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Sommario

Durante gli ultimi vent’anni vari modelli sono stati proposti per migliorare il clas-
sico paradigma di Black-Scholes per la valutazione di contratti derivati su azioni.
In particolare il modello originale assumeva che la volatilità del sottostante fosse
una costante σ. Al contrario, empiricamente si può osservare come la volatilità
implicita σI , cioè quel valore che inserito nella formula di Black-Scholes permette
di replicare il prezzo di mercato, non sia affatto costante, ma dipenda altresì dal
prezzo di esercizio K e dalla scadenza T del contratto. Si osserva dunque sul
mercato una superficie di volatilità implicita σI(K,T ).

Tra le varie classi di modelli proposti, due filoni di ricerca, in particolare, sono
stati ampiamente sviluppati ed utilizzati: i modelli a Volatilità Locale [17, 21] e
i modelli a Volatilità Stocastica [41, 44, 64], nei quali l’ipotesi originale di Black-
Scholes di un coefficiente di volatilità costante viene effettivamente rilassata. I
modelli a Volatilià Locale considerano la volatilità come una funzione determin-
istica del titolo sottostante e del tempo σLV (s, t), detta appunto superficie di
Volatilità Locale. Si assume dunque una dinamica stocastica per l’evoluzione del
titolo sottostante St del tipo:

dSt = rStdt+ σLV (St, t)StdWt .

I modelli a Volatilità Stocastica, invece, considerano la volatilità stessa come un
processo stocastico b(Vt) assumendo dunque che:

dSt = rStdt+ b(Vt)StdWt ,

dVt = a(Vt, t)dt+ c(Vt, t)dZt ,

dWt dZt = ρ dt .

Il primo tipo di modelli permette una buona calibrazione rispetto ai prezzi quotati
sul mercato delle opzioni europee. Al contrario il secondo tipo di modelli riesce
a riprodurre una dinamica più realistica della volatilità implicita σI .

Recentemente un nuovo modello è stato proposto, generalizzando i due prece-
denti: il cosiddetto modello “Local-Stochastic Volatility” [57]. In questo caso la
volatilità è data dal prodotto tra una componente deterministica σLSV (s, t), la
cosiddetta superficie di volatilità locale-stocastica, ed una componente stocastica
b(Vt).
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Si assume, dunque, la seguente dinamica stocastica per l’evoluzione del titolo
sottostante St:

dSt = rStdt+ b(Vt)σLSV (St, t)StdWt ,

dVt = a(Vt, t)dt+ c(Vt, t)dZt ,

dWt dZt = ρ dt .

In questo modo, utilizzando una volatilità ibrida locale-stocastica, è possibile
sfruttare i vantaggi di entrambi i modelli base, i quali possono effettivamente
essere interpretati come casi particolari di questo nuovo modello generalizzato.

Lo scopo di questo lavoro di tesi è definire e validare una procedura per la
calibrazione di un modello Local-Stochastic Volatility per la valutazione di opzioni
su azioni. L’idea chiave è quella di calibrare indipendentemente i due modelli
base, ossia trovare la superficie di volatilità locale σLV (s, t) ed i parametri del
modello a volatilità stocastica a, b, c, ρ. Successivamente è possibile coniugare
i parametri dei due modelli così da ottenere una superficie di volatilità locale-
stocastica, consistente con i dati di mercato, grazie alla seguente relazione:

σLSV (s, t) =
σLV (s, t)√

E[b2(Vt)|St = s]
.

A tal scopo è possibile utilizzare due differenti metodi: risolvere un equazione
di Fokker-Planck nonlineare integro-differeziale [57], oppure utilizzare un metodo
di proiezioni markoviane [40]. In particolare, in questo lavoro il primo metodo
è effettivamente utilizzato per calibrare il modello risolvendo numericamente la
seguente equazione per la densità di probabilità congiunta p(s, v, t) per il processo
stocastico (St, Vt):

∂p

∂t
=

1

2

∂2

∂s2

[
σ2
LV (s, t) I[p] b2(v) s2 p(s, v, t)

]
+

1

2

∂2

∂v2

[
c2(v, t) p(s, v, t)

]
+

∂2

∂s ∂v

[
ρ σLV (s, t)

√
I[p] b(v) c(v, t) s p(s, v, t)

]
− ∂

∂s
[r(t)s p(s, v, t)]− ∂

∂v
[a(v, t) p(s, v, t)] ,

dove il termine integrale non lineare I[p](s, t) é dato da:

I[p](s, t) =

∫∞
0
p(s, v, t) dv∫∞

0
b2(v) p(s, v, t)dv

=
1

E[ b2(Vt)|St = s]
.
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La ricerca a proposito di tale equazione è piuttosto recente. Introdotta per
la prima volta nel 2007 [57], solo nel 2010 alcuni risultati teorici circa l’esistenza
di una soluzione sono stati proposti da Abergel e Tachet [1]. Nel 2011 Tachet
propone una risoluzione numerica del problema con il metodo delle Differenze
Finite [65] mentre Engelmann, Koster and Oeltz [23] usano il metodo dei Volumi
Finiti. In questo lavoro ci proponiamo di risolvere numericamente l’equazione
utilizzando il metodo degli Elementi Finiti.

Dopo una revisione generale della teoria dei modelli “Local Stochastic Volatil-
ity”, un particolare tipo di modello è effettivamente implementato. La celebre
dinamica di Heston [41] è utilizzata per il comportamento stocastico della volatil-
ità, mentre la formula di Dupire [21] è utilizzata per ricostruire la superficie di
Volatilità Locale σLV a partire dalla superficie di Volatilià Implicita di mercato
σI . Quest’ultima é interpolata dai dati di mercato attraverso la parametriz-
zazione SVI suggerita da Gatheral [29]. Il modello a volatilità Locale-Stocastica
di Heston-Dupire assume dunque la seguente forma:

dSt = rStdt+ σLSV (St, t)
√
Vt St dWt ,

dVt = κ(θ − Vt)dt+ η
√
Vt dZt ,

dWt dZt = ρ dt ,

Una volta calibrati i parametri dei due modelli base, κ, θ, η, V0, ρ e σLV dai
dati di mercato, è possibile ricostruire la superficie di volatilità locale-stocastica
σLSV (s, t) risolvendo l’equazione integro-differenziale di Fokker-Plack. In questo
modo il modello generalizzato è calibrato e pronto ad essere utilizzato per la
valutazione di contratti derivati. Andiamo infine a verificare che il modello gen-
eralizzato combini effettivamente i pregi di entrambi i modelli di partenza. In
particolare si otteniene una buona riproduzione dell’attuale Volatilità Implicita
di mercato e al contempo una sua realistica dinamica.

Parole Chiave: Smile della Volatilità Implicita, modello a Volatilità Sto-
castica di Heston, parametrizzazione SVI per la Volatilità Implicita, formula di
Dupire per la Volatilità Locale, calibrazione di modelli Local-Stochastic Volatil-
ity, teorema di Gyöngy, metodo delle Proiezioni Markoviane, equazione nonlineare
integro-differenziale di Fokker-Planck, metodo degli Elementi Finiti.
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Abstract

During the last twenty years several models have been proposed to improve
the classic Black-Scholes framework for equity derivatives pricing. In particular,
two main strands of research have been widely developed and used: Local Volatil-
ity [21, 17] and Stochastic Volatility [44, 64, 41]. Both these approaches relaxed
the Black-Scholes hypothesis of a constant volatility. In fact, Local Volatility
models assume volatility to be a deterministic function of the underlying asset
and time, whereas Stochastic Volatility models consider volatility as a random
process itself. While the former models are able to be well calibrated to traded
vanilla options, the latter can reproduce a more realistic dynamics of implied
volatility.

Recently a new model, generalization of the two previous ones, has been pro-
posed: the “Local-Stochastic Volatility Model” [57]. This model considers volatil-
ity as the product between a deterministic and a stochastic term. In this way,
using an hybrid local-stochastic volatility, it is possible to take the advantages of
both the two basic models, which, in fact, can be considered as special cases of
this generalized model.

The aim of this work is to state a clear procedure to calibrate a Local-
Stochastic Volatility Model for option pricing and validate it. The key idea
is to first calibrate, independently, the Local Volatility surface and the parame-
ters of the Stochastic Volatility model. Afterwards it is possible to combine and
merge the parameters of the two basic models to obtain a market consistent local-
stochastic volatility surface. Two possible procedures can be used to accomplish
this result: solving a nonlinear partial integro-differential Fokker-Planck equa-
tion or using a Markovian projection method. In particular, the former method
is considered to calibrate the model. Thus the nonlinear Fokker-Planck equation
is numerically solved using the Finite Element Method.

The research about this equation is rather recent. Introduced for the first
time in 2007 [57], only in 2010 some theoretical results about existence have
been proposed by Abergel and Tachet [1]. In 2011 Tachet numerically solved the
problem with the Finite Difference Method [65], while Engelmann, Koster and
Oeltz [23] used the Finite Volume Method. In this work we solve this equation
with the Finite Element Method.
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After reviewing the general theory of Local Stochastic Volatility models, a
particular instance is actually considered and implemented. The well known He-
ston dynamics [41] is used for the stochastic behaviour of volatility, while the
Dupire formula [21], combined with the SVI parametrization of Implied Volatil-
ity [29], is used for the Local Volatility component. First the two basic models
are calibrated to real market prices, then the Local Stochastic Volatility surface
is evaluated solving the relative nonlinear Fokker-Planck equation. In this way,
the generalized model is calibrated and ready to be used for exotic derivatives
pricing. Finally, we verify that the Local-Stochastic Volatility model well be-
haves compared to the two basic ones in terms of Implied Volatility statics and
dynamics.

Keywords: Implied Volatility Smile, Heston Stochastic Volatility model, SVI
parametrization, Dupire formula for Local Volatility, Local-Stochastic Volatility
model calibration, Gyöngy theorem, Markovian projections, nonlinear partial
integro-differential Fokker Planck equation, Finite Element Method.
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Introduction

One of the central problem in modern mathematical finance is derivative pricing.
A derivative is a financial contract which value depends on an underlying asset
which can be an equity stock, an interest rate or any different financial asset. The
difficult concerning derivative pricing is to define a fair price. For this purpose
a mathematical theory is needed. The well known Black-Scholes model was first
introduced in 1973 and nowadays it represents an universal accepted framework
for derivative pricing. In this introduction we briefly recall the main results
of the standard theory, following closely [7], for further details see [63, 67]. In
particular we discuss both advantages and disadvantages of the standard Black-
Scholes model and we revise the main strands of research that have been proposed
to improve it. Finally, we outline the structure of this thesis.

The original Black-Scholes model assumes the existence of a risk free asset
Bt and of an underlying asset St, following respectively a deterministic and a
geometric Brownian motion dynamics:

dBt = r Bt dt, (1)
dSt = µSt dt+ σ St dWt, (2)

where the deterministic constant µ, σ and r represent respectively the local mean
rate of return of the asset, the volatility of the asset and the short rate interest.
Wt is a standard Wiener process [51]. Let’s consider a simple contingent claim
of the form:

χ = φ(ST ), (3)

namely a derivative paying at maturity an amount χ depending only on the value
ST of the underlying itself at maturity. The function φ is the so called pay-off
at maturity of the derivative contract. Let’s further assume that this contingent
claim can be traded on a liquid market and that its price π(t) = π(t;φ) has the
form

π(t) = F (St, t), (4)

for some smooth function F . This means that the price of the derivative at sub-
scription time t depends only on the time itself and on the value of the underlying
asset St at time t.
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Introduction 2

Theorem 1. (Black-Scholes Equation) Assuming that the market is specified by
(1) and (2), we want to price a contingent claim of the form (3). Then the only
pricing function of the form (4) which is consistent with the absence of arbitrage
is when F is the solution of the following boundary value problem in the domain
[0, T ]× R+.

∂F

∂t
(s, t) + rs

∂F

∂s
(s, t) +

1

2
s2σ2∂

2F

∂s2
(s, t)− rF (s, t) = 0, (5)

F (s, T ) = φ(s). (6)

This equation is precisely of the form which can be solved using a stochastic
representation formula à la Feynman-Kac̆ [51]. The solution is given by

F (s, t) = e−r(T−t)Es,t[φ(XT )], (7)

where the process Xu is defined by the dynamics:

dXu = rXudu+ σXudWu,

Xt = s.

The process Xt above has precisely the same form of the price process ST . The
only, but important, change is that whereas St has the local rate of return µ,
the Xt-process has the short rate of interest r as its local rate of return. This is
the so called change of martingale measure which implies the pricing valuation
in a risk-neutral world. It is now possible to state the following central result for
derivative pricing [7].

Theorem 2. (Risk Neutral Valuation) The arbitrage free price of the claim φ(ST )
is given by π(t;φ) = F (t, St), where F is given by the formula

F (s, t) = e−r(T−t)EQs,t[φ(ST )], (8)

where the Q-dynamics of S are

dSt = rStdt+ σStdWt.

Let’s now consider the problem of pricing a particular financial derivative.
The simplest and most common example of derivative is certainly the European
call option, also known as plain vanilla option. Let’s define it formally.

Definition 3. A European call option subscribed at time t with exercise price
K and time of maturity T on an underlying asset S is a contract defined by the
following features:

• The holder of the option has, at time T , the right to buy one share of the
underlying stock at the price K from the underwriter of the option.
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• The holder of the option is in no way obliged to buy an underlying stock.

• The right to buy the underlying stock at the price K can only be exercised
at time T .

Needless to say that an European call option is a simple contingent claim, for
which the contract payoff function is given by

φ(ST ) = max
(
ST −K, 0

)
.

After some calculations it is possible to get the following famous result, which is
known as Black-Scholes formula for European options.

Proposition 4 (Black-Scholes formula). The price of a European call option with
strike price K and time of maturity T is given by the formula π(t) = F (St, t),
where

F (s, t) = sN [d1(s, t)]− e−r(T−t)KN [d2(s, t)]. (9)

Here N denotes the cumulative density function for the normal standard distri-
bution and

d1(s, t) =
1

σ
√
T − t

[
ln
( s
K

)
+

(
r +

1

2
σ2

)
(T − t)

]
, (10)

d2(s, t) = d1(s, t)− σ
√
T − t . (11)

In what follows we will indicate the Black-Scholes formula (9) for an European
Call option with the notation CBS(S, t,K, T, r, σ). Since it allows a closed form
formula for several kind of derivatives, the Black-Scholes is a very appealing
framework. However, the original model is not consistent with market prices.
In particular, it is unable to correctly reproduce all the vanilla option prices
mainly because contracts with different strikes and maturities exhibit different
volatilities. In fact, given all the model parameters and the observed price of
an European option it is possible to invert the Black-Scholes formula finding the
so-called implied-volatility σI . Thus the implied volatility is the value of σ to
use in (9) such that the Black-Scholes price of a plain vanilla is equal to the actual
price quoted on the market. As Rebonato wittily said [56]: "Implied volatility is
the wrong number to put in the wrong formula to obtain the right price".

For European options under the Black-Scholes model, calculation of the im-
plied volatility seems to be a straightforward exercise since a closed-form presen-
tation exists for the price. However, this closed-form doesn’t allow an analytical
computation of the implied volatility. Actually, to compute the implied volatility
of a contract we have to solve a nonlinear equation. Given at time t the price s
of an underlying asset, the interest rate r, an European call option with strike
price K and time to maturity T , we want to compute the volatility σ := σK,T by
solving the non linear equation:



Introduction 4

CBS(S, t,K, T, r, σ) = ν,

where ν := CMarket is the observed market-price of the option. To abbreviate the
notation, we set

f(σ) := CBS(S, t,K, T, r, σ) = sN (d1(σ))− e−r(T−t)KN (d2(σ)),

f ′(σ) :=
∂CBS
∂σ

(S, t,K, T, r, σ) = s
√
T − tN ′(d1(σ)),

di(σ) := di(σ, s,K, T, r) for i = 1, 2,

and the non linear equation reads as:

f(σ)− ν = 0 . (12)

Needless to say f is a smooth function but it depends on the variable σ in a
highly nonlinear way. Therefore there is no closed-form solution. However we
can easily solve this nonlinear equation numerically. Since f is differentiable, we
can apply each variant of the Newton method [55]. Moreover since f is strictly
monotone increasing in σ the equation has a unique solution. In particular the
classical Newton-method can be used. Given an initial guess for σ0, ∀k > 0 until
k > kmax:

σk+1 = σk −
f(σk)− ν
f ′(σk)

. (13)

The final value of σkmax is a good approximation of the implied volatility σI(K,T ).

Figure 1: Implied Volatility surface of the SPX500 index at 1st August 2012
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The original Black-Scholes model assumes that the volatility is a constant
σ across strikes and maturity dates. However it is empirically evident how σI
depends on the value of the strike and the time to maturity of the option, namely
σI = σI(K,T ). These two effects are, respectively, known as volatility smile or
volatility strike structure and volatility term structure of option prices.
Before providing some common characteristics of implied volatility surfaces it is
useful to introduce the following terminology. Given a call option with strike
price K and present value of the underlying asset St we say that the option is
currently:

• In-the-money (ITM) when St > K ;
• At-the-money (ATM) when St ' K ;
• Out-the-money (OTM) when St < K ;

In the first case the option is worth exercising and it is expensive while in the
third case the option is worthless and it is cheap. Of course if we are dealing
with a put option the terminology is reversed. At any fixed maturity, implied
volatility changes with the strike price. In particular almost always in-the-money
call options exhibit higher implied volatilities than out-the-money option, while
the minimum of implied volatility is usually in the at-the-money region. That’s
way we talk about the “volatility smile” since the strike structure of implied
volatility is usually concave resembling precisely a smile. Concerning the term
structure of implied volatility, for any fixed strike, it varies with the maturity.
Often options with longer maturity have higher implied volatilities.

In order to take into account the empirical evidence of a non constant volatility
several models have been proposed during the last twenty years, developing and
generalizing the Black-Scholes framework. In particular we recall the three main
approaches:

• Local Volatility Models (LVM) Introduced for the first time in 1994
by Dupire [21] and Derman and Kani [17] these models assume that the
diffusion coefficient of the underlying asset is no longer a constant value but
instead a deterministic function of time and of the underlying asset itself:
σ = σLV (s, t).

dSt = rStdt+ σLV (St, t)St dWt .

• Stochastic Volatility Models (SVM) In this class of models the volatil-
ity itself is considered to be a stochastic process with its own dynamics.
Thus, this is a two-factor model, driven by two correlated Wiener processes
Wt and Zt.

dSt = rStdt+ b(Vt)St dWt ,

dVt = a(Vt, t)dt+ c(Vt, t) dZt ,

dWtdZt = ρdt .
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• Jump Diffusion Models (JDM) Introduced by Merton [50] these mod-
els considers the underlying asset to follow a Levy process with a drift, a
diffusion and a jump term;

dSt = rStdt+ σStdWt + StdJt .

Of course all these three kinds of models have some advantages and disadvantages.
In particular in the last ten years the first two models have been widely studied
in academic literature as well as used at the equity trading desks of investment
banks. For this reason we will concentrate on them.

The Local Volatility Model is very popular and rather easy to implement since
it is a straightforward generalization of the original Black-Scholes framework. Its
principal characteristic and major advantage is the possibility of a (nearly) per-
fect fit to the quoted market price. In fact as Dupire showed [21] if we had a
continuum of traded vanilla prices for each strike and maturity ΠK,T it would
be possible to reconstruct the volatility surface σ(St, t). In this way the model
is consistent with the market, since it is able to reproduce the observed market
prices. Unfortunately this model has a wrong implied volatility smile dynamics.
Rebonato [56] outlines that the implied volatility smile generated by the LVM
tends to become almost flat whereas in the reality the smile persist over time.
The Stochastic Volatility Models [41, 64], have specular properties. In fact they
provide a good smile dynamics over the time, but a bad fit of the present mar-
ket prices. For these reasons an interesting solution can be given by the mix
between the Local Volatility and a Stochastic Volatility Model, namely a gener-
alized Local-Stochastic Volatility Model which combines the realistic smile
dynamics of the SVM with the good fit of market price of the LVM. The idea
is simply to model the diffusion coefficient of the asset dynamics as the product
between a stochastic term b(Vt) and a deterministic function σLSV (s, t):

dSt = rStdt+ b(Vt)σLSV (St, t)St dWt ,

dVt = a(Vt, t)dt+ c(Vt, t) dZt , (14)
dWtdZt = ρdt .

The academic research about this new kind of model is rather recent. The
first contribution was given by Jex, Henderson and Wang in 1999 [45] who first
suggested a Local-Stochastic Volatility dynamics and proposed a two-dimensional
trinomial tree for the calibration. Developing the idea of mixing the three stan-
dard models (LVM, SVM and JDM) Lipton suggested in 2002 a Universal Volatil-
ity Model [49] which actually contains as a particular case the LSVM. Some years
later other theoretical contributions were given by Alexander and Nogueira [3]
and moreover by Ren, Madan and Qian in 2007 [57] who suggested a procedure to
calibrate a LSVM. Their work has been further developed in two different strands
of research. The first is based on the work of Labordère in 2009 [40] and Guyon
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and Labordère in 2012 [35], who exploited the so-called Markovian projections
method. The other strand of research has been developed by Abergel and Tachet
in 2010 [1] and in 2011 [65] and by Engelmann, Koster and Oeltz in 2012 [23]. It
is based on the solution of the Fokker-Planck equation for the probability density
function of the model state variables. As we will see this is not a trivial problem
since it is a nonlinear partial integral differential equation.

Remark 5 (Lipton’s Universal Volatility Model). In 2002 Lipton suggested a uni-
versal model for volatility [49] combining all the three main volatility models in
a unique Local-Stochastic Volatility Model with Jumps:

dSt = rStdt+ St
√
Vt σLSV (St, t)dWt + StdJt,

dVt = κ(θ − Vt)dt+
√
Vt dZt.

dWtdZt = ρ dt .

Although this is a very general and elegant model, providing a lot of flexibility
and a realistic dynamics, its complexity has two major drawbacks. The price
computation for a simple contingent claim and therefore the parameters calibra-
tion to market data is computationally extremely demanding. For this reason it
is better to first explore the potentialities of an intermediate generalized model
like the Local-Stochastic Volatility which is actually a special case of the Lipton
model.

