous section, the phase noise process θi is not a
Wiener process, but something similar that has the Normalized Pearson
Coefficient at the 1-step equal to 1. In this section we try to use this
information to demodulate the signal in (4.14) with a different phase
process

4.5.1 Aim and setup

Considering the signal in (4.14) and, instead of considering φiM to
demodulate the signal, one can use

θ̂i = ∡(z1e
jφi−1 + ejφi + z1e

jφi+1) , (4.20)

where z1 is the NPC at the 1-time ρ1 of the sequence {θi}. In this way
the MSE due to the model mismatch is computed in this way:

ξ′i = yie
−jθ̂i − ai , (4.21)

MSE = E[|ξ′i|2] . (4.22)

In (4.20) we have introduced a way to filter phase sequences. This is
the concept of planar filtering [AB11]. When the phase values does not
change too quickly one can filter the complex exponential of the phase
and then taking the angle instead of filtering the phases. Filtering
phase processes, that have aliasing modulus 2π is not as simple as it
seems. This concept will be deepened in Section 5.3 in the next chapter.
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Figure 4.16: Mean Square Error of the model mismatch versus σPN with
different roll-offs using the “Corrected Model”. Transmitted constellation:
Constant

4.5.2 Simulations and Results

The simulations are ran in the three previous cases of different trans-
mitted data. In the thesis the figures and the discussion will be focused
only onto the transmission of a constant; this is done because the re-
sults were the same for the QPSK and the QAM modulation. In Figure
4.16 it is plotted the MSE obtained by demodulating the signal with θ̂i
of (4.20). The model in these simulations will is “Corrected Model” in
this work. The model mismatch reduces its power by 1 dB. This is not
a great improvement, but suggest that the idea of demodulating the
signal a planar filtering on the phases is correct. The poor reduction
is not a big issue since the power of the mismatch is still very weak
compared with typical AWGN noise powers at which communication
systems work.
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4.6 Summary

In this chapter we have presented simulations in order to demonstrate
that the Symbol-spaced Phase Noise Model is a good model for the
filtered and sampled signal impaired by Wiener Phase noise under wide
limits on the variance σ2

PN of the innovation in the Noise Process φi.
In particular one must have that σPN < σPN ≈ 0.3. The power of the
mismatch between the SPNM and the complete model is very weak, at
least 15/20 dB lower than the required Noise-to-Signal Ratio (NSR) by
real systems for big phase noise, for example σPN = 0.1. We pointed
out also that the big difference between the Complete Model and the
SPNM is the Normalized Pearson Coefficient at 1-step ρ1 ≈ 0.2. This
memory can be taken into account in the Carrier Recovery System in
the Section 2.2 and in the derivation of the Channel capacity of the
system. This is the subject of the next chapter.
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Chapter 5

Channel Capacity

In this chapter we will investigate some information theory topics re-
lated to the Symbol-spaced Phase Noise Model and this new “Complete
Model” of the (3.14), in particular we focus only on the new phase noise
impairment model, as in (4.7).

In the first section of the chapter we will compute the Upper Bound
(UB) and the Lower Bound (LB) of the Constrained Channel Capacity
of the SPNM, then a model in order to improve the computation in
the case of the Mismatched Model is proposed. The last section will
focus on the topic of filtering phase processes, since this is a complex
problem when one has to take into account the wrapped nature of a
quantized phase.

5.1 Channel Capacity Bounds of a Symbol-spaced

Phase Noise Model Channel

In this section, following the approach of [BMS12] we find a way to
compute the Upper Bound and the Lower Bound of the constrained
channel capacity of the SPNM Channel. Let’s recall the SPNM in
(2.1),

yk = xke
jθk + wk,

θk+1 = θk + σPNνk.

where the vectors xk1 and yk1 the channel input and the channel output
respectively, θk1 the sampled phase noise process and wk

1 the AWGN. By
using the derivation in [BMS12], we can determine the upper and the
lower bound on the capacity of a channel. Let us introduce a discrete-
state channel with state s, instead of the continuous-state channel with
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Figure 5.1: Block Diagram of the Capacity Bounds Simulation

θ, where s is the sampled version of θ in N bins; in this way the new
“Auxiliary Channel” is an approximated version of the real channel
with a discretized state (see Appendix B). This channel is easy to sim-
ulate and also it is usable in trellis-based recursions in order to compute
the entropies that are needed for the computation of the capacity. The
capacity bounds considered in [BMS12] are the following:

I(X, Y ) ≥ ILB(X, Y ) = h̃(Y ) +H(X)− h̃(X, Y ) (5.1)

and

I(X, Y ) ≤ IUB(X, Y ) = h̃(Y )−h(Y |X,S)−H(S)+H̃(S|X, Y ) , (5.2)

where h̃ and H̃ are the entropies measured by the auxiliary channel
simulations. One can write that if k is sufficiently large, the following
approximation hold:

h̃(Y ) = lim
k→∞

1

k
log2

k
∏

i=1

p(yi|yi−1
1 ) = lim

k→∞

1

k

k
∑

i=1

log2p(yi|yi−1
1 ). (5.3)

It is important to note the difference of p and P : the first is a proba-
bility density function, the second a Probability Mass Function. The
same is for the differential entropy h and the entropy H of a random
variable.
The simulation of the processes xk1, y

k
1 and sk0 follows the block diagram

in Figure 5.1. Note that in the channel goes the real phase θ, but in
the trellis computation the discrete state s is considered.
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Considering a lightwave communication system modeled by a discrete-
state Wiener process s we have that

P (sk0) = P (s0)

k
∏

i=1

P (si|si−1) ; (5.4)

then we assume that the channel is memoryless given the input and
the state, the input process and the state process are independent and
the input process are independent random variables, so we can write

p(yk1 |xk1, sk0) =
k
∏

i=1

p(yi|xi, si) (5.5)

and the channel probability law can be factorized in

p(yk1 , s
k
0|xk1) = P (sk0)p(y

k
1 |xk0, sk0) . (5.6)

Substituting (5.4) and (5.5) in (5.6), one obtains

p(yk1 , s
k
0|xk1) = P (s0)

k
∏

i=1

P (si|si−1)p(yi|xi, si) . (5.7)

This last equation shows that it is possible to compute the entropies
h̃(Y ) and h̃(X, Y ) with the probabilities p(yi|yi−1

1 ) and p(xi, yi|xi−1
1 , yi−1

1 )
in a recursive way in trellis with S states, where S is the number of the
states of the discrete-state channel, as we saw in (5.3). The computa-
tion of H̃(S|X, Y ) with P (si|si−1, xi, yi) derives easily from the trellis
built to compute p(xk1, y

k
1).

Let’s focus on the computation of p(yi|yi−1
1 ), this is achieved as follows.

Consider

P (si|yi1) =
p(yi|si)P (si|yi−1

1 )

p(yi|yi−1
1 )

=
p(yi|si)

∑

si−1
P (si|si−1)P (si−1|yi−1

1 )

p(yi|yi−1
1 )

=

=

∑

xi
p(yi|xi, si)P (xi)

∑

si−1
P (si|si−1)P (si−1|yi−1

1 )

p(yi|yi−1
1 )

, (5.8)

where p(yi|xi, si) is pdf of the AWGN noise, P (si|si−1) is the discrete-
state s innovation law and P (si−1|yi−1

1 ) is the previous metric. This is
the recursion we want to find; p(yi|yi−1

1 ) is a normalization factor in
order to have

∑

i P (si|yi1) = 1 and is the probability we need in order

to compute h̃(Y ) of the (5.3).
The same mathematics is behind the proof of

P (si|xi1, yi1) =
p(yi|xi, si)P (xi)

∑

si−1
P (si|si−1)P (si−1|xi−1

1 , yi−1
1 )

p(xi, yi|xi−1
1 , yi−1

1 )
,

(5.9)
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where we note the desired normalization factor p(xi, yi|xi−1
1 , yi−1

1 ) in

order to compute h̃(X, Y ). It is important to note that for the trellis
(5.8) we must not substitute the real xi since the variable is saturated,
but in the (5.9) one must use the real transmitted symbol.
In the Upper Bound formula (5.2) there is the need to compute

H̃(S|X, Y ) = − lim
k→∞

1

k + 1
log2P (s

k+1
1 |xk1, yk1). (5.10)

If one writes

P (sk+1
1 |xk1, yk1) = P (sk+1)

k
∏

i=1

P (si|si+1, x
k
1, y

k
1) , (5.11)

the H̃(S|X, Y ) can be computed with the same trellis used in order to
compute p(xi, yi|xi−1

1 , yi−1
1 ), with some manipulations:

P (sk+1
1 |xk1, yk1) = P (sk+1)

k
∏

i=1

P (si|si+1, x
i
1, y

i
1) , (5.12)

where we used the (5.7); by Bayes rule,

P (si|si+1, x
i
1, y

i
1) =

P (si+1|si, xi1, yi1)P (si|xi1, yi1)
P (si+1|xi1, yi1)

=
P (si+1|si)P (si|xi1, yi1)

P (si+1|xi1, yi1)
,

(5.13)
where P (si+1|xi1, yi1) is the metric of the trellis (5.9), P (si+1|si) the state
change probability and P (si+1|xi1, yi1) a normalization factor. Note that
the real quantized state si must be put in the formula in order to have
that P (si|si+1, x

i
1, y

i
1) is a number, and not a function of si.

In the simulations the parameters to choose are k and the number of
the bins N in which the phase is quantized. Obviously one should
expect that the UB and LB are closer the higher is the value N . In the
Figure 5.2 the greater bounds are with σPN = 0, then the bounds with
σPN = 0.125 are slightly below; however the bounds with σPN = 0.5
loses almost 25% of the capacity, even with high SNR values. It can
be observed how the bounds converge very tightly, even in the case of
σPN = 0.5.

5.2 Trellis change with a 3-order State

As we have seen in Chapter 4, the phase noise θk in the model

yi = aie
jθi + wi

45



CHAPTER 5. CHANNEL CAPACITY

−10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

SNR (dB)

C
ap

ac
ity

 (
bi

t /
 D

ym
en

si
on

))

 

 

LB
UB

σ
PN

 = 0.125

σ
PN

 = 0.5

σ
PN

 = 0

Figure 5.2: Capacity bounds of a SPNM versus the SNR with σPN =
{0, 0.125, 0.5}
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is not a First-Order Wiener Process, but a sequence that is described
as a Wiener process φi, filtered by

P (z) = z1z
1 + 1 + z1z

−1 . (5.14)

Filtering a phase process is not as simple as may appear, so this topic
will be explained in the next section. However one can immediatly
notice that the Phase Process θi is not a First-Order Wiener Process
anymore: this has one direct impact on our formulation in the Section
5.1: now (5.4) is not valid because we added memory on the phase
beyond the first order. We need a device in order to find a state that
represent the 3-memory channel and has a first-order memory. Then,
if we define the vector of the state

si =





si+1

si
si−1



 , (5.15)

where si is the quantized phase at the time i, one can easily prove that
P (si|si−1

1 ) = P (si|si−1). A state vector is defined: the computations
in the trellis does not change, but if the state is multi-dimensional the
problem of computation time arises: in the mono-dimensional state
trellis for each symbol one has to compute the metric and sum over the
states N times, here one has to do it N3 times; this is computationally
heavy, even if N is not very large (for example 64).
In order to reduce the complexity and the operations in the trellis, one
can expand one trellis’ sum over the state si−1 in three different sums
over the three variables of that state. If one does this from the (5.8),
the trellis becomes

P (si|yi1) =
∑

xi
p(yi|xi, si)P (xi)

∑

si−1
P (si|si−1)P (si−1|yi−1

1 )

p(yi|yi−1
1 )

. (5.16)

By expanding P (si|si−1), he can write that

P (si|si−1) = P (si+1, si, si−1|si−2, si−1, si) = P (si+1|si) , (5.17)

that is the state change probability of the First-Order Process si. In
this way, the

∑

si−1
in the (5.16) can be decomposed into three different

summations, and using the (5.17), one obtains

P (si|yi1) =
∑

xi
p(yi|xi, si)P (xi)

∑

si
P (si+1|si)

∑

si−2

∑

si−1
P (si−1|yi−1

1 )

p(yi|yi−1
1 )

P (si|yi1) =
∑

xi
p(yi|xi, si)P (xi)

∑

si
P (si+1|si)P (si|yi−1

1 )

p(yi|yi−1
1 )

, (5.18)
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Figure 5.3: Block Diagram of the Capacity Bounds Simulation with a 3-
Order Phase State

where P (si|yi−1
1 ) =

∑

si−2

∑

si−1
P (si−1|yi−1

1 ). Considering the equation

(5.13) that permits to compute H̃(S|X, Y ) and the (5.17), the (5.13)
becomes

P (si|si+1, x
i
1, y

i
1) =

P (si+1|si)P (si|xi1, yi1)
P (si+1|xi1, yi1)

=
P (si+2|si+1)P (si|xi1, yi1)

P (si+1|xi1, yi1)
,

(5.19)
where P (si+2|si+1) is the state change probability of si.
With those semplifications of the trellis proposed, we can notice that
the memory required in the computation is still N3 at each itera-
tion; however we have reduced the order of the computational load of
∑

si−1
P (si|si−1)P (si−1|yi−1

1 ) from N3 toN . Simulations with the third-
order State are already to be run. This is because this considerations
were developed too late in the thesis work and running a simulation
of this computational load take almost forty hours for each σPN . The
simulations follow the block diagram in the Figure 5.3.