The construction of a model which is able to fit the vanilla prices and the
observed volatility smile and, at the same time, that it is able to show a realis-
tic dynamics is of primary importance for the pricing of path-dependent exotic
options. This kind of products, like for instance barrier options, are extremely
sensitive not only to the asset probability distribution at one time but, moreover,
to the time evolution of this probability. For this reason it is critical to find a
model which the on one hand provides a realistic evolution dynamics and on the
other hand reproduces the observed volatility smile.

The final purpose of this work is to show how to calibrate a particular instance
of Local-Stochastic Volatility model, solving with the Finite Element Method a
nonlinear parabolic partial integro-differential equation. In order to calibrate
this Local-Stochastic volatility to market data we need to accomplish a dual
task. First we need to calibrate to market prices a Local Volatility model and
a Stochastic Volatility one. Then we need to solve a non linear Fokker-Planck
equation in order to merge consistently the two models. In particular this thesis
is articulated according to the following structure.
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Chapter 1: Understanding Volatility, where the two most common equity
models are described, namely Stochastic volatility and Local volatility. A whole
understanding of these two models is required since they are the foundation of
the Local-Stochastic Volatility model which is built upon them. In particular two
specific models, the Heston SVM and Dupire LVM, are, respectively, described
with some details since they will be actually used in order to effectively implement
a LSV model. The famous Heston model [41] assumes the following two-factor
dynamics for the evolution of the underlying asset:

dSt = r St dt+ St
√
Vt dWt ,

dVt = κ(θ − Vt) dt+ η
√
VtdZt , (15)

dWt dZt = ρ dt .

Concerning the Local Volatility, we first interpolate the market Implied Volatility
surface σI with the SVI parametrization suggested by Gatheral [29] and then we
use the Dupire formula [21] to reconstruct the Local Volatility surface σLV from
σI :

σ2
LV (K,T ) =

σ2
I + 2T σI

(
∂σI
∂T

+ rK ∂σI
∂K

)(
1 + d1K

√
T ∂σI

∂K

)2

+K2 σI T
(
∂2σI
∂K2 − d1

√
T
(
∂σI
∂K

)2
) . (16)

The calibration procedure of these two models from market data is described in
details. In particular it is formulated as a constrained nonlinear minimization
problem of an appropriate cost functional. We also compare the two models
explaining why it would be interesting to consider a generalized model. Finally,
two important theoretical tools are revised: the Fokker-Planck equation and the
Gyöngy theorem. They will be extensively used in the rest of the work

Chapter 2: Local Stochastic Volatility models, where the general theory
about Local-Stochastic Volatility models (14) is introduced. The main idea is to
first calibrate, independently, from market data, the Stochastic Volatility model
parameters and the Local Volatility surface. Given the two basis models, the
Stochastic Volatility model parameters can be used for the stochastic dynamics
whereas given the Local Volatility surface σLV it does exists only one consistent
Local-Stochastic Volatility surface σLSV :

σLSV (s, t) =
σLV (s, t)√

E[b2(Vt)|St = s]
(17)

In order to effectively use this equation two different calibration procedures are
presented for the model. The first is a stochastic method, based on Markovian
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projections and the Gyöngy theorem. The second method is a deterministic one,
based on the solution of the Fokker-Planck equation for the probability density
function of the model dynamics. In particular this second method is chosen and
a review of the few theoretical results nowadays known about this equation is
provided.

Chapter 3: The Heston-Dupire model, where a particular instance of
Local-Stochastic volatility model is considered. The Heston model is chosen for
the stochastic dynamics and the Dupire formula is used for the Local Volatility
surface. Thus, we obtain a Heston-Dupire Local Stochastic Volatility Model:

dSt = rStdt+
√
Vt σLSV (St, t)StdWt ,

dVt = κ(θ − Vt)dt+
√
Vt dZt ,

dWtdZt = ρdt .

In order to calibrate from market data the local stochastic volatility surface σLSV
of the model, the relative non linear Fokker-Planck equation is considered:

∂p

∂t
− 1

2

∂2

∂s2

[
v s2 σ2

LV I[p] p
]

+
∂2

∂s ∂v

[
ρ σLV I[p] η v s p

]
+

1

2

∂2

∂v2

[
η2 v p

]
− ∂

∂s

[
r s p

]
− ∂

∂v
[κ(θ − v) p] = 0 ,

(18)

where the nonlinear integral term I[p] is the inverse of the expected conditional
value:

I[p](s, t) =

∫∞
0
p(s, v, t) dv∫∞

0
v p(s, v, t)dv

=
1

E[Vt|St = s]
. (19)

Once the equation is solved, we can finally reconstruct the Local-Stochastic
volatility surface , σLSV (x, t), thanks to (17):

σLSV (s, t) = σLV (s, t)
√
I[p](s, t) . (20)

The equation is essentially a time dependent diffusion-advection-reaction equa-
tion with a non linear diffusion coefficient. Moreover it is also degenerate to the
boundary. For this reason we revise the main theoretical results about this is-
sue. Finally the numerical approximation of the problem with the Finite Element
Method is described.

Chapter 4: Numerical Simulations, where the main numerical results are
presented. Starting from real market prices we calibrate the Heston SVM and
the Dupire LVM, as described in Chapter 1. Afterwards we solve the non linear
Fokker-Planck equation and we calibrate in this way the Heston-Dupire model.
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Once all the three models are calibrated we compare them with the original mar-
ket Implied Volatility. Finally we price with the three models Forward-Starting
options with a Monte Carlo method in order to compare the Forward Implied
Volatility of the models as well.



Chapter 1

Understanding Volatility

Before introducing a Local-Stochastic Volatility model a certain understanding
of traditional volatility modelling is required. In fact the generalised model is
built upon the two most common equity models, namely Stochastic Volatility
and Local Volatility. For this reason in this chapter we provide some details
about the two basic models and their relationship. In particular we consider the
Heston stochastic volatility model and the formula suggested by Dupire for the
local volatility. These models are presented and their calibration to market data
described. This chapter is intended to provide some useful tools that will be
needed in the rest of this work. Thus we revise also the main results concerning
the Fokker-Planck equation and the Gyöngy theorem.

1.1 Stochastic Volatility
A simple observation of equity markets would make natural to model the volatil-
ity itself as a stochastic process. This is precisely the main feature of a stochastic
volatility model (SVM). While the standard Black-Scholes model assumes a con-
stant volatility term σ a SVM considers volatility as a function b(·) of a stochastic
process Vt. Generally speaking a stochastic volatility model assumes the following
dynamics.

Definition 1.1 (Stochastic Volatility Model - SVM ).

dSt = µSt dt+ b(Vt)StdWt ,

dVt = a(Vt, t)dt+ c(Vt, t)dZt , (1.1)
dWt dZt = ρ dt .

As usual St denotes the underlying asset, t the time, µ the (deterministic)
instantaneous drift andWt, Zt are two Wiener processes with correlation ρ. Using
non-arbitrage arguments [30], [67] it is possible to show that the price of an

11
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European call option under a SVM satisfies the following equation:

∂C

∂t
+

1

2
s2 b2(v)

∂2C

∂s2
+

1

2
c2(v, t)

∂2C

∂v2
+ ρ b(v) c(v, t) s

∂2C

∂v∂s

+ r s
∂C

∂s
+
(
a(v, t)− λc(v, t)

)∂C
∂v
− r C = 0 .

In this equation two new parameters have been introduced, namely r, the usual
risk free interest rate, and λ the so called market price of volatility risk. While
the use of r instead of µ has been already explained previously, describing the
Black-Scholes model, some words are needed about λ. The standard BS model
assumes only one source of randomness Wt related to one traded asset St. In
this way it is possible to hedge the risk generated by Wt through St. Hence the
model is said to be complete, see [7]. On the contrary a SV model assumes two
sources of randomness Wt , Zt and only one traded asset St depending on both
these sources. In this case we cannot hedge the risk and the model is said to
be incomplete. The concept of completeness of the model is strictly related to
the Girsanov theorem and the existence of an equivalent martingale measure. In
fact if the model is complete then it exists only one equivalent measure and the
price of every derivative is uniquely determined. On the other hand if the model
used is incomplete there exist several different martingale measures and then the
same derivative has several possible prices depending on λ. Once the value of λ
is chosen it is possible to define a risk neutral drift ã = a − λc for the process
Vt. In this way it is possible to redefine the dynamics for the SV model in the
risk-neutral world as follows:

dSt = r St dt+ b(Vt)StdWt ,

dVt = ã(Vt, t)dt+ c(Vt, t)dZt , (1.2)
dWt dZt = ρ dt ,

As observed by Gatheral [30] if we were interested in the connection between the
time series of past returns of the underlying and option prices then we would
need to investigate the connection between the statistical measure under which
the drift of the process Vt is a and the risk-neutral measure under which the
drift is given by ã. However this is not the aim of the present work. Indeed
we are interested in fitting models to quoted option prices. From now on, we
always assume the dynamics of the various models in risk-neutral terms. In fact
we will calibrate the model parameters from market prices imputing in this way
the risk-neutral measure. For this reason from now on we will consider only the
risk-neutral measure, effectively ignoring the market price of volatility risk.
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1.1.1 The Heston model

The Heston model was introduced in 1993 [41] and nowadays it is probably the
most popular stochastic volatility model. For this reason it will be used for the
stochastic component of the Local-Stochastic Volatility model implemented in
chapter 3. In this section we present the main features of this model which will
be used in rest of this work. The underlying asset St follows the usual log-normal
dynamics while the square of the volatility, the variance Vt is a Cox-Ingersoll-Ross
(CIR) process [14]:

dSt = rt St dt+ St
√
Vt dWt

dVt = κ(θ − Vt) dt+ η
√
VtdZt (1.3)

dWt dZt = ρ dt

The Heston model is characterized by five constant parameters, namely κ, θ, η,
ρ and the initial value of the variance V0. The parameter θ can be thought as
the long term variance, κ as the rate of mean reversion and η as the volatility
of volatility. As usual ρ represents the instantaneous correlation between the
Brownian motions Wt and Zt. Since we cannot directly observe V0 as we do
for S0 we need to calibrate also the initial condition of the variance. Thus we
consider V0 as the fifth parameter. In order to use the model we need to calibrate
from the market all these five parameters: κ, θ, η, ρ are strictly positive while
ρ ∈ (−1, 1), being a correlation.

The CIR process is continuous, positive and mean-reverting. These proper-
ties make it particularly suited for modelling the square of the volatility Vt. In
particular the behaviour of the process near zero is characterized by the so called
Feller condition [6, 32]:

Fe = κ θ − 1

2
η2 ≥ 0 . (1.4)

If this relation is satisfied then the process Vt is strictly positive: it cannot reach
the zero because the drift term pushes it away when it becomes too small. On
the contrary, if Fe < 0, there is a positive probability that Vt becomes zero for
a moment, however, in this case the drift term push the variance to be positive
again.

The Heston model has several properties which makes it very suitable for
equity option pricing. Stochastic variance is mean-reverting, continuous and pos-
itive. The model allows a good fit of market implied volatilities and a realistic
smile dynamics. However the reason that makes this model so popular and used is
probably the fact that it has a semi-closed form solution for plain vanilla options.
This enables a fast and computational efficient valuation of European options
which becomes critical when calibrating the model to known option prices. Let’s
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consider the Heston pricing equation:

∂C

∂t
+

1

2
s2 v

∂2C

∂s2
+

1

2
η2 v

∂2C

∂v2
+ ρ η s v

∂2C

∂v∂s
(1.5)

+r s
∂C

∂s
+ κ[θ − v]

∂C

∂v
− r C = 0 ,

with the proper initial and boundary conditions. In its original work, Heston
looked for a solution similar to the Black-Scholes’one, namely:

C(St, Vt, t, T ) = St P1 −K e−r(T−t) P2 . (1.6)

He managed to show that this is indeed a solution of the equation defined as
follows:

Pj(St, Vt, t, T ) =
1

2
+

1

π

∫ ∞
0

Re
(
e−iωln(K)

iω
fj(St, Vt, t, T, ω)

)
dω ,

fj(St, Vt, t, T, ω) = eC(T−t,ω) +D(T−t,ω)Vt + i ω ln(St) ,

C(τ, ω) = iωr +
κθ

η2

[
(bj − ρηωi+ d) τ − 2ln

(
1− gedr

1− g

)]
,

D(τ, ω) =
bj − ρηωi+ d

η2

(
1− edr

1− gedr

)
,

g =
bj − ρηωi+ d

bj − ρηωi− d
,

d =
√

(ρηωi− bj)2 − η2(2ujωi− ω2) ,

for j = 1, 2, where:

u1 =
1

2
, u2 = −1

2
, b1 = κ− ρη , b2 = κ ,

Despite this formula looks quite demanding, it is actually rather explicit, easy
and fast to evaluate. The only part that requires some computational effort is the
evaluation of the integral along a not bounded interval. However such integration
can be performed using standard numerical methods.

Although formula (1.6) allows a fast way to compute the Heston prices of
plain vanillas a further important improvement has been carried out from Carr
and Madan in 1998 [11]. Their idea was to evaluate from the formula (1.6) the
probability distribution of the final stock price and from this evaluate the char-
acteristic function, namely the Fourier transform of the probability distribution.
Carr and Madan [11] suggested a very efficient and stable method to compute
vanilla prices using the Fast Fourier Transform [55] for the valuation of this char-
acteristic function. With this ultimate method the pricing of European options
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according to the Heston model is very fast and computationally cheap. Indeed,
we will use this FFT method for the calibration of the Heston model, however
we do not revise it here since its derivation is rather technical and the procedure
is nowadays a common used techniques. For a good description, aside the work
of Carr and Madan [11] itself, see [60].

1.1.2 Calibration of Heston parameters

In order to use the Heston model for derivative pricing we first need to find its
five parameters: V0, κ, θ, η, ρ. A fundamental requirement for any model is to
be consistent with the market. Since the most liquid market, concerning equity
derivatives, is the market of plain vanillas, a natural choice is to calibrate the
model to this market. The calibration of a financial model consists in finding
those parameters such that the model prices fit the market ones. This is a well
known example of inverse problem and in particular it is known as the inverse
problem of mathematical finance. Let’s define it more formally.

Let CMarket
Ti,Kj

be the price quoted on the market at the present time t = 0 of an
European Call option with time maturity Ti and strike price Kj. In particular
at any time t there are quoted on the market several call options on the same
underlying for different maturities and strikes. Thus, let’s define {Ti}1,N and
{Kj}1,M respectively the vector of market maturities and strike prices. Let’s now
consider the price given by the Heston model concerning the same European call
option. We define it as CHeston

Ti,Kj
(x) where x = [V0, κ, θ, η, ρ] is the vector of the

model parameters. Let W ⊂ R5 be the feasible region for these coefficients. The
inverse problem we want to solve reads as follows:

find x ∈ W such that CHeston
Ti,Kj

(x) = CMarket
Ti,Kj

∀i = 1, · · · , N ,∀j = 1, · · · ,M .

For several reasons this inverse problem turns out to be ill-posed: existence and
uniqueness of the solution x are not guaranteed, as well as a continuous de-
pendence of the solution to market data. In order to calibrate the model it is
common practice to transform the inverse problem in an optimization problem.
In particular a constrained, non linear least squares minimization problem:

find x ∈ W such that J (x) = min
y∈W
J (y) , (1.7)

where the cost functional J can be defined as:

J (y) =
1

2

N,M∑
i,j

ωij

(
CHeston
Ti,Kj

(y)− CMarket
Ti,Kj

CMarket
Ti,Kj

)2

. (1.8)

In this way the cost functional is the sum of the relative errors between model
and market prices. It is important to consider the normalised error because
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of the great difference between out-the-money and in-the-money option prices.
Moreover since the most sensitive region the model should be able to reproduce
is at-the-money region it is useful to use the weights ωij. In this way when
minimizing the functional it is possible to leverage the importance assigned to
the central part of the smile rather than the external region. Concerning the
definition of the feasible setW the choice is not unique. The parameters κ, θ, η, v0

must be positive and usually smaller than 1 while the correlation ρ is between
1 and −1, although the extreme cases can produce some misbehaviour. For this
reason we can set W = [0.05, 1.00]4 × [−0.99, 0.99] .

For a numerical solution of the constrained non linear problem (1.7) several it-
erative methods can be applied. One of the most used is the Levenberg-Marquardt
algorithm [34]. However regardless by the particular optimization method used a
first guess solution is needed. Moreover, since the optimal solution is generally a
local minimum and not a global one, the values of the initial solution are rather
critical. Thus it is very important to find a good first guess solution. To do this a
very useful tool is the asymptotic analysis of implied volatility as suggested
in [28, 32]. We do not revise here this topic, widely treated in literature, but we
only provide some useful results concerning the Heston model [30]. The idea is
to find some asymptotic relations between the implied volatility observed on the
market and the parameters of the model. In particular it is possible to prove the
following asymptotic behaviour [30].

σ2
I (K,T )|K=S0 ' v0 for T → 0 (1.9)

σ2
I (K,T )|K=FT ' θ for T →∞ (1.10)

∂σ2
I

∂x

∣∣∣
K=S0

' ρη
2

for T → 0 (1.11)

Ft represents the Forward value of the underlying asset. In the standard
Black-Scholes model this is equal to Ft = S0e

rt. The notation x, instead, is used
to represent the forward log-moneyness, namely x = log( F

K
). Using relations

(1.9) and (1.10) it is possible to find an initial guess solution for v0 and θ. Since
generally ρ is approximately equal to −0.8 using (1.11) it is possible to find a
value for the volatility of volatility η. Finally to set an initial value for the rate
of mean reversion we can choose a value κ ' 0.05 + η2

2θ
. In this way the Feller

condition is fulfilled. Summarizing we can use the following first guess condition:
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v0 = σ2
I (S0, 0) ,

θ = σ2
I (S0 e

rTmax , Tmax) ,

ρ = −0.8 ,

η =
2S0

ρ

∂σ2
I (S0, 0)

∂S
, (1.12)

κ = 0.05 +
η2

2θ
.

Remark 1.2 (Imposing the Feller condition). A further constrain during the cal-
ibration procedure is given by the Feller condition (1.4). Actually the Heston
model is well defined even if this condition is violated. However it is a good
practice to find a solution which satisfies this condition. To accomplish such
result a natural choice is to redefine the feasible set W including this further
constrain. However given the non linear nature of this constrain a more efficient
way is to impose it with a barrier method [34]. For instance we could minimize
the modified cost functional:

J̃ = J − ω log(Fe) ,

where ω is an appropriate tuning parameter and Fe = 2κθ − η2 is the Feller
number. With this modified functional it is also important to set a first guess
solution such that Fe > 0.

Remark 1.3 (Computational considerations). It is important to notice that for
every valuation of the cost functional (1.8) we need to compute N ×M vanilla
prices with the model. For this reason the time required by the calibration proce-
dure can be quite long. Therefore it is so important to have a semi-closed formula
to price plain vanillas as the one found by Heston. Moreover the FFT-method
proposed by Carr and Madan further increased the computational efficiency of
this semi-closed formula enabling a fast calibration of the Heston model.
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1.2 Local Volatility
A not negligible drawback of Stochastic Volatility models is that introducing
a new source of randomness we lose the completeness of the model and then
the uniqueness of the price. Moreover although they can produce a consistent
smile they cannot fit exactly the market prices. For this reason in 1994 Dupire
[21] and Derman and Kani [17] introduced a new model generalizing the Black-
Scholes’one. They consider a non constant deterministic volatility σLV (S, t),
called Local Volatility surface, and they assume the following stochastic differen-
tial equation for the evolution of the underlying asset.

Definition 1.4 (Local Volatility Model - LVM ).

dSt = (r − d)St dt+ σLV (St, t)StdWt (1.13)

The corresponding pricing equation is a straightforward generalization of the
Black-Scholes equation. Thus the price of an European Call option can be com-
puted simply solving the problem below.

Proposition 1.5 (Generalized Black-Scholes equation). Under a Local Volatility
model the price of an European Call option is given by the following generalized
Black-Scholes equation:

∂C
∂t

+ 1
2
σ2
LV (S, t)S2 ∂2C

∂2S
+ (r − d)S ∂C

∂S
− rC = 0 on Q = [0, T )× (0,∞)
C(0, t) = 0 ∀t ∈ (0, T )

limS→∞C(S, t)− Se−d(T−t) +Ke−r(T−t) = 0 ∀t ∈ (0, T )
C(T, S) = (S −K)+ ∀S ∈ (0,∞)

This model seems to be a simple and straightforward generalization of the
original Black-Scholes framework since we are simply considering a non constant,
deterministic, diffusion coefficient. However it is not straightforward as well to
understand how to extract the surface σLV from the market. Dupire succeed to
prove that assuming a continuum of traded plain vanilla on the market it does
exist one and only one Local Volatility surface σLV such that the model is able
to perfectly reproduce the market quoted prices. Moreover he provides a closed
form formula, known as Dupire’formula, to evaluate σLV . This formula is actually
a corollary of the so called Dupire’s equation which is a sort of Fokker-Planck
equation where the unknown is the option price instead of the probability density
functions. For this reason, before presenting the Dupire’s work, we review the es-
sential theory of Fokker Planck equation. Indeed we will need a bit understanding
of it also for the next chapters.
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1.2.1 The Fokker-Planck Equation

In this section we recall some essential results concerning the Fokker Planck equa-
tion (also known as Kolmogorov forward equation). This is the equation ruling
the transition probability density function for the solution of a linear stochastic
differential equation. The treatment follows closely chapter five of [7]. For further
details concerning analytical and numerical solution of Fokker-Planck equation
see [58]. Suppose that Xt is a solution of the linear SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt . (1.14)

Hence the associate infinitesimal generator A is given by

Af(x, t) = µ(x, t)
∂f

∂x
(x, t) +

1

2
σ2(x, t)

∂2f

∂x2
(x, t) .

Let’s now consider the boundary value problem{
∂u
∂t

+Au = 0, (x, t) ∈ R× (0, T )
u(x, T ) = IB(x), x ∈ R (1.15)

where IB is the indicator function of the set B ⊂ R. It is possible to prove that

u(x, t) = Ex,t[IB(XT )] = P (XT ∈ B|Xt = x),

where Xt is the solution of (1.14). This is a very interesting connection between
stochastic differential equations and parabolic differential equations. The solution
of (1.15) is equal to the probability that the process Xt starting from x at time
t belongs to B at time T > t. Let’s state this result in a formal way.