5.3 About the Filtering of a Phase Process

In the last section the topic of the filtering a Phase process was left
unsolved. Now we explain why is not an easy topic as it could appear.
Considering the filter P (z) defined in (5.14), in order to produce the
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Figure 5.4: Block Diagram of the Filter for the Phase with three taps

output θi, one needs at the input φi+1
i−1, in fact

θi = z1φi−1 + φi + φi+1 . (5.20)

As now the normalization factor in order to obtain a process with the
same variance of φ is omitted in order to mantain the formulas cleaner
as possible. Let’s focus on the last formula: one could say that there is
no problem in that filtering. Now, let’s consider a numerical example.
If we take

φi−1 = π− π/20+ 2π · 3 φi = π+ 2π · 3 φi+1 = π+ π/20 + 2π · 3 ,
(5.21)

we expect that the filtered value will be θi = π + 2π · 3. However with
z1 = 0.2 the result is θi = 9/5π+2π · 4. There is a big displacement in
the phase process due to the filtering of the multiples of 2π and to the
ill-posed nature of the problem. Recalling the results of the Chapter 4
we said that the Discrete-Time Frequency Noise has an autocorrelation
of z1; note that is a Frequency, not a Phase. So we must filter in
some way the phases by filtering the frequencies and not the phases.
Remember that the filter we search must not multiply any 2kπ. The
solution was found during the thesis work is explained in Figure 5.4.
From the figure one can observe that the multiplication is done on the
difference of two consecutive phases, that could be seen as a frequency.
Since now we consider that the phase φ is slow in a time symbol:
|φi − φi−1| < π. This relation, that eliminates aliases, could be seen
as the satisfaction of the Sampling Theorem [AMR11, PM92]. In a
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sampled phase scenario, when the phases assume only the values φ =
{0,∆, 2∆, ... , (N − 1)∆}, where ∆ = 2π/N , may happen that φi = 0
and φi+1 = (N − 1)∆. In that case obviously one must unwrap the
phase from one sample to the next in order to have maximum difference
lower than π. One can build an operator that unwrap the phases while
it subtracts them. Let’s call this operator −∗:

a−∗ b =











a− b− 2π if a ≤ π and a+ π < b ≤ 2π

a− b+ 2π if a > π and 0 ≤ b < a− π

a− b elsewhere

. (5.22)

If we recall the φ values in (5.21), filtering with the proposed scheme
one obtains

θi = φi + 0.2(φi−1 −∗ φi) + 0.2(φi+1 −∗ φi) =

= π + 3 · 2π + 0.2(− π

20
) + 0.2(

π

20
) = π + 3 · 2π ,

as we would expect.
In this section we found a way to filter phase processes that have mem-
ory in their frequency; filter a phase process in other ways has no
practical and mathematical meaning, as it has been done in (5.20).

5.4 Summary

In this chapter we have seen how the bounds on the capacity of a
Symbol-spaced Phase Noise Model can be computed by simulations
with an auxiliary channel method. The method works recursively with
trellis of probability with a discrete-value state. Then, the generaliza-
tion for a third-order state is proposed. Simplifications used in order
to reduce the simulation time are presented: they are based on the
first-order nature of a Wiener Process. Then the problem of filtering
a phase process is deepened and solved. First simulations results seem
to indicate that for values of z1 ≈ 0.2 the bounds do not separate much
from the bounds of the SPNM. This could be predictable, as we saw
in Chapter 4, the power of the mismatch between the two models in
very weak versus the AWGN power in almost the totality of practical
systems.
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Chapter 6

Conclusions

A Complete Model for the filtered and sampled signal impaired by
Wiener phase noise at the oscillator has been found. The model has
been compared with the the Symbol-spaced Phase Noise Model (SPNM)
usually used in the literature of digital communications to take into
account phase noise [BMS12, DMR00, AB11, MAV+11]). A mismatch
between the two models has been found out. In particular the SPNM
seems to be an approximation of the Complete Model. By simulation
the power of this mismatch has been computed and it has been demon-
strated that it is very weak up to a threshold that is defined on the
innovation of the Wiener phase noise process in one symbol-time. In
particular its standard deviation threshold seems to be σPN ≈ 0.3.
Moreover the symbol-sampled phase of the Complete Model presents
memory in its innovation process: it is shown in the simulation that
the innovation process has a correlation index at 1-step

NPC1 = z1 ≈ 0.2 .

This is the main difference between the Complete Model and the SPNM,
that assumes whiteness in the phase innovation sequence. Despite this
memory, that is not present in the SPNM, we can say that the Com-
plete Model is well approximated by the Symbol-spaced Phase Noise
Model if the standard deviation of the innovation process of the phase
is

σPN < σPN ≈ 0.3 .

This memory introduced by the receive filter could be exploited by the
carrier recovery system in order to improve its performance in the phase
estimation. Following [BMS12] bounds on the channel capacity of the
SPNM have been computed. In particular, in [BMS12] the bounds on
the capacity are derived assuming a first-order Wiener process for the
phase with a trellis-based recursion. In this document is reported how
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to bring back the 3-order channel of the Complete Model to a 1-order
Channel with a 3-dimensional state. In order to speed up simulations
then is proposed a way to treat the trellis of the channel in order
to reduce the computational load. In the last section the problem of
filtering phase processes is addressed: since the phase seems to have
an innovation process with memory, one has to filter phases in some
ways. This is not very easy because filtering wrapped sequences is
not as simple as it seems: a solution has been proposed by filtering
the differences of consecutive phase values, under the assumption that
they are all lower than π.
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Appendix A

Sampling a continuous-time

Wiener process

If we recall the Wiener continuous-time phase noise from (3.5)

φ(t) = σ

∫ t

−∞

w(t)dt , (A.1)

where σ is a constant and w(t) ∼ N(0, 1) is a white Gaussian variable.
Now we define

φi = φ(iT ) , (A.2)

where T is the sample time and {φn} is a discrete-time process. In this
appendix the aim is to demonstrate the following:

Hp : φ(t) = σ

∫ t

−∞

w(t)dt ;

w(t) ∼ N(0, 1) white .

Th : φi = φi−1 + σνi

σ2 = σ2 · T ;

νi = N(0, 1) (A.3)

Proof: if we consider

φi = φ(iT ) = σ

∫ iT

−∞

w(t)dt = σ

∫ (i−1)T

−∞

w(t)dt+ σ

∫ iT

(i−1)T

w(t)dt

= φ((i− 1)T ) + σ

∫ iT

(i−1)T

w(t)dt = φi−1 + σ

∫ iT

(i−1)T

w(t)dt , (A.4)

the proof is reduced to the demonstration that

σ

∫ iT

(i−1)T

w(t)dt ∼ N(0, σ2) . (A.5)
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Since the integral (A.5) could be seen as an infinite sum of infinitesimal
elements σw(t)dt, the central limit theorem applies (REFERENCE)

σ

∫ iT

(i−1)T

w(t)dt ∼ N(0, β2) (A.6)

with the variance β2 is the sum of the variances of the variables summed.
Since there is not a sum, but an integral, one obtains

β2 =

∫ iT

(i−1)T

σ2 · 1 dt = σ2T = σ2 Q.E.D. (A.7)



Appendix B

Quantizing a Phase Process

In this appendix we deepen the topic of quantizing in N bins the
continuous-value phase process {θi} in a discrete-value process {si}.
This is required since if one wants to operate the trellis-based algo-
rithm of Section 5.1 he must have a finite-state channel and not a
continuous one. To achieve this one must do two steps: the first is to
wrap the phase modulo 2π. The second is to discretize the obtained
phase. Let us focus on the discretization: since we are dividing the
interval [0, 2π) in N bins, we assign θi to the that the k-th bin if

θi ∈ [(k − 1/2)∆ , (k + 1/2)∆] , (B.1)

where

∆ =
2π

N
. (B.2)

Note that for k = 0 one must consider

θi ∈ [0 , (k + 1/2)∆] ∪ [(k − 1/2)∆ , 2π) . (B.3)

Then we can say that the quantized state si assumes value

si = k ·∆ if θi ∈ k-th bin . (B.4)

Observe that the quantization error

ǫQ = si − θi (B.5)

is distributed as a uniform random variable between −∆/2 and ∆/2.
Obviously when one quantizes the phase modulo 2π has to take into
account the wrapped nature of the resulting phase. If one wants to
reconstruct the quantized starting sequence, the phase sequence must
be unwrapped [Pro01] obtaining a new sequence {s′i}. A simple way
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to do it is to proceed step by step: if one has the unwrapped phase
s′i−1, then

s′i =











si − 2π + s′i−1 − si−1 if si − si−1 > π

si + s′i−1 − si−1 if |si − si−1| ≤ π

si + 2π + s′i−1 − si−1 if si − si−1 < −π
. (B.6)

Note that the term s′i−1 − si−1 contains the information about the
accumulated multiples of 2π in the reconstruction of the unwrapped
sequence.
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