Proposition 1.6 (Kolmogorov backward equation). Let Xt be a solution to
(1.14). Then the transition probabilities P (x, t;B, T ) = P (XT ∈ B|Xt = x)
are given as the solution to the equation{

∂P
∂t

+AP = 0, (x, t) ∈ R× (0, T )
P (x, T ) = IB(x), x ∈ R (1.16)

This equation is known as backward Kolmogorov equation since the differen-
tial operator A works on the "backward variables" (x, t). In fact it is considered
the backward probability imposing a terminal condition and the resulting partial
differential equation actually evolves backward in time. It is possible to state a
dual result known as Kolmogorov forward equation or Fokker Planck equation
where we look for a forward probability imposing an initial condition.
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Proposition 1.7 (Kolmogorov forward equation). Let Xt be the solution of equa-
tion (1.14) with the initial condition X0 = x0 and assume that Xt has a transition
density p(x, t;x0, 0). Then p will satisfy the following Kolmogorov forward equa-
tion also known as Fokker-Planck equation:{

∂p
∂t
−A∗p = 0, (x, t) ∈ R× R+

p(x, 0) = δ(x− x0), x ∈ R (1.17)

Where the adjoint operator A∗ is defined by:

A∗f(x, t) = − ∂

∂x
(x, t) [µ(x, t) f(x, t)] +

1

2

∂2

∂x2

[
σ2(x, t) f(x, t)

]
.

It is straightforward to extend this result to the multidimensional case which,
actually, will be used in the next chapter. Considering the multidimensional
process Xt satisfying the vectorial stochastic differential equation:

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt ,

where µ : RN × R+ → RN is the drift vector and σ : RN × R+ → RN×N is
the diffusion matrix, both considered as known, deterministic and bounded and
Lipschitz continuous functions. The Fokker-Planck equation is:{

∂p
∂t
−A∗p = 0, (x, t) ∈ RN × R+

p(x, 0) = δ(x− x0), x ∈ RN (1.18)

and the adjoint operator A? is defined by

A?f(s, y) = −
N∑
i=1

µi(s, y)
∂f

∂yi
(s, y) +

1

2

N∑
i=1

N∑
j=1

∂2

∂yi∂yj
[σ̃ij(s, y)f(s, y)]

where σ̃2
ij = 1

2

∑N
k=1 σik(x, t)σjk(x, t) = 1

2
[σ(x, t)σT (x, t)]ij

1.2.2 The Dupire Equation

The Black-Scholes backward parabolic equation in the variables (S, t) is the
Feynman-Kac̆ representation of the discounted expected value of the final option
value. It is possible to find the same option price solving a dual problem, namely a
forward parabolic equation in the variables (K,T ) known as dual Black-Scholes
equation or Dupire’s equation. This equation derived for the first time by
Dupire [21] is actually the Fokker-Planck equation for the probability density
function of the underlying asset integrated twice. While we need to solve one
Black-Scholes equation for each strike and maturity given, solving the Dupire’s
equation allows us to get the price of an European call option for every strike
and maturity, given the present spot value and time.
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Proposition 1.8 (Dupire’s equation). The value of a call option as a function
of the strike price K and the time to maturity T given the present value of the
stock S is given by the following forward parabolic equation known as Dupire’s
equation.

∂C
∂T
− 1

2
σ2
LV (K,T )K2 ∂2C

∂2K
+ (r − d)K ∂C

∂K
− dC = 0 on Q = [0,∞)× (0,∞)

C(0, T ) = S ∀T ∈ (0,∞)
limK→∞C(K,T ) = 0 ∀T ∈ (0,∞)

C(K, 0) = (S −K)+ ∀K ∈ (0,∞)

Proof. Let’s consider the transition probability density function p(ST , T ;S0, 0)
for the dynamics (2.1) with the initial value S0. The value of an option is the
discounted value of the expected pay-off, for a Call option it means that:

C(K,T ) = e−rT
∫ ∞

0

(ST −K)+ p(ST , T ;S0, 0) dST

= e−rT
∫ ∞
K

(ST −K) p(ST , T ;S0, 0) dST .

(1.19)

Since the final pay-off is the maximum function, it is possible to find a particular
form for the probability density function deriving the above expression twice with
respect to the strike price, in fact:

∂C

∂K
= − e−rT

∫∞
K
p(ST , T ;S0, 0)dST , (1.20)

∂2C

∂2K
= e−rT p(K,T ;S0, 0) . (1.21)

We just derived an interesting result originally due to Breeden and Litzenberg
[9]. The transition distribution of the asset process is the second derivative of the
call price respect to the strike:

p(K,T ;S0, 0) = erT
∂2C

∂2K
. (1.22)

The time evolution of this probability density function is described by the Fokker-
Planck equation (1.17).

∂p

∂T
=

1

2

∂2

∂S2
T

[
σLV (ST , T )2 S2

T p(ST , T )
]
− (r − d)

∂C

∂ST

[
ST p(ST , T )

]
. (1.23)

Performing the time derivative of relation (1.19) we get:

∂C

∂T
= −rC + e−rT

∫ ∞
K

(ST −K)
∂p

∂T
dST (1.24)
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Substituting the time derivative of the probability inside the integral as in
equation (1.23) the above equation can can be written as:

∂C

∂T
+ rC = e−rT

∫ ∞
K

(ST −K)
( 1

2

∂2

∂ S2
T

[
σLV (ST , T )2 S2

T p
]
− (r − d)

∂C

∂ST
[ST p]

)
dST .

Integrating the right hand side by parts twice and assuming that p(ST , T )
decays exponentially fast for ST →∞ we obtain:

∂C

∂T
+ rC = e−rT

1

2

([
(ST −K)

∂

∂ST
[σLV (ST , T )σ2

LV p(ST , T )]
]ST=∞

ST=K

−
∫ ∞
K

∂

∂ST
[σLV (ST , T )σ2

LV p(ST , T )]dST

)
− e−rT (r − d)

([
(ST −K)ST p(ST , T )

]ST=∞
ST=K

−
∫ ∞
K

ST p(ST , T ) dST

)
= − 1

2
e−rT [σLV (ST , T )2S2

Tp(ST , T )]ST=∞
ST=K + (r − d)e−rT

∫ ∞
K

STp(ST , T )dST

=
1

2
e−rTσLV (K,T )2K2p(K,T ) + (r − d)

(
C + e−rTK

∫ ∞
K

p(ST , T )dST

)
.

Substituting in the first and second term of the right hand side respectively
(1.21) and (1.20) we finally obtain:

∂C

∂T
+ rC =

1

2
σLV (K,T )2K2 ∂

2C

∂K2
+ (r − d)

(
C +K

∂C

∂K

)
.

This is indeed the Dupire’s equation we were looking for:

∂C

∂T
=

1

2
σ2
LV (K,T )2K2 ∂

2C

∂K2
− (r − d)K

∂C

∂K
− dC

1.2.3 The Dupire Formula

Thanks to the Dupire equation we have accomplished a double result. In fact, on
the one hand we have now a very useful, dual equation for derivative pricing in
the two variable (K,T ). On the other hand, we have now a formula to evaluate
the local volatility σLV (s, t) from option prices, known as Dupire formula:

σ2
LV (K,T ) = 2

CT + (r − d)KCK + dC

K2CKK
(1.25)

Assuming a continuum of option prices quoted on the market for every strikes
K and time to maturity T thanks to the above formula it is possible to easily
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evaluate the local volatility surface. Moreover this formula ensures existence and
uniqueness of a local volatility surface which reproduces exactly the market prices.
Unfortunately it is not possible to observe on the market a continuum of plain
vanilla prices. In fact only some options with certain strikes and maturities are
actually traded. Therefore it is not possible to use directly (1.25) to evaluate σLV
for every K and T . In particular it is needed to interpolate and extrapolate the
Call prices from the market and then to numerically approximate the derivatives.
This procedure is rather sensitive to numerical instabilities and errors. Particu-
larly critical is the second derivative ∂2C

∂K2 at the denominator which stands alone
by itself. This derivative can be very small for options deeply in-the-money or
out-the-money and then very sensitive to numerical errors. Furthermore this
value is multiplied by K2 resulting in big errors, sometimes even producing neg-
ative values and then resulting in negative variance. Because of these drawbacks
the Dupire formula, practically speaking, is not very useful. However it is possible
to reformulate it in a more suitable form.

Market prices of options are often quoted in terms of Black-Scholes implied
volatility σI(K,T ). Thus it is quite natural to reformulate Dupire formula (1.25)
in term of implied volatilities instead of option prices. The idea [27, 30] is to
insert the Black-Scholes formula (9) and its derivative into the Dupire formula
(1.25) assuming that:

C = CBS(St, t,K, T, σI(K,T )) .

Applying the chain rule of differentiation and using the Black-Scholes formula (9)
and its T- and K- derivatives it is finally possible to prove [30] that:

σ2
LV (K,T ) =

σ2
I + 2T σI

(
∂σI
∂T

+ (r − d)K ∂σI
∂K

)(
1 + d1K

√
T ∂σI

∂K

)2

+K2 σI T
(
∂2σI
∂K2 − d1

√
T
(
∂σI
∂K

)2
) . (1.26)

Where

d1 =
log
(
S0

K

)
+ (r − d+ 1

2
σ2
I )T

σI
√
T

.

Although the above formula does not look as nice as (1.25), from a practical
point of view it is actually more useful. In particular, now, there is no more a
second derivative in the denominator as a lone term. In fact, the second derivative
of the implied volatility still appears but now it is one term of a summation. Thus
small errors in the approximation of the second derivative will not necessarily lead
to large errors in the evaluation of the local volatility surface. For this reason, it
seems to be a better idea to use (1.26) instead of (1.25). However, there is still the
problem that implied volatility is not known as a continuous function of strike
prices and maturities. Instead only few values σI,(Ki,Tj) are known for certain
quoted couples (Ki, Tj) of strikes and maturities. Thus some method has to be
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used to interpolate and extrapolate the few data points available from the market
σI,(Ki,Tj) into a continuous surface σI(K,T ). For this purpose a wide literature
has been produced, (see for instance [27, 26, 43]) and several class of methods
have been proposed. One of these, the parametric class, assumes that Implied
Volatility is a continuous function of K and T depending on some parameters.
Once these parameters are correctly calibrated to market prices we actually get
σI(K,T ). We now consider a particular parametric model.

1.2.4 SVI parametrization of Implied Volatility

In 2004 Gatheral [29] proposed an interesting parametrization of the implied
volatility surface called Stochastic Volatility Inspired (SVI). The model assumes
that for a given maturity Tn the strike structure of implied volatility is given by
the following function:

σSV II (x, Tn) =

√
Cn

1 + Cn
2

[
Cn

3 (x− Cn
4 ) +

√
(x− Cn

4 )2 + Cn
5

]
. (1.27)

Where the five coefficients Cn
1 , Cn

2 , Cn
3 , Cn

4 and Cn
5 have to be suitably calibrated

to the market and they will be described below. The idea of SVI is that each
time slice of the implied volatility surface is fitted separately and independently
and then some interpolation is performed to obtain the time dependence. Thus,
denoting by {Tn}1,N the vector of the N available market maturities, we calibrate
N different SVI functions σI(x, Tn) for n = 1 to N and then we define for T ∈
(Tn, Tn+1) :

σSV II (x, T ) = σSV II (x, Tn) +
T − Tn
Tn+1 − Tn

[
σSV II (x, Tn+1)− σSV II (x, Tn)

]
=

Tn+1 − T
Tn+1 − Tn

σSV II (x, Tn) +
T − Tn
Tn+1 − Tn

σSV II (x, Tn+1) . (1.28)

The original model assumes the variable x to be the logarithmic forward
moneyness x = log( K

FT
). However, coherently with Chapter 3 in this work we

choose to use the logarithmic moneyness as variable, thus from now x = log(K
S0

).

This model has several appealing properties. First of all it depends on only
five parameters and can be easily and quickly fitted market volatilities for every
maturity. Moreover, it is able to correctly reproduce the typical smile struc-
ture and, accordingly to what has been proved by Lee [48], it shows a correct
asymptotic behaviour: σI(x, T )→

√
x for x→ ±∞.

The model assumes five parameters [31] for each maturity:

• Cn
1 ≥ 0: this parameter provides the constant component of volatility.

Increasing Cn
1 implies a vertical translation of the smile;
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• Cn
2 > 0: this parameter influences the slope of volatility in its wings. In-

creasing Cn
2 increases the slopes of both the left and right wings, tightening

the smile.
• Cn

3 ∈ (−1, 1): this parameter provides a counter-clockwise rotation of the
smile. Increasing Cn

3 decreases (increases) the slope of the left(right) wing.
• Cn

4 : this parameter provides an horizontal translation. Increasing Cn
4 trans-

lates the smile to the right;
• Cn

5 > 0: this parameter influences the smile curvature. Increasing Cn
5

reduces the at-the-money curvature of the smile.

The calibration of the coefficients Cn
1 , C

n
2 , C

n
3 , C

n
4 , C

n
5 to market data is ac-

complished in a similar way to the one described for the Heston model 1.1.2. The
idea is to find those coefficients such that the implied volatilities of the model
(1.27) are as closest as possible to the ones actually quoted on the market. Thus
we need to solve a least square constrained, minimization problem very similar to
the one which has been introduced for the calibration of the Heston model (1.7).
The only, but relevant, difference is that now the parameters we want to calibrate
are time-dependent whereas the Heston parameters were not. Thus we need to
perform the same calibration procedure for each one of the available maturities
Tn.

Let’s call xn = [Cn
1 , C

n
2 , C

n
3 ), Cn

4 , C
n
5 ] the vector of the coefficients to be

calibrated for each market maturity Tn and let W ⊂ R5 be the feasible region for
these coefficients. Thus, we want to find xn for every maturity Tn. The idea is to
calibrate the parameters xn, starting from the closest maturities till the farthest
ones, solving a sequence of minimization problems:

for every n = 1, · · · , N find xn ∈ W such that:
Jn(xn) = miny∈W Jn(y) . (1.29)

We define the cost functional:

Jn(y) =
1

2

M∑
j

ωj

(
σSV II (Kj, Tn;y)− σMarket

I (Kj, Tn)

σMarket
I (Kj, Tn)

)2

, (1.30)

where:

{Kj}1,M is the vector of market strike prices;
{Tn}1,N is the vector of market maturities;
σMarket
I (Kj, Tn) is the implied volatility observed on the market for a contract

with strike price Kj and maturity Tn;
σSV II (Kj, Tn;y) is the implied volatility provided by the SVI model for a contract

with strike price Kj and maturity Tn given the vector of coefficients y;
ωj are weights chosen to fit better the central region of the smile;
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1.2.5 Reconstructing the Local Volatility Surface

Once the model is calibrated for each maturity we can finally reconstruct the
local volatility surface. For this purpose we notice that (1.26) requires the values
of σI , ∂σI∂K

, ∂
2σI
∂K2 and ∂σI

∂T
. Applying the chain rule we have that:

∂σI
∂K

=
∂x

∂K

∂σI
∂x

=
1

K

∂σI
∂x

,

∂2σI
∂K2

=
∂

∂K

(
1

K

∂σI
∂x

)
=

1

K2

∂2σI
∂x2

− 1

K2

∂σI
∂x

.

Then, we can finally obtain a closed formula for the Local Volatility Surface.
Assuming a null dividend yield d = 0, for every x ∈ R and for T ∈ [Tn, Tn+1] we
have that:

σLV (x, T ) =

√√√√√ σ2
I + 2T σI

(
∂σI
∂T

+ r ∂σI
∂x

)(
1 + d1

√
T ∂σI

∂x

)2

+ σI T
(
∂2σI
∂x2
− ∂σI

∂x
− d1

√
T
(
∂σI
∂x

)2
) . (1.31)

Where:

σI = σSV II (x, T ) = τn σ
SV I
I (x, Tn) + τn+1 σ

SV I
I (x, Tn+1) ,

∂σI
∂T

=
1

Tn+1 − Tn

[
σSV II (x, Tn+1)− σSV II (x, Tn)

]
,

∂σI
∂x

= τn fn(x) + τn+1 fn+1(x) ,

∂2σI
∂x2

= τn gn(x) + τn+1 gn+1(x) ,

d1 =
(r + 1

2
σ2
I )T − x

σI
√
T

.

and

fn(x) =
Cn

2

2σSV II (x, Tn)

[
Cn

3 +
(x− Cn

4 )√
(x− Cn

4 )2 + Cn
5

]
,

gn(x) =
1

σSV II (x, Tn)

[
Cn

2 C
n
5

2 [(x− Cn
4 )2 + Cn

5 ]3/2
− f 2

n(x)

]
,

τn =
Tn+1 − T
Tn+1 − Tn

,

τn+1 =
T − Tn
Tn+1 − Tn

.

Although Formula (1.31) is less sensitive than (1.25), it could still happen
that the numerator or, most likely, the denominator becomes negative. This
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could happen because of numerical instabilities in the computation and because
the parametrization (1.27) is not arbitrage free [31]. For this reason, during
the numerical implementation of (1.31) it can be useful to add a small positive
constant to both numerator and denominator, avoiding in this way to obtain a
negative variance and then a complex local volatility. Thus, defining

N(x, T ) = σ2
I + 2T σI

(
∂σI
∂T

+ r
∂σI
∂x

)
,

D(x, T ) =

(
1 + d1

√
T
∂σI
∂x

)2

+ σI T

(
∂2σI
∂x2

− ∂σI
∂x
− d1

√
T

(
∂σI
∂x

)2
)
,

we can consider
σ2
LV (x, T ) =

N(x, T ) + ε1
D(x, T ) + ε2

(1.32)

In order to avoid negative variance, we can also consider a modified version of
the cost functional (1.30) introducing a barrier term, like the one suggested for
the calibration of the Heston model (1.2). If we set

Nn = min
x∈Ω

N(x, Tn) , (1.33)

Dn = min
x∈Ω

D(x, Tn) , (1.34)

we can use a modified cost functional:

J̃n = Jn − ω
(

log(Nn) + log(Dn)
)
, (1.35)

where ω is an appropriate tuning parameter. In this way we can impose directly
in the fitting of the SVI function to market a barrier for negative values of the
local variance σ2

LV (x, T ).

Concluding this section about Local Volatility, it is worth to notice that, in
the same way as the Heston model is just one example of Stochastic Volatility
model, although the most known, we have here presented in details just a par-
ticular instance of Local Volatility model. In fact, we choose to use the SVI
parametrization (1.27) to fit market implied volatilities and then the Dupire
formula to reconstruct σLV , however several other possibilities are available in
literature. Zühlsdorff [69], for instance, suggested to parametrize directly the
Local Volatility surface with an hyperbola, while Coleman [13] suggested the use
of splines. Other authors [8, 47] proposed a non parametric approach based on
the resolution of an inverse problem for the Dupire equation with a Tykhonov
regularization technique. We choose to use the Dupire formula combined with
the SVI parametrization since this is a direct, fast, stable and reliable method to
reconstruct the Local Volatility surface from marked data.
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1.3 Comparing Local and Stochastic Volatility
We conclude this chapter about Local and Stochastic Volatility providing a com-
parison between these two classes of models. We first revise a different approach
to the derivation of Local Volatility, where the Local Volatility surface σLV turns
out to be the conditional expected value of the variance of a Stochastic volatil-
ity model. Then we compare the advantages and the disadvantages of the two
models justifying the introduction of a generalized class of model.

1.3.1 Local Volatility as conditional expectation

A different approach to Local Volatility was derived independently by Dupire [22]
and Derman and Kani [18]. Instead of considering Local Volatility as a different
and alternative model to Stochastic Volatility it is possible to show that the
first kind of model is actually a particular case of the second one. In fact if we
suppose that the underlying asset follows a diffusion process with a stochastic
instantaneous variance, then we can think Local Volatility as the conditional
expectation of this instantaneous volatility. Let’s state this idea more formally
following the proof given by Gatheral [30].

Proposition 1.9 (Local Volatility as a Conditional Expectation). Suppose the
asset price, under the risk-neutral equivalent martingale measure, is driven by a
stochastic volatility model dynamics:

dSt = (r − d)Stdt+ νtStdWt . (1.36)

Where νt is itself a stochastic process Then in order to price a contingent claim
it is equivalent to use a deterministic local volatility, conditional expectation of
the stochastic instantaneous one:

σ2
LV (K,T ) = E[ν2

T |ST = K] . (1.37)

Proof. We know by definition that

Ct(K,T ) = e−r(T−t)EQ[(ST −K)+ |Ft]

. Let’s differentiate once with respect to K. Assuming the usual integrability
assumptions in order to interchange the expectation and the derivative operator
and assuming also the derivative defined in distributional sense, we get:

∂C(K,T )

∂K
= −e−r(T−t)EQ[1K(ST ) |Ft] . (1.38)

And differentiating again we obtain:

∂2C(K,T )

∂K2
= e−r(T−t)EQ[δK(ST ) |Ft] . (1.39)
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Where δx0(·) is the Dirac delta distribution centered in x0 and 1x0(·) is the Heav-
iside function. Note that from the above equation, and recalling (1.22) we have
the following meaningful result:

p(K,T ;St, t) = EQ[δK(ST ) |Ft] . (1.40)

The probability density function of the underlying asset at maturity being
equal to K is the expected value of the Dirac-delta distribution. Now let’s take
the derivative with respect to T :

∂C(K,T )

∂T
= −rC(K,T ) + e−r(T−t)

∂

∂T
EQ[(ST −K)+ |Ft] .

To evaluate the right-hand side we first interchange the expectation and the
derivative operator ( assuming this operation admissible) and then we apply the
Tanaka-Meyer formula a generalization of Itô formula:

d(ST −K)+ = 1K(ST )dST +
1

2
S2
T ν

2(ST , T ) δK(ST )dT .

Using the stochastic dynamics assumed for ST (1.36), taking expectation and
using the fact that E[dWt] = 0 we obtain:

dEQ[(ST −K)+ | Ft] = (r−d)EQ[ST1K(ST ) | Ft]dT +EQ[
1

2
S2
Tν

2
T δK(ST ) | Ft]dT .

Now using (1.38) the first term can be rewritten as:

EQ[ST1K(ST ) | Ft] = EQ[(ST −K)1K(ST ) | Ft] + EQ[K 1K(ST ) | Ft]

= er(T−t)C + er(T−t)K
∂Ct
∂K

.

Concerning the second term, using (1.39), it can be rearranged as:

EQ[
1

2
S2
Tν

2
T δK(ST ) | Ft] =

1

2
K2EQ[ν2

T | ST = K ]EQ[δK(ST ) | Ft]

=
1

2
K2EQ[ν2

T | ST = K ] er(T−t)
∂2C

∂K2
.

Combining these expression we find:

∂C

∂T
= −rC + (r − d)C + (r − d)K

∂C

∂K
+

1

2
K2 EQ[ν2

T | ST = K ]
∂2C

∂K2

=
1

2
K2 EQ[ν2

T | ST = K ]
∂2C

∂K2
+ (r − d)K

∂C

∂K
− dC

Finally comparing this equation with the Dupire’s equation that defines and
characterizes the local volatility function it is clear that:

σ2(K,T ) = E[ν2
T |ST = K |Ft] .
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Thanks to the above result, it is interesting to notice how the Local and
Stochastic volatility models are strictly related. In fact, Local Volatility can be
interpreted more as an average over instantaneous volatilities rather than as a
different and independent model. As noted by Gatheral [30] it is likely that
Dupire, Derman and Kani introduced Local Volatility thinking that it was not a
separate class of models. Rather, the idea was to make a simplifying assumption
that would allow to price exotic options in a simpler way and still consistently
with the known prices of market vanilla options.

1.3.2 The Gyöngy theorem

The Proposition 1.9 is actually a particular case of the Gyöngy theorem that
will be the cornerstone in building a market-consistent Local-Stochastic Volatil-
ity model. For this reason we briefly recall here the main results of the work of
Gyöngy (1986) [36] about mimicking processes. The idea is that given a SDE
with stochastic drift and diffusion coefficients it is possible to construct a mim-
icking process. This is another SDE with deterministic coefficients such that the
solutions of the two equations have the same marginal probability distribution.
Before stating the Gyöngy theorem let’s first recall the definition of Weak solution
for a stochastic differential equation [5].

Definition 1.10 (Weak Solution). The stochastic differential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt ,

X0 = x0 .

is said to have a weak solution Xt if there exists a a probabilistic space (Ω,Ft, P )
and a Wiener process (Wt,Ft) on it such that Xt is an Ft - adapted stochastic
process which satisfies the equation:

Xt = x0 +

∫ t

0

µ(Xt, t)dt+

∫ t

0

σ(Xt, t)dWt .

Now we can state the main result of Gyöngy’s work about mimicking pro-
cesses.

Theorem 1.11 (Gyöngy 1986). Let ξt be a stochastic process satisfying the fol-
lowing SDE:

dξt = β(ω, t)dt+ δ(ω, t)dWt ,

ξ0 = x0 ,

where (Wt,Ft) is a Wiener process, β and δ are bounded Ft non anticipative
processes such that δδT is uniformly positive definite. Then it exists a SDE:

dXt = b(Xt, t)dt+ d(Xt, t)dWt ,
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with non-random coefficients given by:

b(x, t) = E[β(t)|ξ(t) = x] ,

d2(x, t) = E[δδT (t)|ξ(t) = x] ,

which admits a weak solution Xt having the same one-dimensional probability
distribution as ξt, ∀t.

Equation (1.37) is actually a straightforward application of Theorem 1.11. In
fact assuming a stochastic volatility model for the underlying asset:

dSt = (r − d)St dt+ b(Vt)StdWt ,

dVt = a(Vt, t)dt+ c(Vt, t)dZt ,

dWt dZt = ρ dt ,

it is possible to obtain the same results for derivative pricing using a local volatil-
ity model

dSt = (r − d)St dt+ σLV (St, t)StdWt

where the local volatility is defined according to Gyöngy theorem:

σLV (s, t) = E[b2(Vt)|St = s] ,

which is exactly the thesis of Proposition 1.9.

1.3.3 Why do we need a generalized model

We now conclude this chapter, where the two most common classes of equity
derivatives models have been introduced comparing their advantages and disad-
vantages. For this purpose we follow the arguments provided by Fengler [27]

The framework of Local Volatility is very appealing for several reasons. First
of all it is a straightforward and natural extension of the classical Black-Scholes
model. It assumes only one source of randomness and then it is complete market
model. Once we have σLV , we simply need to solve a standard parabolic equa-
tion to price derivatives. Several fast and robust methods are available for this
task. Moreover, a Local Volatility model by construction has the very appeal-
ing property to fit and reconstruct the market prices. In this way it is possible
to completely reproduce the quoted plain vanilla options and consistently price,
with the same model, exotic options. This is a very interesting feature since
several kinds of exotic derivatives can be replicated with a static hedge [12, 19].
However, in practice it is more common to dynamically hedge. This procedure is
based on the computation of the greeks [7, 67] namely the sensitivity of option
price and here come the problems with Local Volatility begins since Hagan and
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other authors [38] proved that the delta of an option computed with a Local
Volatility model is wrong.

Their argumentation is based on the asymptotic relation between Local Volatil-
ity σLV (s) and Implied Volatility σI(s). For simplicity we do not assume a time
dependence of the two functions. In particular they showed [37] that given the
present stock value S0 the current Implied Volatility function σI(S0, K) is related,
at the first order, to the Local Volatility function by the following expression:

σI(S0, K) ≈ σLV

(
1

2
(S0 +K)

)
(1.41)

Let’s now suppose that the current spot value S0 changes by ∆S to S1 = S0+∆S.
The Local Volatility function σLV remains the same, but now it is evaluated at
the new spot level S1. Applying the relation (1.41) we should have the following
Implied Volatility:

σI(S1, K) ≈ σLV

(
1

2
(S0 + ∆S +K)

)
≈ σI(S0, K + ∆S)

Therefore, according to the model, if the spot increases, the smile shifts on
the left, and vice versa. Unfortunately this is exactly the opposite of what is
observed on the market. Thus the Implied Volatility dynamics of the LVM is
wrong and this negatively affects the Delta of the model. In fact, let’s define
CLVM and CBS respectively the option price evaluated with the Local Volatility
and the Black-Scholes model. We have the following relation:

CLVM = CBS(S0, K, σI(S0, K))

Differentiating we obtain that the Delta of the LVM is given by the following
relation:

∆LVM =
∂CLVM

∂S
=
∂CBS

∂S
+
∂CBS

∂σI

∂σI
∂S

Since the LVM predicts a wrong dynamics of Implied Volatility the term ∂σI
∂S

has

the opposite sign to the one observed on the market For this reason the Delta of
the Local Volatility model turns out to be wrong.

Another issue negatively affecting Local Volatility Models concerns the for-
ward implied volatility. In fact, as observed by Fengler [27] since the market
Implied Volatility surface becomes flat for long maturities, so does the Local
Volatility surface. For this reason, the LVM implicitly assumes a flat forward
skew, namely flat future smiles, which is exactly the opposite of what we expect.
Thus, exotic options with a forward starting feature, like Forward-Start options
and Cliquets will be priced incorrectly.
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For these reasons, if on the one hand Local Volatility models can reprice the
market plain vanilla and produce an exact static of Implied Volatility, on the
other hand they imply a wrong dynamics of Implied Volatility. This is exactly
the opposite of Stochastic Volatility models. In fact, this class of models cannot
fit exactly the current prices of vanillas but it exhibits a realistic dynamics of
Implied Volatility [46]. Thus, it would be very interesting to consider a model
which combines the positive complementary features of LVM and SVM. The
next chapter is devoted to the construction of such a model: a generalized Local-
Stochastic Volatility model.



Chapter 2

Local Stochastic Volatility models

In this chapter we revise the work of Ren, Madan and Qian [57] about the con-
struction of a consistent Local-Stochastic Volatility Model. Generally speaking
a Local-Stochastic Volatility Model (LSVM) couples a Local Volatility Model
(LVM) with a Stochastic Volatility Model (SVM). Therefore, depending on the
particular choice of the Local Volatility surface and Stochastic Volatility dynam-
ics (e.g. Heston, SABR, Hull-White ) different LSV models could be obtained.
We now state the model in its whole generality, assuming a generic Stochastic
Volatility process and Local Volatility surface σLV , while in the next chapter we
will particularize the model applying the Heston dynamics and the Dupire for-
mula for σLV . In this chapter we first present how to set a market consistent
model and then we present two possible procedures for the calibration. The first
is a stochastic method, based on Markovian projections and the Gyöngy theorem
1.11. The second method is a deterministic one and it relies on the solution of the
Fokker-Planck equation (1.18) for the probability density function of the model
dynamics. Finally we present some further financial applications closely related
to our model.

2.1 Model Calibration
We now present the Local Stochastic Volatility model in its whole generality. For
this, and assuming the usual notations, let’s first recall the dynamics of the two
basic models under the risk neutral martingale measure:
Definition 2.1 (Local Volatility Model - LVM ).

dSt = (r − d)Stdt+ σLV (St, t)StdWt , (2.1)

Definition 2.2 (Stochastic Volatility Model - SVM ).

dSt = (r − d)Stdt+ b(Vt)StdWt ,

dVt = a(Vt, t)dt+ c(Vt, t)dZt , (2.2)
dWt dZt = ρ dt .

34
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The main advantage of the LVM is its capability of a (nearly) perfect fit
of the market quoted vanillas. If a good calibration of σLV is performed the
model can reproduce the market prices. Unfortunately this model has a major
drawback, its implied volatility dynamics is inconsistent with the observed one.
On the other hand a Stochastic Volatility model is able to reproduce a consistent
dynamics but not to fit exactly the market prices. For this reason we look for
a model with a stochastic volatility dynamics which can, at the same time, well
replicate the market prices. The intuition is to model the diffusion coefficient of
the underlying asset process St as the product between a stochastic component
b(Vt) and a deterministic one σLSV (s, t). Thus, this generalized Local-Stochastic
Volatility Model is described by the following dynamics:

Definition 2.3 (Local Stochastic Volatility Model - LSVM ).

dSt = (r − d)Stdt+ σLSV (St, t)b(Vt)StdWt ,

dVt = a(Vt, t)dt+ c(Vt, t)dZt , (2.3)
dWt dZt = ρ dt ,

Remark 2.4 (Stochastic Drift). Recently hybrid local stochastic volatility model
have been proposed (see for instance [5] and [35]) where a stochastic drift is
considered as well. However we will use deterministic interest rates and dividend
yield. In particular, without loss of generality, we will consider d = 0.

The key idea of the Local Stochastic Volatility Model is to merge in a con-
sistent way the LVM and the SVM. In particular the two original models can be
calibrated independently and simultaneously to market data to obtain their own
parameters σLV , a, b, c. Afterwards it is possible to evaluate the Local Stochastic
Volatility surface σLSV (S, t) using these parameters. For this reason, the first
thing we need is to find these coefficients with a calibration procedure like the
ones described in Section 1.1.2 and 1.2.4. Once the local volatility surface σLV
and the stochastic volatility model parameters a, b, c, ρ have been calibrated it
is possible to find the local-stochastic volatility surface σLSV thanks to the next
important result.

Proposition 2.5. (Local-Stochastic Volatility Surface equation)
There exists only one LSV surface σLSV (s, t) such that the LSVM reproduces the
quoted vanilla options of the LVM. It satisfies the following equation:

σ2
LV (s, t) = σ2

LSV (s, t)E[ b2(Vt)|St = s] . (2.4)

We can give two different proofs of this important result. The first is based
on the Gyöngy theorem and it has been provided by Ren, Madan and Qian [57].
The second proof relies on the comparison between the Fokker-Planck equations
of the LV and LSV processes and it has been proposed by Tachet [65].
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Proof 1 - via Gyöngy theorem . The (2.4) is actually a straightforward applica-
tion of the Gyöngy theorem 1.11 applied to the LSVM dynamics (2.3). In fact
we want the Local Volatility process (2.1) owns the same one-dimensional prob-
ability distribution of the Local-Stochastic Volatility process (2.3). The Gyöngy
theorem ensures this, provided that:

σ2
LV (s, t) = E[σ2

LSV (s, t) b2(Vt)|St = s] = σ2
LSV (s, t)E[ b2(Vt)|St = s] .

Proof 2 - via Fokker-Planck equation . It is possible to prove the result without
using the Gyöngy theorem but simply considering the Fokker-Planck equation
for the joint probability density function p(s, v, t):

∂p

∂t
=

1

2

∂2

∂s2

[
σ2
LSV (s, t) b2(v) s2p(s, v, t)

]
+

∂2

∂s ∂v

[
ρ σLSV (s, t)b(v)s p(s, v, t)

]
+

1

2

∂2

∂v2

[
c2(v, t)p(s, v, t)

]
− ∂

∂s
[r(t)s p(s, v, t)]− ∂

∂v
[a(v, t)p(s, v, t)] ,

(2.5)

with the initial condition p(s, v, 0) = δ(s−s0)δ(v−v0). Taking now the marginal
distribution of St, q(s, t) =

∫∞
0
p(s, v, t) dv, we get the mono dimensional Fokker-

Planck for q:

∂q

∂t
=

1

2

∂2

∂s2

[
σ2
LSV (s, t)s2

∫ ∞
0

(
b2(v) p(s, v, t) dv

)]
− ∂

∂s
[r(t)s q] . (2.6)

On the other hand the marginal distribution q of the LVM has to satisfy the
following mono dimensional Fokker-Planck equation, with the calibrated Dupire’s
LV surface:

∂q

∂t
=

1

2

∂2

∂s2

[
σ2
LV (s, t)s2q

]
− ∂

∂s
[r(t)s q] . (2.7)

From Dupire’s work we know that the solution of equation (2.7) is able to re-
produce the market option prices. Since we want the LSVM to reproduce these
prices as well, equation (2.6) and (2.7) must be the same one. Comparing the
diffusion term is straightforward to identify the two volatility as:

σ2
LV (s, t) q(s, t) = σ2

LSV (s, t)

∫ ∞
0

b2(v) p(s, v, t) dv .

That is:

σ2
LV (s, t) = σ2

LSV (s, t)

∫∞
0
b2(v) p(s, v, t) dv∫∞
0
p(s, v, t)dv

= σ2
LSV (s, t)E[b2(Vt)|St = s] .
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We have just derived the nonlinear partial integro-differential equation for the
joint probability density function p(s, v, t):

∂p

∂t
=

1

2

∂2

∂s2

[
σ2
LV (s, t)

∫∞
0
p(s, v, t) dv∫∞

0
b2(v) p(s, v, t)dv

b2 s2p
]

+
1

2

∂2

∂v2

[
c2(v, t)p(s, v, t)

]
+

∂2

∂s ∂v

[
ρ σLV (s, t)

√ ∫∞
0
p(s, v, t) dv∫∞

0
b2(v) p(s, v, t)dv

b s p
]

− ∂

∂s
[r(t)s p(s, v, t)]− ∂

∂v
[a(v, t) p(s, v, t)] .

(2.8)

Solving this equation is actually one of the two alternatives we have to calibrate
σLSV (S, t), and, it is, the one we will use.

Remark 2.6 (McKean SDE and Non Linear Fokker-Planck). Using the statement
of the theorem we can rewrite the dynamics of the LSVM as:

dSt = (rt − dt)Stdt+
σLS(St, t) b(Vt)√
E[b2(Vt)|St = s]

St dWt ,

dVt = a(Vt, t)dt+ c(Vt, t) dZt .

As pointed out by Guyon and Labordère [35] the presence of a non-linear Fokker-
Planck equation is not surprising considering the particular dynamics followed
by the underlying. In fact this is a Mc-Kean equation, namely a SDE where the
drift or the diffusion term depend not only on the value of the process but also
on its probability distribution. This is actually our case, being the diffusion term
depending on the conditional expected value of b2(Vt).

The very interesting thing about a LSVM is that we can calibrate indepen-
dently, and therefore simultaneously, the LVM and the SVM and after that we
just need to evaluate σLSV (S, t) using the Theorem 2.5. In the same way we
were able to prove the theorem both exploiting the Gyöngy theorem and using
the Fokker-Planck equation, it is possible to evaluate the LSV surface σLSV (s, t)
with two different approaches that have been recently proposed: a stochastic
inspired method and a deterministic one. Labordère [40] proposed in 2009 a
method exploiting the Gyöngy theorem and he further developed it in [35]. At
the same time Engelman, Koster and Oeltz [23] and Abergel and Tachet [1], [65]
developed the original work of Ren, Madan and Qian [57] who first proposed to
solve the nonlinear partial-integro differential equation (2.8). In the next section
we revise the stochastic-inspired approach of Labordère whereas in the rest of
this work the second method is actually used.
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2.2 The Markovian Projection Method
In this section we revise the recent work of Labordère [40], [35]. He has introduced
and developed a method for calibrating LSV surface to market smile exploiting
the Gyöngy theorem and the so-called Markovian Projections [52]. This method
is rather general and could be applied to any multi factor SVMs without suffering
from the curse of dimensionality. However, as noted by Engelmann [23], for a
particular two factor model, like the one we would like to develop, the Labordère
approach could be less efficient.

Using the notation of Labordère [40] let’s consider a LSVM for the Forward
Ft in the Forward measure PT :

dFt = Ft σLSV (St, t)b(Vt)dWt ,

dVt = a(Vt, t)dt+ c(Vt, t)dZt , (2.9)
dWt dZt = ρ dt .

Let’s now define a local martingale Xt that represents the SVM dynamics:

dXt = Xt b(Vt) dWt ,

dVt = a(Vt, t)dt+ c(Vt, t)dZt , (2.10)
dWt dZt = ρ dt .

The main idea of the method is to use the Gyöngy theorem twice to compute
the local volatility surface for the LSVM and the SVM:

σ2
LV (f, t) = σ2

LSV (f, t)E[ b2(Vt) |Ft = s ] ,

σ2
SV (f, t) = E[ b2(Vt) |Xt = s ] .

Now we proceed using the Markovian projection technique suggested by Piterbarg
[52]. Taking the ratio of the above equations we get:

σ2
LSV (f, t) =

σ2
LV (f, t)

σ2
SV (x, t)

√
E[ b2(Vt) |Xt = x ]

E[ b2(Vt) |Ft = f ]
. (2.11)

Following [52] we suppose to be able to find a smooth, strictly monotonically
increasing (and then invertible) map H(f, t) satisfying the relation Xt = H(Ft, t).
In this way we have a bijective correspondence between Xt and Ft, therefore
E[ b2(Vt) |Xt = x ] = E[ b2(Vt) |H(Ft, t) = H(f, t) ] = E[ b2(Vt) |Ft = f ] and we get
simply:

σ2
LSV (f, t) =

σ2
LV (f, t)

σ2
SV (H(f, t), t)

. (2.12)

If we could find an explicit expression for the mapping function, we would be
able to calibrate the Local-Stochastic Volatility surface given σ2

LV and σ2
SV . This

expression is provided by the following result.
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Proposition 2.7 (Labordère). The mapping function H(f, t) is given by the
following expression:

H(f, t) = Φ−1
t

(∫ f

f0

1

y σLV (y, t)
dy
)
, with Φt(x) =

∫ x

Λ(t)

1

y σSV (y, t)
dy .

(2.13)
The integration constant Λ(t) satisfies the following equation:

∂

∂t

(
ln Λ(t) +

∫ f

f0

1

y σLSV (y, t)
dy
)

+
1

2
b2
(

1− ∂

∂f

(
f σLSV (f, t)

))
= 0 . (2.14)

Proof. Without loss of generality we can supposeX0 = F0. Applying Itô’s Lemma
to the mapping function Xt = H(Ft, t) and using (2.9) we obtain the dynamics
of Xt:

dXt = Ft
∂H

∂f
σLSV (Ft, t) b(Vt) dWt +

(∂H
∂t

+
1

2
F 2
t b

2(Vt)
∂2H

∂f 2
σ2
LSV (Ft, t)

)
dt .

By assumption this dynamics must be equal to (2.10), and since Xt = H(Ft, t)
this implies:

dXt = H(Ft, t)b(Vt)dWt

Equating the last two expression for Xt and identifying the drift and the diffusion
terms, we obtain two differential equations:

f
∂H

∂f
σLSV (f, t) = H(f, t) , (2.15)

∂H

∂t
+

1

2
f 2 b2 σ2

LSV (Ft, t)
∂2H

∂f 2
= 0 . (2.16)

Let’s concentrate on the first equation. Using (2.12) we can write it as:

f
∂H

∂f
σLV (f, t) = H(f, t)σSV (H(f, t), t) . (2.17)

This is a first order, linear ODE for the unknown function H and it can be easily
integrated by separation of variables. Using an integration constant Λ(t), we
obtain: ∫ f

f0

1

y σLV (y, t)
dy =

∫ x

Λ(t)

1

H σSV (H, t)
dH . (2.18)

Therefore, inverting the above equation, we can express H(s, t) via harmonic
averages:

H(f, t) = Φ−1
t

(∫ f

f0

1

y σLV (y, t)
dy
)
, with Φt(x) =

∫ x

Λ(t)

1

y σSV (y, t)
dy .
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In order to evaluate the mapH(f, t) we need to define the integration constant
Λ(t). For this reason we consider now equation (2.16) and we work out an explicit
expression for Λ(t) from it. For this purpose we shall play a bit with ∂H

∂t
and ∂2H

∂f2
.

From equation (2.15) we know that

∂H

∂f
=

H(f, t)

f 2 σLSV (f, t)
,

and therefore differentiating again respect to f we gain

∂2H

∂f 2
=

1

f σLSV

∂H

∂f
+

H

σLSV

∂

∂f

( 1

f

)
+

H

f σLSV

∂σLSV
∂f

=
H

σ2
LSV f

2

(
1− σLSV − f

∂σLSV
∂f

)
=

H

σ2
LSV f

2

(
1− ∂

∂f
(f σLSV )

)
.

Substituting this expression in (2.16) we obtain

∂H

∂t
+

1

2
b2H

(
1− ∂

∂f
(f σLSV )

)
= 0 . (2.19)

Now we try to evaluate ∂H
∂t
. Considering again equation (2.15) and integrating

it directly via separation of variables we obtain:

ln
(H(f, t)

Λ(t)

)
=

∫ f

f0

1

y σLSV (y, t)
dy ,

that means

H(f, t) = e

(
ln Λ(t)+

∫ f
f0

1
y σLSV (y,t)

dy

)
.

and therefore the temporal derivative is simply

∂H

∂t
= H

∂

∂t

(
ln Λ(t) +

∫ f

f0

1

y σLSV (y, t)
dy
)

Inserting this expression in equation (2.19) we finally find the equation (2.14) for
Λ(t) and this concludes the proof.

The calibration method here described would be exact if equation (2.14) was
exactly satisfied. Since it would be computationally demand to solve this equation
we can try to choose the parameter Λ(t) such that the residue is smallest as
possible. If we replace in equation (2.14) f with f0 and b2 with its conditional
average E[b2|f = f0] = σ2

SV (f, t), we obtain the following approximated equation:

∂

∂t

(
ln Λ(t)

)
+

1

2
σ2
SV (f0, t)

(
1− σLSV (f0, t)− f0

∂

∂f
σLSV (f0, t)

)
= 0 . (2.20)
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Therefore, we choose Λ(t) such that:

Λ(t) = e(ln f0− 1
2

∫ t
0 σ

2
SV (f0,τ) (1−σLSV (f0,τ)−f0 ∂

∂f
σLSV (f0,τ))dτ) . (2.21)

We can finally summarize the calibration procedure of the Local-Stochastic
Volatility surface σLSV (s, t) with the Markovian projection method as follows:

Definition 2.8 (Markovian projection Calibration procedure).

1. Calibrate the Local Volatility Surface σLV (s, t)

2. Calibrate the Stochastic Volatility Model parameters a, b, c and ρ

3. Evaluate the effective variance of the SVM: σ2
SV (f, t) = E[b2(Vt)|Xt = f ]

4. Evaluate iteratively (few steps should be needed) σLSV (s, t) with the fol-
lowing procedure:

i Setting first Λ(t) = f0, evaluate the map H(f, t) using equation (2.13)

H(f, t) = Φ−1
t

(∫ f

f0

1

y σLV (y, t)
dy
)
, with Φt(x) =

∫ x

Λ(t)

1

y σSV (y, t)
dy .

ii Compute the LSVM volatility surface σLSV (s, t)

σLSV (f, t) =
σLV (f, t)

σSV (H(f, t), t)

.
iii Update the value of Λ(t) using equation (2.21) and σLSV just evalu-

ated.

Although it is very general, this calibration procedure has several critical
points. First of all, in the second step we need to evaluate the effective local vari-
ance of the SVM, namely σ2

SV (f, t) = E[b2(Vt)|Xt = f ]. Computing this volatility
surface with a Monte Carlo simulation would be extremely computationally de-
manding. However a semi-closed formula for σSV has been evaluated by Ewald
[24] for the Heston model using an approach based on the Malliavin Calculus.
Labordère [40] has further developed this result for a general SVM, providing the
following expression:

σ2
SV (f, t) =

E

[
b2
T
e
− K2

2(1−ρ2)BT
BT

]

E

[
e
− K2

2(1−ρ2)BT
BT

] , (2.22)
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where:

BT =

√∫ T

0

b2
sds , and K = log

f

f0

+
1

2

∫ T

0

b2
s ds− ρ

∫ T

0

b2
sdWs .

Another issue that should be not underestimated is the evaluation of the map
H(f, t) at step 4.ii through an (expensive) integral inversion ∀t ∈ [0, T ].

2.2.1 Application to the Heston dynamics

Let’s consider the particular case of a Heston SVM, where b(Vt) =
√
Vt, a(Vt, t) = κ(Vt − θ)

and c(Vt, t) =
√
Vt . Therefore the dynamics is given by the following SDEs:

dXt = Xt

√
Vt dWt ,

dVt = κ(Vt − θ)dt+ η
√
VtdZt ,

dWt dZt = ρ dt .

Then the formula for the valuation of the effective variance reads as:

σ2
SV (f, t) =

E

[
VT

e
− K2

2(1−ρ2)BT
BT

]

E

[
e
− K2

2(1−ρ2)BT
BT

] , (2.23)

Where:

BT =

√∫ T

0

Vsds , and K = log
f

f0

+
1

2

∫ T

0

Vs ds− ρ
∫ T

0

VsdWs .

To evaluate the expected value we need to simulate VT ,
∫ T

0
Vs ds,

∫ T
0
VsdWs

The stochastic process Vt is a CIR process which has a non-central chi-square
probability distribution p(v, t) [66]:

p(v, t) =
1

C0

e−
1
2

(z+µ)

∞∑
i=0

(
µ
2

)i
z( d

2
+i−1)

i! 2( d
2

+1)Γ(d
2

+ i)
,

with

C0 =
η2

4λ
(1− eλt), d = 4

λθ

η2
, µ =

4λeλtv0

η2(1− eλt)
, z =

v

C0

.
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An efficient algorithm to simulate the Heston dynamics, and in particular the
CIR process, was proposed by Broadie and Kaya [10]. They first observe that
simply integrating the CIR process it holds the following equation:∫ t

0

√
VsdWs =

1

η

(
Vt − V0 − κθt+ κ

∫ t

0

Vsds

)
.

Thus all that is required to be simulated is the joint distribution of
(
Vt,
∫∞

0
Vsds

)
.

They actually proposed an efficient simulation of this process. Nevertheless this
approach is still computationally demanding since we need to implement a proper
Monte Carlo simulation to evaluate the Heston effective variance σ2

LV (s, t). A
different approach to tackle this problem has been proposed by Atlan [5] who first
proved a closed-formula for the effective variance of a Bessel process and then
showed how to reduce a CIR process to a Bessel one. In this way the effective
variance could be computed with simply a Laplace-Inverse transformation.

2.3 The PIDE Method
Ren, Madan and Qian [57] first introduced in 2007 the idea of evaluating σLSV
solving the nonlinear PIDE (2.8). This kind of equation is quite new in literature
and the first theoretical results about existence, uniqueness and regularity of the
solution of the equation have been recently developed by Abergel and Tachet
[1], [65]. They have also proposed a Finite Difference Method algorithm to solve
the equation [65], while Engelmann, Koster and Oelz [23] used a Finite Volume
Method. In this section we revise the contributions of these authors.

Let’s first state the problem formally in its whole generality. We suppose
to know the initial values of s(0) = s0 and v(0) = v0 and all the parameters
of the model: σLV (s, t), b(v), a(v, t), c(v, t), r(t). We define the nonlinear partial
integro-differential operator L(p, I[p]) as:

L(p, I[p]) =
1

2

∂2

∂s2

[
σ2
LV (s, t) I[p] b2(v) s2 p(s, v, t)

]
+

1

2

∂2

∂v2

[
c2(v, t) p(s, v, t)

]
+

∂2

∂s ∂v

[
ρ σLV (s, t)

√
I[p] b(v) c(v, t) s p(s, v, t)

]
− ∂

∂s
[r(t)s p(s, v, t)]− ∂

∂v
[a(v, t) p(s, v, t)] .

(2.24)

where the integral term I[p](s, t) is defined as:

I[p](s, t) =

∫∞
0
p(s, v, t) dv∫∞

0
b2(v) p(s, v, t)dv

=
1

E[ b2(Vt)|St = s]
. (2.25)
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Thus the non linear partial integro-differential boundary value problem we
want to solve is the following one:

∂p
∂t
− L(p, I[p]) = 0 ∀(s, v, t) ∈ R2

+ × (0, T ]
p(s, 0, t) = 0 ∀(s, t) ∈ R+ × (0, T ]
p(0, v, t) = 0 ∀(v, t) ∈ R+ × (0, T ]
p(s, v, 0) = δ(s− s0) δ(v − v0) ∀(s, v) ∈ R+

(2.26)

Remark 2.9 (Conservation equation). Of course, since the unknown solution p is
a probability density function it will also satisfy a mass balance equation:∫

R+

∫
R+

p(s, v, t) ds dv = 1 , ∀t ∈ (0, T ) .

this is already implicit in the fact that equation (2.26) is a conservative parabolic
differential equation. Still, it is particularly important to remember the model
interpretation of the equation unknown solution p.

This nonlinear and nonlocal PIDE is a non trivial problem mainly due to the
fact that the integral term in inside the derivative, and its numerical solution will
be certainly rather demanding. However this kind of approach has a big advan-
tage. Once the PIDE is solved we know the joint probability density function
p(s, v, t) and from this we can easily compute a contingent claim with a simple
integration. In fact by Theorem 2 we have that the price F of a simple contingent
claim with payoff function at maturity φ, is given by:

F = e−rT
∫
R+

∫
R+

φ(s) p(s, v, T ) ds dv (2.27)

2.3.1 The Abergel-Tachet theorem

As observed in [1] if the integral term I(p) would be a constant, the equation
becomes a classic linear parabolic PDE that we can easily solve. This is the key
observation to build up a fixed point method to solve the problem iteratively.
Given a first guess p0(s, v, t), for every k ≥ 1 we compute I[pk−1], and then we
solve the linearised problem:

∂pk
∂t

= L(pk, I[pk−1]) ,

until convergence, namely until ‖ pk − pk−1 ‖H1
0
< ε. The critical issue is to

understand if such a procedure is stable and which is the initial guess for the
solution we should choose. As mentioned above some answers have been provided
by Abergel and Tachet in [1]. They have proved that the problem is well posed
under some reasonable but strict hypothesis: roughly speaking the volatility of
volatility c(v, t) should be small enough and some suitable regularized initial and
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boundary condition should be used. In this section we revise their theoretical
results presented in [1] and [65].

The real challenge of the problems resides in the fact that the integral term is
within the derivatives. Actually a similar problem has been studied by Alvarez
and Tourin in [4] who proved existence and uniqueness for the solution of a
nonlinear PIDE, where the integral term is outside the derivative. This is indeed
the added problem of (2.26):

∂p

∂t
=

1

2
σ2
LV b

2s2I[p]
∂2p

∂s2
+ρ σLV b c s

√
I[p]

∂2p

∂s ∂v
+

1

2
c2 ∂

2v

∂v2
−r s ∂p

∂x
−a ∂p

∂v
. (2.28)

Unfortunately, nowadays, there is not the proof of the well-posedness of the
original problem (2.26). In order to prove some result of existence we need to
make several assumptions and consider a bit simplified problem. Before stating
the theorem proved by Abergel and Tachet [65] let’s first introduce some Hölder
spaces. Let D be a domain in Rd+1, let h ∈ (0, 1). Given a function u, and two
points P = (x, t), Q = (x′, t′) ∈ D we define the following norms:

|u|H0,h,h/2(D) = sup
D
|u|+ sup

P,Q∈D

|u(P )− u(Q)|
(|x− x′|2 + |t− t′|)h/2

, (2.29)

|u|H1,h,h/2(D) = |u|H0,h,h/2(D) +
d∑
i=1

∣∣ ∂u
∂xi

∣∣
H0,h,h/2(D)

+ |∂tu|H0,h,h/2(D) , (2.30)

|u|H2,h,h/2(D) = |u|H1,h,h/2(D) +
d∑

i,j=1

∣∣ ∂2u

∂xi∂xj

∣∣
H0,h,h/2(D)

, (2.31)

|u|H1,h/2(0, T ) = sup
t∈(0, T )

|u′(t)|+ sup
t,t′∈(0, T )

|u′(t)− u′(t′)|
|t− t′|h/2

. (2.32)

One says that u is uniformly Hölder continuous with exponent h in D if
and only if |u|H0,h,h/2(D) < ∞. Then we denote by H0,h,h/2(D) the set of all
functions u uniformly Hölder. We denote respectively by H1,h,h/2(D), H2,h,h/2(D)
and H2,h,h/2(D) the set of all functions u for which the respective norms above
defined are bounded. Those sets are Banach spaces. Now we are ready to state
the existence theorem of Abergel-Tachet.

Theorem 2.10 (Abergel-Tachet). We assume that the following hypothesis hold:

1. (Domain Localization) The problem is defined on a bounded domain [smin, smax]×
[vmin, vmax] and let Ω denote this rectangle where the corner have been
smoothed. We also denote QT = Ω × (0, T ], ST = (0, T ] × ∂Ω and B =
{0} × Ω
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2. (Boundary and Initial Condition) Given an initial condition p0 let’s define
the function Ψ on B ∪ ST by:

Ψ(s, v, 0) = p0(s, v) on B ,

Ψ(s, v, t) = p0(s, v) for (s, v, t) ∈ ST ,

Let’s suppose that this boundary and initial condition Ψ belongs to H2,h,h/2(ST )
and it is strictly positive on ST ∪Ω. Moreover it satisfies the following com-
patibility conditions on ST ∪ Ω :

∂Ψ

∂t
= L

(
Ψ,

1

b2(v0)

)
and

∂Ψ

∂t
= L

(
Ψ, I[Ψ]

)
3. (Parameters Regularity) We suppose a certain regularity of the coefficients:

σLV ∈ C3(R+ × R+) , b ∈ C3(R) , c ∈ C3(R+ × R+), r(t) ∈ H1,h/2(0, T )
and a ∈ H1,h,h/2(R)

4. (Ellipticity Condition) We suppose that ∀t ≥ 0, ∀(s, v) ∈ Ω̃, ∀(δ1, δ2) ∈ R2

the following condition of uniform ellipticity holds:

s2

b2(v0)
σ2
LV (s, t) b2(v) δ2

1+ 2ρ
s

b(v0)
σLV (s, t) b(v) c(v, t) δ1 δ2+c2(v, t) δ2

2 ≥ K (δ2
1+δ2

2),

Given all the previous hypothesis, then for any T > 0 there exists a constant b∗
such that if |b2(v)− b2(v0)| ≤ b∗ ∀v ∈ (vmin, vmax) the problem{

∂p
∂t

= L(p, I[p]) on QT ,
p = p0 on ST ∪ Ω ,

(2.33)

admits a solution on QT , this solution belongs to H2,h,h/2(QT ).

Since it assumes a bounded and smooth domain and a strictly positive bound-
ary and initial condition, at least from a theoretical point of view the theorem
is not completely satisfying. Nevertheless for a numerical approximation of the
problem we are forced to consider a bounded domain and an approximation of
the Dirac delta as initial condition. Therefore in this case the theorem provides
the existence of the solution. Unfortunately as we will see in the next chapter
the parameter of the Heston’s dynamics do not satisfy the ellipticity condition at
the boundary of the domain.
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2.4 Further applications
The methodology developed for the construction of the Local-Stochastic Volatility
Model and based on the Gyöngy theorem can be applied to other financial models,
extensions of the Black-Scholes framework. In this section, following the work
of Atlan [5], Ren, Madan, Qian [57] and Tachet [65] we consider the pricing of
option on baskets, option on foreign stock and option with a stochastic interest
rate.

2.4.1 Foreign Stock

Let’s consider a standard two-dimensional Local volatility model for the evolution
of the foreign price of a stock St and the exchange rate Xt. The risk free dynamics
[7] read as follows:

dSt = (rf − d)St dt + σS(St, t)St dW
S
t ,

dXt = (rd − rf )Xt dt + σX(Xt, t)Xt dW
X
t ,

dW S
t dW

X
t = ρ(St, Xt, t) dt ,

where rf is the foreign interest rate, rd is the domestic interest rate and d is the
dividend yield. σS and σX are the two local volatility functions and W S

t , W
X
t

are standard Wiener processes with instantaneous correlation ρ. Let Yt = StXt

be the domestic price of the foreign stock. It is possible to write the stochastic
dynamics of Yt as:

dYt = (rd − d)Yt dt + σS Yt dW
S
t + σXt Yt dW

X
t .

Of course this is a two dimensional process but applying the Gyöngy theorem 1.11
there exists only one monodimensional Markov process with the same marginal
distribution:

dYt = (rd − d)Yt dt + σY Yt dW
Y
t , (2.34)

where the new local volatility σY is defined as the following conditional expecta-
tion:

σ2
Y (y, t) = E

[(
σ2
S(St, t) + 2ρ(St, Xt, t)σX(Xt, t)σS(St, t) + σ2

X(Xt, t)
)
|Yt = y

]
.

(2.35)
In this way we have reduced the dimensionality of the problem. The correspond-
ing pricing pde is very easy and fast to be solved, for instance with the Finite
Difference Method, once σY is known. Of course we have shifted the computa-
tional effort to the evaluation of the conditional expectation. However this form
could be particularly useful if the local volatility surfaces σS and σX are known.



2.4. Further applications 48

2.4.2 Basket Option

A very similar case is the local volatility model for a weighted basket of stocks
Sit , where each stock has its own volatility σi and the Wiener processes W i

t are
correlated with instantaneous correlation ρij(Sit , S

j
t , t):

dSit = (r − qi)Sit dt+ σi(Si, t)Si dW
i
t .

Now let’s define a new asset as the weighted sum of the considered stocks:

St =
N∑
i=1

wi S
i
t . (2.36)

Thus the basket St follows the SDE:

dSt =

(
rSt −

N∑
i=1

wiqiS
i
t

)
dt+

N∑
i=1

wiσi(S
i
t , t)S

i
tdW

i
t (2.37)

Applying the Gyöngy theorem we can obtain a monodimensional process for the
basket:

dSt = (rSt − q(St, t))Stdt+ σ(St, t)StdWt (2.38)

where:

q(K, t) =
1

K
E

[
N∑
i=1

wiqiS
i
t

∣∣∣St = K

]

σ2(K, t) =
1

K2
E
[ N∑
i=1

w2
i σ

2
i (S

i
t , t)S

i
t

2
+

2
N∑

i,j=1,i 6=j

wiwjρ(Sit , S
j
t , t)σi(S

i
t , t)σj(S

j
t , t)S

i
tS

j
t

∣∣∣St = K
]

The drift q and the diffusion σ can be evaluated using either known probability
density function or by Monte Carlo and PDE method, just like we have shown
for the Local Stochastic volatility. Once the drift and the diffusion coefficients
are known the problem dimension is effectively reduced by N to 1. Dimensional
reduction can be crucial when dealing with complex exotic derivatives. In this
case we would like to have a fast and efficient way for derivative pricing but pde
method suffers the “curse of dimension” [62] and becomes not practical with high
dimension problem. Thanks to the Gyöngy theorem we obtain a monodimen-
sional problem easy to solve with standard methods.



Chapter 3

The Heston-Dupire model

In the previous chapter we introduced the general theory of Local Stochastic
Volatility models. In this chapter we consider a particular instance of the model
obtained combining the stochastic volatility dynamics of the Heston model with
the formula suggested by Dupire for the local volatility. Thus, we consider a
Heston-Dupire Local-Stochastic Volatility Model. The two base models, and their
calibration, have been already described in Chapter 1. Now we consider in details
the non linear Fokker-Planck equation (2.26), introduced in the previous chapter,
for this Heston-Dupire case. First the boundary value problem is introduced
with suitable initial and boundary conditions. Then we provide the numerical
approximation of the equation with the Finite Element Method.

3.1 The equation for the Heston dynamics
Let’s first introduce the Heston-Dupire model dynamics. Under the risk free
martingale measure, it reads as follows:

Definition 3.1 (Heston-Dupire Local Stochastic Volatility Model ).

dSt = rStdt+ σLSV (St, t)
√
Vt St dWt ,

dVt = κ(θ − Vt)dt+ η
√
Vt dZt , (3.1)

dWt dZt = ρ dt ,

with the initial condition (S0, V0) = (s0, v0). The parameters κ, θ, η, ρ and v0

are the same ones of the Heston model presented in Section 1.1.1. Concerning
the Local Volatility we use the SVI parametrization (1.27) to reconstruct the
Implied Volatility σI from the market and then we use the Dupire formula (1.31)
to obtain σLV . Thus, we know from Proposition 2.5 that the local-stochastic
volatility surface is:

σLSV (s, t) =
σLV (s, t)√
E[Vt|St = s]

.

49
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We now assume to know both the Heston parameters κ, θ, η, ρ, V0 and the
Dupire Local Volatility σLV and we consider the non linear PIDE for the joint
probability density function of the Heston-Dupire Local Stochastic Volatility
model. The purpose is to evaluate the Local-Stochastic Volatility surface σLSV (s, t)
according to the PIDE method described in Section 2.3

It is useful to reformulate the dynamics (3.1) in terms of the variables (x, y) =
(log( s

s0
), v). The log-moneyness change of variable x = log( s

s0
) is particularly

useful for several reason. In fact, dividing the asset variable for its initial value
we normalize it. Applying the logarithm, the initial condition x0 is simply x0 = 0,
the domain for the Xt process becomes symmetric and unbounded at the left side
as well at the right one and moreover as, we will discuss later, we remove the
degeneracy of the differential operator along the x axis. Applying the Ito lemma
[51] it is straightforward to obtain the stochastic integral differential equations
for the process (Xt, Yt):

dXt =
(
rt −

1

2
Yt σ

2
LSV (Xt, t)

)
dt+ σLSV (Xt, t)

√
Yt dWt ,

dYt = κ(θ − Yt)dt+ η
√
YtdZt , (3.2)

dXtdYt = ρdt ,

The corresponding Fokker-Planck PIDE for the evolution of the joint-probability
density function p(x, y, t) is:

∂p

∂t
=

1

2

∂2

∂x2

[
y σ2

LSV (x, t) p
]

+
1

2

∂2

∂y2

[
η2 y p

]
+

∂2

∂x ∂y

[
ρ σLSV (x, t) η y p

]
− ∂

∂x

[(
r − 1

2
y σ2

LSV

)
p
]
− ∂

∂y
[κ(θ − y) p] ,

(3.3)

where the Local-Stochastic volatility σLSV (x, t) is defined as:

σLSV (x, t) = σLV (x, t)
√
I[p](x, t) ,

and the integral term is:

I[p](x, t) =

∫∞
0
p(x, y, t) dy∫∞

0
y p(x, y, t)dy

,

Finally, the initial condition is given by:

p(x, y, 0) = δ(x) δ(y − y0) , (3.4)

where δ(·) is the usual Dirac Delta distribution and y0 = V0 is the calibrated
initial value of the Heston variance. As already noticed in the previous chapter,
the spatial domain of equation (3.3) is the infinite half-plane Ω = R×R+, while
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the time domain is (0, T ], being T the longest maturity of the contracts we are
interested in. However, for a numerical solution, we need to localize the domain
to a finite subset of Ω, imposing appropriate boundary conditions. In the same
way we need to use a suitable approximation of the initial condition. In the
next sections we consider all these issues, providing the approximated continuous
problem that will be actually solved numerically.

3.1.1 Domain localization and boundary conditions

The spatial domain of the solution should be Ω = R+ × R , however if we want
to solve the equation numerically we need to consider a bounded domain
Ω̃ = [xmin, xmax]× [0, ymax] . Assuming that the domain is enough wide, suit-
able boundary conditions are homogeneous Dirichlet. Thus we need to set the
dimensions of the domain: xmin, xmax and ymax. In order to reduce the com-
putational effort of the solution of the problem we would like to set these as
smallest as possible. However, we can verify the goodness of the chosen domain
only after that the numerical simulation has been performed, observing whether
the solution misbehaves or not at the boundary. For this reason, the definition of
the domain dimension can be performed with a trial and error approach. How-
ever, we can get an a priori idea of the dimension of the domain following the
arguments below.

In the standard Black-Scholes model it is easy to show that:

P(ST > U) < 10−8 with U = S0e
(r− 1

2
σ2)T+6σ

√
T ,

P(ST < L) < 10−8 with L = S0e
(r− 1

2
σ2)T−6σ

√
T .

Thus the values U and L can be used as appropriate boundaries of the domain for
a numerical solution of the Black-Scholes equation. However, in our model there
is not a unique value of σ, instead we have the unknown deterministic function
σLSV (S, t). A reasonable approach is then to use the following values:

xmin = (r − 1

2
σ2
min)T + 6σmax

√
T ,

xmax = (r − 1

2
σ2
max)T − 6σmax

√
T ,

where

σmin = min
x∈R, t∈[0,T ]

σLV (x, t) ,

σmax = max
x∈R, t∈[0,T ]

σLV (x, t) .

Concerning the variable y since it is defined in (0,∞) we need to set only an
upper boundary ymax. To find an appropriate value let’s consider the Fokker-
Planck equation for the probability distribution of the stochastic variance Yt:
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∂

∂t
p(y, t)− ∂

∂y
(κ (y − θ) p(y, t))− 1

2
η2 ∂

2

∂y2
(y p(y, t)) = 0 . (3.5)

This equation is well defined on [0,∞), ∀θ > 0 [25] and its stationary solution
is a gamma distribution [20]:

p∞(y) =
1

Γ(α)

(α
θ

)α
yα−1 e−

α
θ
y , with α =

2κθ

η2
. (3.6)

Thus the cumulative density function is:

P∞(y) =

∫ y

0

p∞(u)du =
γ
(
α, α

θ
y
)

Γ(α)
, (3.7)

where Γ(x) is the gamma function and γ(x, s) is the incomplete gamma function.
In this way we can find a certain value ymax such that P∞(ymax) ' 1.

Eventually it is possible to prove that for problem of this kind the truncation
error decays exponentially with respect to the size of the domain [42]. For this
reason imposing null Dirichlet conditions at the boundaries with a wide enough
domain would not affect the solution too much. In the next part of this work
we shall use the notation Ω instead of Ω̃ to indicate the localized domain: Ω =
[xmin, xmax]× [0, ymax].

3.1.2 Initial condition

For the initial condition of the problem we impose a suitable approximation of
the Dirac Delta: p0(x, y) = δ(x)δ(y − y0). For instance a good choice is given by
the product between the fundamental solution of the heat equation on the line
and the half-line:

p0(x, y) =
1

2πσxσy
e
− x2

2σ2x

(
e
− (y−y0)

2

2σ2y − e
− (y+y0)

2

2σ2y

)
. (3.8)

In this way the initial condition vanishes at the boundary y = 0, it is symmetric
respect x = 0, and, of course, it is a probability density function:

p0(x, 0) = 0, p0(x, y) = p0(−x, y), and
∫
R×R+

p0(x, y) dx dy = 1 .

In order to make this initial condition a proper approximation of the real one the
parameters σx and σy should be chosen small enough. However it is interesting to
notice that this approximated initial condition has a real model interpretation.
In fact, we never know with absolute precision the initial value of s0 and v0,
but always with a certain indetermination that we could identify with the values
σx and σy. For instance given the bid-ask spread we can define s0 = bid+ask

2

and σx = 1
2
(log( bid

s0
) − log(ask

s0
)). In the same way, when we calibrate the initial

variance V0 of the Heston model, we never find its exact value, thus we can define
σy as the uncertainty of the calibration.
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3.1.3 Weak formulation

In order to approximate the equation with the Finite Element Method we first
need to write the weak formulation of the problem. For this purpose it is useful
to rewrite equation (3.3) in the conservative form:

∂p

∂t
− L(p, I[p]) = 0 , (3.9)

where the non linear elliptic operator L(·, I[·]) is defined as follows:

L(p, I[p]) = div
(
D[p]∇p+ a[p] p

)
, (3.10)

being D and a the diffusion matrix and the advection vector, both depending on
the non linear integral term I[p]:

D[p] =

[
D11 D12

D21 D22

]
, a[p] =

[
a1

a2

]
.

After some calculations, it is possible to prove that the diffusion matrix D and
advection vector a are composed by the following terms:

D11 =
1

2
y σ2

LV (x, t) I[p] , (3.11)

D12 = D21 =
1

2
y η ρ σLV (x, t)

√
I[p] , (3.12)

D22 =
1

2
y η2 , (3.13)

a1 = − r +
1

2
η ρ σLV

√
I[p] +

1

2
y
(
σ2
LV I[p] +

∂

∂x

(
σ2
LV I[p]

) )
, (3.14)

a2 = −κ θ +
1

2
η2 + y

(
κ+

1

2
ρ η

∂

∂x

(
σLV

√
I[p]

) )
. (3.15)

Eventually, assuming zero Dirichlet boundary condition, we can state the
continuous boundary value problem that we will solve numerically, as follows:

∂p
∂t
− L(p, I[p]) = 0 ∀(x, y, t) ∈ Ω× (0, T ]

p(x, 0, t) = 0 ∀(x, t) ∈ [xmin, xmax]× (0, T ]
p(xmin, y, t) = 0 ∀(y, t) ∈ [0, ymax]× (0, T ]
p(xmax, y, t) = 0 ∀(y, t) ∈ [0, ymax]× (0, T ]

p(x, y, 0) = p0(x, y) ∀(x, y) ∈ Ω

(3.16)
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The weak formulation [59] of the boundary value problem is readily obtained:

∀t ∈ (0, T ] find p(t) ∈ V = H1
0 (Ω) such that

∫
Ω

∂p

∂t
v dΩ+ ap(p, v) = 0, ∀v ∈ V ,

where H1
0 (Ω) is the usual Sobolov space of functions in H1(Ω) with null trace on

∂Ω and ap(p, v) is defined as:

ap̃,(p, v) = −
∫

Ω

vL(p, I[p̃]) dΩ =

=

∫
Ω

D[p̃]∇p · ∇v dΩ +

∫
Ω

p a[p̃] · ∇v dΩ =

=

∫
Ω

∂p

∂x

(
D11[p̃]

∂v

∂x
+D21[p̃]

∂v

∂y

)
dΩ

+

∫
Ω

∂p

∂y

(
D21[p̃]

∂v

∂x
+D22[p̃]

∂v

∂y

)
dΩ

+

∫
Ω

p
(
a1[p̃]

∂v

∂x
+ a2[p̃]

∂v

∂y

)
dΩ .

Remark 3.2 (Feller condition). It is interesting to notice that in perfect agreement
with the probabilistic theory of the Heston model 1.1.1 the Feller number (1.4)
actually rules the advection field of the problem (3.16) along the y direction,
namely the variance coordinate. In fact, the advection field for the marginal
distribution of the variance is given by the sum of the Feller number and a term
depending linearly on y:

−a2 = κ θ − 1

2
η2 − y

(
κ+

1

2
ρ η

∂

∂x

(
σLV

√
I[p]

) )
= Fe− y

(
κ+

1

2
ρ η

∂

∂x

(
σLV

√
I[p]

) )
≈ Fe for y ≈ 0

Thus, in the neighbourhood of y = 0 the advection field is ruled by the Feller
number. If this is negative, the probability density function p(x, y, t) moves to-
wards the boundary y = 0 otherwise if the Feller number is positive.

The idea for the numerical discretization of this problem relies on the lin-
earisation of ap(p, v) and a finite difference approximation of the time derivative.
Thus we will eventually solve a sequence of elliptic problems. For this reason
it is important to understand whether the matrix D is positive defined [59]. In
fact, in this case, the linearised bilinear form ap̃(p, v) would be coercive. For this
purpose we can use the Sylvester criterion [55]. In our case we must verify that:

D11 =
1

2
y σ2

LSV > 0 ,

D11D22 −D12D21 =
1

4
y2 η2 σ2

LSV

(
1− ρ2

)
> 0 .
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Thus the differential operator is truly elliptic for y > 0 and ρ2 6= 1. The second
condition is easily fulfilled since we can impose it during the calibration of the
Heston parameters. On the other hand the domain boundary lay precisely on the
line y = 0. This means that we are dealing with a degenerate elliptic operator at
the boundary. For this reason, even for the linearised problem the usual analysis
based on the Lax-Milgram theorem cannot be applied. In the next section we
revise the main results about degenerate elliptic problem with particular interest
about the Heston equation [6]. It is worth to notice that if we had used the original
s variable instead of the log-moneyness x = log( s

s0
) the elliptic operator would

have been degenerate also along this direction. In fact, the same thing happens in
the Black-Scholes equation. However thanks to the well known change of variable
x = log( s

s0
) we can easily get rid of this degeneracy.

3.2 Elliptic degenerate boundary value problems
The problem we are dealing with is certainly a non trivial one. Not only it
is a non linear partial integral differential equation, but moreover the integro-
differential operator is degenerate at the boundary of the domain. In the next
section we will show in details how to solve the problem numerically. The non
linearity and the time evolution will be essentially resolved with a semi-implicit
scheme. In this way at each time step we have to solve just a stationary problem.
However it is still a degenerate elliptic problem and the simple analysis based on
the Lax-Milgram lemma [59] cannot be applied.

In this section, following closely [15], we revise the main results about exis-
tence and uniqueness of elliptic problem with degeneracy at the boundary, with
particular interest for the Heston operator LH , namely the operator L (3.10)
where the Local-Stochastic volatility is set to one: σ2

LSV = σ2
LV I[p] = 1. Because

the operator degenerates at the boundary y = 0 we cannot prove the coercivity
of the associated bilinear form a(u, v) = (LHu, v)L2(Ω) in the usual Sobolev space
H1

0 (Ω). For this reason we need to introduce a broader setting, namely a weighted
Sobolev space.

Definition 3.3 (Weighted Sobolev Space). Let Ω ⊂ R × R+ be a domain and
let’s define on Ω the following weight function w:

w(x, y) :=
2

η2
yβ−1e−γ|x|−µy, with β =

2κθ

η2
, µ =

2κ

η2
and γ > 0. (3.17)

Let L2(Ω, w) be the space of all the measurable functions u : Ω→ R such that

‖u‖2
L2(Ω,w) :=

∫
Ω

|u|2w(x, y) dxdy <∞, (3.18)
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Then we define the weighted Sobolev space H1(Ω, w) as:

H1(Ω, w) :=
{
u ∈ L2(Ω, w) : ‖u‖H1(Ω,w) <∞

}
, (3.19)

with ‖u‖2
H1(Ω,w) :=

∫
Ω

y(u2
x + u2

y)w(x, y) dxdy +

∫
Ω

(1 + y)u2w(x, y) dxdy .

and ux, uy are defined in the sense of distributions [59].

Of course the spaces L2(Ω, w) and H1(Ω, w) are Hilbert spaces provided with
the inner products:

(u, v)L2(Ω,w) :=

∫
Ω

uv w dxdy ; (3.20)

(u, v)H1(Ω,w) :=

∫
Ω

(
y (uxvx + uyvy) + (1 + y)uv

)
w dxdy . (3.21)

Let’s now define
Γ0 = Ω̄ ∩ R× {0},

we can consider two other useful spaces, namely:

- H1
0 (Ω, w): closure of C∞0 (Ω) in H1(Ω, w) ;

- H1
0 (Ω ∪ Γ0, w) = Vw: closure of C∞0 (Ω ∪ Γ0) in H1(Ω, w).

Using the notation Hw = L2(Ω, w) we have that the Heston elliptic operator
LH defines a bilinear form a : Vw × Vw such as :

aH(u, v) := (LHu, v)Hw ,

where u ∈ Vw and v ∈ C∞0 (Ω). The bilinear form that we have introduced is
continuous, i.e.,

|aH(u, v)| ≤ C1‖u‖Vw‖v‖Vw , ∀u, v ∈ Vw,

where C1 is a positive constant which depends on the model parameters r, η, κ, θ, ρ.
Concerning the coercivity, we have the following important result:

Proposition 3.4 (Gårding inequality). Let r, η, κ, θ ∈ R be constants such that

β :=
2κθ

η2
> 1, η > 0 and − 1 < ρ < 1.

Then for all u ∈ Vw, there exist two positive constants C1 and C2, depending on
the model parameters, such that

aH(u, u) ≥ 1

2
C2‖u‖Vw − C3‖(1 + y)1/2u‖Hw
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Finally thanks to the above results, it is possible to prove a theorem of exis-
tence and uniqueness for the following Dirichlet boundary problem [15]{

LHu = f on Ω
u = g on Γ1 = ∂Ω /Γ0

(3.22)

Remark 3.5 (Gårding inequality and the Feller condition). It is interesting to
notice that the main hypothesis of Proposition 3.4 is precisely the Feller condition
(1.4) already introduced for the Heston dynamics.

Theorem 3.6 (Daskalopoulos, Feehan). Let f ∈ L2(Ω, w) and g ∈ H2(Ω, w).
Suppose there are functions M,m ∈ H2(Ω, w) such that:

m ≤ g ≤M on Γ1, m ≤M on Ω, and Am ≤ f ≤ AM a.e. on Ω,

and M , m, f , and g obey

(1 + y)M, (1 + y)m, (1 + y)
1

2 f
∈ L2(Ω, w) and (1 + y)

1

2 g
∈ H2(Ω, w),

then there exists a solution u ∈ H2(Ω, w) to the boundary problem, such that
(1 + y)u ∈ L2(Ω, w), and m ≤ u ≤ M on Ω and there is a positive constant, C,
depending only on the constant coefficients of the operator, A and on the constants
such that

‖u‖H2(Ω,w) ≤ C
(
‖(1+y)1/2 f‖L2(Ω, w)+‖(1+y)1/2 g‖H2(Ω,w)+‖(1+y)u‖L2(Ω,w)

)
.

If there is a function u ∈ H2(Ω, w) satisfying the equation then the solution u is
unique.

3.3 Numerical approximation with the Finite El-
ement Method

In this section we consider a possible numerical approximation of problem (3.16).
Ren, Madan and Qian [57] first suggested in 2007 to linearise the equation ex-
ploiting its time evolution, namely performing a semi-implicit time discretization,
applying the same strategy often used to solve the Navier-Stokes equations [53].
In 2011 Tachet [65] proposed a Finite Difference scheme to solve the equation
while Engelmann, Koster and Oelz [23] used the Finite Volume method. In this
section we propose a Finite Element approximation. For a general introduction
about the Finite Element Method see [53].
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3.3.1 Time discretization

For the time discretization we introduce a discrete temporal grid tn for n =
0 ÷ Nt where t0 = 0 and tNt = T . Since the initial condition is a very peaked
bidimensional Gaussian distribution approximating the delta of Dirac, we need to
use a very short time step at the beginning of the simulation in order to achieve
a stable solution. In fact it is of paramount relevance to correctly simulate the
initial evolution of the probability. For this reason we will not use an uniform
time grid and we shall denote ∆tn = tn − tn−1.

Usually when we deal with non linear evolution equation we can approximate
the time derivative with a finite difference scheme that could be explicit, semi-
implicit, implicit. Defining pn(x, y) as the semi-discrete approximation of the
solution p(x, y, t), namely pn(x, y) ' p(x, y, tn) we have three possible choices:

Explicit:
pn+1 − pn

∆tn
= L

(
pn, I[pn]

)
,

Semi-Implicit:
pn+1 − pn

∆tn
= L

(
pn+1, I[pn]

)
,

Fully Implicit:
pn+1 − pn

∆tn
= L

(
pn+1, I[pn+1]

)
.

It is possible to use these schemes since we both know the initial solution
p0 and the initial value of the non linear integral term I[p0]. In fact given the
initial value of the process Yt, Y0 = y0, its conditional expectation at time zero is
trivially E[Yt|Xt = x]

∣∣
t=0

= y0 , and therefore the initial value of the non linear
integral term is known as well:

I[p0](x) = I[p](x, 0) =

∫∞
0
p(x, y, 0) dy∫∞

0
y p(x, y, 0)dy

=
1

E[Yt|Xt = x]
∣∣
t=0

=
1

y0

.

We briefly recall the main features of these schemes when the spatial dis-
cretization is accomplished with the FEM. The key idea is that moving from the
explicit to the fully implicit scheme a greater computational effort is required.
At the same time a better numerical stability is achieved.

In particular theExplicit treatment of the temporal derivative doesn’t require
the solution of a linear system but involves a stability condition of the type
∆t ≤ C h2, where C is a positive constant and h a characteristic length of the
spatial discretization. Such condition could be very restrictive to fulfil because
it would need a too large number of time steps. The Semi-Implicit scheme
on the contrary requires to solve a linear system at each time iteration but it is
unconditionally stable. Finally the Fully-Implicit scheme lead to the solution
of a non linear problem which has to be solved with a fixed point method at
each time step. This implies the solution of several linear systems. The main
advantages of this approach are the improved stability properties of the solution.
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Fixed point method for the implicit discretization

Although it is the most computationally demanding method, it seems that the
completely implicit scheme is the most suitable for the considered problem. In
particular one of the most critical issues of the non linear equation we are dealing
with, is that the unknown solution is a probability density function. Thus its
integral over the spatial domain has to be equal to one for every time:

∫
Ω
pn dΩ =

1, ∀n. We have observed that this conservation condition is much better fulfilled
using the implicit method.

The implicit time discretization for the problem in the differential formulation,
combined with fixed point iterations, is the following one:

pn+1
k+1 − pn

∆tn
− L

(
pn+1
k+1 , I[pn+1

k ]
)

= 0 , (3.23)

where I[pn+1
k ](x) =

∫∞
0
pn+1
k (x, y) dy∫∞

0
y pn+1

k (x, y)dy
. (3.24)

Considering the next spatial discretization with the Finite Element Method, let’s
rewrite the implicit scheme in the variational formulation.

Definition 3.7 (Implicit semi-discretized Galerkin problem ).

Given p0 = p0 as in (3.8) and I[p0] = 1
y0
, ∀n = 1÷Nt solve the problem:

Given pn, let be pn+1
0 = pn, ∀k ≥ 1 until ‖pn+1

k+1−p
n+1
k ‖H1

‖pn+1
k+1‖H1

< ε,

find pn+1
k+1 ∈ V such that:

m(pn+1
k+1 , v) + apn+1

k
(pn+1
k+1 , v) + dpn+1

k
(pn+1
k+1 , v) = F (v) ∀v ∈ V , (3.25)

where:

m(pn+1
k+1 , v) =

1

∆tn

∫
Ω

pn+1
k+1 v dΩ ,

apn+1
k

(pn+1
k+1 , v) =

∫
Ω

pn+1
k+1

(
a1[pn+1

k ]
∂v

∂x
+ a2[pn+1

k ]
∂v

∂y

)
dΩ ,

dpn+1
k

(pn+1
k+1 , v) =

∫
Ω

∂pn+1
k+1

∂x

(
D11[pn+1

k ]
∂v

∂x
+D21[pn+1

k ]
∂v

∂y

)
dΩ ,

+

∫
Ω

∂pn+1
k+1

∂y

(
D21[pn+1

k ]
∂v

∂x
+D22[pn+1

k ]
∂v

∂y

)
dΩ ,

F (v) = m(pn, v) =
1

∆tn

∫
Ω

pn v dΩ .
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3.3.2 Spatial discretization

Let’s consider the spatial discretization of the problem. For this purpose we intro-
duce a discrete approximation Ωh using an unstructured triangular mesh of the
domain Ω = (xmin, xmax)× (0, ymax). We define Vh as the discrete approximation
on Ωh of the Sobolev space V = H1

0 (Ω):

Vh =
{
vh ∈ C0(Ω̄) : vh|K ∈ P1, ∀K ∈ Ωh, vh|∂Ω = 0

}
, (3.26)

whereK is a generic triangle of the mesh Ωh and P1 is the space of the polynomials
of degree less or equal to one. We choose this kind of finite elements because the
initial solution is very peaked and irregular. Moreover considering the degeneracy
at the boundary it would be better use a dense mesh instead of a high order
polynomial space.

Mesh Construction

Solving the solution of the considered problem with the Finite Element method
has one major advantage compared to Finite Differences [65] and Finite Volumes
[23], namely the great flexibility of mesh construction. This is particularly im-
portant considering the critical issues of the problem, such as degeneracy at the
boundary and a very peaked initial condition. Using a not structured mesh al-
lows to put an adequate number of triangle around these sensitive region, namely
around the point (0, y0) and along the boundary y0.

Since we are dealing with a Fokker-Planck equation a very important property
of the solution is the conservation of the total probability:

∫
Ω
pdΩ = 1 ∀t. Of

course we want the numerical solution ph to hold this property for every time of
the simulation. However this is particularly difficult to accomplish in the very
first time steps since the initial condition is very peaked. For this reason it is
crucial to use a very thin mesh around (0, y0) in order to numerically integrate the
solution correctly. In the same way it is important to have an adequate number
of triangles along the boundary y0 where the differential operator degenerates.

Figure 3.1: Mesh example with 10654 triangles and 5448 vertices
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Galerkin problem

The finite element formulation of the Galerkin problem is the following:

Definition 3.8 (Finite element Galerkin problem).

Given p0
h = p0 and I[p0

h] = 1
y0
, for any n = 1, · · · , Nt solve the problem:

given pnh, and pn+1
h,0 = pnh, for any k ≥ 1, until

‖pn+1
h,k+1−p

n+1
h,k ‖H1

‖pn+1
h,k+1‖H1

< ε ,

find pn+1
h,k+1 ∈ Vh, such that ∀vh ∈ Vh:

m(pn+1
h,k+1, vh) + apn+1

h,k
(pn+1
h,k+1, vh) + dpn+1

h,k
(pn+1
h,k+1, vh) = F (vh) , (3.27)

where

(mass) m(pn+1
h,k+1, vh) =

1

∆tn

∫
Ωh

pn+1
h,k+1 vh dΩ ,

(advection) apn+1
h,k

(pn+1
h,k+1, vh) =

∫
Ωh

pn+1
h,k+1

(
a1[pn+1

h,k ]
∂vh
∂x

+ a2[pn+1
h,k ]

∂vh
∂y

)
dΩ ,

(diffusion) dpn+1
h,k

(pn+1
h,k+1, vh) =

∫
Ωh

∂pn+1
h,k+1

∂x

(
D11[pn+1

h,k ]
∂vh
∂x

+D21[pn+1
h,k ]

∂vh
∂y

)
dΩ

+

∫
Ωh

∂pn+1
h,k+1

∂y

(
D21[pn+1

h,k ]
∂vh
∂x

+D22[pn+1
h,k ]

∂vh
∂y

)
dΩ ,

(right hand side) F (vh) = m(pnh, vh) =
1

∆tn

∫
Ωh

pnh vh dΩ .

Evaluation of the conditional expectation integral

For every fixed point iteration we need to evaluate the local stochastic volatility
surface σLSV (x, tn) = σLV (x, tn)

√
I[pnh,k](x). Thus the non linear integral term

I[pnh,k](x) has to be evaluated. Since we use P1 elements (3.26) the solution
ph(x∗, y) is a linear piecewise continuous function in the variable y. For this
reason a simple rectangle-quadrature formula is able to correctly integrate the
solution as long as the integration intervals are small enough. Thus we shall
evaluate the non linear term with the following expression:

I[pnh,k](x∗) =

∫ ymax
0

pnh,k(x∗, y)dy∫ ymax
0

y pnh,k(x∗, y)dy
'

∑Ny
i ∆yi p(x∗, yi, t) + ε∑Ny

i yi ∆yi p(x∗, yi, t) + γε
. (3.28)

In order to avoid numerical instabilities when the numerator and the denominator
becomes quite small, as suggested by [23] it is useful to add a small stabilization
value ε ' 10−6. The value of γ gives the asymptotic value of the non linear term.
Since Yt follows a C.I.R. process its expected value is given by [63]:

E[Yt] = y0 e
−κt + θ

(
1− e−κt

)
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Thus E[Yt|Xt = x]
∣∣
t=0

= y0 while E[Yt]
∣∣
t→∞ = θ. For this reason it is reasonable

to use γ = y0 for small t and γ = θ for large t.

The nonlinear term is very sensitive. To further stabilize the computation of
its first derivative, an averaged and smoothed version of the nonlinear term is
used , namely:

Ĩ[pnh,k](xj) =
1

4
I[pnh,k](xj−1) +

1

2
I[pnh,k](xj) +

1

4
I[pnh,k](xj+1)

At each iteration using the approximated formula (3.28) it is possible to evalu-
ate the integral term for every nodes of the mesh and then build the finite element
local stochastic volatility:

σh,LSV (x, y, tn) =

Nh∑
i=1

σLV (xi, t
n)
√
I[pnh,k](xi)ϕi(x, y) , (3.29)

where {ϕi}Nh is the Lagrangian basis of Vh and {xi}Nh are the x-coordinates of
the triangulation vertices.

Although the simple mid-point rectangle quadrature formula works fine with
P1 finite elements it is important to use an adaptive length of the quadrature
intervals. In particular we know that the solution is initially very peaked around
the point (0, y0 and almost null elsewhere. In order to correctly integrate this
critical point an high number of quadrature nodes are needed. On the other hand
few quadrature nodes are required elsewhere. A good automatic algorithm could
assign the number and the distribution of the quadrature nodes along the line
(x = x∗, y) considering the value of the solution and its first derivative at the
previous step.

Stabilization methods

The problem we are dealing with is an advection-diffusion equation with a dom-
inant advection component in some region of the domain. In particular near the
boundary y = 0 the problem degenerates, and we need a numerical stabilization.

Definition 3.9. (Local Péclet Number) Let’s consider the equation (3.9), we call
local Péclet number the scalar quantity PeK for each K ∈ Ωh [54]:

PeK(x) =
hK |a(x)|
2 δK(x)

, ∀x ∈ K , (3.30)

where hK is a characteristic length of the element K, ‖a‖ is the euclidean norm
of the advection vector and δK is defined as:

δK(x) = min
ξ∈R2\0

∑2
i,j=1 Dij(x) ξiξj

|ξ|2
, ∀x ∈ K , (3.31)
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The Peclet number gives a measure of the dominance of the advection field
on the diffusive one. In particular if Pe > 1 the numerical solution presents
oscillations depending on the domination of the advection term. It is important
to remark that the problem we are dealing with degenerates in the limit y → 0.
Namely near this boundary we lose the ellipticity and the problem becomes purely
advective. For this reason the “stabilization”, i.e. the (partial) elimination of the
numerical oscillations, assumes a relevant role.

A Galerkin stabilized method is a Galerkin method with an added term which
stabilizes the problem enforcing the diffusive term. For this reason we talk about
“artificial viscosity” since the idea is to introduce a fictitious diffusive term to
supply the real one. We call spnh(pn+1

h,k+1, vh) the additional term to the variational
equation (3.27). This depends on the particular stabilization method adopted.
In the case of the Streamline-Upwind Diffusion method [53] it assumes the
following form:

spnh(pn+1
h,k+1, vh) = Qh

∫
Ω

(a[pn+1
h,k ] · ∇pn+1

h,k+1) (a[pn+1
h,k ] · ∇vh) dΩ with Q = |a|−1.

This corresponds to add to the initial problem a term which is proportional to
the second derivative in the direction of the field a. Thus we are introducing an
artificial diffusion only along the advection field. We remark that in this case
the coefficient of the artificial viscosity is a tensor. In particular the stabilization
term s( , ) can be interpreted as the bilinear form associated to the operator
−div(µa∇p) where [µa]ij = Qhai aj, being ai the i-th component of the vector a.
The original integro-differential operator (3.10) is thus modified in the following
way:

L(p, I[p]) = div ( [D[p] + µa[p] ] ∇p+ a[p] p ) . (3.32)

The accuracy of this method is only O(h). To achieve better results we could
use the so called “strongly consistent methods ”. They consists in stabilization
methods with the following property:

spnh(pn+1
h,k+1, vh) is such that spnh(p, vh) = 0 for every vh ∈ Vh

We observe that the Streamline-Diffusion method is not strongly consistent, being

spnh(p, vh) = Qh

(
∂p

∂a
,
∂vh
∂a

)
for every vh ∈ Vh .

However, we choose to use this stabilization method since strongly consistent
method, like the GLS, the SUPG and the DW [53], requires the evaluation of
the differential operator L (2.24) and then the evaluation of the first and second
derivatives of the non linear integral term I[p](x, t). Given the numerical evalua-
tion of I[p](x, t) these derivatives could be quite irregular and then these methods
could be unstable. For this reason we prefer the simpler Streamline-Upwind dif-
fusion stabilization.
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Definition 3.10 (Stabilized Galerkin Finite Element method).

Given p0
h = p0 and I[p0

h] = 1
y0
, for any n = 1, · · · , Nt:

given pnh, and p
n+1
h,0 = pnh, for any k ≥ 1, until

‖pn+1
h,k+1−p

n+1
h,k ‖H1

‖pn+1
h,k+1‖H1

< ε,

find pn+1
h,k+1 ∈ Vh, such that ∀vh ∈ Vh:

m(pn+1
h,k+1, vh) + apn+1

h,k
(pn+1
h,k+1, vh) + dpn+1

h,k
(pn+1
h,k+1, vh) + spnh(pn+1

h,k+1, vh) = F (vh) .

Algebraic problem

In order to effectively solve the problem (3.10) we provide its algebraic formu-
lation. For this purpose we introduce a finite element basis {ϕj} of Vh and we
observe that, if (3.10) is satisfied for the basis functions, then it is satisfied by all
the functions in Vh. Moreover, being pn+1

h,k+1 ∈ Vh for every n > 0, then we have

pn+1
h,k+1(x) =

Nh∑
j=1

pn+1
j,k+1ϕj(x), ∀x ∈ Ω, pn+1

j,k+1 = pn+1
h,k+1(xj) ,

where xj is the j mesh node and pn+1
j,k+1 are the unknowns value of the finite

element solution at the node xj. In this way the (3.10) becomes:[
1

∆tn
M + A[pn+1

k ] +D[pn+1
k ] + S[pn+1

k ]

]
pn+1
k+1 =

1

∆tn
pn , (3.33)

where the matricesM,A,D, S are the algebraic equivalent of the mass, advection,
diffusion and stabilization bilinear form, defined as:

Mi,j = m(ϕj, ϕi) ,

A[pn+1
k ]i,j = apn+1

h,k
(ϕj, ϕi) ,

D[pn+1
k ]i,j = dpn+1

h,k
(ϕj, ϕi) ,

S[pn+1
k ]i,j = spn+1

h,k
(ϕj, ϕi) .

and we have introduced the unknown vector pn+1
k+1 = [pn+1

j,k+1].

We observe that we managed to reduce the solution of the nonlinear differen-
tial equation into a sequence of non linear systems of algebraic equations:

C[pn+1]pn+1 =
1

∆tn
pn , (3.34)

where:
C[pn+1] =

1

∆tn
M +D[pn+1] + A[pn+1] + S[pn+1] .
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At this point we could rethink the whole problem with an algebraic perspective
applying one of the several methods known for the solution of nonlinear systems.
Unfortunately since the matrices A,D, S depend in high non linear way on the
solution pn+1 it is not possible to get an analytical form of the Jacobian of C and
even an approximated evaluation of it would be computationally very demanding.
As a matter of fact in order to evaluate C we first need to evaluate the non linear
integral term I[p]. For this reason the simple fixed point iterations used with a
suitable time step ∆t behave better than more advanced method like Newton or
Quasi-Newton.



Chapter 4

Numerical Simulations

In this chapter the Heston-Dupire model (3.1) is actually implemented. The aim
is to first calibrate the model from real market data and then use it to reconstruct
the implied volatilities of the model and compare them with the market ones.
In particular we consider the market of European call options quoted on the
SX5E Index at 1st June 2012. The original data can be retrieved in Table A.1
while Figure 4.1 presents the market implied volatility surface σMarket

I (K,T ) as a
function of strike price and time to maturity. The initial asset value S0 is 2068.67
and we choose to use a flat interest rate r = 0.01. We can observe the typical
“Smile” of implied volatility for short maturities followed by a negative and flatter
slope for longer maturities.

Figure 4.1: Implied volatility surface of market prices σMarket
I (K,T )

66
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From these data, we first calibrate the Heston parameters and the Dupire Lo-
cal Volatility. Afterwards we use these values as the parameters of the nonlinear
Fokker-Planck equation (3.16) which we solve with the Finite Element method
presented in Section 3.3, reconstructing, in this way, the Local-Stochastic volatil-
ity surface σLSV . Then we compare the Implied Volatilities of the three models
with the market ones. In order to clearly distinguish the several kind of Implied
Volatilities we will deal with, let’s introduce the following notation:

σMarket
I represents the implied volatility actually observed on the market A.1;

σSV II is the SVI implied volatility 1.2.4 interpolated and extrapolated from the
market one;

σLVMI , σSVMI , σLSVMI , represent, respectively, the implied volatility realized by
the Dupire Local Volatility model, the Heston Stochastic Volatility model
and the Heston-Dupire Local-Stochastic Volatility model;

Finally in Section 4.3 we will present a last concept of volatility, namely the
Forward Implied Volatility σF .

4.1 Model parameters setting
The first step in order to implement a Local-Stochastic Volatility model is to
independently calibrate from market data the two base models. In this section
we provide the parameters calibrated for the Dupire LV model and the Heston
SV model.

4.1.1 Dupire Local Volatility calibration

Following the procedure described in Section 1.2 the Dupire Local Volatility has
been calibrated from market data A.1. We now present the main results of the
calibration procedure. The first issue is to make a good fitting of market implied
volatilities with the SVI parametrization described in Section 1.2.4. For every
maturity Tn we calibrate the five coefficients of the model defining reasonable
values for the feasible setW . The input data for the minimization problem (1.29)
are shown in Table 4.1.1. Starting from the first maturity, and using the initial
guess conditions shown in Table 4.1.1, the cost functional (1.30) is minimized
with a Levenberg-Marquardt algorithm [34]. The whole calibration procedure has
been implemented with MATLAB R© 7.10.0 using the lsqnonlin routine. Once the
calibration of the coefficients is accomplished for the first maturity, we use these
values as new first guess conditions for the next calibration of the coefficients
of the second maturity and so on till the last expiration. This procedure is
quite natural since consecutive smiles are rather similar and therefore the fitted
coefficients would be quite close as well. In this way the calibration procedure is
accomplished with a serial method.
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Dupire coefficients Initial guess Lower bound Upper bound

C1 0.001 0.0001 10.0
C2 0.6 0.0001 10.0
C3 −0.3 −1.0 1.0
C4 0.05 −10.0 10.00
C5 0.05 0.0001 10.00

Table 4.1: Input parameter for the calibration of the SVI Implied Volatility

Actually, the SVI parametrization of market data looks to be a robust method
and a good fitting can be achieved even if the calibration of the smiles is accom-
plished in a parallel way. In fact, we can simply calibrate all the smiles indepen-
dently, starting from the same first guess condition. However, in this case, the
time requested for a single calibration is quite longer, up to five times the one
needed with the sequential calibration since we do not exploit the information
provided by the previous calibrations. Moreover in this way the minimization
algorithm can be ended up with quite different coefficients from one maturity to
the next one. Thus, the calibrated SVI Implied Volatility surface could be more
irregular. For these reasons we choose to use the sequential calibration. Below,
Table 4.2 shows the results of the calibration for the Gatheral SVI parametriza-
tion of Implied Volatility relative to the first nine maturities.

Calibrated T1 T2 T3 T4 T5

values 1 week 1 month 2 months 3 months 6 months

C1 0.05144 0.00013 0.00010 0.01869 0.00010
C2 0.7994 0.4792 0.3590 0.2729 0.2285
C3 −0.2868 −0.0006 −0.2418 −0.6045 −0.5703
C4 0.0253 0.1756 0.1838 0.1295 0.1611
C5 0.0022 0.0242 0.0347 0.0401 0.0891

Calibrated T6 T7 T8 T9

values 9 months 12 months 18 months 24 months

C1 0.00013 0.00012 0.00014 0.00014
C2 0.1869 0.1636 0.1289 0.1213
C3 −0.5657 −0.4734 −0.4541 −0.3763
C4 0.1960 0.2370 0.2921 0.3122
C5 0.1172 0.1312 0.1869 0.1972

Table 4.2: Calibrated coefficients of Dupire Local Volatility
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Comparison between the implied volatilities observed on the market
and the ones reconstructed with the SVI model for different time to maturity.
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Figure 4.2 shows, with a solid red line, the fitted SVI implied volatility com-
pared with the observed market implied volatility. We can see that the model
succeed in a very good interpolation of market data for every maturity. Even
the marked smile of the very first fixing date 4.2(a) is well reproduced. Figure
4.3 shows the whole surface of calibrated SVI Implied Volatility σSV II (K,T ) as a
function of strike prices and maturities. Comparing Figure 4.3 with 4.1 we can
notice the good fitting of the whole SVI - surface with the real one.

Figure 4.3: Implied Volatility surface of the calibrated SVI parametrization

Once that we have reconstructed the SVI Implied Volatility surface we can
use the formula (1.31) to derive the Dupire Local Volatility σLV (K,T ), which is
shown in Figure 4.4. This procedure is rather delicate since the ratio inside the
square root of formula (1.31) may be negative. For this reason, as explained in
Section 1.2.5, we add a small positive constant to both the numerator and the
denominator. Once σLV (K,T ) is reconstructed we can solve the Dupire equation
(1.8) with a standard Crank-Nicholson Finite Difference scheme [55, 62] in order
to price the plain vanilla contracts quoted on the market. Then, inverting these
prices we obtain the model Implied Volatilities σLVMI (K,T ) represented in Figure
4.5. As expected by the theory, we obtain an overall good representation of the
SVI Implied Volatility surface 4.3.
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Figure 4.4: Dupire Local Volatility surface σLV (s, t)

Figure 4.5: Dupire Implied Volatility surface σLVMI (s, t)
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4.1.2 Heston Stochastic Volatility calibration

In the same way we did for the Local Volatility, we now present the calibration of
the Heston model parameters following the procedure described in Section 1.1.2.
Again we need to solve the nonlinear minimization problem (1.7). Thus, we first
look for an initial guess solution, according to the recipe (1.12). Then we set

y0 =
(
σMarket
I (S0, T1)

)2
= 0.31812 = 0.1012 ,

θ =
(
σMarket
I (S0 e

rTmax , T1)
)2 ' 0.27882 = 0.0777 ,

ρ = −0.8 ,

η =
2S0

ρ

σ2
I (S0 + ∆S, T1)− σ2

I (S0 −∆S, T1)

2∆S
= 0.7420 ,

κ = 0.05 +
η2

2θ
= 3.5912 .

It is worth to notice that, on the contrary of the calibration problem (1.29) for
the SVI fitting of Implied Volatility, the calibration of the Heston parameters(1.7)
looks to be quite sensitive to the initial condition. For this reason is important
to set an appropriate first guess. Indeed the recipe (1.12) lead, at least in our
case, to a very good starting point. Once defined a suitable feasible set W , we
use a Levenberg-Marquardt algorithm to solve the minimization problem with
MATLAB R© 7.10.0. Table 4.1.2 presents the results of the calibration.

Heston parameters Initial guess Lower bound Upper bound Calibrated value

y0 0.1012 0.05 5.0 0.1377
θ 0.0777 0.05 5.0 0.2262
κ 3.5912 0.05 5.0 2.4047
η 0.7420 0.05 5.0 0.7802
ρ −0.8 −0.99 0.99 −0.8189

Table 4.3: Calibrated parameters of Heston Stochastic Volatility

We can see that the Feller condition is verified, being the Feller number:

Fe = κθ − 1

2
η2 = 0.2396 > 0

Once the Heston parameters are calibrated it is possible to use the Heston
model to price the plain vanilla contracts quoted on the market and then recon-
struct the Implied Volatility surface of the model σSVMI as shown in Figure 4.6.
We see that the implied volatility of the Heston model σSVMI is overall quite re-
alistic with respect to the market implied volatility σMarket

I represented in Figure
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4.1. However as we expected the Heston model is not able to completely capture
the initial smile on the contrary of the Local Volatility.

Figure 4.6: Implied volatility surface σSVMI of the Heston Stochastic Volatility
Model

4.2 Solution of the Fokker-Planck equation
Once that all the coefficients have been finally set, it is possible to solve the
non linear Fokker-Planck equation (3.16). In this section we present the results
of the numerical simulation performed with the software FreeFem++ 3.12 [39]
according to the method already described in Section 3.3. Appendix B presents
some excerpts of the code implemented, proving some further details on the
algorithm.

The solution of the problem is a probability density function. Thus the most
important issue is obtaining a solution such that its integral over the domain is
nearly constantly equal to one. In particular we want en error of less than 1%,
namely we want that 0.99 ≤

∫
Ωh
pnhdΩ ≤ 1.01, ∀n. Thanks to several experimen-

tal simulations we found that there are five major critical issues to consider in
order to obtain such a stable solution. In particular they are related to the intrin-
sic difficulties of the equation (3.16) namely the combination of the nonlinearity
and the degeneracy at the boundary.

• The initial value of the variance y0 should be not too close to zero, generally
speaking y0 > 0.05. Otherwise the initial condition lays in the region where
the elliptic operator degenerates and the problem becomes unstable at the
very beginning of its evolution.
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• The Feller condition should be satisfied. In perfect agreement with the
theory, see Remark 3.2, we notice that the Feller number actually rules the
advection field of the solution. If Fe > 0 then the solution moves away
from the boundary y = 0. On the contrary if the Feller number is negative
the solution moves in the degenerate region.

• The number of mesh triangles around the solution should be quite large.
Otherwise there would be not enough element to get an accurate resolution
for the evaluation of the total probability. At the same time the solution is
quite concentrated, especially at the beginning. For this reason the use of
an adapted mesh is a natural choice.

• The application of some fixed point iterations during the same time step
increase the stability of the solution. We notice that few iterations should
be enough to obtain a good convergence.

• The Dupire Local Volatility surface σLV (K,T ) should be smooth and reg-
ular. In fact the advection field (3.14), (3.15) depends on the derivatives of
σLV .

Considering all the previous observations, the equation has been solved suc-
cessfully. Figure 4.7 shows the evolution of the probability density function
p(x, y, t) solution of the equation observed at several maturities.

Once the probability density function is retrieved, the price of plain vanilla
contracts can be easily evaluated by a simple integration:

CLSV (K,T ) = e−rT
∫

Ω

(
S0 e

x −K
)+

p(x, y, T ) dx dy (4.1)

Hence we can reconstruct the surface of prices CLSV (Kj, Ti) and then, invert-
ing the Black-Scholes formula (13), obtain the model Implied Volatility surface
σLSVMI , shown in Figure 4.8. We can notice that the model succeed in reproduc-
ing the characteristic smile and it exhibits a non flat implied volatility for longer
maturities. Solving the equation we obtain also the conditional expectation func-
tion:

E[Yt|Xt = x] =

∫ ymax
0

y p(x, y, t)dy∫ ymax
0

p(x, y, t)dy

shown in Figure 4.9(a) and its inverse I[p](x, t), represented in Figure 4.9(b).
Then, applying the result 2.4, we can finally evaluate the Local-Stochastic Volatil-
ity surface σLSV (x, t) = σLV (x, t)

√
I[p](x, t), represented in Figure 4.10. In this

way the model is completely calibrated to market data and ready to be used for
exotic derivatives pricing.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Time evolution of the probability density function p(x, y, t), solution
of the Fokker Planck equation, observed at different times: 1 week (a), 1 month
(b), 3 months (c), 6 months (d), 1 year (e) and 2 years (f) .
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Figure 4.8: Implied volatility surface σLSVMI (K,T ) of the Heston-Dupire model

(a) (b)

Figure 4.9: Conditional expectation function E[Yt|Xt = x] =
∫ ymax
0 y p(x,y,t)dy∫ ymax
0 p(x,y,t)dy

Figure (a) and its inverse I[p](x, t) =
∫ ymax
0 p(x,y,t)dy∫ ymax
0 y p(x,y,t)dy

Figure (b).
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Figure 4.10: Local Stochastic Volatility surface σLSV (x, t) = σLV (x, t)
√
I[p](x, t)

We also show σLSV (s, t) as a function of the S variable in order to make a
fair comparison with the original Local Volatility surface σLV (s, t) represented in
Figure 4.4. We see that the two surfaces are rather similar although σLSV (s, t)
exhibits higher values.

Figure 4.11: Local Stochastic Volatility surface σLSV (S, t) = σLV (S, t)
√
I[p](S, t)

In Figure 4.12 we can finally compare the different implied volatilities of the
three model σLVMI , σSVMI and σLSVMI with the real observed ones on the market
σMarket
I . Generally we can see how the LSV model (represented with a blue line)

succeeds in reproducing the form of market implied volatility (black line) nearly
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as well as the LV model (green line) whereas the SV model (red line) exhibits a
worst fitting.

(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Comparison between the Implied Volatilities observed on the market
σMarket
I and the ones reconstructed by the three different models σLVMI σSVMI

σLSVMI , for different time to maturity.
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In Figure 4.13 we plot the Delta ∆ = ∂C
∂S

, obtained with the different models.
We see that they are comparable and in particular the ones obtained with the
LV and LSV model are very close.

(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Comparison between the greek Delta of the three different models
∆LVM , ∆SVM , ∆LSVM for different time to maturity.
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4.3 Forward Volatility
We have seen in Figure 4.12 that the Heston-Dupire model succeeds in reproduc-
ing the volatility smile of the Implied Volatility as the Dupire Local Volatility
model does. We now want to verify that our LSV model exhibits also a realistic
dynamic for the Forward Implied volatility like the one of the Heston model.
Before defining this last volatility concept we first need to introduce a particular
kind of derivative contracts called Forward-Starting Options.

Let T1, T2 be two fixing dates such that 0 < T1 < T2; a Forward-Starting
Option is an exotic derivative [16, 67], depending on an underlying asset St,
which contract is defined at time t = 0, with maturity T2 and strike price K =
kST1 . Thus, the pay-off at maturity of a forward-starting call option CFS(T2) is:

CFS(T2) = max(ST2 − kST1 , 0) , (4.2)

where k is the so called “moneyness” of the option. We see that Forward starting
options are plain vanilla contracts where the strike price is unknown at the start-
ing date t = 0 but it is defined at a future determination date T1 proportionally
to the asset value ST1 . Therefore the value of this contract at t = T1 is equal to
the price of a plain vanilla call option, with strike price K = kST1 and time to
maturity T2 − T1:

CFS(T1) = C(ST1 , kST1 , T2 − T1) .

In the classical Black-Scholes framework we have an explicit formula (9) for such
contract:

CFS(T1) = CBS(ST1 , 0, kST1 , T2 − T1, r, σ) ,

= ST1 CBS(1, 0, k, T2 − T1, r, σ) .

Where we use the fact that the Black-Scholes formula is linear in the spot value
if the ratio k between the spot and the strike is constant. Using now the forward
value for the asset ST1 = S0e

rT1 and considering the discounting factor e−rT1 we
finally obtain the following formula for the Black-Scholes value of a Forward-
Starting Call option:

CFS(0) = S0CBS(1, 0, k, T2 − T1, r, σ) . (4.3)

At this point, following [2], we can define the Forward Implied Volatility
σF (k, T1, T2) for a given price CFS(k, T1, T2) of Forward-Starting option as the
number that used in the formula (4.3) above, makes the price equal to the Black-
Scholes’one:

CFS(k, T1, T2) = S0CBS
(
1, 0, k, T2 − T1, r, σF (k, T1, T2)

)
. (4.4)
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We notice that in the same way as Forward Rates become Spot Rates when
the time of contracting coincides with the start of the effectiveness time of the
interest [7] so does Forward Implied Volatility with Implied Volatility:

σI(kS0, T ) = σF (k, 0, T ) .

Forward Volatility is a measure of future Implied Volatility [33], which, dif-
ferently from present Implied Volatility, is not observable on the market and
therefore unknown. However it is particularly critical for the pricing of path de-
pendent exotic options like barrier options and cliquet [30] since these kind of
instruments are very sensitive to future values of volatility.

The market of Forward-Starting options is not as liquid as the one of Plain
Vanillas. Thus, it is not easy to calibrate a model with this kind of instruments.
However we expect that σF exhibits similar properties than σI , such as the pres-
ence of smiles, and we want a model able to reproduce this kind of features.
For this reason We are now interested in the Forward Volatility implied by the
three models we have considered, namely σLVMF , σSVMF , σLSVMF In order to recon-
struct these volatilities, we act in the same way we previously did for the Implied
Volatility: we first price Forward-Starting option with the different models and
then, inverting the Black-Scholes formula we retrieve σF .

Given the path dependent nature of Forward-Starting option a natural choice
for their pricing is to use a Monte Carlo simulation. In particular, for the Heston-
Dupire model we simulate the dynamics (3.2) with a Milstein discretization [30,
62]. Thus, we introduce a suitable time discretization tn and starting from X0 =
0, Y0 = V0, ∀n ≥ 0 we simulate the following paths:

Xn+1 = Xn +
(
r − 1

2
Yn σ

2
LSV (Xn, t

n)
)
∆tn +

√
YnσLSV (Xn, t

n)∆W n
1 , (4.5)

Yn+1 = κ(θ − Yn)∆tn +
(√

Vn +
η

2
∆W n

2

)2

− η2

4
∆tn , (4.6)

where:

∆tn = tn+1 − tn , (4.7)
∆W n

1 =
√

∆tn Z1 , (4.8)

∆W n
2 =

√
∆tn

(
ρZ1 +

√
1− ρ2 Z2

)
, (4.9)

and Z1, Z2 ∼ N (0, 1) . (4.10)

Analogous schemes have been used to simulate the Dupire Local Volatility
model and the Heston Stochastic Volatility model. In particular we performed
200000 simulations with 20 time steps between each consecutive maturity. Then
we priced, with the three models, several Forward Starting contracts with differ-
ent determination date T1 and maturity T2. From these prices, applying formula
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(4.4) it is possible to obtain the Forward Volatilities Implied by the three models:
σLVMF , σSVMF , σLSVMF . These are represented in Figure 4.14.

(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Comparison between the Forward Volatility of the different models
σLVMF , σSVMF , σLSVMF , for different determination dates T1 and maturities T2 .
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We see that for close maturities the three models behaves in a similar way.
However for longer time to start T1 of the contracts the Forward Volatility implied
by the Local Volatility model σLVMF tends to be rather flat while the Stochastic
Volatility model and moreover the Local Stochastic Volatility model succeed in
reproducing realistic Forward Volatility.

We conclude this section about the numerical simulation of the Heston-Dupire
Local-Stochastic Volatility model confirming that this generalized model is able
to catch the advantages of both the two basic models. It succeeds in reproducing
a realistic statics and dynamics of the Implied Volatility.



Concluding remarks

The aim of this work was to present and validate a new class of Local-Stochastic
Volatility models for equity derivatives pricing. Depending on the particular
choice of Stochastic dynamics and Local Volatility surface, different LSV models
can be obtained. We have considered in details a Heston-Dupire model, where the
Heston process is used for the Stochastic dynamics and the Dupire formula, com-
bined with the Gatheral’s SVI parametrization, is used for the Local Volatility.
In order to calibrate the model, a Finite Element approximation of the nonlinear
Fokker-Planck equation has been developed. This LSV model proved to be very
interesting since it succeeds in combining the advantages of both the basic mod-
els: the good fitting of present market Implied Volatilities of the LVM and the
realistic Forward Volatility implied by the SVM.

Unfortunately the improved features of the generalized model are obtained
with an additional and not negligible computational cost since the solution of
the nonlinear PIDE (3.16) is rather demanding. Moreover we have certain lim-
itations about the input parameters. In fact, it is important to use a smooth
Local Volatility surface and suitable Heston parameters which satisfy the Feller
condition. The former condition is a natural one also for the Local Volatility
model itself but the latter one is quite strict. Indeed, a good calibration of the
Heston model often violates the Feller condition.

For these reasons I personally believe that the Local-Stochastic framework
for equity volatility modelling is very promising but, for the moment, too much
complex and computationally demanding for practical applications at the trading
desks of investment banks. Thus an interesting solution would be to look for a
simplified Local-Stochastic Volatility model. A first idea, already suggested by
[61, 68] is to use some parametric form of the Local Stochastic Volatility surface
σLSV (s, t). In this way we do not need any more to solve a nonlinear Fokker-
Planck equation to merge consistently the two basic models. On the other hand,
with this approach we need to calibrate at the same time σLSV (s, t) and the
parameters of the stochastic dynamics. Moreover each price evaluation requires
the solution of a bidimensional parabolic PDE. Although this is a linear problem,
much easier than the nonlinear equation we have considered so far, we need
to solve it several times to effectively calibrate the model with a minimization
algorithm. Therefore, this approach could turn out to be even less efficient than
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the solution of a nonlinear equation which we need to solve just once.

The very interesting feature of the method we have presented is that we
calibrate, independently and possibly in parallel, the two basic models. The
calibration of the Gatheral-Dupire LVM and the Heston SVM we considered,
are, indeed, quite fast. The bottleneck of the procedure is the solution of the
nonlinear PIDE that we need to merge consistently the two models, in order to
find σLSV =

√
I[p]σLV . For this reason, an interesting strand of research could be

to look for an approximate form of the nonlinear term I[p](x, t), instead of solving
the Fokker-Planck equation. This is not a trivial task. A first, naive approach
would be to set simply σLSV = σLV or σLSV =

√
I0 σLV with I0 = 1

E[Vt]|t→∞ = 1
θ

but this approach does not work. In fact, we know that the inverse conditional
expectation function I[p](x, t) is greatly variable 4.9(b) and approximating it with
a constant it is a too strong approximation. However some less trivial possibilities
could be explored and for this purpose this thesis work can be a useful benchmark.



Appendix A

Market Data

Here we present the market data used for the calibration of the model. The
table below shows the market implied volatilities, at different strike prices and
maturity, of European call options quoted on the EuroStoxx50 Index at 1st June
2012 as retrieved on Bloomberg. In particular, for the numerical simulation of
Section 4.2 we have considered maturities up till 2 years.

Table A.1: Market Implied Volatilities on the EuroStoxx50 Index at 1st June
2012. Source: Bloomberg R©
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Source Code

In this appendix we provide an excerpt of the code implemented in FreeFem++
3.12, for the solution of the nonlinear Fokker-Planck equation (3.3). The nu-
merical method has been described in Section 3.3. In this Appendix we present
some parts of the basic, not optimized code, in order to show some details of the
implemented algorithm.

B.1 Initialization
The first step, of course, is to set all the parameters of the problem:

// Domain Dimension
real xlow = -3.0; // Left boundary
real xhigh = 3.0; // Right boundary
real yhigh = 2.0; // Upper boundary

// Initial condition
real y0 = 0.1377; // Stochastic volatility value at time zero
real sigmax = 0.02; // Initial uncertainty on x
real sigmay = 0.02; // Initial uncertainty on y

// Heston Parameters
real r = 0.0100; // Risk free interest rate
real theta = 0.2262; // Reference volatility
real kappa = 2.4047; // Reversion speed
real eta = 0.7802; // Volatility of volatility
real rho = -0.8189; // Correlation

// Number of Mesh Elements
int N0 = 50; // Element around the initial value y0
int N1 = 100; // Element around the final solution
int N2 = 50; // Element around the boundaries
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// Temporal Grid Parameters
int Nfixings = 9; // Number of fixing dates
real[int] fixingdates(Nfixings); // Fixing dates vector
real[int] timesteps(Nfixings); // Time steps between fixing dates

// Fixing dates // Timesteps between the fixings
fixingdates(0) = 7.0/365.0; timesteps(0) = 10; // 1 Week
fixingdates(1) = 1.0/12.0 ; timesteps(1) = 10; // 1 Month
fixingdates(2) = 2.0/12.0 ; timesteps(2) = 10; // 2 Month
fixingdates(3) = 3.0/12.0 ; timesteps(3) = 10; // 3 Month
fixingdates(4) = 6.0/12.0 ; timesteps(4) = 10; // 6 Month
fixingdates(5) = 9.0/12.0 ; timesteps(5) = 10; // 9 Month
fixingdates(6) = 1.0; timesteps(6) = 10; // 1 Year
fixingdates(7) = 1.5; timesteps(7) = 20; // 1.5 Year
fixingdates(8) = 2.0; timesteps(8) = 20; // 2 Year

// Fixed Point Iterations
int Kmax = 50; // Maximum number of fixed point iteration
real toll = 000001; // Maximum tolerance

Then we set the temporal grid.

real dt; // Local time step
int Ntimesteps = 0; // Total number of time steps

for( k = 0; k < Nfixings; k++) // Total number of time steps
Ntimesteps = Ntimesteps + timesteps(k);

real[int] time(Ntimesteps+2);

dt = fixingdates(0)/timesteps(0); // Initialization of the time vector
for( n = 0; n < timesteps(0); n++){

time(n) = n*dt;
for( k = 0; k < Nfixings-1; k++){

dt = (fixingdates(k+1) - fixingdates(k) )/timesteps(k+1);
for( i = 0; i < timesteps(k+1); i++){

time(n) = fixingdates(k) + i*dt;
n++;

}}}

time(Ntimesteps) = fixingdates(Nfixings-1);
time(Ntimesteps+1) = fixingdates(Nfixings-1) + dt;
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And we construct the mesh.

border l0(t=0,1){ x = 0 ; y = 3.0*y0*t ; };
border l1(t=0,1){ x = alphag*t ; y = 0 ; };
border l2(t=0,1){ x = alphag + t*(xhigh - alphag) ; y = 0 ; };
border l3(t=0,1){ x = xhigh ; ; y = yhigh*t ; };
border l4(t=0,1){ x = xhigh - t*(xhigh - xlow) ; y = yhigh ; };
border l5(t=0,1){ x = xlow ; y = yhigh*(1-t) ; };
border l6(t=0,1){ x = xlow - t*(alphag + xlow) ; y = 0 ; };
border l7(t=0,1){ x = - alphag*(1-t) ; y = 0 ; };

mesh Th = buildmesh( l0(N0) + l1(N1) + l2(1.5*N2) + l3(N2)
+ l6(1.5*N2) + l5(N2) + l4(2*N2) + l7(N1) );

At this point we define the Finite Element spaces and the stiffness matrices.

// Finite Element Space
fespace Vh(Th,P1); int dimVh = Vh.ndof;
fespace Nh(Th,P0); int dimNh = Nh.ndof;

// Finite Element functions declaration
Vh u, uold, utemp, uend, v; // Solutions finite element variables
Vh LSV2, LSV, LVol; // Volatility surfaces
Vh D11, D12, D21, D22; // Diffusion coefficients
Vh a1, a2; // Advection coefficients
Vh err, res; // Error and residual

// Bilinear Variational Forms Definition
D11 = 0.5*y*LSV2;
D12 = 0.5*y*rho*eta*LSV;
D21 = 0.5*y*rho*eta*LSV;
D22 = 0.5*y*eta*eta;

a1 = - r + 0.5*eta*rho*LSV + 0.5*y*( LSV2 + dx(LSV2) ) ;
a2 = - kappa*theta + 0.5*eta*eta + y*( kappa + 0.5*rho*eta*dx(LSV));

varf mass(u,v) = int2d(Th)(u*v);
varf diff(u,v) = int2d(Th)( D11*dx(u)*dx(v) + D12*dy(u)*dx(v)

+ D21*dx(u)*dy(v) + D22*dy(u)*dy(v) );
varf advec(u,v) = int2d(Th)( a1*u*dx(v) + a2*u*dy(v) );
varf rhs(u,v) = int2d(Th)(uold*v) + on(l1,l2,l3,l4,l5,l6,l7, u = 0);

// FE Matrix Definition
real[int] ff(dimVh); // RHS vector
real[int] uu(dimVh); // Solution vector
matrix M = mass(Vh,Vh); // mass matrix (it is the only time-independent)
matrix D; // diffusion matrix
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matrix A; // advection matrix
matrix C, UP; //Auxiliary matrix

real[int] LVOLvec(dimVh);
real[int] LSVvec(dimVh);
real[int] LSV2vec(dimVh);

// Streamline-Upwind Diffusion Numerical Stabilization
Nh tau = 0.3*hTriangle/sqrt( a1^2 + a2^2);
varf upwind(u,v) = int2d(Th)( tau*( a1*dx(u) + a2*dy(u))*(a1*dx(v) + a2*dy(v)));
UP = upwind(Vh,Vh);

B.2 Auxiliary Functions
Then we need to initialize the Dupire local volatility surface σLV (x, t), from the
fitted SVI Implied Volatility σSV II (x, t) given the calibrated coefficients (4.2). We
do not show here all the technical details. We just provide the function which
evaluates the Local Volatility:

func real Lvol( real x0, real T){

SigmaI1 = sqrt( C1 + C2 *(C3* (x0 - C4 ) + sqrt((x0 - C4 )^2.0 + C5 ) ) );
SigmaI2 = sqrt( C1p + C2p*(C3p*(x0 - C4p) + sqrt((x0 - C4p)^2.0 + C5p ) ) );
f1 = 0.5*C2 /SigmaI1*( C3 + 2.0*(x0 - C4 )/sqrt((x0 - C4 )^2.0 + C5 ) );
f2 = 0.5*C2p/SigmaI2*( C3p + 2.0*(x0 - C4p)/sqrt((x0 - C4p)^2.0 + C5p) );
g1 = 1.0/SigmaI1*( C2*C5 / ( ( (x0 - C4 )^2.0 + C5 )^1.5 ) - f1 );
g2 = 1.0/SigmaI2*( C2p*C5p/ ( ( (x0 - C4p)^2.0 + C5p )^1.5 ) - f2 );

SigmaI = tau1*SigmaI1 + tau2*SigmaI2;
SigmaT = (SigmaI2 - SigmaI1)/deltaTau;
SigmaX = tau1*f1 + tau2*f2;
SigmaXX = tau1*g1 + tau2*g2;
d1 = ( ( r + 0.5*SigmaI^2.0)*T - x0 )/( SigmaI*sqrt(T) );

Num = SigmaI^2.0 + 2.0*T*SigmaI*( SigmaT + r*SigmaX );
Den = ( 1.0 + d1*sqrt(T)*SigmaX )^2.0

+ SigmaI*T*( SigmaXX - SigmaX - d1*sqrt(T)*SigmaX^2.0 );
Lvol = sqrt( ( epsNum + Num) / ( epsDen + Den) );
return Lvol;

}

Then we define the function for the evaluation of the inverse conditional expec-
tation. For the sake of clarity this is a simplified, non adapted and not optimized
version of the one actually implemented.
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func real InvCondExp1(real x0){

num = 0;
den = 0;

for(int i=0; i<Nint; i++){ // Rectangle quadrature formula
ui = utemp(x0, i*deltay);
num += deltay*ui;
den += deltay*(i*deltay)*ui;

}
return ( num + epsInt) /(den + tunInt*epsInt);

};

B.3 Problem Solution
At this point we can initialize the solution and solve the problem. The core of
the algorithm is essentially constituted by a double loop, the outer for the time
evolution and the inner for the solution of the non linearity with fixed point
iterations.

// Initial condition, approximation of the Dirac Delta
uold = 1/(2*pi*sigmax*sigmay) * exp( - 0.5*( x / sigmax )^2 )

*( exp( - 0.5*( (y - y0) / sigmay )^2 )
- exp( - 0.5*( (y + y0) / sigmay )^2 ) );

utemp = uold;

// Initial Conditional Expectation
for( i = 0; i < dimVh; i++){

xv = Th(i).x;
yv = Th(i).y;
LVOLvec(i) = Lvol(xv);
InvCondExpVec(i) = 1/y0;
LSV2vec(i) = (LVOLvec(i))^2*InvCondExpVec(i);
LSVvec(i) = sqrt(LSV2vec(i));

}

LVol[] = LVOLvec;
LSV[] = LSVvec;
LSV2[] = LSV2vec;
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// Time Loop
for( n = 0; n < Ntimesteps+1; n++){

k = 0;
dt = time(n+1) - time(n);
relativerror = 1.0;

// ... Updating the Dupire Local Volatility LVol

// Updating the right hand side
varf rhs2(u,v) = int2d(Th)(uold*v/dt) + on(l1,l2,l3,l4,l5,l6,l7, u = 0);
ff = rhs2(0,Vh);

// Fixed Point Loop
while( k < Kmax && relativerror > toll ){

D11 = 0.5*y*LSV2;
D12 = 0.5*y*rho*eta*LSV;
D21 = 0.5*y*rho*eta*LSV;
D22 = 0.5*y*eta*eta;
a1 = - r + 0.5*rho*eta*LSV + 0.5*y*( LSV2 + dx(LSV2) ) ;
a2 = - kappa*theta + 0.5*eta*eta + y*( kappa + 0.5*rho*eta*dx(LSV) );

D = diff(Vh,Vh);
A = advec(Vh,Vh);
UP = upwind(Vh,Vh);
C = (1/dt)*M + D + A + UP;
set(C, solver = UMFPACK);

uu = C^-1*ff;
uuold = uu;
u[] = uu;

// Computing the Error
err = u - utemp;
L2err = int2d(Th)( err*err );
H1err = int2d(Th)( (dx(err))^2 + (dy(err))^2 ) + L2err;
L2u = int2d(Th)( utemp*utemp );
H1u = int2d(Th)( (dx(u))^2 + (dy(err))^2 ) + L2u;

relativerror = H1err/H1u;

utemp = u;
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// Computing the Inverse Conditional Expectation
for( j = 0; j < dimVh; j++){

xv = Th(j).x;
InvCondExpVec(j) = InvCondExp2(xv);
LSV2vec(j) = ( LVOLvec(j) )^2*InvCondExpVec(j);
LSVvec(j) = sqrt(LSV2vec(j));

}

LSV[] = LSVvec;
LSV2[] = LSV2vec;

k++;
}

// Update the solution
uold = u;

}
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